0
|
1 /* Storage allocation and gc for XEmacs Lisp interpreter.
|
272
|
2 Copyright (C) 1985-1998 Free Software Foundation, Inc.
|
0
|
3 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
4 Copyright (C) 1995, 1996 Ben Wing.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from
|
|
24 FSF. */
|
|
25
|
|
26 /* Authorship:
|
|
27
|
|
28 FSF: Original version; a long time ago.
|
|
29 Mly: Significantly rewritten to use new 3-bit tags and
|
|
30 nicely abstracted object definitions, for 19.8.
|
|
31 JWZ: Improved code to keep track of purespace usage and
|
|
32 issue nice purespace and GC stats.
|
|
33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking
|
|
34 and various changes for Mule, for 19.12.
|
|
35 Added bit vectors for 19.13.
|
|
36 Added lcrecord lists for 19.14.
|
255
|
37 slb: Lots of work on the purification and dump time code.
|
|
38 Synched Doug Lea malloc support from Emacs 20.2.
|
412
|
39 og: Killed the purespace.
|
0
|
40 */
|
|
41
|
|
42 #include <config.h>
|
|
43 #include "lisp.h"
|
|
44
|
|
45 #include "backtrace.h"
|
|
46 #include "buffer.h"
|
|
47 #include "bytecode.h"
|
70
|
48 #include "chartab.h"
|
0
|
49 #include "device.h"
|
|
50 #include "elhash.h"
|
|
51 #include "events.h"
|
|
52 #include "extents.h"
|
|
53 #include "frame.h"
|
|
54 #include "glyphs.h"
|
380
|
55 #include "opaque.h"
|
0
|
56 #include "redisplay.h"
|
|
57 #include "specifier.h"
|
272
|
58 #include "sysfile.h"
|
0
|
59 #include "window.h"
|
412
|
60
|
255
|
61 #ifdef DOUG_LEA_MALLOC
|
|
62 #include <malloc.h>
|
|
63 #endif
|
|
64
|
272
|
65 EXFUN (Fgarbage_collect, 0);
|
|
66
|
412
|
67 /* Return the true size of a struct with a variable-length array field. */
|
|
68 #define STRETCHY_STRUCT_SIZEOF(stretchy_struct_type, \
|
|
69 stretchy_array_field, \
|
|
70 stretchy_array_length) \
|
|
71 (offsetof (stretchy_struct_type, stretchy_array_field) + \
|
|
72 (offsetof (stretchy_struct_type, stretchy_array_field[1]) - \
|
|
73 offsetof (stretchy_struct_type, stretchy_array_field[0])) * \
|
|
74 (stretchy_array_length))
|
|
75
|
255
|
76 #if 0 /* this is _way_ too slow to be part of the standard debug options */
|
|
77 #if defined(DEBUG_XEMACS) && defined(MULE)
|
|
78 #define VERIFY_STRING_CHARS_INTEGRITY
|
|
79 #endif
|
|
80 #endif
|
0
|
81
|
|
82 /* Define this to use malloc/free with no freelist for all datatypes,
|
|
83 the hope being that some debugging tools may help detect
|
|
84 freed memory references */
|
177
|
85 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */
|
|
86 #include <dmalloc.h>
|
|
87 #define ALLOC_NO_POOLS
|
|
88 #endif
|
0
|
89
|
|
90 #ifdef DEBUG_XEMACS
|
380
|
91 static int debug_allocation;
|
|
92 static int debug_allocation_backtrace_length;
|
0
|
93 #endif
|
|
94
|
|
95 /* Number of bytes of consing done since the last gc */
|
|
96 EMACS_INT consing_since_gc;
|
|
97 #define INCREMENT_CONS_COUNTER_1(size) (consing_since_gc += (size))
|
|
98
|
|
99 #define debug_allocation_backtrace() \
|
|
100 do { \
|
|
101 if (debug_allocation_backtrace_length > 0) \
|
|
102 debug_short_backtrace (debug_allocation_backtrace_length); \
|
|
103 } while (0)
|
|
104
|
|
105 #ifdef DEBUG_XEMACS
|
|
106 #define INCREMENT_CONS_COUNTER(foosize, type) \
|
|
107 do { \
|
|
108 if (debug_allocation) \
|
|
109 { \
|
|
110 stderr_out ("allocating %s (size %ld)\n", type, (long)foosize); \
|
|
111 debug_allocation_backtrace (); \
|
|
112 } \
|
|
113 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
114 } while (0)
|
|
115 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \
|
|
116 do { \
|
|
117 if (debug_allocation > 1) \
|
|
118 { \
|
|
119 stderr_out ("allocating noseeum %s (size %ld)\n", type, (long)foosize); \
|
|
120 debug_allocation_backtrace (); \
|
|
121 } \
|
|
122 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
123 } while (0)
|
|
124 #else
|
|
125 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size)
|
|
126 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \
|
|
127 INCREMENT_CONS_COUNTER_1 (size)
|
|
128 #endif
|
|
129
|
380
|
130 #define DECREMENT_CONS_COUNTER(size) do { \
|
|
131 consing_since_gc -= (size); \
|
|
132 if (consing_since_gc < 0) \
|
|
133 consing_since_gc = 0; \
|
|
134 } while (0)
|
0
|
135
|
|
136 /* Number of bytes of consing since gc before another gc should be done. */
|
|
137 EMACS_INT gc_cons_threshold;
|
|
138
|
|
139 /* Nonzero during gc */
|
|
140 int gc_in_progress;
|
|
141
|
|
142 /* Number of times GC has happened at this level or below.
|
|
143 * Level 0 is most volatile, contrary to usual convention.
|
|
144 * (Of course, there's only one level at present) */
|
|
145 EMACS_INT gc_generation_number[1];
|
|
146
|
|
147 /* This is just for use by the printer, to allow things to print uniquely */
|
|
148 static int lrecord_uid_counter;
|
|
149
|
|
150 /* Nonzero when calling certain hooks or doing other things where
|
|
151 a GC would be bad */
|
|
152 int gc_currently_forbidden;
|
|
153
|
|
154 /* Hooks. */
|
|
155 Lisp_Object Vpre_gc_hook, Qpre_gc_hook;
|
|
156 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
|
|
157
|
|
158 /* "Garbage collecting" */
|
|
159 Lisp_Object Vgc_message;
|
|
160 Lisp_Object Vgc_pointer_glyph;
|
412
|
161 static CONST char gc_default_message[] = "Garbage collecting";
|
0
|
162 Lisp_Object Qgarbage_collecting;
|
|
163
|
|
164 #ifndef VIRT_ADDR_VARIES
|
|
165 extern
|
|
166 #endif /* VIRT_ADDR_VARIES */
|
|
167 EMACS_INT malloc_sbrk_used;
|
|
168
|
|
169 #ifndef VIRT_ADDR_VARIES
|
|
170 extern
|
|
171 #endif /* VIRT_ADDR_VARIES */
|
|
172 EMACS_INT malloc_sbrk_unused;
|
|
173
|
398
|
174 /* Non-zero means we're in the process of doing the dump */
|
0
|
175 int purify_flag;
|
|
176
|
|
177 #ifdef ERROR_CHECK_TYPECHECK
|
|
178
|
|
179 Error_behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN;
|
|
180
|
|
181 #endif
|
|
182
|
|
183 int
|
398
|
184 c_readonly (Lisp_Object obj)
|
0
|
185 {
|
412
|
186 return POINTER_TYPE_P (XGCTYPE (obj)) && C_READONLY (obj);
|
0
|
187 }
|
|
188
|
398
|
189 int
|
|
190 lisp_readonly (Lisp_Object obj)
|
0
|
191 {
|
412
|
192 return POINTER_TYPE_P (XGCTYPE (obj)) && LISP_READONLY (obj);
|
183
|
193 }
|
0
|
194
|
|
195
|
|
196 /* Maximum amount of C stack to save when a GC happens. */
|
|
197
|
|
198 #ifndef MAX_SAVE_STACK
|
380
|
199 #define MAX_SAVE_STACK 0 /* 16000 */
|
0
|
200 #endif
|
|
201
|
|
202 /* Non-zero means ignore malloc warnings. Set during initialization. */
|
|
203 int ignore_malloc_warnings;
|
|
204
|
|
205
|
|
206 static void *breathing_space;
|
|
207
|
|
208 void
|
|
209 release_breathing_space (void)
|
|
210 {
|
183
|
211 if (breathing_space)
|
0
|
212 {
|
|
213 void *tmp = breathing_space;
|
|
214 breathing_space = 0;
|
|
215 xfree (tmp);
|
|
216 }
|
|
217 }
|
|
218
|
|
219 /* malloc calls this if it finds we are near exhausting storage */
|
|
220 void
|
412
|
221 malloc_warning (CONST char *str)
|
0
|
222 {
|
|
223 if (ignore_malloc_warnings)
|
|
224 return;
|
|
225
|
|
226 warn_when_safe
|
|
227 (Qmemory, Qcritical,
|
|
228 "%s\n"
|
|
229 "Killing some buffers may delay running out of memory.\n"
|
|
230 "However, certainly by the time you receive the 95%% warning,\n"
|
|
231 "you should clean up, kill this Emacs, and start a new one.",
|
|
232 str);
|
|
233 }
|
|
234
|
|
235 /* Called if malloc returns zero */
|
|
236 DOESNT_RETURN
|
|
237 memory_full (void)
|
|
238 {
|
|
239 /* Force a GC next time eval is called.
|
|
240 It's better to loop garbage-collecting (we might reclaim enough
|
|
241 to win) than to loop beeping and barfing "Memory exhausted"
|
|
242 */
|
|
243 consing_since_gc = gc_cons_threshold + 1;
|
|
244 release_breathing_space ();
|
|
245
|
278
|
246 /* Flush some histories which might conceivably contain garbalogical
|
|
247 inhibitors. */
|
0
|
248 if (!NILP (Fboundp (Qvalues)))
|
|
249 Fset (Qvalues, Qnil);
|
|
250 Vcommand_history = Qnil;
|
|
251
|
|
252 error ("Memory exhausted");
|
|
253 }
|
|
254
|
|
255 /* like malloc and realloc but check for no memory left, and block input. */
|
|
256
|
412
|
257 #ifdef xmalloc
|
177
|
258 #undef xmalloc
|
412
|
259 #endif
|
|
260
|
0
|
261 void *
|
185
|
262 xmalloc (size_t size)
|
0
|
263 {
|
386
|
264 void *val = malloc (size);
|
0
|
265
|
|
266 if (!val && (size != 0)) memory_full ();
|
|
267 return val;
|
|
268 }
|
|
269
|
412
|
270 #ifdef xcalloc
|
392
|
271 #undef xcalloc
|
412
|
272 #endif
|
|
273
|
380
|
274 static void *
|
|
275 xcalloc (size_t nelem, size_t elsize)
|
|
276 {
|
386
|
277 void *val = calloc (nelem, elsize);
|
380
|
278
|
|
279 if (!val && (nelem != 0)) memory_full ();
|
|
280 return val;
|
|
281 }
|
|
282
|
0
|
283 void *
|
185
|
284 xmalloc_and_zero (size_t size)
|
0
|
285 {
|
380
|
286 return xcalloc (size, sizeof (char));
|
0
|
287 }
|
|
288
|
412
|
289 #ifdef xrealloc
|
177
|
290 #undef xrealloc
|
412
|
291 #endif
|
|
292
|
0
|
293 void *
|
185
|
294 xrealloc (void *block, size_t size)
|
0
|
295 {
|
|
296 /* We must call malloc explicitly when BLOCK is 0, since some
|
|
297 reallocs don't do this. */
|
386
|
298 void *val = block ? realloc (block, size) : malloc (size);
|
0
|
299
|
|
300 if (!val && (size != 0)) memory_full ();
|
|
301 return val;
|
|
302 }
|
|
303
|
|
304 void
|
|
305 #ifdef ERROR_CHECK_MALLOC
|
|
306 xfree_1 (void *block)
|
|
307 #else
|
|
308 xfree (void *block)
|
|
309 #endif
|
|
310 {
|
|
311 #ifdef ERROR_CHECK_MALLOC
|
|
312 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an
|
|
313 error until much later on for many system mallocs, such as
|
|
314 the one that comes with Solaris 2.3. FMH!! */
|
|
315 assert (block != (void *) 0xDEADBEEF);
|
|
316 assert (block);
|
183
|
317 #endif /* ERROR_CHECK_MALLOC */
|
0
|
318 free (block);
|
|
319 }
|
|
320
|
272
|
321 #ifdef ERROR_CHECK_GC
|
|
322
|
|
323 #if SIZEOF_INT == 4
|
|
324 typedef unsigned int four_byte_t;
|
|
325 #elif SIZEOF_LONG == 4
|
|
326 typedef unsigned long four_byte_t;
|
|
327 #elif SIZEOF_SHORT == 4
|
|
328 typedef unsigned short four_byte_t;
|
0
|
329 #else
|
|
330 What kind of strange-ass system are we running on?
|
|
331 #endif
|
|
332
|
|
333 static void
|
272
|
334 deadbeef_memory (void *ptr, size_t size)
|
0
|
335 {
|
272
|
336 four_byte_t *ptr4 = (four_byte_t *) ptr;
|
|
337 size_t beefs = size >> 2;
|
|
338
|
|
339 /* In practice, size will always be a multiple of four. */
|
|
340 while (beefs--)
|
|
341 (*ptr4++) = 0xDEADBEEF;
|
0
|
342 }
|
|
343
|
183
|
344 #else /* !ERROR_CHECK_GC */
|
|
345
|
0
|
346
|
|
347 #define deadbeef_memory(ptr, size)
|
|
348
|
183
|
349 #endif /* !ERROR_CHECK_GC */
|
0
|
350
|
412
|
351 #ifdef xstrdup
|
177
|
352 #undef xstrdup
|
412
|
353 #endif
|
|
354
|
0
|
355 char *
|
412
|
356 xstrdup (CONST char *str)
|
0
|
357 {
|
|
358 int len = strlen (str) + 1; /* for stupid terminating 0 */
|
|
359
|
185
|
360 void *val = xmalloc (len);
|
0
|
361 if (val == 0) return 0;
|
412
|
362 memcpy (val, str, len);
|
|
363 return (char *) val;
|
0
|
364 }
|
|
365
|
|
366 #ifdef NEED_STRDUP
|
|
367 char *
|
412
|
368 strdup (CONST char *s)
|
0
|
369 {
|
|
370 return xstrdup (s);
|
|
371 }
|
|
372 #endif /* NEED_STRDUP */
|
|
373
|
|
374
|
|
375 static void *
|
272
|
376 allocate_lisp_storage (size_t size)
|
0
|
377 {
|
412
|
378 void *p = xmalloc (size);
|
|
379 return p;
|
0
|
380 }
|
|
381
|
|
382
|
412
|
383 /* lrecords are chained together through their "next.v" field.
|
|
384 * After doing the mark phase, the GC will walk this linked
|
|
385 * list and free any record which hasn't been marked.
|
|
386 */
|
0
|
387 static struct lcrecord_header *all_lcrecords;
|
|
388
|
|
389 void *
|
412
|
390 alloc_lcrecord (size_t size, CONST struct lrecord_implementation *implementation)
|
0
|
391 {
|
|
392 struct lcrecord_header *lcheader;
|
|
393
|
412
|
394 #ifdef ERROR_CHECK_GC
|
|
395 if (implementation->static_size == 0)
|
|
396 assert (implementation->size_in_bytes_method);
|
|
397 else
|
|
398 assert (implementation->static_size == size);
|
|
399 #endif
|
0
|
400
|
185
|
401 lcheader = (struct lcrecord_header *) allocate_lisp_storage (size);
|
412
|
402 set_lheader_implementation (&(lcheader->lheader), implementation);
|
0
|
403 lcheader->next = all_lcrecords;
|
|
404 #if 1 /* mly prefers to see small ID numbers */
|
|
405 lcheader->uid = lrecord_uid_counter++;
|
|
406 #else /* jwz prefers to see real addrs */
|
|
407 lcheader->uid = (int) &lcheader;
|
|
408 #endif
|
|
409 lcheader->free = 0;
|
|
410 all_lcrecords = lcheader;
|
|
411 INCREMENT_CONS_COUNTER (size, implementation->name);
|
173
|
412 return lcheader;
|
0
|
413 }
|
|
414
|
|
415 #if 0 /* Presently unused */
|
|
416 /* Very, very poor man's EGC?
|
|
417 * This may be slow and thrash pages all over the place.
|
|
418 * Only call it if you really feel you must (and if the
|
|
419 * lrecord was fairly recently allocated).
|
|
420 * Otherwise, just let the GC do its job -- that's what it's there for
|
|
421 */
|
|
422 void
|
|
423 free_lcrecord (struct lcrecord_header *lcrecord)
|
|
424 {
|
|
425 if (all_lcrecords == lcrecord)
|
|
426 {
|
|
427 all_lcrecords = lcrecord->next;
|
|
428 }
|
|
429 else
|
|
430 {
|
|
431 struct lrecord_header *header = all_lcrecords;
|
|
432 for (;;)
|
|
433 {
|
|
434 struct lrecord_header *next = header->next;
|
|
435 if (next == lcrecord)
|
|
436 {
|
|
437 header->next = lrecord->next;
|
|
438 break;
|
|
439 }
|
|
440 else if (next == 0)
|
|
441 abort ();
|
|
442 else
|
|
443 header = next;
|
|
444 }
|
|
445 }
|
|
446 if (lrecord->implementation->finalizer)
|
380
|
447 lrecord->implementation->finalizer (lrecord, 0);
|
0
|
448 xfree (lrecord);
|
|
449 return;
|
|
450 }
|
|
451 #endif /* Unused */
|
|
452
|
|
453
|
|
454 static void
|
|
455 disksave_object_finalization_1 (void)
|
|
456 {
|
|
457 struct lcrecord_header *header;
|
|
458
|
|
459 for (header = all_lcrecords; header; header = header->next)
|
|
460 {
|
412
|
461 if (LHEADER_IMPLEMENTATION(&header->lheader)->finalizer &&
|
211
|
462 !header->free)
|
412
|
463 ((LHEADER_IMPLEMENTATION(&header->lheader)->finalizer)
|
|
464 (header, 1));
|
0
|
465 }
|
|
466 }
|
183
|
467
|
412
|
468
|
|
469 /* This must not be called -- it just serves as for EQ test
|
|
470 * If lheader->implementation->finalizer is this_marks_a_marked_record,
|
|
471 * then lrecord has been marked by the GC sweeper
|
|
472 * header->implementation is put back to its correct value by
|
|
473 * sweep_records */
|
|
474 void
|
|
475 this_marks_a_marked_record (void *dummy0, int dummy1)
|
|
476 {
|
|
477 abort ();
|
|
478 }
|
|
479
|
|
480 /* Semi-kludge -- lrecord_symbol_value_forward objects get stuck
|
|
481 in CONST space and you get SEGV's if you attempt to mark them.
|
|
482 This sits in lheader->implementation->marker. */
|
|
483
|
|
484 Lisp_Object
|
|
485 this_one_is_unmarkable (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
|
486 {
|
|
487 abort ();
|
|
488 return Qnil;
|
|
489 }
|
|
490
|
|
491 /* XGCTYPE for records */
|
|
492 int
|
|
493 gc_record_type_p (Lisp_Object frob, CONST struct lrecord_implementation *type)
|
|
494 {
|
|
495 CONST struct lrecord_implementation *imp;
|
|
496
|
|
497 if (XGCTYPE (frob) != Lisp_Type_Record)
|
|
498 return 0;
|
|
499
|
|
500 imp = XRECORD_LHEADER_IMPLEMENTATION (frob);
|
|
501 return imp == type;
|
|
502 }
|
|
503
|
0
|
504
|
380
|
505 /************************************************************************/
|
|
506 /* Debugger support */
|
|
507 /************************************************************************/
|
396
|
508 /* Give gdb/dbx enough information to decode Lisp Objects. We make
|
|
509 sure certain symbols are always defined, so gdb doesn't complain
|
412
|
510 about expressions in src/gdbinit. See src/gdbinit or src/dbxrc to
|
|
511 see how this is used. */
|
398
|
512
|
396
|
513 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS;
|
|
514 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1;
|
380
|
515
|
|
516 #ifdef USE_UNION_TYPE
|
396
|
517 unsigned char dbg_USE_UNION_TYPE = 1;
|
380
|
518 #else
|
396
|
519 unsigned char dbg_USE_UNION_TYPE = 0;
|
380
|
520 #endif
|
|
521
|
412
|
522 unsigned char Lisp_Type_Int = 100;
|
|
523 unsigned char Lisp_Type_Cons = 101;
|
|
524 unsigned char Lisp_Type_String = 102;
|
|
525 unsigned char Lisp_Type_Vector = 103;
|
|
526 unsigned char Lisp_Type_Symbol = 104;
|
|
527
|
|
528 #ifndef MULE
|
|
529 unsigned char lrecord_char_table_entry;
|
|
530 unsigned char lrecord_charset;
|
|
531 #ifndef FILE_CODING
|
|
532 unsigned char lrecord_coding_system;
|
|
533 #endif
|
|
534 #endif
|
|
535
|
|
536 #ifndef HAVE_TOOLBARS
|
|
537 unsigned char lrecord_toolbar_button;
|
|
538 #endif
|
|
539
|
|
540 #ifndef TOOLTALK
|
|
541 unsigned char lrecord_tooltalk_message;
|
|
542 unsigned char lrecord_tooltalk_pattern;
|
|
543 #endif
|
|
544
|
|
545 #ifndef HAVE_DATABASE
|
|
546 unsigned char lrecord_database;
|
|
547 #endif
|
|
548
|
396
|
549 unsigned char dbg_valbits = VALBITS;
|
|
550 unsigned char dbg_gctypebits = GCTYPEBITS;
|
|
551
|
|
552 /* Macros turned into functions for ease of debugging.
|
380
|
553 Debuggers don't know about macros! */
|
|
554 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2);
|
|
555 int
|
|
556 dbg_eq (Lisp_Object obj1, Lisp_Object obj2)
|
|
557 {
|
|
558 return EQ (obj1, obj2);
|
|
559 }
|
|
560
|
272
|
561
|
380
|
562 /************************************************************************/
|
|
563 /* Fixed-size type macros */
|
|
564 /************************************************************************/
|
0
|
565
|
|
566 /* For fixed-size types that are commonly used, we malloc() large blocks
|
|
567 of memory at a time and subdivide them into chunks of the correct
|
|
568 size for an object of that type. This is more efficient than
|
|
569 malloc()ing each object separately because we save on malloc() time
|
|
570 and overhead due to the fewer number of malloc()ed blocks, and
|
|
571 also because we don't need any extra pointers within each object
|
|
572 to keep them threaded together for GC purposes. For less common
|
|
573 (and frequently large-size) types, we use lcrecords, which are
|
|
574 malloc()ed individually and chained together through a pointer
|
|
575 in the lcrecord header. lcrecords do not need to be fixed-size
|
|
576 (i.e. two objects of the same type need not have the same size;
|
|
577 however, the size of a particular object cannot vary dynamically).
|
|
578 It is also much easier to create a new lcrecord type because no
|
|
579 additional code needs to be added to alloc.c. Finally, lcrecords
|
|
580 may be more efficient when there are only a small number of them.
|
|
581
|
|
582 The types that are stored in these large blocks (or "frob blocks")
|
|
583 are cons, float, compiled-function, symbol, marker, extent, event,
|
|
584 and string.
|
|
585
|
|
586 Note that strings are special in that they are actually stored in
|
|
587 two parts: a structure containing information about the string, and
|
|
588 the actual data associated with the string. The former structure
|
|
589 (a struct Lisp_String) is a fixed-size structure and is managed the
|
|
590 same way as all the other such types. This structure contains a
|
|
591 pointer to the actual string data, which is stored in structures of
|
|
592 type struct string_chars_block. Each string_chars_block consists
|
|
593 of a pointer to a struct Lisp_String, followed by the data for that
|
412
|
594 string, followed by another pointer to a struct Lisp_String,
|
|
595 followed by the data for that string, etc. At GC time, the data in
|
|
596 these blocks is compacted by searching sequentially through all the
|
0
|
597 blocks and compressing out any holes created by unmarked strings.
|
|
598 Strings that are more than a certain size (bigger than the size of
|
|
599 a string_chars_block, although something like half as big might
|
|
600 make more sense) are malloc()ed separately and not stored in
|
|
601 string_chars_blocks. Furthermore, no one string stretches across
|
|
602 two string_chars_blocks.
|
|
603
|
|
604 Vectors are each malloc()ed separately, similar to lcrecords.
|
183
|
605
|
0
|
606 In the following discussion, we use conses, but it applies equally
|
|
607 well to the other fixed-size types.
|
|
608
|
|
609 We store cons cells inside of cons_blocks, allocating a new
|
|
610 cons_block with malloc() whenever necessary. Cons cells reclaimed
|
|
611 by GC are put on a free list to be reallocated before allocating
|
|
612 any new cons cells from the latest cons_block. Each cons_block is
|
|
613 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least
|
|
614 the versions in malloc.c and gmalloc.c) really allocates in units
|
|
615 of powers of two and uses 4 bytes for its own overhead.
|
|
616
|
|
617 What GC actually does is to search through all the cons_blocks,
|
|
618 from the most recently allocated to the oldest, and put all
|
|
619 cons cells that are not marked (whether or not they're already
|
|
620 free) on a cons_free_list. The cons_free_list is a stack, and
|
|
621 so the cons cells in the oldest-allocated cons_block end up
|
|
622 at the head of the stack and are the first to be reallocated.
|
|
623 If any cons_block is entirely free, it is freed with free()
|
|
624 and its cons cells removed from the cons_free_list. Because
|
|
625 the cons_free_list ends up basically in memory order, we have
|
|
626 a high locality of reference (assuming a reasonable turnover
|
|
627 of allocating and freeing) and have a reasonable probability
|
|
628 of entirely freeing up cons_blocks that have been more recently
|
|
629 allocated. This stage is called the "sweep stage" of GC, and
|
|
630 is executed after the "mark stage", which involves starting
|
|
631 from all places that are known to point to in-use Lisp objects
|
|
632 (e.g. the obarray, where are all symbols are stored; the
|
|
633 current catches and condition-cases; the backtrace list of
|
|
634 currently executing functions; the gcpro list; etc.) and
|
|
635 recursively marking all objects that are accessible.
|
|
636
|
|
637 At the beginning of the sweep stage, the conses in the cons
|
|
638 blocks are in one of three states: in use and marked, in use
|
|
639 but not marked, and not in use (already freed). Any conses
|
|
640 that are marked have been marked in the mark stage just
|
|
641 executed, because as part of the sweep stage we unmark any
|
|
642 marked objects. The way we tell whether or not a cons cell
|
|
643 is in use is through the FREE_STRUCT_P macro. This basically
|
|
644 looks at the first 4 bytes (or however many bytes a pointer
|
|
645 fits in) to see if all the bits in those bytes are 1. The
|
|
646 resulting value (0xFFFFFFFF) is not a valid pointer and is
|
|
647 not a valid Lisp_Object. All current fixed-size types have
|
|
648 a pointer or Lisp_Object as their first element with the
|
|
649 exception of strings; they have a size value, which can
|
|
650 never be less than zero, and so 0xFFFFFFFF is invalid for
|
|
651 strings as well. Now assuming that a cons cell is in use,
|
|
652 the way we tell whether or not it is marked is to look at
|
|
653 the mark bit of its car (each Lisp_Object has one bit
|
|
654 reserved as a mark bit, in case it's needed). Note that
|
|
655 different types of objects use different fields to indicate
|
|
656 whether the object is marked, but the principle is the same.
|
|
657
|
|
658 Conses on the free_cons_list are threaded through a pointer
|
|
659 stored in the bytes directly after the bytes that are set
|
|
660 to 0xFFFFFFFF (we cannot overwrite these because the cons
|
|
661 is still in a cons_block and needs to remain marked as
|
|
662 not in use for the next time that GC happens). This
|
|
663 implies that all fixed-size types must be at least big
|
|
664 enough to store two pointers, which is indeed the case
|
|
665 for all current fixed-size types.
|
|
666
|
|
667 Some types of objects need additional "finalization" done
|
|
668 when an object is converted from in use to not in use;
|
|
669 this is the purpose of the ADDITIONAL_FREE_type macro.
|
|
670 For example, markers need to be removed from the chain
|
|
671 of markers that is kept in each buffer. This is because
|
|
672 markers in a buffer automatically disappear if the marker
|
|
673 is no longer referenced anywhere (the same does not
|
|
674 apply to extents, however).
|
|
675
|
|
676 WARNING: Things are in an extremely bizarre state when
|
|
677 the ADDITIONAL_FREE_type macros are called, so beware!
|
|
678
|
|
679 When ERROR_CHECK_GC is defined, we do things differently
|
|
680 so as to maximize our chances of catching places where
|
|
681 there is insufficient GCPROing. The thing we want to
|
|
682 avoid is having an object that we're using but didn't
|
|
683 GCPRO get freed by GC and then reallocated while we're
|
|
684 in the process of using it -- this will result in something
|
|
685 seemingly unrelated getting trashed, and is extremely
|
|
686 difficult to track down. If the object gets freed but
|
|
687 not reallocated, we can usually catch this because we
|
|
688 set all bytes of a freed object to 0xDEADBEEF. (The
|
|
689 first four bytes, however, are 0xFFFFFFFF, and the next
|
|
690 four are a pointer used to chain freed objects together;
|
|
691 we play some tricks with this pointer to make it more
|
|
692 bogus, so crashes are more likely to occur right away.)
|
|
693
|
|
694 We want freed objects to stay free as long as possible,
|
|
695 so instead of doing what we do above, we maintain the
|
|
696 free objects in a first-in first-out queue. We also
|
|
697 don't recompute the free list each GC, unlike above;
|
|
698 this ensures that the queue ordering is preserved.
|
|
699 [This means that we are likely to have worse locality
|
|
700 of reference, and that we can never free a frob block
|
|
701 once it's allocated. (Even if we know that all cells
|
|
702 in it are free, there's no easy way to remove all those
|
|
703 cells from the free list because the objects on the
|
|
704 free list are unlikely to be in memory order.)]
|
|
705 Furthermore, we never take objects off the free list
|
|
706 unless there's a large number (usually 1000, but
|
|
707 varies depending on type) of them already on the list.
|
|
708 This way, we ensure that an object that gets freed will
|
|
709 remain free for the next 1000 (or whatever) times that
|
412
|
710 an object of that type is allocated.
|
|
711 */
|
0
|
712
|
|
713 #ifndef MALLOC_OVERHEAD
|
|
714 #ifdef GNU_MALLOC
|
|
715 #define MALLOC_OVERHEAD 0
|
|
716 #elif defined (rcheck)
|
|
717 #define MALLOC_OVERHEAD 20
|
|
718 #else
|
|
719 #define MALLOC_OVERHEAD 8
|
|
720 #endif
|
183
|
721 #endif /* MALLOC_OVERHEAD */
|
0
|
722
|
255
|
723 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC)
|
|
724 /* If we released our reserve (due to running out of memory),
|
|
725 and we have a fair amount free once again,
|
|
726 try to set aside another reserve in case we run out once more.
|
|
727
|
|
728 This is called when a relocatable block is freed in ralloc.c. */
|
272
|
729 void refill_memory_reserve (void);
|
255
|
730 void
|
412
|
731 refill_memory_reserve ()
|
255
|
732 {
|
|
733 if (breathing_space == 0)
|
|
734 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD);
|
|
735 }
|
|
736 #endif
|
|
737
|
0
|
738 #ifdef ALLOC_NO_POOLS
|
|
739 # define TYPE_ALLOC_SIZE(type, structtype) 1
|
|
740 #else
|
|
741 # define TYPE_ALLOC_SIZE(type, structtype) \
|
|
742 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \
|
|
743 / sizeof (structtype))
|
183
|
744 #endif /* ALLOC_NO_POOLS */
|
0
|
745
|
380
|
746 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \
|
|
747 \
|
|
748 struct type##_block \
|
|
749 { \
|
|
750 struct type##_block *prev; \
|
|
751 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \
|
|
752 }; \
|
|
753 \
|
|
754 static struct type##_block *current_##type##_block; \
|
|
755 static int current_##type##_block_index; \
|
|
756 \
|
|
757 static structtype *type##_free_list; \
|
|
758 static structtype *type##_free_list_tail; \
|
|
759 \
|
|
760 static void \
|
|
761 init_##type##_alloc (void) \
|
|
762 { \
|
|
763 current_##type##_block = 0; \
|
|
764 current_##type##_block_index = \
|
|
765 countof (current_##type##_block->block); \
|
|
766 type##_free_list = 0; \
|
|
767 type##_free_list_tail = 0; \
|
|
768 } \
|
|
769 \
|
|
770 static int gc_count_num_##type##_in_use; \
|
|
771 static int gc_count_num_##type##_freelist
|
|
772
|
|
773 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \
|
|
774 if (current_##type##_block_index \
|
|
775 == countof (current_##type##_block->block)) \
|
0
|
776 { \
|
380
|
777 struct type##_block *AFTFB_new = (struct type##_block *) \
|
|
778 allocate_lisp_storage (sizeof (struct type##_block)); \
|
|
779 AFTFB_new->prev = current_##type##_block; \
|
|
780 current_##type##_block = AFTFB_new; \
|
0
|
781 current_##type##_block_index = 0; \
|
|
782 } \
|
380
|
783 (result) = \
|
|
784 &(current_##type##_block->block[current_##type##_block_index++]); \
|
|
785 } while (0)
|
0
|
786
|
|
787 /* Allocate an instance of a type that is stored in blocks.
|
|
788 TYPE is the "name" of the type, STRUCTTYPE is the corresponding
|
|
789 structure type. */
|
|
790
|
|
791 #ifdef ERROR_CHECK_GC
|
|
792
|
|
793 /* Note: if you get crashes in this function, suspect incorrect calls
|
|
794 to free_cons() and friends. This happened once because the cons
|
|
795 cell was not GC-protected and was getting collected before
|
|
796 free_cons() was called. */
|
|
797
|
|
798 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
799 do \
|
|
800 { \
|
|
801 if (gc_count_num_##type##_freelist > \
|
|
802 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \
|
|
803 { \
|
|
804 result = type##_free_list; \
|
|
805 /* Before actually using the chain pointer, we complement all its \
|
|
806 bits; see FREE_FIXED_TYPE(). */ \
|
|
807 type##_free_list = \
|
|
808 (structtype *) ~(unsigned long) \
|
|
809 (* (structtype **) ((char *) result + sizeof (void *))); \
|
|
810 gc_count_num_##type##_freelist--; \
|
|
811 } \
|
|
812 else \
|
|
813 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
814 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
815 } while (0)
|
|
816
|
183
|
817 #else /* !ERROR_CHECK_GC */
|
0
|
818
|
|
819 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
820 do \
|
|
821 { \
|
|
822 if (type##_free_list) \
|
|
823 { \
|
|
824 result = type##_free_list; \
|
|
825 type##_free_list = \
|
|
826 * (structtype **) ((char *) result + sizeof (void *)); \
|
|
827 } \
|
|
828 else \
|
|
829 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
830 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
831 } while (0)
|
|
832
|
183
|
833 #endif /* !ERROR_CHECK_GC */
|
0
|
834
|
|
835 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
836 do \
|
|
837 { \
|
|
838 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
839 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
840 } while (0)
|
|
841
|
|
842 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
843 do \
|
|
844 { \
|
|
845 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
846 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
847 } while (0)
|
|
848
|
|
849 /* INVALID_POINTER_VALUE should be a value that is invalid as a pointer
|
|
850 to a Lisp object and invalid as an actual Lisp_Object value. We have
|
|
851 to make sure that this value cannot be an integer in Lisp_Object form.
|
|
852 0xFFFFFFFF could be so on a 64-bit system, so we extend it to 64 bits.
|
|
853 On a 32-bit system, the type bits will be non-zero, making the value
|
|
854 be a pointer, and the pointer will be misaligned.
|
|
855
|
|
856 Even if Emacs is run on some weirdo system that allows and allocates
|
|
857 byte-aligned pointers, this pointer is at the very top of the address
|
|
858 space and so it's almost inconceivable that it could ever be valid. */
|
183
|
859
|
371
|
860 #if INTBITS == 32
|
|
861 # define INVALID_POINTER_VALUE 0xFFFFFFFF
|
|
862 #elif INTBITS == 48
|
|
863 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFF
|
|
864 #elif INTBITS == 64
|
|
865 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFFFFFF
|
0
|
866 #else
|
|
867 You have some weird system and need to supply a reasonable value here.
|
|
868 #endif
|
|
869
|
|
870 #define FREE_STRUCT_P(ptr) \
|
412
|
871 (* (void **) ptr == (void *) INVALID_POINTER_VALUE)
|
371
|
872 #define MARK_STRUCT_AS_FREE(ptr) \
|
412
|
873 (* (void **) ptr = (void *) INVALID_POINTER_VALUE)
|
371
|
874 #define MARK_STRUCT_AS_NOT_FREE(ptr) \
|
412
|
875 (* (void **) ptr = 0)
|
0
|
876
|
|
877 #ifdef ERROR_CHECK_GC
|
|
878
|
|
879 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
|
880 do { if (type##_free_list_tail) \
|
|
881 { \
|
|
882 /* When we store the chain pointer, we complement all \
|
|
883 its bits; this should significantly increase its \
|
|
884 bogosity in case someone tries to use the value, and \
|
|
885 should make us dump faster if someone stores something \
|
|
886 over the pointer because when it gets un-complemented in \
|
|
887 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \
|
|
888 extremely bogus. */ \
|
|
889 * (structtype **) \
|
|
890 ((char *) type##_free_list_tail + sizeof (void *)) = \
|
|
891 (structtype *) ~(unsigned long) ptr; \
|
|
892 } \
|
|
893 else \
|
|
894 type##_free_list = ptr; \
|
|
895 type##_free_list_tail = ptr; \
|
|
896 } while (0)
|
|
897
|
183
|
898 #else /* !ERROR_CHECK_GC */
|
0
|
899
|
|
900 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
380
|
901 do { * (structtype **) ((char *) (ptr) + sizeof (void *)) = \
|
0
|
902 type##_free_list; \
|
380
|
903 type##_free_list = (ptr); \
|
0
|
904 } while (0)
|
|
905
|
183
|
906 #endif /* !ERROR_CHECK_GC */
|
0
|
907
|
|
908 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */
|
|
909
|
380
|
910 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \
|
|
911 structtype *FFT_ptr = (ptr); \
|
|
912 ADDITIONAL_FREE_##type (FFT_ptr); \
|
|
913 deadbeef_memory (FFT_ptr, sizeof (structtype)); \
|
|
914 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \
|
|
915 MARK_STRUCT_AS_FREE (FFT_ptr); \
|
|
916 } while (0)
|
0
|
917
|
|
918 /* Like FREE_FIXED_TYPE() but used when we are explicitly
|
|
919 freeing a structure through free_cons(), free_marker(), etc.
|
|
920 rather than through the normal process of sweeping.
|
|
921 We attempt to undo the changes made to the allocation counters
|
|
922 as a result of this structure being allocated. This is not
|
|
923 completely necessary but helps keep things saner: e.g. this way,
|
|
924 repeatedly allocating and freeing a cons will not result in
|
|
925 the consing-since-gc counter advancing, which would cause a GC
|
|
926 and somewhat defeat the purpose of explicitly freeing. */
|
|
927
|
|
928 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \
|
|
929 do { FREE_FIXED_TYPE (type, structtype, ptr); \
|
|
930 DECREMENT_CONS_COUNTER (sizeof (structtype)); \
|
|
931 gc_count_num_##type##_freelist++; \
|
|
932 } while (0)
|
183
|
933
|
0
|
934
|
|
935
|
380
|
936 /************************************************************************/
|
|
937 /* Cons allocation */
|
|
938 /************************************************************************/
|
0
|
939
|
412
|
940 DECLARE_FIXED_TYPE_ALLOC (cons, struct Lisp_Cons);
|
0
|
941 /* conses are used and freed so often that we set this really high */
|
|
942 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */
|
|
943 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000
|
|
944
|
207
|
945 static Lisp_Object
|
412
|
946 mark_cons (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
207
|
947 {
|
412
|
948 if (GC_NILP (XCDR (obj)))
|
207
|
949 return XCAR (obj);
|
272
|
950
|
412
|
951 markobj (XCAR (obj));
|
207
|
952 return XCDR (obj);
|
|
953 }
|
|
954
|
|
955 static int
|
|
956 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth)
|
|
957 {
|
412
|
958 while (internal_equal (XCAR (ob1), XCAR (ob2), depth + 1))
|
207
|
959 {
|
272
|
960 ob1 = XCDR (ob1);
|
|
961 ob2 = XCDR (ob2);
|
207
|
962 if (! CONSP (ob1) || ! CONSP (ob2))
|
412
|
963 return internal_equal (ob1, ob2, depth + 1);
|
207
|
964 }
|
|
965 return 0;
|
|
966 }
|
243
|
967
|
420
|
968 static const struct lrecord_description cons_description[] = {
|
|
969 { XD_LISP_OBJECT, offsetof(struct Lisp_Cons, car), 2 },
|
|
970 { XD_END }
|
|
971 };
|
|
972
|
243
|
973 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons,
|
|
974 mark_cons, print_cons, 0,
|
|
975 cons_equal,
|
|
976 /*
|
|
977 * No `hash' method needed.
|
|
978 * internal_hash knows how to
|
|
979 * handle conses.
|
|
980 */
|
|
981 0,
|
420
|
982 cons_description,
|
412
|
983 struct Lisp_Cons);
|
207
|
984
|
20
|
985 DEFUN ("cons", Fcons, 2, 2, 0, /*
|
0
|
986 Create a new cons, give it CAR and CDR as components, and return it.
|
20
|
987 */
|
|
988 (car, cdr))
|
0
|
989 {
|
|
990 /* This cannot GC. */
|
272
|
991 Lisp_Object val;
|
412
|
992 struct Lisp_Cons *c;
|
|
993
|
|
994 ALLOCATE_FIXED_TYPE (cons, struct Lisp_Cons, c);
|
|
995 set_lheader_implementation (&(c->lheader), &lrecord_cons);
|
0
|
996 XSETCONS (val, c);
|
207
|
997 c->car = car;
|
|
998 c->cdr = cdr;
|
0
|
999 return val;
|
|
1000 }
|
|
1001
|
|
1002 /* This is identical to Fcons() but it used for conses that we're
|
|
1003 going to free later, and is useful when trying to track down
|
|
1004 "real" consing. */
|
|
1005 Lisp_Object
|
|
1006 noseeum_cons (Lisp_Object car, Lisp_Object cdr)
|
|
1007 {
|
272
|
1008 Lisp_Object val;
|
412
|
1009 struct Lisp_Cons *c;
|
|
1010
|
|
1011 NOSEEUM_ALLOCATE_FIXED_TYPE (cons, struct Lisp_Cons, c);
|
|
1012 set_lheader_implementation (&(c->lheader), &lrecord_cons);
|
0
|
1013 XSETCONS (val, c);
|
|
1014 XCAR (val) = car;
|
|
1015 XCDR (val) = cdr;
|
|
1016 return val;
|
|
1017 }
|
|
1018
|
20
|
1019 DEFUN ("list", Flist, 0, MANY, 0, /*
|
0
|
1020 Return a newly created list with specified arguments as elements.
|
|
1021 Any number of arguments, even zero arguments, are allowed.
|
20
|
1022 */
|
|
1023 (int nargs, Lisp_Object *args))
|
0
|
1024 {
|
165
|
1025 Lisp_Object val = Qnil;
|
|
1026 Lisp_Object *argp = args + nargs;
|
|
1027
|
380
|
1028 while (argp > args)
|
165
|
1029 val = Fcons (*--argp, val);
|
0
|
1030 return val;
|
|
1031 }
|
|
1032
|
|
1033 Lisp_Object
|
|
1034 list1 (Lisp_Object obj0)
|
|
1035 {
|
|
1036 /* This cannot GC. */
|
173
|
1037 return Fcons (obj0, Qnil);
|
0
|
1038 }
|
|
1039
|
|
1040 Lisp_Object
|
|
1041 list2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1042 {
|
|
1043 /* This cannot GC. */
|
272
|
1044 return Fcons (obj0, Fcons (obj1, Qnil));
|
0
|
1045 }
|
|
1046
|
|
1047 Lisp_Object
|
|
1048 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1049 {
|
|
1050 /* This cannot GC. */
|
272
|
1051 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil)));
|
0
|
1052 }
|
|
1053
|
272
|
1054 Lisp_Object
|
0
|
1055 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1056 {
|
|
1057 /* This cannot GC. */
|
|
1058 return Fcons (obj0, Fcons (obj1, obj2));
|
|
1059 }
|
|
1060
|
|
1061 Lisp_Object
|
272
|
1062 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist)
|
|
1063 {
|
|
1064 return Fcons (Fcons (key, value), alist);
|
|
1065 }
|
|
1066
|
|
1067 Lisp_Object
|
0
|
1068 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3)
|
|
1069 {
|
|
1070 /* This cannot GC. */
|
272
|
1071 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil))));
|
0
|
1072 }
|
|
1073
|
|
1074 Lisp_Object
|
|
1075 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1076 Lisp_Object obj4)
|
|
1077 {
|
|
1078 /* This cannot GC. */
|
272
|
1079 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil)))));
|
0
|
1080 }
|
|
1081
|
|
1082 Lisp_Object
|
|
1083 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1084 Lisp_Object obj4, Lisp_Object obj5)
|
|
1085 {
|
|
1086 /* This cannot GC. */
|
272
|
1087 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil))))));
|
0
|
1088 }
|
|
1089
|
20
|
1090 DEFUN ("make-list", Fmake_list, 2, 2, 0, /*
|
272
|
1091 Return a new list of length LENGTH, with each element being INIT.
|
20
|
1092 */
|
|
1093 (length, init))
|
0
|
1094 {
|
|
1095 CHECK_NATNUM (length);
|
272
|
1096
|
|
1097 {
|
|
1098 Lisp_Object val = Qnil;
|
412
|
1099 int size = XINT (length);
|
|
1100
|
|
1101 while (size-- > 0)
|
272
|
1102 val = Fcons (init, val);
|
|
1103 return val;
|
|
1104 }
|
0
|
1105 }
|
|
1106
|
|
1107
|
380
|
1108 /************************************************************************/
|
|
1109 /* Float allocation */
|
|
1110 /************************************************************************/
|
0
|
1111
|
|
1112 #ifdef LISP_FLOAT_TYPE
|
|
1113
|
412
|
1114 DECLARE_FIXED_TYPE_ALLOC (float, struct Lisp_Float);
|
0
|
1115 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000
|
|
1116
|
|
1117 Lisp_Object
|
|
1118 make_float (double float_value)
|
|
1119 {
|
|
1120 Lisp_Object val;
|
412
|
1121 struct Lisp_Float *f;
|
|
1122
|
|
1123 ALLOCATE_FIXED_TYPE (float, struct Lisp_Float, f);
|
|
1124 set_lheader_implementation (&(f->lheader), &lrecord_float);
|
0
|
1125 float_data (f) = float_value;
|
|
1126 XSETFLOAT (val, f);
|
173
|
1127 return val;
|
0
|
1128 }
|
|
1129
|
|
1130 #endif /* LISP_FLOAT_TYPE */
|
|
1131
|
|
1132
|
380
|
1133 /************************************************************************/
|
|
1134 /* Vector allocation */
|
|
1135 /************************************************************************/
|
0
|
1136
|
207
|
1137 static Lisp_Object
|
412
|
1138 mark_vector (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
207
|
1139 {
|
380
|
1140 Lisp_Vector *ptr = XVECTOR (obj);
|
207
|
1141 int len = vector_length (ptr);
|
|
1142 int i;
|
|
1143
|
|
1144 for (i = 0; i < len - 1; i++)
|
412
|
1145 markobj (ptr->contents[i]);
|
207
|
1146 return (len > 0) ? ptr->contents[len - 1] : Qnil;
|
|
1147 }
|
|
1148
|
272
|
1149 static size_t
|
412
|
1150 size_vector (CONST void *lheader)
|
207
|
1151 {
|
412
|
1152 return STRETCHY_STRUCT_SIZEOF (Lisp_Vector, contents,
|
|
1153 ((Lisp_Vector *) lheader)->size);
|
207
|
1154 }
|
|
1155
|
|
1156 static int
|
380
|
1157 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
207
|
1158 {
|
380
|
1159 int len = XVECTOR_LENGTH (obj1);
|
|
1160 if (len != XVECTOR_LENGTH (obj2))
|
207
|
1161 return 0;
|
382
|
1162
|
|
1163 {
|
|
1164 Lisp_Object *ptr1 = XVECTOR_DATA (obj1);
|
|
1165 Lisp_Object *ptr2 = XVECTOR_DATA (obj2);
|
|
1166 while (len--)
|
|
1167 if (!internal_equal (*ptr1++, *ptr2++, depth + 1))
|
207
|
1168 return 0;
|
382
|
1169 }
|
207
|
1170 return 1;
|
|
1171 }
|
|
1172
|
420
|
1173 static const struct lrecord_description vector_description[] = {
|
|
1174 { XD_LONG, offsetof(struct Lisp_Vector, size) },
|
|
1175 { XD_LISP_OBJECT, offsetof(struct Lisp_Vector, contents), XD_INDIRECT(0) }
|
|
1176 };
|
|
1177
|
243
|
1178 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION("vector", vector,
|
|
1179 mark_vector, print_vector, 0,
|
|
1180 vector_equal,
|
412
|
1181 /*
|
|
1182 * No `hash' method needed for
|
|
1183 * vectors. internal_hash
|
|
1184 * knows how to handle vectors.
|
|
1185 */
|
|
1186 0,
|
420
|
1187 vector_description,
|
380
|
1188 size_vector, Lisp_Vector);
|
243
|
1189
|
207
|
1190 /* #### should allocate `small' vectors from a frob-block */
|
380
|
1191 static Lisp_Vector *
|
272
|
1192 make_vector_internal (size_t sizei)
|
207
|
1193 {
|
380
|
1194 /* no vector_next */
|
412
|
1195 size_t sizem = STRETCHY_STRUCT_SIZEOF (Lisp_Vector, contents, sizei);
|
398
|
1196 Lisp_Vector *p = (Lisp_Vector *) alloc_lcrecord (sizem, &lrecord_vector);
|
207
|
1197
|
|
1198 p->size = sizei;
|
|
1199 return p;
|
|
1200 }
|
|
1201
|
0
|
1202 Lisp_Object
|
382
|
1203 make_vector (size_t length, Lisp_Object init)
|
0
|
1204 {
|
382
|
1205 Lisp_Vector *vecp = make_vector_internal (length);
|
|
1206 Lisp_Object *p = vector_data (vecp);
|
|
1207
|
|
1208 while (length--)
|
|
1209 *p++ = init;
|
|
1210
|
0
|
1211 {
|
382
|
1212 Lisp_Object vector;
|
|
1213 XSETVECTOR (vector, vecp);
|
173
|
1214 return vector;
|
0
|
1215 }
|
|
1216 }
|
|
1217
|
20
|
1218 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /*
|
272
|
1219 Return a new vector of length LENGTH, with each element being INIT.
|
0
|
1220 See also the function `vector'.
|
20
|
1221 */
|
|
1222 (length, init))
|
0
|
1223 {
|
382
|
1224 CONCHECK_NATNUM (length);
|
173
|
1225 return make_vector (XINT (length), init);
|
0
|
1226 }
|
|
1227
|
20
|
1228 DEFUN ("vector", Fvector, 0, MANY, 0, /*
|
0
|
1229 Return a newly created vector with specified arguments as elements.
|
|
1230 Any number of arguments, even zero arguments, are allowed.
|
20
|
1231 */
|
|
1232 (int nargs, Lisp_Object *args))
|
0
|
1233 {
|
382
|
1234 Lisp_Vector *vecp = make_vector_internal (nargs);
|
|
1235 Lisp_Object *p = vector_data (vecp);
|
|
1236
|
|
1237 while (nargs--)
|
|
1238 *p++ = *args++;
|
|
1239
|
|
1240 {
|
|
1241 Lisp_Object vector;
|
|
1242 XSETVECTOR (vector, vecp);
|
|
1243 return vector;
|
|
1244 }
|
0
|
1245 }
|
|
1246
|
|
1247 Lisp_Object
|
|
1248 vector1 (Lisp_Object obj0)
|
|
1249 {
|
|
1250 return Fvector (1, &obj0);
|
|
1251 }
|
|
1252
|
|
1253 Lisp_Object
|
|
1254 vector2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1255 {
|
|
1256 Lisp_Object args[2];
|
|
1257 args[0] = obj0;
|
|
1258 args[1] = obj1;
|
|
1259 return Fvector (2, args);
|
|
1260 }
|
|
1261
|
|
1262 Lisp_Object
|
|
1263 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1264 {
|
|
1265 Lisp_Object args[3];
|
|
1266 args[0] = obj0;
|
|
1267 args[1] = obj1;
|
|
1268 args[2] = obj2;
|
|
1269 return Fvector (3, args);
|
|
1270 }
|
|
1271
|
272
|
1272 #if 0 /* currently unused */
|
|
1273
|
0
|
1274 Lisp_Object
|
|
1275 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1276 Lisp_Object obj3)
|
|
1277 {
|
|
1278 Lisp_Object args[4];
|
|
1279 args[0] = obj0;
|
|
1280 args[1] = obj1;
|
|
1281 args[2] = obj2;
|
|
1282 args[3] = obj3;
|
|
1283 return Fvector (4, args);
|
|
1284 }
|
|
1285
|
|
1286 Lisp_Object
|
|
1287 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1288 Lisp_Object obj3, Lisp_Object obj4)
|
|
1289 {
|
|
1290 Lisp_Object args[5];
|
|
1291 args[0] = obj0;
|
|
1292 args[1] = obj1;
|
|
1293 args[2] = obj2;
|
|
1294 args[3] = obj3;
|
|
1295 args[4] = obj4;
|
|
1296 return Fvector (5, args);
|
|
1297 }
|
|
1298
|
|
1299 Lisp_Object
|
|
1300 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1301 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5)
|
|
1302 {
|
|
1303 Lisp_Object args[6];
|
|
1304 args[0] = obj0;
|
|
1305 args[1] = obj1;
|
|
1306 args[2] = obj2;
|
|
1307 args[3] = obj3;
|
|
1308 args[4] = obj4;
|
|
1309 args[5] = obj5;
|
|
1310 return Fvector (6, args);
|
|
1311 }
|
|
1312
|
|
1313 Lisp_Object
|
|
1314 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1315 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1316 Lisp_Object obj6)
|
|
1317 {
|
|
1318 Lisp_Object args[7];
|
|
1319 args[0] = obj0;
|
|
1320 args[1] = obj1;
|
|
1321 args[2] = obj2;
|
|
1322 args[3] = obj3;
|
|
1323 args[4] = obj4;
|
|
1324 args[5] = obj5;
|
|
1325 args[6] = obj6;
|
|
1326 return Fvector (7, args);
|
|
1327 }
|
|
1328
|
|
1329 Lisp_Object
|
|
1330 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1331 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1332 Lisp_Object obj6, Lisp_Object obj7)
|
|
1333 {
|
|
1334 Lisp_Object args[8];
|
|
1335 args[0] = obj0;
|
|
1336 args[1] = obj1;
|
|
1337 args[2] = obj2;
|
|
1338 args[3] = obj3;
|
|
1339 args[4] = obj4;
|
|
1340 args[5] = obj5;
|
|
1341 args[6] = obj6;
|
|
1342 args[7] = obj7;
|
|
1343 return Fvector (8, args);
|
|
1344 }
|
272
|
1345 #endif /* unused */
|
0
|
1346
|
380
|
1347 /************************************************************************/
|
|
1348 /* Bit Vector allocation */
|
|
1349 /************************************************************************/
|
0
|
1350
|
|
1351 static Lisp_Object all_bit_vectors;
|
|
1352
|
|
1353 /* #### should allocate `small' bit vectors from a frob-block */
|
412
|
1354 static struct Lisp_Bit_Vector *
|
272
|
1355 make_bit_vector_internal (size_t sizei)
|
0
|
1356 {
|
382
|
1357 size_t num_longs = BIT_VECTOR_LONG_STORAGE (sizei);
|
412
|
1358 size_t sizem = STRETCHY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits, num_longs);
|
380
|
1359 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *) allocate_lisp_storage (sizem);
|
412
|
1360 set_lheader_implementation (&(p->lheader), &lrecord_bit_vector);
|
0
|
1361
|
|
1362 INCREMENT_CONS_COUNTER (sizem, "bit-vector");
|
|
1363
|
|
1364 bit_vector_length (p) = sizei;
|
380
|
1365 bit_vector_next (p) = all_bit_vectors;
|
0
|
1366 /* make sure the extra bits in the last long are 0; the calling
|
|
1367 functions might not set them. */
|
382
|
1368 p->bits[num_longs - 1] = 0;
|
0
|
1369 XSETBIT_VECTOR (all_bit_vectors, p);
|
173
|
1370 return p;
|
0
|
1371 }
|
|
1372
|
|
1373 Lisp_Object
|
382
|
1374 make_bit_vector (size_t length, Lisp_Object init)
|
0
|
1375 {
|
412
|
1376 struct Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
382
|
1377 size_t num_longs = BIT_VECTOR_LONG_STORAGE (length);
|
0
|
1378
|
|
1379 CHECK_BIT (init);
|
|
1380
|
|
1381 if (ZEROP (init))
|
|
1382 memset (p->bits, 0, num_longs * sizeof (long));
|
|
1383 else
|
|
1384 {
|
382
|
1385 size_t bits_in_last = length & (LONGBITS_POWER_OF_2 - 1);
|
0
|
1386 memset (p->bits, ~0, num_longs * sizeof (long));
|
|
1387 /* But we have to make sure that the unused bits in the
|
382
|
1388 last long are 0, so that equal/hash is easy. */
|
0
|
1389 if (bits_in_last)
|
|
1390 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1;
|
|
1391 }
|
|
1392
|
382
|
1393 {
|
|
1394 Lisp_Object bit_vector;
|
|
1395 XSETBIT_VECTOR (bit_vector, p);
|
|
1396 return bit_vector;
|
|
1397 }
|
0
|
1398 }
|
|
1399
|
|
1400 Lisp_Object
|
382
|
1401 make_bit_vector_from_byte_vector (unsigned char *bytevec, size_t length)
|
0
|
1402 {
|
272
|
1403 int i;
|
382
|
1404 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
0
|
1405
|
|
1406 for (i = 0; i < length; i++)
|
|
1407 set_bit_vector_bit (p, i, bytevec[i]);
|
|
1408
|
382
|
1409 {
|
|
1410 Lisp_Object bit_vector;
|
|
1411 XSETBIT_VECTOR (bit_vector, p);
|
|
1412 return bit_vector;
|
|
1413 }
|
0
|
1414 }
|
|
1415
|
20
|
1416 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /*
|
272
|
1417 Return a new bit vector of length LENGTH. with each bit being INIT.
|
0
|
1418 Each element is set to INIT. See also the function `bit-vector'.
|
20
|
1419 */
|
|
1420 (length, init))
|
0
|
1421 {
|
272
|
1422 CONCHECK_NATNUM (length);
|
0
|
1423
|
173
|
1424 return make_bit_vector (XINT (length), init);
|
0
|
1425 }
|
|
1426
|
20
|
1427 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /*
|
0
|
1428 Return a newly created bit vector with specified arguments as elements.
|
|
1429 Any number of arguments, even zero arguments, are allowed.
|
20
|
1430 */
|
|
1431 (int nargs, Lisp_Object *args))
|
0
|
1432 {
|
382
|
1433 int i;
|
|
1434 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs);
|
|
1435
|
|
1436 for (i = 0; i < nargs; i++)
|
|
1437 {
|
|
1438 CHECK_BIT (args[i]);
|
|
1439 set_bit_vector_bit (p, i, !ZEROP (args[i]));
|
|
1440 }
|
|
1441
|
|
1442 {
|
|
1443 Lisp_Object bit_vector;
|
|
1444 XSETBIT_VECTOR (bit_vector, p);
|
|
1445 return bit_vector;
|
|
1446 }
|
0
|
1447 }
|
|
1448
|
|
1449
|
380
|
1450 /************************************************************************/
|
|
1451 /* Compiled-function allocation */
|
|
1452 /************************************************************************/
|
|
1453
|
|
1454 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function);
|
0
|
1455 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000
|
|
1456
|
|
1457 static Lisp_Object
|
398
|
1458 make_compiled_function (void)
|
0
|
1459 {
|
380
|
1460 Lisp_Compiled_Function *f;
|
|
1461 Lisp_Object fun;
|
398
|
1462
|
|
1463 ALLOCATE_FIXED_TYPE (compiled_function, Lisp_Compiled_Function, f);
|
412
|
1464 set_lheader_implementation (&(f->lheader), &lrecord_compiled_function);
|
398
|
1465
|
380
|
1466 f->stack_depth = 0;
|
|
1467 f->specpdl_depth = 0;
|
|
1468 f->flags.documentationp = 0;
|
|
1469 f->flags.interactivep = 0;
|
|
1470 f->flags.domainp = 0; /* I18N3 */
|
|
1471 f->instructions = Qzero;
|
|
1472 f->constants = Qzero;
|
|
1473 f->arglist = Qnil;
|
|
1474 f->doc_and_interactive = Qnil;
|
0
|
1475 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
380
|
1476 f->annotated = Qnil;
|
0
|
1477 #endif
|
380
|
1478 XSETCOMPILED_FUNCTION (fun, f);
|
|
1479 return fun;
|
0
|
1480 }
|
|
1481
|
20
|
1482 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /*
|
272
|
1483 Return a new compiled-function object.
|
380
|
1484 Usage: (arglist instructions constants stack-depth
|
|
1485 &optional doc-string interactive)
|
0
|
1486 Note that, unlike all other emacs-lisp functions, calling this with five
|
|
1487 arguments is NOT the same as calling it with six arguments, the last of
|
|
1488 which is nil. If the INTERACTIVE arg is specified as nil, then that means
|
|
1489 that this function was defined with `(interactive)'. If the arg is not
|
|
1490 specified, then that means the function is not interactive.
|
|
1491 This is terrible behavior which is retained for compatibility with old
|
380
|
1492 `.elc' files which expect these semantics.
|
20
|
1493 */
|
|
1494 (int nargs, Lisp_Object *args))
|
0
|
1495 {
|
380
|
1496 /* In a non-insane world this function would have this arglist...
|
|
1497 (arglist instructions constants stack_depth &optional doc_string interactive)
|
0
|
1498 */
|
398
|
1499 Lisp_Object fun = make_compiled_function ();
|
380
|
1500 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun);
|
|
1501
|
0
|
1502 Lisp_Object arglist = args[0];
|
|
1503 Lisp_Object instructions = args[1];
|
|
1504 Lisp_Object constants = args[2];
|
380
|
1505 Lisp_Object stack_depth = args[3];
|
272
|
1506 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil;
|
|
1507 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound;
|
380
|
1508
|
|
1509 if (nargs < 4 || nargs > 6)
|
183
|
1510 return Fsignal (Qwrong_number_of_arguments,
|
0
|
1511 list2 (intern ("make-byte-code"), make_int (nargs)));
|
|
1512
|
380
|
1513 /* Check for valid formal parameter list now, to allow us to use
|
|
1514 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */
|
|
1515 {
|
|
1516 Lisp_Object symbol, tail;
|
|
1517 EXTERNAL_LIST_LOOP_3 (symbol, arglist, tail)
|
|
1518 {
|
|
1519 CHECK_SYMBOL (symbol);
|
|
1520 if (EQ (symbol, Qt) ||
|
|
1521 EQ (symbol, Qnil) ||
|
|
1522 SYMBOL_IS_KEYWORD (symbol))
|
|
1523 signal_simple_error_2
|
|
1524 ("Invalid constant symbol in formal parameter list",
|
|
1525 symbol, arglist);
|
|
1526 }
|
|
1527 }
|
|
1528 f->arglist = arglist;
|
|
1529
|
|
1530 /* `instructions' is a string or a cons (string . int) for a
|
0
|
1531 lazy-loaded function. */
|
|
1532 if (CONSP (instructions))
|
|
1533 {
|
|
1534 CHECK_STRING (XCAR (instructions));
|
|
1535 CHECK_INT (XCDR (instructions));
|
|
1536 }
|
|
1537 else
|
|
1538 {
|
|
1539 CHECK_STRING (instructions);
|
380
|
1540 }
|
|
1541 f->instructions = instructions;
|
|
1542
|
|
1543 if (!NILP (constants))
|
|
1544 CHECK_VECTOR (constants);
|
|
1545 f->constants = constants;
|
|
1546
|
|
1547 CHECK_NATNUM (stack_depth);
|
412
|
1548 f->stack_depth = XINT (stack_depth);
|
380
|
1549
|
|
1550 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
1551 if (!NILP (Vcurrent_compiled_function_annotation))
|
398
|
1552 f->annotated = Fcopy (Vcurrent_compiled_function_annotation);
|
380
|
1553 else if (!NILP (Vload_file_name_internal_the_purecopy))
|
|
1554 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1555 else if (!NILP (Vload_file_name_internal))
|
|
1556 {
|
|
1557 struct gcpro gcpro1;
|
|
1558 GCPRO1 (fun); /* don't let fun get reaped */
|
|
1559 Vload_file_name_internal_the_purecopy =
|
412
|
1560 Fpurecopy (Ffile_name_nondirectory (Vload_file_name_internal));
|
380
|
1561 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1562 UNGCPRO;
|
0
|
1563 }
|
380
|
1564 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */
|
|
1565
|
|
1566 /* doc_string may be nil, string, int, or a cons (string . int).
|
|
1567 interactive may be list or string (or unbound). */
|
|
1568 f->doc_and_interactive = Qunbound;
|
|
1569 #ifdef I18N3
|
|
1570 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0)
|
|
1571 f->doc_and_interactive = Vfile_domain;
|
|
1572 #endif
|
|
1573 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0)
|
|
1574 {
|
|
1575 f->doc_and_interactive
|
|
1576 = (UNBOUNDP (f->doc_and_interactive) ? interactive :
|
398
|
1577 Fcons (interactive, f->doc_and_interactive));
|
380
|
1578 }
|
|
1579 if ((f->flags.documentationp = !NILP (doc_string)) != 0)
|
|
1580 {
|
|
1581 f->doc_and_interactive
|
|
1582 = (UNBOUNDP (f->doc_and_interactive) ? doc_string :
|
398
|
1583 Fcons (doc_string, f->doc_and_interactive));
|
380
|
1584 }
|
|
1585 if (UNBOUNDP (f->doc_and_interactive))
|
|
1586 f->doc_and_interactive = Qnil;
|
0
|
1587
|
380
|
1588 return fun;
|
0
|
1589 }
|
|
1590
|
|
1591
|
380
|
1592 /************************************************************************/
|
|
1593 /* Symbol allocation */
|
|
1594 /************************************************************************/
|
0
|
1595
|
412
|
1596 DECLARE_FIXED_TYPE_ALLOC (symbol, struct Lisp_Symbol);
|
0
|
1597 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000
|
|
1598
|
20
|
1599 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /*
|
0
|
1600 Return a newly allocated uninterned symbol whose name is NAME.
|
|
1601 Its value and function definition are void, and its property list is nil.
|
20
|
1602 */
|
380
|
1603 (name))
|
0
|
1604 {
|
|
1605 Lisp_Object val;
|
412
|
1606 struct Lisp_Symbol *p;
|
0
|
1607
|
380
|
1608 CHECK_STRING (name);
|
0
|
1609
|
412
|
1610 ALLOCATE_FIXED_TYPE (symbol, struct Lisp_Symbol, p);
|
|
1611 set_lheader_implementation (&(p->lheader), &lrecord_symbol);
|
380
|
1612 p->name = XSTRING (name);
|
|
1613 p->plist = Qnil;
|
|
1614 p->value = Qunbound;
|
0
|
1615 p->function = Qunbound;
|
371
|
1616 symbol_next (p) = 0;
|
0
|
1617 XSETSYMBOL (val, p);
|
|
1618 return val;
|
|
1619 }
|
|
1620
|
|
1621
|
380
|
1622 /************************************************************************/
|
|
1623 /* Extent allocation */
|
|
1624 /************************************************************************/
|
0
|
1625
|
|
1626 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent);
|
|
1627 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000
|
|
1628
|
|
1629 struct extent *
|
|
1630 allocate_extent (void)
|
|
1631 {
|
|
1632 struct extent *e;
|
|
1633
|
|
1634 ALLOCATE_FIXED_TYPE (extent, struct extent, e);
|
412
|
1635 set_lheader_implementation (&(e->lheader), &lrecord_extent);
|
0
|
1636 extent_object (e) = Qnil;
|
|
1637 set_extent_start (e, -1);
|
|
1638 set_extent_end (e, -1);
|
|
1639 e->plist = Qnil;
|
|
1640
|
272
|
1641 xzero (e->flags);
|
0
|
1642
|
|
1643 extent_face (e) = Qnil;
|
|
1644 e->flags.end_open = 1; /* default is for endpoints to behave like markers */
|
|
1645 e->flags.detachable = 1;
|
|
1646
|
173
|
1647 return e;
|
0
|
1648 }
|
|
1649
|
|
1650
|
380
|
1651 /************************************************************************/
|
|
1652 /* Event allocation */
|
|
1653 /************************************************************************/
|
0
|
1654
|
412
|
1655 DECLARE_FIXED_TYPE_ALLOC (event, struct Lisp_Event);
|
0
|
1656 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000
|
|
1657
|
|
1658 Lisp_Object
|
|
1659 allocate_event (void)
|
|
1660 {
|
|
1661 Lisp_Object val;
|
412
|
1662 struct Lisp_Event *e;
|
|
1663
|
|
1664 ALLOCATE_FIXED_TYPE (event, struct Lisp_Event, e);
|
|
1665 set_lheader_implementation (&(e->lheader), &lrecord_event);
|
0
|
1666
|
|
1667 XSETEVENT (val, e);
|
|
1668 return val;
|
|
1669 }
|
183
|
1670
|
0
|
1671
|
380
|
1672 /************************************************************************/
|
|
1673 /* Marker allocation */
|
|
1674 /************************************************************************/
|
0
|
1675
|
412
|
1676 DECLARE_FIXED_TYPE_ALLOC (marker, struct Lisp_Marker);
|
0
|
1677 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000
|
|
1678
|
20
|
1679 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /*
|
272
|
1680 Return a new marker which does not point at any place.
|
20
|
1681 */
|
|
1682 ())
|
0
|
1683 {
|
|
1684 Lisp_Object val;
|
412
|
1685 struct Lisp_Marker *p;
|
|
1686
|
|
1687 ALLOCATE_FIXED_TYPE (marker, struct Lisp_Marker, p);
|
|
1688 set_lheader_implementation (&(p->lheader), &lrecord_marker);
|
0
|
1689 p->buffer = 0;
|
|
1690 p->memind = 0;
|
|
1691 marker_next (p) = 0;
|
|
1692 marker_prev (p) = 0;
|
|
1693 p->insertion_type = 0;
|
|
1694 XSETMARKER (val, p);
|
|
1695 return val;
|
|
1696 }
|
|
1697
|
|
1698 Lisp_Object
|
|
1699 noseeum_make_marker (void)
|
|
1700 {
|
|
1701 Lisp_Object val;
|
412
|
1702 struct Lisp_Marker *p;
|
|
1703
|
|
1704 NOSEEUM_ALLOCATE_FIXED_TYPE (marker, struct Lisp_Marker, p);
|
|
1705 set_lheader_implementation (&(p->lheader), &lrecord_marker);
|
0
|
1706 p->buffer = 0;
|
|
1707 p->memind = 0;
|
|
1708 marker_next (p) = 0;
|
|
1709 marker_prev (p) = 0;
|
|
1710 p->insertion_type = 0;
|
|
1711 XSETMARKER (val, p);
|
|
1712 return val;
|
|
1713 }
|
|
1714
|
|
1715
|
380
|
1716 /************************************************************************/
|
|
1717 /* String allocation */
|
|
1718 /************************************************************************/
|
0
|
1719
|
183
|
1720 /* The data for "short" strings generally resides inside of structs of type
|
|
1721 string_chars_block. The Lisp_String structure is allocated just like any
|
0
|
1722 other Lisp object (except for vectors), and these are freelisted when
|
|
1723 they get garbage collected. The data for short strings get compacted,
|
183
|
1724 but the data for large strings do not.
|
0
|
1725
|
|
1726 Previously Lisp_String structures were relocated, but this caused a lot
|
|
1727 of bus-errors because the C code didn't include enough GCPRO's for
|
|
1728 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so
|
|
1729 that the reference would get relocated).
|
|
1730
|
|
1731 This new method makes things somewhat bigger, but it is MUCH safer. */
|
|
1732
|
412
|
1733 DECLARE_FIXED_TYPE_ALLOC (string, struct Lisp_String);
|
0
|
1734 /* strings are used and freed quite often */
|
|
1735 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */
|
|
1736 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000
|
|
1737
|
207
|
1738 static Lisp_Object
|
412
|
1739 mark_string (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
207
|
1740 {
|
412
|
1741 struct Lisp_String *ptr = XSTRING (obj);
|
|
1742
|
|
1743 if (GC_CONSP (ptr->plist) && GC_EXTENT_INFOP (XCAR (ptr->plist)))
|
207
|
1744 flush_cached_extent_info (XCAR (ptr->plist));
|
|
1745 return ptr->plist;
|
|
1746 }
|
|
1747
|
|
1748 static int
|
380
|
1749 string_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
207
|
1750 {
|
272
|
1751 Bytecount len;
|
380
|
1752 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) &&
|
|
1753 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len));
|
207
|
1754 }
|
243
|
1755
|
420
|
1756 static const struct lrecord_description string_description[] = {
|
|
1757 { XD_STRING_DATA, offsetof(Lisp_String, data) },
|
|
1758 { XD_LISP_OBJECT, offsetof(Lisp_String, plist), 1 },
|
|
1759 { XD_END }
|
|
1760 };
|
|
1761
|
412
|
1762 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("string", string,
|
|
1763 mark_string, print_string,
|
|
1764 /*
|
|
1765 * No `finalize', or `hash' methods.
|
|
1766 * internal_hash already knows how
|
|
1767 * to hash strings and finalization
|
|
1768 * is done with the
|
|
1769 * ADDITIONAL_FREE_string macro,
|
|
1770 * which is the standard way to do
|
|
1771 * finalization when using
|
|
1772 * SWEEP_FIXED_TYPE_BLOCK().
|
|
1773 */
|
|
1774 0, string_equal, 0,
|
420
|
1775 string_description,
|
412
|
1776 struct Lisp_String);
|
207
|
1777
|
0
|
1778 /* String blocks contain this many useful bytes. */
|
272
|
1779 #define STRING_CHARS_BLOCK_SIZE \
|
|
1780 ((Bytecount) (8192 - MALLOC_OVERHEAD - \
|
|
1781 ((2 * sizeof (struct string_chars_block *)) \
|
|
1782 + sizeof (EMACS_INT))))
|
0
|
1783 /* Block header for small strings. */
|
|
1784 struct string_chars_block
|
|
1785 {
|
|
1786 EMACS_INT pos;
|
|
1787 struct string_chars_block *next;
|
|
1788 struct string_chars_block *prev;
|
|
1789 /* Contents of string_chars_block->string_chars are interleaved
|
|
1790 string_chars structures (see below) and the actual string data */
|
|
1791 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE];
|
|
1792 };
|
|
1793
|
412
|
1794 struct string_chars_block *first_string_chars_block;
|
|
1795 struct string_chars_block *current_string_chars_block;
|
0
|
1796
|
|
1797 /* If SIZE is the length of a string, this returns how many bytes
|
|
1798 * the string occupies in string_chars_block->string_chars
|
|
1799 * (including alignment padding).
|
|
1800 */
|
412
|
1801 #define STRING_FULLSIZE(s) \
|
|
1802 ALIGN_SIZE (((s) + 1 + sizeof (struct Lisp_String *)),\
|
|
1803 ALIGNOF (struct Lisp_String *))
|
0
|
1804
|
|
1805 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE)
|
|
1806 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size)))
|
|
1807
|
412
|
1808 #define CHARS_TO_STRING_CHAR(x) \
|
|
1809 ((struct string_chars *) \
|
|
1810 (((char *) (x)) - (slot_offset (struct string_chars, chars[0]))))
|
|
1811
|
|
1812
|
0
|
1813 struct string_chars
|
|
1814 {
|
412
|
1815 struct Lisp_String *string;
|
0
|
1816 unsigned char chars[1];
|
|
1817 };
|
|
1818
|
|
1819 struct unused_string_chars
|
|
1820 {
|
412
|
1821 struct Lisp_String *string;
|
0
|
1822 EMACS_INT fullsize;
|
|
1823 };
|
|
1824
|
|
1825 static void
|
|
1826 init_string_chars_alloc (void)
|
|
1827 {
|
185
|
1828 first_string_chars_block = xnew (struct string_chars_block);
|
0
|
1829 first_string_chars_block->prev = 0;
|
|
1830 first_string_chars_block->next = 0;
|
|
1831 first_string_chars_block->pos = 0;
|
|
1832 current_string_chars_block = first_string_chars_block;
|
|
1833 }
|
|
1834
|
|
1835 static struct string_chars *
|
412
|
1836 allocate_string_chars_struct (struct Lisp_String *string_it_goes_with,
|
0
|
1837 EMACS_INT fullsize)
|
|
1838 {
|
|
1839 struct string_chars *s_chars;
|
|
1840
|
412
|
1841 /* Allocate the string's actual data */
|
|
1842 if (BIG_STRING_FULLSIZE_P (fullsize))
|
|
1843 {
|
|
1844 s_chars = (struct string_chars *) xmalloc (fullsize);
|
|
1845 }
|
|
1846 else if (fullsize <=
|
|
1847 (countof (current_string_chars_block->string_chars)
|
|
1848 - current_string_chars_block->pos))
|
0
|
1849 {
|
|
1850 /* This string can fit in the current string chars block */
|
|
1851 s_chars = (struct string_chars *)
|
|
1852 (current_string_chars_block->string_chars
|
|
1853 + current_string_chars_block->pos);
|
|
1854 current_string_chars_block->pos += fullsize;
|
|
1855 }
|
|
1856 else
|
|
1857 {
|
|
1858 /* Make a new current string chars block */
|
382
|
1859 struct string_chars_block *new_scb = xnew (struct string_chars_block);
|
|
1860
|
|
1861 current_string_chars_block->next = new_scb;
|
|
1862 new_scb->prev = current_string_chars_block;
|
|
1863 new_scb->next = 0;
|
|
1864 current_string_chars_block = new_scb;
|
|
1865 new_scb->pos = fullsize;
|
0
|
1866 s_chars = (struct string_chars *)
|
|
1867 current_string_chars_block->string_chars;
|
|
1868 }
|
|
1869
|
|
1870 s_chars->string = string_it_goes_with;
|
|
1871
|
|
1872 INCREMENT_CONS_COUNTER (fullsize, "string chars");
|
|
1873
|
|
1874 return s_chars;
|
|
1875 }
|
|
1876
|
|
1877 Lisp_Object
|
|
1878 make_uninit_string (Bytecount length)
|
|
1879 {
|
412
|
1880 struct Lisp_String *s;
|
|
1881 struct string_chars *s_chars;
|
0
|
1882 EMACS_INT fullsize = STRING_FULLSIZE (length);
|
|
1883 Lisp_Object val;
|
|
1884
|
412
|
1885 if ((length < 0) || (fullsize <= 0))
|
|
1886 abort ();
|
0
|
1887
|
|
1888 /* Allocate the string header */
|
412
|
1889 ALLOCATE_FIXED_TYPE (string, struct Lisp_String, s);
|
|
1890 set_lheader_implementation (&(s->lheader), &lrecord_string);
|
|
1891
|
|
1892 s_chars = allocate_string_chars_struct (s, fullsize);
|
|
1893
|
|
1894 set_string_data (s, &(s_chars->chars[0]));
|
0
|
1895 set_string_length (s, length);
|
|
1896 s->plist = Qnil;
|
183
|
1897
|
0
|
1898 set_string_byte (s, length, 0);
|
|
1899
|
|
1900 XSETSTRING (val, s);
|
173
|
1901 return val;
|
0
|
1902 }
|
|
1903
|
|
1904 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1905 static void verify_string_chars_integrity (void);
|
|
1906 #endif
|
183
|
1907
|
0
|
1908 /* Resize the string S so that DELTA bytes can be inserted starting
|
|
1909 at POS. If DELTA < 0, it means deletion starting at POS. If
|
|
1910 POS < 0, resize the string but don't copy any characters. Use
|
|
1911 this if you're planning on completely overwriting the string.
|
|
1912 */
|
|
1913
|
|
1914 void
|
412
|
1915 resize_string (struct Lisp_String *s, Bytecount pos, Bytecount delta)
|
0
|
1916 {
|
|
1917 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1918 verify_string_chars_integrity ();
|
|
1919 #endif
|
|
1920
|
|
1921 #ifdef ERROR_CHECK_BUFPOS
|
|
1922 if (pos >= 0)
|
|
1923 {
|
|
1924 assert (pos <= string_length (s));
|
|
1925 if (delta < 0)
|
|
1926 assert (pos + (-delta) <= string_length (s));
|
|
1927 }
|
|
1928 else
|
|
1929 {
|
|
1930 if (delta < 0)
|
|
1931 assert ((-delta) <= string_length (s));
|
|
1932 }
|
183
|
1933 #endif /* ERROR_CHECK_BUFPOS */
|
0
|
1934
|
412
|
1935 if (pos >= 0 && delta < 0)
|
|
1936 /* If DELTA < 0, the functions below will delete the characters
|
|
1937 before POS. We want to delete characters *after* POS, however,
|
|
1938 so convert this to the appropriate form. */
|
|
1939 pos += -delta;
|
|
1940
|
0
|
1941 if (delta == 0)
|
|
1942 /* simplest case: no size change. */
|
|
1943 return;
|
412
|
1944 else
|
0
|
1945 {
|
412
|
1946 Bytecount oldfullsize = STRING_FULLSIZE (string_length (s));
|
|
1947 Bytecount newfullsize = STRING_FULLSIZE (string_length (s) + delta);
|
|
1948
|
|
1949 if (oldfullsize == newfullsize)
|
0
|
1950 {
|
412
|
1951 /* next simplest case; size change but the necessary
|
|
1952 allocation size won't change (up or down; code somewhere
|
|
1953 depends on there not being any unused allocation space,
|
|
1954 modulo any alignment constraints). */
|
0
|
1955 if (pos >= 0)
|
|
1956 {
|
412
|
1957 Bufbyte *addroff = pos + string_data (s);
|
|
1958
|
|
1959 memmove (addroff + delta, addroff,
|
|
1960 /* +1 due to zero-termination. */
|
|
1961 string_length (s) + 1 - pos);
|
0
|
1962 }
|
|
1963 }
|
412
|
1964 else if (BIG_STRING_FULLSIZE_P (oldfullsize) &&
|
|
1965 BIG_STRING_FULLSIZE_P (newfullsize))
|
0
|
1966 {
|
412
|
1967 /* next simplest case; the string is big enough to be malloc()ed
|
|
1968 itself, so we just realloc.
|
|
1969
|
|
1970 It's important not to let the string get below the threshold
|
|
1971 for making big strings and still remain malloc()ed; if that
|
|
1972 were the case, repeated calls to this function on the same
|
|
1973 string could result in memory leakage. */
|
|
1974 set_string_data (s, (Bufbyte *) xrealloc (string_data (s),
|
|
1975 newfullsize));
|
0
|
1976 if (pos >= 0)
|
|
1977 {
|
183
|
1978 Bufbyte *addroff = pos + string_data (s);
|
0
|
1979
|
|
1980 memmove (addroff + delta, addroff,
|
|
1981 /* +1 due to zero-termination. */
|
|
1982 string_length (s) + 1 - pos);
|
|
1983 }
|
|
1984 }
|
|
1985 else
|
|
1986 {
|
412
|
1987 /* worst case. We make a new string_chars struct and copy
|
|
1988 the string's data into it, inserting/deleting the delta
|
|
1989 in the process. The old string data will either get
|
|
1990 freed by us (if it was malloc()ed) or will be reclaimed
|
|
1991 in the normal course of garbage collection. */
|
|
1992 struct string_chars *s_chars =
|
|
1993 allocate_string_chars_struct (s, newfullsize);
|
|
1994 Bufbyte *new_addr = &(s_chars->chars[0]);
|
|
1995 Bufbyte *old_addr = string_data (s);
|
0
|
1996 if (pos >= 0)
|
|
1997 {
|
412
|
1998 memcpy (new_addr, old_addr, pos);
|
|
1999 memcpy (new_addr + pos + delta, old_addr + pos,
|
0
|
2000 string_length (s) + 1 - pos);
|
|
2001 }
|
412
|
2002 set_string_data (s, new_addr);
|
|
2003 if (BIG_STRING_FULLSIZE_P (oldfullsize))
|
|
2004 xfree (old_addr);
|
|
2005 else
|
|
2006 {
|
|
2007 /* We need to mark this chunk of the string_chars_block
|
|
2008 as unused so that compact_string_chars() doesn't
|
|
2009 freak. */
|
|
2010 struct string_chars *old_s_chars =
|
|
2011 (struct string_chars *) ((char *) old_addr -
|
|
2012 sizeof (struct Lisp_String *));
|
|
2013 /* Sanity check to make sure we aren't hosed by strange
|
|
2014 alignment/padding. */
|
|
2015 assert (old_s_chars->string == s);
|
|
2016 MARK_STRUCT_AS_FREE (old_s_chars);
|
|
2017 ((struct unused_string_chars *) old_s_chars)->fullsize =
|
|
2018 oldfullsize;
|
|
2019 }
|
0
|
2020 }
|
412
|
2021
|
|
2022 set_string_length (s, string_length (s) + delta);
|
|
2023 /* If pos < 0, the string won't be zero-terminated.
|
|
2024 Terminate now just to make sure. */
|
|
2025 string_data (s)[string_length (s)] = '\0';
|
|
2026
|
|
2027 if (pos >= 0)
|
|
2028 {
|
|
2029 Lisp_Object string;
|
|
2030
|
|
2031 XSETSTRING (string, s);
|
|
2032 /* We also have to adjust all of the extent indices after the
|
|
2033 place we did the change. We say "pos - 1" because
|
|
2034 adjust_extents() is exclusive of the starting position
|
|
2035 passed to it. */
|
|
2036 adjust_extents (string, pos - 1, string_length (s),
|
|
2037 delta);
|
|
2038 }
|
0
|
2039 }
|
|
2040
|
|
2041 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
2042 verify_string_chars_integrity ();
|
|
2043 #endif
|
|
2044 }
|
|
2045
|
70
|
2046 #ifdef MULE
|
|
2047
|
|
2048 void
|
412
|
2049 set_string_char (struct Lisp_String *s, Charcount i, Emchar c)
|
70
|
2050 {
|
|
2051 Bufbyte newstr[MAX_EMCHAR_LEN];
|
|
2052 Bytecount bytoff = charcount_to_bytecount (string_data (s), i);
|
382
|
2053 Bytecount oldlen = charcount_to_bytecount (string_data (s) + bytoff, 1);
|
|
2054 Bytecount newlen = set_charptr_emchar (newstr, c);
|
70
|
2055
|
|
2056 if (oldlen != newlen)
|
|
2057 resize_string (s, bytoff, newlen - oldlen);
|
185
|
2058 /* Remember, string_data (s) might have changed so we can't cache it. */
|
70
|
2059 memcpy (string_data (s) + bytoff, newstr, newlen);
|
|
2060 }
|
|
2061
|
|
2062 #endif /* MULE */
|
|
2063
|
20
|
2064 DEFUN ("make-string", Fmake_string, 2, 2, 0, /*
|
272
|
2065 Return a new string of length LENGTH, with each character being INIT.
|
0
|
2066 LENGTH must be an integer and INIT must be a character.
|
20
|
2067 */
|
|
2068 (length, init))
|
0
|
2069 {
|
|
2070 CHECK_NATNUM (length);
|
|
2071 CHECK_CHAR_COERCE_INT (init);
|
|
2072 {
|
380
|
2073 Bufbyte init_str[MAX_EMCHAR_LEN];
|
|
2074 int len = set_charptr_emchar (init_str, XCHAR (init));
|
|
2075 Lisp_Object val = make_uninit_string (len * XINT (length));
|
|
2076
|
0
|
2077 if (len == 1)
|
|
2078 /* Optimize the single-byte case */
|
14
|
2079 memset (XSTRING_DATA (val), XCHAR (init), XSTRING_LENGTH (val));
|
0
|
2080 else
|
|
2081 {
|
412
|
2082 int i;
|
14
|
2083 Bufbyte *ptr = XSTRING_DATA (val);
|
0
|
2084
|
380
|
2085 for (i = XINT (length); i; i--)
|
|
2086 {
|
|
2087 Bufbyte *init_ptr = init_str;
|
|
2088 switch (len)
|
|
2089 {
|
|
2090 case 4: *ptr++ = *init_ptr++;
|
|
2091 case 3: *ptr++ = *init_ptr++;
|
|
2092 case 2: *ptr++ = *init_ptr++;
|
|
2093 case 1: *ptr++ = *init_ptr++;
|
|
2094 }
|
|
2095 }
|
0
|
2096 }
|
380
|
2097 return val;
|
0
|
2098 }
|
|
2099 }
|
|
2100
|
278
|
2101 DEFUN ("string", Fstring, 0, MANY, 0, /*
|
|
2102 Concatenate all the argument characters and make the result a string.
|
|
2103 */
|
|
2104 (int nargs, Lisp_Object *args))
|
|
2105 {
|
|
2106 Bufbyte *storage = alloca_array (Bufbyte, nargs * MAX_EMCHAR_LEN);
|
|
2107 Bufbyte *p = storage;
|
|
2108
|
|
2109 for (; nargs; nargs--, args++)
|
|
2110 {
|
|
2111 Lisp_Object lisp_char = *args;
|
|
2112 CHECK_CHAR_COERCE_INT (lisp_char);
|
|
2113 p += set_charptr_emchar (p, XCHAR (lisp_char));
|
|
2114 }
|
|
2115 return make_string (storage, p - storage);
|
|
2116 }
|
|
2117
|
398
|
2118
|
0
|
2119 /* Take some raw memory, which MUST already be in internal format,
|
272
|
2120 and package it up into a Lisp string. */
|
0
|
2121 Lisp_Object
|
412
|
2122 make_string (CONST Bufbyte *contents, Bytecount length)
|
0
|
2123 {
|
|
2124 Lisp_Object val;
|
70
|
2125
|
|
2126 /* Make sure we find out about bad make_string's when they happen */
|
|
2127 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2128 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2129 #endif
|
183
|
2130
|
0
|
2131 val = make_uninit_string (length);
|
14
|
2132 memcpy (XSTRING_DATA (val), contents, length);
|
173
|
2133 return val;
|
0
|
2134 }
|
|
2135
|
|
2136 /* Take some raw memory, encoded in some external data format,
|
|
2137 and convert it into a Lisp string. */
|
|
2138 Lisp_Object
|
412
|
2139 make_ext_string (CONST Extbyte *contents, EMACS_INT length,
|
|
2140 enum external_data_format fmt)
|
0
|
2141 {
|
412
|
2142 Bufbyte *intstr;
|
|
2143 Bytecount intlen;
|
|
2144
|
|
2145 GET_CHARPTR_INT_DATA_ALLOCA (contents, length, fmt, intstr, intlen);
|
|
2146 return make_string (intstr, intlen);
|
398
|
2147 }
|
|
2148
|
|
2149 Lisp_Object
|
412
|
2150 build_string (CONST char *str)
|
398
|
2151 {
|
|
2152 /* Some strlen's crash and burn if passed null. */
|
412
|
2153 return make_string ((CONST Bufbyte *) str, (str ? strlen(str) : 0));
|
398
|
2154 }
|
|
2155
|
|
2156 Lisp_Object
|
412
|
2157 build_ext_string (CONST char *str, enum external_data_format fmt)
|
398
|
2158 {
|
|
2159 /* Some strlen's crash and burn if passed null. */
|
412
|
2160 return make_ext_string ((CONST Extbyte *) str, (str ? strlen(str) : 0), fmt);
|
0
|
2161 }
|
|
2162
|
|
2163 Lisp_Object
|
412
|
2164 build_translated_string (CONST char *str)
|
0
|
2165 {
|
398
|
2166 return build_string (GETTEXT (str));
|
0
|
2167 }
|
|
2168
|
|
2169 Lisp_Object
|
412
|
2170 make_string_nocopy (CONST Bufbyte *contents, Bytecount length)
|
0
|
2171 {
|
412
|
2172 struct Lisp_String *s;
|
398
|
2173 Lisp_Object val;
|
|
2174
|
|
2175 /* Make sure we find out about bad make_string_nocopy's when they happen */
|
|
2176 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2177 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2178 #endif
|
|
2179
|
|
2180 /* Allocate the string header */
|
412
|
2181 ALLOCATE_FIXED_TYPE (string, struct Lisp_String, s);
|
|
2182 set_lheader_implementation (&(s->lheader), &lrecord_string);
|
398
|
2183 SET_C_READONLY_RECORD_HEADER (&s->lheader);
|
|
2184 s->plist = Qnil;
|
|
2185 set_string_data (s, (Bufbyte *)contents);
|
|
2186 set_string_length (s, length);
|
|
2187
|
|
2188 XSETSTRING (val, s);
|
|
2189 return val;
|
0
|
2190 }
|
|
2191
|
|
2192
|
|
2193 /************************************************************************/
|
|
2194 /* lcrecord lists */
|
|
2195 /************************************************************************/
|
|
2196
|
|
2197 /* Lcrecord lists are used to manage the allocation of particular
|
|
2198 sorts of lcrecords, to avoid calling alloc_lcrecord() (and thus
|
|
2199 malloc() and garbage-collection junk) as much as possible.
|
|
2200 It is similar to the Blocktype class.
|
|
2201
|
|
2202 It works like this:
|
|
2203
|
|
2204 1) Create an lcrecord-list object using make_lcrecord_list().
|
412
|
2205 This is often done at initialization. Remember to staticpro
|
0
|
2206 this object! The arguments to make_lcrecord_list() are the
|
|
2207 same as would be passed to alloc_lcrecord().
|
|
2208 2) Instead of calling alloc_lcrecord(), call allocate_managed_lcrecord()
|
|
2209 and pass the lcrecord-list earlier created.
|
|
2210 3) When done with the lcrecord, call free_managed_lcrecord().
|
|
2211 The standard freeing caveats apply: ** make sure there are no
|
|
2212 pointers to the object anywhere! **
|
|
2213 4) Calling free_managed_lcrecord() is just like kissing the
|
|
2214 lcrecord goodbye as if it were garbage-collected. This means:
|
|
2215 -- the contents of the freed lcrecord are undefined, and the
|
|
2216 contents of something produced by allocate_managed_lcrecord()
|
|
2217 are undefined, just like for alloc_lcrecord().
|
|
2218 -- the mark method for the lcrecord's type will *NEVER* be called
|
|
2219 on freed lcrecords.
|
|
2220 -- the finalize method for the lcrecord's type will be called
|
|
2221 at the time that free_managed_lcrecord() is called.
|
|
2222
|
|
2223 */
|
|
2224
|
|
2225 static Lisp_Object
|
412
|
2226 mark_lcrecord_list (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
0
|
2227 {
|
|
2228 struct lcrecord_list *list = XLCRECORD_LIST (obj);
|
|
2229 Lisp_Object chain = list->free;
|
|
2230
|
|
2231 while (!NILP (chain))
|
|
2232 {
|
|
2233 struct lrecord_header *lheader = XRECORD_LHEADER (chain);
|
|
2234 struct free_lcrecord_header *free_header =
|
|
2235 (struct free_lcrecord_header *) lheader;
|
14
|
2236
|
412
|
2237 #ifdef ERROR_CHECK_GC
|
|
2238 CONST struct lrecord_implementation *implementation
|
|
2239 = LHEADER_IMPLEMENTATION(lheader);
|
|
2240
|
|
2241 /* There should be no other pointers to the free list. */
|
|
2242 assert (!MARKED_RECORD_HEADER_P (lheader));
|
|
2243 /* Only lcrecords should be here. */
|
|
2244 assert (!implementation->basic_p);
|
|
2245 /* Only free lcrecords should be here. */
|
|
2246 assert (free_header->lcheader.free);
|
|
2247 /* The type of the lcrecord must be right. */
|
|
2248 assert (implementation == list->implementation);
|
|
2249 /* So must the size. */
|
|
2250 assert (implementation->static_size == 0
|
|
2251 || implementation->static_size == list->size);
|
|
2252 #endif /* ERROR_CHECK_GC */
|
80
|
2253
|
0
|
2254 MARK_RECORD_HEADER (lheader);
|
|
2255 chain = free_header->chain;
|
|
2256 }
|
183
|
2257
|
0
|
2258 return Qnil;
|
|
2259 }
|
|
2260
|
243
|
2261 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list,
|
|
2262 mark_lcrecord_list, internal_object_printer,
|
420
|
2263 0, 0, 0, 0, struct lcrecord_list);
|
0
|
2264 Lisp_Object
|
272
|
2265 make_lcrecord_list (size_t size,
|
412
|
2266 CONST struct lrecord_implementation *implementation)
|
0
|
2267 {
|
185
|
2268 struct lcrecord_list *p = alloc_lcrecord_type (struct lcrecord_list,
|
398
|
2269 &lrecord_lcrecord_list);
|
272
|
2270 Lisp_Object val;
|
0
|
2271
|
|
2272 p->implementation = implementation;
|
|
2273 p->size = size;
|
|
2274 p->free = Qnil;
|
|
2275 XSETLCRECORD_LIST (val, p);
|
|
2276 return val;
|
|
2277 }
|
|
2278
|
|
2279 Lisp_Object
|
|
2280 allocate_managed_lcrecord (Lisp_Object lcrecord_list)
|
|
2281 {
|
|
2282 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2283 if (!NILP (list->free))
|
|
2284 {
|
|
2285 Lisp_Object val = list->free;
|
|
2286 struct free_lcrecord_header *free_header =
|
|
2287 (struct free_lcrecord_header *) XPNTR (val);
|
|
2288
|
|
2289 #ifdef ERROR_CHECK_GC
|
412
|
2290 struct lrecord_header *lheader =
|
|
2291 (struct lrecord_header *) free_header;
|
|
2292 CONST struct lrecord_implementation *implementation
|
|
2293 = LHEADER_IMPLEMENTATION (lheader);
|
0
|
2294
|
|
2295 /* There should be no other pointers to the free list. */
|
412
|
2296 assert (!MARKED_RECORD_HEADER_P (lheader));
|
0
|
2297 /* Only lcrecords should be here. */
|
412
|
2298 assert (!implementation->basic_p);
|
0
|
2299 /* Only free lcrecords should be here. */
|
|
2300 assert (free_header->lcheader.free);
|
|
2301 /* The type of the lcrecord must be right. */
|
412
|
2302 assert (implementation == list->implementation);
|
0
|
2303 /* So must the size. */
|
412
|
2304 assert (implementation->static_size == 0
|
|
2305 || implementation->static_size == list->size);
|
183
|
2306 #endif /* ERROR_CHECK_GC */
|
0
|
2307 list->free = free_header->chain;
|
|
2308 free_header->lcheader.free = 0;
|
|
2309 return val;
|
|
2310 }
|
|
2311 else
|
|
2312 {
|
272
|
2313 Lisp_Object val;
|
185
|
2314
|
|
2315 XSETOBJ (val, Lisp_Type_Record,
|
0
|
2316 alloc_lcrecord (list->size, list->implementation));
|
185
|
2317 return val;
|
0
|
2318 }
|
|
2319 }
|
|
2320
|
|
2321 void
|
|
2322 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord)
|
|
2323 {
|
|
2324 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2325 struct free_lcrecord_header *free_header =
|
|
2326 (struct free_lcrecord_header *) XPNTR (lcrecord);
|
412
|
2327 struct lrecord_header *lheader =
|
|
2328 (struct lrecord_header *) free_header;
|
|
2329 CONST struct lrecord_implementation *implementation
|
211
|
2330 = LHEADER_IMPLEMENTATION (lheader);
|
0
|
2331
|
412
|
2332 #ifdef ERROR_CHECK_GC
|
0
|
2333 /* Make sure the size is correct. This will catch, for example,
|
|
2334 putting a window configuration on the wrong free list. */
|
412
|
2335 if (implementation->size_in_bytes_method)
|
|
2336 assert (implementation->size_in_bytes_method (lheader) == list->size);
|
|
2337 else
|
|
2338 assert (implementation->static_size == list->size);
|
|
2339 #endif /* ERROR_CHECK_GC */
|
0
|
2340
|
|
2341 if (implementation->finalizer)
|
380
|
2342 implementation->finalizer (lheader, 0);
|
0
|
2343 free_header->chain = list->free;
|
|
2344 free_header->lcheader.free = 1;
|
|
2345 list->free = lcrecord;
|
|
2346 }
|
|
2347
|
|
2348
|
|
2349
|
|
2350
|
20
|
2351 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /*
|
398
|
2352 Kept for compatibility, returns its argument.
|
|
2353 Old:
|
0
|
2354 Make a copy of OBJECT in pure storage.
|
|
2355 Recursively copies contents of vectors and cons cells.
|
|
2356 Does not copy symbols.
|
20
|
2357 */
|
|
2358 (obj))
|
0
|
2359 {
|
398
|
2360 return obj;
|
102
|
2361 }
|
|
2362
|
412
|
2363
|
0
|
2364
|
380
|
2365 /************************************************************************/
|
|
2366 /* Garbage Collection */
|
|
2367 /************************************************************************/
|
|
2368
|
412
|
2369 /* This will be used more extensively In The Future */
|
|
2370 static int last_lrecord_type_index_assigned;
|
|
2371
|
|
2372 CONST struct lrecord_implementation *lrecord_implementations_table[128];
|
|
2373 #define max_lrecord_type (countof (lrecord_implementations_table) - 1)
|
0
|
2374
|
|
2375 struct gcpro *gcprolist;
|
|
2376
|
|
2377 /* 415 used Mly 29-Jun-93 */
|
261
|
2378 /* 1327 used slb 28-Feb-98 */
|
263
|
2379 #ifdef HAVE_SHLIB
|
|
2380 #define NSTATICS 4000
|
|
2381 #else
|
|
2382 #define NSTATICS 2000
|
|
2383 #endif
|
412
|
2384 /* Not "static" because of linker lossage on some systems */
|
|
2385 Lisp_Object *staticvec[NSTATICS]
|
|
2386 /* Force it into data space! */
|
|
2387 = {0};
|
|
2388 static int staticidx;
|
0
|
2389
|
|
2390 /* Put an entry in staticvec, pointing at the variable whose address is given
|
|
2391 */
|
|
2392 void
|
|
2393 staticpro (Lisp_Object *varaddress)
|
|
2394 {
|
412
|
2395 if (staticidx >= countof (staticvec))
|
|
2396 /* #### This is now a dubious abort() since this routine may be called */
|
|
2397 /* by Lisp attempting to load a DLL. */
|
|
2398 abort ();
|
0
|
2399 staticvec[staticidx++] = varaddress;
|
|
2400 }
|
|
2401
|
|
2402
|
|
2403 /* Mark reference to a Lisp_Object. If the object referred to has not been
|
|
2404 seen yet, recursively mark all the references contained in it. */
|
183
|
2405
|
412
|
2406 static void
|
0
|
2407 mark_object (Lisp_Object obj)
|
|
2408 {
|
|
2409 tail_recurse:
|
|
2410
|
412
|
2411 #ifdef ERROR_CHECK_GC
|
|
2412 assert (! (GC_EQ (obj, Qnull_pointer)));
|
|
2413 #endif
|
380
|
2414 /* Checks we used to perform */
|
|
2415 /* if (EQ (obj, Qnull_pointer)) return; */
|
|
2416 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */
|
|
2417 /* if (PURIFIED (XPNTR (obj))) return; */
|
|
2418
|
412
|
2419 if (XGCTYPE (obj) == Lisp_Type_Record)
|
0
|
2420 {
|
398
|
2421 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
412
|
2422 #if defined (ERROR_CHECK_GC)
|
|
2423 assert (lheader->type <= last_lrecord_type_index_assigned);
|
|
2424 #endif
|
|
2425 if (C_READONLY_RECORD_HEADER_P (lheader))
|
|
2426 return;
|
|
2427
|
|
2428 if (! MARKED_RECORD_HEADER_P (lheader) &&
|
|
2429 ! UNMARKABLE_RECORD_HEADER_P (lheader))
|
398
|
2430 {
|
412
|
2431 CONST struct lrecord_implementation *implementation =
|
|
2432 LHEADER_IMPLEMENTATION (lheader);
|
398
|
2433 MARK_RECORD_HEADER (lheader);
|
412
|
2434 #ifdef ERROR_CHECK_GC
|
|
2435 if (!implementation->basic_p)
|
|
2436 assert (! ((struct lcrecord_header *) lheader)->free);
|
|
2437 #endif
|
|
2438 if (implementation->marker)
|
0
|
2439 {
|
412
|
2440 obj = implementation->marker (obj, mark_object);
|
|
2441 if (!GC_NILP (obj)) goto tail_recurse;
|
0
|
2442 }
|
398
|
2443 }
|
0
|
2444 }
|
|
2445 }
|
|
2446
|
|
2447 /* mark all of the conses in a list and mark the final cdr; but
|
|
2448 DO NOT mark the cars.
|
|
2449
|
|
2450 Use only for internal lists! There should never be other pointers
|
|
2451 to the cons cells, because if so, the cars will remain unmarked
|
|
2452 even when they maybe should be marked. */
|
|
2453 void
|
|
2454 mark_conses_in_list (Lisp_Object obj)
|
|
2455 {
|
|
2456 Lisp_Object rest;
|
|
2457
|
|
2458 for (rest = obj; CONSP (rest); rest = XCDR (rest))
|
|
2459 {
|
|
2460 if (CONS_MARKED_P (XCONS (rest)))
|
|
2461 return;
|
|
2462 MARK_CONS (XCONS (rest));
|
|
2463 }
|
|
2464
|
|
2465 mark_object (rest);
|
|
2466 }
|
|
2467
|
|
2468
|
|
2469 /* Find all structures not marked, and free them. */
|
|
2470
|
|
2471 static int gc_count_num_bit_vector_used, gc_count_bit_vector_total_size;
|
|
2472 static int gc_count_bit_vector_storage;
|
|
2473 static int gc_count_num_short_string_in_use;
|
|
2474 static int gc_count_string_total_size;
|
|
2475 static int gc_count_short_string_total_size;
|
|
2476
|
|
2477 /* static int gc_count_total_records_used, gc_count_records_total_size; */
|
|
2478
|
|
2479
|
412
|
2480 int
|
|
2481 lrecord_type_index (CONST struct lrecord_implementation *implementation)
|
|
2482 {
|
|
2483 int type_index = *(implementation->lrecord_type_index);
|
|
2484 /* Have to do this circuitous validation test because of problems
|
|
2485 dumping out initialized variables (ie can't set xxx_type_index to -1
|
|
2486 because that would make xxx_type_index read-only in a dumped emacs. */
|
|
2487 if (type_index < 0 || type_index > max_lrecord_type
|
|
2488 || lrecord_implementations_table[type_index] != implementation)
|
|
2489 {
|
|
2490 assert (last_lrecord_type_index_assigned < max_lrecord_type);
|
|
2491 type_index = ++last_lrecord_type_index_assigned;
|
|
2492 lrecord_implementations_table[type_index] = implementation;
|
|
2493 *(implementation->lrecord_type_index) = type_index;
|
|
2494 }
|
|
2495 return type_index;
|
|
2496 }
|
|
2497
|
0
|
2498 /* stats on lcrecords in use - kinda kludgy */
|
|
2499
|
|
2500 static struct
|
|
2501 {
|
|
2502 int instances_in_use;
|
|
2503 int bytes_in_use;
|
|
2504 int instances_freed;
|
|
2505 int bytes_freed;
|
|
2506 int instances_on_free_list;
|
|
2507 } lcrecord_stats [countof (lrecord_implementations_table)];
|
|
2508
|
|
2509 static void
|
412
|
2510 tick_lcrecord_stats (CONST struct lrecord_header *h, int free_p)
|
0
|
2511 {
|
412
|
2512 CONST struct lrecord_implementation *implementation =
|
|
2513 LHEADER_IMPLEMENTATION (h);
|
|
2514 int type_index = lrecord_type_index (implementation);
|
0
|
2515
|
|
2516 if (((struct lcrecord_header *) h)->free)
|
|
2517 {
|
412
|
2518 assert (!free_p);
|
0
|
2519 lcrecord_stats[type_index].instances_on_free_list++;
|
|
2520 }
|
|
2521 else
|
|
2522 {
|
412
|
2523 size_t sz = (implementation->size_in_bytes_method
|
|
2524 ? implementation->size_in_bytes_method (h)
|
|
2525 : implementation->static_size);
|
|
2526
|
0
|
2527 if (free_p)
|
|
2528 {
|
|
2529 lcrecord_stats[type_index].instances_freed++;
|
|
2530 lcrecord_stats[type_index].bytes_freed += sz;
|
|
2531 }
|
|
2532 else
|
|
2533 {
|
|
2534 lcrecord_stats[type_index].instances_in_use++;
|
|
2535 lcrecord_stats[type_index].bytes_in_use += sz;
|
|
2536 }
|
|
2537 }
|
|
2538 }
|
|
2539
|
|
2540
|
|
2541 /* Free all unmarked records */
|
|
2542 static void
|
|
2543 sweep_lcrecords_1 (struct lcrecord_header **prev, int *used)
|
|
2544 {
|
|
2545 struct lcrecord_header *header;
|
|
2546 int num_used = 0;
|
|
2547 /* int total_size = 0; */
|
386
|
2548
|
|
2549 xzero (lcrecord_stats); /* Reset all statistics to 0. */
|
0
|
2550
|
|
2551 /* First go through and call all the finalize methods.
|
|
2552 Then go through and free the objects. There used to
|
|
2553 be only one loop here, with the call to the finalizer
|
|
2554 occurring directly before the xfree() below. That
|
|
2555 is marginally faster but much less safe -- if the
|
|
2556 finalize method for an object needs to reference any
|
|
2557 other objects contained within it (and many do),
|
|
2558 we could easily be screwed by having already freed that
|
|
2559 other object. */
|
|
2560
|
|
2561 for (header = *prev; header; header = header->next)
|
|
2562 {
|
|
2563 struct lrecord_header *h = &(header->lheader);
|
412
|
2564 if (!C_READONLY_RECORD_HEADER_P(h)
|
|
2565 && !MARKED_RECORD_HEADER_P (h)
|
|
2566 && ! (header->free))
|
0
|
2567 {
|
211
|
2568 if (LHEADER_IMPLEMENTATION (h)->finalizer)
|
380
|
2569 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0);
|
0
|
2570 }
|
|
2571 }
|
|
2572
|
|
2573 for (header = *prev; header; )
|
|
2574 {
|
|
2575 struct lrecord_header *h = &(header->lheader);
|
412
|
2576 if (C_READONLY_RECORD_HEADER_P(h) || MARKED_RECORD_HEADER_P (h))
|
0
|
2577 {
|
412
|
2578 if (MARKED_RECORD_HEADER_P (h))
|
398
|
2579 UNMARK_RECORD_HEADER (h);
|
0
|
2580 num_used++;
|
380
|
2581 /* total_size += n->implementation->size_in_bytes (h);*/
|
412
|
2582 /* ### May modify header->next on a C_READONLY lcrecord */
|
0
|
2583 prev = &(header->next);
|
|
2584 header = *prev;
|
|
2585 tick_lcrecord_stats (h, 0);
|
|
2586 }
|
|
2587 else
|
|
2588 {
|
|
2589 struct lcrecord_header *next = header->next;
|
|
2590 *prev = next;
|
|
2591 tick_lcrecord_stats (h, 1);
|
|
2592 /* used to call finalizer right here. */
|
|
2593 xfree (header);
|
|
2594 header = next;
|
|
2595 }
|
|
2596 }
|
|
2597 *used = num_used;
|
|
2598 /* *total = total_size; */
|
|
2599 }
|
|
2600
|
207
|
2601
|
0
|
2602 static void
|
183
|
2603 sweep_bit_vectors_1 (Lisp_Object *prev,
|
0
|
2604 int *used, int *total, int *storage)
|
|
2605 {
|
|
2606 Lisp_Object bit_vector;
|
|
2607 int num_used = 0;
|
|
2608 int total_size = 0;
|
|
2609 int total_storage = 0;
|
|
2610
|
|
2611 /* BIT_VECTORP fails because the objects are marked, which changes
|
|
2612 their implementation */
|
|
2613 for (bit_vector = *prev; !EQ (bit_vector, Qzero); )
|
|
2614 {
|
380
|
2615 Lisp_Bit_Vector *v = XBIT_VECTOR (bit_vector);
|
0
|
2616 int len = v->size;
|
412
|
2617 if (C_READONLY_RECORD_HEADER_P(&(v->lheader)) || MARKED_RECORD_P (bit_vector))
|
0
|
2618 {
|
412
|
2619 if (MARKED_RECORD_P (bit_vector))
|
398
|
2620 UNMARK_RECORD_HEADER (&(v->lheader));
|
0
|
2621 total_size += len;
|
380
|
2622 total_storage +=
|
382
|
2623 MALLOC_OVERHEAD +
|
412
|
2624 STRETCHY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits,
|
|
2625 BIT_VECTOR_LONG_STORAGE (len));
|
0
|
2626 num_used++;
|
412
|
2627 /* ### May modify next on a C_READONLY bitvector */
|
0
|
2628 prev = &(bit_vector_next (v));
|
|
2629 bit_vector = *prev;
|
|
2630 }
|
|
2631 else
|
|
2632 {
|
|
2633 Lisp_Object next = bit_vector_next (v);
|
|
2634 *prev = next;
|
|
2635 xfree (v);
|
|
2636 bit_vector = next;
|
|
2637 }
|
|
2638 }
|
|
2639 *used = num_used;
|
|
2640 *total = total_size;
|
|
2641 *storage = total_storage;
|
|
2642 }
|
|
2643
|
|
2644 /* And the Lord said: Thou shalt use the `c-backslash-region' command
|
|
2645 to make macros prettier. */
|
|
2646
|
|
2647 #ifdef ERROR_CHECK_GC
|
|
2648
|
|
2649 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2650 do { \
|
380
|
2651 struct typename##_block *SFTB_current; \
|
|
2652 struct typename##_block **SFTB_prev; \
|
|
2653 int SFTB_limit; \
|
0
|
2654 int num_free = 0, num_used = 0; \
|
|
2655 \
|
380
|
2656 for (SFTB_prev = ¤t_##typename##_block, \
|
|
2657 SFTB_current = current_##typename##_block, \
|
|
2658 SFTB_limit = current_##typename##_block_index; \
|
|
2659 SFTB_current; \
|
0
|
2660 ) \
|
|
2661 { \
|
380
|
2662 int SFTB_iii; \
|
0
|
2663 \
|
380
|
2664 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
0
|
2665 { \
|
380
|
2666 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
0
|
2667 \
|
380
|
2668 if (FREE_STRUCT_P (SFTB_victim)) \
|
0
|
2669 { \
|
|
2670 num_free++; \
|
|
2671 } \
|
398
|
2672 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2673 { \
|
|
2674 num_used++; \
|
|
2675 } \
|
412
|
2676 else if (!MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
0
|
2677 { \
|
|
2678 num_free++; \
|
380
|
2679 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
0
|
2680 } \
|
|
2681 else \
|
|
2682 { \
|
|
2683 num_used++; \
|
380
|
2684 UNMARK_##typename (SFTB_victim); \
|
0
|
2685 } \
|
|
2686 } \
|
380
|
2687 SFTB_prev = &(SFTB_current->prev); \
|
|
2688 SFTB_current = SFTB_current->prev; \
|
|
2689 SFTB_limit = countof (current_##typename##_block->block); \
|
0
|
2690 } \
|
|
2691 \
|
|
2692 gc_count_num_##typename##_in_use = num_used; \
|
|
2693 gc_count_num_##typename##_freelist = num_free; \
|
|
2694 } while (0)
|
|
2695
|
183
|
2696 #else /* !ERROR_CHECK_GC */
|
0
|
2697
|
380
|
2698 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2699 do { \
|
|
2700 struct typename##_block *SFTB_current; \
|
|
2701 struct typename##_block **SFTB_prev; \
|
|
2702 int SFTB_limit; \
|
|
2703 int num_free = 0, num_used = 0; \
|
|
2704 \
|
|
2705 typename##_free_list = 0; \
|
|
2706 \
|
|
2707 for (SFTB_prev = ¤t_##typename##_block, \
|
|
2708 SFTB_current = current_##typename##_block, \
|
|
2709 SFTB_limit = current_##typename##_block_index; \
|
|
2710 SFTB_current; \
|
|
2711 ) \
|
|
2712 { \
|
|
2713 int SFTB_iii; \
|
|
2714 int SFTB_empty = 1; \
|
|
2715 obj_type *SFTB_old_free_list = typename##_free_list; \
|
|
2716 \
|
|
2717 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
|
2718 { \
|
|
2719 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
|
2720 \
|
|
2721 if (FREE_STRUCT_P (SFTB_victim)) \
|
|
2722 { \
|
|
2723 num_free++; \
|
|
2724 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \
|
|
2725 } \
|
398
|
2726 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2727 { \
|
|
2728 SFTB_empty = 0; \
|
|
2729 num_used++; \
|
|
2730 } \
|
412
|
2731 else if (!MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
380
|
2732 { \
|
|
2733 num_free++; \
|
|
2734 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
|
2735 } \
|
|
2736 else \
|
|
2737 { \
|
|
2738 SFTB_empty = 0; \
|
|
2739 num_used++; \
|
|
2740 UNMARK_##typename (SFTB_victim); \
|
|
2741 } \
|
|
2742 } \
|
|
2743 if (!SFTB_empty) \
|
|
2744 { \
|
|
2745 SFTB_prev = &(SFTB_current->prev); \
|
|
2746 SFTB_current = SFTB_current->prev; \
|
|
2747 } \
|
|
2748 else if (SFTB_current == current_##typename##_block \
|
|
2749 && !SFTB_current->prev) \
|
|
2750 { \
|
|
2751 /* No real point in freeing sole allocation block */ \
|
|
2752 break; \
|
|
2753 } \
|
|
2754 else \
|
|
2755 { \
|
|
2756 struct typename##_block *SFTB_victim_block = SFTB_current; \
|
|
2757 if (SFTB_victim_block == current_##typename##_block) \
|
|
2758 current_##typename##_block_index \
|
|
2759 = countof (current_##typename##_block->block); \
|
|
2760 SFTB_current = SFTB_current->prev; \
|
|
2761 { \
|
|
2762 *SFTB_prev = SFTB_current; \
|
|
2763 xfree (SFTB_victim_block); \
|
|
2764 /* Restore free list to what it was before victim was swept */ \
|
|
2765 typename##_free_list = SFTB_old_free_list; \
|
|
2766 num_free -= SFTB_limit; \
|
|
2767 } \
|
|
2768 } \
|
|
2769 SFTB_limit = countof (current_##typename##_block->block); \
|
|
2770 } \
|
|
2771 \
|
|
2772 gc_count_num_##typename##_in_use = num_used; \
|
|
2773 gc_count_num_##typename##_freelist = num_free; \
|
0
|
2774 } while (0)
|
|
2775
|
183
|
2776 #endif /* !ERROR_CHECK_GC */
|
0
|
2777
|
|
2778
|
|
2779
|
|
2780
|
|
2781 static void
|
|
2782 sweep_conses (void)
|
|
2783 {
|
398
|
2784 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
0
|
2785 #define ADDITIONAL_FREE_cons(ptr)
|
|
2786
|
412
|
2787 SWEEP_FIXED_TYPE_BLOCK (cons, struct Lisp_Cons);
|
0
|
2788 }
|
|
2789
|
|
2790 /* Explicitly free a cons cell. */
|
|
2791 void
|
412
|
2792 free_cons (struct Lisp_Cons *ptr)
|
0
|
2793 {
|
|
2794 #ifdef ERROR_CHECK_GC
|
|
2795 /* If the CAR is not an int, then it will be a pointer, which will
|
|
2796 always be four-byte aligned. If this cons cell has already been
|
|
2797 placed on the free list, however, its car will probably contain
|
|
2798 a chain pointer to the next cons on the list, which has cleverly
|
|
2799 had all its 0's and 1's inverted. This allows for a quick
|
|
2800 check to make sure we're not freeing something already freed. */
|
|
2801 if (POINTER_TYPE_P (XTYPE (ptr->car)))
|
|
2802 ASSERT_VALID_POINTER (XPNTR (ptr->car));
|
183
|
2803 #endif /* ERROR_CHECK_GC */
|
|
2804
|
0
|
2805 #ifndef ALLOC_NO_POOLS
|
412
|
2806 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, struct Lisp_Cons, ptr);
|
0
|
2807 #endif /* ALLOC_NO_POOLS */
|
|
2808 }
|
|
2809
|
|
2810 /* explicitly free a list. You **must make sure** that you have
|
|
2811 created all the cons cells that make up this list and that there
|
|
2812 are no pointers to any of these cons cells anywhere else. If there
|
|
2813 are, you will lose. */
|
|
2814
|
|
2815 void
|
|
2816 free_list (Lisp_Object list)
|
|
2817 {
|
|
2818 Lisp_Object rest, next;
|
|
2819
|
|
2820 for (rest = list; !NILP (rest); rest = next)
|
|
2821 {
|
|
2822 next = XCDR (rest);
|
|
2823 free_cons (XCONS (rest));
|
|
2824 }
|
|
2825 }
|
|
2826
|
|
2827 /* explicitly free an alist. You **must make sure** that you have
|
|
2828 created all the cons cells that make up this alist and that there
|
|
2829 are no pointers to any of these cons cells anywhere else. If there
|
|
2830 are, you will lose. */
|
|
2831
|
|
2832 void
|
|
2833 free_alist (Lisp_Object alist)
|
|
2834 {
|
|
2835 Lisp_Object rest, next;
|
|
2836
|
|
2837 for (rest = alist; !NILP (rest); rest = next)
|
|
2838 {
|
|
2839 next = XCDR (rest);
|
|
2840 free_cons (XCONS (XCAR (rest)));
|
|
2841 free_cons (XCONS (rest));
|
|
2842 }
|
|
2843 }
|
|
2844
|
|
2845 static void
|
|
2846 sweep_compiled_functions (void)
|
|
2847 {
|
|
2848 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2849 #define ADDITIONAL_FREE_compiled_function(ptr)
|
|
2850
|
380
|
2851 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function);
|
0
|
2852 }
|
|
2853
|
|
2854
|
|
2855 #ifdef LISP_FLOAT_TYPE
|
|
2856 static void
|
|
2857 sweep_floats (void)
|
|
2858 {
|
|
2859 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2860 #define ADDITIONAL_FREE_float(ptr)
|
|
2861
|
412
|
2862 SWEEP_FIXED_TYPE_BLOCK (float, struct Lisp_Float);
|
0
|
2863 }
|
|
2864 #endif /* LISP_FLOAT_TYPE */
|
|
2865
|
|
2866 static void
|
|
2867 sweep_symbols (void)
|
|
2868 {
|
398
|
2869 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
0
|
2870 #define ADDITIONAL_FREE_symbol(ptr)
|
|
2871
|
412
|
2872 SWEEP_FIXED_TYPE_BLOCK (symbol, struct Lisp_Symbol);
|
0
|
2873 }
|
|
2874
|
|
2875 static void
|
|
2876 sweep_extents (void)
|
|
2877 {
|
|
2878 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2879 #define ADDITIONAL_FREE_extent(ptr)
|
|
2880
|
|
2881 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent);
|
|
2882 }
|
|
2883
|
|
2884 static void
|
|
2885 sweep_events (void)
|
|
2886 {
|
|
2887 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2888 #define ADDITIONAL_FREE_event(ptr)
|
|
2889
|
412
|
2890 SWEEP_FIXED_TYPE_BLOCK (event, struct Lisp_Event);
|
0
|
2891 }
|
|
2892
|
|
2893 static void
|
|
2894 sweep_markers (void)
|
|
2895 {
|
|
2896 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2897 #define ADDITIONAL_FREE_marker(ptr) \
|
|
2898 do { Lisp_Object tem; \
|
|
2899 XSETMARKER (tem, ptr); \
|
|
2900 unchain_marker (tem); \
|
|
2901 } while (0)
|
|
2902
|
412
|
2903 SWEEP_FIXED_TYPE_BLOCK (marker, struct Lisp_Marker);
|
0
|
2904 }
|
|
2905
|
|
2906 /* Explicitly free a marker. */
|
|
2907 void
|
412
|
2908 free_marker (struct Lisp_Marker *ptr)
|
0
|
2909 {
|
412
|
2910 #ifdef ERROR_CHECK_GC
|
0
|
2911 /* Perhaps this will catch freeing an already-freed marker. */
|
412
|
2912 Lisp_Object temmy;
|
|
2913 XSETMARKER (temmy, ptr);
|
|
2914 assert (GC_MARKERP (temmy));
|
|
2915 #endif /* ERROR_CHECK_GC */
|
183
|
2916
|
0
|
2917 #ifndef ALLOC_NO_POOLS
|
412
|
2918 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, struct Lisp_Marker, ptr);
|
0
|
2919 #endif /* ALLOC_NO_POOLS */
|
|
2920 }
|
|
2921
|
70
|
2922
|
|
2923 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY)
|
|
2924
|
|
2925 static void
|
|
2926 verify_string_chars_integrity (void)
|
|
2927 {
|
|
2928 struct string_chars_block *sb;
|
|
2929
|
|
2930 /* Scan each existing string block sequentially, string by string. */
|
|
2931 for (sb = first_string_chars_block; sb; sb = sb->next)
|
|
2932 {
|
|
2933 int pos = 0;
|
|
2934 /* POS is the index of the next string in the block. */
|
|
2935 while (pos < sb->pos)
|
|
2936 {
|
183
|
2937 struct string_chars *s_chars =
|
70
|
2938 (struct string_chars *) &(sb->string_chars[pos]);
|
412
|
2939 struct Lisp_String *string;
|
70
|
2940 int size;
|
|
2941 int fullsize;
|
|
2942
|
|
2943 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
2944 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
2945 storage. (See below.) */
|
|
2946
|
|
2947 if (FREE_STRUCT_P (s_chars))
|
|
2948 {
|
|
2949 fullsize = ((struct unused_string_chars *) s_chars)->fullsize;
|
|
2950 pos += fullsize;
|
|
2951 continue;
|
|
2952 }
|
|
2953
|
|
2954 string = s_chars->string;
|
|
2955 /* Must be 32-bit aligned. */
|
|
2956 assert ((((int) string) & 3) == 0);
|
|
2957
|
|
2958 size = string_length (string);
|
|
2959 fullsize = STRING_FULLSIZE (size);
|
|
2960
|
|
2961 assert (!BIG_STRING_FULLSIZE_P (fullsize));
|
|
2962 assert (string_data (string) == s_chars->chars);
|
|
2963 pos += fullsize;
|
|
2964 }
|
|
2965 assert (pos == sb->pos);
|
|
2966 }
|
|
2967 }
|
|
2968
|
|
2969 #endif /* MULE && ERROR_CHECK_GC */
|
|
2970
|
0
|
2971 /* Compactify string chars, relocating the reference to each --
|
|
2972 free any empty string_chars_block we see. */
|
|
2973 static void
|
|
2974 compact_string_chars (void)
|
|
2975 {
|
|
2976 struct string_chars_block *to_sb = first_string_chars_block;
|
|
2977 int to_pos = 0;
|
|
2978 struct string_chars_block *from_sb;
|
|
2979
|
|
2980 /* Scan each existing string block sequentially, string by string. */
|
|
2981 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next)
|
|
2982 {
|
|
2983 int from_pos = 0;
|
|
2984 /* FROM_POS is the index of the next string in the block. */
|
|
2985 while (from_pos < from_sb->pos)
|
|
2986 {
|
183
|
2987 struct string_chars *from_s_chars =
|
0
|
2988 (struct string_chars *) &(from_sb->string_chars[from_pos]);
|
|
2989 struct string_chars *to_s_chars;
|
412
|
2990 struct Lisp_String *string;
|
0
|
2991 int size;
|
|
2992 int fullsize;
|
|
2993
|
|
2994 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
2995 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
2996 storage. This happens under Mule when a string's size changes
|
|
2997 in such a way that its fullsize changes. (Strings can change
|
|
2998 size because a different-length character can be substituted
|
|
2999 for another character.) In this case, after the bogus string
|
|
3000 pointer is the "fullsize" of this entry, i.e. how many bytes
|
|
3001 to skip. */
|
|
3002
|
|
3003 if (FREE_STRUCT_P (from_s_chars))
|
|
3004 {
|
|
3005 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize;
|
|
3006 from_pos += fullsize;
|
|
3007 continue;
|
|
3008 }
|
|
3009
|
|
3010 string = from_s_chars->string;
|
|
3011 assert (!(FREE_STRUCT_P (string)));
|
|
3012
|
|
3013 size = string_length (string);
|
|
3014 fullsize = STRING_FULLSIZE (size);
|
|
3015
|
412
|
3016 if (BIG_STRING_FULLSIZE_P (fullsize))
|
|
3017 abort ();
|
0
|
3018
|
|
3019 /* Just skip it if it isn't marked. */
|
207
|
3020 if (! MARKED_RECORD_HEADER_P (&(string->lheader)))
|
0
|
3021 {
|
|
3022 from_pos += fullsize;
|
|
3023 continue;
|
|
3024 }
|
|
3025
|
|
3026 /* If it won't fit in what's left of TO_SB, close TO_SB out
|
|
3027 and go on to the next string_chars_block. We know that TO_SB
|
|
3028 cannot advance past FROM_SB here since FROM_SB is large enough
|
|
3029 to currently contain this string. */
|
|
3030 if ((to_pos + fullsize) > countof (to_sb->string_chars))
|
|
3031 {
|
|
3032 to_sb->pos = to_pos;
|
|
3033 to_sb = to_sb->next;
|
|
3034 to_pos = 0;
|
|
3035 }
|
183
|
3036
|
0
|
3037 /* Compute new address of this string
|
|
3038 and update TO_POS for the space being used. */
|
|
3039 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]);
|
|
3040
|
|
3041 /* Copy the string_chars to the new place. */
|
|
3042 if (from_s_chars != to_s_chars)
|
|
3043 memmove (to_s_chars, from_s_chars, fullsize);
|
|
3044
|
|
3045 /* Relocate FROM_S_CHARS's reference */
|
|
3046 set_string_data (string, &(to_s_chars->chars[0]));
|
183
|
3047
|
0
|
3048 from_pos += fullsize;
|
|
3049 to_pos += fullsize;
|
|
3050 }
|
|
3051 }
|
|
3052
|
183
|
3053 /* Set current to the last string chars block still used and
|
0
|
3054 free any that follow. */
|
|
3055 {
|
|
3056 struct string_chars_block *victim;
|
|
3057
|
|
3058 for (victim = to_sb->next; victim; )
|
|
3059 {
|
|
3060 struct string_chars_block *next = victim->next;
|
|
3061 xfree (victim);
|
|
3062 victim = next;
|
|
3063 }
|
|
3064
|
|
3065 current_string_chars_block = to_sb;
|
|
3066 current_string_chars_block->pos = to_pos;
|
|
3067 current_string_chars_block->next = 0;
|
|
3068 }
|
|
3069 }
|
|
3070
|
|
3071 #if 1 /* Hack to debug missing purecopy's */
|
|
3072 static int debug_string_purity;
|
|
3073
|
|
3074 static void
|
412
|
3075 debug_string_purity_print (struct Lisp_String *p)
|
0
|
3076 {
|
|
3077 Charcount i;
|
|
3078 Charcount s = string_char_length (p);
|
412
|
3079 putc ('\"', stderr);
|
0
|
3080 for (i = 0; i < s; i++)
|
|
3081 {
|
|
3082 Emchar ch = string_char (p, i);
|
|
3083 if (ch < 32 || ch >= 126)
|
|
3084 stderr_out ("\\%03o", ch);
|
|
3085 else if (ch == '\\' || ch == '\"')
|
|
3086 stderr_out ("\\%c", ch);
|
|
3087 else
|
|
3088 stderr_out ("%c", ch);
|
|
3089 }
|
|
3090 stderr_out ("\"\n");
|
|
3091 }
|
183
|
3092 #endif /* 1 */
|
0
|
3093
|
|
3094
|
|
3095 static void
|
|
3096 sweep_strings (void)
|
|
3097 {
|
|
3098 int num_small_used = 0, num_small_bytes = 0, num_bytes = 0;
|
|
3099 int debug = debug_string_purity;
|
|
3100
|
412
|
3101 #define UNMARK_string(ptr) \
|
|
3102 do { struct Lisp_String *p = (ptr); \
|
|
3103 int size = string_length (p); \
|
|
3104 UNMARK_RECORD_HEADER (&(p->lheader)); \
|
|
3105 num_bytes += size; \
|
|
3106 if (!BIG_STRING_SIZE_P (size)) \
|
|
3107 { num_small_bytes += size; \
|
|
3108 num_small_used++; \
|
|
3109 } \
|
|
3110 if (debug) debug_string_purity_print (p); \
|
|
3111 } while (0)
|
|
3112 #define ADDITIONAL_FREE_string(p) \
|
|
3113 do { int size = string_length (p); \
|
|
3114 if (BIG_STRING_SIZE_P (size)) \
|
|
3115 xfree_1 (CHARS_TO_STRING_CHAR (string_data (p))); \
|
|
3116 } while (0)
|
|
3117
|
|
3118 SWEEP_FIXED_TYPE_BLOCK (string, struct Lisp_String);
|
0
|
3119
|
|
3120 gc_count_num_short_string_in_use = num_small_used;
|
|
3121 gc_count_string_total_size = num_bytes;
|
|
3122 gc_count_short_string_total_size = num_small_bytes;
|
|
3123 }
|
|
3124
|
|
3125
|
|
3126 /* I hate duplicating all this crap! */
|
412
|
3127 static int
|
0
|
3128 marked_p (Lisp_Object obj)
|
|
3129 {
|
412
|
3130 #ifdef ERROR_CHECK_GC
|
|
3131 assert (! (GC_EQ (obj, Qnull_pointer)));
|
|
3132 #endif
|
380
|
3133 /* Checks we used to perform. */
|
|
3134 /* if (EQ (obj, Qnull_pointer)) return 1; */
|
|
3135 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */
|
|
3136 /* if (PURIFIED (XPNTR (obj))) return 1; */
|
|
3137
|
412
|
3138 if (XGCTYPE (obj) == Lisp_Type_Record)
|
0
|
3139 {
|
398
|
3140 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
412
|
3141 #if defined (ERROR_CHECK_GC)
|
|
3142 assert (lheader->type <= last_lrecord_type_index_assigned);
|
|
3143 #endif
|
|
3144 return C_READONLY_RECORD_HEADER_P (lheader) || MARKED_RECORD_HEADER_P (lheader);
|
0
|
3145 }
|
398
|
3146 return 1;
|
0
|
3147 }
|
|
3148
|
|
3149 static void
|
|
3150 gc_sweep (void)
|
|
3151 {
|
|
3152 /* Free all unmarked records. Do this at the very beginning,
|
|
3153 before anything else, so that the finalize methods can safely
|
|
3154 examine items in the objects. sweep_lcrecords_1() makes
|
|
3155 sure to call all the finalize methods *before* freeing anything,
|
|
3156 to complete the safety. */
|
|
3157 {
|
|
3158 int ignored;
|
|
3159 sweep_lcrecords_1 (&all_lcrecords, &ignored);
|
|
3160 }
|
|
3161
|
|
3162 compact_string_chars ();
|
|
3163
|
|
3164 /* Finalize methods below (called through the ADDITIONAL_FREE_foo
|
|
3165 macros) must be *extremely* careful to make sure they're not
|
|
3166 referencing freed objects. The only two existing finalize
|
|
3167 methods (for strings and markers) pass muster -- the string
|
|
3168 finalizer doesn't look at anything but its own specially-
|
|
3169 created block, and the marker finalizer only looks at live
|
|
3170 buffers (which will never be freed) and at the markers before
|
|
3171 and after it in the chain (which, by induction, will never be
|
|
3172 freed because if so, they would have already removed themselves
|
|
3173 from the chain). */
|
|
3174
|
|
3175 /* Put all unmarked strings on free list, free'ing the string chars
|
|
3176 of large unmarked strings */
|
|
3177 sweep_strings ();
|
|
3178
|
|
3179 /* Put all unmarked conses on free list */
|
|
3180 sweep_conses ();
|
|
3181
|
|
3182 /* Free all unmarked bit vectors */
|
|
3183 sweep_bit_vectors_1 (&all_bit_vectors,
|
|
3184 &gc_count_num_bit_vector_used,
|
|
3185 &gc_count_bit_vector_total_size,
|
|
3186 &gc_count_bit_vector_storage);
|
|
3187
|
|
3188 /* Free all unmarked compiled-function objects */
|
|
3189 sweep_compiled_functions ();
|
|
3190
|
|
3191 #ifdef LISP_FLOAT_TYPE
|
|
3192 /* Put all unmarked floats on free list */
|
|
3193 sweep_floats ();
|
|
3194 #endif
|
|
3195
|
|
3196 /* Put all unmarked symbols on free list */
|
|
3197 sweep_symbols ();
|
|
3198
|
|
3199 /* Put all unmarked extents on free list */
|
|
3200 sweep_extents ();
|
|
3201
|
|
3202 /* Put all unmarked markers on free list.
|
|
3203 Dechain each one first from the buffer into which it points. */
|
|
3204 sweep_markers ();
|
|
3205
|
|
3206 sweep_events ();
|
|
3207
|
|
3208 }
|
|
3209
|
|
3210 /* Clearing for disksave. */
|
|
3211
|
|
3212 void
|
|
3213 disksave_object_finalization (void)
|
|
3214 {
|
|
3215 /* It's important that certain information from the environment not get
|
|
3216 dumped with the executable (pathnames, environment variables, etc.).
|
380
|
3217 To make it easier to tell when this has happened with strings(1) we
|
0
|
3218 clear some known-to-be-garbage blocks of memory, so that leftover
|
|
3219 results of old evaluation don't look like potential problems.
|
|
3220 But first we set some notable variables to nil and do one more GC,
|
|
3221 to turn those strings into garbage.
|
412
|
3222 */
|
0
|
3223
|
|
3224 /* Yeah, this list is pretty ad-hoc... */
|
|
3225 Vprocess_environment = Qnil;
|
|
3226 Vexec_directory = Qnil;
|
|
3227 Vdata_directory = Qnil;
|
110
|
3228 Vsite_directory = Qnil;
|
0
|
3229 Vdoc_directory = Qnil;
|
|
3230 Vconfigure_info_directory = Qnil;
|
|
3231 Vexec_path = Qnil;
|
|
3232 Vload_path = Qnil;
|
|
3233 /* Vdump_load_path = Qnil; */
|
396
|
3234 /* Release hash tables for locate_file */
|
398
|
3235 Flocate_file_clear_hashing (Qt);
|
288
|
3236 uncache_home_directory();
|
|
3237
|
233
|
3238 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \
|
|
3239 defined(LOADHIST_BUILTIN))
|
0
|
3240 Vload_history = Qnil;
|
233
|
3241 #endif
|
0
|
3242 Vshell_file_name = Qnil;
|
|
3243
|
|
3244 garbage_collect_1 ();
|
|
3245
|
|
3246 /* Run the disksave finalization methods of all live objects. */
|
|
3247 disksave_object_finalization_1 ();
|
|
3248
|
|
3249 /* Zero out the uninitialized (really, unused) part of the containers
|
|
3250 for the live strings. */
|
|
3251 {
|
|
3252 struct string_chars_block *scb;
|
|
3253 for (scb = first_string_chars_block; scb; scb = scb->next)
|
249
|
3254 {
|
|
3255 int count = sizeof (scb->string_chars) - scb->pos;
|
|
3256
|
|
3257 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE);
|
412
|
3258 if (count != 0) {
|
|
3259 /* from the block's fill ptr to the end */
|
|
3260 memset ((scb->string_chars + scb->pos), 0, count);
|
|
3261 }
|
249
|
3262 }
|
0
|
3263 }
|
|
3264
|
|
3265 /* There, that ought to be enough... */
|
|
3266
|
|
3267 }
|
|
3268
|
|
3269
|
|
3270 Lisp_Object
|
|
3271 restore_gc_inhibit (Lisp_Object val)
|
|
3272 {
|
|
3273 gc_currently_forbidden = XINT (val);
|
|
3274 return val;
|
|
3275 }
|
|
3276
|
|
3277 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */
|
|
3278 static int gc_hooks_inhibited;
|
|
3279
|
|
3280
|
|
3281 void
|
|
3282 garbage_collect_1 (void)
|
|
3283 {
|
380
|
3284 #if MAX_SAVE_STACK > 0
|
0
|
3285 char stack_top_variable;
|
|
3286 extern char *stack_bottom;
|
380
|
3287 #endif
|
261
|
3288 struct frame *f;
|
272
|
3289 int speccount;
|
|
3290 int cursor_changed;
|
|
3291 Lisp_Object pre_gc_cursor;
|
0
|
3292 struct gcpro gcpro1;
|
|
3293
|
272
|
3294 if (gc_in_progress
|
|
3295 || gc_currently_forbidden
|
|
3296 || in_display
|
|
3297 || preparing_for_armageddon)
|
0
|
3298 return;
|
|
3299
|
380
|
3300 /* We used to call selected_frame() here.
|
|
3301
|
|
3302 The following functions cannot be called inside GC
|
|
3303 so we move to after the above tests. */
|
|
3304 {
|
|
3305 Lisp_Object frame;
|
|
3306 Lisp_Object device = Fselected_device (Qnil);
|
|
3307 if (NILP (device)) /* Could happen during startup, eg. if always_gc */
|
|
3308 return;
|
|
3309 frame = DEVICE_SELECTED_FRAME (XDEVICE (device));
|
|
3310 if (NILP (frame))
|
|
3311 signal_simple_error ("No frames exist on device", device);
|
|
3312 f = XFRAME (frame);
|
|
3313 }
|
|
3314
|
272
|
3315 pre_gc_cursor = Qnil;
|
|
3316 cursor_changed = 0;
|
0
|
3317
|
163
|
3318 GCPRO1 (pre_gc_cursor);
|
0
|
3319
|
|
3320 /* Very important to prevent GC during any of the following
|
|
3321 stuff that might run Lisp code; otherwise, we'll likely
|
|
3322 have infinite GC recursion. */
|
272
|
3323 speccount = specpdl_depth ();
|
0
|
3324 record_unwind_protect (restore_gc_inhibit,
|
|
3325 make_int (gc_currently_forbidden));
|
|
3326 gc_currently_forbidden = 1;
|
|
3327
|
|
3328 if (!gc_hooks_inhibited)
|
|
3329 run_hook_trapping_errors ("Error in pre-gc-hook", Qpre_gc_hook);
|
|
3330
|
|
3331 /* Now show the GC cursor/message. */
|
|
3332 if (!noninteractive)
|
|
3333 {
|
163
|
3334 if (FRAME_WIN_P (f))
|
0
|
3335 {
|
163
|
3336 Lisp_Object frame = make_frame (f);
|
|
3337 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph,
|
|
3338 FRAME_SELECTED_WINDOW (f),
|
|
3339 ERROR_ME_NOT, 1);
|
|
3340 pre_gc_cursor = f->pointer;
|
|
3341 if (POINTER_IMAGE_INSTANCEP (cursor)
|
|
3342 /* don't change if we don't know how to change back. */
|
|
3343 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor))
|
0
|
3344 {
|
163
|
3345 cursor_changed = 1;
|
|
3346 Fset_frame_pointer (frame, cursor);
|
0
|
3347 }
|
|
3348 }
|
163
|
3349
|
|
3350 /* Don't print messages to the stream device. */
|
|
3351 if (!cursor_changed && !FRAME_STREAM_P (f))
|
|
3352 {
|
|
3353 char *msg = (STRINGP (Vgc_message)
|
|
3354 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
|
3355 : 0);
|
|
3356 Lisp_Object args[2], whole_msg;
|
|
3357 args[0] = build_string (msg ? msg :
|
412
|
3358 GETTEXT ((CONST char *) gc_default_message));
|
163
|
3359 args[1] = build_string ("...");
|
|
3360 whole_msg = Fconcat (2, args);
|
|
3361 echo_area_message (f, (Bufbyte *) 0, whole_msg, 0, -1,
|
|
3362 Qgarbage_collecting);
|
|
3363 }
|
0
|
3364 }
|
|
3365
|
|
3366 /***** Now we actually start the garbage collection. */
|
|
3367
|
|
3368 gc_in_progress = 1;
|
|
3369
|
|
3370 gc_generation_number[0]++;
|
|
3371
|
|
3372 #if MAX_SAVE_STACK > 0
|
|
3373
|
|
3374 /* Save a copy of the contents of the stack, for debugging. */
|
|
3375 if (!purify_flag)
|
|
3376 {
|
272
|
3377 /* Static buffer in which we save a copy of the C stack at each GC. */
|
|
3378 static char *stack_copy;
|
|
3379 static size_t stack_copy_size;
|
|
3380
|
|
3381 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom;
|
|
3382 size_t stack_size = (stack_diff > 0 ? stack_diff : -stack_diff);
|
|
3383 if (stack_size < MAX_SAVE_STACK)
|
0
|
3384 {
|
272
|
3385 if (stack_copy_size < stack_size)
|
0
|
3386 {
|
272
|
3387 stack_copy = (char *) xrealloc (stack_copy, stack_size);
|
|
3388 stack_copy_size = stack_size;
|
0
|
3389 }
|
272
|
3390
|
|
3391 memcpy (stack_copy,
|
|
3392 stack_diff > 0 ? stack_bottom : &stack_top_variable,
|
|
3393 stack_size);
|
0
|
3394 }
|
|
3395 }
|
|
3396 #endif /* MAX_SAVE_STACK > 0 */
|
|
3397
|
|
3398 /* Do some totally ad-hoc resource clearing. */
|
|
3399 /* #### generalize this? */
|
|
3400 clear_event_resource ();
|
|
3401 cleanup_specifiers ();
|
|
3402
|
|
3403 /* Mark all the special slots that serve as the roots of accessibility. */
|
396
|
3404
|
|
3405 { /* staticpro() */
|
|
3406 int i;
|
0
|
3407 for (i = 0; i < staticidx; i++)
|
396
|
3408 mark_object (*(staticvec[i]));
|
|
3409 }
|
|
3410
|
|
3411 { /* GCPRO() */
|
|
3412 struct gcpro *tail;
|
|
3413 int i;
|
0
|
3414 for (tail = gcprolist; tail; tail = tail->next)
|
396
|
3415 for (i = 0; i < tail->nvars; i++)
|
|
3416 mark_object (tail->var[i]);
|
|
3417 }
|
|
3418
|
|
3419 { /* specbind() */
|
|
3420 struct specbinding *bind;
|
0
|
3421 for (bind = specpdl; bind != specpdl_ptr; bind++)
|
|
3422 {
|
|
3423 mark_object (bind->symbol);
|
|
3424 mark_object (bind->old_value);
|
|
3425 }
|
396
|
3426 }
|
|
3427
|
|
3428 {
|
|
3429 struct catchtag *catch;
|
0
|
3430 for (catch = catchlist; catch; catch = catch->next)
|
|
3431 {
|
|
3432 mark_object (catch->tag);
|
|
3433 mark_object (catch->val);
|
|
3434 }
|
396
|
3435 }
|
|
3436
|
|
3437 {
|
|
3438 struct backtrace *backlist;
|
0
|
3439 for (backlist = backtrace_list; backlist; backlist = backlist->next)
|
|
3440 {
|
|
3441 int nargs = backlist->nargs;
|
396
|
3442 int i;
|
0
|
3443
|
|
3444 mark_object (*backlist->function);
|
|
3445 if (nargs == UNEVALLED || nargs == MANY)
|
|
3446 mark_object (backlist->args[0]);
|
|
3447 else
|
|
3448 for (i = 0; i < nargs; i++)
|
|
3449 mark_object (backlist->args[i]);
|
|
3450 }
|
|
3451 }
|
|
3452
|
412
|
3453 mark_redisplay (mark_object);
|
|
3454 mark_profiling_info (mark_object);
|
396
|
3455
|
0
|
3456 /* OK, now do the after-mark stuff. This is for things that
|
380
|
3457 are only marked when something else is marked (e.g. weak hash tables).
|
0
|
3458 There may be complex dependencies between such objects -- e.g.
|
380
|
3459 a weak hash table might be unmarked, but after processing a later
|
|
3460 weak hash table, the former one might get marked. So we have to
|
0
|
3461 iterate until nothing more gets marked. */
|
380
|
3462
|
412
|
3463 while (finish_marking_weak_hash_tables (marked_p, mark_object) > 0 ||
|
|
3464 finish_marking_weak_lists (marked_p, mark_object) > 0)
|
380
|
3465 ;
|
0
|
3466
|
|
3467 /* And prune (this needs to be called after everything else has been
|
|
3468 marked and before we do any sweeping). */
|
|
3469 /* #### this is somewhat ad-hoc and should probably be an object
|
|
3470 method */
|
412
|
3471 prune_weak_hash_tables (marked_p);
|
|
3472 prune_weak_lists (marked_p);
|
|
3473 prune_specifiers (marked_p);
|
|
3474 prune_syntax_tables (marked_p);
|
0
|
3475
|
|
3476 gc_sweep ();
|
|
3477
|
|
3478 consing_since_gc = 0;
|
|
3479 #ifndef DEBUG_XEMACS
|
|
3480 /* Allow you to set it really fucking low if you really want ... */
|
|
3481 if (gc_cons_threshold < 10000)
|
|
3482 gc_cons_threshold = 10000;
|
|
3483 #endif
|
|
3484
|
|
3485 gc_in_progress = 0;
|
|
3486
|
|
3487 /******* End of garbage collection ********/
|
|
3488
|
|
3489 run_hook_trapping_errors ("Error in post-gc-hook", Qpost_gc_hook);
|
|
3490
|
|
3491 /* Now remove the GC cursor/message */
|
|
3492 if (!noninteractive)
|
|
3493 {
|
163
|
3494 if (cursor_changed)
|
|
3495 Fset_frame_pointer (make_frame (f), pre_gc_cursor);
|
|
3496 else if (!FRAME_STREAM_P (f))
|
0
|
3497 {
|
|
3498 char *msg = (STRINGP (Vgc_message)
|
14
|
3499 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
0
|
3500 : 0);
|
|
3501
|
|
3502 /* Show "...done" only if the echo area would otherwise be empty. */
|
183
|
3503 if (NILP (clear_echo_area (selected_frame (),
|
0
|
3504 Qgarbage_collecting, 0)))
|
|
3505 {
|
|
3506 Lisp_Object args[2], whole_msg;
|
|
3507 args[0] = build_string (msg ? msg :
|
412
|
3508 GETTEXT ((CONST char *)
|
0
|
3509 gc_default_message));
|
|
3510 args[1] = build_string ("... done");
|
|
3511 whole_msg = Fconcat (2, args);
|
|
3512 echo_area_message (selected_frame (), (Bufbyte *) 0,
|
|
3513 whole_msg, 0, -1,
|
|
3514 Qgarbage_collecting);
|
|
3515 }
|
|
3516 }
|
|
3517 }
|
|
3518
|
|
3519 /* now stop inhibiting GC */
|
|
3520 unbind_to (speccount, Qnil);
|
|
3521
|
|
3522 if (!breathing_space)
|
|
3523 {
|
272
|
3524 breathing_space = malloc (4096 - MALLOC_OVERHEAD);
|
0
|
3525 }
|
|
3526
|
|
3527 UNGCPRO;
|
|
3528 return;
|
|
3529 }
|
|
3530
|
|
3531 /* Debugging aids. */
|
|
3532
|
|
3533 static Lisp_Object
|
412
|
3534 gc_plist_hack (CONST char *name, int value, Lisp_Object tail)
|
0
|
3535 {
|
|
3536 /* C doesn't have local functions (or closures, or GC, or readable syntax,
|
|
3537 or portable numeric datatypes, or bit-vectors, or characters, or
|
|
3538 arrays, or exceptions, or ...) */
|
173
|
3539 return cons3 (intern (name), make_int (value), tail);
|
0
|
3540 }
|
|
3541
|
380
|
3542 #define HACK_O_MATIC(type, name, pl) do { \
|
|
3543 int s = 0; \
|
|
3544 struct type##_block *x = current_##type##_block; \
|
|
3545 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \
|
|
3546 (pl) = gc_plist_hack ((name), s, (pl)); \
|
|
3547 } while (0)
|
0
|
3548
|
20
|
3549 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /*
|
0
|
3550 Reclaim storage for Lisp objects no longer needed.
|
272
|
3551 Return info on amount of space in use:
|
0
|
3552 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
|
|
3553 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
|
183
|
3554 PLIST)
|
0
|
3555 where `PLIST' is a list of alternating keyword/value pairs providing
|
|
3556 more detailed information.
|
|
3557 Garbage collection happens automatically if you cons more than
|
|
3558 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
|
20
|
3559 */
|
|
3560 ())
|
0
|
3561 {
|
|
3562 Lisp_Object pl = Qnil;
|
|
3563 int i;
|
243
|
3564 int gc_count_vector_total_size = 0;
|
104
|
3565
|
0
|
3566 garbage_collect_1 ();
|
|
3567
|
412
|
3568 for (i = 0; i < last_lrecord_type_index_assigned; i++)
|
0
|
3569 {
|
183
|
3570 if (lcrecord_stats[i].bytes_in_use != 0
|
0
|
3571 || lcrecord_stats[i].bytes_freed != 0
|
|
3572 || lcrecord_stats[i].instances_on_free_list != 0)
|
|
3573 {
|
|
3574 char buf [255];
|
412
|
3575 CONST char *name = lrecord_implementations_table[i]->name;
|
0
|
3576 int len = strlen (name);
|
207
|
3577 /* save this for the FSFmacs-compatible part of the summary */
|
412
|
3578 if (i == *lrecord_vector.lrecord_type_index)
|
207
|
3579 gc_count_vector_total_size =
|
|
3580 lcrecord_stats[i].bytes_in_use + lcrecord_stats[i].bytes_freed;
|
398
|
3581
|
0
|
3582 sprintf (buf, "%s-storage", name);
|
|
3583 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl);
|
|
3584 /* Okay, simple pluralization check for `symbol-value-varalias' */
|
|
3585 if (name[len-1] == 's')
|
|
3586 sprintf (buf, "%ses-freed", name);
|
|
3587 else
|
|
3588 sprintf (buf, "%ss-freed", name);
|
|
3589 if (lcrecord_stats[i].instances_freed != 0)
|
|
3590 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl);
|
|
3591 if (name[len-1] == 's')
|
|
3592 sprintf (buf, "%ses-on-free-list", name);
|
|
3593 else
|
|
3594 sprintf (buf, "%ss-on-free-list", name);
|
|
3595 if (lcrecord_stats[i].instances_on_free_list != 0)
|
|
3596 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list,
|
|
3597 pl);
|
|
3598 if (name[len-1] == 's')
|
|
3599 sprintf (buf, "%ses-used", name);
|
|
3600 else
|
|
3601 sprintf (buf, "%ss-used", name);
|
|
3602 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl);
|
|
3603 }
|
|
3604 }
|
|
3605
|
|
3606 HACK_O_MATIC (extent, "extent-storage", pl);
|
|
3607 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl);
|
|
3608 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl);
|
|
3609 HACK_O_MATIC (event, "event-storage", pl);
|
|
3610 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl);
|
|
3611 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl);
|
|
3612 HACK_O_MATIC (marker, "marker-storage", pl);
|
|
3613 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl);
|
|
3614 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl);
|
|
3615 #ifdef LISP_FLOAT_TYPE
|
|
3616 HACK_O_MATIC (float, "float-storage", pl);
|
|
3617 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl);
|
|
3618 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl);
|
|
3619 #endif /* LISP_FLOAT_TYPE */
|
|
3620 HACK_O_MATIC (string, "string-header-storage", pl);
|
183
|
3621 pl = gc_plist_hack ("long-strings-total-length",
|
0
|
3622 gc_count_string_total_size
|
|
3623 - gc_count_short_string_total_size, pl);
|
|
3624 HACK_O_MATIC (string_chars, "short-string-storage", pl);
|
|
3625 pl = gc_plist_hack ("short-strings-total-length",
|
|
3626 gc_count_short_string_total_size, pl);
|
|
3627 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl);
|
183
|
3628 pl = gc_plist_hack ("long-strings-used",
|
0
|
3629 gc_count_num_string_in_use
|
|
3630 - gc_count_num_short_string_in_use, pl);
|
183
|
3631 pl = gc_plist_hack ("short-strings-used",
|
0
|
3632 gc_count_num_short_string_in_use, pl);
|
|
3633
|
|
3634 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl);
|
|
3635 pl = gc_plist_hack ("compiled-functions-free",
|
|
3636 gc_count_num_compiled_function_freelist, pl);
|
|
3637 pl = gc_plist_hack ("compiled-functions-used",
|
|
3638 gc_count_num_compiled_function_in_use, pl);
|
|
3639
|
|
3640 pl = gc_plist_hack ("bit-vector-storage", gc_count_bit_vector_storage, pl);
|
183
|
3641 pl = gc_plist_hack ("bit-vectors-total-length",
|
0
|
3642 gc_count_bit_vector_total_size, pl);
|
|
3643 pl = gc_plist_hack ("bit-vectors-used", gc_count_num_bit_vector_used, pl);
|
|
3644
|
|
3645 HACK_O_MATIC (symbol, "symbol-storage", pl);
|
|
3646 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl);
|
|
3647 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl);
|
|
3648
|
|
3649 HACK_O_MATIC (cons, "cons-storage", pl);
|
|
3650 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl);
|
|
3651 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl);
|
|
3652
|
|
3653 /* The things we do for backwards-compatibility */
|
272
|
3654 return
|
|
3655 list6 (Fcons (make_int (gc_count_num_cons_in_use),
|
|
3656 make_int (gc_count_num_cons_freelist)),
|
|
3657 Fcons (make_int (gc_count_num_symbol_in_use),
|
|
3658 make_int (gc_count_num_symbol_freelist)),
|
|
3659 Fcons (make_int (gc_count_num_marker_in_use),
|
|
3660 make_int (gc_count_num_marker_freelist)),
|
|
3661 make_int (gc_count_string_total_size),
|
|
3662 make_int (gc_count_vector_total_size),
|
|
3663 pl);
|
0
|
3664 }
|
|
3665 #undef HACK_O_MATIC
|
|
3666
|
20
|
3667 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /*
|
0
|
3668 Return the number of bytes consed since the last garbage collection.
|
|
3669 \"Consed\" is a misnomer in that this actually counts allocation
|
|
3670 of all different kinds of objects, not just conses.
|
|
3671
|
|
3672 If this value exceeds `gc-cons-threshold', a garbage collection happens.
|
20
|
3673 */
|
|
3674 ())
|
0
|
3675 {
|
173
|
3676 return make_int (consing_since_gc);
|
0
|
3677 }
|
183
|
3678
|
20
|
3679 DEFUN ("memory-limit", Fmemory_limit, 0, 0, "", /*
|
0
|
3680 Return the address of the last byte Emacs has allocated, divided by 1024.
|
|
3681 This may be helpful in debugging Emacs's memory usage.
|
|
3682 The value is divided by 1024 to make sure it will fit in a lisp integer.
|
20
|
3683 */
|
|
3684 ())
|
0
|
3685 {
|
173
|
3686 return make_int ((EMACS_INT) sbrk (0) / 1024);
|
0
|
3687 }
|
412
|
3688
|
0
|
3689
|
|
3690
|
|
3691 int
|
|
3692 object_dead_p (Lisp_Object obj)
|
|
3693 {
|
173
|
3694 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) ||
|
|
3695 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) ||
|
|
3696 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) ||
|
|
3697 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) ||
|
0
|
3698 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) ||
|
173
|
3699 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) ||
|
|
3700 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj))));
|
0
|
3701 }
|
|
3702
|
|
3703 #ifdef MEMORY_USAGE_STATS
|
|
3704
|
|
3705 /* Attempt to determine the actual amount of space that is used for
|
|
3706 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE".
|
|
3707
|
|
3708 It seems that the following holds:
|
|
3709
|
|
3710 1. When using the old allocator (malloc.c):
|
|
3711
|
|
3712 -- blocks are always allocated in chunks of powers of two. For
|
|
3713 each block, there is an overhead of 8 bytes if rcheck is not
|
|
3714 defined, 20 bytes if it is defined. In other words, a
|
|
3715 one-byte allocation needs 8 bytes of overhead for a total of
|
|
3716 9 bytes, and needs to have 16 bytes of memory chunked out for
|
|
3717 it.
|
|
3718
|
|
3719 2. When using the new allocator (gmalloc.c):
|
|
3720
|
|
3721 -- blocks are always allocated in chunks of powers of two up
|
|
3722 to 4096 bytes. Larger blocks are allocated in chunks of
|
|
3723 an integral multiple of 4096 bytes. The minimum block
|
|
3724 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG
|
|
3725 is defined. There is no per-block overhead, but there
|
|
3726 is an overhead of 3*sizeof (size_t) for each 4096 bytes
|
|
3727 allocated.
|
|
3728
|
|
3729 3. When using the system malloc, anything goes, but they are
|
|
3730 generally slower and more space-efficient than the GNU
|
|
3731 allocators. One possibly reasonable assumption to make
|
|
3732 for want of better data is that sizeof (void *), or maybe
|
|
3733 2 * sizeof (void *), is required as overhead and that
|
|
3734 blocks are allocated in the minimum required size except
|
|
3735 that some minimum block size is imposed (e.g. 16 bytes). */
|
|
3736
|
272
|
3737 size_t
|
|
3738 malloced_storage_size (void *ptr, size_t claimed_size,
|
0
|
3739 struct overhead_stats *stats)
|
|
3740 {
|
272
|
3741 size_t orig_claimed_size = claimed_size;
|
0
|
3742
|
|
3743 #ifdef GNU_MALLOC
|
|
3744
|
|
3745 if (claimed_size < 2 * sizeof (void *))
|
|
3746 claimed_size = 2 * sizeof (void *);
|
|
3747 # ifdef SUNOS_LOCALTIME_BUG
|
|
3748 if (claimed_size < 16)
|
|
3749 claimed_size = 16;
|
|
3750 # endif
|
|
3751 if (claimed_size < 4096)
|
|
3752 {
|
|
3753 int log = 1;
|
|
3754
|
|
3755 /* compute the log base two, more or less, then use it to compute
|
|
3756 the block size needed. */
|
|
3757 claimed_size--;
|
|
3758 /* It's big, it's heavy, it's wood! */
|
|
3759 while ((claimed_size /= 2) != 0)
|
|
3760 ++log;
|
|
3761 claimed_size = 1;
|
|
3762 /* It's better than bad, it's good! */
|
|
3763 while (log > 0)
|
|
3764 {
|
|
3765 claimed_size *= 2;
|
|
3766 log--;
|
|
3767 }
|
|
3768 /* We have to come up with some average about the amount of
|
|
3769 blocks used. */
|
272
|
3770 if ((size_t) (rand () & 4095) < claimed_size)
|
0
|
3771 claimed_size += 3 * sizeof (void *);
|
|
3772 }
|
|
3773 else
|
|
3774 {
|
|
3775 claimed_size += 4095;
|
|
3776 claimed_size &= ~4095;
|
|
3777 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t);
|
|
3778 }
|
|
3779
|
|
3780 #elif defined (SYSTEM_MALLOC)
|
|
3781
|
|
3782 if (claimed_size < 16)
|
|
3783 claimed_size = 16;
|
|
3784 claimed_size += 2 * sizeof (void *);
|
|
3785
|
|
3786 #else /* old GNU allocator */
|
|
3787
|
|
3788 # ifdef rcheck /* #### may not be defined here */
|
|
3789 claimed_size += 20;
|
|
3790 # else
|
|
3791 claimed_size += 8;
|
|
3792 # endif
|
|
3793 {
|
|
3794 int log = 1;
|
|
3795
|
|
3796 /* compute the log base two, more or less, then use it to compute
|
|
3797 the block size needed. */
|
|
3798 claimed_size--;
|
|
3799 /* It's big, it's heavy, it's wood! */
|
|
3800 while ((claimed_size /= 2) != 0)
|
|
3801 ++log;
|
|
3802 claimed_size = 1;
|
|
3803 /* It's better than bad, it's good! */
|
|
3804 while (log > 0)
|
|
3805 {
|
|
3806 claimed_size *= 2;
|
|
3807 log--;
|
|
3808 }
|
|
3809 }
|
|
3810
|
|
3811 #endif /* old GNU allocator */
|
|
3812
|
|
3813 if (stats)
|
|
3814 {
|
|
3815 stats->was_requested += orig_claimed_size;
|
|
3816 stats->malloc_overhead += claimed_size - orig_claimed_size;
|
|
3817 }
|
|
3818 return claimed_size;
|
|
3819 }
|
|
3820
|
272
|
3821 size_t
|
|
3822 fixed_type_block_overhead (size_t size)
|
0
|
3823 {
|
272
|
3824 size_t per_block = TYPE_ALLOC_SIZE (cons, unsigned char);
|
|
3825 size_t overhead = 0;
|
|
3826 size_t storage_size = malloced_storage_size (0, per_block, 0);
|
0
|
3827 while (size >= per_block)
|
|
3828 {
|
|
3829 size -= per_block;
|
|
3830 overhead += sizeof (void *) + per_block - storage_size;
|
|
3831 }
|
|
3832 if (rand () % per_block < size)
|
|
3833 overhead += sizeof (void *) + per_block - storage_size;
|
|
3834 return overhead;
|
|
3835 }
|
|
3836
|
|
3837 #endif /* MEMORY_USAGE_STATS */
|
|
3838
|
|
3839
|
|
3840 /* Initialization */
|
|
3841 void
|
412
|
3842 init_alloc_once_early (void)
|
0
|
3843 {
|
412
|
3844 int iii;
|
|
3845
|
|
3846 last_lrecord_type_index_assigned = -1;
|
|
3847 for (iii = 0; iii < countof (lrecord_implementations_table); iii++)
|
|
3848 {
|
|
3849 lrecord_implementations_table[iii] = 0;
|
|
3850 }
|
|
3851
|
|
3852 /*
|
|
3853 * All the staticly
|
|
3854 * defined subr lrecords were initialized with lheader->type == 0.
|
|
3855 * See subr_lheader_initializer in lisp.h. Force type index 0 to be
|
|
3856 * assigned to lrecord_subr so that those predefined indexes match
|
|
3857 * reality.
|
|
3858 */
|
|
3859 lrecord_type_index (&lrecord_subr);
|
|
3860 assert (*(lrecord_subr.lrecord_type_index) == 0);
|
|
3861 /*
|
|
3862 * The same is true for symbol_value_forward objects, except the
|
|
3863 * type is 1.
|
|
3864 */
|
|
3865 lrecord_type_index (&lrecord_symbol_value_forward);
|
|
3866 assert (*(lrecord_symbol_value_forward.lrecord_type_index) == 1);
|
|
3867
|
0
|
3868 gc_generation_number[0] = 0;
|
412
|
3869 /* purify_flag 1 is correct even if CANNOT_DUMP.
|
|
3870 * loadup.el will set to nil at end. */
|
|
3871 purify_flag = 1;
|
0
|
3872 breathing_space = 0;
|
|
3873 XSETINT (all_bit_vectors, 0); /* Qzero may not be set yet. */
|
|
3874 XSETINT (Vgc_message, 0);
|
|
3875 all_lcrecords = 0;
|
|
3876 ignore_malloc_warnings = 1;
|
255
|
3877 #ifdef DOUG_LEA_MALLOC
|
|
3878 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
|
|
3879 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
|
261
|
3880 #if 0 /* Moved to emacs.c */
|
|
3881 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */
|
|
3882 #endif
|
255
|
3883 #endif
|
0
|
3884 init_string_alloc ();
|
|
3885 init_string_chars_alloc ();
|
|
3886 init_cons_alloc ();
|
|
3887 init_symbol_alloc ();
|
|
3888 init_compiled_function_alloc ();
|
|
3889 #ifdef LISP_FLOAT_TYPE
|
|
3890 init_float_alloc ();
|
|
3891 #endif /* LISP_FLOAT_TYPE */
|
|
3892 init_marker_alloc ();
|
|
3893 init_extent_alloc ();
|
|
3894 init_event_alloc ();
|
278
|
3895
|
0
|
3896 ignore_malloc_warnings = 0;
|
412
|
3897 staticidx = 0;
|
0
|
3898 consing_since_gc = 0;
|
|
3899 #if 1
|
|
3900 gc_cons_threshold = 500000; /* XEmacs change */
|
|
3901 #else
|
|
3902 gc_cons_threshold = 15000; /* debugging */
|
|
3903 #endif
|
|
3904 #ifdef VIRT_ADDR_VARIES
|
|
3905 malloc_sbrk_unused = 1<<22; /* A large number */
|
|
3906 malloc_sbrk_used = 100000; /* as reasonable as any number */
|
|
3907 #endif /* VIRT_ADDR_VARIES */
|
|
3908 lrecord_uid_counter = 259;
|
|
3909 debug_string_purity = 0;
|
|
3910 gcprolist = 0;
|
|
3911
|
|
3912 gc_currently_forbidden = 0;
|
|
3913 gc_hooks_inhibited = 0;
|
|
3914
|
|
3915 #ifdef ERROR_CHECK_TYPECHECK
|
|
3916 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
3917 666;
|
|
3918 ERROR_ME_NOT.
|
|
3919 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42;
|
|
3920 ERROR_ME_WARN.
|
|
3921 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
3922 3333632;
|
183
|
3923 #endif /* ERROR_CHECK_TYPECHECK */
|
0
|
3924 }
|
|
3925
|
398
|
3926 int pure_bytes_used = 0;
|
|
3927
|
|
3928 void
|
0
|
3929 reinit_alloc (void)
|
|
3930 {
|
|
3931 gcprolist = 0;
|
|
3932 }
|
|
3933
|
|
3934 void
|
|
3935 syms_of_alloc (void)
|
|
3936 {
|
|
3937 defsymbol (&Qpre_gc_hook, "pre-gc-hook");
|
|
3938 defsymbol (&Qpost_gc_hook, "post-gc-hook");
|
|
3939 defsymbol (&Qgarbage_collecting, "garbage-collecting");
|
|
3940
|
20
|
3941 DEFSUBR (Fcons);
|
|
3942 DEFSUBR (Flist);
|
|
3943 DEFSUBR (Fvector);
|
|
3944 DEFSUBR (Fbit_vector);
|
|
3945 DEFSUBR (Fmake_byte_code);
|
|
3946 DEFSUBR (Fmake_list);
|
|
3947 DEFSUBR (Fmake_vector);
|
|
3948 DEFSUBR (Fmake_bit_vector);
|
|
3949 DEFSUBR (Fmake_string);
|
278
|
3950 DEFSUBR (Fstring);
|
20
|
3951 DEFSUBR (Fmake_symbol);
|
|
3952 DEFSUBR (Fmake_marker);
|
|
3953 DEFSUBR (Fpurecopy);
|
|
3954 DEFSUBR (Fgarbage_collect);
|
|
3955 DEFSUBR (Fmemory_limit);
|
|
3956 DEFSUBR (Fconsing_since_gc);
|
0
|
3957 }
|
|
3958
|
|
3959 void
|
|
3960 vars_of_alloc (void)
|
|
3961 {
|
|
3962 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /*
|
|
3963 *Number of bytes of consing between garbage collections.
|
|
3964 \"Consing\" is a misnomer in that this actually counts allocation
|
|
3965 of all different kinds of objects, not just conses.
|
|
3966 Garbage collection can happen automatically once this many bytes have been
|
|
3967 allocated since the last garbage collection. All data types count.
|
|
3968
|
|
3969 Garbage collection happens automatically when `eval' or `funcall' are
|
|
3970 called. (Note that `funcall' is called implicitly as part of evaluation.)
|
|
3971 By binding this temporarily to a large number, you can effectively
|
|
3972 prevent garbage collection during a part of the program.
|
|
3973
|
|
3974 See also `consing-since-gc'.
|
|
3975 */ );
|
|
3976
|
272
|
3977 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used /*
|
0
|
3978 Number of bytes of sharable Lisp data allocated so far.
|
|
3979 */ );
|
|
3980
|
|
3981 #if 0
|
|
3982 DEFVAR_INT ("data-bytes-used", &malloc_sbrk_used /*
|
|
3983 Number of bytes of unshared memory allocated in this session.
|
|
3984 */ );
|
|
3985
|
|
3986 DEFVAR_INT ("data-bytes-free", &malloc_sbrk_unused /*
|
|
3987 Number of bytes of unshared memory remaining available in this session.
|
|
3988 */ );
|
|
3989 #endif
|
|
3990
|
|
3991 #ifdef DEBUG_XEMACS
|
|
3992 DEFVAR_INT ("debug-allocation", &debug_allocation /*
|
|
3993 If non-zero, print out information to stderr about all objects allocated.
|
|
3994 See also `debug-allocation-backtrace-length'.
|
|
3995 */ );
|
|
3996 debug_allocation = 0;
|
|
3997
|
|
3998 DEFVAR_INT ("debug-allocation-backtrace-length",
|
|
3999 &debug_allocation_backtrace_length /*
|
|
4000 Length (in stack frames) of short backtrace printed out by `debug-allocation'.
|
|
4001 */ );
|
|
4002 debug_allocation_backtrace_length = 2;
|
|
4003 #endif
|
|
4004
|
|
4005 DEFVAR_BOOL ("purify-flag", &purify_flag /*
|
|
4006 Non-nil means loading Lisp code in order to dump an executable.
|
398
|
4007 This means that certain objects should be allocated in readonly space.
|
0
|
4008 */ );
|
|
4009
|
|
4010 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /*
|
|
4011 Function or functions to be run just before each garbage collection.
|
|
4012 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
4013 runs, so be extremely careful in what you add here. In particular, avoid
|
|
4014 consing, and do not interact with the user.
|
|
4015 */ );
|
|
4016 Vpre_gc_hook = Qnil;
|
|
4017
|
|
4018 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /*
|
|
4019 Function or functions to be run just after each garbage collection.
|
|
4020 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
4021 runs, so be extremely careful in what you add here. In particular, avoid
|
|
4022 consing, and do not interact with the user.
|
|
4023 */ );
|
|
4024 Vpost_gc_hook = Qnil;
|
|
4025
|
|
4026 DEFVAR_LISP ("gc-message", &Vgc_message /*
|
|
4027 String to print to indicate that a garbage collection is in progress.
|
|
4028 This is printed in the echo area. If the selected frame is on a
|
|
4029 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer
|
|
4030 image instance) in the domain of the selected frame, the mouse pointer
|
|
4031 will change instead of this message being printed.
|
|
4032 */ );
|
412
|
4033 Vgc_message = make_string_nocopy ((CONST Bufbyte *) gc_default_message,
|
|
4034 countof (gc_default_message) - 1);
|
0
|
4035
|
|
4036 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /*
|
|
4037 Pointer glyph used to indicate that a garbage collection is in progress.
|
|
4038 If the selected window is on a window system and this glyph specifies a
|
|
4039 value (i.e. a pointer image instance) in the domain of the selected
|
|
4040 window, the pointer will be changed as specified during garbage collection.
|
|
4041 Otherwise, a message will be printed in the echo area, as controlled
|
|
4042 by `gc-message'.
|
|
4043 */ );
|
|
4044 }
|
|
4045
|
|
4046 void
|
|
4047 complex_vars_of_alloc (void)
|
|
4048 {
|
|
4049 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer);
|
|
4050 }
|