0
|
1 /* Storage allocation and gc for XEmacs Lisp interpreter.
|
272
|
2 Copyright (C) 1985-1998 Free Software Foundation, Inc.
|
0
|
3 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
4 Copyright (C) 1995, 1996 Ben Wing.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from
|
|
24 FSF. */
|
|
25
|
|
26 /* Authorship:
|
|
27
|
|
28 FSF: Original version; a long time ago.
|
|
29 Mly: Significantly rewritten to use new 3-bit tags and
|
|
30 nicely abstracted object definitions, for 19.8.
|
|
31 JWZ: Improved code to keep track of purespace usage and
|
|
32 issue nice purespace and GC stats.
|
|
33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking
|
|
34 and various changes for Mule, for 19.12.
|
|
35 Added bit vectors for 19.13.
|
|
36 Added lcrecord lists for 19.14.
|
255
|
37 slb: Lots of work on the purification and dump time code.
|
|
38 Synched Doug Lea malloc support from Emacs 20.2.
|
412
|
39 og: Killed the purespace.
|
0
|
40 */
|
|
41
|
|
42 #include <config.h>
|
|
43 #include "lisp.h"
|
|
44
|
|
45 #include "backtrace.h"
|
|
46 #include "buffer.h"
|
|
47 #include "bytecode.h"
|
70
|
48 #include "chartab.h"
|
0
|
49 #include "device.h"
|
|
50 #include "elhash.h"
|
|
51 #include "events.h"
|
|
52 #include "extents.h"
|
|
53 #include "frame.h"
|
|
54 #include "glyphs.h"
|
380
|
55 #include "opaque.h"
|
0
|
56 #include "redisplay.h"
|
|
57 #include "specifier.h"
|
272
|
58 #include "sysfile.h"
|
0
|
59 #include "window.h"
|
412
|
60
|
|
61 #include <stddef.h>
|
375
|
62
|
255
|
63 #ifdef DOUG_LEA_MALLOC
|
|
64 #include <malloc.h>
|
|
65 #endif
|
|
66
|
272
|
67 EXFUN (Fgarbage_collect, 0);
|
|
68
|
412
|
69 /* Return the true size of a struct with a variable-length array field. */
|
|
70 #define STRETCHY_STRUCT_SIZEOF(stretchy_struct_type, \
|
|
71 stretchy_array_field, \
|
|
72 stretchy_array_length) \
|
|
73 (offsetof (stretchy_struct_type, stretchy_array_field) + \
|
|
74 (offsetof (stretchy_struct_type, stretchy_array_field[1]) - \
|
|
75 offsetof (stretchy_struct_type, stretchy_array_field[0])) * \
|
|
76 (stretchy_array_length))
|
|
77
|
255
|
78 #if 0 /* this is _way_ too slow to be part of the standard debug options */
|
|
79 #if defined(DEBUG_XEMACS) && defined(MULE)
|
|
80 #define VERIFY_STRING_CHARS_INTEGRITY
|
|
81 #endif
|
|
82 #endif
|
0
|
83
|
|
84 /* Define this to use malloc/free with no freelist for all datatypes,
|
|
85 the hope being that some debugging tools may help detect
|
|
86 freed memory references */
|
177
|
87 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */
|
|
88 #include <dmalloc.h>
|
|
89 #define ALLOC_NO_POOLS
|
|
90 #endif
|
0
|
91
|
|
92 #ifdef DEBUG_XEMACS
|
380
|
93 static int debug_allocation;
|
|
94 static int debug_allocation_backtrace_length;
|
0
|
95 #endif
|
|
96
|
|
97 /* Number of bytes of consing done since the last gc */
|
|
98 EMACS_INT consing_since_gc;
|
|
99 #define INCREMENT_CONS_COUNTER_1(size) (consing_since_gc += (size))
|
|
100
|
|
101 #define debug_allocation_backtrace() \
|
|
102 do { \
|
|
103 if (debug_allocation_backtrace_length > 0) \
|
|
104 debug_short_backtrace (debug_allocation_backtrace_length); \
|
|
105 } while (0)
|
|
106
|
|
107 #ifdef DEBUG_XEMACS
|
|
108 #define INCREMENT_CONS_COUNTER(foosize, type) \
|
|
109 do { \
|
|
110 if (debug_allocation) \
|
|
111 { \
|
|
112 stderr_out ("allocating %s (size %ld)\n", type, (long)foosize); \
|
|
113 debug_allocation_backtrace (); \
|
|
114 } \
|
|
115 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
116 } while (0)
|
|
117 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \
|
|
118 do { \
|
|
119 if (debug_allocation > 1) \
|
|
120 { \
|
|
121 stderr_out ("allocating noseeum %s (size %ld)\n", type, (long)foosize); \
|
|
122 debug_allocation_backtrace (); \
|
|
123 } \
|
|
124 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
125 } while (0)
|
|
126 #else
|
|
127 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size)
|
|
128 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \
|
|
129 INCREMENT_CONS_COUNTER_1 (size)
|
|
130 #endif
|
|
131
|
380
|
132 #define DECREMENT_CONS_COUNTER(size) do { \
|
|
133 consing_since_gc -= (size); \
|
|
134 if (consing_since_gc < 0) \
|
|
135 consing_since_gc = 0; \
|
|
136 } while (0)
|
0
|
137
|
|
138 /* Number of bytes of consing since gc before another gc should be done. */
|
|
139 EMACS_INT gc_cons_threshold;
|
|
140
|
|
141 /* Nonzero during gc */
|
|
142 int gc_in_progress;
|
|
143
|
|
144 /* Number of times GC has happened at this level or below.
|
|
145 * Level 0 is most volatile, contrary to usual convention.
|
|
146 * (Of course, there's only one level at present) */
|
|
147 EMACS_INT gc_generation_number[1];
|
|
148
|
|
149 /* This is just for use by the printer, to allow things to print uniquely */
|
|
150 static int lrecord_uid_counter;
|
|
151
|
|
152 /* Nonzero when calling certain hooks or doing other things where
|
|
153 a GC would be bad */
|
|
154 int gc_currently_forbidden;
|
|
155
|
|
156 /* Hooks. */
|
|
157 Lisp_Object Vpre_gc_hook, Qpre_gc_hook;
|
|
158 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
|
|
159
|
|
160 /* "Garbage collecting" */
|
|
161 Lisp_Object Vgc_message;
|
|
162 Lisp_Object Vgc_pointer_glyph;
|
412
|
163 static CONST char gc_default_message[] = "Garbage collecting";
|
0
|
164 Lisp_Object Qgarbage_collecting;
|
|
165
|
|
166 #ifndef VIRT_ADDR_VARIES
|
|
167 extern
|
|
168 #endif /* VIRT_ADDR_VARIES */
|
|
169 EMACS_INT malloc_sbrk_used;
|
|
170
|
|
171 #ifndef VIRT_ADDR_VARIES
|
|
172 extern
|
|
173 #endif /* VIRT_ADDR_VARIES */
|
|
174 EMACS_INT malloc_sbrk_unused;
|
|
175
|
398
|
176 /* Non-zero means we're in the process of doing the dump */
|
0
|
177 int purify_flag;
|
|
178
|
|
179 #ifdef ERROR_CHECK_TYPECHECK
|
|
180
|
|
181 Error_behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN;
|
|
182
|
|
183 #endif
|
|
184
|
|
185 int
|
398
|
186 c_readonly (Lisp_Object obj)
|
0
|
187 {
|
412
|
188 return POINTER_TYPE_P (XGCTYPE (obj)) && C_READONLY (obj);
|
0
|
189 }
|
|
190
|
398
|
191 int
|
|
192 lisp_readonly (Lisp_Object obj)
|
0
|
193 {
|
412
|
194 return POINTER_TYPE_P (XGCTYPE (obj)) && LISP_READONLY (obj);
|
183
|
195 }
|
0
|
196
|
|
197
|
|
198 /* Maximum amount of C stack to save when a GC happens. */
|
|
199
|
|
200 #ifndef MAX_SAVE_STACK
|
380
|
201 #define MAX_SAVE_STACK 0 /* 16000 */
|
0
|
202 #endif
|
|
203
|
|
204 /* Non-zero means ignore malloc warnings. Set during initialization. */
|
|
205 int ignore_malloc_warnings;
|
|
206
|
|
207
|
|
208 static void *breathing_space;
|
|
209
|
|
210 void
|
|
211 release_breathing_space (void)
|
|
212 {
|
183
|
213 if (breathing_space)
|
0
|
214 {
|
|
215 void *tmp = breathing_space;
|
|
216 breathing_space = 0;
|
|
217 xfree (tmp);
|
|
218 }
|
|
219 }
|
|
220
|
|
221 /* malloc calls this if it finds we are near exhausting storage */
|
|
222 void
|
412
|
223 malloc_warning (CONST char *str)
|
0
|
224 {
|
|
225 if (ignore_malloc_warnings)
|
|
226 return;
|
|
227
|
|
228 warn_when_safe
|
|
229 (Qmemory, Qcritical,
|
|
230 "%s\n"
|
|
231 "Killing some buffers may delay running out of memory.\n"
|
|
232 "However, certainly by the time you receive the 95%% warning,\n"
|
|
233 "you should clean up, kill this Emacs, and start a new one.",
|
|
234 str);
|
|
235 }
|
|
236
|
|
237 /* Called if malloc returns zero */
|
|
238 DOESNT_RETURN
|
|
239 memory_full (void)
|
|
240 {
|
|
241 /* Force a GC next time eval is called.
|
|
242 It's better to loop garbage-collecting (we might reclaim enough
|
|
243 to win) than to loop beeping and barfing "Memory exhausted"
|
|
244 */
|
|
245 consing_since_gc = gc_cons_threshold + 1;
|
|
246 release_breathing_space ();
|
|
247
|
278
|
248 /* Flush some histories which might conceivably contain garbalogical
|
|
249 inhibitors. */
|
0
|
250 if (!NILP (Fboundp (Qvalues)))
|
|
251 Fset (Qvalues, Qnil);
|
|
252 Vcommand_history = Qnil;
|
|
253
|
|
254 error ("Memory exhausted");
|
|
255 }
|
|
256
|
|
257 /* like malloc and realloc but check for no memory left, and block input. */
|
|
258
|
412
|
259 #ifdef xmalloc
|
177
|
260 #undef xmalloc
|
412
|
261 #endif
|
|
262
|
0
|
263 void *
|
185
|
264 xmalloc (size_t size)
|
0
|
265 {
|
386
|
266 void *val = malloc (size);
|
0
|
267
|
|
268 if (!val && (size != 0)) memory_full ();
|
|
269 return val;
|
|
270 }
|
|
271
|
412
|
272 #ifdef xcalloc
|
392
|
273 #undef xcalloc
|
412
|
274 #endif
|
|
275
|
380
|
276 static void *
|
|
277 xcalloc (size_t nelem, size_t elsize)
|
|
278 {
|
386
|
279 void *val = calloc (nelem, elsize);
|
380
|
280
|
|
281 if (!val && (nelem != 0)) memory_full ();
|
|
282 return val;
|
|
283 }
|
|
284
|
0
|
285 void *
|
185
|
286 xmalloc_and_zero (size_t size)
|
0
|
287 {
|
380
|
288 return xcalloc (size, sizeof (char));
|
0
|
289 }
|
|
290
|
412
|
291 #ifdef xrealloc
|
177
|
292 #undef xrealloc
|
412
|
293 #endif
|
|
294
|
0
|
295 void *
|
185
|
296 xrealloc (void *block, size_t size)
|
0
|
297 {
|
|
298 /* We must call malloc explicitly when BLOCK is 0, since some
|
|
299 reallocs don't do this. */
|
386
|
300 void *val = block ? realloc (block, size) : malloc (size);
|
0
|
301
|
|
302 if (!val && (size != 0)) memory_full ();
|
|
303 return val;
|
|
304 }
|
|
305
|
|
306 void
|
|
307 #ifdef ERROR_CHECK_MALLOC
|
|
308 xfree_1 (void *block)
|
|
309 #else
|
|
310 xfree (void *block)
|
|
311 #endif
|
|
312 {
|
|
313 #ifdef ERROR_CHECK_MALLOC
|
|
314 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an
|
|
315 error until much later on for many system mallocs, such as
|
|
316 the one that comes with Solaris 2.3. FMH!! */
|
|
317 assert (block != (void *) 0xDEADBEEF);
|
|
318 assert (block);
|
183
|
319 #endif /* ERROR_CHECK_MALLOC */
|
0
|
320 free (block);
|
|
321 }
|
|
322
|
272
|
323 #ifdef ERROR_CHECK_GC
|
|
324
|
|
325 #if SIZEOF_INT == 4
|
|
326 typedef unsigned int four_byte_t;
|
|
327 #elif SIZEOF_LONG == 4
|
|
328 typedef unsigned long four_byte_t;
|
|
329 #elif SIZEOF_SHORT == 4
|
|
330 typedef unsigned short four_byte_t;
|
0
|
331 #else
|
|
332 What kind of strange-ass system are we running on?
|
|
333 #endif
|
|
334
|
|
335 static void
|
272
|
336 deadbeef_memory (void *ptr, size_t size)
|
0
|
337 {
|
272
|
338 four_byte_t *ptr4 = (four_byte_t *) ptr;
|
|
339 size_t beefs = size >> 2;
|
|
340
|
|
341 /* In practice, size will always be a multiple of four. */
|
|
342 while (beefs--)
|
|
343 (*ptr4++) = 0xDEADBEEF;
|
0
|
344 }
|
|
345
|
183
|
346 #else /* !ERROR_CHECK_GC */
|
|
347
|
0
|
348
|
|
349 #define deadbeef_memory(ptr, size)
|
|
350
|
183
|
351 #endif /* !ERROR_CHECK_GC */
|
0
|
352
|
412
|
353 #ifdef xstrdup
|
177
|
354 #undef xstrdup
|
412
|
355 #endif
|
|
356
|
0
|
357 char *
|
412
|
358 xstrdup (CONST char *str)
|
0
|
359 {
|
|
360 int len = strlen (str) + 1; /* for stupid terminating 0 */
|
|
361
|
185
|
362 void *val = xmalloc (len);
|
0
|
363 if (val == 0) return 0;
|
412
|
364 memcpy (val, str, len);
|
|
365 return (char *) val;
|
0
|
366 }
|
|
367
|
|
368 #ifdef NEED_STRDUP
|
|
369 char *
|
412
|
370 strdup (CONST char *s)
|
0
|
371 {
|
|
372 return xstrdup (s);
|
|
373 }
|
|
374 #endif /* NEED_STRDUP */
|
|
375
|
|
376
|
|
377 static void *
|
272
|
378 allocate_lisp_storage (size_t size)
|
0
|
379 {
|
412
|
380 void *p = xmalloc (size);
|
|
381 return p;
|
0
|
382 }
|
|
383
|
|
384
|
412
|
385 /* lrecords are chained together through their "next.v" field.
|
|
386 * After doing the mark phase, the GC will walk this linked
|
|
387 * list and free any record which hasn't been marked.
|
|
388 */
|
0
|
389 static struct lcrecord_header *all_lcrecords;
|
|
390
|
|
391 void *
|
412
|
392 alloc_lcrecord (size_t size, CONST struct lrecord_implementation *implementation)
|
0
|
393 {
|
|
394 struct lcrecord_header *lcheader;
|
|
395
|
412
|
396 #ifdef ERROR_CHECK_GC
|
|
397 if (implementation->static_size == 0)
|
|
398 assert (implementation->size_in_bytes_method);
|
|
399 else
|
|
400 assert (implementation->static_size == size);
|
|
401 #endif
|
0
|
402
|
185
|
403 lcheader = (struct lcrecord_header *) allocate_lisp_storage (size);
|
412
|
404 set_lheader_implementation (&(lcheader->lheader), implementation);
|
0
|
405 lcheader->next = all_lcrecords;
|
|
406 #if 1 /* mly prefers to see small ID numbers */
|
|
407 lcheader->uid = lrecord_uid_counter++;
|
|
408 #else /* jwz prefers to see real addrs */
|
|
409 lcheader->uid = (int) &lcheader;
|
|
410 #endif
|
|
411 lcheader->free = 0;
|
|
412 all_lcrecords = lcheader;
|
|
413 INCREMENT_CONS_COUNTER (size, implementation->name);
|
173
|
414 return lcheader;
|
0
|
415 }
|
|
416
|
|
417 #if 0 /* Presently unused */
|
|
418 /* Very, very poor man's EGC?
|
|
419 * This may be slow and thrash pages all over the place.
|
|
420 * Only call it if you really feel you must (and if the
|
|
421 * lrecord was fairly recently allocated).
|
|
422 * Otherwise, just let the GC do its job -- that's what it's there for
|
|
423 */
|
|
424 void
|
|
425 free_lcrecord (struct lcrecord_header *lcrecord)
|
|
426 {
|
|
427 if (all_lcrecords == lcrecord)
|
|
428 {
|
|
429 all_lcrecords = lcrecord->next;
|
|
430 }
|
|
431 else
|
|
432 {
|
|
433 struct lrecord_header *header = all_lcrecords;
|
|
434 for (;;)
|
|
435 {
|
|
436 struct lrecord_header *next = header->next;
|
|
437 if (next == lcrecord)
|
|
438 {
|
|
439 header->next = lrecord->next;
|
|
440 break;
|
|
441 }
|
|
442 else if (next == 0)
|
|
443 abort ();
|
|
444 else
|
|
445 header = next;
|
|
446 }
|
|
447 }
|
|
448 if (lrecord->implementation->finalizer)
|
380
|
449 lrecord->implementation->finalizer (lrecord, 0);
|
0
|
450 xfree (lrecord);
|
|
451 return;
|
|
452 }
|
|
453 #endif /* Unused */
|
|
454
|
|
455
|
|
456 static void
|
|
457 disksave_object_finalization_1 (void)
|
|
458 {
|
|
459 struct lcrecord_header *header;
|
|
460
|
|
461 for (header = all_lcrecords; header; header = header->next)
|
|
462 {
|
412
|
463 if (LHEADER_IMPLEMENTATION(&header->lheader)->finalizer &&
|
211
|
464 !header->free)
|
412
|
465 ((LHEADER_IMPLEMENTATION(&header->lheader)->finalizer)
|
|
466 (header, 1));
|
0
|
467 }
|
|
468 }
|
183
|
469
|
412
|
470
|
|
471 /* This must not be called -- it just serves as for EQ test
|
|
472 * If lheader->implementation->finalizer is this_marks_a_marked_record,
|
|
473 * then lrecord has been marked by the GC sweeper
|
|
474 * header->implementation is put back to its correct value by
|
|
475 * sweep_records */
|
|
476 void
|
|
477 this_marks_a_marked_record (void *dummy0, int dummy1)
|
|
478 {
|
|
479 abort ();
|
|
480 }
|
|
481
|
|
482 /* Semi-kludge -- lrecord_symbol_value_forward objects get stuck
|
|
483 in CONST space and you get SEGV's if you attempt to mark them.
|
|
484 This sits in lheader->implementation->marker. */
|
|
485
|
|
486 Lisp_Object
|
|
487 this_one_is_unmarkable (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
|
488 {
|
|
489 abort ();
|
|
490 return Qnil;
|
|
491 }
|
|
492
|
|
493 /* XGCTYPE for records */
|
|
494 int
|
|
495 gc_record_type_p (Lisp_Object frob, CONST struct lrecord_implementation *type)
|
|
496 {
|
|
497 CONST struct lrecord_implementation *imp;
|
|
498
|
|
499 if (XGCTYPE (frob) != Lisp_Type_Record)
|
|
500 return 0;
|
|
501
|
|
502 imp = XRECORD_LHEADER_IMPLEMENTATION (frob);
|
|
503 return imp == type;
|
|
504 }
|
|
505
|
0
|
506
|
380
|
507 /************************************************************************/
|
|
508 /* Debugger support */
|
|
509 /************************************************************************/
|
396
|
510 /* Give gdb/dbx enough information to decode Lisp Objects. We make
|
|
511 sure certain symbols are always defined, so gdb doesn't complain
|
412
|
512 about expressions in src/gdbinit. See src/gdbinit or src/dbxrc to
|
|
513 see how this is used. */
|
398
|
514
|
396
|
515 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS;
|
|
516 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1;
|
380
|
517
|
|
518 #ifdef USE_UNION_TYPE
|
396
|
519 unsigned char dbg_USE_UNION_TYPE = 1;
|
380
|
520 #else
|
396
|
521 unsigned char dbg_USE_UNION_TYPE = 0;
|
380
|
522 #endif
|
|
523
|
412
|
524 unsigned char Lisp_Type_Int = 100;
|
|
525 unsigned char Lisp_Type_Cons = 101;
|
|
526 unsigned char Lisp_Type_String = 102;
|
|
527 unsigned char Lisp_Type_Vector = 103;
|
|
528 unsigned char Lisp_Type_Symbol = 104;
|
|
529
|
|
530 #ifndef MULE
|
|
531 unsigned char lrecord_char_table_entry;
|
|
532 unsigned char lrecord_charset;
|
|
533 #ifndef FILE_CODING
|
|
534 unsigned char lrecord_coding_system;
|
|
535 #endif
|
|
536 #endif
|
|
537
|
|
538 #ifndef HAVE_TOOLBARS
|
|
539 unsigned char lrecord_toolbar_button;
|
|
540 #endif
|
|
541
|
|
542 #ifndef TOOLTALK
|
|
543 unsigned char lrecord_tooltalk_message;
|
|
544 unsigned char lrecord_tooltalk_pattern;
|
|
545 #endif
|
|
546
|
|
547 #ifndef HAVE_DATABASE
|
|
548 unsigned char lrecord_database;
|
|
549 #endif
|
|
550
|
396
|
551 unsigned char dbg_valbits = VALBITS;
|
|
552 unsigned char dbg_gctypebits = GCTYPEBITS;
|
|
553
|
|
554 /* Macros turned into functions for ease of debugging.
|
380
|
555 Debuggers don't know about macros! */
|
|
556 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2);
|
|
557 int
|
|
558 dbg_eq (Lisp_Object obj1, Lisp_Object obj2)
|
|
559 {
|
|
560 return EQ (obj1, obj2);
|
|
561 }
|
|
562
|
272
|
563
|
380
|
564 /************************************************************************/
|
|
565 /* Fixed-size type macros */
|
|
566 /************************************************************************/
|
0
|
567
|
|
568 /* For fixed-size types that are commonly used, we malloc() large blocks
|
|
569 of memory at a time and subdivide them into chunks of the correct
|
|
570 size for an object of that type. This is more efficient than
|
|
571 malloc()ing each object separately because we save on malloc() time
|
|
572 and overhead due to the fewer number of malloc()ed blocks, and
|
|
573 also because we don't need any extra pointers within each object
|
|
574 to keep them threaded together for GC purposes. For less common
|
|
575 (and frequently large-size) types, we use lcrecords, which are
|
|
576 malloc()ed individually and chained together through a pointer
|
|
577 in the lcrecord header. lcrecords do not need to be fixed-size
|
|
578 (i.e. two objects of the same type need not have the same size;
|
|
579 however, the size of a particular object cannot vary dynamically).
|
|
580 It is also much easier to create a new lcrecord type because no
|
|
581 additional code needs to be added to alloc.c. Finally, lcrecords
|
|
582 may be more efficient when there are only a small number of them.
|
|
583
|
|
584 The types that are stored in these large blocks (or "frob blocks")
|
|
585 are cons, float, compiled-function, symbol, marker, extent, event,
|
|
586 and string.
|
|
587
|
|
588 Note that strings are special in that they are actually stored in
|
|
589 two parts: a structure containing information about the string, and
|
|
590 the actual data associated with the string. The former structure
|
|
591 (a struct Lisp_String) is a fixed-size structure and is managed the
|
|
592 same way as all the other such types. This structure contains a
|
|
593 pointer to the actual string data, which is stored in structures of
|
|
594 type struct string_chars_block. Each string_chars_block consists
|
|
595 of a pointer to a struct Lisp_String, followed by the data for that
|
412
|
596 string, followed by another pointer to a struct Lisp_String,
|
|
597 followed by the data for that string, etc. At GC time, the data in
|
|
598 these blocks is compacted by searching sequentially through all the
|
0
|
599 blocks and compressing out any holes created by unmarked strings.
|
|
600 Strings that are more than a certain size (bigger than the size of
|
|
601 a string_chars_block, although something like half as big might
|
|
602 make more sense) are malloc()ed separately and not stored in
|
|
603 string_chars_blocks. Furthermore, no one string stretches across
|
|
604 two string_chars_blocks.
|
|
605
|
|
606 Vectors are each malloc()ed separately, similar to lcrecords.
|
183
|
607
|
0
|
608 In the following discussion, we use conses, but it applies equally
|
|
609 well to the other fixed-size types.
|
|
610
|
|
611 We store cons cells inside of cons_blocks, allocating a new
|
|
612 cons_block with malloc() whenever necessary. Cons cells reclaimed
|
|
613 by GC are put on a free list to be reallocated before allocating
|
|
614 any new cons cells from the latest cons_block. Each cons_block is
|
|
615 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least
|
|
616 the versions in malloc.c and gmalloc.c) really allocates in units
|
|
617 of powers of two and uses 4 bytes for its own overhead.
|
|
618
|
|
619 What GC actually does is to search through all the cons_blocks,
|
|
620 from the most recently allocated to the oldest, and put all
|
|
621 cons cells that are not marked (whether or not they're already
|
|
622 free) on a cons_free_list. The cons_free_list is a stack, and
|
|
623 so the cons cells in the oldest-allocated cons_block end up
|
|
624 at the head of the stack and are the first to be reallocated.
|
|
625 If any cons_block is entirely free, it is freed with free()
|
|
626 and its cons cells removed from the cons_free_list. Because
|
|
627 the cons_free_list ends up basically in memory order, we have
|
|
628 a high locality of reference (assuming a reasonable turnover
|
|
629 of allocating and freeing) and have a reasonable probability
|
|
630 of entirely freeing up cons_blocks that have been more recently
|
|
631 allocated. This stage is called the "sweep stage" of GC, and
|
|
632 is executed after the "mark stage", which involves starting
|
|
633 from all places that are known to point to in-use Lisp objects
|
|
634 (e.g. the obarray, where are all symbols are stored; the
|
|
635 current catches and condition-cases; the backtrace list of
|
|
636 currently executing functions; the gcpro list; etc.) and
|
|
637 recursively marking all objects that are accessible.
|
|
638
|
|
639 At the beginning of the sweep stage, the conses in the cons
|
|
640 blocks are in one of three states: in use and marked, in use
|
|
641 but not marked, and not in use (already freed). Any conses
|
|
642 that are marked have been marked in the mark stage just
|
|
643 executed, because as part of the sweep stage we unmark any
|
|
644 marked objects. The way we tell whether or not a cons cell
|
|
645 is in use is through the FREE_STRUCT_P macro. This basically
|
|
646 looks at the first 4 bytes (or however many bytes a pointer
|
|
647 fits in) to see if all the bits in those bytes are 1. The
|
|
648 resulting value (0xFFFFFFFF) is not a valid pointer and is
|
|
649 not a valid Lisp_Object. All current fixed-size types have
|
|
650 a pointer or Lisp_Object as their first element with the
|
|
651 exception of strings; they have a size value, which can
|
|
652 never be less than zero, and so 0xFFFFFFFF is invalid for
|
|
653 strings as well. Now assuming that a cons cell is in use,
|
|
654 the way we tell whether or not it is marked is to look at
|
|
655 the mark bit of its car (each Lisp_Object has one bit
|
|
656 reserved as a mark bit, in case it's needed). Note that
|
|
657 different types of objects use different fields to indicate
|
|
658 whether the object is marked, but the principle is the same.
|
|
659
|
|
660 Conses on the free_cons_list are threaded through a pointer
|
|
661 stored in the bytes directly after the bytes that are set
|
|
662 to 0xFFFFFFFF (we cannot overwrite these because the cons
|
|
663 is still in a cons_block and needs to remain marked as
|
|
664 not in use for the next time that GC happens). This
|
|
665 implies that all fixed-size types must be at least big
|
|
666 enough to store two pointers, which is indeed the case
|
|
667 for all current fixed-size types.
|
|
668
|
|
669 Some types of objects need additional "finalization" done
|
|
670 when an object is converted from in use to not in use;
|
|
671 this is the purpose of the ADDITIONAL_FREE_type macro.
|
|
672 For example, markers need to be removed from the chain
|
|
673 of markers that is kept in each buffer. This is because
|
|
674 markers in a buffer automatically disappear if the marker
|
|
675 is no longer referenced anywhere (the same does not
|
|
676 apply to extents, however).
|
|
677
|
|
678 WARNING: Things are in an extremely bizarre state when
|
|
679 the ADDITIONAL_FREE_type macros are called, so beware!
|
|
680
|
|
681 When ERROR_CHECK_GC is defined, we do things differently
|
|
682 so as to maximize our chances of catching places where
|
|
683 there is insufficient GCPROing. The thing we want to
|
|
684 avoid is having an object that we're using but didn't
|
|
685 GCPRO get freed by GC and then reallocated while we're
|
|
686 in the process of using it -- this will result in something
|
|
687 seemingly unrelated getting trashed, and is extremely
|
|
688 difficult to track down. If the object gets freed but
|
|
689 not reallocated, we can usually catch this because we
|
|
690 set all bytes of a freed object to 0xDEADBEEF. (The
|
|
691 first four bytes, however, are 0xFFFFFFFF, and the next
|
|
692 four are a pointer used to chain freed objects together;
|
|
693 we play some tricks with this pointer to make it more
|
|
694 bogus, so crashes are more likely to occur right away.)
|
|
695
|
|
696 We want freed objects to stay free as long as possible,
|
|
697 so instead of doing what we do above, we maintain the
|
|
698 free objects in a first-in first-out queue. We also
|
|
699 don't recompute the free list each GC, unlike above;
|
|
700 this ensures that the queue ordering is preserved.
|
|
701 [This means that we are likely to have worse locality
|
|
702 of reference, and that we can never free a frob block
|
|
703 once it's allocated. (Even if we know that all cells
|
|
704 in it are free, there's no easy way to remove all those
|
|
705 cells from the free list because the objects on the
|
|
706 free list are unlikely to be in memory order.)]
|
|
707 Furthermore, we never take objects off the free list
|
|
708 unless there's a large number (usually 1000, but
|
|
709 varies depending on type) of them already on the list.
|
|
710 This way, we ensure that an object that gets freed will
|
|
711 remain free for the next 1000 (or whatever) times that
|
412
|
712 an object of that type is allocated.
|
|
713 */
|
0
|
714
|
|
715 #ifndef MALLOC_OVERHEAD
|
|
716 #ifdef GNU_MALLOC
|
|
717 #define MALLOC_OVERHEAD 0
|
|
718 #elif defined (rcheck)
|
|
719 #define MALLOC_OVERHEAD 20
|
|
720 #else
|
|
721 #define MALLOC_OVERHEAD 8
|
|
722 #endif
|
183
|
723 #endif /* MALLOC_OVERHEAD */
|
0
|
724
|
255
|
725 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC)
|
|
726 /* If we released our reserve (due to running out of memory),
|
|
727 and we have a fair amount free once again,
|
|
728 try to set aside another reserve in case we run out once more.
|
|
729
|
|
730 This is called when a relocatable block is freed in ralloc.c. */
|
272
|
731 void refill_memory_reserve (void);
|
255
|
732 void
|
412
|
733 refill_memory_reserve ()
|
255
|
734 {
|
|
735 if (breathing_space == 0)
|
|
736 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD);
|
|
737 }
|
|
738 #endif
|
|
739
|
0
|
740 #ifdef ALLOC_NO_POOLS
|
|
741 # define TYPE_ALLOC_SIZE(type, structtype) 1
|
|
742 #else
|
|
743 # define TYPE_ALLOC_SIZE(type, structtype) \
|
|
744 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \
|
|
745 / sizeof (structtype))
|
183
|
746 #endif /* ALLOC_NO_POOLS */
|
0
|
747
|
380
|
748 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \
|
|
749 \
|
|
750 struct type##_block \
|
|
751 { \
|
|
752 struct type##_block *prev; \
|
|
753 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \
|
|
754 }; \
|
|
755 \
|
|
756 static struct type##_block *current_##type##_block; \
|
|
757 static int current_##type##_block_index; \
|
|
758 \
|
|
759 static structtype *type##_free_list; \
|
|
760 static structtype *type##_free_list_tail; \
|
|
761 \
|
|
762 static void \
|
|
763 init_##type##_alloc (void) \
|
|
764 { \
|
|
765 current_##type##_block = 0; \
|
|
766 current_##type##_block_index = \
|
|
767 countof (current_##type##_block->block); \
|
|
768 type##_free_list = 0; \
|
|
769 type##_free_list_tail = 0; \
|
|
770 } \
|
|
771 \
|
|
772 static int gc_count_num_##type##_in_use; \
|
|
773 static int gc_count_num_##type##_freelist
|
|
774
|
|
775 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \
|
|
776 if (current_##type##_block_index \
|
|
777 == countof (current_##type##_block->block)) \
|
0
|
778 { \
|
380
|
779 struct type##_block *AFTFB_new = (struct type##_block *) \
|
|
780 allocate_lisp_storage (sizeof (struct type##_block)); \
|
|
781 AFTFB_new->prev = current_##type##_block; \
|
|
782 current_##type##_block = AFTFB_new; \
|
0
|
783 current_##type##_block_index = 0; \
|
|
784 } \
|
380
|
785 (result) = \
|
|
786 &(current_##type##_block->block[current_##type##_block_index++]); \
|
|
787 } while (0)
|
0
|
788
|
|
789 /* Allocate an instance of a type that is stored in blocks.
|
|
790 TYPE is the "name" of the type, STRUCTTYPE is the corresponding
|
|
791 structure type. */
|
|
792
|
|
793 #ifdef ERROR_CHECK_GC
|
|
794
|
|
795 /* Note: if you get crashes in this function, suspect incorrect calls
|
|
796 to free_cons() and friends. This happened once because the cons
|
|
797 cell was not GC-protected and was getting collected before
|
|
798 free_cons() was called. */
|
|
799
|
|
800 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
801 do \
|
|
802 { \
|
|
803 if (gc_count_num_##type##_freelist > \
|
|
804 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \
|
|
805 { \
|
|
806 result = type##_free_list; \
|
|
807 /* Before actually using the chain pointer, we complement all its \
|
|
808 bits; see FREE_FIXED_TYPE(). */ \
|
|
809 type##_free_list = \
|
|
810 (structtype *) ~(unsigned long) \
|
|
811 (* (structtype **) ((char *) result + sizeof (void *))); \
|
|
812 gc_count_num_##type##_freelist--; \
|
|
813 } \
|
|
814 else \
|
|
815 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
816 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
817 } while (0)
|
|
818
|
183
|
819 #else /* !ERROR_CHECK_GC */
|
0
|
820
|
|
821 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
822 do \
|
|
823 { \
|
|
824 if (type##_free_list) \
|
|
825 { \
|
|
826 result = type##_free_list; \
|
|
827 type##_free_list = \
|
|
828 * (structtype **) ((char *) result + sizeof (void *)); \
|
|
829 } \
|
|
830 else \
|
|
831 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
832 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
833 } while (0)
|
|
834
|
183
|
835 #endif /* !ERROR_CHECK_GC */
|
0
|
836
|
|
837 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
838 do \
|
|
839 { \
|
|
840 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
841 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
842 } while (0)
|
|
843
|
|
844 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
845 do \
|
|
846 { \
|
|
847 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
848 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
849 } while (0)
|
|
850
|
|
851 /* INVALID_POINTER_VALUE should be a value that is invalid as a pointer
|
|
852 to a Lisp object and invalid as an actual Lisp_Object value. We have
|
|
853 to make sure that this value cannot be an integer in Lisp_Object form.
|
|
854 0xFFFFFFFF could be so on a 64-bit system, so we extend it to 64 bits.
|
|
855 On a 32-bit system, the type bits will be non-zero, making the value
|
|
856 be a pointer, and the pointer will be misaligned.
|
|
857
|
|
858 Even if Emacs is run on some weirdo system that allows and allocates
|
|
859 byte-aligned pointers, this pointer is at the very top of the address
|
|
860 space and so it's almost inconceivable that it could ever be valid. */
|
183
|
861
|
371
|
862 #if INTBITS == 32
|
|
863 # define INVALID_POINTER_VALUE 0xFFFFFFFF
|
|
864 #elif INTBITS == 48
|
|
865 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFF
|
|
866 #elif INTBITS == 64
|
|
867 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFFFFFF
|
0
|
868 #else
|
|
869 You have some weird system and need to supply a reasonable value here.
|
|
870 #endif
|
|
871
|
|
872 #define FREE_STRUCT_P(ptr) \
|
412
|
873 (* (void **) ptr == (void *) INVALID_POINTER_VALUE)
|
371
|
874 #define MARK_STRUCT_AS_FREE(ptr) \
|
412
|
875 (* (void **) ptr = (void *) INVALID_POINTER_VALUE)
|
371
|
876 #define MARK_STRUCT_AS_NOT_FREE(ptr) \
|
412
|
877 (* (void **) ptr = 0)
|
0
|
878
|
|
879 #ifdef ERROR_CHECK_GC
|
|
880
|
|
881 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
|
882 do { if (type##_free_list_tail) \
|
|
883 { \
|
|
884 /* When we store the chain pointer, we complement all \
|
|
885 its bits; this should significantly increase its \
|
|
886 bogosity in case someone tries to use the value, and \
|
|
887 should make us dump faster if someone stores something \
|
|
888 over the pointer because when it gets un-complemented in \
|
|
889 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \
|
|
890 extremely bogus. */ \
|
|
891 * (structtype **) \
|
|
892 ((char *) type##_free_list_tail + sizeof (void *)) = \
|
|
893 (structtype *) ~(unsigned long) ptr; \
|
|
894 } \
|
|
895 else \
|
|
896 type##_free_list = ptr; \
|
|
897 type##_free_list_tail = ptr; \
|
|
898 } while (0)
|
|
899
|
183
|
900 #else /* !ERROR_CHECK_GC */
|
0
|
901
|
|
902 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
380
|
903 do { * (structtype **) ((char *) (ptr) + sizeof (void *)) = \
|
0
|
904 type##_free_list; \
|
380
|
905 type##_free_list = (ptr); \
|
0
|
906 } while (0)
|
|
907
|
183
|
908 #endif /* !ERROR_CHECK_GC */
|
0
|
909
|
|
910 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */
|
|
911
|
380
|
912 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \
|
|
913 structtype *FFT_ptr = (ptr); \
|
|
914 ADDITIONAL_FREE_##type (FFT_ptr); \
|
|
915 deadbeef_memory (FFT_ptr, sizeof (structtype)); \
|
|
916 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \
|
|
917 MARK_STRUCT_AS_FREE (FFT_ptr); \
|
|
918 } while (0)
|
0
|
919
|
|
920 /* Like FREE_FIXED_TYPE() but used when we are explicitly
|
|
921 freeing a structure through free_cons(), free_marker(), etc.
|
|
922 rather than through the normal process of sweeping.
|
|
923 We attempt to undo the changes made to the allocation counters
|
|
924 as a result of this structure being allocated. This is not
|
|
925 completely necessary but helps keep things saner: e.g. this way,
|
|
926 repeatedly allocating and freeing a cons will not result in
|
|
927 the consing-since-gc counter advancing, which would cause a GC
|
|
928 and somewhat defeat the purpose of explicitly freeing. */
|
|
929
|
|
930 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \
|
|
931 do { FREE_FIXED_TYPE (type, structtype, ptr); \
|
|
932 DECREMENT_CONS_COUNTER (sizeof (structtype)); \
|
|
933 gc_count_num_##type##_freelist++; \
|
|
934 } while (0)
|
183
|
935
|
0
|
936
|
|
937
|
380
|
938 /************************************************************************/
|
|
939 /* Cons allocation */
|
|
940 /************************************************************************/
|
0
|
941
|
412
|
942 DECLARE_FIXED_TYPE_ALLOC (cons, struct Lisp_Cons);
|
0
|
943 /* conses are used and freed so often that we set this really high */
|
|
944 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */
|
|
945 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000
|
|
946
|
207
|
947 static Lisp_Object
|
412
|
948 mark_cons (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
207
|
949 {
|
412
|
950 if (GC_NILP (XCDR (obj)))
|
207
|
951 return XCAR (obj);
|
272
|
952
|
412
|
953 markobj (XCAR (obj));
|
207
|
954 return XCDR (obj);
|
|
955 }
|
|
956
|
|
957 static int
|
|
958 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth)
|
|
959 {
|
412
|
960 while (internal_equal (XCAR (ob1), XCAR (ob2), depth + 1))
|
207
|
961 {
|
272
|
962 ob1 = XCDR (ob1);
|
|
963 ob2 = XCDR (ob2);
|
207
|
964 if (! CONSP (ob1) || ! CONSP (ob2))
|
412
|
965 return internal_equal (ob1, ob2, depth + 1);
|
207
|
966 }
|
|
967 return 0;
|
|
968 }
|
243
|
969
|
|
970 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons,
|
|
971 mark_cons, print_cons, 0,
|
|
972 cons_equal,
|
|
973 /*
|
|
974 * No `hash' method needed.
|
|
975 * internal_hash knows how to
|
|
976 * handle conses.
|
|
977 */
|
|
978 0,
|
412
|
979 struct Lisp_Cons);
|
207
|
980
|
20
|
981 DEFUN ("cons", Fcons, 2, 2, 0, /*
|
0
|
982 Create a new cons, give it CAR and CDR as components, and return it.
|
20
|
983 */
|
|
984 (car, cdr))
|
0
|
985 {
|
|
986 /* This cannot GC. */
|
272
|
987 Lisp_Object val;
|
412
|
988 struct Lisp_Cons *c;
|
|
989
|
|
990 ALLOCATE_FIXED_TYPE (cons, struct Lisp_Cons, c);
|
|
991 set_lheader_implementation (&(c->lheader), &lrecord_cons);
|
0
|
992 XSETCONS (val, c);
|
207
|
993 c->car = car;
|
|
994 c->cdr = cdr;
|
0
|
995 return val;
|
|
996 }
|
|
997
|
|
998 /* This is identical to Fcons() but it used for conses that we're
|
|
999 going to free later, and is useful when trying to track down
|
|
1000 "real" consing. */
|
|
1001 Lisp_Object
|
|
1002 noseeum_cons (Lisp_Object car, Lisp_Object cdr)
|
|
1003 {
|
272
|
1004 Lisp_Object val;
|
412
|
1005 struct Lisp_Cons *c;
|
|
1006
|
|
1007 NOSEEUM_ALLOCATE_FIXED_TYPE (cons, struct Lisp_Cons, c);
|
|
1008 set_lheader_implementation (&(c->lheader), &lrecord_cons);
|
0
|
1009 XSETCONS (val, c);
|
|
1010 XCAR (val) = car;
|
|
1011 XCDR (val) = cdr;
|
|
1012 return val;
|
|
1013 }
|
|
1014
|
20
|
1015 DEFUN ("list", Flist, 0, MANY, 0, /*
|
0
|
1016 Return a newly created list with specified arguments as elements.
|
|
1017 Any number of arguments, even zero arguments, are allowed.
|
20
|
1018 */
|
|
1019 (int nargs, Lisp_Object *args))
|
0
|
1020 {
|
165
|
1021 Lisp_Object val = Qnil;
|
|
1022 Lisp_Object *argp = args + nargs;
|
|
1023
|
380
|
1024 while (argp > args)
|
165
|
1025 val = Fcons (*--argp, val);
|
0
|
1026 return val;
|
|
1027 }
|
|
1028
|
|
1029 Lisp_Object
|
|
1030 list1 (Lisp_Object obj0)
|
|
1031 {
|
|
1032 /* This cannot GC. */
|
173
|
1033 return Fcons (obj0, Qnil);
|
0
|
1034 }
|
|
1035
|
|
1036 Lisp_Object
|
|
1037 list2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1038 {
|
|
1039 /* This cannot GC. */
|
272
|
1040 return Fcons (obj0, Fcons (obj1, Qnil));
|
0
|
1041 }
|
|
1042
|
|
1043 Lisp_Object
|
|
1044 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1045 {
|
|
1046 /* This cannot GC. */
|
272
|
1047 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil)));
|
0
|
1048 }
|
|
1049
|
272
|
1050 Lisp_Object
|
0
|
1051 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1052 {
|
|
1053 /* This cannot GC. */
|
|
1054 return Fcons (obj0, Fcons (obj1, obj2));
|
|
1055 }
|
|
1056
|
|
1057 Lisp_Object
|
272
|
1058 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist)
|
|
1059 {
|
|
1060 return Fcons (Fcons (key, value), alist);
|
|
1061 }
|
|
1062
|
|
1063 Lisp_Object
|
0
|
1064 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3)
|
|
1065 {
|
|
1066 /* This cannot GC. */
|
272
|
1067 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil))));
|
0
|
1068 }
|
|
1069
|
|
1070 Lisp_Object
|
|
1071 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1072 Lisp_Object obj4)
|
|
1073 {
|
|
1074 /* This cannot GC. */
|
272
|
1075 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil)))));
|
0
|
1076 }
|
|
1077
|
|
1078 Lisp_Object
|
|
1079 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1080 Lisp_Object obj4, Lisp_Object obj5)
|
|
1081 {
|
|
1082 /* This cannot GC. */
|
272
|
1083 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil))))));
|
0
|
1084 }
|
|
1085
|
20
|
1086 DEFUN ("make-list", Fmake_list, 2, 2, 0, /*
|
272
|
1087 Return a new list of length LENGTH, with each element being INIT.
|
20
|
1088 */
|
|
1089 (length, init))
|
0
|
1090 {
|
|
1091 CHECK_NATNUM (length);
|
272
|
1092
|
|
1093 {
|
|
1094 Lisp_Object val = Qnil;
|
412
|
1095 int size = XINT (length);
|
|
1096
|
|
1097 while (size-- > 0)
|
272
|
1098 val = Fcons (init, val);
|
|
1099 return val;
|
|
1100 }
|
0
|
1101 }
|
|
1102
|
|
1103
|
380
|
1104 /************************************************************************/
|
|
1105 /* Float allocation */
|
|
1106 /************************************************************************/
|
0
|
1107
|
|
1108 #ifdef LISP_FLOAT_TYPE
|
|
1109
|
412
|
1110 DECLARE_FIXED_TYPE_ALLOC (float, struct Lisp_Float);
|
0
|
1111 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000
|
|
1112
|
|
1113 Lisp_Object
|
|
1114 make_float (double float_value)
|
|
1115 {
|
|
1116 Lisp_Object val;
|
412
|
1117 struct Lisp_Float *f;
|
|
1118
|
|
1119 ALLOCATE_FIXED_TYPE (float, struct Lisp_Float, f);
|
|
1120 set_lheader_implementation (&(f->lheader), &lrecord_float);
|
0
|
1121 float_data (f) = float_value;
|
|
1122 XSETFLOAT (val, f);
|
173
|
1123 return val;
|
0
|
1124 }
|
|
1125
|
|
1126 #endif /* LISP_FLOAT_TYPE */
|
|
1127
|
|
1128
|
380
|
1129 /************************************************************************/
|
|
1130 /* Vector allocation */
|
|
1131 /************************************************************************/
|
0
|
1132
|
207
|
1133 static Lisp_Object
|
412
|
1134 mark_vector (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
207
|
1135 {
|
380
|
1136 Lisp_Vector *ptr = XVECTOR (obj);
|
207
|
1137 int len = vector_length (ptr);
|
|
1138 int i;
|
|
1139
|
|
1140 for (i = 0; i < len - 1; i++)
|
412
|
1141 markobj (ptr->contents[i]);
|
207
|
1142 return (len > 0) ? ptr->contents[len - 1] : Qnil;
|
|
1143 }
|
|
1144
|
272
|
1145 static size_t
|
412
|
1146 size_vector (CONST void *lheader)
|
207
|
1147 {
|
412
|
1148 return STRETCHY_STRUCT_SIZEOF (Lisp_Vector, contents,
|
|
1149 ((Lisp_Vector *) lheader)->size);
|
207
|
1150 }
|
|
1151
|
|
1152 static int
|
380
|
1153 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
207
|
1154 {
|
380
|
1155 int len = XVECTOR_LENGTH (obj1);
|
|
1156 if (len != XVECTOR_LENGTH (obj2))
|
207
|
1157 return 0;
|
382
|
1158
|
|
1159 {
|
|
1160 Lisp_Object *ptr1 = XVECTOR_DATA (obj1);
|
|
1161 Lisp_Object *ptr2 = XVECTOR_DATA (obj2);
|
|
1162 while (len--)
|
|
1163 if (!internal_equal (*ptr1++, *ptr2++, depth + 1))
|
207
|
1164 return 0;
|
382
|
1165 }
|
207
|
1166 return 1;
|
|
1167 }
|
|
1168
|
243
|
1169 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION("vector", vector,
|
|
1170 mark_vector, print_vector, 0,
|
|
1171 vector_equal,
|
412
|
1172 /*
|
|
1173 * No `hash' method needed for
|
|
1174 * vectors. internal_hash
|
|
1175 * knows how to handle vectors.
|
|
1176 */
|
|
1177 0,
|
380
|
1178 size_vector, Lisp_Vector);
|
243
|
1179
|
207
|
1180 /* #### should allocate `small' vectors from a frob-block */
|
380
|
1181 static Lisp_Vector *
|
272
|
1182 make_vector_internal (size_t sizei)
|
207
|
1183 {
|
380
|
1184 /* no vector_next */
|
412
|
1185 size_t sizem = STRETCHY_STRUCT_SIZEOF (Lisp_Vector, contents, sizei);
|
398
|
1186 Lisp_Vector *p = (Lisp_Vector *) alloc_lcrecord (sizem, &lrecord_vector);
|
207
|
1187
|
|
1188 p->size = sizei;
|
|
1189 return p;
|
|
1190 }
|
|
1191
|
0
|
1192 Lisp_Object
|
382
|
1193 make_vector (size_t length, Lisp_Object init)
|
0
|
1194 {
|
382
|
1195 Lisp_Vector *vecp = make_vector_internal (length);
|
|
1196 Lisp_Object *p = vector_data (vecp);
|
|
1197
|
|
1198 while (length--)
|
|
1199 *p++ = init;
|
|
1200
|
0
|
1201 {
|
382
|
1202 Lisp_Object vector;
|
|
1203 XSETVECTOR (vector, vecp);
|
173
|
1204 return vector;
|
0
|
1205 }
|
|
1206 }
|
|
1207
|
20
|
1208 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /*
|
272
|
1209 Return a new vector of length LENGTH, with each element being INIT.
|
0
|
1210 See also the function `vector'.
|
20
|
1211 */
|
|
1212 (length, init))
|
0
|
1213 {
|
382
|
1214 CONCHECK_NATNUM (length);
|
173
|
1215 return make_vector (XINT (length), init);
|
0
|
1216 }
|
|
1217
|
20
|
1218 DEFUN ("vector", Fvector, 0, MANY, 0, /*
|
0
|
1219 Return a newly created vector with specified arguments as elements.
|
|
1220 Any number of arguments, even zero arguments, are allowed.
|
20
|
1221 */
|
|
1222 (int nargs, Lisp_Object *args))
|
0
|
1223 {
|
382
|
1224 Lisp_Vector *vecp = make_vector_internal (nargs);
|
|
1225 Lisp_Object *p = vector_data (vecp);
|
|
1226
|
|
1227 while (nargs--)
|
|
1228 *p++ = *args++;
|
|
1229
|
|
1230 {
|
|
1231 Lisp_Object vector;
|
|
1232 XSETVECTOR (vector, vecp);
|
|
1233 return vector;
|
|
1234 }
|
0
|
1235 }
|
|
1236
|
|
1237 Lisp_Object
|
|
1238 vector1 (Lisp_Object obj0)
|
|
1239 {
|
|
1240 return Fvector (1, &obj0);
|
|
1241 }
|
|
1242
|
|
1243 Lisp_Object
|
|
1244 vector2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1245 {
|
|
1246 Lisp_Object args[2];
|
|
1247 args[0] = obj0;
|
|
1248 args[1] = obj1;
|
|
1249 return Fvector (2, args);
|
|
1250 }
|
|
1251
|
|
1252 Lisp_Object
|
|
1253 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1254 {
|
|
1255 Lisp_Object args[3];
|
|
1256 args[0] = obj0;
|
|
1257 args[1] = obj1;
|
|
1258 args[2] = obj2;
|
|
1259 return Fvector (3, args);
|
|
1260 }
|
|
1261
|
272
|
1262 #if 0 /* currently unused */
|
|
1263
|
0
|
1264 Lisp_Object
|
|
1265 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1266 Lisp_Object obj3)
|
|
1267 {
|
|
1268 Lisp_Object args[4];
|
|
1269 args[0] = obj0;
|
|
1270 args[1] = obj1;
|
|
1271 args[2] = obj2;
|
|
1272 args[3] = obj3;
|
|
1273 return Fvector (4, args);
|
|
1274 }
|
|
1275
|
|
1276 Lisp_Object
|
|
1277 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1278 Lisp_Object obj3, Lisp_Object obj4)
|
|
1279 {
|
|
1280 Lisp_Object args[5];
|
|
1281 args[0] = obj0;
|
|
1282 args[1] = obj1;
|
|
1283 args[2] = obj2;
|
|
1284 args[3] = obj3;
|
|
1285 args[4] = obj4;
|
|
1286 return Fvector (5, args);
|
|
1287 }
|
|
1288
|
|
1289 Lisp_Object
|
|
1290 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1291 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5)
|
|
1292 {
|
|
1293 Lisp_Object args[6];
|
|
1294 args[0] = obj0;
|
|
1295 args[1] = obj1;
|
|
1296 args[2] = obj2;
|
|
1297 args[3] = obj3;
|
|
1298 args[4] = obj4;
|
|
1299 args[5] = obj5;
|
|
1300 return Fvector (6, args);
|
|
1301 }
|
|
1302
|
|
1303 Lisp_Object
|
|
1304 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1305 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1306 Lisp_Object obj6)
|
|
1307 {
|
|
1308 Lisp_Object args[7];
|
|
1309 args[0] = obj0;
|
|
1310 args[1] = obj1;
|
|
1311 args[2] = obj2;
|
|
1312 args[3] = obj3;
|
|
1313 args[4] = obj4;
|
|
1314 args[5] = obj5;
|
|
1315 args[6] = obj6;
|
|
1316 return Fvector (7, args);
|
|
1317 }
|
|
1318
|
|
1319 Lisp_Object
|
|
1320 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1321 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1322 Lisp_Object obj6, Lisp_Object obj7)
|
|
1323 {
|
|
1324 Lisp_Object args[8];
|
|
1325 args[0] = obj0;
|
|
1326 args[1] = obj1;
|
|
1327 args[2] = obj2;
|
|
1328 args[3] = obj3;
|
|
1329 args[4] = obj4;
|
|
1330 args[5] = obj5;
|
|
1331 args[6] = obj6;
|
|
1332 args[7] = obj7;
|
|
1333 return Fvector (8, args);
|
|
1334 }
|
272
|
1335 #endif /* unused */
|
0
|
1336
|
380
|
1337 /************************************************************************/
|
|
1338 /* Bit Vector allocation */
|
|
1339 /************************************************************************/
|
0
|
1340
|
|
1341 static Lisp_Object all_bit_vectors;
|
|
1342
|
|
1343 /* #### should allocate `small' bit vectors from a frob-block */
|
412
|
1344 static struct Lisp_Bit_Vector *
|
272
|
1345 make_bit_vector_internal (size_t sizei)
|
0
|
1346 {
|
382
|
1347 size_t num_longs = BIT_VECTOR_LONG_STORAGE (sizei);
|
412
|
1348 size_t sizem = STRETCHY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits, num_longs);
|
380
|
1349 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *) allocate_lisp_storage (sizem);
|
412
|
1350 set_lheader_implementation (&(p->lheader), &lrecord_bit_vector);
|
0
|
1351
|
|
1352 INCREMENT_CONS_COUNTER (sizem, "bit-vector");
|
|
1353
|
|
1354 bit_vector_length (p) = sizei;
|
380
|
1355 bit_vector_next (p) = all_bit_vectors;
|
0
|
1356 /* make sure the extra bits in the last long are 0; the calling
|
|
1357 functions might not set them. */
|
382
|
1358 p->bits[num_longs - 1] = 0;
|
0
|
1359 XSETBIT_VECTOR (all_bit_vectors, p);
|
173
|
1360 return p;
|
0
|
1361 }
|
|
1362
|
|
1363 Lisp_Object
|
382
|
1364 make_bit_vector (size_t length, Lisp_Object init)
|
0
|
1365 {
|
412
|
1366 struct Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
382
|
1367 size_t num_longs = BIT_VECTOR_LONG_STORAGE (length);
|
0
|
1368
|
|
1369 CHECK_BIT (init);
|
|
1370
|
|
1371 if (ZEROP (init))
|
|
1372 memset (p->bits, 0, num_longs * sizeof (long));
|
|
1373 else
|
|
1374 {
|
382
|
1375 size_t bits_in_last = length & (LONGBITS_POWER_OF_2 - 1);
|
0
|
1376 memset (p->bits, ~0, num_longs * sizeof (long));
|
|
1377 /* But we have to make sure that the unused bits in the
|
382
|
1378 last long are 0, so that equal/hash is easy. */
|
0
|
1379 if (bits_in_last)
|
|
1380 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1;
|
|
1381 }
|
|
1382
|
382
|
1383 {
|
|
1384 Lisp_Object bit_vector;
|
|
1385 XSETBIT_VECTOR (bit_vector, p);
|
|
1386 return bit_vector;
|
|
1387 }
|
0
|
1388 }
|
|
1389
|
|
1390 Lisp_Object
|
382
|
1391 make_bit_vector_from_byte_vector (unsigned char *bytevec, size_t length)
|
0
|
1392 {
|
272
|
1393 int i;
|
382
|
1394 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
0
|
1395
|
|
1396 for (i = 0; i < length; i++)
|
|
1397 set_bit_vector_bit (p, i, bytevec[i]);
|
|
1398
|
382
|
1399 {
|
|
1400 Lisp_Object bit_vector;
|
|
1401 XSETBIT_VECTOR (bit_vector, p);
|
|
1402 return bit_vector;
|
|
1403 }
|
0
|
1404 }
|
|
1405
|
20
|
1406 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /*
|
272
|
1407 Return a new bit vector of length LENGTH. with each bit being INIT.
|
0
|
1408 Each element is set to INIT. See also the function `bit-vector'.
|
20
|
1409 */
|
|
1410 (length, init))
|
0
|
1411 {
|
272
|
1412 CONCHECK_NATNUM (length);
|
0
|
1413
|
173
|
1414 return make_bit_vector (XINT (length), init);
|
0
|
1415 }
|
|
1416
|
20
|
1417 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /*
|
0
|
1418 Return a newly created bit vector with specified arguments as elements.
|
|
1419 Any number of arguments, even zero arguments, are allowed.
|
20
|
1420 */
|
|
1421 (int nargs, Lisp_Object *args))
|
0
|
1422 {
|
382
|
1423 int i;
|
|
1424 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs);
|
|
1425
|
|
1426 for (i = 0; i < nargs; i++)
|
|
1427 {
|
|
1428 CHECK_BIT (args[i]);
|
|
1429 set_bit_vector_bit (p, i, !ZEROP (args[i]));
|
|
1430 }
|
|
1431
|
|
1432 {
|
|
1433 Lisp_Object bit_vector;
|
|
1434 XSETBIT_VECTOR (bit_vector, p);
|
|
1435 return bit_vector;
|
|
1436 }
|
0
|
1437 }
|
|
1438
|
|
1439
|
380
|
1440 /************************************************************************/
|
|
1441 /* Compiled-function allocation */
|
|
1442 /************************************************************************/
|
|
1443
|
|
1444 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function);
|
0
|
1445 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000
|
|
1446
|
|
1447 static Lisp_Object
|
398
|
1448 make_compiled_function (void)
|
0
|
1449 {
|
380
|
1450 Lisp_Compiled_Function *f;
|
|
1451 Lisp_Object fun;
|
398
|
1452
|
|
1453 ALLOCATE_FIXED_TYPE (compiled_function, Lisp_Compiled_Function, f);
|
412
|
1454 set_lheader_implementation (&(f->lheader), &lrecord_compiled_function);
|
398
|
1455
|
380
|
1456 f->stack_depth = 0;
|
|
1457 f->specpdl_depth = 0;
|
|
1458 f->flags.documentationp = 0;
|
|
1459 f->flags.interactivep = 0;
|
|
1460 f->flags.domainp = 0; /* I18N3 */
|
|
1461 f->instructions = Qzero;
|
|
1462 f->constants = Qzero;
|
|
1463 f->arglist = Qnil;
|
|
1464 f->doc_and_interactive = Qnil;
|
0
|
1465 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
380
|
1466 f->annotated = Qnil;
|
0
|
1467 #endif
|
380
|
1468 XSETCOMPILED_FUNCTION (fun, f);
|
|
1469 return fun;
|
0
|
1470 }
|
|
1471
|
20
|
1472 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /*
|
272
|
1473 Return a new compiled-function object.
|
380
|
1474 Usage: (arglist instructions constants stack-depth
|
|
1475 &optional doc-string interactive)
|
0
|
1476 Note that, unlike all other emacs-lisp functions, calling this with five
|
|
1477 arguments is NOT the same as calling it with six arguments, the last of
|
|
1478 which is nil. If the INTERACTIVE arg is specified as nil, then that means
|
|
1479 that this function was defined with `(interactive)'. If the arg is not
|
|
1480 specified, then that means the function is not interactive.
|
|
1481 This is terrible behavior which is retained for compatibility with old
|
380
|
1482 `.elc' files which expect these semantics.
|
20
|
1483 */
|
|
1484 (int nargs, Lisp_Object *args))
|
0
|
1485 {
|
380
|
1486 /* In a non-insane world this function would have this arglist...
|
|
1487 (arglist instructions constants stack_depth &optional doc_string interactive)
|
0
|
1488 */
|
398
|
1489 Lisp_Object fun = make_compiled_function ();
|
380
|
1490 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun);
|
|
1491
|
0
|
1492 Lisp_Object arglist = args[0];
|
|
1493 Lisp_Object instructions = args[1];
|
|
1494 Lisp_Object constants = args[2];
|
380
|
1495 Lisp_Object stack_depth = args[3];
|
272
|
1496 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil;
|
|
1497 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound;
|
380
|
1498
|
|
1499 if (nargs < 4 || nargs > 6)
|
183
|
1500 return Fsignal (Qwrong_number_of_arguments,
|
0
|
1501 list2 (intern ("make-byte-code"), make_int (nargs)));
|
|
1502
|
380
|
1503 /* Check for valid formal parameter list now, to allow us to use
|
|
1504 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */
|
|
1505 {
|
|
1506 Lisp_Object symbol, tail;
|
|
1507 EXTERNAL_LIST_LOOP_3 (symbol, arglist, tail)
|
|
1508 {
|
|
1509 CHECK_SYMBOL (symbol);
|
|
1510 if (EQ (symbol, Qt) ||
|
|
1511 EQ (symbol, Qnil) ||
|
|
1512 SYMBOL_IS_KEYWORD (symbol))
|
|
1513 signal_simple_error_2
|
|
1514 ("Invalid constant symbol in formal parameter list",
|
|
1515 symbol, arglist);
|
|
1516 }
|
|
1517 }
|
|
1518 f->arglist = arglist;
|
|
1519
|
|
1520 /* `instructions' is a string or a cons (string . int) for a
|
0
|
1521 lazy-loaded function. */
|
|
1522 if (CONSP (instructions))
|
|
1523 {
|
|
1524 CHECK_STRING (XCAR (instructions));
|
|
1525 CHECK_INT (XCDR (instructions));
|
|
1526 }
|
|
1527 else
|
|
1528 {
|
|
1529 CHECK_STRING (instructions);
|
380
|
1530 }
|
|
1531 f->instructions = instructions;
|
|
1532
|
|
1533 if (!NILP (constants))
|
|
1534 CHECK_VECTOR (constants);
|
|
1535 f->constants = constants;
|
|
1536
|
|
1537 CHECK_NATNUM (stack_depth);
|
412
|
1538 f->stack_depth = XINT (stack_depth);
|
380
|
1539
|
|
1540 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
1541 if (!NILP (Vcurrent_compiled_function_annotation))
|
398
|
1542 f->annotated = Fcopy (Vcurrent_compiled_function_annotation);
|
380
|
1543 else if (!NILP (Vload_file_name_internal_the_purecopy))
|
|
1544 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1545 else if (!NILP (Vload_file_name_internal))
|
|
1546 {
|
|
1547 struct gcpro gcpro1;
|
|
1548 GCPRO1 (fun); /* don't let fun get reaped */
|
|
1549 Vload_file_name_internal_the_purecopy =
|
412
|
1550 Fpurecopy (Ffile_name_nondirectory (Vload_file_name_internal));
|
380
|
1551 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1552 UNGCPRO;
|
0
|
1553 }
|
380
|
1554 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */
|
|
1555
|
|
1556 /* doc_string may be nil, string, int, or a cons (string . int).
|
|
1557 interactive may be list or string (or unbound). */
|
|
1558 f->doc_and_interactive = Qunbound;
|
|
1559 #ifdef I18N3
|
|
1560 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0)
|
|
1561 f->doc_and_interactive = Vfile_domain;
|
|
1562 #endif
|
|
1563 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0)
|
|
1564 {
|
|
1565 f->doc_and_interactive
|
|
1566 = (UNBOUNDP (f->doc_and_interactive) ? interactive :
|
398
|
1567 Fcons (interactive, f->doc_and_interactive));
|
380
|
1568 }
|
|
1569 if ((f->flags.documentationp = !NILP (doc_string)) != 0)
|
|
1570 {
|
|
1571 f->doc_and_interactive
|
|
1572 = (UNBOUNDP (f->doc_and_interactive) ? doc_string :
|
398
|
1573 Fcons (doc_string, f->doc_and_interactive));
|
380
|
1574 }
|
|
1575 if (UNBOUNDP (f->doc_and_interactive))
|
|
1576 f->doc_and_interactive = Qnil;
|
0
|
1577
|
380
|
1578 return fun;
|
0
|
1579 }
|
|
1580
|
|
1581
|
380
|
1582 /************************************************************************/
|
|
1583 /* Symbol allocation */
|
|
1584 /************************************************************************/
|
0
|
1585
|
412
|
1586 DECLARE_FIXED_TYPE_ALLOC (symbol, struct Lisp_Symbol);
|
0
|
1587 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000
|
|
1588
|
20
|
1589 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /*
|
0
|
1590 Return a newly allocated uninterned symbol whose name is NAME.
|
|
1591 Its value and function definition are void, and its property list is nil.
|
20
|
1592 */
|
380
|
1593 (name))
|
0
|
1594 {
|
|
1595 Lisp_Object val;
|
412
|
1596 struct Lisp_Symbol *p;
|
0
|
1597
|
380
|
1598 CHECK_STRING (name);
|
0
|
1599
|
412
|
1600 ALLOCATE_FIXED_TYPE (symbol, struct Lisp_Symbol, p);
|
|
1601 set_lheader_implementation (&(p->lheader), &lrecord_symbol);
|
380
|
1602 p->name = XSTRING (name);
|
|
1603 p->plist = Qnil;
|
|
1604 p->value = Qunbound;
|
0
|
1605 p->function = Qunbound;
|
371
|
1606 symbol_next (p) = 0;
|
0
|
1607 XSETSYMBOL (val, p);
|
|
1608 return val;
|
|
1609 }
|
|
1610
|
|
1611
|
380
|
1612 /************************************************************************/
|
|
1613 /* Extent allocation */
|
|
1614 /************************************************************************/
|
0
|
1615
|
|
1616 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent);
|
|
1617 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000
|
|
1618
|
|
1619 struct extent *
|
|
1620 allocate_extent (void)
|
|
1621 {
|
|
1622 struct extent *e;
|
|
1623
|
|
1624 ALLOCATE_FIXED_TYPE (extent, struct extent, e);
|
412
|
1625 set_lheader_implementation (&(e->lheader), &lrecord_extent);
|
0
|
1626 extent_object (e) = Qnil;
|
|
1627 set_extent_start (e, -1);
|
|
1628 set_extent_end (e, -1);
|
|
1629 e->plist = Qnil;
|
|
1630
|
272
|
1631 xzero (e->flags);
|
0
|
1632
|
|
1633 extent_face (e) = Qnil;
|
|
1634 e->flags.end_open = 1; /* default is for endpoints to behave like markers */
|
|
1635 e->flags.detachable = 1;
|
|
1636
|
173
|
1637 return e;
|
0
|
1638 }
|
|
1639
|
|
1640
|
380
|
1641 /************************************************************************/
|
|
1642 /* Event allocation */
|
|
1643 /************************************************************************/
|
0
|
1644
|
412
|
1645 DECLARE_FIXED_TYPE_ALLOC (event, struct Lisp_Event);
|
0
|
1646 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000
|
|
1647
|
|
1648 Lisp_Object
|
|
1649 allocate_event (void)
|
|
1650 {
|
|
1651 Lisp_Object val;
|
412
|
1652 struct Lisp_Event *e;
|
|
1653
|
|
1654 ALLOCATE_FIXED_TYPE (event, struct Lisp_Event, e);
|
|
1655 set_lheader_implementation (&(e->lheader), &lrecord_event);
|
0
|
1656
|
|
1657 XSETEVENT (val, e);
|
|
1658 return val;
|
|
1659 }
|
183
|
1660
|
0
|
1661
|
380
|
1662 /************************************************************************/
|
|
1663 /* Marker allocation */
|
|
1664 /************************************************************************/
|
0
|
1665
|
412
|
1666 DECLARE_FIXED_TYPE_ALLOC (marker, struct Lisp_Marker);
|
0
|
1667 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000
|
|
1668
|
20
|
1669 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /*
|
272
|
1670 Return a new marker which does not point at any place.
|
20
|
1671 */
|
|
1672 ())
|
0
|
1673 {
|
|
1674 Lisp_Object val;
|
412
|
1675 struct Lisp_Marker *p;
|
|
1676
|
|
1677 ALLOCATE_FIXED_TYPE (marker, struct Lisp_Marker, p);
|
|
1678 set_lheader_implementation (&(p->lheader), &lrecord_marker);
|
0
|
1679 p->buffer = 0;
|
|
1680 p->memind = 0;
|
|
1681 marker_next (p) = 0;
|
|
1682 marker_prev (p) = 0;
|
|
1683 p->insertion_type = 0;
|
|
1684 XSETMARKER (val, p);
|
|
1685 return val;
|
|
1686 }
|
|
1687
|
|
1688 Lisp_Object
|
|
1689 noseeum_make_marker (void)
|
|
1690 {
|
|
1691 Lisp_Object val;
|
412
|
1692 struct Lisp_Marker *p;
|
|
1693
|
|
1694 NOSEEUM_ALLOCATE_FIXED_TYPE (marker, struct Lisp_Marker, p);
|
|
1695 set_lheader_implementation (&(p->lheader), &lrecord_marker);
|
0
|
1696 p->buffer = 0;
|
|
1697 p->memind = 0;
|
|
1698 marker_next (p) = 0;
|
|
1699 marker_prev (p) = 0;
|
|
1700 p->insertion_type = 0;
|
|
1701 XSETMARKER (val, p);
|
|
1702 return val;
|
|
1703 }
|
|
1704
|
|
1705
|
380
|
1706 /************************************************************************/
|
|
1707 /* String allocation */
|
|
1708 /************************************************************************/
|
0
|
1709
|
183
|
1710 /* The data for "short" strings generally resides inside of structs of type
|
|
1711 string_chars_block. The Lisp_String structure is allocated just like any
|
0
|
1712 other Lisp object (except for vectors), and these are freelisted when
|
|
1713 they get garbage collected. The data for short strings get compacted,
|
183
|
1714 but the data for large strings do not.
|
0
|
1715
|
|
1716 Previously Lisp_String structures were relocated, but this caused a lot
|
|
1717 of bus-errors because the C code didn't include enough GCPRO's for
|
|
1718 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so
|
|
1719 that the reference would get relocated).
|
|
1720
|
|
1721 This new method makes things somewhat bigger, but it is MUCH safer. */
|
|
1722
|
412
|
1723 DECLARE_FIXED_TYPE_ALLOC (string, struct Lisp_String);
|
0
|
1724 /* strings are used and freed quite often */
|
|
1725 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */
|
|
1726 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000
|
|
1727
|
207
|
1728 static Lisp_Object
|
412
|
1729 mark_string (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
207
|
1730 {
|
412
|
1731 struct Lisp_String *ptr = XSTRING (obj);
|
|
1732
|
|
1733 if (GC_CONSP (ptr->plist) && GC_EXTENT_INFOP (XCAR (ptr->plist)))
|
207
|
1734 flush_cached_extent_info (XCAR (ptr->plist));
|
|
1735 return ptr->plist;
|
|
1736 }
|
|
1737
|
|
1738 static int
|
380
|
1739 string_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
207
|
1740 {
|
272
|
1741 Bytecount len;
|
380
|
1742 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) &&
|
|
1743 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len));
|
207
|
1744 }
|
243
|
1745
|
412
|
1746 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("string", string,
|
|
1747 mark_string, print_string,
|
|
1748 /*
|
|
1749 * No `finalize', or `hash' methods.
|
|
1750 * internal_hash already knows how
|
|
1751 * to hash strings and finalization
|
|
1752 * is done with the
|
|
1753 * ADDITIONAL_FREE_string macro,
|
|
1754 * which is the standard way to do
|
|
1755 * finalization when using
|
|
1756 * SWEEP_FIXED_TYPE_BLOCK().
|
|
1757 */
|
|
1758 0, string_equal, 0,
|
|
1759 struct Lisp_String);
|
207
|
1760
|
0
|
1761 /* String blocks contain this many useful bytes. */
|
272
|
1762 #define STRING_CHARS_BLOCK_SIZE \
|
|
1763 ((Bytecount) (8192 - MALLOC_OVERHEAD - \
|
|
1764 ((2 * sizeof (struct string_chars_block *)) \
|
|
1765 + sizeof (EMACS_INT))))
|
0
|
1766 /* Block header for small strings. */
|
|
1767 struct string_chars_block
|
|
1768 {
|
|
1769 EMACS_INT pos;
|
|
1770 struct string_chars_block *next;
|
|
1771 struct string_chars_block *prev;
|
|
1772 /* Contents of string_chars_block->string_chars are interleaved
|
|
1773 string_chars structures (see below) and the actual string data */
|
|
1774 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE];
|
|
1775 };
|
|
1776
|
412
|
1777 struct string_chars_block *first_string_chars_block;
|
|
1778 struct string_chars_block *current_string_chars_block;
|
0
|
1779
|
|
1780 /* If SIZE is the length of a string, this returns how many bytes
|
|
1781 * the string occupies in string_chars_block->string_chars
|
|
1782 * (including alignment padding).
|
|
1783 */
|
412
|
1784 #define STRING_FULLSIZE(s) \
|
|
1785 ALIGN_SIZE (((s) + 1 + sizeof (struct Lisp_String *)),\
|
|
1786 ALIGNOF (struct Lisp_String *))
|
0
|
1787
|
|
1788 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE)
|
|
1789 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size)))
|
|
1790
|
412
|
1791 #define CHARS_TO_STRING_CHAR(x) \
|
|
1792 ((struct string_chars *) \
|
|
1793 (((char *) (x)) - (slot_offset (struct string_chars, chars[0]))))
|
|
1794
|
|
1795
|
0
|
1796 struct string_chars
|
|
1797 {
|
412
|
1798 struct Lisp_String *string;
|
0
|
1799 unsigned char chars[1];
|
|
1800 };
|
|
1801
|
|
1802 struct unused_string_chars
|
|
1803 {
|
412
|
1804 struct Lisp_String *string;
|
0
|
1805 EMACS_INT fullsize;
|
|
1806 };
|
|
1807
|
|
1808 static void
|
|
1809 init_string_chars_alloc (void)
|
|
1810 {
|
185
|
1811 first_string_chars_block = xnew (struct string_chars_block);
|
0
|
1812 first_string_chars_block->prev = 0;
|
|
1813 first_string_chars_block->next = 0;
|
|
1814 first_string_chars_block->pos = 0;
|
|
1815 current_string_chars_block = first_string_chars_block;
|
|
1816 }
|
|
1817
|
|
1818 static struct string_chars *
|
412
|
1819 allocate_string_chars_struct (struct Lisp_String *string_it_goes_with,
|
0
|
1820 EMACS_INT fullsize)
|
|
1821 {
|
|
1822 struct string_chars *s_chars;
|
|
1823
|
412
|
1824 /* Allocate the string's actual data */
|
|
1825 if (BIG_STRING_FULLSIZE_P (fullsize))
|
|
1826 {
|
|
1827 s_chars = (struct string_chars *) xmalloc (fullsize);
|
|
1828 }
|
|
1829 else if (fullsize <=
|
|
1830 (countof (current_string_chars_block->string_chars)
|
|
1831 - current_string_chars_block->pos))
|
0
|
1832 {
|
|
1833 /* This string can fit in the current string chars block */
|
|
1834 s_chars = (struct string_chars *)
|
|
1835 (current_string_chars_block->string_chars
|
|
1836 + current_string_chars_block->pos);
|
|
1837 current_string_chars_block->pos += fullsize;
|
|
1838 }
|
|
1839 else
|
|
1840 {
|
|
1841 /* Make a new current string chars block */
|
382
|
1842 struct string_chars_block *new_scb = xnew (struct string_chars_block);
|
|
1843
|
|
1844 current_string_chars_block->next = new_scb;
|
|
1845 new_scb->prev = current_string_chars_block;
|
|
1846 new_scb->next = 0;
|
|
1847 current_string_chars_block = new_scb;
|
|
1848 new_scb->pos = fullsize;
|
0
|
1849 s_chars = (struct string_chars *)
|
|
1850 current_string_chars_block->string_chars;
|
|
1851 }
|
|
1852
|
|
1853 s_chars->string = string_it_goes_with;
|
|
1854
|
|
1855 INCREMENT_CONS_COUNTER (fullsize, "string chars");
|
|
1856
|
|
1857 return s_chars;
|
|
1858 }
|
|
1859
|
|
1860 Lisp_Object
|
|
1861 make_uninit_string (Bytecount length)
|
|
1862 {
|
412
|
1863 struct Lisp_String *s;
|
|
1864 struct string_chars *s_chars;
|
0
|
1865 EMACS_INT fullsize = STRING_FULLSIZE (length);
|
|
1866 Lisp_Object val;
|
|
1867
|
412
|
1868 if ((length < 0) || (fullsize <= 0))
|
|
1869 abort ();
|
0
|
1870
|
|
1871 /* Allocate the string header */
|
412
|
1872 ALLOCATE_FIXED_TYPE (string, struct Lisp_String, s);
|
|
1873 set_lheader_implementation (&(s->lheader), &lrecord_string);
|
|
1874
|
|
1875 s_chars = allocate_string_chars_struct (s, fullsize);
|
|
1876
|
|
1877 set_string_data (s, &(s_chars->chars[0]));
|
0
|
1878 set_string_length (s, length);
|
|
1879 s->plist = Qnil;
|
183
|
1880
|
0
|
1881 set_string_byte (s, length, 0);
|
|
1882
|
|
1883 XSETSTRING (val, s);
|
173
|
1884 return val;
|
0
|
1885 }
|
|
1886
|
|
1887 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1888 static void verify_string_chars_integrity (void);
|
|
1889 #endif
|
183
|
1890
|
0
|
1891 /* Resize the string S so that DELTA bytes can be inserted starting
|
|
1892 at POS. If DELTA < 0, it means deletion starting at POS. If
|
|
1893 POS < 0, resize the string but don't copy any characters. Use
|
|
1894 this if you're planning on completely overwriting the string.
|
|
1895 */
|
|
1896
|
|
1897 void
|
412
|
1898 resize_string (struct Lisp_String *s, Bytecount pos, Bytecount delta)
|
0
|
1899 {
|
|
1900 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1901 verify_string_chars_integrity ();
|
|
1902 #endif
|
|
1903
|
|
1904 #ifdef ERROR_CHECK_BUFPOS
|
|
1905 if (pos >= 0)
|
|
1906 {
|
|
1907 assert (pos <= string_length (s));
|
|
1908 if (delta < 0)
|
|
1909 assert (pos + (-delta) <= string_length (s));
|
|
1910 }
|
|
1911 else
|
|
1912 {
|
|
1913 if (delta < 0)
|
|
1914 assert ((-delta) <= string_length (s));
|
|
1915 }
|
183
|
1916 #endif /* ERROR_CHECK_BUFPOS */
|
0
|
1917
|
412
|
1918 if (pos >= 0 && delta < 0)
|
|
1919 /* If DELTA < 0, the functions below will delete the characters
|
|
1920 before POS. We want to delete characters *after* POS, however,
|
|
1921 so convert this to the appropriate form. */
|
|
1922 pos += -delta;
|
|
1923
|
0
|
1924 if (delta == 0)
|
|
1925 /* simplest case: no size change. */
|
|
1926 return;
|
412
|
1927 else
|
0
|
1928 {
|
412
|
1929 Bytecount oldfullsize = STRING_FULLSIZE (string_length (s));
|
|
1930 Bytecount newfullsize = STRING_FULLSIZE (string_length (s) + delta);
|
|
1931
|
|
1932 if (oldfullsize == newfullsize)
|
0
|
1933 {
|
412
|
1934 /* next simplest case; size change but the necessary
|
|
1935 allocation size won't change (up or down; code somewhere
|
|
1936 depends on there not being any unused allocation space,
|
|
1937 modulo any alignment constraints). */
|
0
|
1938 if (pos >= 0)
|
|
1939 {
|
412
|
1940 Bufbyte *addroff = pos + string_data (s);
|
|
1941
|
|
1942 memmove (addroff + delta, addroff,
|
|
1943 /* +1 due to zero-termination. */
|
|
1944 string_length (s) + 1 - pos);
|
0
|
1945 }
|
|
1946 }
|
412
|
1947 else if (BIG_STRING_FULLSIZE_P (oldfullsize) &&
|
|
1948 BIG_STRING_FULLSIZE_P (newfullsize))
|
0
|
1949 {
|
412
|
1950 /* next simplest case; the string is big enough to be malloc()ed
|
|
1951 itself, so we just realloc.
|
|
1952
|
|
1953 It's important not to let the string get below the threshold
|
|
1954 for making big strings and still remain malloc()ed; if that
|
|
1955 were the case, repeated calls to this function on the same
|
|
1956 string could result in memory leakage. */
|
|
1957 set_string_data (s, (Bufbyte *) xrealloc (string_data (s),
|
|
1958 newfullsize));
|
0
|
1959 if (pos >= 0)
|
|
1960 {
|
183
|
1961 Bufbyte *addroff = pos + string_data (s);
|
0
|
1962
|
|
1963 memmove (addroff + delta, addroff,
|
|
1964 /* +1 due to zero-termination. */
|
|
1965 string_length (s) + 1 - pos);
|
|
1966 }
|
|
1967 }
|
|
1968 else
|
|
1969 {
|
412
|
1970 /* worst case. We make a new string_chars struct and copy
|
|
1971 the string's data into it, inserting/deleting the delta
|
|
1972 in the process. The old string data will either get
|
|
1973 freed by us (if it was malloc()ed) or will be reclaimed
|
|
1974 in the normal course of garbage collection. */
|
|
1975 struct string_chars *s_chars =
|
|
1976 allocate_string_chars_struct (s, newfullsize);
|
|
1977 Bufbyte *new_addr = &(s_chars->chars[0]);
|
|
1978 Bufbyte *old_addr = string_data (s);
|
0
|
1979 if (pos >= 0)
|
|
1980 {
|
412
|
1981 memcpy (new_addr, old_addr, pos);
|
|
1982 memcpy (new_addr + pos + delta, old_addr + pos,
|
0
|
1983 string_length (s) + 1 - pos);
|
|
1984 }
|
412
|
1985 set_string_data (s, new_addr);
|
|
1986 if (BIG_STRING_FULLSIZE_P (oldfullsize))
|
|
1987 xfree (old_addr);
|
|
1988 else
|
|
1989 {
|
|
1990 /* We need to mark this chunk of the string_chars_block
|
|
1991 as unused so that compact_string_chars() doesn't
|
|
1992 freak. */
|
|
1993 struct string_chars *old_s_chars =
|
|
1994 (struct string_chars *) ((char *) old_addr -
|
|
1995 sizeof (struct Lisp_String *));
|
|
1996 /* Sanity check to make sure we aren't hosed by strange
|
|
1997 alignment/padding. */
|
|
1998 assert (old_s_chars->string == s);
|
|
1999 MARK_STRUCT_AS_FREE (old_s_chars);
|
|
2000 ((struct unused_string_chars *) old_s_chars)->fullsize =
|
|
2001 oldfullsize;
|
|
2002 }
|
0
|
2003 }
|
412
|
2004
|
|
2005 set_string_length (s, string_length (s) + delta);
|
|
2006 /* If pos < 0, the string won't be zero-terminated.
|
|
2007 Terminate now just to make sure. */
|
|
2008 string_data (s)[string_length (s)] = '\0';
|
|
2009
|
|
2010 if (pos >= 0)
|
|
2011 {
|
|
2012 Lisp_Object string;
|
|
2013
|
|
2014 XSETSTRING (string, s);
|
|
2015 /* We also have to adjust all of the extent indices after the
|
|
2016 place we did the change. We say "pos - 1" because
|
|
2017 adjust_extents() is exclusive of the starting position
|
|
2018 passed to it. */
|
|
2019 adjust_extents (string, pos - 1, string_length (s),
|
|
2020 delta);
|
|
2021 }
|
0
|
2022 }
|
|
2023
|
|
2024 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
2025 verify_string_chars_integrity ();
|
|
2026 #endif
|
|
2027 }
|
|
2028
|
70
|
2029 #ifdef MULE
|
|
2030
|
|
2031 void
|
412
|
2032 set_string_char (struct Lisp_String *s, Charcount i, Emchar c)
|
70
|
2033 {
|
|
2034 Bufbyte newstr[MAX_EMCHAR_LEN];
|
|
2035 Bytecount bytoff = charcount_to_bytecount (string_data (s), i);
|
382
|
2036 Bytecount oldlen = charcount_to_bytecount (string_data (s) + bytoff, 1);
|
|
2037 Bytecount newlen = set_charptr_emchar (newstr, c);
|
70
|
2038
|
|
2039 if (oldlen != newlen)
|
|
2040 resize_string (s, bytoff, newlen - oldlen);
|
185
|
2041 /* Remember, string_data (s) might have changed so we can't cache it. */
|
70
|
2042 memcpy (string_data (s) + bytoff, newstr, newlen);
|
|
2043 }
|
|
2044
|
|
2045 #endif /* MULE */
|
|
2046
|
20
|
2047 DEFUN ("make-string", Fmake_string, 2, 2, 0, /*
|
272
|
2048 Return a new string of length LENGTH, with each character being INIT.
|
0
|
2049 LENGTH must be an integer and INIT must be a character.
|
20
|
2050 */
|
|
2051 (length, init))
|
0
|
2052 {
|
|
2053 CHECK_NATNUM (length);
|
|
2054 CHECK_CHAR_COERCE_INT (init);
|
|
2055 {
|
380
|
2056 Bufbyte init_str[MAX_EMCHAR_LEN];
|
|
2057 int len = set_charptr_emchar (init_str, XCHAR (init));
|
|
2058 Lisp_Object val = make_uninit_string (len * XINT (length));
|
|
2059
|
0
|
2060 if (len == 1)
|
|
2061 /* Optimize the single-byte case */
|
14
|
2062 memset (XSTRING_DATA (val), XCHAR (init), XSTRING_LENGTH (val));
|
0
|
2063 else
|
|
2064 {
|
412
|
2065 int i;
|
14
|
2066 Bufbyte *ptr = XSTRING_DATA (val);
|
0
|
2067
|
380
|
2068 for (i = XINT (length); i; i--)
|
|
2069 {
|
|
2070 Bufbyte *init_ptr = init_str;
|
|
2071 switch (len)
|
|
2072 {
|
|
2073 case 4: *ptr++ = *init_ptr++;
|
|
2074 case 3: *ptr++ = *init_ptr++;
|
|
2075 case 2: *ptr++ = *init_ptr++;
|
|
2076 case 1: *ptr++ = *init_ptr++;
|
|
2077 }
|
|
2078 }
|
0
|
2079 }
|
380
|
2080 return val;
|
0
|
2081 }
|
|
2082 }
|
|
2083
|
278
|
2084 DEFUN ("string", Fstring, 0, MANY, 0, /*
|
|
2085 Concatenate all the argument characters and make the result a string.
|
|
2086 */
|
|
2087 (int nargs, Lisp_Object *args))
|
|
2088 {
|
|
2089 Bufbyte *storage = alloca_array (Bufbyte, nargs * MAX_EMCHAR_LEN);
|
|
2090 Bufbyte *p = storage;
|
|
2091
|
|
2092 for (; nargs; nargs--, args++)
|
|
2093 {
|
|
2094 Lisp_Object lisp_char = *args;
|
|
2095 CHECK_CHAR_COERCE_INT (lisp_char);
|
|
2096 p += set_charptr_emchar (p, XCHAR (lisp_char));
|
|
2097 }
|
|
2098 return make_string (storage, p - storage);
|
|
2099 }
|
|
2100
|
398
|
2101
|
0
|
2102 /* Take some raw memory, which MUST already be in internal format,
|
272
|
2103 and package it up into a Lisp string. */
|
0
|
2104 Lisp_Object
|
412
|
2105 make_string (CONST Bufbyte *contents, Bytecount length)
|
0
|
2106 {
|
|
2107 Lisp_Object val;
|
70
|
2108
|
|
2109 /* Make sure we find out about bad make_string's when they happen */
|
|
2110 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2111 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2112 #endif
|
183
|
2113
|
0
|
2114 val = make_uninit_string (length);
|
14
|
2115 memcpy (XSTRING_DATA (val), contents, length);
|
173
|
2116 return val;
|
0
|
2117 }
|
|
2118
|
|
2119 /* Take some raw memory, encoded in some external data format,
|
|
2120 and convert it into a Lisp string. */
|
|
2121 Lisp_Object
|
412
|
2122 make_ext_string (CONST Extbyte *contents, EMACS_INT length,
|
|
2123 enum external_data_format fmt)
|
0
|
2124 {
|
412
|
2125 Bufbyte *intstr;
|
|
2126 Bytecount intlen;
|
|
2127
|
|
2128 GET_CHARPTR_INT_DATA_ALLOCA (contents, length, fmt, intstr, intlen);
|
|
2129 return make_string (intstr, intlen);
|
398
|
2130 }
|
|
2131
|
|
2132 Lisp_Object
|
412
|
2133 build_string (CONST char *str)
|
398
|
2134 {
|
|
2135 /* Some strlen's crash and burn if passed null. */
|
412
|
2136 return make_string ((CONST Bufbyte *) str, (str ? strlen(str) : 0));
|
398
|
2137 }
|
|
2138
|
|
2139 Lisp_Object
|
412
|
2140 build_ext_string (CONST char *str, enum external_data_format fmt)
|
398
|
2141 {
|
|
2142 /* Some strlen's crash and burn if passed null. */
|
412
|
2143 return make_ext_string ((CONST Extbyte *) str, (str ? strlen(str) : 0), fmt);
|
0
|
2144 }
|
|
2145
|
|
2146 Lisp_Object
|
412
|
2147 build_translated_string (CONST char *str)
|
0
|
2148 {
|
398
|
2149 return build_string (GETTEXT (str));
|
0
|
2150 }
|
|
2151
|
|
2152 Lisp_Object
|
412
|
2153 make_string_nocopy (CONST Bufbyte *contents, Bytecount length)
|
0
|
2154 {
|
412
|
2155 struct Lisp_String *s;
|
398
|
2156 Lisp_Object val;
|
|
2157
|
|
2158 /* Make sure we find out about bad make_string_nocopy's when they happen */
|
|
2159 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2160 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2161 #endif
|
|
2162
|
|
2163 /* Allocate the string header */
|
412
|
2164 ALLOCATE_FIXED_TYPE (string, struct Lisp_String, s);
|
|
2165 set_lheader_implementation (&(s->lheader), &lrecord_string);
|
398
|
2166 SET_C_READONLY_RECORD_HEADER (&s->lheader);
|
|
2167 s->plist = Qnil;
|
|
2168 set_string_data (s, (Bufbyte *)contents);
|
|
2169 set_string_length (s, length);
|
|
2170
|
|
2171 XSETSTRING (val, s);
|
|
2172 return val;
|
0
|
2173 }
|
|
2174
|
|
2175
|
|
2176 /************************************************************************/
|
|
2177 /* lcrecord lists */
|
|
2178 /************************************************************************/
|
|
2179
|
|
2180 /* Lcrecord lists are used to manage the allocation of particular
|
|
2181 sorts of lcrecords, to avoid calling alloc_lcrecord() (and thus
|
|
2182 malloc() and garbage-collection junk) as much as possible.
|
|
2183 It is similar to the Blocktype class.
|
|
2184
|
|
2185 It works like this:
|
|
2186
|
|
2187 1) Create an lcrecord-list object using make_lcrecord_list().
|
412
|
2188 This is often done at initialization. Remember to staticpro
|
0
|
2189 this object! The arguments to make_lcrecord_list() are the
|
|
2190 same as would be passed to alloc_lcrecord().
|
|
2191 2) Instead of calling alloc_lcrecord(), call allocate_managed_lcrecord()
|
|
2192 and pass the lcrecord-list earlier created.
|
|
2193 3) When done with the lcrecord, call free_managed_lcrecord().
|
|
2194 The standard freeing caveats apply: ** make sure there are no
|
|
2195 pointers to the object anywhere! **
|
|
2196 4) Calling free_managed_lcrecord() is just like kissing the
|
|
2197 lcrecord goodbye as if it were garbage-collected. This means:
|
|
2198 -- the contents of the freed lcrecord are undefined, and the
|
|
2199 contents of something produced by allocate_managed_lcrecord()
|
|
2200 are undefined, just like for alloc_lcrecord().
|
|
2201 -- the mark method for the lcrecord's type will *NEVER* be called
|
|
2202 on freed lcrecords.
|
|
2203 -- the finalize method for the lcrecord's type will be called
|
|
2204 at the time that free_managed_lcrecord() is called.
|
|
2205
|
|
2206 */
|
|
2207
|
|
2208 static Lisp_Object
|
412
|
2209 mark_lcrecord_list (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
0
|
2210 {
|
|
2211 struct lcrecord_list *list = XLCRECORD_LIST (obj);
|
|
2212 Lisp_Object chain = list->free;
|
|
2213
|
|
2214 while (!NILP (chain))
|
|
2215 {
|
|
2216 struct lrecord_header *lheader = XRECORD_LHEADER (chain);
|
|
2217 struct free_lcrecord_header *free_header =
|
|
2218 (struct free_lcrecord_header *) lheader;
|
14
|
2219
|
412
|
2220 #ifdef ERROR_CHECK_GC
|
|
2221 CONST struct lrecord_implementation *implementation
|
|
2222 = LHEADER_IMPLEMENTATION(lheader);
|
|
2223
|
|
2224 /* There should be no other pointers to the free list. */
|
|
2225 assert (!MARKED_RECORD_HEADER_P (lheader));
|
|
2226 /* Only lcrecords should be here. */
|
|
2227 assert (!implementation->basic_p);
|
|
2228 /* Only free lcrecords should be here. */
|
|
2229 assert (free_header->lcheader.free);
|
|
2230 /* The type of the lcrecord must be right. */
|
|
2231 assert (implementation == list->implementation);
|
|
2232 /* So must the size. */
|
|
2233 assert (implementation->static_size == 0
|
|
2234 || implementation->static_size == list->size);
|
|
2235 #endif /* ERROR_CHECK_GC */
|
80
|
2236
|
0
|
2237 MARK_RECORD_HEADER (lheader);
|
|
2238 chain = free_header->chain;
|
|
2239 }
|
183
|
2240
|
0
|
2241 return Qnil;
|
|
2242 }
|
|
2243
|
243
|
2244 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list,
|
|
2245 mark_lcrecord_list, internal_object_printer,
|
412
|
2246 0, 0, 0, struct lcrecord_list);
|
0
|
2247 Lisp_Object
|
272
|
2248 make_lcrecord_list (size_t size,
|
412
|
2249 CONST struct lrecord_implementation *implementation)
|
0
|
2250 {
|
185
|
2251 struct lcrecord_list *p = alloc_lcrecord_type (struct lcrecord_list,
|
398
|
2252 &lrecord_lcrecord_list);
|
272
|
2253 Lisp_Object val;
|
0
|
2254
|
|
2255 p->implementation = implementation;
|
|
2256 p->size = size;
|
|
2257 p->free = Qnil;
|
|
2258 XSETLCRECORD_LIST (val, p);
|
|
2259 return val;
|
|
2260 }
|
|
2261
|
|
2262 Lisp_Object
|
|
2263 allocate_managed_lcrecord (Lisp_Object lcrecord_list)
|
|
2264 {
|
|
2265 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2266 if (!NILP (list->free))
|
|
2267 {
|
|
2268 Lisp_Object val = list->free;
|
|
2269 struct free_lcrecord_header *free_header =
|
|
2270 (struct free_lcrecord_header *) XPNTR (val);
|
|
2271
|
|
2272 #ifdef ERROR_CHECK_GC
|
412
|
2273 struct lrecord_header *lheader =
|
|
2274 (struct lrecord_header *) free_header;
|
|
2275 CONST struct lrecord_implementation *implementation
|
|
2276 = LHEADER_IMPLEMENTATION (lheader);
|
0
|
2277
|
|
2278 /* There should be no other pointers to the free list. */
|
412
|
2279 assert (!MARKED_RECORD_HEADER_P (lheader));
|
0
|
2280 /* Only lcrecords should be here. */
|
412
|
2281 assert (!implementation->basic_p);
|
0
|
2282 /* Only free lcrecords should be here. */
|
|
2283 assert (free_header->lcheader.free);
|
|
2284 /* The type of the lcrecord must be right. */
|
412
|
2285 assert (implementation == list->implementation);
|
0
|
2286 /* So must the size. */
|
412
|
2287 assert (implementation->static_size == 0
|
|
2288 || implementation->static_size == list->size);
|
183
|
2289 #endif /* ERROR_CHECK_GC */
|
0
|
2290 list->free = free_header->chain;
|
|
2291 free_header->lcheader.free = 0;
|
|
2292 return val;
|
|
2293 }
|
|
2294 else
|
|
2295 {
|
272
|
2296 Lisp_Object val;
|
185
|
2297
|
|
2298 XSETOBJ (val, Lisp_Type_Record,
|
0
|
2299 alloc_lcrecord (list->size, list->implementation));
|
185
|
2300 return val;
|
0
|
2301 }
|
|
2302 }
|
|
2303
|
|
2304 void
|
|
2305 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord)
|
|
2306 {
|
|
2307 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2308 struct free_lcrecord_header *free_header =
|
|
2309 (struct free_lcrecord_header *) XPNTR (lcrecord);
|
412
|
2310 struct lrecord_header *lheader =
|
|
2311 (struct lrecord_header *) free_header;
|
|
2312 CONST struct lrecord_implementation *implementation
|
211
|
2313 = LHEADER_IMPLEMENTATION (lheader);
|
0
|
2314
|
412
|
2315 #ifdef ERROR_CHECK_GC
|
0
|
2316 /* Make sure the size is correct. This will catch, for example,
|
|
2317 putting a window configuration on the wrong free list. */
|
412
|
2318 if (implementation->size_in_bytes_method)
|
|
2319 assert (implementation->size_in_bytes_method (lheader) == list->size);
|
|
2320 else
|
|
2321 assert (implementation->static_size == list->size);
|
|
2322 #endif /* ERROR_CHECK_GC */
|
0
|
2323
|
|
2324 if (implementation->finalizer)
|
380
|
2325 implementation->finalizer (lheader, 0);
|
0
|
2326 free_header->chain = list->free;
|
|
2327 free_header->lcheader.free = 1;
|
|
2328 list->free = lcrecord;
|
|
2329 }
|
|
2330
|
|
2331
|
|
2332
|
|
2333
|
20
|
2334 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /*
|
398
|
2335 Kept for compatibility, returns its argument.
|
|
2336 Old:
|
0
|
2337 Make a copy of OBJECT in pure storage.
|
|
2338 Recursively copies contents of vectors and cons cells.
|
|
2339 Does not copy symbols.
|
20
|
2340 */
|
|
2341 (obj))
|
0
|
2342 {
|
398
|
2343 return obj;
|
102
|
2344 }
|
|
2345
|
412
|
2346
|
0
|
2347
|
380
|
2348 /************************************************************************/
|
|
2349 /* Garbage Collection */
|
|
2350 /************************************************************************/
|
|
2351
|
412
|
2352 /* This will be used more extensively In The Future */
|
|
2353 static int last_lrecord_type_index_assigned;
|
|
2354
|
|
2355 CONST struct lrecord_implementation *lrecord_implementations_table[128];
|
|
2356 #define max_lrecord_type (countof (lrecord_implementations_table) - 1)
|
0
|
2357
|
|
2358 struct gcpro *gcprolist;
|
|
2359
|
|
2360 /* 415 used Mly 29-Jun-93 */
|
261
|
2361 /* 1327 used slb 28-Feb-98 */
|
263
|
2362 #ifdef HAVE_SHLIB
|
|
2363 #define NSTATICS 4000
|
|
2364 #else
|
|
2365 #define NSTATICS 2000
|
|
2366 #endif
|
412
|
2367 /* Not "static" because of linker lossage on some systems */
|
|
2368 Lisp_Object *staticvec[NSTATICS]
|
|
2369 /* Force it into data space! */
|
|
2370 = {0};
|
|
2371 static int staticidx;
|
0
|
2372
|
|
2373 /* Put an entry in staticvec, pointing at the variable whose address is given
|
|
2374 */
|
|
2375 void
|
|
2376 staticpro (Lisp_Object *varaddress)
|
|
2377 {
|
412
|
2378 if (staticidx >= countof (staticvec))
|
|
2379 /* #### This is now a dubious abort() since this routine may be called */
|
|
2380 /* by Lisp attempting to load a DLL. */
|
|
2381 abort ();
|
0
|
2382 staticvec[staticidx++] = varaddress;
|
|
2383 }
|
|
2384
|
|
2385
|
|
2386 /* Mark reference to a Lisp_Object. If the object referred to has not been
|
|
2387 seen yet, recursively mark all the references contained in it. */
|
183
|
2388
|
412
|
2389 static void
|
0
|
2390 mark_object (Lisp_Object obj)
|
|
2391 {
|
|
2392 tail_recurse:
|
|
2393
|
412
|
2394 #ifdef ERROR_CHECK_GC
|
|
2395 assert (! (GC_EQ (obj, Qnull_pointer)));
|
|
2396 #endif
|
380
|
2397 /* Checks we used to perform */
|
|
2398 /* if (EQ (obj, Qnull_pointer)) return; */
|
|
2399 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */
|
|
2400 /* if (PURIFIED (XPNTR (obj))) return; */
|
|
2401
|
412
|
2402 if (XGCTYPE (obj) == Lisp_Type_Record)
|
0
|
2403 {
|
398
|
2404 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
412
|
2405 #if defined (ERROR_CHECK_GC)
|
|
2406 assert (lheader->type <= last_lrecord_type_index_assigned);
|
|
2407 #endif
|
|
2408 if (C_READONLY_RECORD_HEADER_P (lheader))
|
|
2409 return;
|
|
2410
|
|
2411 if (! MARKED_RECORD_HEADER_P (lheader) &&
|
|
2412 ! UNMARKABLE_RECORD_HEADER_P (lheader))
|
398
|
2413 {
|
412
|
2414 CONST struct lrecord_implementation *implementation =
|
|
2415 LHEADER_IMPLEMENTATION (lheader);
|
398
|
2416 MARK_RECORD_HEADER (lheader);
|
412
|
2417 #ifdef ERROR_CHECK_GC
|
|
2418 if (!implementation->basic_p)
|
|
2419 assert (! ((struct lcrecord_header *) lheader)->free);
|
|
2420 #endif
|
|
2421 if (implementation->marker)
|
0
|
2422 {
|
412
|
2423 obj = implementation->marker (obj, mark_object);
|
|
2424 if (!GC_NILP (obj)) goto tail_recurse;
|
0
|
2425 }
|
398
|
2426 }
|
0
|
2427 }
|
|
2428 }
|
|
2429
|
|
2430 /* mark all of the conses in a list and mark the final cdr; but
|
|
2431 DO NOT mark the cars.
|
|
2432
|
|
2433 Use only for internal lists! There should never be other pointers
|
|
2434 to the cons cells, because if so, the cars will remain unmarked
|
|
2435 even when they maybe should be marked. */
|
|
2436 void
|
|
2437 mark_conses_in_list (Lisp_Object obj)
|
|
2438 {
|
|
2439 Lisp_Object rest;
|
|
2440
|
|
2441 for (rest = obj; CONSP (rest); rest = XCDR (rest))
|
|
2442 {
|
|
2443 if (CONS_MARKED_P (XCONS (rest)))
|
|
2444 return;
|
|
2445 MARK_CONS (XCONS (rest));
|
|
2446 }
|
|
2447
|
|
2448 mark_object (rest);
|
|
2449 }
|
|
2450
|
|
2451
|
|
2452 /* Find all structures not marked, and free them. */
|
|
2453
|
|
2454 static int gc_count_num_bit_vector_used, gc_count_bit_vector_total_size;
|
|
2455 static int gc_count_bit_vector_storage;
|
|
2456 static int gc_count_num_short_string_in_use;
|
|
2457 static int gc_count_string_total_size;
|
|
2458 static int gc_count_short_string_total_size;
|
|
2459
|
|
2460 /* static int gc_count_total_records_used, gc_count_records_total_size; */
|
|
2461
|
|
2462
|
412
|
2463 int
|
|
2464 lrecord_type_index (CONST struct lrecord_implementation *implementation)
|
|
2465 {
|
|
2466 int type_index = *(implementation->lrecord_type_index);
|
|
2467 /* Have to do this circuitous validation test because of problems
|
|
2468 dumping out initialized variables (ie can't set xxx_type_index to -1
|
|
2469 because that would make xxx_type_index read-only in a dumped emacs. */
|
|
2470 if (type_index < 0 || type_index > max_lrecord_type
|
|
2471 || lrecord_implementations_table[type_index] != implementation)
|
|
2472 {
|
|
2473 assert (last_lrecord_type_index_assigned < max_lrecord_type);
|
|
2474 type_index = ++last_lrecord_type_index_assigned;
|
|
2475 lrecord_implementations_table[type_index] = implementation;
|
|
2476 *(implementation->lrecord_type_index) = type_index;
|
|
2477 }
|
|
2478 return type_index;
|
|
2479 }
|
|
2480
|
0
|
2481 /* stats on lcrecords in use - kinda kludgy */
|
|
2482
|
|
2483 static struct
|
|
2484 {
|
|
2485 int instances_in_use;
|
|
2486 int bytes_in_use;
|
|
2487 int instances_freed;
|
|
2488 int bytes_freed;
|
|
2489 int instances_on_free_list;
|
|
2490 } lcrecord_stats [countof (lrecord_implementations_table)];
|
|
2491
|
|
2492 static void
|
412
|
2493 tick_lcrecord_stats (CONST struct lrecord_header *h, int free_p)
|
0
|
2494 {
|
412
|
2495 CONST struct lrecord_implementation *implementation =
|
|
2496 LHEADER_IMPLEMENTATION (h);
|
|
2497 int type_index = lrecord_type_index (implementation);
|
0
|
2498
|
|
2499 if (((struct lcrecord_header *) h)->free)
|
|
2500 {
|
412
|
2501 assert (!free_p);
|
0
|
2502 lcrecord_stats[type_index].instances_on_free_list++;
|
|
2503 }
|
|
2504 else
|
|
2505 {
|
412
|
2506 size_t sz = (implementation->size_in_bytes_method
|
|
2507 ? implementation->size_in_bytes_method (h)
|
|
2508 : implementation->static_size);
|
|
2509
|
0
|
2510 if (free_p)
|
|
2511 {
|
|
2512 lcrecord_stats[type_index].instances_freed++;
|
|
2513 lcrecord_stats[type_index].bytes_freed += sz;
|
|
2514 }
|
|
2515 else
|
|
2516 {
|
|
2517 lcrecord_stats[type_index].instances_in_use++;
|
|
2518 lcrecord_stats[type_index].bytes_in_use += sz;
|
|
2519 }
|
|
2520 }
|
|
2521 }
|
|
2522
|
|
2523
|
|
2524 /* Free all unmarked records */
|
|
2525 static void
|
|
2526 sweep_lcrecords_1 (struct lcrecord_header **prev, int *used)
|
|
2527 {
|
|
2528 struct lcrecord_header *header;
|
|
2529 int num_used = 0;
|
|
2530 /* int total_size = 0; */
|
386
|
2531
|
|
2532 xzero (lcrecord_stats); /* Reset all statistics to 0. */
|
0
|
2533
|
|
2534 /* First go through and call all the finalize methods.
|
|
2535 Then go through and free the objects. There used to
|
|
2536 be only one loop here, with the call to the finalizer
|
|
2537 occurring directly before the xfree() below. That
|
|
2538 is marginally faster but much less safe -- if the
|
|
2539 finalize method for an object needs to reference any
|
|
2540 other objects contained within it (and many do),
|
|
2541 we could easily be screwed by having already freed that
|
|
2542 other object. */
|
|
2543
|
|
2544 for (header = *prev; header; header = header->next)
|
|
2545 {
|
|
2546 struct lrecord_header *h = &(header->lheader);
|
412
|
2547 if (!C_READONLY_RECORD_HEADER_P(h)
|
|
2548 && !MARKED_RECORD_HEADER_P (h)
|
|
2549 && ! (header->free))
|
0
|
2550 {
|
211
|
2551 if (LHEADER_IMPLEMENTATION (h)->finalizer)
|
380
|
2552 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0);
|
0
|
2553 }
|
|
2554 }
|
|
2555
|
|
2556 for (header = *prev; header; )
|
|
2557 {
|
|
2558 struct lrecord_header *h = &(header->lheader);
|
412
|
2559 if (C_READONLY_RECORD_HEADER_P(h) || MARKED_RECORD_HEADER_P (h))
|
0
|
2560 {
|
412
|
2561 if (MARKED_RECORD_HEADER_P (h))
|
398
|
2562 UNMARK_RECORD_HEADER (h);
|
0
|
2563 num_used++;
|
380
|
2564 /* total_size += n->implementation->size_in_bytes (h);*/
|
412
|
2565 /* ### May modify header->next on a C_READONLY lcrecord */
|
0
|
2566 prev = &(header->next);
|
|
2567 header = *prev;
|
|
2568 tick_lcrecord_stats (h, 0);
|
|
2569 }
|
|
2570 else
|
|
2571 {
|
|
2572 struct lcrecord_header *next = header->next;
|
|
2573 *prev = next;
|
|
2574 tick_lcrecord_stats (h, 1);
|
|
2575 /* used to call finalizer right here. */
|
|
2576 xfree (header);
|
|
2577 header = next;
|
|
2578 }
|
|
2579 }
|
|
2580 *used = num_used;
|
|
2581 /* *total = total_size; */
|
|
2582 }
|
|
2583
|
207
|
2584
|
0
|
2585 static void
|
183
|
2586 sweep_bit_vectors_1 (Lisp_Object *prev,
|
0
|
2587 int *used, int *total, int *storage)
|
|
2588 {
|
|
2589 Lisp_Object bit_vector;
|
|
2590 int num_used = 0;
|
|
2591 int total_size = 0;
|
|
2592 int total_storage = 0;
|
|
2593
|
|
2594 /* BIT_VECTORP fails because the objects are marked, which changes
|
|
2595 their implementation */
|
|
2596 for (bit_vector = *prev; !EQ (bit_vector, Qzero); )
|
|
2597 {
|
380
|
2598 Lisp_Bit_Vector *v = XBIT_VECTOR (bit_vector);
|
0
|
2599 int len = v->size;
|
412
|
2600 if (C_READONLY_RECORD_HEADER_P(&(v->lheader)) || MARKED_RECORD_P (bit_vector))
|
0
|
2601 {
|
412
|
2602 if (MARKED_RECORD_P (bit_vector))
|
398
|
2603 UNMARK_RECORD_HEADER (&(v->lheader));
|
0
|
2604 total_size += len;
|
380
|
2605 total_storage +=
|
382
|
2606 MALLOC_OVERHEAD +
|
412
|
2607 STRETCHY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits,
|
|
2608 BIT_VECTOR_LONG_STORAGE (len));
|
0
|
2609 num_used++;
|
412
|
2610 /* ### May modify next on a C_READONLY bitvector */
|
0
|
2611 prev = &(bit_vector_next (v));
|
|
2612 bit_vector = *prev;
|
|
2613 }
|
|
2614 else
|
|
2615 {
|
|
2616 Lisp_Object next = bit_vector_next (v);
|
|
2617 *prev = next;
|
|
2618 xfree (v);
|
|
2619 bit_vector = next;
|
|
2620 }
|
|
2621 }
|
|
2622 *used = num_used;
|
|
2623 *total = total_size;
|
|
2624 *storage = total_storage;
|
|
2625 }
|
|
2626
|
|
2627 /* And the Lord said: Thou shalt use the `c-backslash-region' command
|
|
2628 to make macros prettier. */
|
|
2629
|
|
2630 #ifdef ERROR_CHECK_GC
|
|
2631
|
|
2632 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2633 do { \
|
380
|
2634 struct typename##_block *SFTB_current; \
|
|
2635 struct typename##_block **SFTB_prev; \
|
|
2636 int SFTB_limit; \
|
0
|
2637 int num_free = 0, num_used = 0; \
|
|
2638 \
|
380
|
2639 for (SFTB_prev = ¤t_##typename##_block, \
|
|
2640 SFTB_current = current_##typename##_block, \
|
|
2641 SFTB_limit = current_##typename##_block_index; \
|
|
2642 SFTB_current; \
|
0
|
2643 ) \
|
|
2644 { \
|
380
|
2645 int SFTB_iii; \
|
0
|
2646 \
|
380
|
2647 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
0
|
2648 { \
|
380
|
2649 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
0
|
2650 \
|
380
|
2651 if (FREE_STRUCT_P (SFTB_victim)) \
|
0
|
2652 { \
|
|
2653 num_free++; \
|
|
2654 } \
|
398
|
2655 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2656 { \
|
|
2657 num_used++; \
|
|
2658 } \
|
412
|
2659 else if (!MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
0
|
2660 { \
|
|
2661 num_free++; \
|
380
|
2662 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
0
|
2663 } \
|
|
2664 else \
|
|
2665 { \
|
|
2666 num_used++; \
|
380
|
2667 UNMARK_##typename (SFTB_victim); \
|
0
|
2668 } \
|
|
2669 } \
|
380
|
2670 SFTB_prev = &(SFTB_current->prev); \
|
|
2671 SFTB_current = SFTB_current->prev; \
|
|
2672 SFTB_limit = countof (current_##typename##_block->block); \
|
0
|
2673 } \
|
|
2674 \
|
|
2675 gc_count_num_##typename##_in_use = num_used; \
|
|
2676 gc_count_num_##typename##_freelist = num_free; \
|
|
2677 } while (0)
|
|
2678
|
183
|
2679 #else /* !ERROR_CHECK_GC */
|
0
|
2680
|
380
|
2681 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2682 do { \
|
|
2683 struct typename##_block *SFTB_current; \
|
|
2684 struct typename##_block **SFTB_prev; \
|
|
2685 int SFTB_limit; \
|
|
2686 int num_free = 0, num_used = 0; \
|
|
2687 \
|
|
2688 typename##_free_list = 0; \
|
|
2689 \
|
|
2690 for (SFTB_prev = ¤t_##typename##_block, \
|
|
2691 SFTB_current = current_##typename##_block, \
|
|
2692 SFTB_limit = current_##typename##_block_index; \
|
|
2693 SFTB_current; \
|
|
2694 ) \
|
|
2695 { \
|
|
2696 int SFTB_iii; \
|
|
2697 int SFTB_empty = 1; \
|
|
2698 obj_type *SFTB_old_free_list = typename##_free_list; \
|
|
2699 \
|
|
2700 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
|
2701 { \
|
|
2702 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
|
2703 \
|
|
2704 if (FREE_STRUCT_P (SFTB_victim)) \
|
|
2705 { \
|
|
2706 num_free++; \
|
|
2707 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \
|
|
2708 } \
|
398
|
2709 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2710 { \
|
|
2711 SFTB_empty = 0; \
|
|
2712 num_used++; \
|
|
2713 } \
|
412
|
2714 else if (!MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
380
|
2715 { \
|
|
2716 num_free++; \
|
|
2717 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
|
2718 } \
|
|
2719 else \
|
|
2720 { \
|
|
2721 SFTB_empty = 0; \
|
|
2722 num_used++; \
|
|
2723 UNMARK_##typename (SFTB_victim); \
|
|
2724 } \
|
|
2725 } \
|
|
2726 if (!SFTB_empty) \
|
|
2727 { \
|
|
2728 SFTB_prev = &(SFTB_current->prev); \
|
|
2729 SFTB_current = SFTB_current->prev; \
|
|
2730 } \
|
|
2731 else if (SFTB_current == current_##typename##_block \
|
|
2732 && !SFTB_current->prev) \
|
|
2733 { \
|
|
2734 /* No real point in freeing sole allocation block */ \
|
|
2735 break; \
|
|
2736 } \
|
|
2737 else \
|
|
2738 { \
|
|
2739 struct typename##_block *SFTB_victim_block = SFTB_current; \
|
|
2740 if (SFTB_victim_block == current_##typename##_block) \
|
|
2741 current_##typename##_block_index \
|
|
2742 = countof (current_##typename##_block->block); \
|
|
2743 SFTB_current = SFTB_current->prev; \
|
|
2744 { \
|
|
2745 *SFTB_prev = SFTB_current; \
|
|
2746 xfree (SFTB_victim_block); \
|
|
2747 /* Restore free list to what it was before victim was swept */ \
|
|
2748 typename##_free_list = SFTB_old_free_list; \
|
|
2749 num_free -= SFTB_limit; \
|
|
2750 } \
|
|
2751 } \
|
|
2752 SFTB_limit = countof (current_##typename##_block->block); \
|
|
2753 } \
|
|
2754 \
|
|
2755 gc_count_num_##typename##_in_use = num_used; \
|
|
2756 gc_count_num_##typename##_freelist = num_free; \
|
0
|
2757 } while (0)
|
|
2758
|
183
|
2759 #endif /* !ERROR_CHECK_GC */
|
0
|
2760
|
|
2761
|
|
2762
|
|
2763
|
|
2764 static void
|
|
2765 sweep_conses (void)
|
|
2766 {
|
398
|
2767 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
0
|
2768 #define ADDITIONAL_FREE_cons(ptr)
|
|
2769
|
412
|
2770 SWEEP_FIXED_TYPE_BLOCK (cons, struct Lisp_Cons);
|
0
|
2771 }
|
|
2772
|
|
2773 /* Explicitly free a cons cell. */
|
|
2774 void
|
412
|
2775 free_cons (struct Lisp_Cons *ptr)
|
0
|
2776 {
|
|
2777 #ifdef ERROR_CHECK_GC
|
|
2778 /* If the CAR is not an int, then it will be a pointer, which will
|
|
2779 always be four-byte aligned. If this cons cell has already been
|
|
2780 placed on the free list, however, its car will probably contain
|
|
2781 a chain pointer to the next cons on the list, which has cleverly
|
|
2782 had all its 0's and 1's inverted. This allows for a quick
|
|
2783 check to make sure we're not freeing something already freed. */
|
|
2784 if (POINTER_TYPE_P (XTYPE (ptr->car)))
|
|
2785 ASSERT_VALID_POINTER (XPNTR (ptr->car));
|
183
|
2786 #endif /* ERROR_CHECK_GC */
|
|
2787
|
0
|
2788 #ifndef ALLOC_NO_POOLS
|
412
|
2789 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, struct Lisp_Cons, ptr);
|
0
|
2790 #endif /* ALLOC_NO_POOLS */
|
|
2791 }
|
|
2792
|
|
2793 /* explicitly free a list. You **must make sure** that you have
|
|
2794 created all the cons cells that make up this list and that there
|
|
2795 are no pointers to any of these cons cells anywhere else. If there
|
|
2796 are, you will lose. */
|
|
2797
|
|
2798 void
|
|
2799 free_list (Lisp_Object list)
|
|
2800 {
|
|
2801 Lisp_Object rest, next;
|
|
2802
|
|
2803 for (rest = list; !NILP (rest); rest = next)
|
|
2804 {
|
|
2805 next = XCDR (rest);
|
|
2806 free_cons (XCONS (rest));
|
|
2807 }
|
|
2808 }
|
|
2809
|
|
2810 /* explicitly free an alist. You **must make sure** that you have
|
|
2811 created all the cons cells that make up this alist and that there
|
|
2812 are no pointers to any of these cons cells anywhere else. If there
|
|
2813 are, you will lose. */
|
|
2814
|
|
2815 void
|
|
2816 free_alist (Lisp_Object alist)
|
|
2817 {
|
|
2818 Lisp_Object rest, next;
|
|
2819
|
|
2820 for (rest = alist; !NILP (rest); rest = next)
|
|
2821 {
|
|
2822 next = XCDR (rest);
|
|
2823 free_cons (XCONS (XCAR (rest)));
|
|
2824 free_cons (XCONS (rest));
|
|
2825 }
|
|
2826 }
|
|
2827
|
|
2828 static void
|
|
2829 sweep_compiled_functions (void)
|
|
2830 {
|
|
2831 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2832 #define ADDITIONAL_FREE_compiled_function(ptr)
|
|
2833
|
380
|
2834 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function);
|
0
|
2835 }
|
|
2836
|
|
2837
|
|
2838 #ifdef LISP_FLOAT_TYPE
|
|
2839 static void
|
|
2840 sweep_floats (void)
|
|
2841 {
|
|
2842 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2843 #define ADDITIONAL_FREE_float(ptr)
|
|
2844
|
412
|
2845 SWEEP_FIXED_TYPE_BLOCK (float, struct Lisp_Float);
|
0
|
2846 }
|
|
2847 #endif /* LISP_FLOAT_TYPE */
|
|
2848
|
|
2849 static void
|
|
2850 sweep_symbols (void)
|
|
2851 {
|
398
|
2852 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
0
|
2853 #define ADDITIONAL_FREE_symbol(ptr)
|
|
2854
|
412
|
2855 SWEEP_FIXED_TYPE_BLOCK (symbol, struct Lisp_Symbol);
|
0
|
2856 }
|
|
2857
|
|
2858 static void
|
|
2859 sweep_extents (void)
|
|
2860 {
|
|
2861 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2862 #define ADDITIONAL_FREE_extent(ptr)
|
|
2863
|
|
2864 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent);
|
|
2865 }
|
|
2866
|
|
2867 static void
|
|
2868 sweep_events (void)
|
|
2869 {
|
|
2870 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2871 #define ADDITIONAL_FREE_event(ptr)
|
|
2872
|
412
|
2873 SWEEP_FIXED_TYPE_BLOCK (event, struct Lisp_Event);
|
0
|
2874 }
|
|
2875
|
|
2876 static void
|
|
2877 sweep_markers (void)
|
|
2878 {
|
|
2879 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2880 #define ADDITIONAL_FREE_marker(ptr) \
|
|
2881 do { Lisp_Object tem; \
|
|
2882 XSETMARKER (tem, ptr); \
|
|
2883 unchain_marker (tem); \
|
|
2884 } while (0)
|
|
2885
|
412
|
2886 SWEEP_FIXED_TYPE_BLOCK (marker, struct Lisp_Marker);
|
0
|
2887 }
|
|
2888
|
|
2889 /* Explicitly free a marker. */
|
|
2890 void
|
412
|
2891 free_marker (struct Lisp_Marker *ptr)
|
0
|
2892 {
|
412
|
2893 #ifdef ERROR_CHECK_GC
|
0
|
2894 /* Perhaps this will catch freeing an already-freed marker. */
|
412
|
2895 Lisp_Object temmy;
|
|
2896 XSETMARKER (temmy, ptr);
|
|
2897 assert (GC_MARKERP (temmy));
|
|
2898 #endif /* ERROR_CHECK_GC */
|
183
|
2899
|
0
|
2900 #ifndef ALLOC_NO_POOLS
|
412
|
2901 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, struct Lisp_Marker, ptr);
|
0
|
2902 #endif /* ALLOC_NO_POOLS */
|
|
2903 }
|
|
2904
|
70
|
2905
|
|
2906 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY)
|
|
2907
|
|
2908 static void
|
|
2909 verify_string_chars_integrity (void)
|
|
2910 {
|
|
2911 struct string_chars_block *sb;
|
|
2912
|
|
2913 /* Scan each existing string block sequentially, string by string. */
|
|
2914 for (sb = first_string_chars_block; sb; sb = sb->next)
|
|
2915 {
|
|
2916 int pos = 0;
|
|
2917 /* POS is the index of the next string in the block. */
|
|
2918 while (pos < sb->pos)
|
|
2919 {
|
183
|
2920 struct string_chars *s_chars =
|
70
|
2921 (struct string_chars *) &(sb->string_chars[pos]);
|
412
|
2922 struct Lisp_String *string;
|
70
|
2923 int size;
|
|
2924 int fullsize;
|
|
2925
|
|
2926 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
2927 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
2928 storage. (See below.) */
|
|
2929
|
|
2930 if (FREE_STRUCT_P (s_chars))
|
|
2931 {
|
|
2932 fullsize = ((struct unused_string_chars *) s_chars)->fullsize;
|
|
2933 pos += fullsize;
|
|
2934 continue;
|
|
2935 }
|
|
2936
|
|
2937 string = s_chars->string;
|
|
2938 /* Must be 32-bit aligned. */
|
|
2939 assert ((((int) string) & 3) == 0);
|
|
2940
|
|
2941 size = string_length (string);
|
|
2942 fullsize = STRING_FULLSIZE (size);
|
|
2943
|
|
2944 assert (!BIG_STRING_FULLSIZE_P (fullsize));
|
|
2945 assert (string_data (string) == s_chars->chars);
|
|
2946 pos += fullsize;
|
|
2947 }
|
|
2948 assert (pos == sb->pos);
|
|
2949 }
|
|
2950 }
|
|
2951
|
|
2952 #endif /* MULE && ERROR_CHECK_GC */
|
|
2953
|
0
|
2954 /* Compactify string chars, relocating the reference to each --
|
|
2955 free any empty string_chars_block we see. */
|
|
2956 static void
|
|
2957 compact_string_chars (void)
|
|
2958 {
|
|
2959 struct string_chars_block *to_sb = first_string_chars_block;
|
|
2960 int to_pos = 0;
|
|
2961 struct string_chars_block *from_sb;
|
|
2962
|
|
2963 /* Scan each existing string block sequentially, string by string. */
|
|
2964 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next)
|
|
2965 {
|
|
2966 int from_pos = 0;
|
|
2967 /* FROM_POS is the index of the next string in the block. */
|
|
2968 while (from_pos < from_sb->pos)
|
|
2969 {
|
183
|
2970 struct string_chars *from_s_chars =
|
0
|
2971 (struct string_chars *) &(from_sb->string_chars[from_pos]);
|
|
2972 struct string_chars *to_s_chars;
|
412
|
2973 struct Lisp_String *string;
|
0
|
2974 int size;
|
|
2975 int fullsize;
|
|
2976
|
|
2977 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
2978 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
2979 storage. This happens under Mule when a string's size changes
|
|
2980 in such a way that its fullsize changes. (Strings can change
|
|
2981 size because a different-length character can be substituted
|
|
2982 for another character.) In this case, after the bogus string
|
|
2983 pointer is the "fullsize" of this entry, i.e. how many bytes
|
|
2984 to skip. */
|
|
2985
|
|
2986 if (FREE_STRUCT_P (from_s_chars))
|
|
2987 {
|
|
2988 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize;
|
|
2989 from_pos += fullsize;
|
|
2990 continue;
|
|
2991 }
|
|
2992
|
|
2993 string = from_s_chars->string;
|
|
2994 assert (!(FREE_STRUCT_P (string)));
|
|
2995
|
|
2996 size = string_length (string);
|
|
2997 fullsize = STRING_FULLSIZE (size);
|
|
2998
|
412
|
2999 if (BIG_STRING_FULLSIZE_P (fullsize))
|
|
3000 abort ();
|
0
|
3001
|
|
3002 /* Just skip it if it isn't marked. */
|
207
|
3003 if (! MARKED_RECORD_HEADER_P (&(string->lheader)))
|
0
|
3004 {
|
|
3005 from_pos += fullsize;
|
|
3006 continue;
|
|
3007 }
|
|
3008
|
|
3009 /* If it won't fit in what's left of TO_SB, close TO_SB out
|
|
3010 and go on to the next string_chars_block. We know that TO_SB
|
|
3011 cannot advance past FROM_SB here since FROM_SB is large enough
|
|
3012 to currently contain this string. */
|
|
3013 if ((to_pos + fullsize) > countof (to_sb->string_chars))
|
|
3014 {
|
|
3015 to_sb->pos = to_pos;
|
|
3016 to_sb = to_sb->next;
|
|
3017 to_pos = 0;
|
|
3018 }
|
183
|
3019
|
0
|
3020 /* Compute new address of this string
|
|
3021 and update TO_POS for the space being used. */
|
|
3022 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]);
|
|
3023
|
|
3024 /* Copy the string_chars to the new place. */
|
|
3025 if (from_s_chars != to_s_chars)
|
|
3026 memmove (to_s_chars, from_s_chars, fullsize);
|
|
3027
|
|
3028 /* Relocate FROM_S_CHARS's reference */
|
|
3029 set_string_data (string, &(to_s_chars->chars[0]));
|
183
|
3030
|
0
|
3031 from_pos += fullsize;
|
|
3032 to_pos += fullsize;
|
|
3033 }
|
|
3034 }
|
|
3035
|
183
|
3036 /* Set current to the last string chars block still used and
|
0
|
3037 free any that follow. */
|
|
3038 {
|
|
3039 struct string_chars_block *victim;
|
|
3040
|
|
3041 for (victim = to_sb->next; victim; )
|
|
3042 {
|
|
3043 struct string_chars_block *next = victim->next;
|
|
3044 xfree (victim);
|
|
3045 victim = next;
|
|
3046 }
|
|
3047
|
|
3048 current_string_chars_block = to_sb;
|
|
3049 current_string_chars_block->pos = to_pos;
|
|
3050 current_string_chars_block->next = 0;
|
|
3051 }
|
|
3052 }
|
|
3053
|
|
3054 #if 1 /* Hack to debug missing purecopy's */
|
|
3055 static int debug_string_purity;
|
|
3056
|
|
3057 static void
|
412
|
3058 debug_string_purity_print (struct Lisp_String *p)
|
0
|
3059 {
|
|
3060 Charcount i;
|
|
3061 Charcount s = string_char_length (p);
|
412
|
3062 putc ('\"', stderr);
|
0
|
3063 for (i = 0; i < s; i++)
|
|
3064 {
|
|
3065 Emchar ch = string_char (p, i);
|
|
3066 if (ch < 32 || ch >= 126)
|
|
3067 stderr_out ("\\%03o", ch);
|
|
3068 else if (ch == '\\' || ch == '\"')
|
|
3069 stderr_out ("\\%c", ch);
|
|
3070 else
|
|
3071 stderr_out ("%c", ch);
|
|
3072 }
|
|
3073 stderr_out ("\"\n");
|
|
3074 }
|
183
|
3075 #endif /* 1 */
|
0
|
3076
|
|
3077
|
|
3078 static void
|
|
3079 sweep_strings (void)
|
|
3080 {
|
|
3081 int num_small_used = 0, num_small_bytes = 0, num_bytes = 0;
|
|
3082 int debug = debug_string_purity;
|
|
3083
|
412
|
3084 #define UNMARK_string(ptr) \
|
|
3085 do { struct Lisp_String *p = (ptr); \
|
|
3086 int size = string_length (p); \
|
|
3087 UNMARK_RECORD_HEADER (&(p->lheader)); \
|
|
3088 num_bytes += size; \
|
|
3089 if (!BIG_STRING_SIZE_P (size)) \
|
|
3090 { num_small_bytes += size; \
|
|
3091 num_small_used++; \
|
|
3092 } \
|
|
3093 if (debug) debug_string_purity_print (p); \
|
|
3094 } while (0)
|
|
3095 #define ADDITIONAL_FREE_string(p) \
|
|
3096 do { int size = string_length (p); \
|
|
3097 if (BIG_STRING_SIZE_P (size)) \
|
|
3098 xfree_1 (CHARS_TO_STRING_CHAR (string_data (p))); \
|
|
3099 } while (0)
|
|
3100
|
|
3101 SWEEP_FIXED_TYPE_BLOCK (string, struct Lisp_String);
|
0
|
3102
|
|
3103 gc_count_num_short_string_in_use = num_small_used;
|
|
3104 gc_count_string_total_size = num_bytes;
|
|
3105 gc_count_short_string_total_size = num_small_bytes;
|
|
3106 }
|
|
3107
|
|
3108
|
|
3109 /* I hate duplicating all this crap! */
|
412
|
3110 static int
|
0
|
3111 marked_p (Lisp_Object obj)
|
|
3112 {
|
412
|
3113 #ifdef ERROR_CHECK_GC
|
|
3114 assert (! (GC_EQ (obj, Qnull_pointer)));
|
|
3115 #endif
|
380
|
3116 /* Checks we used to perform. */
|
|
3117 /* if (EQ (obj, Qnull_pointer)) return 1; */
|
|
3118 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */
|
|
3119 /* if (PURIFIED (XPNTR (obj))) return 1; */
|
|
3120
|
412
|
3121 if (XGCTYPE (obj) == Lisp_Type_Record)
|
0
|
3122 {
|
398
|
3123 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
412
|
3124 #if defined (ERROR_CHECK_GC)
|
|
3125 assert (lheader->type <= last_lrecord_type_index_assigned);
|
|
3126 #endif
|
|
3127 return C_READONLY_RECORD_HEADER_P (lheader) || MARKED_RECORD_HEADER_P (lheader);
|
0
|
3128 }
|
398
|
3129 return 1;
|
0
|
3130 }
|
|
3131
|
|
3132 static void
|
|
3133 gc_sweep (void)
|
|
3134 {
|
|
3135 /* Free all unmarked records. Do this at the very beginning,
|
|
3136 before anything else, so that the finalize methods can safely
|
|
3137 examine items in the objects. sweep_lcrecords_1() makes
|
|
3138 sure to call all the finalize methods *before* freeing anything,
|
|
3139 to complete the safety. */
|
|
3140 {
|
|
3141 int ignored;
|
|
3142 sweep_lcrecords_1 (&all_lcrecords, &ignored);
|
|
3143 }
|
|
3144
|
|
3145 compact_string_chars ();
|
|
3146
|
|
3147 /* Finalize methods below (called through the ADDITIONAL_FREE_foo
|
|
3148 macros) must be *extremely* careful to make sure they're not
|
|
3149 referencing freed objects. The only two existing finalize
|
|
3150 methods (for strings and markers) pass muster -- the string
|
|
3151 finalizer doesn't look at anything but its own specially-
|
|
3152 created block, and the marker finalizer only looks at live
|
|
3153 buffers (which will never be freed) and at the markers before
|
|
3154 and after it in the chain (which, by induction, will never be
|
|
3155 freed because if so, they would have already removed themselves
|
|
3156 from the chain). */
|
|
3157
|
|
3158 /* Put all unmarked strings on free list, free'ing the string chars
|
|
3159 of large unmarked strings */
|
|
3160 sweep_strings ();
|
|
3161
|
|
3162 /* Put all unmarked conses on free list */
|
|
3163 sweep_conses ();
|
|
3164
|
|
3165 /* Free all unmarked bit vectors */
|
|
3166 sweep_bit_vectors_1 (&all_bit_vectors,
|
|
3167 &gc_count_num_bit_vector_used,
|
|
3168 &gc_count_bit_vector_total_size,
|
|
3169 &gc_count_bit_vector_storage);
|
|
3170
|
|
3171 /* Free all unmarked compiled-function objects */
|
|
3172 sweep_compiled_functions ();
|
|
3173
|
|
3174 #ifdef LISP_FLOAT_TYPE
|
|
3175 /* Put all unmarked floats on free list */
|
|
3176 sweep_floats ();
|
|
3177 #endif
|
|
3178
|
|
3179 /* Put all unmarked symbols on free list */
|
|
3180 sweep_symbols ();
|
|
3181
|
|
3182 /* Put all unmarked extents on free list */
|
|
3183 sweep_extents ();
|
|
3184
|
|
3185 /* Put all unmarked markers on free list.
|
|
3186 Dechain each one first from the buffer into which it points. */
|
|
3187 sweep_markers ();
|
|
3188
|
|
3189 sweep_events ();
|
|
3190
|
|
3191 }
|
|
3192
|
|
3193 /* Clearing for disksave. */
|
|
3194
|
|
3195 void
|
|
3196 disksave_object_finalization (void)
|
|
3197 {
|
|
3198 /* It's important that certain information from the environment not get
|
|
3199 dumped with the executable (pathnames, environment variables, etc.).
|
380
|
3200 To make it easier to tell when this has happened with strings(1) we
|
0
|
3201 clear some known-to-be-garbage blocks of memory, so that leftover
|
|
3202 results of old evaluation don't look like potential problems.
|
|
3203 But first we set some notable variables to nil and do one more GC,
|
|
3204 to turn those strings into garbage.
|
412
|
3205 */
|
0
|
3206
|
|
3207 /* Yeah, this list is pretty ad-hoc... */
|
|
3208 Vprocess_environment = Qnil;
|
|
3209 Vexec_directory = Qnil;
|
|
3210 Vdata_directory = Qnil;
|
110
|
3211 Vsite_directory = Qnil;
|
0
|
3212 Vdoc_directory = Qnil;
|
|
3213 Vconfigure_info_directory = Qnil;
|
|
3214 Vexec_path = Qnil;
|
|
3215 Vload_path = Qnil;
|
|
3216 /* Vdump_load_path = Qnil; */
|
396
|
3217 /* Release hash tables for locate_file */
|
398
|
3218 Flocate_file_clear_hashing (Qt);
|
288
|
3219 uncache_home_directory();
|
|
3220
|
233
|
3221 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \
|
|
3222 defined(LOADHIST_BUILTIN))
|
0
|
3223 Vload_history = Qnil;
|
233
|
3224 #endif
|
0
|
3225 Vshell_file_name = Qnil;
|
|
3226
|
|
3227 garbage_collect_1 ();
|
|
3228
|
|
3229 /* Run the disksave finalization methods of all live objects. */
|
|
3230 disksave_object_finalization_1 ();
|
|
3231
|
|
3232 /* Zero out the uninitialized (really, unused) part of the containers
|
|
3233 for the live strings. */
|
|
3234 {
|
|
3235 struct string_chars_block *scb;
|
|
3236 for (scb = first_string_chars_block; scb; scb = scb->next)
|
249
|
3237 {
|
|
3238 int count = sizeof (scb->string_chars) - scb->pos;
|
|
3239
|
|
3240 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE);
|
412
|
3241 if (count != 0) {
|
|
3242 /* from the block's fill ptr to the end */
|
|
3243 memset ((scb->string_chars + scb->pos), 0, count);
|
|
3244 }
|
249
|
3245 }
|
0
|
3246 }
|
|
3247
|
|
3248 /* There, that ought to be enough... */
|
|
3249
|
|
3250 }
|
|
3251
|
|
3252
|
|
3253 Lisp_Object
|
|
3254 restore_gc_inhibit (Lisp_Object val)
|
|
3255 {
|
|
3256 gc_currently_forbidden = XINT (val);
|
|
3257 return val;
|
|
3258 }
|
|
3259
|
|
3260 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */
|
|
3261 static int gc_hooks_inhibited;
|
|
3262
|
|
3263
|
|
3264 void
|
|
3265 garbage_collect_1 (void)
|
|
3266 {
|
380
|
3267 #if MAX_SAVE_STACK > 0
|
0
|
3268 char stack_top_variable;
|
|
3269 extern char *stack_bottom;
|
380
|
3270 #endif
|
261
|
3271 struct frame *f;
|
272
|
3272 int speccount;
|
|
3273 int cursor_changed;
|
|
3274 Lisp_Object pre_gc_cursor;
|
0
|
3275 struct gcpro gcpro1;
|
|
3276
|
272
|
3277 if (gc_in_progress
|
|
3278 || gc_currently_forbidden
|
|
3279 || in_display
|
|
3280 || preparing_for_armageddon)
|
0
|
3281 return;
|
|
3282
|
380
|
3283 /* We used to call selected_frame() here.
|
|
3284
|
|
3285 The following functions cannot be called inside GC
|
|
3286 so we move to after the above tests. */
|
|
3287 {
|
|
3288 Lisp_Object frame;
|
|
3289 Lisp_Object device = Fselected_device (Qnil);
|
|
3290 if (NILP (device)) /* Could happen during startup, eg. if always_gc */
|
|
3291 return;
|
|
3292 frame = DEVICE_SELECTED_FRAME (XDEVICE (device));
|
|
3293 if (NILP (frame))
|
|
3294 signal_simple_error ("No frames exist on device", device);
|
|
3295 f = XFRAME (frame);
|
|
3296 }
|
|
3297
|
272
|
3298 pre_gc_cursor = Qnil;
|
|
3299 cursor_changed = 0;
|
0
|
3300
|
163
|
3301 GCPRO1 (pre_gc_cursor);
|
0
|
3302
|
|
3303 /* Very important to prevent GC during any of the following
|
|
3304 stuff that might run Lisp code; otherwise, we'll likely
|
|
3305 have infinite GC recursion. */
|
272
|
3306 speccount = specpdl_depth ();
|
0
|
3307 record_unwind_protect (restore_gc_inhibit,
|
|
3308 make_int (gc_currently_forbidden));
|
|
3309 gc_currently_forbidden = 1;
|
|
3310
|
|
3311 if (!gc_hooks_inhibited)
|
|
3312 run_hook_trapping_errors ("Error in pre-gc-hook", Qpre_gc_hook);
|
|
3313
|
|
3314 /* Now show the GC cursor/message. */
|
|
3315 if (!noninteractive)
|
|
3316 {
|
163
|
3317 if (FRAME_WIN_P (f))
|
0
|
3318 {
|
163
|
3319 Lisp_Object frame = make_frame (f);
|
|
3320 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph,
|
|
3321 FRAME_SELECTED_WINDOW (f),
|
|
3322 ERROR_ME_NOT, 1);
|
|
3323 pre_gc_cursor = f->pointer;
|
|
3324 if (POINTER_IMAGE_INSTANCEP (cursor)
|
|
3325 /* don't change if we don't know how to change back. */
|
|
3326 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor))
|
0
|
3327 {
|
163
|
3328 cursor_changed = 1;
|
|
3329 Fset_frame_pointer (frame, cursor);
|
0
|
3330 }
|
|
3331 }
|
163
|
3332
|
|
3333 /* Don't print messages to the stream device. */
|
|
3334 if (!cursor_changed && !FRAME_STREAM_P (f))
|
|
3335 {
|
|
3336 char *msg = (STRINGP (Vgc_message)
|
|
3337 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
|
3338 : 0);
|
|
3339 Lisp_Object args[2], whole_msg;
|
|
3340 args[0] = build_string (msg ? msg :
|
412
|
3341 GETTEXT ((CONST char *) gc_default_message));
|
163
|
3342 args[1] = build_string ("...");
|
|
3343 whole_msg = Fconcat (2, args);
|
|
3344 echo_area_message (f, (Bufbyte *) 0, whole_msg, 0, -1,
|
|
3345 Qgarbage_collecting);
|
|
3346 }
|
0
|
3347 }
|
|
3348
|
|
3349 /***** Now we actually start the garbage collection. */
|
|
3350
|
|
3351 gc_in_progress = 1;
|
|
3352
|
|
3353 gc_generation_number[0]++;
|
|
3354
|
|
3355 #if MAX_SAVE_STACK > 0
|
|
3356
|
|
3357 /* Save a copy of the contents of the stack, for debugging. */
|
|
3358 if (!purify_flag)
|
|
3359 {
|
272
|
3360 /* Static buffer in which we save a copy of the C stack at each GC. */
|
|
3361 static char *stack_copy;
|
|
3362 static size_t stack_copy_size;
|
|
3363
|
|
3364 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom;
|
|
3365 size_t stack_size = (stack_diff > 0 ? stack_diff : -stack_diff);
|
|
3366 if (stack_size < MAX_SAVE_STACK)
|
0
|
3367 {
|
272
|
3368 if (stack_copy_size < stack_size)
|
0
|
3369 {
|
272
|
3370 stack_copy = (char *) xrealloc (stack_copy, stack_size);
|
|
3371 stack_copy_size = stack_size;
|
0
|
3372 }
|
272
|
3373
|
|
3374 memcpy (stack_copy,
|
|
3375 stack_diff > 0 ? stack_bottom : &stack_top_variable,
|
|
3376 stack_size);
|
0
|
3377 }
|
|
3378 }
|
|
3379 #endif /* MAX_SAVE_STACK > 0 */
|
|
3380
|
|
3381 /* Do some totally ad-hoc resource clearing. */
|
|
3382 /* #### generalize this? */
|
|
3383 clear_event_resource ();
|
|
3384 cleanup_specifiers ();
|
|
3385
|
|
3386 /* Mark all the special slots that serve as the roots of accessibility. */
|
396
|
3387
|
|
3388 { /* staticpro() */
|
|
3389 int i;
|
0
|
3390 for (i = 0; i < staticidx; i++)
|
396
|
3391 mark_object (*(staticvec[i]));
|
|
3392 }
|
|
3393
|
|
3394 { /* GCPRO() */
|
|
3395 struct gcpro *tail;
|
|
3396 int i;
|
0
|
3397 for (tail = gcprolist; tail; tail = tail->next)
|
396
|
3398 for (i = 0; i < tail->nvars; i++)
|
|
3399 mark_object (tail->var[i]);
|
|
3400 }
|
|
3401
|
|
3402 { /* specbind() */
|
|
3403 struct specbinding *bind;
|
0
|
3404 for (bind = specpdl; bind != specpdl_ptr; bind++)
|
|
3405 {
|
|
3406 mark_object (bind->symbol);
|
|
3407 mark_object (bind->old_value);
|
|
3408 }
|
396
|
3409 }
|
|
3410
|
|
3411 {
|
|
3412 struct catchtag *catch;
|
0
|
3413 for (catch = catchlist; catch; catch = catch->next)
|
|
3414 {
|
|
3415 mark_object (catch->tag);
|
|
3416 mark_object (catch->val);
|
|
3417 }
|
396
|
3418 }
|
|
3419
|
|
3420 {
|
|
3421 struct backtrace *backlist;
|
0
|
3422 for (backlist = backtrace_list; backlist; backlist = backlist->next)
|
|
3423 {
|
|
3424 int nargs = backlist->nargs;
|
396
|
3425 int i;
|
0
|
3426
|
|
3427 mark_object (*backlist->function);
|
|
3428 if (nargs == UNEVALLED || nargs == MANY)
|
|
3429 mark_object (backlist->args[0]);
|
|
3430 else
|
|
3431 for (i = 0; i < nargs; i++)
|
|
3432 mark_object (backlist->args[i]);
|
|
3433 }
|
|
3434 }
|
|
3435
|
412
|
3436 mark_redisplay (mark_object);
|
|
3437 mark_profiling_info (mark_object);
|
396
|
3438
|
0
|
3439 /* OK, now do the after-mark stuff. This is for things that
|
380
|
3440 are only marked when something else is marked (e.g. weak hash tables).
|
0
|
3441 There may be complex dependencies between such objects -- e.g.
|
380
|
3442 a weak hash table might be unmarked, but after processing a later
|
|
3443 weak hash table, the former one might get marked. So we have to
|
0
|
3444 iterate until nothing more gets marked. */
|
380
|
3445
|
412
|
3446 while (finish_marking_weak_hash_tables (marked_p, mark_object) > 0 ||
|
|
3447 finish_marking_weak_lists (marked_p, mark_object) > 0)
|
380
|
3448 ;
|
0
|
3449
|
|
3450 /* And prune (this needs to be called after everything else has been
|
|
3451 marked and before we do any sweeping). */
|
|
3452 /* #### this is somewhat ad-hoc and should probably be an object
|
|
3453 method */
|
412
|
3454 prune_weak_hash_tables (marked_p);
|
|
3455 prune_weak_lists (marked_p);
|
|
3456 prune_specifiers (marked_p);
|
|
3457 prune_syntax_tables (marked_p);
|
0
|
3458
|
|
3459 gc_sweep ();
|
|
3460
|
|
3461 consing_since_gc = 0;
|
|
3462 #ifndef DEBUG_XEMACS
|
|
3463 /* Allow you to set it really fucking low if you really want ... */
|
|
3464 if (gc_cons_threshold < 10000)
|
|
3465 gc_cons_threshold = 10000;
|
|
3466 #endif
|
|
3467
|
|
3468 gc_in_progress = 0;
|
|
3469
|
|
3470 /******* End of garbage collection ********/
|
|
3471
|
|
3472 run_hook_trapping_errors ("Error in post-gc-hook", Qpost_gc_hook);
|
|
3473
|
|
3474 /* Now remove the GC cursor/message */
|
|
3475 if (!noninteractive)
|
|
3476 {
|
163
|
3477 if (cursor_changed)
|
|
3478 Fset_frame_pointer (make_frame (f), pre_gc_cursor);
|
|
3479 else if (!FRAME_STREAM_P (f))
|
0
|
3480 {
|
|
3481 char *msg = (STRINGP (Vgc_message)
|
14
|
3482 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
0
|
3483 : 0);
|
|
3484
|
|
3485 /* Show "...done" only if the echo area would otherwise be empty. */
|
183
|
3486 if (NILP (clear_echo_area (selected_frame (),
|
0
|
3487 Qgarbage_collecting, 0)))
|
|
3488 {
|
|
3489 Lisp_Object args[2], whole_msg;
|
|
3490 args[0] = build_string (msg ? msg :
|
412
|
3491 GETTEXT ((CONST char *)
|
0
|
3492 gc_default_message));
|
|
3493 args[1] = build_string ("... done");
|
|
3494 whole_msg = Fconcat (2, args);
|
|
3495 echo_area_message (selected_frame (), (Bufbyte *) 0,
|
|
3496 whole_msg, 0, -1,
|
|
3497 Qgarbage_collecting);
|
|
3498 }
|
|
3499 }
|
|
3500 }
|
|
3501
|
|
3502 /* now stop inhibiting GC */
|
|
3503 unbind_to (speccount, Qnil);
|
|
3504
|
|
3505 if (!breathing_space)
|
|
3506 {
|
272
|
3507 breathing_space = malloc (4096 - MALLOC_OVERHEAD);
|
0
|
3508 }
|
|
3509
|
|
3510 UNGCPRO;
|
|
3511 return;
|
|
3512 }
|
|
3513
|
|
3514 /* Debugging aids. */
|
|
3515
|
|
3516 static Lisp_Object
|
412
|
3517 gc_plist_hack (CONST char *name, int value, Lisp_Object tail)
|
0
|
3518 {
|
|
3519 /* C doesn't have local functions (or closures, or GC, or readable syntax,
|
|
3520 or portable numeric datatypes, or bit-vectors, or characters, or
|
|
3521 arrays, or exceptions, or ...) */
|
173
|
3522 return cons3 (intern (name), make_int (value), tail);
|
0
|
3523 }
|
|
3524
|
380
|
3525 #define HACK_O_MATIC(type, name, pl) do { \
|
|
3526 int s = 0; \
|
|
3527 struct type##_block *x = current_##type##_block; \
|
|
3528 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \
|
|
3529 (pl) = gc_plist_hack ((name), s, (pl)); \
|
|
3530 } while (0)
|
0
|
3531
|
20
|
3532 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /*
|
0
|
3533 Reclaim storage for Lisp objects no longer needed.
|
272
|
3534 Return info on amount of space in use:
|
0
|
3535 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
|
|
3536 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
|
183
|
3537 PLIST)
|
0
|
3538 where `PLIST' is a list of alternating keyword/value pairs providing
|
|
3539 more detailed information.
|
|
3540 Garbage collection happens automatically if you cons more than
|
|
3541 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
|
20
|
3542 */
|
|
3543 ())
|
0
|
3544 {
|
|
3545 Lisp_Object pl = Qnil;
|
|
3546 int i;
|
243
|
3547 int gc_count_vector_total_size = 0;
|
104
|
3548
|
0
|
3549 garbage_collect_1 ();
|
|
3550
|
412
|
3551 for (i = 0; i < last_lrecord_type_index_assigned; i++)
|
0
|
3552 {
|
183
|
3553 if (lcrecord_stats[i].bytes_in_use != 0
|
0
|
3554 || lcrecord_stats[i].bytes_freed != 0
|
|
3555 || lcrecord_stats[i].instances_on_free_list != 0)
|
|
3556 {
|
|
3557 char buf [255];
|
412
|
3558 CONST char *name = lrecord_implementations_table[i]->name;
|
0
|
3559 int len = strlen (name);
|
207
|
3560 /* save this for the FSFmacs-compatible part of the summary */
|
412
|
3561 if (i == *lrecord_vector.lrecord_type_index)
|
207
|
3562 gc_count_vector_total_size =
|
|
3563 lcrecord_stats[i].bytes_in_use + lcrecord_stats[i].bytes_freed;
|
398
|
3564
|
0
|
3565 sprintf (buf, "%s-storage", name);
|
|
3566 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl);
|
|
3567 /* Okay, simple pluralization check for `symbol-value-varalias' */
|
|
3568 if (name[len-1] == 's')
|
|
3569 sprintf (buf, "%ses-freed", name);
|
|
3570 else
|
|
3571 sprintf (buf, "%ss-freed", name);
|
|
3572 if (lcrecord_stats[i].instances_freed != 0)
|
|
3573 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl);
|
|
3574 if (name[len-1] == 's')
|
|
3575 sprintf (buf, "%ses-on-free-list", name);
|
|
3576 else
|
|
3577 sprintf (buf, "%ss-on-free-list", name);
|
|
3578 if (lcrecord_stats[i].instances_on_free_list != 0)
|
|
3579 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list,
|
|
3580 pl);
|
|
3581 if (name[len-1] == 's')
|
|
3582 sprintf (buf, "%ses-used", name);
|
|
3583 else
|
|
3584 sprintf (buf, "%ss-used", name);
|
|
3585 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl);
|
|
3586 }
|
|
3587 }
|
|
3588
|
|
3589 HACK_O_MATIC (extent, "extent-storage", pl);
|
|
3590 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl);
|
|
3591 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl);
|
|
3592 HACK_O_MATIC (event, "event-storage", pl);
|
|
3593 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl);
|
|
3594 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl);
|
|
3595 HACK_O_MATIC (marker, "marker-storage", pl);
|
|
3596 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl);
|
|
3597 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl);
|
|
3598 #ifdef LISP_FLOAT_TYPE
|
|
3599 HACK_O_MATIC (float, "float-storage", pl);
|
|
3600 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl);
|
|
3601 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl);
|
|
3602 #endif /* LISP_FLOAT_TYPE */
|
|
3603 HACK_O_MATIC (string, "string-header-storage", pl);
|
183
|
3604 pl = gc_plist_hack ("long-strings-total-length",
|
0
|
3605 gc_count_string_total_size
|
|
3606 - gc_count_short_string_total_size, pl);
|
|
3607 HACK_O_MATIC (string_chars, "short-string-storage", pl);
|
|
3608 pl = gc_plist_hack ("short-strings-total-length",
|
|
3609 gc_count_short_string_total_size, pl);
|
|
3610 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl);
|
183
|
3611 pl = gc_plist_hack ("long-strings-used",
|
0
|
3612 gc_count_num_string_in_use
|
|
3613 - gc_count_num_short_string_in_use, pl);
|
183
|
3614 pl = gc_plist_hack ("short-strings-used",
|
0
|
3615 gc_count_num_short_string_in_use, pl);
|
|
3616
|
|
3617 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl);
|
|
3618 pl = gc_plist_hack ("compiled-functions-free",
|
|
3619 gc_count_num_compiled_function_freelist, pl);
|
|
3620 pl = gc_plist_hack ("compiled-functions-used",
|
|
3621 gc_count_num_compiled_function_in_use, pl);
|
|
3622
|
|
3623 pl = gc_plist_hack ("bit-vector-storage", gc_count_bit_vector_storage, pl);
|
183
|
3624 pl = gc_plist_hack ("bit-vectors-total-length",
|
0
|
3625 gc_count_bit_vector_total_size, pl);
|
|
3626 pl = gc_plist_hack ("bit-vectors-used", gc_count_num_bit_vector_used, pl);
|
|
3627
|
|
3628 HACK_O_MATIC (symbol, "symbol-storage", pl);
|
|
3629 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl);
|
|
3630 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl);
|
|
3631
|
|
3632 HACK_O_MATIC (cons, "cons-storage", pl);
|
|
3633 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl);
|
|
3634 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl);
|
|
3635
|
|
3636 /* The things we do for backwards-compatibility */
|
272
|
3637 return
|
|
3638 list6 (Fcons (make_int (gc_count_num_cons_in_use),
|
|
3639 make_int (gc_count_num_cons_freelist)),
|
|
3640 Fcons (make_int (gc_count_num_symbol_in_use),
|
|
3641 make_int (gc_count_num_symbol_freelist)),
|
|
3642 Fcons (make_int (gc_count_num_marker_in_use),
|
|
3643 make_int (gc_count_num_marker_freelist)),
|
|
3644 make_int (gc_count_string_total_size),
|
|
3645 make_int (gc_count_vector_total_size),
|
|
3646 pl);
|
0
|
3647 }
|
|
3648 #undef HACK_O_MATIC
|
|
3649
|
20
|
3650 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /*
|
0
|
3651 Return the number of bytes consed since the last garbage collection.
|
|
3652 \"Consed\" is a misnomer in that this actually counts allocation
|
|
3653 of all different kinds of objects, not just conses.
|
|
3654
|
|
3655 If this value exceeds `gc-cons-threshold', a garbage collection happens.
|
20
|
3656 */
|
|
3657 ())
|
0
|
3658 {
|
173
|
3659 return make_int (consing_since_gc);
|
0
|
3660 }
|
183
|
3661
|
20
|
3662 DEFUN ("memory-limit", Fmemory_limit, 0, 0, "", /*
|
0
|
3663 Return the address of the last byte Emacs has allocated, divided by 1024.
|
|
3664 This may be helpful in debugging Emacs's memory usage.
|
|
3665 The value is divided by 1024 to make sure it will fit in a lisp integer.
|
20
|
3666 */
|
|
3667 ())
|
0
|
3668 {
|
173
|
3669 return make_int ((EMACS_INT) sbrk (0) / 1024);
|
0
|
3670 }
|
412
|
3671
|
0
|
3672
|
|
3673
|
|
3674 int
|
|
3675 object_dead_p (Lisp_Object obj)
|
|
3676 {
|
173
|
3677 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) ||
|
|
3678 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) ||
|
|
3679 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) ||
|
|
3680 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) ||
|
0
|
3681 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) ||
|
173
|
3682 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) ||
|
|
3683 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj))));
|
0
|
3684 }
|
|
3685
|
|
3686 #ifdef MEMORY_USAGE_STATS
|
|
3687
|
|
3688 /* Attempt to determine the actual amount of space that is used for
|
|
3689 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE".
|
|
3690
|
|
3691 It seems that the following holds:
|
|
3692
|
|
3693 1. When using the old allocator (malloc.c):
|
|
3694
|
|
3695 -- blocks are always allocated in chunks of powers of two. For
|
|
3696 each block, there is an overhead of 8 bytes if rcheck is not
|
|
3697 defined, 20 bytes if it is defined. In other words, a
|
|
3698 one-byte allocation needs 8 bytes of overhead for a total of
|
|
3699 9 bytes, and needs to have 16 bytes of memory chunked out for
|
|
3700 it.
|
|
3701
|
|
3702 2. When using the new allocator (gmalloc.c):
|
|
3703
|
|
3704 -- blocks are always allocated in chunks of powers of two up
|
|
3705 to 4096 bytes. Larger blocks are allocated in chunks of
|
|
3706 an integral multiple of 4096 bytes. The minimum block
|
|
3707 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG
|
|
3708 is defined. There is no per-block overhead, but there
|
|
3709 is an overhead of 3*sizeof (size_t) for each 4096 bytes
|
|
3710 allocated.
|
|
3711
|
|
3712 3. When using the system malloc, anything goes, but they are
|
|
3713 generally slower and more space-efficient than the GNU
|
|
3714 allocators. One possibly reasonable assumption to make
|
|
3715 for want of better data is that sizeof (void *), or maybe
|
|
3716 2 * sizeof (void *), is required as overhead and that
|
|
3717 blocks are allocated in the minimum required size except
|
|
3718 that some minimum block size is imposed (e.g. 16 bytes). */
|
|
3719
|
272
|
3720 size_t
|
|
3721 malloced_storage_size (void *ptr, size_t claimed_size,
|
0
|
3722 struct overhead_stats *stats)
|
|
3723 {
|
272
|
3724 size_t orig_claimed_size = claimed_size;
|
0
|
3725
|
|
3726 #ifdef GNU_MALLOC
|
|
3727
|
|
3728 if (claimed_size < 2 * sizeof (void *))
|
|
3729 claimed_size = 2 * sizeof (void *);
|
|
3730 # ifdef SUNOS_LOCALTIME_BUG
|
|
3731 if (claimed_size < 16)
|
|
3732 claimed_size = 16;
|
|
3733 # endif
|
|
3734 if (claimed_size < 4096)
|
|
3735 {
|
|
3736 int log = 1;
|
|
3737
|
|
3738 /* compute the log base two, more or less, then use it to compute
|
|
3739 the block size needed. */
|
|
3740 claimed_size--;
|
|
3741 /* It's big, it's heavy, it's wood! */
|
|
3742 while ((claimed_size /= 2) != 0)
|
|
3743 ++log;
|
|
3744 claimed_size = 1;
|
|
3745 /* It's better than bad, it's good! */
|
|
3746 while (log > 0)
|
|
3747 {
|
|
3748 claimed_size *= 2;
|
|
3749 log--;
|
|
3750 }
|
|
3751 /* We have to come up with some average about the amount of
|
|
3752 blocks used. */
|
272
|
3753 if ((size_t) (rand () & 4095) < claimed_size)
|
0
|
3754 claimed_size += 3 * sizeof (void *);
|
|
3755 }
|
|
3756 else
|
|
3757 {
|
|
3758 claimed_size += 4095;
|
|
3759 claimed_size &= ~4095;
|
|
3760 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t);
|
|
3761 }
|
|
3762
|
|
3763 #elif defined (SYSTEM_MALLOC)
|
|
3764
|
|
3765 if (claimed_size < 16)
|
|
3766 claimed_size = 16;
|
|
3767 claimed_size += 2 * sizeof (void *);
|
|
3768
|
|
3769 #else /* old GNU allocator */
|
|
3770
|
|
3771 # ifdef rcheck /* #### may not be defined here */
|
|
3772 claimed_size += 20;
|
|
3773 # else
|
|
3774 claimed_size += 8;
|
|
3775 # endif
|
|
3776 {
|
|
3777 int log = 1;
|
|
3778
|
|
3779 /* compute the log base two, more or less, then use it to compute
|
|
3780 the block size needed. */
|
|
3781 claimed_size--;
|
|
3782 /* It's big, it's heavy, it's wood! */
|
|
3783 while ((claimed_size /= 2) != 0)
|
|
3784 ++log;
|
|
3785 claimed_size = 1;
|
|
3786 /* It's better than bad, it's good! */
|
|
3787 while (log > 0)
|
|
3788 {
|
|
3789 claimed_size *= 2;
|
|
3790 log--;
|
|
3791 }
|
|
3792 }
|
|
3793
|
|
3794 #endif /* old GNU allocator */
|
|
3795
|
|
3796 if (stats)
|
|
3797 {
|
|
3798 stats->was_requested += orig_claimed_size;
|
|
3799 stats->malloc_overhead += claimed_size - orig_claimed_size;
|
|
3800 }
|
|
3801 return claimed_size;
|
|
3802 }
|
|
3803
|
272
|
3804 size_t
|
|
3805 fixed_type_block_overhead (size_t size)
|
0
|
3806 {
|
272
|
3807 size_t per_block = TYPE_ALLOC_SIZE (cons, unsigned char);
|
|
3808 size_t overhead = 0;
|
|
3809 size_t storage_size = malloced_storage_size (0, per_block, 0);
|
0
|
3810 while (size >= per_block)
|
|
3811 {
|
|
3812 size -= per_block;
|
|
3813 overhead += sizeof (void *) + per_block - storage_size;
|
|
3814 }
|
|
3815 if (rand () % per_block < size)
|
|
3816 overhead += sizeof (void *) + per_block - storage_size;
|
|
3817 return overhead;
|
|
3818 }
|
|
3819
|
|
3820 #endif /* MEMORY_USAGE_STATS */
|
|
3821
|
|
3822
|
|
3823 /* Initialization */
|
|
3824 void
|
412
|
3825 init_alloc_once_early (void)
|
0
|
3826 {
|
412
|
3827 int iii;
|
|
3828
|
|
3829 last_lrecord_type_index_assigned = -1;
|
|
3830 for (iii = 0; iii < countof (lrecord_implementations_table); iii++)
|
|
3831 {
|
|
3832 lrecord_implementations_table[iii] = 0;
|
|
3833 }
|
|
3834
|
|
3835 /*
|
|
3836 * All the staticly
|
|
3837 * defined subr lrecords were initialized with lheader->type == 0.
|
|
3838 * See subr_lheader_initializer in lisp.h. Force type index 0 to be
|
|
3839 * assigned to lrecord_subr so that those predefined indexes match
|
|
3840 * reality.
|
|
3841 */
|
|
3842 lrecord_type_index (&lrecord_subr);
|
|
3843 assert (*(lrecord_subr.lrecord_type_index) == 0);
|
|
3844 /*
|
|
3845 * The same is true for symbol_value_forward objects, except the
|
|
3846 * type is 1.
|
|
3847 */
|
|
3848 lrecord_type_index (&lrecord_symbol_value_forward);
|
|
3849 assert (*(lrecord_symbol_value_forward.lrecord_type_index) == 1);
|
|
3850
|
0
|
3851 gc_generation_number[0] = 0;
|
412
|
3852 /* purify_flag 1 is correct even if CANNOT_DUMP.
|
|
3853 * loadup.el will set to nil at end. */
|
|
3854 purify_flag = 1;
|
0
|
3855 breathing_space = 0;
|
|
3856 XSETINT (all_bit_vectors, 0); /* Qzero may not be set yet. */
|
|
3857 XSETINT (Vgc_message, 0);
|
|
3858 all_lcrecords = 0;
|
|
3859 ignore_malloc_warnings = 1;
|
255
|
3860 #ifdef DOUG_LEA_MALLOC
|
|
3861 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
|
|
3862 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
|
261
|
3863 #if 0 /* Moved to emacs.c */
|
|
3864 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */
|
|
3865 #endif
|
255
|
3866 #endif
|
0
|
3867 init_string_alloc ();
|
|
3868 init_string_chars_alloc ();
|
|
3869 init_cons_alloc ();
|
|
3870 init_symbol_alloc ();
|
|
3871 init_compiled_function_alloc ();
|
|
3872 #ifdef LISP_FLOAT_TYPE
|
|
3873 init_float_alloc ();
|
|
3874 #endif /* LISP_FLOAT_TYPE */
|
|
3875 init_marker_alloc ();
|
|
3876 init_extent_alloc ();
|
|
3877 init_event_alloc ();
|
278
|
3878
|
0
|
3879 ignore_malloc_warnings = 0;
|
412
|
3880 staticidx = 0;
|
0
|
3881 consing_since_gc = 0;
|
|
3882 #if 1
|
|
3883 gc_cons_threshold = 500000; /* XEmacs change */
|
|
3884 #else
|
|
3885 gc_cons_threshold = 15000; /* debugging */
|
|
3886 #endif
|
|
3887 #ifdef VIRT_ADDR_VARIES
|
|
3888 malloc_sbrk_unused = 1<<22; /* A large number */
|
|
3889 malloc_sbrk_used = 100000; /* as reasonable as any number */
|
|
3890 #endif /* VIRT_ADDR_VARIES */
|
|
3891 lrecord_uid_counter = 259;
|
|
3892 debug_string_purity = 0;
|
|
3893 gcprolist = 0;
|
|
3894
|
|
3895 gc_currently_forbidden = 0;
|
|
3896 gc_hooks_inhibited = 0;
|
|
3897
|
|
3898 #ifdef ERROR_CHECK_TYPECHECK
|
|
3899 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
3900 666;
|
|
3901 ERROR_ME_NOT.
|
|
3902 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42;
|
|
3903 ERROR_ME_WARN.
|
|
3904 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
3905 3333632;
|
183
|
3906 #endif /* ERROR_CHECK_TYPECHECK */
|
0
|
3907 }
|
|
3908
|
398
|
3909 int pure_bytes_used = 0;
|
|
3910
|
|
3911 void
|
0
|
3912 reinit_alloc (void)
|
|
3913 {
|
|
3914 gcprolist = 0;
|
|
3915 }
|
|
3916
|
|
3917 void
|
|
3918 syms_of_alloc (void)
|
|
3919 {
|
|
3920 defsymbol (&Qpre_gc_hook, "pre-gc-hook");
|
|
3921 defsymbol (&Qpost_gc_hook, "post-gc-hook");
|
|
3922 defsymbol (&Qgarbage_collecting, "garbage-collecting");
|
|
3923
|
20
|
3924 DEFSUBR (Fcons);
|
|
3925 DEFSUBR (Flist);
|
|
3926 DEFSUBR (Fvector);
|
|
3927 DEFSUBR (Fbit_vector);
|
|
3928 DEFSUBR (Fmake_byte_code);
|
|
3929 DEFSUBR (Fmake_list);
|
|
3930 DEFSUBR (Fmake_vector);
|
|
3931 DEFSUBR (Fmake_bit_vector);
|
|
3932 DEFSUBR (Fmake_string);
|
278
|
3933 DEFSUBR (Fstring);
|
20
|
3934 DEFSUBR (Fmake_symbol);
|
|
3935 DEFSUBR (Fmake_marker);
|
|
3936 DEFSUBR (Fpurecopy);
|
|
3937 DEFSUBR (Fgarbage_collect);
|
|
3938 DEFSUBR (Fmemory_limit);
|
|
3939 DEFSUBR (Fconsing_since_gc);
|
0
|
3940 }
|
|
3941
|
|
3942 void
|
|
3943 vars_of_alloc (void)
|
|
3944 {
|
|
3945 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /*
|
|
3946 *Number of bytes of consing between garbage collections.
|
|
3947 \"Consing\" is a misnomer in that this actually counts allocation
|
|
3948 of all different kinds of objects, not just conses.
|
|
3949 Garbage collection can happen automatically once this many bytes have been
|
|
3950 allocated since the last garbage collection. All data types count.
|
|
3951
|
|
3952 Garbage collection happens automatically when `eval' or `funcall' are
|
|
3953 called. (Note that `funcall' is called implicitly as part of evaluation.)
|
|
3954 By binding this temporarily to a large number, you can effectively
|
|
3955 prevent garbage collection during a part of the program.
|
|
3956
|
|
3957 See also `consing-since-gc'.
|
|
3958 */ );
|
|
3959
|
272
|
3960 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used /*
|
0
|
3961 Number of bytes of sharable Lisp data allocated so far.
|
|
3962 */ );
|
|
3963
|
|
3964 #if 0
|
|
3965 DEFVAR_INT ("data-bytes-used", &malloc_sbrk_used /*
|
|
3966 Number of bytes of unshared memory allocated in this session.
|
|
3967 */ );
|
|
3968
|
|
3969 DEFVAR_INT ("data-bytes-free", &malloc_sbrk_unused /*
|
|
3970 Number of bytes of unshared memory remaining available in this session.
|
|
3971 */ );
|
|
3972 #endif
|
|
3973
|
|
3974 #ifdef DEBUG_XEMACS
|
|
3975 DEFVAR_INT ("debug-allocation", &debug_allocation /*
|
|
3976 If non-zero, print out information to stderr about all objects allocated.
|
|
3977 See also `debug-allocation-backtrace-length'.
|
|
3978 */ );
|
|
3979 debug_allocation = 0;
|
|
3980
|
|
3981 DEFVAR_INT ("debug-allocation-backtrace-length",
|
|
3982 &debug_allocation_backtrace_length /*
|
|
3983 Length (in stack frames) of short backtrace printed out by `debug-allocation'.
|
|
3984 */ );
|
|
3985 debug_allocation_backtrace_length = 2;
|
|
3986 #endif
|
|
3987
|
|
3988 DEFVAR_BOOL ("purify-flag", &purify_flag /*
|
|
3989 Non-nil means loading Lisp code in order to dump an executable.
|
398
|
3990 This means that certain objects should be allocated in readonly space.
|
0
|
3991 */ );
|
|
3992
|
|
3993 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /*
|
|
3994 Function or functions to be run just before each garbage collection.
|
|
3995 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
3996 runs, so be extremely careful in what you add here. In particular, avoid
|
|
3997 consing, and do not interact with the user.
|
|
3998 */ );
|
|
3999 Vpre_gc_hook = Qnil;
|
|
4000
|
|
4001 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /*
|
|
4002 Function or functions to be run just after each garbage collection.
|
|
4003 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
4004 runs, so be extremely careful in what you add here. In particular, avoid
|
|
4005 consing, and do not interact with the user.
|
|
4006 */ );
|
|
4007 Vpost_gc_hook = Qnil;
|
|
4008
|
|
4009 DEFVAR_LISP ("gc-message", &Vgc_message /*
|
|
4010 String to print to indicate that a garbage collection is in progress.
|
|
4011 This is printed in the echo area. If the selected frame is on a
|
|
4012 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer
|
|
4013 image instance) in the domain of the selected frame, the mouse pointer
|
|
4014 will change instead of this message being printed.
|
|
4015 */ );
|
412
|
4016 Vgc_message = make_string_nocopy ((CONST Bufbyte *) gc_default_message,
|
|
4017 countof (gc_default_message) - 1);
|
0
|
4018
|
|
4019 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /*
|
|
4020 Pointer glyph used to indicate that a garbage collection is in progress.
|
|
4021 If the selected window is on a window system and this glyph specifies a
|
|
4022 value (i.e. a pointer image instance) in the domain of the selected
|
|
4023 window, the pointer will be changed as specified during garbage collection.
|
|
4024 Otherwise, a message will be printed in the echo area, as controlled
|
|
4025 by `gc-message'.
|
|
4026 */ );
|
|
4027 }
|
|
4028
|
|
4029 void
|
|
4030 complex_vars_of_alloc (void)
|
|
4031 {
|
|
4032 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer);
|
|
4033 }
|