0
|
1 /* Storage allocation and gc for XEmacs Lisp interpreter.
|
272
|
2 Copyright (C) 1985-1998 Free Software Foundation, Inc.
|
0
|
3 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
4 Copyright (C) 1995, 1996 Ben Wing.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from
|
|
24 FSF. */
|
|
25
|
|
26 /* Authorship:
|
|
27
|
|
28 FSF: Original version; a long time ago.
|
|
29 Mly: Significantly rewritten to use new 3-bit tags and
|
|
30 nicely abstracted object definitions, for 19.8.
|
|
31 JWZ: Improved code to keep track of purespace usage and
|
|
32 issue nice purespace and GC stats.
|
|
33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking
|
|
34 and various changes for Mule, for 19.12.
|
|
35 Added bit vectors for 19.13.
|
|
36 Added lcrecord lists for 19.14.
|
255
|
37 slb: Lots of work on the purification and dump time code.
|
|
38 Synched Doug Lea malloc support from Emacs 20.2.
|
412
|
39 og: Killed the purespace.
|
0
|
40 */
|
|
41
|
|
42 #include <config.h>
|
|
43 #include "lisp.h"
|
|
44
|
|
45 #include "backtrace.h"
|
|
46 #include "buffer.h"
|
|
47 #include "bytecode.h"
|
70
|
48 #include "chartab.h"
|
0
|
49 #include "device.h"
|
|
50 #include "elhash.h"
|
|
51 #include "events.h"
|
|
52 #include "extents.h"
|
|
53 #include "frame.h"
|
|
54 #include "glyphs.h"
|
380
|
55 #include "opaque.h"
|
0
|
56 #include "redisplay.h"
|
|
57 #include "specifier.h"
|
272
|
58 #include "sysfile.h"
|
0
|
59 #include "window.h"
|
412
|
60
|
|
61 #include <stddef.h>
|
375
|
62
|
255
|
63 #ifdef DOUG_LEA_MALLOC
|
|
64 #include <malloc.h>
|
|
65 #endif
|
|
66
|
272
|
67 EXFUN (Fgarbage_collect, 0);
|
|
68
|
412
|
69 /* Return the true size of a struct with a variable-length array field. */
|
|
70 #define STRETCHY_STRUCT_SIZEOF(stretchy_struct_type, \
|
|
71 stretchy_array_field, \
|
|
72 stretchy_array_length) \
|
|
73 (offsetof (stretchy_struct_type, stretchy_array_field) + \
|
|
74 (offsetof (stretchy_struct_type, stretchy_array_field[1]) - \
|
|
75 offsetof (stretchy_struct_type, stretchy_array_field[0])) * \
|
|
76 (stretchy_array_length))
|
|
77
|
255
|
78 #if 0 /* this is _way_ too slow to be part of the standard debug options */
|
|
79 #if defined(DEBUG_XEMACS) && defined(MULE)
|
|
80 #define VERIFY_STRING_CHARS_INTEGRITY
|
|
81 #endif
|
|
82 #endif
|
0
|
83
|
|
84 /* Define this to use malloc/free with no freelist for all datatypes,
|
|
85 the hope being that some debugging tools may help detect
|
|
86 freed memory references */
|
177
|
87 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */
|
|
88 #include <dmalloc.h>
|
|
89 #define ALLOC_NO_POOLS
|
|
90 #endif
|
0
|
91
|
|
92 #ifdef DEBUG_XEMACS
|
380
|
93 static int debug_allocation;
|
|
94 static int debug_allocation_backtrace_length;
|
0
|
95 #endif
|
|
96
|
|
97 /* Number of bytes of consing done since the last gc */
|
|
98 EMACS_INT consing_since_gc;
|
|
99 #define INCREMENT_CONS_COUNTER_1(size) (consing_since_gc += (size))
|
|
100
|
|
101 #define debug_allocation_backtrace() \
|
|
102 do { \
|
|
103 if (debug_allocation_backtrace_length > 0) \
|
|
104 debug_short_backtrace (debug_allocation_backtrace_length); \
|
|
105 } while (0)
|
|
106
|
|
107 #ifdef DEBUG_XEMACS
|
|
108 #define INCREMENT_CONS_COUNTER(foosize, type) \
|
|
109 do { \
|
|
110 if (debug_allocation) \
|
|
111 { \
|
|
112 stderr_out ("allocating %s (size %ld)\n", type, (long)foosize); \
|
|
113 debug_allocation_backtrace (); \
|
|
114 } \
|
|
115 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
116 } while (0)
|
|
117 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \
|
|
118 do { \
|
|
119 if (debug_allocation > 1) \
|
|
120 { \
|
|
121 stderr_out ("allocating noseeum %s (size %ld)\n", type, (long)foosize); \
|
|
122 debug_allocation_backtrace (); \
|
|
123 } \
|
|
124 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
125 } while (0)
|
|
126 #else
|
|
127 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size)
|
|
128 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \
|
|
129 INCREMENT_CONS_COUNTER_1 (size)
|
|
130 #endif
|
|
131
|
380
|
132 #define DECREMENT_CONS_COUNTER(size) do { \
|
|
133 consing_since_gc -= (size); \
|
|
134 if (consing_since_gc < 0) \
|
|
135 consing_since_gc = 0; \
|
|
136 } while (0)
|
0
|
137
|
|
138 /* Number of bytes of consing since gc before another gc should be done. */
|
|
139 EMACS_INT gc_cons_threshold;
|
|
140
|
|
141 /* Nonzero during gc */
|
|
142 int gc_in_progress;
|
|
143
|
|
144 /* Number of times GC has happened at this level or below.
|
|
145 * Level 0 is most volatile, contrary to usual convention.
|
|
146 * (Of course, there's only one level at present) */
|
|
147 EMACS_INT gc_generation_number[1];
|
|
148
|
|
149 /* This is just for use by the printer, to allow things to print uniquely */
|
|
150 static int lrecord_uid_counter;
|
|
151
|
|
152 /* Nonzero when calling certain hooks or doing other things where
|
|
153 a GC would be bad */
|
|
154 int gc_currently_forbidden;
|
|
155
|
|
156 /* Hooks. */
|
|
157 Lisp_Object Vpre_gc_hook, Qpre_gc_hook;
|
|
158 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
|
|
159
|
|
160 /* "Garbage collecting" */
|
|
161 Lisp_Object Vgc_message;
|
|
162 Lisp_Object Vgc_pointer_glyph;
|
412
|
163 static CONST char gc_default_message[] = "Garbage collecting";
|
0
|
164 Lisp_Object Qgarbage_collecting;
|
|
165
|
|
166 #ifndef VIRT_ADDR_VARIES
|
|
167 extern
|
|
168 #endif /* VIRT_ADDR_VARIES */
|
|
169 EMACS_INT malloc_sbrk_used;
|
|
170
|
|
171 #ifndef VIRT_ADDR_VARIES
|
|
172 extern
|
|
173 #endif /* VIRT_ADDR_VARIES */
|
|
174 EMACS_INT malloc_sbrk_unused;
|
|
175
|
398
|
176 /* Non-zero means we're in the process of doing the dump */
|
0
|
177 int purify_flag;
|
|
178
|
412
|
179 #ifdef HEAP_IN_DATA
|
|
180 extern void sheap_adjust_h();
|
|
181 #endif
|
|
182
|
0
|
183 #ifdef ERROR_CHECK_TYPECHECK
|
|
184
|
|
185 Error_behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN;
|
|
186
|
|
187 #endif
|
|
188
|
|
189 int
|
398
|
190 c_readonly (Lisp_Object obj)
|
0
|
191 {
|
412
|
192 return POINTER_TYPE_P (XGCTYPE (obj)) && C_READONLY (obj);
|
0
|
193 }
|
|
194
|
398
|
195 int
|
|
196 lisp_readonly (Lisp_Object obj)
|
0
|
197 {
|
412
|
198 return POINTER_TYPE_P (XGCTYPE (obj)) && LISP_READONLY (obj);
|
183
|
199 }
|
0
|
200
|
|
201
|
|
202 /* Maximum amount of C stack to save when a GC happens. */
|
|
203
|
|
204 #ifndef MAX_SAVE_STACK
|
380
|
205 #define MAX_SAVE_STACK 0 /* 16000 */
|
0
|
206 #endif
|
|
207
|
|
208 /* Non-zero means ignore malloc warnings. Set during initialization. */
|
|
209 int ignore_malloc_warnings;
|
|
210
|
|
211
|
|
212 static void *breathing_space;
|
|
213
|
|
214 void
|
|
215 release_breathing_space (void)
|
|
216 {
|
183
|
217 if (breathing_space)
|
0
|
218 {
|
|
219 void *tmp = breathing_space;
|
|
220 breathing_space = 0;
|
|
221 xfree (tmp);
|
|
222 }
|
|
223 }
|
|
224
|
|
225 /* malloc calls this if it finds we are near exhausting storage */
|
|
226 void
|
412
|
227 malloc_warning (CONST char *str)
|
0
|
228 {
|
|
229 if (ignore_malloc_warnings)
|
|
230 return;
|
|
231
|
|
232 warn_when_safe
|
|
233 (Qmemory, Qcritical,
|
|
234 "%s\n"
|
|
235 "Killing some buffers may delay running out of memory.\n"
|
|
236 "However, certainly by the time you receive the 95%% warning,\n"
|
|
237 "you should clean up, kill this Emacs, and start a new one.",
|
|
238 str);
|
|
239 }
|
|
240
|
|
241 /* Called if malloc returns zero */
|
|
242 DOESNT_RETURN
|
|
243 memory_full (void)
|
|
244 {
|
|
245 /* Force a GC next time eval is called.
|
|
246 It's better to loop garbage-collecting (we might reclaim enough
|
|
247 to win) than to loop beeping and barfing "Memory exhausted"
|
|
248 */
|
|
249 consing_since_gc = gc_cons_threshold + 1;
|
|
250 release_breathing_space ();
|
|
251
|
278
|
252 /* Flush some histories which might conceivably contain garbalogical
|
|
253 inhibitors. */
|
0
|
254 if (!NILP (Fboundp (Qvalues)))
|
|
255 Fset (Qvalues, Qnil);
|
|
256 Vcommand_history = Qnil;
|
|
257
|
|
258 error ("Memory exhausted");
|
|
259 }
|
|
260
|
|
261 /* like malloc and realloc but check for no memory left, and block input. */
|
|
262
|
412
|
263 #ifdef xmalloc
|
177
|
264 #undef xmalloc
|
412
|
265 #endif
|
|
266
|
0
|
267 void *
|
185
|
268 xmalloc (size_t size)
|
0
|
269 {
|
386
|
270 void *val = malloc (size);
|
0
|
271
|
|
272 if (!val && (size != 0)) memory_full ();
|
|
273 return val;
|
|
274 }
|
|
275
|
412
|
276 #ifdef xcalloc
|
392
|
277 #undef xcalloc
|
412
|
278 #endif
|
|
279
|
380
|
280 static void *
|
|
281 xcalloc (size_t nelem, size_t elsize)
|
|
282 {
|
386
|
283 void *val = calloc (nelem, elsize);
|
380
|
284
|
|
285 if (!val && (nelem != 0)) memory_full ();
|
|
286 return val;
|
|
287 }
|
|
288
|
0
|
289 void *
|
185
|
290 xmalloc_and_zero (size_t size)
|
0
|
291 {
|
380
|
292 return xcalloc (size, sizeof (char));
|
0
|
293 }
|
|
294
|
412
|
295 #ifdef xrealloc
|
177
|
296 #undef xrealloc
|
412
|
297 #endif
|
|
298
|
0
|
299 void *
|
185
|
300 xrealloc (void *block, size_t size)
|
0
|
301 {
|
|
302 /* We must call malloc explicitly when BLOCK is 0, since some
|
|
303 reallocs don't do this. */
|
386
|
304 void *val = block ? realloc (block, size) : malloc (size);
|
0
|
305
|
|
306 if (!val && (size != 0)) memory_full ();
|
|
307 return val;
|
|
308 }
|
|
309
|
|
310 void
|
|
311 #ifdef ERROR_CHECK_MALLOC
|
|
312 xfree_1 (void *block)
|
|
313 #else
|
|
314 xfree (void *block)
|
|
315 #endif
|
|
316 {
|
|
317 #ifdef ERROR_CHECK_MALLOC
|
|
318 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an
|
|
319 error until much later on for many system mallocs, such as
|
|
320 the one that comes with Solaris 2.3. FMH!! */
|
|
321 assert (block != (void *) 0xDEADBEEF);
|
|
322 assert (block);
|
183
|
323 #endif /* ERROR_CHECK_MALLOC */
|
0
|
324 free (block);
|
|
325 }
|
|
326
|
272
|
327 #ifdef ERROR_CHECK_GC
|
|
328
|
|
329 #if SIZEOF_INT == 4
|
|
330 typedef unsigned int four_byte_t;
|
|
331 #elif SIZEOF_LONG == 4
|
|
332 typedef unsigned long four_byte_t;
|
|
333 #elif SIZEOF_SHORT == 4
|
|
334 typedef unsigned short four_byte_t;
|
0
|
335 #else
|
|
336 What kind of strange-ass system are we running on?
|
|
337 #endif
|
|
338
|
|
339 static void
|
272
|
340 deadbeef_memory (void *ptr, size_t size)
|
0
|
341 {
|
272
|
342 four_byte_t *ptr4 = (four_byte_t *) ptr;
|
|
343 size_t beefs = size >> 2;
|
|
344
|
|
345 /* In practice, size will always be a multiple of four. */
|
|
346 while (beefs--)
|
|
347 (*ptr4++) = 0xDEADBEEF;
|
0
|
348 }
|
|
349
|
183
|
350 #else /* !ERROR_CHECK_GC */
|
|
351
|
0
|
352
|
|
353 #define deadbeef_memory(ptr, size)
|
|
354
|
183
|
355 #endif /* !ERROR_CHECK_GC */
|
0
|
356
|
412
|
357 #ifdef xstrdup
|
177
|
358 #undef xstrdup
|
412
|
359 #endif
|
|
360
|
0
|
361 char *
|
412
|
362 xstrdup (CONST char *str)
|
0
|
363 {
|
|
364 int len = strlen (str) + 1; /* for stupid terminating 0 */
|
|
365
|
185
|
366 void *val = xmalloc (len);
|
0
|
367 if (val == 0) return 0;
|
412
|
368 memcpy (val, str, len);
|
|
369 return (char *) val;
|
0
|
370 }
|
|
371
|
|
372 #ifdef NEED_STRDUP
|
|
373 char *
|
412
|
374 strdup (CONST char *s)
|
0
|
375 {
|
|
376 return xstrdup (s);
|
|
377 }
|
|
378 #endif /* NEED_STRDUP */
|
|
379
|
|
380
|
|
381 static void *
|
272
|
382 allocate_lisp_storage (size_t size)
|
0
|
383 {
|
412
|
384 void *p = xmalloc (size);
|
|
385 return p;
|
0
|
386 }
|
|
387
|
|
388
|
412
|
389 /* lrecords are chained together through their "next.v" field.
|
|
390 * After doing the mark phase, the GC will walk this linked
|
|
391 * list and free any record which hasn't been marked.
|
|
392 */
|
0
|
393 static struct lcrecord_header *all_lcrecords;
|
|
394
|
|
395 void *
|
412
|
396 alloc_lcrecord (size_t size, CONST struct lrecord_implementation *implementation)
|
0
|
397 {
|
|
398 struct lcrecord_header *lcheader;
|
|
399
|
412
|
400 #ifdef ERROR_CHECK_GC
|
|
401 if (implementation->static_size == 0)
|
|
402 assert (implementation->size_in_bytes_method);
|
|
403 else
|
|
404 assert (implementation->static_size == size);
|
|
405 #endif
|
0
|
406
|
185
|
407 lcheader = (struct lcrecord_header *) allocate_lisp_storage (size);
|
412
|
408 set_lheader_implementation (&(lcheader->lheader), implementation);
|
0
|
409 lcheader->next = all_lcrecords;
|
|
410 #if 1 /* mly prefers to see small ID numbers */
|
|
411 lcheader->uid = lrecord_uid_counter++;
|
|
412 #else /* jwz prefers to see real addrs */
|
|
413 lcheader->uid = (int) &lcheader;
|
|
414 #endif
|
|
415 lcheader->free = 0;
|
|
416 all_lcrecords = lcheader;
|
|
417 INCREMENT_CONS_COUNTER (size, implementation->name);
|
173
|
418 return lcheader;
|
0
|
419 }
|
|
420
|
|
421 #if 0 /* Presently unused */
|
|
422 /* Very, very poor man's EGC?
|
|
423 * This may be slow and thrash pages all over the place.
|
|
424 * Only call it if you really feel you must (and if the
|
|
425 * lrecord was fairly recently allocated).
|
|
426 * Otherwise, just let the GC do its job -- that's what it's there for
|
|
427 */
|
|
428 void
|
|
429 free_lcrecord (struct lcrecord_header *lcrecord)
|
|
430 {
|
|
431 if (all_lcrecords == lcrecord)
|
|
432 {
|
|
433 all_lcrecords = lcrecord->next;
|
|
434 }
|
|
435 else
|
|
436 {
|
|
437 struct lrecord_header *header = all_lcrecords;
|
|
438 for (;;)
|
|
439 {
|
|
440 struct lrecord_header *next = header->next;
|
|
441 if (next == lcrecord)
|
|
442 {
|
|
443 header->next = lrecord->next;
|
|
444 break;
|
|
445 }
|
|
446 else if (next == 0)
|
|
447 abort ();
|
|
448 else
|
|
449 header = next;
|
|
450 }
|
|
451 }
|
|
452 if (lrecord->implementation->finalizer)
|
380
|
453 lrecord->implementation->finalizer (lrecord, 0);
|
0
|
454 xfree (lrecord);
|
|
455 return;
|
|
456 }
|
|
457 #endif /* Unused */
|
|
458
|
|
459
|
|
460 static void
|
|
461 disksave_object_finalization_1 (void)
|
|
462 {
|
|
463 struct lcrecord_header *header;
|
|
464
|
|
465 for (header = all_lcrecords; header; header = header->next)
|
|
466 {
|
412
|
467 if (LHEADER_IMPLEMENTATION(&header->lheader)->finalizer &&
|
211
|
468 !header->free)
|
412
|
469 ((LHEADER_IMPLEMENTATION(&header->lheader)->finalizer)
|
|
470 (header, 1));
|
0
|
471 }
|
|
472 }
|
183
|
473
|
412
|
474
|
|
475 /* This must not be called -- it just serves as for EQ test
|
|
476 * If lheader->implementation->finalizer is this_marks_a_marked_record,
|
|
477 * then lrecord has been marked by the GC sweeper
|
|
478 * header->implementation is put back to its correct value by
|
|
479 * sweep_records */
|
|
480 void
|
|
481 this_marks_a_marked_record (void *dummy0, int dummy1)
|
|
482 {
|
|
483 abort ();
|
|
484 }
|
|
485
|
|
486 /* Semi-kludge -- lrecord_symbol_value_forward objects get stuck
|
|
487 in CONST space and you get SEGV's if you attempt to mark them.
|
|
488 This sits in lheader->implementation->marker. */
|
|
489
|
|
490 Lisp_Object
|
|
491 this_one_is_unmarkable (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
|
492 {
|
|
493 abort ();
|
|
494 return Qnil;
|
|
495 }
|
|
496
|
|
497 /* XGCTYPE for records */
|
|
498 int
|
|
499 gc_record_type_p (Lisp_Object frob, CONST struct lrecord_implementation *type)
|
|
500 {
|
|
501 CONST struct lrecord_implementation *imp;
|
|
502
|
|
503 if (XGCTYPE (frob) != Lisp_Type_Record)
|
|
504 return 0;
|
|
505
|
|
506 imp = XRECORD_LHEADER_IMPLEMENTATION (frob);
|
|
507 return imp == type;
|
|
508 }
|
|
509
|
0
|
510
|
380
|
511 /************************************************************************/
|
|
512 /* Debugger support */
|
|
513 /************************************************************************/
|
396
|
514 /* Give gdb/dbx enough information to decode Lisp Objects. We make
|
|
515 sure certain symbols are always defined, so gdb doesn't complain
|
412
|
516 about expressions in src/gdbinit. See src/gdbinit or src/dbxrc to
|
|
517 see how this is used. */
|
398
|
518
|
396
|
519 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS;
|
|
520 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1;
|
380
|
521
|
|
522 #ifdef USE_UNION_TYPE
|
396
|
523 unsigned char dbg_USE_UNION_TYPE = 1;
|
380
|
524 #else
|
396
|
525 unsigned char dbg_USE_UNION_TYPE = 0;
|
380
|
526 #endif
|
|
527
|
412
|
528 unsigned char Lisp_Type_Int = 100;
|
|
529 unsigned char Lisp_Type_Cons = 101;
|
|
530 unsigned char Lisp_Type_String = 102;
|
|
531 unsigned char Lisp_Type_Vector = 103;
|
|
532 unsigned char Lisp_Type_Symbol = 104;
|
|
533
|
|
534 #ifndef MULE
|
|
535 unsigned char lrecord_char_table_entry;
|
|
536 unsigned char lrecord_charset;
|
|
537 #ifndef FILE_CODING
|
|
538 unsigned char lrecord_coding_system;
|
|
539 #endif
|
|
540 #endif
|
|
541
|
|
542 #ifndef HAVE_TOOLBARS
|
|
543 unsigned char lrecord_toolbar_button;
|
|
544 #endif
|
|
545
|
|
546 #ifndef TOOLTALK
|
|
547 unsigned char lrecord_tooltalk_message;
|
|
548 unsigned char lrecord_tooltalk_pattern;
|
|
549 #endif
|
|
550
|
|
551 #ifndef HAVE_DATABASE
|
|
552 unsigned char lrecord_database;
|
|
553 #endif
|
|
554
|
396
|
555 unsigned char dbg_valbits = VALBITS;
|
|
556 unsigned char dbg_gctypebits = GCTYPEBITS;
|
|
557
|
|
558 /* Macros turned into functions for ease of debugging.
|
380
|
559 Debuggers don't know about macros! */
|
|
560 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2);
|
|
561 int
|
|
562 dbg_eq (Lisp_Object obj1, Lisp_Object obj2)
|
|
563 {
|
|
564 return EQ (obj1, obj2);
|
|
565 }
|
|
566
|
272
|
567
|
380
|
568 /************************************************************************/
|
|
569 /* Fixed-size type macros */
|
|
570 /************************************************************************/
|
0
|
571
|
|
572 /* For fixed-size types that are commonly used, we malloc() large blocks
|
|
573 of memory at a time and subdivide them into chunks of the correct
|
|
574 size for an object of that type. This is more efficient than
|
|
575 malloc()ing each object separately because we save on malloc() time
|
|
576 and overhead due to the fewer number of malloc()ed blocks, and
|
|
577 also because we don't need any extra pointers within each object
|
|
578 to keep them threaded together for GC purposes. For less common
|
|
579 (and frequently large-size) types, we use lcrecords, which are
|
|
580 malloc()ed individually and chained together through a pointer
|
|
581 in the lcrecord header. lcrecords do not need to be fixed-size
|
|
582 (i.e. two objects of the same type need not have the same size;
|
|
583 however, the size of a particular object cannot vary dynamically).
|
|
584 It is also much easier to create a new lcrecord type because no
|
|
585 additional code needs to be added to alloc.c. Finally, lcrecords
|
|
586 may be more efficient when there are only a small number of them.
|
|
587
|
|
588 The types that are stored in these large blocks (or "frob blocks")
|
|
589 are cons, float, compiled-function, symbol, marker, extent, event,
|
|
590 and string.
|
|
591
|
|
592 Note that strings are special in that they are actually stored in
|
|
593 two parts: a structure containing information about the string, and
|
|
594 the actual data associated with the string. The former structure
|
|
595 (a struct Lisp_String) is a fixed-size structure and is managed the
|
|
596 same way as all the other such types. This structure contains a
|
|
597 pointer to the actual string data, which is stored in structures of
|
|
598 type struct string_chars_block. Each string_chars_block consists
|
|
599 of a pointer to a struct Lisp_String, followed by the data for that
|
412
|
600 string, followed by another pointer to a struct Lisp_String,
|
|
601 followed by the data for that string, etc. At GC time, the data in
|
|
602 these blocks is compacted by searching sequentially through all the
|
0
|
603 blocks and compressing out any holes created by unmarked strings.
|
|
604 Strings that are more than a certain size (bigger than the size of
|
|
605 a string_chars_block, although something like half as big might
|
|
606 make more sense) are malloc()ed separately and not stored in
|
|
607 string_chars_blocks. Furthermore, no one string stretches across
|
|
608 two string_chars_blocks.
|
|
609
|
|
610 Vectors are each malloc()ed separately, similar to lcrecords.
|
183
|
611
|
0
|
612 In the following discussion, we use conses, but it applies equally
|
|
613 well to the other fixed-size types.
|
|
614
|
|
615 We store cons cells inside of cons_blocks, allocating a new
|
|
616 cons_block with malloc() whenever necessary. Cons cells reclaimed
|
|
617 by GC are put on a free list to be reallocated before allocating
|
|
618 any new cons cells from the latest cons_block. Each cons_block is
|
|
619 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least
|
|
620 the versions in malloc.c and gmalloc.c) really allocates in units
|
|
621 of powers of two and uses 4 bytes for its own overhead.
|
|
622
|
|
623 What GC actually does is to search through all the cons_blocks,
|
|
624 from the most recently allocated to the oldest, and put all
|
|
625 cons cells that are not marked (whether or not they're already
|
|
626 free) on a cons_free_list. The cons_free_list is a stack, and
|
|
627 so the cons cells in the oldest-allocated cons_block end up
|
|
628 at the head of the stack and are the first to be reallocated.
|
|
629 If any cons_block is entirely free, it is freed with free()
|
|
630 and its cons cells removed from the cons_free_list. Because
|
|
631 the cons_free_list ends up basically in memory order, we have
|
|
632 a high locality of reference (assuming a reasonable turnover
|
|
633 of allocating and freeing) and have a reasonable probability
|
|
634 of entirely freeing up cons_blocks that have been more recently
|
|
635 allocated. This stage is called the "sweep stage" of GC, and
|
|
636 is executed after the "mark stage", which involves starting
|
|
637 from all places that are known to point to in-use Lisp objects
|
|
638 (e.g. the obarray, where are all symbols are stored; the
|
|
639 current catches and condition-cases; the backtrace list of
|
|
640 currently executing functions; the gcpro list; etc.) and
|
|
641 recursively marking all objects that are accessible.
|
|
642
|
|
643 At the beginning of the sweep stage, the conses in the cons
|
|
644 blocks are in one of three states: in use and marked, in use
|
|
645 but not marked, and not in use (already freed). Any conses
|
|
646 that are marked have been marked in the mark stage just
|
|
647 executed, because as part of the sweep stage we unmark any
|
|
648 marked objects. The way we tell whether or not a cons cell
|
|
649 is in use is through the FREE_STRUCT_P macro. This basically
|
|
650 looks at the first 4 bytes (or however many bytes a pointer
|
|
651 fits in) to see if all the bits in those bytes are 1. The
|
|
652 resulting value (0xFFFFFFFF) is not a valid pointer and is
|
|
653 not a valid Lisp_Object. All current fixed-size types have
|
|
654 a pointer or Lisp_Object as their first element with the
|
|
655 exception of strings; they have a size value, which can
|
|
656 never be less than zero, and so 0xFFFFFFFF is invalid for
|
|
657 strings as well. Now assuming that a cons cell is in use,
|
|
658 the way we tell whether or not it is marked is to look at
|
|
659 the mark bit of its car (each Lisp_Object has one bit
|
|
660 reserved as a mark bit, in case it's needed). Note that
|
|
661 different types of objects use different fields to indicate
|
|
662 whether the object is marked, but the principle is the same.
|
|
663
|
|
664 Conses on the free_cons_list are threaded through a pointer
|
|
665 stored in the bytes directly after the bytes that are set
|
|
666 to 0xFFFFFFFF (we cannot overwrite these because the cons
|
|
667 is still in a cons_block and needs to remain marked as
|
|
668 not in use for the next time that GC happens). This
|
|
669 implies that all fixed-size types must be at least big
|
|
670 enough to store two pointers, which is indeed the case
|
|
671 for all current fixed-size types.
|
|
672
|
|
673 Some types of objects need additional "finalization" done
|
|
674 when an object is converted from in use to not in use;
|
|
675 this is the purpose of the ADDITIONAL_FREE_type macro.
|
|
676 For example, markers need to be removed from the chain
|
|
677 of markers that is kept in each buffer. This is because
|
|
678 markers in a buffer automatically disappear if the marker
|
|
679 is no longer referenced anywhere (the same does not
|
|
680 apply to extents, however).
|
|
681
|
|
682 WARNING: Things are in an extremely bizarre state when
|
|
683 the ADDITIONAL_FREE_type macros are called, so beware!
|
|
684
|
|
685 When ERROR_CHECK_GC is defined, we do things differently
|
|
686 so as to maximize our chances of catching places where
|
|
687 there is insufficient GCPROing. The thing we want to
|
|
688 avoid is having an object that we're using but didn't
|
|
689 GCPRO get freed by GC and then reallocated while we're
|
|
690 in the process of using it -- this will result in something
|
|
691 seemingly unrelated getting trashed, and is extremely
|
|
692 difficult to track down. If the object gets freed but
|
|
693 not reallocated, we can usually catch this because we
|
|
694 set all bytes of a freed object to 0xDEADBEEF. (The
|
|
695 first four bytes, however, are 0xFFFFFFFF, and the next
|
|
696 four are a pointer used to chain freed objects together;
|
|
697 we play some tricks with this pointer to make it more
|
|
698 bogus, so crashes are more likely to occur right away.)
|
|
699
|
|
700 We want freed objects to stay free as long as possible,
|
|
701 so instead of doing what we do above, we maintain the
|
|
702 free objects in a first-in first-out queue. We also
|
|
703 don't recompute the free list each GC, unlike above;
|
|
704 this ensures that the queue ordering is preserved.
|
|
705 [This means that we are likely to have worse locality
|
|
706 of reference, and that we can never free a frob block
|
|
707 once it's allocated. (Even if we know that all cells
|
|
708 in it are free, there's no easy way to remove all those
|
|
709 cells from the free list because the objects on the
|
|
710 free list are unlikely to be in memory order.)]
|
|
711 Furthermore, we never take objects off the free list
|
|
712 unless there's a large number (usually 1000, but
|
|
713 varies depending on type) of them already on the list.
|
|
714 This way, we ensure that an object that gets freed will
|
|
715 remain free for the next 1000 (or whatever) times that
|
412
|
716 an object of that type is allocated.
|
|
717 */
|
0
|
718
|
|
719 #ifndef MALLOC_OVERHEAD
|
|
720 #ifdef GNU_MALLOC
|
|
721 #define MALLOC_OVERHEAD 0
|
|
722 #elif defined (rcheck)
|
|
723 #define MALLOC_OVERHEAD 20
|
|
724 #else
|
|
725 #define MALLOC_OVERHEAD 8
|
|
726 #endif
|
183
|
727 #endif /* MALLOC_OVERHEAD */
|
0
|
728
|
255
|
729 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC)
|
|
730 /* If we released our reserve (due to running out of memory),
|
|
731 and we have a fair amount free once again,
|
|
732 try to set aside another reserve in case we run out once more.
|
|
733
|
|
734 This is called when a relocatable block is freed in ralloc.c. */
|
272
|
735 void refill_memory_reserve (void);
|
255
|
736 void
|
412
|
737 refill_memory_reserve ()
|
255
|
738 {
|
|
739 if (breathing_space == 0)
|
|
740 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD);
|
|
741 }
|
|
742 #endif
|
|
743
|
0
|
744 #ifdef ALLOC_NO_POOLS
|
|
745 # define TYPE_ALLOC_SIZE(type, structtype) 1
|
|
746 #else
|
|
747 # define TYPE_ALLOC_SIZE(type, structtype) \
|
|
748 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \
|
|
749 / sizeof (structtype))
|
183
|
750 #endif /* ALLOC_NO_POOLS */
|
0
|
751
|
380
|
752 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \
|
|
753 \
|
|
754 struct type##_block \
|
|
755 { \
|
|
756 struct type##_block *prev; \
|
|
757 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \
|
|
758 }; \
|
|
759 \
|
|
760 static struct type##_block *current_##type##_block; \
|
|
761 static int current_##type##_block_index; \
|
|
762 \
|
|
763 static structtype *type##_free_list; \
|
|
764 static structtype *type##_free_list_tail; \
|
|
765 \
|
|
766 static void \
|
|
767 init_##type##_alloc (void) \
|
|
768 { \
|
|
769 current_##type##_block = 0; \
|
|
770 current_##type##_block_index = \
|
|
771 countof (current_##type##_block->block); \
|
|
772 type##_free_list = 0; \
|
|
773 type##_free_list_tail = 0; \
|
|
774 } \
|
|
775 \
|
|
776 static int gc_count_num_##type##_in_use; \
|
|
777 static int gc_count_num_##type##_freelist
|
|
778
|
|
779 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \
|
|
780 if (current_##type##_block_index \
|
|
781 == countof (current_##type##_block->block)) \
|
0
|
782 { \
|
380
|
783 struct type##_block *AFTFB_new = (struct type##_block *) \
|
|
784 allocate_lisp_storage (sizeof (struct type##_block)); \
|
|
785 AFTFB_new->prev = current_##type##_block; \
|
|
786 current_##type##_block = AFTFB_new; \
|
0
|
787 current_##type##_block_index = 0; \
|
|
788 } \
|
380
|
789 (result) = \
|
|
790 &(current_##type##_block->block[current_##type##_block_index++]); \
|
|
791 } while (0)
|
0
|
792
|
|
793 /* Allocate an instance of a type that is stored in blocks.
|
|
794 TYPE is the "name" of the type, STRUCTTYPE is the corresponding
|
|
795 structure type. */
|
|
796
|
|
797 #ifdef ERROR_CHECK_GC
|
|
798
|
|
799 /* Note: if you get crashes in this function, suspect incorrect calls
|
|
800 to free_cons() and friends. This happened once because the cons
|
|
801 cell was not GC-protected and was getting collected before
|
|
802 free_cons() was called. */
|
|
803
|
|
804 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
805 do \
|
|
806 { \
|
|
807 if (gc_count_num_##type##_freelist > \
|
|
808 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \
|
|
809 { \
|
|
810 result = type##_free_list; \
|
|
811 /* Before actually using the chain pointer, we complement all its \
|
|
812 bits; see FREE_FIXED_TYPE(). */ \
|
|
813 type##_free_list = \
|
|
814 (structtype *) ~(unsigned long) \
|
|
815 (* (structtype **) ((char *) result + sizeof (void *))); \
|
|
816 gc_count_num_##type##_freelist--; \
|
|
817 } \
|
|
818 else \
|
|
819 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
820 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
821 } while (0)
|
|
822
|
183
|
823 #else /* !ERROR_CHECK_GC */
|
0
|
824
|
|
825 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
826 do \
|
|
827 { \
|
|
828 if (type##_free_list) \
|
|
829 { \
|
|
830 result = type##_free_list; \
|
|
831 type##_free_list = \
|
|
832 * (structtype **) ((char *) result + sizeof (void *)); \
|
|
833 } \
|
|
834 else \
|
|
835 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
836 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
837 } while (0)
|
|
838
|
183
|
839 #endif /* !ERROR_CHECK_GC */
|
0
|
840
|
|
841 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
842 do \
|
|
843 { \
|
|
844 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
845 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
846 } while (0)
|
|
847
|
|
848 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
849 do \
|
|
850 { \
|
|
851 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
852 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
853 } while (0)
|
|
854
|
|
855 /* INVALID_POINTER_VALUE should be a value that is invalid as a pointer
|
|
856 to a Lisp object and invalid as an actual Lisp_Object value. We have
|
|
857 to make sure that this value cannot be an integer in Lisp_Object form.
|
|
858 0xFFFFFFFF could be so on a 64-bit system, so we extend it to 64 bits.
|
|
859 On a 32-bit system, the type bits will be non-zero, making the value
|
|
860 be a pointer, and the pointer will be misaligned.
|
|
861
|
|
862 Even if Emacs is run on some weirdo system that allows and allocates
|
|
863 byte-aligned pointers, this pointer is at the very top of the address
|
|
864 space and so it's almost inconceivable that it could ever be valid. */
|
183
|
865
|
371
|
866 #if INTBITS == 32
|
|
867 # define INVALID_POINTER_VALUE 0xFFFFFFFF
|
|
868 #elif INTBITS == 48
|
|
869 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFF
|
|
870 #elif INTBITS == 64
|
|
871 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFFFFFF
|
0
|
872 #else
|
|
873 You have some weird system and need to supply a reasonable value here.
|
|
874 #endif
|
|
875
|
|
876 #define FREE_STRUCT_P(ptr) \
|
412
|
877 (* (void **) ptr == (void *) INVALID_POINTER_VALUE)
|
371
|
878 #define MARK_STRUCT_AS_FREE(ptr) \
|
412
|
879 (* (void **) ptr = (void *) INVALID_POINTER_VALUE)
|
371
|
880 #define MARK_STRUCT_AS_NOT_FREE(ptr) \
|
412
|
881 (* (void **) ptr = 0)
|
0
|
882
|
|
883 #ifdef ERROR_CHECK_GC
|
|
884
|
|
885 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
|
886 do { if (type##_free_list_tail) \
|
|
887 { \
|
|
888 /* When we store the chain pointer, we complement all \
|
|
889 its bits; this should significantly increase its \
|
|
890 bogosity in case someone tries to use the value, and \
|
|
891 should make us dump faster if someone stores something \
|
|
892 over the pointer because when it gets un-complemented in \
|
|
893 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \
|
|
894 extremely bogus. */ \
|
|
895 * (structtype **) \
|
|
896 ((char *) type##_free_list_tail + sizeof (void *)) = \
|
|
897 (structtype *) ~(unsigned long) ptr; \
|
|
898 } \
|
|
899 else \
|
|
900 type##_free_list = ptr; \
|
|
901 type##_free_list_tail = ptr; \
|
|
902 } while (0)
|
|
903
|
183
|
904 #else /* !ERROR_CHECK_GC */
|
0
|
905
|
|
906 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
380
|
907 do { * (structtype **) ((char *) (ptr) + sizeof (void *)) = \
|
0
|
908 type##_free_list; \
|
380
|
909 type##_free_list = (ptr); \
|
0
|
910 } while (0)
|
|
911
|
183
|
912 #endif /* !ERROR_CHECK_GC */
|
0
|
913
|
|
914 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */
|
|
915
|
380
|
916 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \
|
|
917 structtype *FFT_ptr = (ptr); \
|
|
918 ADDITIONAL_FREE_##type (FFT_ptr); \
|
|
919 deadbeef_memory (FFT_ptr, sizeof (structtype)); \
|
|
920 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \
|
|
921 MARK_STRUCT_AS_FREE (FFT_ptr); \
|
|
922 } while (0)
|
0
|
923
|
|
924 /* Like FREE_FIXED_TYPE() but used when we are explicitly
|
|
925 freeing a structure through free_cons(), free_marker(), etc.
|
|
926 rather than through the normal process of sweeping.
|
|
927 We attempt to undo the changes made to the allocation counters
|
|
928 as a result of this structure being allocated. This is not
|
|
929 completely necessary but helps keep things saner: e.g. this way,
|
|
930 repeatedly allocating and freeing a cons will not result in
|
|
931 the consing-since-gc counter advancing, which would cause a GC
|
|
932 and somewhat defeat the purpose of explicitly freeing. */
|
|
933
|
|
934 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \
|
|
935 do { FREE_FIXED_TYPE (type, structtype, ptr); \
|
|
936 DECREMENT_CONS_COUNTER (sizeof (structtype)); \
|
|
937 gc_count_num_##type##_freelist++; \
|
|
938 } while (0)
|
183
|
939
|
0
|
940
|
|
941
|
380
|
942 /************************************************************************/
|
|
943 /* Cons allocation */
|
|
944 /************************************************************************/
|
0
|
945
|
412
|
946 DECLARE_FIXED_TYPE_ALLOC (cons, struct Lisp_Cons);
|
0
|
947 /* conses are used and freed so often that we set this really high */
|
|
948 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */
|
|
949 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000
|
|
950
|
207
|
951 static Lisp_Object
|
412
|
952 mark_cons (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
207
|
953 {
|
412
|
954 if (GC_NILP (XCDR (obj)))
|
207
|
955 return XCAR (obj);
|
272
|
956
|
412
|
957 markobj (XCAR (obj));
|
207
|
958 return XCDR (obj);
|
|
959 }
|
|
960
|
|
961 static int
|
|
962 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth)
|
|
963 {
|
412
|
964 while (internal_equal (XCAR (ob1), XCAR (ob2), depth + 1))
|
207
|
965 {
|
272
|
966 ob1 = XCDR (ob1);
|
|
967 ob2 = XCDR (ob2);
|
207
|
968 if (! CONSP (ob1) || ! CONSP (ob2))
|
412
|
969 return internal_equal (ob1, ob2, depth + 1);
|
207
|
970 }
|
|
971 return 0;
|
|
972 }
|
243
|
973
|
|
974 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons,
|
|
975 mark_cons, print_cons, 0,
|
|
976 cons_equal,
|
|
977 /*
|
|
978 * No `hash' method needed.
|
|
979 * internal_hash knows how to
|
|
980 * handle conses.
|
|
981 */
|
|
982 0,
|
412
|
983 struct Lisp_Cons);
|
207
|
984
|
20
|
985 DEFUN ("cons", Fcons, 2, 2, 0, /*
|
0
|
986 Create a new cons, give it CAR and CDR as components, and return it.
|
20
|
987 */
|
|
988 (car, cdr))
|
0
|
989 {
|
|
990 /* This cannot GC. */
|
272
|
991 Lisp_Object val;
|
412
|
992 struct Lisp_Cons *c;
|
|
993
|
|
994 ALLOCATE_FIXED_TYPE (cons, struct Lisp_Cons, c);
|
|
995 set_lheader_implementation (&(c->lheader), &lrecord_cons);
|
0
|
996 XSETCONS (val, c);
|
207
|
997 c->car = car;
|
|
998 c->cdr = cdr;
|
0
|
999 return val;
|
|
1000 }
|
|
1001
|
|
1002 /* This is identical to Fcons() but it used for conses that we're
|
|
1003 going to free later, and is useful when trying to track down
|
|
1004 "real" consing. */
|
|
1005 Lisp_Object
|
|
1006 noseeum_cons (Lisp_Object car, Lisp_Object cdr)
|
|
1007 {
|
272
|
1008 Lisp_Object val;
|
412
|
1009 struct Lisp_Cons *c;
|
|
1010
|
|
1011 NOSEEUM_ALLOCATE_FIXED_TYPE (cons, struct Lisp_Cons, c);
|
|
1012 set_lheader_implementation (&(c->lheader), &lrecord_cons);
|
0
|
1013 XSETCONS (val, c);
|
|
1014 XCAR (val) = car;
|
|
1015 XCDR (val) = cdr;
|
|
1016 return val;
|
|
1017 }
|
|
1018
|
20
|
1019 DEFUN ("list", Flist, 0, MANY, 0, /*
|
0
|
1020 Return a newly created list with specified arguments as elements.
|
|
1021 Any number of arguments, even zero arguments, are allowed.
|
20
|
1022 */
|
|
1023 (int nargs, Lisp_Object *args))
|
0
|
1024 {
|
165
|
1025 Lisp_Object val = Qnil;
|
|
1026 Lisp_Object *argp = args + nargs;
|
|
1027
|
380
|
1028 while (argp > args)
|
165
|
1029 val = Fcons (*--argp, val);
|
0
|
1030 return val;
|
|
1031 }
|
|
1032
|
|
1033 Lisp_Object
|
|
1034 list1 (Lisp_Object obj0)
|
|
1035 {
|
|
1036 /* This cannot GC. */
|
173
|
1037 return Fcons (obj0, Qnil);
|
0
|
1038 }
|
|
1039
|
|
1040 Lisp_Object
|
|
1041 list2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1042 {
|
|
1043 /* This cannot GC. */
|
272
|
1044 return Fcons (obj0, Fcons (obj1, Qnil));
|
0
|
1045 }
|
|
1046
|
|
1047 Lisp_Object
|
|
1048 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1049 {
|
|
1050 /* This cannot GC. */
|
272
|
1051 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil)));
|
0
|
1052 }
|
|
1053
|
272
|
1054 Lisp_Object
|
0
|
1055 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1056 {
|
|
1057 /* This cannot GC. */
|
|
1058 return Fcons (obj0, Fcons (obj1, obj2));
|
|
1059 }
|
|
1060
|
|
1061 Lisp_Object
|
272
|
1062 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist)
|
|
1063 {
|
|
1064 return Fcons (Fcons (key, value), alist);
|
|
1065 }
|
|
1066
|
|
1067 Lisp_Object
|
0
|
1068 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3)
|
|
1069 {
|
|
1070 /* This cannot GC. */
|
272
|
1071 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil))));
|
0
|
1072 }
|
|
1073
|
|
1074 Lisp_Object
|
|
1075 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1076 Lisp_Object obj4)
|
|
1077 {
|
|
1078 /* This cannot GC. */
|
272
|
1079 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil)))));
|
0
|
1080 }
|
|
1081
|
|
1082 Lisp_Object
|
|
1083 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1084 Lisp_Object obj4, Lisp_Object obj5)
|
|
1085 {
|
|
1086 /* This cannot GC. */
|
272
|
1087 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil))))));
|
0
|
1088 }
|
|
1089
|
20
|
1090 DEFUN ("make-list", Fmake_list, 2, 2, 0, /*
|
272
|
1091 Return a new list of length LENGTH, with each element being INIT.
|
20
|
1092 */
|
|
1093 (length, init))
|
0
|
1094 {
|
|
1095 CHECK_NATNUM (length);
|
272
|
1096
|
|
1097 {
|
|
1098 Lisp_Object val = Qnil;
|
412
|
1099 int size = XINT (length);
|
|
1100
|
|
1101 while (size-- > 0)
|
272
|
1102 val = Fcons (init, val);
|
|
1103 return val;
|
|
1104 }
|
0
|
1105 }
|
|
1106
|
|
1107
|
380
|
1108 /************************************************************************/
|
|
1109 /* Float allocation */
|
|
1110 /************************************************************************/
|
0
|
1111
|
|
1112 #ifdef LISP_FLOAT_TYPE
|
|
1113
|
412
|
1114 DECLARE_FIXED_TYPE_ALLOC (float, struct Lisp_Float);
|
0
|
1115 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000
|
|
1116
|
|
1117 Lisp_Object
|
|
1118 make_float (double float_value)
|
|
1119 {
|
|
1120 Lisp_Object val;
|
412
|
1121 struct Lisp_Float *f;
|
|
1122
|
|
1123 ALLOCATE_FIXED_TYPE (float, struct Lisp_Float, f);
|
|
1124 set_lheader_implementation (&(f->lheader), &lrecord_float);
|
0
|
1125 float_data (f) = float_value;
|
|
1126 XSETFLOAT (val, f);
|
173
|
1127 return val;
|
0
|
1128 }
|
|
1129
|
|
1130 #endif /* LISP_FLOAT_TYPE */
|
|
1131
|
|
1132
|
380
|
1133 /************************************************************************/
|
|
1134 /* Vector allocation */
|
|
1135 /************************************************************************/
|
0
|
1136
|
207
|
1137 static Lisp_Object
|
412
|
1138 mark_vector (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
207
|
1139 {
|
380
|
1140 Lisp_Vector *ptr = XVECTOR (obj);
|
207
|
1141 int len = vector_length (ptr);
|
|
1142 int i;
|
|
1143
|
|
1144 for (i = 0; i < len - 1; i++)
|
412
|
1145 markobj (ptr->contents[i]);
|
207
|
1146 return (len > 0) ? ptr->contents[len - 1] : Qnil;
|
|
1147 }
|
|
1148
|
272
|
1149 static size_t
|
412
|
1150 size_vector (CONST void *lheader)
|
207
|
1151 {
|
412
|
1152 return STRETCHY_STRUCT_SIZEOF (Lisp_Vector, contents,
|
|
1153 ((Lisp_Vector *) lheader)->size);
|
207
|
1154 }
|
|
1155
|
|
1156 static int
|
380
|
1157 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
207
|
1158 {
|
380
|
1159 int len = XVECTOR_LENGTH (obj1);
|
|
1160 if (len != XVECTOR_LENGTH (obj2))
|
207
|
1161 return 0;
|
382
|
1162
|
|
1163 {
|
|
1164 Lisp_Object *ptr1 = XVECTOR_DATA (obj1);
|
|
1165 Lisp_Object *ptr2 = XVECTOR_DATA (obj2);
|
|
1166 while (len--)
|
|
1167 if (!internal_equal (*ptr1++, *ptr2++, depth + 1))
|
207
|
1168 return 0;
|
382
|
1169 }
|
207
|
1170 return 1;
|
|
1171 }
|
|
1172
|
243
|
1173 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION("vector", vector,
|
|
1174 mark_vector, print_vector, 0,
|
|
1175 vector_equal,
|
412
|
1176 /*
|
|
1177 * No `hash' method needed for
|
|
1178 * vectors. internal_hash
|
|
1179 * knows how to handle vectors.
|
|
1180 */
|
|
1181 0,
|
380
|
1182 size_vector, Lisp_Vector);
|
243
|
1183
|
207
|
1184 /* #### should allocate `small' vectors from a frob-block */
|
380
|
1185 static Lisp_Vector *
|
272
|
1186 make_vector_internal (size_t sizei)
|
207
|
1187 {
|
380
|
1188 /* no vector_next */
|
412
|
1189 size_t sizem = STRETCHY_STRUCT_SIZEOF (Lisp_Vector, contents, sizei);
|
398
|
1190 Lisp_Vector *p = (Lisp_Vector *) alloc_lcrecord (sizem, &lrecord_vector);
|
207
|
1191
|
|
1192 p->size = sizei;
|
|
1193 return p;
|
|
1194 }
|
|
1195
|
0
|
1196 Lisp_Object
|
382
|
1197 make_vector (size_t length, Lisp_Object init)
|
0
|
1198 {
|
382
|
1199 Lisp_Vector *vecp = make_vector_internal (length);
|
|
1200 Lisp_Object *p = vector_data (vecp);
|
|
1201
|
|
1202 while (length--)
|
|
1203 *p++ = init;
|
|
1204
|
0
|
1205 {
|
382
|
1206 Lisp_Object vector;
|
|
1207 XSETVECTOR (vector, vecp);
|
173
|
1208 return vector;
|
0
|
1209 }
|
|
1210 }
|
|
1211
|
20
|
1212 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /*
|
272
|
1213 Return a new vector of length LENGTH, with each element being INIT.
|
0
|
1214 See also the function `vector'.
|
20
|
1215 */
|
|
1216 (length, init))
|
0
|
1217 {
|
382
|
1218 CONCHECK_NATNUM (length);
|
173
|
1219 return make_vector (XINT (length), init);
|
0
|
1220 }
|
|
1221
|
20
|
1222 DEFUN ("vector", Fvector, 0, MANY, 0, /*
|
0
|
1223 Return a newly created vector with specified arguments as elements.
|
|
1224 Any number of arguments, even zero arguments, are allowed.
|
20
|
1225 */
|
|
1226 (int nargs, Lisp_Object *args))
|
0
|
1227 {
|
382
|
1228 Lisp_Vector *vecp = make_vector_internal (nargs);
|
|
1229 Lisp_Object *p = vector_data (vecp);
|
|
1230
|
|
1231 while (nargs--)
|
|
1232 *p++ = *args++;
|
|
1233
|
|
1234 {
|
|
1235 Lisp_Object vector;
|
|
1236 XSETVECTOR (vector, vecp);
|
|
1237 return vector;
|
|
1238 }
|
0
|
1239 }
|
|
1240
|
|
1241 Lisp_Object
|
|
1242 vector1 (Lisp_Object obj0)
|
|
1243 {
|
|
1244 return Fvector (1, &obj0);
|
|
1245 }
|
|
1246
|
|
1247 Lisp_Object
|
|
1248 vector2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1249 {
|
|
1250 Lisp_Object args[2];
|
|
1251 args[0] = obj0;
|
|
1252 args[1] = obj1;
|
|
1253 return Fvector (2, args);
|
|
1254 }
|
|
1255
|
|
1256 Lisp_Object
|
|
1257 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1258 {
|
|
1259 Lisp_Object args[3];
|
|
1260 args[0] = obj0;
|
|
1261 args[1] = obj1;
|
|
1262 args[2] = obj2;
|
|
1263 return Fvector (3, args);
|
|
1264 }
|
|
1265
|
272
|
1266 #if 0 /* currently unused */
|
|
1267
|
0
|
1268 Lisp_Object
|
|
1269 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1270 Lisp_Object obj3)
|
|
1271 {
|
|
1272 Lisp_Object args[4];
|
|
1273 args[0] = obj0;
|
|
1274 args[1] = obj1;
|
|
1275 args[2] = obj2;
|
|
1276 args[3] = obj3;
|
|
1277 return Fvector (4, args);
|
|
1278 }
|
|
1279
|
|
1280 Lisp_Object
|
|
1281 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1282 Lisp_Object obj3, Lisp_Object obj4)
|
|
1283 {
|
|
1284 Lisp_Object args[5];
|
|
1285 args[0] = obj0;
|
|
1286 args[1] = obj1;
|
|
1287 args[2] = obj2;
|
|
1288 args[3] = obj3;
|
|
1289 args[4] = obj4;
|
|
1290 return Fvector (5, args);
|
|
1291 }
|
|
1292
|
|
1293 Lisp_Object
|
|
1294 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1295 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5)
|
|
1296 {
|
|
1297 Lisp_Object args[6];
|
|
1298 args[0] = obj0;
|
|
1299 args[1] = obj1;
|
|
1300 args[2] = obj2;
|
|
1301 args[3] = obj3;
|
|
1302 args[4] = obj4;
|
|
1303 args[5] = obj5;
|
|
1304 return Fvector (6, args);
|
|
1305 }
|
|
1306
|
|
1307 Lisp_Object
|
|
1308 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1309 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1310 Lisp_Object obj6)
|
|
1311 {
|
|
1312 Lisp_Object args[7];
|
|
1313 args[0] = obj0;
|
|
1314 args[1] = obj1;
|
|
1315 args[2] = obj2;
|
|
1316 args[3] = obj3;
|
|
1317 args[4] = obj4;
|
|
1318 args[5] = obj5;
|
|
1319 args[6] = obj6;
|
|
1320 return Fvector (7, args);
|
|
1321 }
|
|
1322
|
|
1323 Lisp_Object
|
|
1324 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1325 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1326 Lisp_Object obj6, Lisp_Object obj7)
|
|
1327 {
|
|
1328 Lisp_Object args[8];
|
|
1329 args[0] = obj0;
|
|
1330 args[1] = obj1;
|
|
1331 args[2] = obj2;
|
|
1332 args[3] = obj3;
|
|
1333 args[4] = obj4;
|
|
1334 args[5] = obj5;
|
|
1335 args[6] = obj6;
|
|
1336 args[7] = obj7;
|
|
1337 return Fvector (8, args);
|
|
1338 }
|
272
|
1339 #endif /* unused */
|
0
|
1340
|
380
|
1341 /************************************************************************/
|
|
1342 /* Bit Vector allocation */
|
|
1343 /************************************************************************/
|
0
|
1344
|
|
1345 static Lisp_Object all_bit_vectors;
|
|
1346
|
|
1347 /* #### should allocate `small' bit vectors from a frob-block */
|
412
|
1348 static struct Lisp_Bit_Vector *
|
272
|
1349 make_bit_vector_internal (size_t sizei)
|
0
|
1350 {
|
382
|
1351 size_t num_longs = BIT_VECTOR_LONG_STORAGE (sizei);
|
412
|
1352 size_t sizem = STRETCHY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits, num_longs);
|
380
|
1353 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *) allocate_lisp_storage (sizem);
|
412
|
1354 set_lheader_implementation (&(p->lheader), &lrecord_bit_vector);
|
0
|
1355
|
|
1356 INCREMENT_CONS_COUNTER (sizem, "bit-vector");
|
|
1357
|
|
1358 bit_vector_length (p) = sizei;
|
380
|
1359 bit_vector_next (p) = all_bit_vectors;
|
0
|
1360 /* make sure the extra bits in the last long are 0; the calling
|
|
1361 functions might not set them. */
|
382
|
1362 p->bits[num_longs - 1] = 0;
|
0
|
1363 XSETBIT_VECTOR (all_bit_vectors, p);
|
173
|
1364 return p;
|
0
|
1365 }
|
|
1366
|
|
1367 Lisp_Object
|
382
|
1368 make_bit_vector (size_t length, Lisp_Object init)
|
0
|
1369 {
|
412
|
1370 struct Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
382
|
1371 size_t num_longs = BIT_VECTOR_LONG_STORAGE (length);
|
0
|
1372
|
|
1373 CHECK_BIT (init);
|
|
1374
|
|
1375 if (ZEROP (init))
|
|
1376 memset (p->bits, 0, num_longs * sizeof (long));
|
|
1377 else
|
|
1378 {
|
382
|
1379 size_t bits_in_last = length & (LONGBITS_POWER_OF_2 - 1);
|
0
|
1380 memset (p->bits, ~0, num_longs * sizeof (long));
|
|
1381 /* But we have to make sure that the unused bits in the
|
382
|
1382 last long are 0, so that equal/hash is easy. */
|
0
|
1383 if (bits_in_last)
|
|
1384 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1;
|
|
1385 }
|
|
1386
|
382
|
1387 {
|
|
1388 Lisp_Object bit_vector;
|
|
1389 XSETBIT_VECTOR (bit_vector, p);
|
|
1390 return bit_vector;
|
|
1391 }
|
0
|
1392 }
|
|
1393
|
|
1394 Lisp_Object
|
382
|
1395 make_bit_vector_from_byte_vector (unsigned char *bytevec, size_t length)
|
0
|
1396 {
|
272
|
1397 int i;
|
382
|
1398 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
0
|
1399
|
|
1400 for (i = 0; i < length; i++)
|
|
1401 set_bit_vector_bit (p, i, bytevec[i]);
|
|
1402
|
382
|
1403 {
|
|
1404 Lisp_Object bit_vector;
|
|
1405 XSETBIT_VECTOR (bit_vector, p);
|
|
1406 return bit_vector;
|
|
1407 }
|
0
|
1408 }
|
|
1409
|
20
|
1410 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /*
|
272
|
1411 Return a new bit vector of length LENGTH. with each bit being INIT.
|
0
|
1412 Each element is set to INIT. See also the function `bit-vector'.
|
20
|
1413 */
|
|
1414 (length, init))
|
0
|
1415 {
|
272
|
1416 CONCHECK_NATNUM (length);
|
0
|
1417
|
173
|
1418 return make_bit_vector (XINT (length), init);
|
0
|
1419 }
|
|
1420
|
20
|
1421 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /*
|
0
|
1422 Return a newly created bit vector with specified arguments as elements.
|
|
1423 Any number of arguments, even zero arguments, are allowed.
|
20
|
1424 */
|
|
1425 (int nargs, Lisp_Object *args))
|
0
|
1426 {
|
382
|
1427 int i;
|
|
1428 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs);
|
|
1429
|
|
1430 for (i = 0; i < nargs; i++)
|
|
1431 {
|
|
1432 CHECK_BIT (args[i]);
|
|
1433 set_bit_vector_bit (p, i, !ZEROP (args[i]));
|
|
1434 }
|
|
1435
|
|
1436 {
|
|
1437 Lisp_Object bit_vector;
|
|
1438 XSETBIT_VECTOR (bit_vector, p);
|
|
1439 return bit_vector;
|
|
1440 }
|
0
|
1441 }
|
|
1442
|
|
1443
|
380
|
1444 /************************************************************************/
|
|
1445 /* Compiled-function allocation */
|
|
1446 /************************************************************************/
|
|
1447
|
|
1448 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function);
|
0
|
1449 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000
|
|
1450
|
|
1451 static Lisp_Object
|
398
|
1452 make_compiled_function (void)
|
0
|
1453 {
|
380
|
1454 Lisp_Compiled_Function *f;
|
|
1455 Lisp_Object fun;
|
398
|
1456
|
|
1457 ALLOCATE_FIXED_TYPE (compiled_function, Lisp_Compiled_Function, f);
|
412
|
1458 set_lheader_implementation (&(f->lheader), &lrecord_compiled_function);
|
398
|
1459
|
380
|
1460 f->stack_depth = 0;
|
|
1461 f->specpdl_depth = 0;
|
|
1462 f->flags.documentationp = 0;
|
|
1463 f->flags.interactivep = 0;
|
|
1464 f->flags.domainp = 0; /* I18N3 */
|
|
1465 f->instructions = Qzero;
|
|
1466 f->constants = Qzero;
|
|
1467 f->arglist = Qnil;
|
|
1468 f->doc_and_interactive = Qnil;
|
0
|
1469 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
380
|
1470 f->annotated = Qnil;
|
0
|
1471 #endif
|
380
|
1472 XSETCOMPILED_FUNCTION (fun, f);
|
|
1473 return fun;
|
0
|
1474 }
|
|
1475
|
20
|
1476 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /*
|
272
|
1477 Return a new compiled-function object.
|
380
|
1478 Usage: (arglist instructions constants stack-depth
|
|
1479 &optional doc-string interactive)
|
0
|
1480 Note that, unlike all other emacs-lisp functions, calling this with five
|
|
1481 arguments is NOT the same as calling it with six arguments, the last of
|
|
1482 which is nil. If the INTERACTIVE arg is specified as nil, then that means
|
|
1483 that this function was defined with `(interactive)'. If the arg is not
|
|
1484 specified, then that means the function is not interactive.
|
|
1485 This is terrible behavior which is retained for compatibility with old
|
380
|
1486 `.elc' files which expect these semantics.
|
20
|
1487 */
|
|
1488 (int nargs, Lisp_Object *args))
|
0
|
1489 {
|
380
|
1490 /* In a non-insane world this function would have this arglist...
|
|
1491 (arglist instructions constants stack_depth &optional doc_string interactive)
|
0
|
1492 */
|
398
|
1493 Lisp_Object fun = make_compiled_function ();
|
380
|
1494 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun);
|
|
1495
|
0
|
1496 Lisp_Object arglist = args[0];
|
|
1497 Lisp_Object instructions = args[1];
|
|
1498 Lisp_Object constants = args[2];
|
380
|
1499 Lisp_Object stack_depth = args[3];
|
272
|
1500 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil;
|
|
1501 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound;
|
380
|
1502
|
|
1503 if (nargs < 4 || nargs > 6)
|
183
|
1504 return Fsignal (Qwrong_number_of_arguments,
|
0
|
1505 list2 (intern ("make-byte-code"), make_int (nargs)));
|
|
1506
|
380
|
1507 /* Check for valid formal parameter list now, to allow us to use
|
|
1508 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */
|
|
1509 {
|
|
1510 Lisp_Object symbol, tail;
|
|
1511 EXTERNAL_LIST_LOOP_3 (symbol, arglist, tail)
|
|
1512 {
|
|
1513 CHECK_SYMBOL (symbol);
|
|
1514 if (EQ (symbol, Qt) ||
|
|
1515 EQ (symbol, Qnil) ||
|
|
1516 SYMBOL_IS_KEYWORD (symbol))
|
|
1517 signal_simple_error_2
|
|
1518 ("Invalid constant symbol in formal parameter list",
|
|
1519 symbol, arglist);
|
|
1520 }
|
|
1521 }
|
|
1522 f->arglist = arglist;
|
|
1523
|
|
1524 /* `instructions' is a string or a cons (string . int) for a
|
0
|
1525 lazy-loaded function. */
|
|
1526 if (CONSP (instructions))
|
|
1527 {
|
|
1528 CHECK_STRING (XCAR (instructions));
|
|
1529 CHECK_INT (XCDR (instructions));
|
|
1530 }
|
|
1531 else
|
|
1532 {
|
|
1533 CHECK_STRING (instructions);
|
380
|
1534 }
|
|
1535 f->instructions = instructions;
|
|
1536
|
|
1537 if (!NILP (constants))
|
|
1538 CHECK_VECTOR (constants);
|
|
1539 f->constants = constants;
|
|
1540
|
|
1541 CHECK_NATNUM (stack_depth);
|
412
|
1542 f->stack_depth = XINT (stack_depth);
|
380
|
1543
|
|
1544 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
1545 if (!NILP (Vcurrent_compiled_function_annotation))
|
398
|
1546 f->annotated = Fcopy (Vcurrent_compiled_function_annotation);
|
380
|
1547 else if (!NILP (Vload_file_name_internal_the_purecopy))
|
|
1548 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1549 else if (!NILP (Vload_file_name_internal))
|
|
1550 {
|
|
1551 struct gcpro gcpro1;
|
|
1552 GCPRO1 (fun); /* don't let fun get reaped */
|
|
1553 Vload_file_name_internal_the_purecopy =
|
412
|
1554 Fpurecopy (Ffile_name_nondirectory (Vload_file_name_internal));
|
380
|
1555 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1556 UNGCPRO;
|
0
|
1557 }
|
380
|
1558 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */
|
|
1559
|
|
1560 /* doc_string may be nil, string, int, or a cons (string . int).
|
|
1561 interactive may be list or string (or unbound). */
|
|
1562 f->doc_and_interactive = Qunbound;
|
|
1563 #ifdef I18N3
|
|
1564 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0)
|
|
1565 f->doc_and_interactive = Vfile_domain;
|
|
1566 #endif
|
|
1567 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0)
|
|
1568 {
|
|
1569 f->doc_and_interactive
|
|
1570 = (UNBOUNDP (f->doc_and_interactive) ? interactive :
|
398
|
1571 Fcons (interactive, f->doc_and_interactive));
|
380
|
1572 }
|
|
1573 if ((f->flags.documentationp = !NILP (doc_string)) != 0)
|
|
1574 {
|
|
1575 f->doc_and_interactive
|
|
1576 = (UNBOUNDP (f->doc_and_interactive) ? doc_string :
|
398
|
1577 Fcons (doc_string, f->doc_and_interactive));
|
380
|
1578 }
|
|
1579 if (UNBOUNDP (f->doc_and_interactive))
|
|
1580 f->doc_and_interactive = Qnil;
|
0
|
1581
|
380
|
1582 return fun;
|
0
|
1583 }
|
|
1584
|
|
1585
|
380
|
1586 /************************************************************************/
|
|
1587 /* Symbol allocation */
|
|
1588 /************************************************************************/
|
0
|
1589
|
412
|
1590 DECLARE_FIXED_TYPE_ALLOC (symbol, struct Lisp_Symbol);
|
0
|
1591 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000
|
|
1592
|
20
|
1593 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /*
|
0
|
1594 Return a newly allocated uninterned symbol whose name is NAME.
|
|
1595 Its value and function definition are void, and its property list is nil.
|
20
|
1596 */
|
380
|
1597 (name))
|
0
|
1598 {
|
|
1599 Lisp_Object val;
|
412
|
1600 struct Lisp_Symbol *p;
|
0
|
1601
|
380
|
1602 CHECK_STRING (name);
|
0
|
1603
|
412
|
1604 ALLOCATE_FIXED_TYPE (symbol, struct Lisp_Symbol, p);
|
|
1605 set_lheader_implementation (&(p->lheader), &lrecord_symbol);
|
380
|
1606 p->name = XSTRING (name);
|
|
1607 p->plist = Qnil;
|
|
1608 p->value = Qunbound;
|
0
|
1609 p->function = Qunbound;
|
371
|
1610 symbol_next (p) = 0;
|
0
|
1611 XSETSYMBOL (val, p);
|
|
1612 return val;
|
|
1613 }
|
|
1614
|
|
1615
|
380
|
1616 /************************************************************************/
|
|
1617 /* Extent allocation */
|
|
1618 /************************************************************************/
|
0
|
1619
|
|
1620 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent);
|
|
1621 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000
|
|
1622
|
|
1623 struct extent *
|
|
1624 allocate_extent (void)
|
|
1625 {
|
|
1626 struct extent *e;
|
|
1627
|
|
1628 ALLOCATE_FIXED_TYPE (extent, struct extent, e);
|
412
|
1629 set_lheader_implementation (&(e->lheader), &lrecord_extent);
|
0
|
1630 extent_object (e) = Qnil;
|
|
1631 set_extent_start (e, -1);
|
|
1632 set_extent_end (e, -1);
|
|
1633 e->plist = Qnil;
|
|
1634
|
272
|
1635 xzero (e->flags);
|
0
|
1636
|
|
1637 extent_face (e) = Qnil;
|
|
1638 e->flags.end_open = 1; /* default is for endpoints to behave like markers */
|
|
1639 e->flags.detachable = 1;
|
|
1640
|
173
|
1641 return e;
|
0
|
1642 }
|
|
1643
|
|
1644
|
380
|
1645 /************************************************************************/
|
|
1646 /* Event allocation */
|
|
1647 /************************************************************************/
|
0
|
1648
|
412
|
1649 DECLARE_FIXED_TYPE_ALLOC (event, struct Lisp_Event);
|
0
|
1650 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000
|
|
1651
|
|
1652 Lisp_Object
|
|
1653 allocate_event (void)
|
|
1654 {
|
|
1655 Lisp_Object val;
|
412
|
1656 struct Lisp_Event *e;
|
|
1657
|
|
1658 ALLOCATE_FIXED_TYPE (event, struct Lisp_Event, e);
|
|
1659 set_lheader_implementation (&(e->lheader), &lrecord_event);
|
0
|
1660
|
|
1661 XSETEVENT (val, e);
|
|
1662 return val;
|
|
1663 }
|
183
|
1664
|
0
|
1665
|
380
|
1666 /************************************************************************/
|
|
1667 /* Marker allocation */
|
|
1668 /************************************************************************/
|
0
|
1669
|
412
|
1670 DECLARE_FIXED_TYPE_ALLOC (marker, struct Lisp_Marker);
|
0
|
1671 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000
|
|
1672
|
20
|
1673 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /*
|
272
|
1674 Return a new marker which does not point at any place.
|
20
|
1675 */
|
|
1676 ())
|
0
|
1677 {
|
|
1678 Lisp_Object val;
|
412
|
1679 struct Lisp_Marker *p;
|
|
1680
|
|
1681 ALLOCATE_FIXED_TYPE (marker, struct Lisp_Marker, p);
|
|
1682 set_lheader_implementation (&(p->lheader), &lrecord_marker);
|
0
|
1683 p->buffer = 0;
|
|
1684 p->memind = 0;
|
|
1685 marker_next (p) = 0;
|
|
1686 marker_prev (p) = 0;
|
|
1687 p->insertion_type = 0;
|
|
1688 XSETMARKER (val, p);
|
|
1689 return val;
|
|
1690 }
|
|
1691
|
|
1692 Lisp_Object
|
|
1693 noseeum_make_marker (void)
|
|
1694 {
|
|
1695 Lisp_Object val;
|
412
|
1696 struct Lisp_Marker *p;
|
|
1697
|
|
1698 NOSEEUM_ALLOCATE_FIXED_TYPE (marker, struct Lisp_Marker, p);
|
|
1699 set_lheader_implementation (&(p->lheader), &lrecord_marker);
|
0
|
1700 p->buffer = 0;
|
|
1701 p->memind = 0;
|
|
1702 marker_next (p) = 0;
|
|
1703 marker_prev (p) = 0;
|
|
1704 p->insertion_type = 0;
|
|
1705 XSETMARKER (val, p);
|
|
1706 return val;
|
|
1707 }
|
|
1708
|
|
1709
|
380
|
1710 /************************************************************************/
|
|
1711 /* String allocation */
|
|
1712 /************************************************************************/
|
0
|
1713
|
183
|
1714 /* The data for "short" strings generally resides inside of structs of type
|
|
1715 string_chars_block. The Lisp_String structure is allocated just like any
|
0
|
1716 other Lisp object (except for vectors), and these are freelisted when
|
|
1717 they get garbage collected. The data for short strings get compacted,
|
183
|
1718 but the data for large strings do not.
|
0
|
1719
|
|
1720 Previously Lisp_String structures were relocated, but this caused a lot
|
|
1721 of bus-errors because the C code didn't include enough GCPRO's for
|
|
1722 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so
|
|
1723 that the reference would get relocated).
|
|
1724
|
|
1725 This new method makes things somewhat bigger, but it is MUCH safer. */
|
|
1726
|
412
|
1727 DECLARE_FIXED_TYPE_ALLOC (string, struct Lisp_String);
|
0
|
1728 /* strings are used and freed quite often */
|
|
1729 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */
|
|
1730 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000
|
|
1731
|
207
|
1732 static Lisp_Object
|
412
|
1733 mark_string (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
207
|
1734 {
|
412
|
1735 struct Lisp_String *ptr = XSTRING (obj);
|
|
1736
|
|
1737 if (GC_CONSP (ptr->plist) && GC_EXTENT_INFOP (XCAR (ptr->plist)))
|
207
|
1738 flush_cached_extent_info (XCAR (ptr->plist));
|
|
1739 return ptr->plist;
|
|
1740 }
|
|
1741
|
|
1742 static int
|
380
|
1743 string_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
207
|
1744 {
|
272
|
1745 Bytecount len;
|
380
|
1746 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) &&
|
|
1747 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len));
|
207
|
1748 }
|
243
|
1749
|
412
|
1750 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("string", string,
|
|
1751 mark_string, print_string,
|
|
1752 /*
|
|
1753 * No `finalize', or `hash' methods.
|
|
1754 * internal_hash already knows how
|
|
1755 * to hash strings and finalization
|
|
1756 * is done with the
|
|
1757 * ADDITIONAL_FREE_string macro,
|
|
1758 * which is the standard way to do
|
|
1759 * finalization when using
|
|
1760 * SWEEP_FIXED_TYPE_BLOCK().
|
|
1761 */
|
|
1762 0, string_equal, 0,
|
|
1763 struct Lisp_String);
|
207
|
1764
|
0
|
1765 /* String blocks contain this many useful bytes. */
|
272
|
1766 #define STRING_CHARS_BLOCK_SIZE \
|
|
1767 ((Bytecount) (8192 - MALLOC_OVERHEAD - \
|
|
1768 ((2 * sizeof (struct string_chars_block *)) \
|
|
1769 + sizeof (EMACS_INT))))
|
0
|
1770 /* Block header for small strings. */
|
|
1771 struct string_chars_block
|
|
1772 {
|
|
1773 EMACS_INT pos;
|
|
1774 struct string_chars_block *next;
|
|
1775 struct string_chars_block *prev;
|
|
1776 /* Contents of string_chars_block->string_chars are interleaved
|
|
1777 string_chars structures (see below) and the actual string data */
|
|
1778 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE];
|
|
1779 };
|
|
1780
|
412
|
1781 struct string_chars_block *first_string_chars_block;
|
|
1782 struct string_chars_block *current_string_chars_block;
|
0
|
1783
|
|
1784 /* If SIZE is the length of a string, this returns how many bytes
|
|
1785 * the string occupies in string_chars_block->string_chars
|
|
1786 * (including alignment padding).
|
|
1787 */
|
412
|
1788 #define STRING_FULLSIZE(s) \
|
|
1789 ALIGN_SIZE (((s) + 1 + sizeof (struct Lisp_String *)),\
|
|
1790 ALIGNOF (struct Lisp_String *))
|
0
|
1791
|
|
1792 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE)
|
|
1793 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size)))
|
|
1794
|
412
|
1795 #define CHARS_TO_STRING_CHAR(x) \
|
|
1796 ((struct string_chars *) \
|
|
1797 (((char *) (x)) - (slot_offset (struct string_chars, chars[0]))))
|
|
1798
|
|
1799
|
0
|
1800 struct string_chars
|
|
1801 {
|
412
|
1802 struct Lisp_String *string;
|
0
|
1803 unsigned char chars[1];
|
|
1804 };
|
|
1805
|
|
1806 struct unused_string_chars
|
|
1807 {
|
412
|
1808 struct Lisp_String *string;
|
0
|
1809 EMACS_INT fullsize;
|
|
1810 };
|
|
1811
|
|
1812 static void
|
|
1813 init_string_chars_alloc (void)
|
|
1814 {
|
185
|
1815 first_string_chars_block = xnew (struct string_chars_block);
|
0
|
1816 first_string_chars_block->prev = 0;
|
|
1817 first_string_chars_block->next = 0;
|
|
1818 first_string_chars_block->pos = 0;
|
|
1819 current_string_chars_block = first_string_chars_block;
|
|
1820 }
|
|
1821
|
|
1822 static struct string_chars *
|
412
|
1823 allocate_string_chars_struct (struct Lisp_String *string_it_goes_with,
|
0
|
1824 EMACS_INT fullsize)
|
|
1825 {
|
|
1826 struct string_chars *s_chars;
|
|
1827
|
412
|
1828 /* Allocate the string's actual data */
|
|
1829 if (BIG_STRING_FULLSIZE_P (fullsize))
|
|
1830 {
|
|
1831 s_chars = (struct string_chars *) xmalloc (fullsize);
|
|
1832 }
|
|
1833 else if (fullsize <=
|
|
1834 (countof (current_string_chars_block->string_chars)
|
|
1835 - current_string_chars_block->pos))
|
0
|
1836 {
|
|
1837 /* This string can fit in the current string chars block */
|
|
1838 s_chars = (struct string_chars *)
|
|
1839 (current_string_chars_block->string_chars
|
|
1840 + current_string_chars_block->pos);
|
|
1841 current_string_chars_block->pos += fullsize;
|
|
1842 }
|
|
1843 else
|
|
1844 {
|
|
1845 /* Make a new current string chars block */
|
382
|
1846 struct string_chars_block *new_scb = xnew (struct string_chars_block);
|
|
1847
|
|
1848 current_string_chars_block->next = new_scb;
|
|
1849 new_scb->prev = current_string_chars_block;
|
|
1850 new_scb->next = 0;
|
|
1851 current_string_chars_block = new_scb;
|
|
1852 new_scb->pos = fullsize;
|
0
|
1853 s_chars = (struct string_chars *)
|
|
1854 current_string_chars_block->string_chars;
|
|
1855 }
|
|
1856
|
|
1857 s_chars->string = string_it_goes_with;
|
|
1858
|
|
1859 INCREMENT_CONS_COUNTER (fullsize, "string chars");
|
|
1860
|
|
1861 return s_chars;
|
|
1862 }
|
|
1863
|
|
1864 Lisp_Object
|
|
1865 make_uninit_string (Bytecount length)
|
|
1866 {
|
412
|
1867 struct Lisp_String *s;
|
|
1868 struct string_chars *s_chars;
|
0
|
1869 EMACS_INT fullsize = STRING_FULLSIZE (length);
|
|
1870 Lisp_Object val;
|
|
1871
|
412
|
1872 if ((length < 0) || (fullsize <= 0))
|
|
1873 abort ();
|
0
|
1874
|
|
1875 /* Allocate the string header */
|
412
|
1876 ALLOCATE_FIXED_TYPE (string, struct Lisp_String, s);
|
|
1877 set_lheader_implementation (&(s->lheader), &lrecord_string);
|
|
1878
|
|
1879 s_chars = allocate_string_chars_struct (s, fullsize);
|
|
1880
|
|
1881 set_string_data (s, &(s_chars->chars[0]));
|
0
|
1882 set_string_length (s, length);
|
|
1883 s->plist = Qnil;
|
183
|
1884
|
0
|
1885 set_string_byte (s, length, 0);
|
|
1886
|
|
1887 XSETSTRING (val, s);
|
173
|
1888 return val;
|
0
|
1889 }
|
|
1890
|
|
1891 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1892 static void verify_string_chars_integrity (void);
|
|
1893 #endif
|
183
|
1894
|
0
|
1895 /* Resize the string S so that DELTA bytes can be inserted starting
|
|
1896 at POS. If DELTA < 0, it means deletion starting at POS. If
|
|
1897 POS < 0, resize the string but don't copy any characters. Use
|
|
1898 this if you're planning on completely overwriting the string.
|
|
1899 */
|
|
1900
|
|
1901 void
|
412
|
1902 resize_string (struct Lisp_String *s, Bytecount pos, Bytecount delta)
|
0
|
1903 {
|
|
1904 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1905 verify_string_chars_integrity ();
|
|
1906 #endif
|
|
1907
|
|
1908 #ifdef ERROR_CHECK_BUFPOS
|
|
1909 if (pos >= 0)
|
|
1910 {
|
|
1911 assert (pos <= string_length (s));
|
|
1912 if (delta < 0)
|
|
1913 assert (pos + (-delta) <= string_length (s));
|
|
1914 }
|
|
1915 else
|
|
1916 {
|
|
1917 if (delta < 0)
|
|
1918 assert ((-delta) <= string_length (s));
|
|
1919 }
|
183
|
1920 #endif /* ERROR_CHECK_BUFPOS */
|
0
|
1921
|
412
|
1922 if (pos >= 0 && delta < 0)
|
|
1923 /* If DELTA < 0, the functions below will delete the characters
|
|
1924 before POS. We want to delete characters *after* POS, however,
|
|
1925 so convert this to the appropriate form. */
|
|
1926 pos += -delta;
|
|
1927
|
0
|
1928 if (delta == 0)
|
|
1929 /* simplest case: no size change. */
|
|
1930 return;
|
412
|
1931 else
|
0
|
1932 {
|
412
|
1933 Bytecount oldfullsize = STRING_FULLSIZE (string_length (s));
|
|
1934 Bytecount newfullsize = STRING_FULLSIZE (string_length (s) + delta);
|
|
1935
|
|
1936 if (oldfullsize == newfullsize)
|
0
|
1937 {
|
412
|
1938 /* next simplest case; size change but the necessary
|
|
1939 allocation size won't change (up or down; code somewhere
|
|
1940 depends on there not being any unused allocation space,
|
|
1941 modulo any alignment constraints). */
|
0
|
1942 if (pos >= 0)
|
|
1943 {
|
412
|
1944 Bufbyte *addroff = pos + string_data (s);
|
|
1945
|
|
1946 memmove (addroff + delta, addroff,
|
|
1947 /* +1 due to zero-termination. */
|
|
1948 string_length (s) + 1 - pos);
|
0
|
1949 }
|
|
1950 }
|
412
|
1951 else if (BIG_STRING_FULLSIZE_P (oldfullsize) &&
|
|
1952 BIG_STRING_FULLSIZE_P (newfullsize))
|
0
|
1953 {
|
412
|
1954 /* next simplest case; the string is big enough to be malloc()ed
|
|
1955 itself, so we just realloc.
|
|
1956
|
|
1957 It's important not to let the string get below the threshold
|
|
1958 for making big strings and still remain malloc()ed; if that
|
|
1959 were the case, repeated calls to this function on the same
|
|
1960 string could result in memory leakage. */
|
|
1961 set_string_data (s, (Bufbyte *) xrealloc (string_data (s),
|
|
1962 newfullsize));
|
0
|
1963 if (pos >= 0)
|
|
1964 {
|
183
|
1965 Bufbyte *addroff = pos + string_data (s);
|
0
|
1966
|
|
1967 memmove (addroff + delta, addroff,
|
|
1968 /* +1 due to zero-termination. */
|
|
1969 string_length (s) + 1 - pos);
|
|
1970 }
|
|
1971 }
|
|
1972 else
|
|
1973 {
|
412
|
1974 /* worst case. We make a new string_chars struct and copy
|
|
1975 the string's data into it, inserting/deleting the delta
|
|
1976 in the process. The old string data will either get
|
|
1977 freed by us (if it was malloc()ed) or will be reclaimed
|
|
1978 in the normal course of garbage collection. */
|
|
1979 struct string_chars *s_chars =
|
|
1980 allocate_string_chars_struct (s, newfullsize);
|
|
1981 Bufbyte *new_addr = &(s_chars->chars[0]);
|
|
1982 Bufbyte *old_addr = string_data (s);
|
0
|
1983 if (pos >= 0)
|
|
1984 {
|
412
|
1985 memcpy (new_addr, old_addr, pos);
|
|
1986 memcpy (new_addr + pos + delta, old_addr + pos,
|
0
|
1987 string_length (s) + 1 - pos);
|
|
1988 }
|
412
|
1989 set_string_data (s, new_addr);
|
|
1990 if (BIG_STRING_FULLSIZE_P (oldfullsize))
|
|
1991 xfree (old_addr);
|
|
1992 else
|
|
1993 {
|
|
1994 /* We need to mark this chunk of the string_chars_block
|
|
1995 as unused so that compact_string_chars() doesn't
|
|
1996 freak. */
|
|
1997 struct string_chars *old_s_chars =
|
|
1998 (struct string_chars *) ((char *) old_addr -
|
|
1999 sizeof (struct Lisp_String *));
|
|
2000 /* Sanity check to make sure we aren't hosed by strange
|
|
2001 alignment/padding. */
|
|
2002 assert (old_s_chars->string == s);
|
|
2003 MARK_STRUCT_AS_FREE (old_s_chars);
|
|
2004 ((struct unused_string_chars *) old_s_chars)->fullsize =
|
|
2005 oldfullsize;
|
|
2006 }
|
0
|
2007 }
|
412
|
2008
|
|
2009 set_string_length (s, string_length (s) + delta);
|
|
2010 /* If pos < 0, the string won't be zero-terminated.
|
|
2011 Terminate now just to make sure. */
|
|
2012 string_data (s)[string_length (s)] = '\0';
|
|
2013
|
|
2014 if (pos >= 0)
|
|
2015 {
|
|
2016 Lisp_Object string;
|
|
2017
|
|
2018 XSETSTRING (string, s);
|
|
2019 /* We also have to adjust all of the extent indices after the
|
|
2020 place we did the change. We say "pos - 1" because
|
|
2021 adjust_extents() is exclusive of the starting position
|
|
2022 passed to it. */
|
|
2023 adjust_extents (string, pos - 1, string_length (s),
|
|
2024 delta);
|
|
2025 }
|
0
|
2026 }
|
|
2027
|
|
2028 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
2029 verify_string_chars_integrity ();
|
|
2030 #endif
|
|
2031 }
|
|
2032
|
70
|
2033 #ifdef MULE
|
|
2034
|
|
2035 void
|
412
|
2036 set_string_char (struct Lisp_String *s, Charcount i, Emchar c)
|
70
|
2037 {
|
|
2038 Bufbyte newstr[MAX_EMCHAR_LEN];
|
|
2039 Bytecount bytoff = charcount_to_bytecount (string_data (s), i);
|
382
|
2040 Bytecount oldlen = charcount_to_bytecount (string_data (s) + bytoff, 1);
|
|
2041 Bytecount newlen = set_charptr_emchar (newstr, c);
|
70
|
2042
|
|
2043 if (oldlen != newlen)
|
|
2044 resize_string (s, bytoff, newlen - oldlen);
|
185
|
2045 /* Remember, string_data (s) might have changed so we can't cache it. */
|
70
|
2046 memcpy (string_data (s) + bytoff, newstr, newlen);
|
|
2047 }
|
|
2048
|
|
2049 #endif /* MULE */
|
|
2050
|
20
|
2051 DEFUN ("make-string", Fmake_string, 2, 2, 0, /*
|
272
|
2052 Return a new string of length LENGTH, with each character being INIT.
|
0
|
2053 LENGTH must be an integer and INIT must be a character.
|
20
|
2054 */
|
|
2055 (length, init))
|
0
|
2056 {
|
|
2057 CHECK_NATNUM (length);
|
|
2058 CHECK_CHAR_COERCE_INT (init);
|
|
2059 {
|
380
|
2060 Bufbyte init_str[MAX_EMCHAR_LEN];
|
|
2061 int len = set_charptr_emchar (init_str, XCHAR (init));
|
|
2062 Lisp_Object val = make_uninit_string (len * XINT (length));
|
|
2063
|
0
|
2064 if (len == 1)
|
|
2065 /* Optimize the single-byte case */
|
14
|
2066 memset (XSTRING_DATA (val), XCHAR (init), XSTRING_LENGTH (val));
|
0
|
2067 else
|
|
2068 {
|
412
|
2069 int i;
|
14
|
2070 Bufbyte *ptr = XSTRING_DATA (val);
|
0
|
2071
|
380
|
2072 for (i = XINT (length); i; i--)
|
|
2073 {
|
|
2074 Bufbyte *init_ptr = init_str;
|
|
2075 switch (len)
|
|
2076 {
|
|
2077 case 4: *ptr++ = *init_ptr++;
|
|
2078 case 3: *ptr++ = *init_ptr++;
|
|
2079 case 2: *ptr++ = *init_ptr++;
|
|
2080 case 1: *ptr++ = *init_ptr++;
|
|
2081 }
|
|
2082 }
|
0
|
2083 }
|
380
|
2084 return val;
|
0
|
2085 }
|
|
2086 }
|
|
2087
|
278
|
2088 DEFUN ("string", Fstring, 0, MANY, 0, /*
|
|
2089 Concatenate all the argument characters and make the result a string.
|
|
2090 */
|
|
2091 (int nargs, Lisp_Object *args))
|
|
2092 {
|
|
2093 Bufbyte *storage = alloca_array (Bufbyte, nargs * MAX_EMCHAR_LEN);
|
|
2094 Bufbyte *p = storage;
|
|
2095
|
|
2096 for (; nargs; nargs--, args++)
|
|
2097 {
|
|
2098 Lisp_Object lisp_char = *args;
|
|
2099 CHECK_CHAR_COERCE_INT (lisp_char);
|
|
2100 p += set_charptr_emchar (p, XCHAR (lisp_char));
|
|
2101 }
|
|
2102 return make_string (storage, p - storage);
|
|
2103 }
|
|
2104
|
398
|
2105
|
0
|
2106 /* Take some raw memory, which MUST already be in internal format,
|
272
|
2107 and package it up into a Lisp string. */
|
0
|
2108 Lisp_Object
|
412
|
2109 make_string (CONST Bufbyte *contents, Bytecount length)
|
0
|
2110 {
|
|
2111 Lisp_Object val;
|
70
|
2112
|
|
2113 /* Make sure we find out about bad make_string's when they happen */
|
|
2114 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2115 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2116 #endif
|
183
|
2117
|
0
|
2118 val = make_uninit_string (length);
|
14
|
2119 memcpy (XSTRING_DATA (val), contents, length);
|
173
|
2120 return val;
|
0
|
2121 }
|
|
2122
|
|
2123 /* Take some raw memory, encoded in some external data format,
|
|
2124 and convert it into a Lisp string. */
|
|
2125 Lisp_Object
|
412
|
2126 make_ext_string (CONST Extbyte *contents, EMACS_INT length,
|
|
2127 enum external_data_format fmt)
|
0
|
2128 {
|
412
|
2129 Bufbyte *intstr;
|
|
2130 Bytecount intlen;
|
|
2131
|
|
2132 GET_CHARPTR_INT_DATA_ALLOCA (contents, length, fmt, intstr, intlen);
|
|
2133 return make_string (intstr, intlen);
|
398
|
2134 }
|
|
2135
|
|
2136 Lisp_Object
|
412
|
2137 build_string (CONST char *str)
|
398
|
2138 {
|
|
2139 /* Some strlen's crash and burn if passed null. */
|
412
|
2140 return make_string ((CONST Bufbyte *) str, (str ? strlen(str) : 0));
|
398
|
2141 }
|
|
2142
|
|
2143 Lisp_Object
|
412
|
2144 build_ext_string (CONST char *str, enum external_data_format fmt)
|
398
|
2145 {
|
|
2146 /* Some strlen's crash and burn if passed null. */
|
412
|
2147 return make_ext_string ((CONST Extbyte *) str, (str ? strlen(str) : 0), fmt);
|
0
|
2148 }
|
|
2149
|
|
2150 Lisp_Object
|
412
|
2151 build_translated_string (CONST char *str)
|
0
|
2152 {
|
398
|
2153 return build_string (GETTEXT (str));
|
0
|
2154 }
|
|
2155
|
|
2156 Lisp_Object
|
412
|
2157 make_string_nocopy (CONST Bufbyte *contents, Bytecount length)
|
0
|
2158 {
|
412
|
2159 struct Lisp_String *s;
|
398
|
2160 Lisp_Object val;
|
|
2161
|
|
2162 /* Make sure we find out about bad make_string_nocopy's when they happen */
|
|
2163 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2164 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2165 #endif
|
|
2166
|
|
2167 /* Allocate the string header */
|
412
|
2168 ALLOCATE_FIXED_TYPE (string, struct Lisp_String, s);
|
|
2169 set_lheader_implementation (&(s->lheader), &lrecord_string);
|
398
|
2170 SET_C_READONLY_RECORD_HEADER (&s->lheader);
|
|
2171 s->plist = Qnil;
|
|
2172 set_string_data (s, (Bufbyte *)contents);
|
|
2173 set_string_length (s, length);
|
|
2174
|
|
2175 XSETSTRING (val, s);
|
|
2176 return val;
|
0
|
2177 }
|
|
2178
|
|
2179
|
|
2180 /************************************************************************/
|
|
2181 /* lcrecord lists */
|
|
2182 /************************************************************************/
|
|
2183
|
|
2184 /* Lcrecord lists are used to manage the allocation of particular
|
|
2185 sorts of lcrecords, to avoid calling alloc_lcrecord() (and thus
|
|
2186 malloc() and garbage-collection junk) as much as possible.
|
|
2187 It is similar to the Blocktype class.
|
|
2188
|
|
2189 It works like this:
|
|
2190
|
|
2191 1) Create an lcrecord-list object using make_lcrecord_list().
|
412
|
2192 This is often done at initialization. Remember to staticpro
|
0
|
2193 this object! The arguments to make_lcrecord_list() are the
|
|
2194 same as would be passed to alloc_lcrecord().
|
|
2195 2) Instead of calling alloc_lcrecord(), call allocate_managed_lcrecord()
|
|
2196 and pass the lcrecord-list earlier created.
|
|
2197 3) When done with the lcrecord, call free_managed_lcrecord().
|
|
2198 The standard freeing caveats apply: ** make sure there are no
|
|
2199 pointers to the object anywhere! **
|
|
2200 4) Calling free_managed_lcrecord() is just like kissing the
|
|
2201 lcrecord goodbye as if it were garbage-collected. This means:
|
|
2202 -- the contents of the freed lcrecord are undefined, and the
|
|
2203 contents of something produced by allocate_managed_lcrecord()
|
|
2204 are undefined, just like for alloc_lcrecord().
|
|
2205 -- the mark method for the lcrecord's type will *NEVER* be called
|
|
2206 on freed lcrecords.
|
|
2207 -- the finalize method for the lcrecord's type will be called
|
|
2208 at the time that free_managed_lcrecord() is called.
|
|
2209
|
|
2210 */
|
|
2211
|
|
2212 static Lisp_Object
|
412
|
2213 mark_lcrecord_list (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
0
|
2214 {
|
|
2215 struct lcrecord_list *list = XLCRECORD_LIST (obj);
|
|
2216 Lisp_Object chain = list->free;
|
|
2217
|
|
2218 while (!NILP (chain))
|
|
2219 {
|
|
2220 struct lrecord_header *lheader = XRECORD_LHEADER (chain);
|
|
2221 struct free_lcrecord_header *free_header =
|
|
2222 (struct free_lcrecord_header *) lheader;
|
14
|
2223
|
412
|
2224 #ifdef ERROR_CHECK_GC
|
|
2225 CONST struct lrecord_implementation *implementation
|
|
2226 = LHEADER_IMPLEMENTATION(lheader);
|
|
2227
|
|
2228 /* There should be no other pointers to the free list. */
|
|
2229 assert (!MARKED_RECORD_HEADER_P (lheader));
|
|
2230 /* Only lcrecords should be here. */
|
|
2231 assert (!implementation->basic_p);
|
|
2232 /* Only free lcrecords should be here. */
|
|
2233 assert (free_header->lcheader.free);
|
|
2234 /* The type of the lcrecord must be right. */
|
|
2235 assert (implementation == list->implementation);
|
|
2236 /* So must the size. */
|
|
2237 assert (implementation->static_size == 0
|
|
2238 || implementation->static_size == list->size);
|
|
2239 #endif /* ERROR_CHECK_GC */
|
80
|
2240
|
0
|
2241 MARK_RECORD_HEADER (lheader);
|
|
2242 chain = free_header->chain;
|
|
2243 }
|
183
|
2244
|
0
|
2245 return Qnil;
|
|
2246 }
|
|
2247
|
243
|
2248 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list,
|
|
2249 mark_lcrecord_list, internal_object_printer,
|
412
|
2250 0, 0, 0, struct lcrecord_list);
|
0
|
2251 Lisp_Object
|
272
|
2252 make_lcrecord_list (size_t size,
|
412
|
2253 CONST struct lrecord_implementation *implementation)
|
0
|
2254 {
|
185
|
2255 struct lcrecord_list *p = alloc_lcrecord_type (struct lcrecord_list,
|
398
|
2256 &lrecord_lcrecord_list);
|
272
|
2257 Lisp_Object val;
|
0
|
2258
|
|
2259 p->implementation = implementation;
|
|
2260 p->size = size;
|
|
2261 p->free = Qnil;
|
|
2262 XSETLCRECORD_LIST (val, p);
|
|
2263 return val;
|
|
2264 }
|
|
2265
|
|
2266 Lisp_Object
|
|
2267 allocate_managed_lcrecord (Lisp_Object lcrecord_list)
|
|
2268 {
|
|
2269 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2270 if (!NILP (list->free))
|
|
2271 {
|
|
2272 Lisp_Object val = list->free;
|
|
2273 struct free_lcrecord_header *free_header =
|
|
2274 (struct free_lcrecord_header *) XPNTR (val);
|
|
2275
|
|
2276 #ifdef ERROR_CHECK_GC
|
412
|
2277 struct lrecord_header *lheader =
|
|
2278 (struct lrecord_header *) free_header;
|
|
2279 CONST struct lrecord_implementation *implementation
|
|
2280 = LHEADER_IMPLEMENTATION (lheader);
|
0
|
2281
|
|
2282 /* There should be no other pointers to the free list. */
|
412
|
2283 assert (!MARKED_RECORD_HEADER_P (lheader));
|
0
|
2284 /* Only lcrecords should be here. */
|
412
|
2285 assert (!implementation->basic_p);
|
0
|
2286 /* Only free lcrecords should be here. */
|
|
2287 assert (free_header->lcheader.free);
|
|
2288 /* The type of the lcrecord must be right. */
|
412
|
2289 assert (implementation == list->implementation);
|
0
|
2290 /* So must the size. */
|
412
|
2291 assert (implementation->static_size == 0
|
|
2292 || implementation->static_size == list->size);
|
183
|
2293 #endif /* ERROR_CHECK_GC */
|
0
|
2294 list->free = free_header->chain;
|
|
2295 free_header->lcheader.free = 0;
|
|
2296 return val;
|
|
2297 }
|
|
2298 else
|
|
2299 {
|
272
|
2300 Lisp_Object val;
|
185
|
2301
|
|
2302 XSETOBJ (val, Lisp_Type_Record,
|
0
|
2303 alloc_lcrecord (list->size, list->implementation));
|
185
|
2304 return val;
|
0
|
2305 }
|
|
2306 }
|
|
2307
|
|
2308 void
|
|
2309 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord)
|
|
2310 {
|
|
2311 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2312 struct free_lcrecord_header *free_header =
|
|
2313 (struct free_lcrecord_header *) XPNTR (lcrecord);
|
412
|
2314 struct lrecord_header *lheader =
|
|
2315 (struct lrecord_header *) free_header;
|
|
2316 CONST struct lrecord_implementation *implementation
|
211
|
2317 = LHEADER_IMPLEMENTATION (lheader);
|
0
|
2318
|
412
|
2319 #ifdef ERROR_CHECK_GC
|
0
|
2320 /* Make sure the size is correct. This will catch, for example,
|
|
2321 putting a window configuration on the wrong free list. */
|
412
|
2322 if (implementation->size_in_bytes_method)
|
|
2323 assert (implementation->size_in_bytes_method (lheader) == list->size);
|
|
2324 else
|
|
2325 assert (implementation->static_size == list->size);
|
|
2326 #endif /* ERROR_CHECK_GC */
|
0
|
2327
|
|
2328 if (implementation->finalizer)
|
380
|
2329 implementation->finalizer (lheader, 0);
|
0
|
2330 free_header->chain = list->free;
|
|
2331 free_header->lcheader.free = 1;
|
|
2332 list->free = lcrecord;
|
|
2333 }
|
|
2334
|
|
2335
|
|
2336
|
|
2337
|
20
|
2338 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /*
|
398
|
2339 Kept for compatibility, returns its argument.
|
|
2340 Old:
|
0
|
2341 Make a copy of OBJECT in pure storage.
|
|
2342 Recursively copies contents of vectors and cons cells.
|
|
2343 Does not copy symbols.
|
20
|
2344 */
|
|
2345 (obj))
|
0
|
2346 {
|
398
|
2347 return obj;
|
102
|
2348 }
|
|
2349
|
412
|
2350
|
0
|
2351
|
380
|
2352 /************************************************************************/
|
|
2353 /* Garbage Collection */
|
|
2354 /************************************************************************/
|
|
2355
|
412
|
2356 /* This will be used more extensively In The Future */
|
|
2357 static int last_lrecord_type_index_assigned;
|
|
2358
|
|
2359 CONST struct lrecord_implementation *lrecord_implementations_table[128];
|
|
2360 #define max_lrecord_type (countof (lrecord_implementations_table) - 1)
|
0
|
2361
|
|
2362 struct gcpro *gcprolist;
|
|
2363
|
|
2364 /* 415 used Mly 29-Jun-93 */
|
261
|
2365 /* 1327 used slb 28-Feb-98 */
|
263
|
2366 #ifdef HAVE_SHLIB
|
|
2367 #define NSTATICS 4000
|
|
2368 #else
|
|
2369 #define NSTATICS 2000
|
|
2370 #endif
|
412
|
2371 /* Not "static" because of linker lossage on some systems */
|
|
2372 Lisp_Object *staticvec[NSTATICS]
|
|
2373 /* Force it into data space! */
|
|
2374 = {0};
|
|
2375 static int staticidx;
|
0
|
2376
|
|
2377 /* Put an entry in staticvec, pointing at the variable whose address is given
|
|
2378 */
|
|
2379 void
|
|
2380 staticpro (Lisp_Object *varaddress)
|
|
2381 {
|
412
|
2382 if (staticidx >= countof (staticvec))
|
|
2383 /* #### This is now a dubious abort() since this routine may be called */
|
|
2384 /* by Lisp attempting to load a DLL. */
|
|
2385 abort ();
|
0
|
2386 staticvec[staticidx++] = varaddress;
|
|
2387 }
|
|
2388
|
|
2389
|
|
2390 /* Mark reference to a Lisp_Object. If the object referred to has not been
|
|
2391 seen yet, recursively mark all the references contained in it. */
|
183
|
2392
|
412
|
2393 static void
|
0
|
2394 mark_object (Lisp_Object obj)
|
|
2395 {
|
|
2396 tail_recurse:
|
|
2397
|
412
|
2398 #ifdef ERROR_CHECK_GC
|
|
2399 assert (! (GC_EQ (obj, Qnull_pointer)));
|
|
2400 #endif
|
380
|
2401 /* Checks we used to perform */
|
|
2402 /* if (EQ (obj, Qnull_pointer)) return; */
|
|
2403 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */
|
|
2404 /* if (PURIFIED (XPNTR (obj))) return; */
|
|
2405
|
412
|
2406 if (XGCTYPE (obj) == Lisp_Type_Record)
|
0
|
2407 {
|
398
|
2408 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
412
|
2409 #if defined (ERROR_CHECK_GC)
|
|
2410 assert (lheader->type <= last_lrecord_type_index_assigned);
|
|
2411 #endif
|
|
2412 if (C_READONLY_RECORD_HEADER_P (lheader))
|
|
2413 return;
|
|
2414
|
|
2415 if (! MARKED_RECORD_HEADER_P (lheader) &&
|
|
2416 ! UNMARKABLE_RECORD_HEADER_P (lheader))
|
398
|
2417 {
|
412
|
2418 CONST struct lrecord_implementation *implementation =
|
|
2419 LHEADER_IMPLEMENTATION (lheader);
|
398
|
2420 MARK_RECORD_HEADER (lheader);
|
412
|
2421 #ifdef ERROR_CHECK_GC
|
|
2422 if (!implementation->basic_p)
|
|
2423 assert (! ((struct lcrecord_header *) lheader)->free);
|
|
2424 #endif
|
|
2425 if (implementation->marker)
|
0
|
2426 {
|
412
|
2427 obj = implementation->marker (obj, mark_object);
|
|
2428 if (!GC_NILP (obj)) goto tail_recurse;
|
0
|
2429 }
|
398
|
2430 }
|
0
|
2431 }
|
|
2432 }
|
|
2433
|
|
2434 /* mark all of the conses in a list and mark the final cdr; but
|
|
2435 DO NOT mark the cars.
|
|
2436
|
|
2437 Use only for internal lists! There should never be other pointers
|
|
2438 to the cons cells, because if so, the cars will remain unmarked
|
|
2439 even when they maybe should be marked. */
|
|
2440 void
|
|
2441 mark_conses_in_list (Lisp_Object obj)
|
|
2442 {
|
|
2443 Lisp_Object rest;
|
|
2444
|
|
2445 for (rest = obj; CONSP (rest); rest = XCDR (rest))
|
|
2446 {
|
|
2447 if (CONS_MARKED_P (XCONS (rest)))
|
|
2448 return;
|
|
2449 MARK_CONS (XCONS (rest));
|
|
2450 }
|
|
2451
|
|
2452 mark_object (rest);
|
|
2453 }
|
|
2454
|
|
2455
|
|
2456 /* Find all structures not marked, and free them. */
|
|
2457
|
|
2458 static int gc_count_num_bit_vector_used, gc_count_bit_vector_total_size;
|
|
2459 static int gc_count_bit_vector_storage;
|
|
2460 static int gc_count_num_short_string_in_use;
|
|
2461 static int gc_count_string_total_size;
|
|
2462 static int gc_count_short_string_total_size;
|
|
2463
|
|
2464 /* static int gc_count_total_records_used, gc_count_records_total_size; */
|
|
2465
|
|
2466
|
412
|
2467 int
|
|
2468 lrecord_type_index (CONST struct lrecord_implementation *implementation)
|
|
2469 {
|
|
2470 int type_index = *(implementation->lrecord_type_index);
|
|
2471 /* Have to do this circuitous validation test because of problems
|
|
2472 dumping out initialized variables (ie can't set xxx_type_index to -1
|
|
2473 because that would make xxx_type_index read-only in a dumped emacs. */
|
|
2474 if (type_index < 0 || type_index > max_lrecord_type
|
|
2475 || lrecord_implementations_table[type_index] != implementation)
|
|
2476 {
|
|
2477 assert (last_lrecord_type_index_assigned < max_lrecord_type);
|
|
2478 type_index = ++last_lrecord_type_index_assigned;
|
|
2479 lrecord_implementations_table[type_index] = implementation;
|
|
2480 *(implementation->lrecord_type_index) = type_index;
|
|
2481 }
|
|
2482 return type_index;
|
|
2483 }
|
|
2484
|
0
|
2485 /* stats on lcrecords in use - kinda kludgy */
|
|
2486
|
|
2487 static struct
|
|
2488 {
|
|
2489 int instances_in_use;
|
|
2490 int bytes_in_use;
|
|
2491 int instances_freed;
|
|
2492 int bytes_freed;
|
|
2493 int instances_on_free_list;
|
|
2494 } lcrecord_stats [countof (lrecord_implementations_table)];
|
|
2495
|
|
2496 static void
|
412
|
2497 tick_lcrecord_stats (CONST struct lrecord_header *h, int free_p)
|
0
|
2498 {
|
412
|
2499 CONST struct lrecord_implementation *implementation =
|
|
2500 LHEADER_IMPLEMENTATION (h);
|
|
2501 int type_index = lrecord_type_index (implementation);
|
0
|
2502
|
|
2503 if (((struct lcrecord_header *) h)->free)
|
|
2504 {
|
412
|
2505 assert (!free_p);
|
0
|
2506 lcrecord_stats[type_index].instances_on_free_list++;
|
|
2507 }
|
|
2508 else
|
|
2509 {
|
412
|
2510 size_t sz = (implementation->size_in_bytes_method
|
|
2511 ? implementation->size_in_bytes_method (h)
|
|
2512 : implementation->static_size);
|
|
2513
|
0
|
2514 if (free_p)
|
|
2515 {
|
|
2516 lcrecord_stats[type_index].instances_freed++;
|
|
2517 lcrecord_stats[type_index].bytes_freed += sz;
|
|
2518 }
|
|
2519 else
|
|
2520 {
|
|
2521 lcrecord_stats[type_index].instances_in_use++;
|
|
2522 lcrecord_stats[type_index].bytes_in_use += sz;
|
|
2523 }
|
|
2524 }
|
|
2525 }
|
|
2526
|
|
2527
|
|
2528 /* Free all unmarked records */
|
|
2529 static void
|
|
2530 sweep_lcrecords_1 (struct lcrecord_header **prev, int *used)
|
|
2531 {
|
|
2532 struct lcrecord_header *header;
|
|
2533 int num_used = 0;
|
|
2534 /* int total_size = 0; */
|
386
|
2535
|
|
2536 xzero (lcrecord_stats); /* Reset all statistics to 0. */
|
0
|
2537
|
|
2538 /* First go through and call all the finalize methods.
|
|
2539 Then go through and free the objects. There used to
|
|
2540 be only one loop here, with the call to the finalizer
|
|
2541 occurring directly before the xfree() below. That
|
|
2542 is marginally faster but much less safe -- if the
|
|
2543 finalize method for an object needs to reference any
|
|
2544 other objects contained within it (and many do),
|
|
2545 we could easily be screwed by having already freed that
|
|
2546 other object. */
|
|
2547
|
|
2548 for (header = *prev; header; header = header->next)
|
|
2549 {
|
|
2550 struct lrecord_header *h = &(header->lheader);
|
412
|
2551 if (!C_READONLY_RECORD_HEADER_P(h)
|
|
2552 && !MARKED_RECORD_HEADER_P (h)
|
|
2553 && ! (header->free))
|
0
|
2554 {
|
211
|
2555 if (LHEADER_IMPLEMENTATION (h)->finalizer)
|
380
|
2556 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0);
|
0
|
2557 }
|
|
2558 }
|
|
2559
|
|
2560 for (header = *prev; header; )
|
|
2561 {
|
|
2562 struct lrecord_header *h = &(header->lheader);
|
412
|
2563 if (C_READONLY_RECORD_HEADER_P(h) || MARKED_RECORD_HEADER_P (h))
|
0
|
2564 {
|
412
|
2565 if (MARKED_RECORD_HEADER_P (h))
|
398
|
2566 UNMARK_RECORD_HEADER (h);
|
0
|
2567 num_used++;
|
380
|
2568 /* total_size += n->implementation->size_in_bytes (h);*/
|
412
|
2569 /* ### May modify header->next on a C_READONLY lcrecord */
|
0
|
2570 prev = &(header->next);
|
|
2571 header = *prev;
|
|
2572 tick_lcrecord_stats (h, 0);
|
|
2573 }
|
|
2574 else
|
|
2575 {
|
|
2576 struct lcrecord_header *next = header->next;
|
|
2577 *prev = next;
|
|
2578 tick_lcrecord_stats (h, 1);
|
|
2579 /* used to call finalizer right here. */
|
|
2580 xfree (header);
|
|
2581 header = next;
|
|
2582 }
|
|
2583 }
|
|
2584 *used = num_used;
|
|
2585 /* *total = total_size; */
|
|
2586 }
|
|
2587
|
207
|
2588
|
0
|
2589 static void
|
183
|
2590 sweep_bit_vectors_1 (Lisp_Object *prev,
|
0
|
2591 int *used, int *total, int *storage)
|
|
2592 {
|
|
2593 Lisp_Object bit_vector;
|
|
2594 int num_used = 0;
|
|
2595 int total_size = 0;
|
|
2596 int total_storage = 0;
|
|
2597
|
|
2598 /* BIT_VECTORP fails because the objects are marked, which changes
|
|
2599 their implementation */
|
|
2600 for (bit_vector = *prev; !EQ (bit_vector, Qzero); )
|
|
2601 {
|
380
|
2602 Lisp_Bit_Vector *v = XBIT_VECTOR (bit_vector);
|
0
|
2603 int len = v->size;
|
412
|
2604 if (C_READONLY_RECORD_HEADER_P(&(v->lheader)) || MARKED_RECORD_P (bit_vector))
|
0
|
2605 {
|
412
|
2606 if (MARKED_RECORD_P (bit_vector))
|
398
|
2607 UNMARK_RECORD_HEADER (&(v->lheader));
|
0
|
2608 total_size += len;
|
380
|
2609 total_storage +=
|
382
|
2610 MALLOC_OVERHEAD +
|
412
|
2611 STRETCHY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits,
|
|
2612 BIT_VECTOR_LONG_STORAGE (len));
|
0
|
2613 num_used++;
|
412
|
2614 /* ### May modify next on a C_READONLY bitvector */
|
0
|
2615 prev = &(bit_vector_next (v));
|
|
2616 bit_vector = *prev;
|
|
2617 }
|
|
2618 else
|
|
2619 {
|
|
2620 Lisp_Object next = bit_vector_next (v);
|
|
2621 *prev = next;
|
|
2622 xfree (v);
|
|
2623 bit_vector = next;
|
|
2624 }
|
|
2625 }
|
|
2626 *used = num_used;
|
|
2627 *total = total_size;
|
|
2628 *storage = total_storage;
|
|
2629 }
|
|
2630
|
|
2631 /* And the Lord said: Thou shalt use the `c-backslash-region' command
|
|
2632 to make macros prettier. */
|
|
2633
|
|
2634 #ifdef ERROR_CHECK_GC
|
|
2635
|
|
2636 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2637 do { \
|
380
|
2638 struct typename##_block *SFTB_current; \
|
|
2639 struct typename##_block **SFTB_prev; \
|
|
2640 int SFTB_limit; \
|
0
|
2641 int num_free = 0, num_used = 0; \
|
|
2642 \
|
380
|
2643 for (SFTB_prev = ¤t_##typename##_block, \
|
|
2644 SFTB_current = current_##typename##_block, \
|
|
2645 SFTB_limit = current_##typename##_block_index; \
|
|
2646 SFTB_current; \
|
0
|
2647 ) \
|
|
2648 { \
|
380
|
2649 int SFTB_iii; \
|
0
|
2650 \
|
380
|
2651 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
0
|
2652 { \
|
380
|
2653 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
0
|
2654 \
|
380
|
2655 if (FREE_STRUCT_P (SFTB_victim)) \
|
0
|
2656 { \
|
|
2657 num_free++; \
|
|
2658 } \
|
398
|
2659 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2660 { \
|
|
2661 num_used++; \
|
|
2662 } \
|
412
|
2663 else if (!MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
0
|
2664 { \
|
|
2665 num_free++; \
|
380
|
2666 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
0
|
2667 } \
|
|
2668 else \
|
|
2669 { \
|
|
2670 num_used++; \
|
380
|
2671 UNMARK_##typename (SFTB_victim); \
|
0
|
2672 } \
|
|
2673 } \
|
380
|
2674 SFTB_prev = &(SFTB_current->prev); \
|
|
2675 SFTB_current = SFTB_current->prev; \
|
|
2676 SFTB_limit = countof (current_##typename##_block->block); \
|
0
|
2677 } \
|
|
2678 \
|
|
2679 gc_count_num_##typename##_in_use = num_used; \
|
|
2680 gc_count_num_##typename##_freelist = num_free; \
|
|
2681 } while (0)
|
|
2682
|
183
|
2683 #else /* !ERROR_CHECK_GC */
|
0
|
2684
|
380
|
2685 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2686 do { \
|
|
2687 struct typename##_block *SFTB_current; \
|
|
2688 struct typename##_block **SFTB_prev; \
|
|
2689 int SFTB_limit; \
|
|
2690 int num_free = 0, num_used = 0; \
|
|
2691 \
|
|
2692 typename##_free_list = 0; \
|
|
2693 \
|
|
2694 for (SFTB_prev = ¤t_##typename##_block, \
|
|
2695 SFTB_current = current_##typename##_block, \
|
|
2696 SFTB_limit = current_##typename##_block_index; \
|
|
2697 SFTB_current; \
|
|
2698 ) \
|
|
2699 { \
|
|
2700 int SFTB_iii; \
|
|
2701 int SFTB_empty = 1; \
|
|
2702 obj_type *SFTB_old_free_list = typename##_free_list; \
|
|
2703 \
|
|
2704 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
|
2705 { \
|
|
2706 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
|
2707 \
|
|
2708 if (FREE_STRUCT_P (SFTB_victim)) \
|
|
2709 { \
|
|
2710 num_free++; \
|
|
2711 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \
|
|
2712 } \
|
398
|
2713 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2714 { \
|
|
2715 SFTB_empty = 0; \
|
|
2716 num_used++; \
|
|
2717 } \
|
412
|
2718 else if (!MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
380
|
2719 { \
|
|
2720 num_free++; \
|
|
2721 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
|
2722 } \
|
|
2723 else \
|
|
2724 { \
|
|
2725 SFTB_empty = 0; \
|
|
2726 num_used++; \
|
|
2727 UNMARK_##typename (SFTB_victim); \
|
|
2728 } \
|
|
2729 } \
|
|
2730 if (!SFTB_empty) \
|
|
2731 { \
|
|
2732 SFTB_prev = &(SFTB_current->prev); \
|
|
2733 SFTB_current = SFTB_current->prev; \
|
|
2734 } \
|
|
2735 else if (SFTB_current == current_##typename##_block \
|
|
2736 && !SFTB_current->prev) \
|
|
2737 { \
|
|
2738 /* No real point in freeing sole allocation block */ \
|
|
2739 break; \
|
|
2740 } \
|
|
2741 else \
|
|
2742 { \
|
|
2743 struct typename##_block *SFTB_victim_block = SFTB_current; \
|
|
2744 if (SFTB_victim_block == current_##typename##_block) \
|
|
2745 current_##typename##_block_index \
|
|
2746 = countof (current_##typename##_block->block); \
|
|
2747 SFTB_current = SFTB_current->prev; \
|
|
2748 { \
|
|
2749 *SFTB_prev = SFTB_current; \
|
|
2750 xfree (SFTB_victim_block); \
|
|
2751 /* Restore free list to what it was before victim was swept */ \
|
|
2752 typename##_free_list = SFTB_old_free_list; \
|
|
2753 num_free -= SFTB_limit; \
|
|
2754 } \
|
|
2755 } \
|
|
2756 SFTB_limit = countof (current_##typename##_block->block); \
|
|
2757 } \
|
|
2758 \
|
|
2759 gc_count_num_##typename##_in_use = num_used; \
|
|
2760 gc_count_num_##typename##_freelist = num_free; \
|
0
|
2761 } while (0)
|
|
2762
|
183
|
2763 #endif /* !ERROR_CHECK_GC */
|
0
|
2764
|
|
2765
|
|
2766
|
|
2767
|
|
2768 static void
|
|
2769 sweep_conses (void)
|
|
2770 {
|
398
|
2771 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
0
|
2772 #define ADDITIONAL_FREE_cons(ptr)
|
|
2773
|
412
|
2774 SWEEP_FIXED_TYPE_BLOCK (cons, struct Lisp_Cons);
|
0
|
2775 }
|
|
2776
|
|
2777 /* Explicitly free a cons cell. */
|
|
2778 void
|
412
|
2779 free_cons (struct Lisp_Cons *ptr)
|
0
|
2780 {
|
|
2781 #ifdef ERROR_CHECK_GC
|
|
2782 /* If the CAR is not an int, then it will be a pointer, which will
|
|
2783 always be four-byte aligned. If this cons cell has already been
|
|
2784 placed on the free list, however, its car will probably contain
|
|
2785 a chain pointer to the next cons on the list, which has cleverly
|
|
2786 had all its 0's and 1's inverted. This allows for a quick
|
|
2787 check to make sure we're not freeing something already freed. */
|
|
2788 if (POINTER_TYPE_P (XTYPE (ptr->car)))
|
|
2789 ASSERT_VALID_POINTER (XPNTR (ptr->car));
|
183
|
2790 #endif /* ERROR_CHECK_GC */
|
|
2791
|
0
|
2792 #ifndef ALLOC_NO_POOLS
|
412
|
2793 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, struct Lisp_Cons, ptr);
|
0
|
2794 #endif /* ALLOC_NO_POOLS */
|
|
2795 }
|
|
2796
|
|
2797 /* explicitly free a list. You **must make sure** that you have
|
|
2798 created all the cons cells that make up this list and that there
|
|
2799 are no pointers to any of these cons cells anywhere else. If there
|
|
2800 are, you will lose. */
|
|
2801
|
|
2802 void
|
|
2803 free_list (Lisp_Object list)
|
|
2804 {
|
|
2805 Lisp_Object rest, next;
|
|
2806
|
|
2807 for (rest = list; !NILP (rest); rest = next)
|
|
2808 {
|
|
2809 next = XCDR (rest);
|
|
2810 free_cons (XCONS (rest));
|
|
2811 }
|
|
2812 }
|
|
2813
|
|
2814 /* explicitly free an alist. You **must make sure** that you have
|
|
2815 created all the cons cells that make up this alist and that there
|
|
2816 are no pointers to any of these cons cells anywhere else. If there
|
|
2817 are, you will lose. */
|
|
2818
|
|
2819 void
|
|
2820 free_alist (Lisp_Object alist)
|
|
2821 {
|
|
2822 Lisp_Object rest, next;
|
|
2823
|
|
2824 for (rest = alist; !NILP (rest); rest = next)
|
|
2825 {
|
|
2826 next = XCDR (rest);
|
|
2827 free_cons (XCONS (XCAR (rest)));
|
|
2828 free_cons (XCONS (rest));
|
|
2829 }
|
|
2830 }
|
|
2831
|
|
2832 static void
|
|
2833 sweep_compiled_functions (void)
|
|
2834 {
|
|
2835 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2836 #define ADDITIONAL_FREE_compiled_function(ptr)
|
|
2837
|
380
|
2838 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function);
|
0
|
2839 }
|
|
2840
|
|
2841
|
|
2842 #ifdef LISP_FLOAT_TYPE
|
|
2843 static void
|
|
2844 sweep_floats (void)
|
|
2845 {
|
|
2846 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2847 #define ADDITIONAL_FREE_float(ptr)
|
|
2848
|
412
|
2849 SWEEP_FIXED_TYPE_BLOCK (float, struct Lisp_Float);
|
0
|
2850 }
|
|
2851 #endif /* LISP_FLOAT_TYPE */
|
|
2852
|
|
2853 static void
|
|
2854 sweep_symbols (void)
|
|
2855 {
|
398
|
2856 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
0
|
2857 #define ADDITIONAL_FREE_symbol(ptr)
|
|
2858
|
412
|
2859 SWEEP_FIXED_TYPE_BLOCK (symbol, struct Lisp_Symbol);
|
0
|
2860 }
|
|
2861
|
|
2862 static void
|
|
2863 sweep_extents (void)
|
|
2864 {
|
|
2865 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2866 #define ADDITIONAL_FREE_extent(ptr)
|
|
2867
|
|
2868 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent);
|
|
2869 }
|
|
2870
|
|
2871 static void
|
|
2872 sweep_events (void)
|
|
2873 {
|
|
2874 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2875 #define ADDITIONAL_FREE_event(ptr)
|
|
2876
|
412
|
2877 SWEEP_FIXED_TYPE_BLOCK (event, struct Lisp_Event);
|
0
|
2878 }
|
|
2879
|
|
2880 static void
|
|
2881 sweep_markers (void)
|
|
2882 {
|
|
2883 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2884 #define ADDITIONAL_FREE_marker(ptr) \
|
|
2885 do { Lisp_Object tem; \
|
|
2886 XSETMARKER (tem, ptr); \
|
|
2887 unchain_marker (tem); \
|
|
2888 } while (0)
|
|
2889
|
412
|
2890 SWEEP_FIXED_TYPE_BLOCK (marker, struct Lisp_Marker);
|
0
|
2891 }
|
|
2892
|
|
2893 /* Explicitly free a marker. */
|
|
2894 void
|
412
|
2895 free_marker (struct Lisp_Marker *ptr)
|
0
|
2896 {
|
412
|
2897 #ifdef ERROR_CHECK_GC
|
0
|
2898 /* Perhaps this will catch freeing an already-freed marker. */
|
412
|
2899 Lisp_Object temmy;
|
|
2900 XSETMARKER (temmy, ptr);
|
|
2901 assert (GC_MARKERP (temmy));
|
|
2902 #endif /* ERROR_CHECK_GC */
|
183
|
2903
|
0
|
2904 #ifndef ALLOC_NO_POOLS
|
412
|
2905 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, struct Lisp_Marker, ptr);
|
0
|
2906 #endif /* ALLOC_NO_POOLS */
|
|
2907 }
|
|
2908
|
70
|
2909
|
|
2910 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY)
|
|
2911
|
|
2912 static void
|
|
2913 verify_string_chars_integrity (void)
|
|
2914 {
|
|
2915 struct string_chars_block *sb;
|
|
2916
|
|
2917 /* Scan each existing string block sequentially, string by string. */
|
|
2918 for (sb = first_string_chars_block; sb; sb = sb->next)
|
|
2919 {
|
|
2920 int pos = 0;
|
|
2921 /* POS is the index of the next string in the block. */
|
|
2922 while (pos < sb->pos)
|
|
2923 {
|
183
|
2924 struct string_chars *s_chars =
|
70
|
2925 (struct string_chars *) &(sb->string_chars[pos]);
|
412
|
2926 struct Lisp_String *string;
|
70
|
2927 int size;
|
|
2928 int fullsize;
|
|
2929
|
|
2930 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
2931 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
2932 storage. (See below.) */
|
|
2933
|
|
2934 if (FREE_STRUCT_P (s_chars))
|
|
2935 {
|
|
2936 fullsize = ((struct unused_string_chars *) s_chars)->fullsize;
|
|
2937 pos += fullsize;
|
|
2938 continue;
|
|
2939 }
|
|
2940
|
|
2941 string = s_chars->string;
|
|
2942 /* Must be 32-bit aligned. */
|
|
2943 assert ((((int) string) & 3) == 0);
|
|
2944
|
|
2945 size = string_length (string);
|
|
2946 fullsize = STRING_FULLSIZE (size);
|
|
2947
|
|
2948 assert (!BIG_STRING_FULLSIZE_P (fullsize));
|
|
2949 assert (string_data (string) == s_chars->chars);
|
|
2950 pos += fullsize;
|
|
2951 }
|
|
2952 assert (pos == sb->pos);
|
|
2953 }
|
|
2954 }
|
|
2955
|
|
2956 #endif /* MULE && ERROR_CHECK_GC */
|
|
2957
|
0
|
2958 /* Compactify string chars, relocating the reference to each --
|
|
2959 free any empty string_chars_block we see. */
|
|
2960 static void
|
|
2961 compact_string_chars (void)
|
|
2962 {
|
|
2963 struct string_chars_block *to_sb = first_string_chars_block;
|
|
2964 int to_pos = 0;
|
|
2965 struct string_chars_block *from_sb;
|
|
2966
|
|
2967 /* Scan each existing string block sequentially, string by string. */
|
|
2968 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next)
|
|
2969 {
|
|
2970 int from_pos = 0;
|
|
2971 /* FROM_POS is the index of the next string in the block. */
|
|
2972 while (from_pos < from_sb->pos)
|
|
2973 {
|
183
|
2974 struct string_chars *from_s_chars =
|
0
|
2975 (struct string_chars *) &(from_sb->string_chars[from_pos]);
|
|
2976 struct string_chars *to_s_chars;
|
412
|
2977 struct Lisp_String *string;
|
0
|
2978 int size;
|
|
2979 int fullsize;
|
|
2980
|
|
2981 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
2982 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
2983 storage. This happens under Mule when a string's size changes
|
|
2984 in such a way that its fullsize changes. (Strings can change
|
|
2985 size because a different-length character can be substituted
|
|
2986 for another character.) In this case, after the bogus string
|
|
2987 pointer is the "fullsize" of this entry, i.e. how many bytes
|
|
2988 to skip. */
|
|
2989
|
|
2990 if (FREE_STRUCT_P (from_s_chars))
|
|
2991 {
|
|
2992 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize;
|
|
2993 from_pos += fullsize;
|
|
2994 continue;
|
|
2995 }
|
|
2996
|
|
2997 string = from_s_chars->string;
|
|
2998 assert (!(FREE_STRUCT_P (string)));
|
|
2999
|
|
3000 size = string_length (string);
|
|
3001 fullsize = STRING_FULLSIZE (size);
|
|
3002
|
412
|
3003 if (BIG_STRING_FULLSIZE_P (fullsize))
|
|
3004 abort ();
|
0
|
3005
|
|
3006 /* Just skip it if it isn't marked. */
|
207
|
3007 if (! MARKED_RECORD_HEADER_P (&(string->lheader)))
|
0
|
3008 {
|
|
3009 from_pos += fullsize;
|
|
3010 continue;
|
|
3011 }
|
|
3012
|
|
3013 /* If it won't fit in what's left of TO_SB, close TO_SB out
|
|
3014 and go on to the next string_chars_block. We know that TO_SB
|
|
3015 cannot advance past FROM_SB here since FROM_SB is large enough
|
|
3016 to currently contain this string. */
|
|
3017 if ((to_pos + fullsize) > countof (to_sb->string_chars))
|
|
3018 {
|
|
3019 to_sb->pos = to_pos;
|
|
3020 to_sb = to_sb->next;
|
|
3021 to_pos = 0;
|
|
3022 }
|
183
|
3023
|
0
|
3024 /* Compute new address of this string
|
|
3025 and update TO_POS for the space being used. */
|
|
3026 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]);
|
|
3027
|
|
3028 /* Copy the string_chars to the new place. */
|
|
3029 if (from_s_chars != to_s_chars)
|
|
3030 memmove (to_s_chars, from_s_chars, fullsize);
|
|
3031
|
|
3032 /* Relocate FROM_S_CHARS's reference */
|
|
3033 set_string_data (string, &(to_s_chars->chars[0]));
|
183
|
3034
|
0
|
3035 from_pos += fullsize;
|
|
3036 to_pos += fullsize;
|
|
3037 }
|
|
3038 }
|
|
3039
|
183
|
3040 /* Set current to the last string chars block still used and
|
0
|
3041 free any that follow. */
|
|
3042 {
|
|
3043 struct string_chars_block *victim;
|
|
3044
|
|
3045 for (victim = to_sb->next; victim; )
|
|
3046 {
|
|
3047 struct string_chars_block *next = victim->next;
|
|
3048 xfree (victim);
|
|
3049 victim = next;
|
|
3050 }
|
|
3051
|
|
3052 current_string_chars_block = to_sb;
|
|
3053 current_string_chars_block->pos = to_pos;
|
|
3054 current_string_chars_block->next = 0;
|
|
3055 }
|
|
3056 }
|
|
3057
|
|
3058 #if 1 /* Hack to debug missing purecopy's */
|
|
3059 static int debug_string_purity;
|
|
3060
|
|
3061 static void
|
412
|
3062 debug_string_purity_print (struct Lisp_String *p)
|
0
|
3063 {
|
|
3064 Charcount i;
|
|
3065 Charcount s = string_char_length (p);
|
412
|
3066 putc ('\"', stderr);
|
0
|
3067 for (i = 0; i < s; i++)
|
|
3068 {
|
|
3069 Emchar ch = string_char (p, i);
|
|
3070 if (ch < 32 || ch >= 126)
|
|
3071 stderr_out ("\\%03o", ch);
|
|
3072 else if (ch == '\\' || ch == '\"')
|
|
3073 stderr_out ("\\%c", ch);
|
|
3074 else
|
|
3075 stderr_out ("%c", ch);
|
|
3076 }
|
|
3077 stderr_out ("\"\n");
|
|
3078 }
|
183
|
3079 #endif /* 1 */
|
0
|
3080
|
|
3081
|
|
3082 static void
|
|
3083 sweep_strings (void)
|
|
3084 {
|
|
3085 int num_small_used = 0, num_small_bytes = 0, num_bytes = 0;
|
|
3086 int debug = debug_string_purity;
|
|
3087
|
412
|
3088 #define UNMARK_string(ptr) \
|
|
3089 do { struct Lisp_String *p = (ptr); \
|
|
3090 int size = string_length (p); \
|
|
3091 UNMARK_RECORD_HEADER (&(p->lheader)); \
|
|
3092 num_bytes += size; \
|
|
3093 if (!BIG_STRING_SIZE_P (size)) \
|
|
3094 { num_small_bytes += size; \
|
|
3095 num_small_used++; \
|
|
3096 } \
|
|
3097 if (debug) debug_string_purity_print (p); \
|
|
3098 } while (0)
|
|
3099 #define ADDITIONAL_FREE_string(p) \
|
|
3100 do { int size = string_length (p); \
|
|
3101 if (BIG_STRING_SIZE_P (size)) \
|
|
3102 xfree_1 (CHARS_TO_STRING_CHAR (string_data (p))); \
|
|
3103 } while (0)
|
|
3104
|
|
3105 SWEEP_FIXED_TYPE_BLOCK (string, struct Lisp_String);
|
0
|
3106
|
|
3107 gc_count_num_short_string_in_use = num_small_used;
|
|
3108 gc_count_string_total_size = num_bytes;
|
|
3109 gc_count_short_string_total_size = num_small_bytes;
|
|
3110 }
|
|
3111
|
|
3112
|
|
3113 /* I hate duplicating all this crap! */
|
412
|
3114 static int
|
0
|
3115 marked_p (Lisp_Object obj)
|
|
3116 {
|
412
|
3117 #ifdef ERROR_CHECK_GC
|
|
3118 assert (! (GC_EQ (obj, Qnull_pointer)));
|
|
3119 #endif
|
380
|
3120 /* Checks we used to perform. */
|
|
3121 /* if (EQ (obj, Qnull_pointer)) return 1; */
|
|
3122 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */
|
|
3123 /* if (PURIFIED (XPNTR (obj))) return 1; */
|
|
3124
|
412
|
3125 if (XGCTYPE (obj) == Lisp_Type_Record)
|
0
|
3126 {
|
398
|
3127 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
412
|
3128 #if defined (ERROR_CHECK_GC)
|
|
3129 assert (lheader->type <= last_lrecord_type_index_assigned);
|
|
3130 #endif
|
|
3131 return C_READONLY_RECORD_HEADER_P (lheader) || MARKED_RECORD_HEADER_P (lheader);
|
0
|
3132 }
|
398
|
3133 return 1;
|
0
|
3134 }
|
|
3135
|
|
3136 static void
|
|
3137 gc_sweep (void)
|
|
3138 {
|
|
3139 /* Free all unmarked records. Do this at the very beginning,
|
|
3140 before anything else, so that the finalize methods can safely
|
|
3141 examine items in the objects. sweep_lcrecords_1() makes
|
|
3142 sure to call all the finalize methods *before* freeing anything,
|
|
3143 to complete the safety. */
|
|
3144 {
|
|
3145 int ignored;
|
|
3146 sweep_lcrecords_1 (&all_lcrecords, &ignored);
|
|
3147 }
|
|
3148
|
|
3149 compact_string_chars ();
|
|
3150
|
|
3151 /* Finalize methods below (called through the ADDITIONAL_FREE_foo
|
|
3152 macros) must be *extremely* careful to make sure they're not
|
|
3153 referencing freed objects. The only two existing finalize
|
|
3154 methods (for strings and markers) pass muster -- the string
|
|
3155 finalizer doesn't look at anything but its own specially-
|
|
3156 created block, and the marker finalizer only looks at live
|
|
3157 buffers (which will never be freed) and at the markers before
|
|
3158 and after it in the chain (which, by induction, will never be
|
|
3159 freed because if so, they would have already removed themselves
|
|
3160 from the chain). */
|
|
3161
|
|
3162 /* Put all unmarked strings on free list, free'ing the string chars
|
|
3163 of large unmarked strings */
|
|
3164 sweep_strings ();
|
|
3165
|
|
3166 /* Put all unmarked conses on free list */
|
|
3167 sweep_conses ();
|
|
3168
|
|
3169 /* Free all unmarked bit vectors */
|
|
3170 sweep_bit_vectors_1 (&all_bit_vectors,
|
|
3171 &gc_count_num_bit_vector_used,
|
|
3172 &gc_count_bit_vector_total_size,
|
|
3173 &gc_count_bit_vector_storage);
|
|
3174
|
|
3175 /* Free all unmarked compiled-function objects */
|
|
3176 sweep_compiled_functions ();
|
|
3177
|
|
3178 #ifdef LISP_FLOAT_TYPE
|
|
3179 /* Put all unmarked floats on free list */
|
|
3180 sweep_floats ();
|
|
3181 #endif
|
|
3182
|
|
3183 /* Put all unmarked symbols on free list */
|
|
3184 sweep_symbols ();
|
|
3185
|
|
3186 /* Put all unmarked extents on free list */
|
|
3187 sweep_extents ();
|
|
3188
|
|
3189 /* Put all unmarked markers on free list.
|
|
3190 Dechain each one first from the buffer into which it points. */
|
|
3191 sweep_markers ();
|
|
3192
|
|
3193 sweep_events ();
|
|
3194
|
|
3195 }
|
|
3196
|
|
3197 /* Clearing for disksave. */
|
|
3198
|
|
3199 void
|
|
3200 disksave_object_finalization (void)
|
|
3201 {
|
|
3202 /* It's important that certain information from the environment not get
|
|
3203 dumped with the executable (pathnames, environment variables, etc.).
|
380
|
3204 To make it easier to tell when this has happened with strings(1) we
|
0
|
3205 clear some known-to-be-garbage blocks of memory, so that leftover
|
|
3206 results of old evaluation don't look like potential problems.
|
|
3207 But first we set some notable variables to nil and do one more GC,
|
|
3208 to turn those strings into garbage.
|
412
|
3209 */
|
0
|
3210
|
|
3211 /* Yeah, this list is pretty ad-hoc... */
|
|
3212 Vprocess_environment = Qnil;
|
|
3213 Vexec_directory = Qnil;
|
|
3214 Vdata_directory = Qnil;
|
110
|
3215 Vsite_directory = Qnil;
|
0
|
3216 Vdoc_directory = Qnil;
|
|
3217 Vconfigure_info_directory = Qnil;
|
|
3218 Vexec_path = Qnil;
|
|
3219 Vload_path = Qnil;
|
|
3220 /* Vdump_load_path = Qnil; */
|
396
|
3221 /* Release hash tables for locate_file */
|
398
|
3222 Flocate_file_clear_hashing (Qt);
|
288
|
3223 uncache_home_directory();
|
|
3224
|
233
|
3225 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \
|
|
3226 defined(LOADHIST_BUILTIN))
|
0
|
3227 Vload_history = Qnil;
|
233
|
3228 #endif
|
0
|
3229 Vshell_file_name = Qnil;
|
|
3230
|
|
3231 garbage_collect_1 ();
|
|
3232
|
|
3233 /* Run the disksave finalization methods of all live objects. */
|
|
3234 disksave_object_finalization_1 ();
|
|
3235
|
|
3236 /* Zero out the uninitialized (really, unused) part of the containers
|
|
3237 for the live strings. */
|
|
3238 {
|
|
3239 struct string_chars_block *scb;
|
|
3240 for (scb = first_string_chars_block; scb; scb = scb->next)
|
249
|
3241 {
|
|
3242 int count = sizeof (scb->string_chars) - scb->pos;
|
|
3243
|
|
3244 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE);
|
412
|
3245 if (count != 0) {
|
|
3246 /* from the block's fill ptr to the end */
|
|
3247 memset ((scb->string_chars + scb->pos), 0, count);
|
|
3248 }
|
249
|
3249 }
|
0
|
3250 }
|
|
3251
|
|
3252 /* There, that ought to be enough... */
|
|
3253
|
|
3254 }
|
|
3255
|
|
3256
|
|
3257 Lisp_Object
|
|
3258 restore_gc_inhibit (Lisp_Object val)
|
|
3259 {
|
|
3260 gc_currently_forbidden = XINT (val);
|
|
3261 return val;
|
|
3262 }
|
|
3263
|
|
3264 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */
|
|
3265 static int gc_hooks_inhibited;
|
|
3266
|
|
3267
|
|
3268 void
|
|
3269 garbage_collect_1 (void)
|
|
3270 {
|
380
|
3271 #if MAX_SAVE_STACK > 0
|
0
|
3272 char stack_top_variable;
|
|
3273 extern char *stack_bottom;
|
380
|
3274 #endif
|
261
|
3275 struct frame *f;
|
272
|
3276 int speccount;
|
|
3277 int cursor_changed;
|
|
3278 Lisp_Object pre_gc_cursor;
|
0
|
3279 struct gcpro gcpro1;
|
|
3280
|
272
|
3281 if (gc_in_progress
|
|
3282 || gc_currently_forbidden
|
|
3283 || in_display
|
|
3284 || preparing_for_armageddon)
|
0
|
3285 return;
|
|
3286
|
380
|
3287 /* We used to call selected_frame() here.
|
|
3288
|
|
3289 The following functions cannot be called inside GC
|
|
3290 so we move to after the above tests. */
|
|
3291 {
|
|
3292 Lisp_Object frame;
|
|
3293 Lisp_Object device = Fselected_device (Qnil);
|
|
3294 if (NILP (device)) /* Could happen during startup, eg. if always_gc */
|
|
3295 return;
|
|
3296 frame = DEVICE_SELECTED_FRAME (XDEVICE (device));
|
|
3297 if (NILP (frame))
|
|
3298 signal_simple_error ("No frames exist on device", device);
|
|
3299 f = XFRAME (frame);
|
|
3300 }
|
|
3301
|
272
|
3302 pre_gc_cursor = Qnil;
|
|
3303 cursor_changed = 0;
|
0
|
3304
|
163
|
3305 GCPRO1 (pre_gc_cursor);
|
0
|
3306
|
|
3307 /* Very important to prevent GC during any of the following
|
|
3308 stuff that might run Lisp code; otherwise, we'll likely
|
|
3309 have infinite GC recursion. */
|
272
|
3310 speccount = specpdl_depth ();
|
0
|
3311 record_unwind_protect (restore_gc_inhibit,
|
|
3312 make_int (gc_currently_forbidden));
|
|
3313 gc_currently_forbidden = 1;
|
|
3314
|
|
3315 if (!gc_hooks_inhibited)
|
|
3316 run_hook_trapping_errors ("Error in pre-gc-hook", Qpre_gc_hook);
|
|
3317
|
|
3318 /* Now show the GC cursor/message. */
|
|
3319 if (!noninteractive)
|
|
3320 {
|
163
|
3321 if (FRAME_WIN_P (f))
|
0
|
3322 {
|
163
|
3323 Lisp_Object frame = make_frame (f);
|
|
3324 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph,
|
|
3325 FRAME_SELECTED_WINDOW (f),
|
|
3326 ERROR_ME_NOT, 1);
|
|
3327 pre_gc_cursor = f->pointer;
|
|
3328 if (POINTER_IMAGE_INSTANCEP (cursor)
|
|
3329 /* don't change if we don't know how to change back. */
|
|
3330 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor))
|
0
|
3331 {
|
163
|
3332 cursor_changed = 1;
|
|
3333 Fset_frame_pointer (frame, cursor);
|
0
|
3334 }
|
|
3335 }
|
163
|
3336
|
|
3337 /* Don't print messages to the stream device. */
|
|
3338 if (!cursor_changed && !FRAME_STREAM_P (f))
|
|
3339 {
|
|
3340 char *msg = (STRINGP (Vgc_message)
|
|
3341 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
|
3342 : 0);
|
|
3343 Lisp_Object args[2], whole_msg;
|
|
3344 args[0] = build_string (msg ? msg :
|
412
|
3345 GETTEXT ((CONST char *) gc_default_message));
|
163
|
3346 args[1] = build_string ("...");
|
|
3347 whole_msg = Fconcat (2, args);
|
|
3348 echo_area_message (f, (Bufbyte *) 0, whole_msg, 0, -1,
|
|
3349 Qgarbage_collecting);
|
|
3350 }
|
0
|
3351 }
|
|
3352
|
|
3353 /***** Now we actually start the garbage collection. */
|
|
3354
|
|
3355 gc_in_progress = 1;
|
|
3356
|
|
3357 gc_generation_number[0]++;
|
|
3358
|
|
3359 #if MAX_SAVE_STACK > 0
|
|
3360
|
|
3361 /* Save a copy of the contents of the stack, for debugging. */
|
|
3362 if (!purify_flag)
|
|
3363 {
|
272
|
3364 /* Static buffer in which we save a copy of the C stack at each GC. */
|
|
3365 static char *stack_copy;
|
|
3366 static size_t stack_copy_size;
|
|
3367
|
|
3368 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom;
|
|
3369 size_t stack_size = (stack_diff > 0 ? stack_diff : -stack_diff);
|
|
3370 if (stack_size < MAX_SAVE_STACK)
|
0
|
3371 {
|
272
|
3372 if (stack_copy_size < stack_size)
|
0
|
3373 {
|
272
|
3374 stack_copy = (char *) xrealloc (stack_copy, stack_size);
|
|
3375 stack_copy_size = stack_size;
|
0
|
3376 }
|
272
|
3377
|
|
3378 memcpy (stack_copy,
|
|
3379 stack_diff > 0 ? stack_bottom : &stack_top_variable,
|
|
3380 stack_size);
|
0
|
3381 }
|
|
3382 }
|
|
3383 #endif /* MAX_SAVE_STACK > 0 */
|
|
3384
|
|
3385 /* Do some totally ad-hoc resource clearing. */
|
|
3386 /* #### generalize this? */
|
|
3387 clear_event_resource ();
|
|
3388 cleanup_specifiers ();
|
|
3389
|
|
3390 /* Mark all the special slots that serve as the roots of accessibility. */
|
396
|
3391
|
|
3392 { /* staticpro() */
|
|
3393 int i;
|
0
|
3394 for (i = 0; i < staticidx; i++)
|
396
|
3395 mark_object (*(staticvec[i]));
|
|
3396 }
|
|
3397
|
|
3398 { /* GCPRO() */
|
|
3399 struct gcpro *tail;
|
|
3400 int i;
|
0
|
3401 for (tail = gcprolist; tail; tail = tail->next)
|
396
|
3402 for (i = 0; i < tail->nvars; i++)
|
|
3403 mark_object (tail->var[i]);
|
|
3404 }
|
|
3405
|
|
3406 { /* specbind() */
|
|
3407 struct specbinding *bind;
|
0
|
3408 for (bind = specpdl; bind != specpdl_ptr; bind++)
|
|
3409 {
|
|
3410 mark_object (bind->symbol);
|
|
3411 mark_object (bind->old_value);
|
|
3412 }
|
396
|
3413 }
|
|
3414
|
|
3415 {
|
|
3416 struct catchtag *catch;
|
0
|
3417 for (catch = catchlist; catch; catch = catch->next)
|
|
3418 {
|
|
3419 mark_object (catch->tag);
|
|
3420 mark_object (catch->val);
|
|
3421 }
|
396
|
3422 }
|
|
3423
|
|
3424 {
|
|
3425 struct backtrace *backlist;
|
0
|
3426 for (backlist = backtrace_list; backlist; backlist = backlist->next)
|
|
3427 {
|
|
3428 int nargs = backlist->nargs;
|
396
|
3429 int i;
|
0
|
3430
|
|
3431 mark_object (*backlist->function);
|
|
3432 if (nargs == UNEVALLED || nargs == MANY)
|
|
3433 mark_object (backlist->args[0]);
|
|
3434 else
|
|
3435 for (i = 0; i < nargs; i++)
|
|
3436 mark_object (backlist->args[i]);
|
|
3437 }
|
|
3438 }
|
|
3439
|
412
|
3440 mark_redisplay (mark_object);
|
|
3441 mark_profiling_info (mark_object);
|
396
|
3442
|
0
|
3443 /* OK, now do the after-mark stuff. This is for things that
|
380
|
3444 are only marked when something else is marked (e.g. weak hash tables).
|
0
|
3445 There may be complex dependencies between such objects -- e.g.
|
380
|
3446 a weak hash table might be unmarked, but after processing a later
|
|
3447 weak hash table, the former one might get marked. So we have to
|
0
|
3448 iterate until nothing more gets marked. */
|
380
|
3449
|
412
|
3450 while (finish_marking_weak_hash_tables (marked_p, mark_object) > 0 ||
|
|
3451 finish_marking_weak_lists (marked_p, mark_object) > 0)
|
380
|
3452 ;
|
0
|
3453
|
|
3454 /* And prune (this needs to be called after everything else has been
|
|
3455 marked and before we do any sweeping). */
|
|
3456 /* #### this is somewhat ad-hoc and should probably be an object
|
|
3457 method */
|
412
|
3458 prune_weak_hash_tables (marked_p);
|
|
3459 prune_weak_lists (marked_p);
|
|
3460 prune_specifiers (marked_p);
|
|
3461 prune_syntax_tables (marked_p);
|
0
|
3462
|
|
3463 gc_sweep ();
|
|
3464
|
|
3465 consing_since_gc = 0;
|
|
3466 #ifndef DEBUG_XEMACS
|
|
3467 /* Allow you to set it really fucking low if you really want ... */
|
|
3468 if (gc_cons_threshold < 10000)
|
|
3469 gc_cons_threshold = 10000;
|
|
3470 #endif
|
|
3471
|
|
3472 gc_in_progress = 0;
|
|
3473
|
|
3474 /******* End of garbage collection ********/
|
|
3475
|
|
3476 run_hook_trapping_errors ("Error in post-gc-hook", Qpost_gc_hook);
|
|
3477
|
|
3478 /* Now remove the GC cursor/message */
|
|
3479 if (!noninteractive)
|
|
3480 {
|
163
|
3481 if (cursor_changed)
|
|
3482 Fset_frame_pointer (make_frame (f), pre_gc_cursor);
|
|
3483 else if (!FRAME_STREAM_P (f))
|
0
|
3484 {
|
|
3485 char *msg = (STRINGP (Vgc_message)
|
14
|
3486 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
0
|
3487 : 0);
|
|
3488
|
|
3489 /* Show "...done" only if the echo area would otherwise be empty. */
|
183
|
3490 if (NILP (clear_echo_area (selected_frame (),
|
0
|
3491 Qgarbage_collecting, 0)))
|
|
3492 {
|
|
3493 Lisp_Object args[2], whole_msg;
|
|
3494 args[0] = build_string (msg ? msg :
|
412
|
3495 GETTEXT ((CONST char *)
|
0
|
3496 gc_default_message));
|
|
3497 args[1] = build_string ("... done");
|
|
3498 whole_msg = Fconcat (2, args);
|
|
3499 echo_area_message (selected_frame (), (Bufbyte *) 0,
|
|
3500 whole_msg, 0, -1,
|
|
3501 Qgarbage_collecting);
|
|
3502 }
|
|
3503 }
|
|
3504 }
|
|
3505
|
|
3506 /* now stop inhibiting GC */
|
|
3507 unbind_to (speccount, Qnil);
|
|
3508
|
|
3509 if (!breathing_space)
|
|
3510 {
|
272
|
3511 breathing_space = malloc (4096 - MALLOC_OVERHEAD);
|
0
|
3512 }
|
|
3513
|
|
3514 UNGCPRO;
|
|
3515 return;
|
|
3516 }
|
|
3517
|
|
3518 /* Debugging aids. */
|
|
3519
|
|
3520 static Lisp_Object
|
412
|
3521 gc_plist_hack (CONST char *name, int value, Lisp_Object tail)
|
0
|
3522 {
|
|
3523 /* C doesn't have local functions (or closures, or GC, or readable syntax,
|
|
3524 or portable numeric datatypes, or bit-vectors, or characters, or
|
|
3525 arrays, or exceptions, or ...) */
|
173
|
3526 return cons3 (intern (name), make_int (value), tail);
|
0
|
3527 }
|
|
3528
|
380
|
3529 #define HACK_O_MATIC(type, name, pl) do { \
|
|
3530 int s = 0; \
|
|
3531 struct type##_block *x = current_##type##_block; \
|
|
3532 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \
|
|
3533 (pl) = gc_plist_hack ((name), s, (pl)); \
|
|
3534 } while (0)
|
0
|
3535
|
20
|
3536 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /*
|
0
|
3537 Reclaim storage for Lisp objects no longer needed.
|
272
|
3538 Return info on amount of space in use:
|
0
|
3539 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
|
|
3540 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
|
183
|
3541 PLIST)
|
0
|
3542 where `PLIST' is a list of alternating keyword/value pairs providing
|
|
3543 more detailed information.
|
|
3544 Garbage collection happens automatically if you cons more than
|
|
3545 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
|
20
|
3546 */
|
|
3547 ())
|
0
|
3548 {
|
|
3549 Lisp_Object pl = Qnil;
|
|
3550 int i;
|
243
|
3551 int gc_count_vector_total_size = 0;
|
104
|
3552
|
0
|
3553 garbage_collect_1 ();
|
|
3554
|
412
|
3555 for (i = 0; i < last_lrecord_type_index_assigned; i++)
|
0
|
3556 {
|
183
|
3557 if (lcrecord_stats[i].bytes_in_use != 0
|
0
|
3558 || lcrecord_stats[i].bytes_freed != 0
|
|
3559 || lcrecord_stats[i].instances_on_free_list != 0)
|
|
3560 {
|
|
3561 char buf [255];
|
412
|
3562 CONST char *name = lrecord_implementations_table[i]->name;
|
0
|
3563 int len = strlen (name);
|
207
|
3564 /* save this for the FSFmacs-compatible part of the summary */
|
412
|
3565 if (i == *lrecord_vector.lrecord_type_index)
|
207
|
3566 gc_count_vector_total_size =
|
|
3567 lcrecord_stats[i].bytes_in_use + lcrecord_stats[i].bytes_freed;
|
398
|
3568
|
0
|
3569 sprintf (buf, "%s-storage", name);
|
|
3570 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl);
|
|
3571 /* Okay, simple pluralization check for `symbol-value-varalias' */
|
|
3572 if (name[len-1] == 's')
|
|
3573 sprintf (buf, "%ses-freed", name);
|
|
3574 else
|
|
3575 sprintf (buf, "%ss-freed", name);
|
|
3576 if (lcrecord_stats[i].instances_freed != 0)
|
|
3577 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl);
|
|
3578 if (name[len-1] == 's')
|
|
3579 sprintf (buf, "%ses-on-free-list", name);
|
|
3580 else
|
|
3581 sprintf (buf, "%ss-on-free-list", name);
|
|
3582 if (lcrecord_stats[i].instances_on_free_list != 0)
|
|
3583 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list,
|
|
3584 pl);
|
|
3585 if (name[len-1] == 's')
|
|
3586 sprintf (buf, "%ses-used", name);
|
|
3587 else
|
|
3588 sprintf (buf, "%ss-used", name);
|
|
3589 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl);
|
|
3590 }
|
|
3591 }
|
|
3592
|
|
3593 HACK_O_MATIC (extent, "extent-storage", pl);
|
|
3594 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl);
|
|
3595 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl);
|
|
3596 HACK_O_MATIC (event, "event-storage", pl);
|
|
3597 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl);
|
|
3598 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl);
|
|
3599 HACK_O_MATIC (marker, "marker-storage", pl);
|
|
3600 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl);
|
|
3601 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl);
|
|
3602 #ifdef LISP_FLOAT_TYPE
|
|
3603 HACK_O_MATIC (float, "float-storage", pl);
|
|
3604 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl);
|
|
3605 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl);
|
|
3606 #endif /* LISP_FLOAT_TYPE */
|
|
3607 HACK_O_MATIC (string, "string-header-storage", pl);
|
183
|
3608 pl = gc_plist_hack ("long-strings-total-length",
|
0
|
3609 gc_count_string_total_size
|
|
3610 - gc_count_short_string_total_size, pl);
|
|
3611 HACK_O_MATIC (string_chars, "short-string-storage", pl);
|
|
3612 pl = gc_plist_hack ("short-strings-total-length",
|
|
3613 gc_count_short_string_total_size, pl);
|
|
3614 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl);
|
183
|
3615 pl = gc_plist_hack ("long-strings-used",
|
0
|
3616 gc_count_num_string_in_use
|
|
3617 - gc_count_num_short_string_in_use, pl);
|
183
|
3618 pl = gc_plist_hack ("short-strings-used",
|
0
|
3619 gc_count_num_short_string_in_use, pl);
|
|
3620
|
|
3621 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl);
|
|
3622 pl = gc_plist_hack ("compiled-functions-free",
|
|
3623 gc_count_num_compiled_function_freelist, pl);
|
|
3624 pl = gc_plist_hack ("compiled-functions-used",
|
|
3625 gc_count_num_compiled_function_in_use, pl);
|
|
3626
|
|
3627 pl = gc_plist_hack ("bit-vector-storage", gc_count_bit_vector_storage, pl);
|
183
|
3628 pl = gc_plist_hack ("bit-vectors-total-length",
|
0
|
3629 gc_count_bit_vector_total_size, pl);
|
|
3630 pl = gc_plist_hack ("bit-vectors-used", gc_count_num_bit_vector_used, pl);
|
|
3631
|
|
3632 HACK_O_MATIC (symbol, "symbol-storage", pl);
|
|
3633 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl);
|
|
3634 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl);
|
|
3635
|
|
3636 HACK_O_MATIC (cons, "cons-storage", pl);
|
|
3637 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl);
|
|
3638 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl);
|
|
3639
|
|
3640 /* The things we do for backwards-compatibility */
|
272
|
3641 return
|
|
3642 list6 (Fcons (make_int (gc_count_num_cons_in_use),
|
|
3643 make_int (gc_count_num_cons_freelist)),
|
|
3644 Fcons (make_int (gc_count_num_symbol_in_use),
|
|
3645 make_int (gc_count_num_symbol_freelist)),
|
|
3646 Fcons (make_int (gc_count_num_marker_in_use),
|
|
3647 make_int (gc_count_num_marker_freelist)),
|
|
3648 make_int (gc_count_string_total_size),
|
|
3649 make_int (gc_count_vector_total_size),
|
|
3650 pl);
|
0
|
3651 }
|
|
3652 #undef HACK_O_MATIC
|
|
3653
|
20
|
3654 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /*
|
0
|
3655 Return the number of bytes consed since the last garbage collection.
|
|
3656 \"Consed\" is a misnomer in that this actually counts allocation
|
|
3657 of all different kinds of objects, not just conses.
|
|
3658
|
|
3659 If this value exceeds `gc-cons-threshold', a garbage collection happens.
|
20
|
3660 */
|
|
3661 ())
|
0
|
3662 {
|
173
|
3663 return make_int (consing_since_gc);
|
0
|
3664 }
|
183
|
3665
|
20
|
3666 DEFUN ("memory-limit", Fmemory_limit, 0, 0, "", /*
|
0
|
3667 Return the address of the last byte Emacs has allocated, divided by 1024.
|
|
3668 This may be helpful in debugging Emacs's memory usage.
|
|
3669 The value is divided by 1024 to make sure it will fit in a lisp integer.
|
20
|
3670 */
|
|
3671 ())
|
0
|
3672 {
|
173
|
3673 return make_int ((EMACS_INT) sbrk (0) / 1024);
|
0
|
3674 }
|
412
|
3675
|
0
|
3676
|
|
3677
|
|
3678 int
|
|
3679 object_dead_p (Lisp_Object obj)
|
|
3680 {
|
173
|
3681 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) ||
|
|
3682 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) ||
|
|
3683 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) ||
|
|
3684 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) ||
|
0
|
3685 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) ||
|
173
|
3686 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) ||
|
|
3687 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj))));
|
0
|
3688 }
|
|
3689
|
|
3690 #ifdef MEMORY_USAGE_STATS
|
|
3691
|
|
3692 /* Attempt to determine the actual amount of space that is used for
|
|
3693 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE".
|
|
3694
|
|
3695 It seems that the following holds:
|
|
3696
|
|
3697 1. When using the old allocator (malloc.c):
|
|
3698
|
|
3699 -- blocks are always allocated in chunks of powers of two. For
|
|
3700 each block, there is an overhead of 8 bytes if rcheck is not
|
|
3701 defined, 20 bytes if it is defined. In other words, a
|
|
3702 one-byte allocation needs 8 bytes of overhead for a total of
|
|
3703 9 bytes, and needs to have 16 bytes of memory chunked out for
|
|
3704 it.
|
|
3705
|
|
3706 2. When using the new allocator (gmalloc.c):
|
|
3707
|
|
3708 -- blocks are always allocated in chunks of powers of two up
|
|
3709 to 4096 bytes. Larger blocks are allocated in chunks of
|
|
3710 an integral multiple of 4096 bytes. The minimum block
|
|
3711 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG
|
|
3712 is defined. There is no per-block overhead, but there
|
|
3713 is an overhead of 3*sizeof (size_t) for each 4096 bytes
|
|
3714 allocated.
|
|
3715
|
|
3716 3. When using the system malloc, anything goes, but they are
|
|
3717 generally slower and more space-efficient than the GNU
|
|
3718 allocators. One possibly reasonable assumption to make
|
|
3719 for want of better data is that sizeof (void *), or maybe
|
|
3720 2 * sizeof (void *), is required as overhead and that
|
|
3721 blocks are allocated in the minimum required size except
|
|
3722 that some minimum block size is imposed (e.g. 16 bytes). */
|
|
3723
|
272
|
3724 size_t
|
|
3725 malloced_storage_size (void *ptr, size_t claimed_size,
|
0
|
3726 struct overhead_stats *stats)
|
|
3727 {
|
272
|
3728 size_t orig_claimed_size = claimed_size;
|
0
|
3729
|
|
3730 #ifdef GNU_MALLOC
|
|
3731
|
|
3732 if (claimed_size < 2 * sizeof (void *))
|
|
3733 claimed_size = 2 * sizeof (void *);
|
|
3734 # ifdef SUNOS_LOCALTIME_BUG
|
|
3735 if (claimed_size < 16)
|
|
3736 claimed_size = 16;
|
|
3737 # endif
|
|
3738 if (claimed_size < 4096)
|
|
3739 {
|
|
3740 int log = 1;
|
|
3741
|
|
3742 /* compute the log base two, more or less, then use it to compute
|
|
3743 the block size needed. */
|
|
3744 claimed_size--;
|
|
3745 /* It's big, it's heavy, it's wood! */
|
|
3746 while ((claimed_size /= 2) != 0)
|
|
3747 ++log;
|
|
3748 claimed_size = 1;
|
|
3749 /* It's better than bad, it's good! */
|
|
3750 while (log > 0)
|
|
3751 {
|
|
3752 claimed_size *= 2;
|
|
3753 log--;
|
|
3754 }
|
|
3755 /* We have to come up with some average about the amount of
|
|
3756 blocks used. */
|
272
|
3757 if ((size_t) (rand () & 4095) < claimed_size)
|
0
|
3758 claimed_size += 3 * sizeof (void *);
|
|
3759 }
|
|
3760 else
|
|
3761 {
|
|
3762 claimed_size += 4095;
|
|
3763 claimed_size &= ~4095;
|
|
3764 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t);
|
|
3765 }
|
|
3766
|
|
3767 #elif defined (SYSTEM_MALLOC)
|
|
3768
|
|
3769 if (claimed_size < 16)
|
|
3770 claimed_size = 16;
|
|
3771 claimed_size += 2 * sizeof (void *);
|
|
3772
|
|
3773 #else /* old GNU allocator */
|
|
3774
|
|
3775 # ifdef rcheck /* #### may not be defined here */
|
|
3776 claimed_size += 20;
|
|
3777 # else
|
|
3778 claimed_size += 8;
|
|
3779 # endif
|
|
3780 {
|
|
3781 int log = 1;
|
|
3782
|
|
3783 /* compute the log base two, more or less, then use it to compute
|
|
3784 the block size needed. */
|
|
3785 claimed_size--;
|
|
3786 /* It's big, it's heavy, it's wood! */
|
|
3787 while ((claimed_size /= 2) != 0)
|
|
3788 ++log;
|
|
3789 claimed_size = 1;
|
|
3790 /* It's better than bad, it's good! */
|
|
3791 while (log > 0)
|
|
3792 {
|
|
3793 claimed_size *= 2;
|
|
3794 log--;
|
|
3795 }
|
|
3796 }
|
|
3797
|
|
3798 #endif /* old GNU allocator */
|
|
3799
|
|
3800 if (stats)
|
|
3801 {
|
|
3802 stats->was_requested += orig_claimed_size;
|
|
3803 stats->malloc_overhead += claimed_size - orig_claimed_size;
|
|
3804 }
|
|
3805 return claimed_size;
|
|
3806 }
|
|
3807
|
272
|
3808 size_t
|
|
3809 fixed_type_block_overhead (size_t size)
|
0
|
3810 {
|
272
|
3811 size_t per_block = TYPE_ALLOC_SIZE (cons, unsigned char);
|
|
3812 size_t overhead = 0;
|
|
3813 size_t storage_size = malloced_storage_size (0, per_block, 0);
|
0
|
3814 while (size >= per_block)
|
|
3815 {
|
|
3816 size -= per_block;
|
|
3817 overhead += sizeof (void *) + per_block - storage_size;
|
|
3818 }
|
|
3819 if (rand () % per_block < size)
|
|
3820 overhead += sizeof (void *) + per_block - storage_size;
|
|
3821 return overhead;
|
|
3822 }
|
|
3823
|
|
3824 #endif /* MEMORY_USAGE_STATS */
|
|
3825
|
|
3826
|
|
3827 /* Initialization */
|
|
3828 void
|
412
|
3829 init_alloc_once_early (void)
|
0
|
3830 {
|
412
|
3831 int iii;
|
|
3832
|
|
3833 last_lrecord_type_index_assigned = -1;
|
|
3834 for (iii = 0; iii < countof (lrecord_implementations_table); iii++)
|
|
3835 {
|
|
3836 lrecord_implementations_table[iii] = 0;
|
|
3837 }
|
|
3838
|
|
3839 /*
|
|
3840 * All the staticly
|
|
3841 * defined subr lrecords were initialized with lheader->type == 0.
|
|
3842 * See subr_lheader_initializer in lisp.h. Force type index 0 to be
|
|
3843 * assigned to lrecord_subr so that those predefined indexes match
|
|
3844 * reality.
|
|
3845 */
|
|
3846 lrecord_type_index (&lrecord_subr);
|
|
3847 assert (*(lrecord_subr.lrecord_type_index) == 0);
|
|
3848 /*
|
|
3849 * The same is true for symbol_value_forward objects, except the
|
|
3850 * type is 1.
|
|
3851 */
|
|
3852 lrecord_type_index (&lrecord_symbol_value_forward);
|
|
3853 assert (*(lrecord_symbol_value_forward.lrecord_type_index) == 1);
|
|
3854
|
0
|
3855 gc_generation_number[0] = 0;
|
412
|
3856 /* purify_flag 1 is correct even if CANNOT_DUMP.
|
|
3857 * loadup.el will set to nil at end. */
|
|
3858 purify_flag = 1;
|
0
|
3859 breathing_space = 0;
|
|
3860 XSETINT (all_bit_vectors, 0); /* Qzero may not be set yet. */
|
|
3861 XSETINT (Vgc_message, 0);
|
|
3862 all_lcrecords = 0;
|
|
3863 ignore_malloc_warnings = 1;
|
255
|
3864 #ifdef DOUG_LEA_MALLOC
|
|
3865 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
|
|
3866 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
|
261
|
3867 #if 0 /* Moved to emacs.c */
|
|
3868 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */
|
|
3869 #endif
|
255
|
3870 #endif
|
0
|
3871 init_string_alloc ();
|
|
3872 init_string_chars_alloc ();
|
|
3873 init_cons_alloc ();
|
|
3874 init_symbol_alloc ();
|
|
3875 init_compiled_function_alloc ();
|
|
3876 #ifdef LISP_FLOAT_TYPE
|
|
3877 init_float_alloc ();
|
|
3878 #endif /* LISP_FLOAT_TYPE */
|
|
3879 init_marker_alloc ();
|
|
3880 init_extent_alloc ();
|
|
3881 init_event_alloc ();
|
278
|
3882
|
0
|
3883 ignore_malloc_warnings = 0;
|
412
|
3884 staticidx = 0;
|
0
|
3885 consing_since_gc = 0;
|
|
3886 #if 1
|
|
3887 gc_cons_threshold = 500000; /* XEmacs change */
|
|
3888 #else
|
|
3889 gc_cons_threshold = 15000; /* debugging */
|
|
3890 #endif
|
|
3891 #ifdef VIRT_ADDR_VARIES
|
|
3892 malloc_sbrk_unused = 1<<22; /* A large number */
|
|
3893 malloc_sbrk_used = 100000; /* as reasonable as any number */
|
|
3894 #endif /* VIRT_ADDR_VARIES */
|
|
3895 lrecord_uid_counter = 259;
|
|
3896 debug_string_purity = 0;
|
|
3897 gcprolist = 0;
|
|
3898
|
|
3899 gc_currently_forbidden = 0;
|
|
3900 gc_hooks_inhibited = 0;
|
|
3901
|
|
3902 #ifdef ERROR_CHECK_TYPECHECK
|
|
3903 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
3904 666;
|
|
3905 ERROR_ME_NOT.
|
|
3906 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42;
|
|
3907 ERROR_ME_WARN.
|
|
3908 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
3909 3333632;
|
183
|
3910 #endif /* ERROR_CHECK_TYPECHECK */
|
0
|
3911 }
|
|
3912
|
398
|
3913 int pure_bytes_used = 0;
|
|
3914
|
|
3915 void
|
0
|
3916 reinit_alloc (void)
|
|
3917 {
|
|
3918 gcprolist = 0;
|
|
3919 }
|
|
3920
|
|
3921 void
|
|
3922 syms_of_alloc (void)
|
|
3923 {
|
|
3924 defsymbol (&Qpre_gc_hook, "pre-gc-hook");
|
|
3925 defsymbol (&Qpost_gc_hook, "post-gc-hook");
|
|
3926 defsymbol (&Qgarbage_collecting, "garbage-collecting");
|
|
3927
|
20
|
3928 DEFSUBR (Fcons);
|
|
3929 DEFSUBR (Flist);
|
|
3930 DEFSUBR (Fvector);
|
|
3931 DEFSUBR (Fbit_vector);
|
|
3932 DEFSUBR (Fmake_byte_code);
|
|
3933 DEFSUBR (Fmake_list);
|
|
3934 DEFSUBR (Fmake_vector);
|
|
3935 DEFSUBR (Fmake_bit_vector);
|
|
3936 DEFSUBR (Fmake_string);
|
278
|
3937 DEFSUBR (Fstring);
|
20
|
3938 DEFSUBR (Fmake_symbol);
|
|
3939 DEFSUBR (Fmake_marker);
|
|
3940 DEFSUBR (Fpurecopy);
|
|
3941 DEFSUBR (Fgarbage_collect);
|
|
3942 DEFSUBR (Fmemory_limit);
|
|
3943 DEFSUBR (Fconsing_since_gc);
|
0
|
3944 }
|
|
3945
|
|
3946 void
|
|
3947 vars_of_alloc (void)
|
|
3948 {
|
|
3949 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /*
|
|
3950 *Number of bytes of consing between garbage collections.
|
|
3951 \"Consing\" is a misnomer in that this actually counts allocation
|
|
3952 of all different kinds of objects, not just conses.
|
|
3953 Garbage collection can happen automatically once this many bytes have been
|
|
3954 allocated since the last garbage collection. All data types count.
|
|
3955
|
|
3956 Garbage collection happens automatically when `eval' or `funcall' are
|
|
3957 called. (Note that `funcall' is called implicitly as part of evaluation.)
|
|
3958 By binding this temporarily to a large number, you can effectively
|
|
3959 prevent garbage collection during a part of the program.
|
|
3960
|
|
3961 See also `consing-since-gc'.
|
|
3962 */ );
|
|
3963
|
272
|
3964 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used /*
|
0
|
3965 Number of bytes of sharable Lisp data allocated so far.
|
|
3966 */ );
|
|
3967
|
|
3968 #if 0
|
|
3969 DEFVAR_INT ("data-bytes-used", &malloc_sbrk_used /*
|
|
3970 Number of bytes of unshared memory allocated in this session.
|
|
3971 */ );
|
|
3972
|
|
3973 DEFVAR_INT ("data-bytes-free", &malloc_sbrk_unused /*
|
|
3974 Number of bytes of unshared memory remaining available in this session.
|
|
3975 */ );
|
|
3976 #endif
|
|
3977
|
|
3978 #ifdef DEBUG_XEMACS
|
|
3979 DEFVAR_INT ("debug-allocation", &debug_allocation /*
|
|
3980 If non-zero, print out information to stderr about all objects allocated.
|
|
3981 See also `debug-allocation-backtrace-length'.
|
|
3982 */ );
|
|
3983 debug_allocation = 0;
|
|
3984
|
|
3985 DEFVAR_INT ("debug-allocation-backtrace-length",
|
|
3986 &debug_allocation_backtrace_length /*
|
|
3987 Length (in stack frames) of short backtrace printed out by `debug-allocation'.
|
|
3988 */ );
|
|
3989 debug_allocation_backtrace_length = 2;
|
|
3990 #endif
|
|
3991
|
|
3992 DEFVAR_BOOL ("purify-flag", &purify_flag /*
|
|
3993 Non-nil means loading Lisp code in order to dump an executable.
|
398
|
3994 This means that certain objects should be allocated in readonly space.
|
0
|
3995 */ );
|
|
3996
|
|
3997 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /*
|
|
3998 Function or functions to be run just before each garbage collection.
|
|
3999 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
4000 runs, so be extremely careful in what you add here. In particular, avoid
|
|
4001 consing, and do not interact with the user.
|
|
4002 */ );
|
|
4003 Vpre_gc_hook = Qnil;
|
|
4004
|
|
4005 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /*
|
|
4006 Function or functions to be run just after each garbage collection.
|
|
4007 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
4008 runs, so be extremely careful in what you add here. In particular, avoid
|
|
4009 consing, and do not interact with the user.
|
|
4010 */ );
|
|
4011 Vpost_gc_hook = Qnil;
|
|
4012
|
|
4013 DEFVAR_LISP ("gc-message", &Vgc_message /*
|
|
4014 String to print to indicate that a garbage collection is in progress.
|
|
4015 This is printed in the echo area. If the selected frame is on a
|
|
4016 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer
|
|
4017 image instance) in the domain of the selected frame, the mouse pointer
|
|
4018 will change instead of this message being printed.
|
|
4019 */ );
|
412
|
4020 Vgc_message = make_string_nocopy ((CONST Bufbyte *) gc_default_message,
|
|
4021 countof (gc_default_message) - 1);
|
0
|
4022
|
|
4023 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /*
|
|
4024 Pointer glyph used to indicate that a garbage collection is in progress.
|
|
4025 If the selected window is on a window system and this glyph specifies a
|
|
4026 value (i.e. a pointer image instance) in the domain of the selected
|
|
4027 window, the pointer will be changed as specified during garbage collection.
|
|
4028 Otherwise, a message will be printed in the echo area, as controlled
|
|
4029 by `gc-message'.
|
|
4030 */ );
|
|
4031 }
|
|
4032
|
|
4033 void
|
|
4034 complex_vars_of_alloc (void)
|
|
4035 {
|
|
4036 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer);
|
|
4037 }
|