428
|
1 /* Implementation of the hash table lisp object type.
|
|
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
|
2421
|
3 Copyright (C) 1995, 1996, 2002, 2004 Ben Wing.
|
428
|
4 Copyright (C) 1997 Free Software Foundation, Inc.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCNTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: Not in FSF. */
|
|
24
|
1292
|
25 /* Author: Lost in the mists of history. At least back to Lucid 19.3,
|
|
26 circa Sep 1992. Early hash table implementation allowed only `eq' as a
|
|
27 test -- other tests possible only when these objects were created from
|
|
28 the C code.
|
|
29
|
|
30 Expansion to allow general `equal'-test Lisp-creatable tables, and hash
|
|
31 methods for the various Lisp objects in existence at the time, added
|
|
32 during 19.12 I think (early 1995?), by Ben Wing.
|
|
33
|
|
34 Weak hash tables added by Jamie (maybe?) early on, perhaps around 19.6,
|
|
35 maybe earlier; again, only possible through the C code, and only
|
|
36 supported fully weak hash tables. Expansion to other kinds of weakness,
|
|
37 and exporting of the interface to Lisp, by Ben Wing during 19.12
|
|
38 (early-mid 1995) or maybe 19.13 cycle (mid 1995).
|
|
39
|
|
40 Expansion to full Common Lisp spec and interface, redoing of the
|
|
41 implementation, by Martin Buchholz, 1997? (Former hash table
|
|
42 implementation used "double hashing", I'm pretty sure, and was weirdly
|
|
43 tied into the generic hash.c code. Martin completely separated them.)
|
|
44 */
|
|
45
|
489
|
46 /* This file implements the hash table lisp object type.
|
|
47
|
504
|
48 This implementation was mostly written by Martin Buchholz in 1997.
|
|
49
|
|
50 The Lisp-level API (derived from Common Lisp) is almost completely
|
|
51 compatible with GNU Emacs 21, even though the implementations are
|
|
52 totally independent.
|
|
53
|
489
|
54 The hash table technique used is "linear probing". Collisions are
|
|
55 resolved by putting the item in the next empty place in the array
|
|
56 following the collision. Finding a hash entry performs a linear
|
|
57 search in the cluster starting at the hash value.
|
|
58
|
|
59 On deletions from the hash table, the entries immediately following
|
|
60 the deleted entry are re-entered in the hash table. We do not have
|
|
61 a special way to mark deleted entries (known as "tombstones").
|
|
62
|
|
63 At the end of the hash entries ("hentries"), we leave room for an
|
|
64 entry that is always empty (the "sentinel").
|
|
65
|
|
66 The traditional literature on hash table implementation
|
|
67 (e.g. Knuth) suggests that too much "primary clustering" occurs
|
|
68 with linear probing. However, this literature was written when
|
|
69 locality of reference was not a factor. The discrepancy between
|
|
70 CPU speeds and memory speeds is increasing, and the speed of access
|
|
71 to memory is highly dependent on memory caches which work best when
|
|
72 there is high locality of data reference. Random access to memory
|
|
73 is up to 20 times as expensive as access to the nearest address
|
|
74 (and getting worse). So linear probing makes sense.
|
|
75
|
|
76 But the representation doesn't actually matter that much with the
|
|
77 current elisp engine. Funcall is sufficiently slow that the choice
|
|
78 of hash table implementation is noise. */
|
|
79
|
428
|
80 #include <config.h>
|
|
81 #include "lisp.h"
|
|
82 #include "bytecode.h"
|
|
83 #include "elhash.h"
|
489
|
84 #include "opaque.h"
|
428
|
85
|
|
86 Lisp_Object Qhash_tablep;
|
|
87 static Lisp_Object Qhashtable, Qhash_table;
|
442
|
88 static Lisp_Object Qweakness, Qvalue, Qkey_or_value, Qkey_and_value;
|
428
|
89 static Lisp_Object Vall_weak_hash_tables;
|
|
90 static Lisp_Object Qrehash_size, Qrehash_threshold;
|
|
91 static Lisp_Object Q_size, Q_test, Q_weakness, Q_rehash_size, Q_rehash_threshold;
|
|
92
|
|
93 /* obsolete as of 19990901 in xemacs-21.2 */
|
442
|
94 static Lisp_Object Qweak, Qkey_weak, Qvalue_weak, Qkey_or_value_weak;
|
|
95 static Lisp_Object Qnon_weak, Q_type;
|
428
|
96
|
1204
|
97 typedef struct htentry
|
428
|
98 {
|
|
99 Lisp_Object key;
|
|
100 Lisp_Object value;
|
1204
|
101 } htentry;
|
428
|
102
|
|
103 struct Lisp_Hash_Table
|
|
104 {
|
|
105 struct lcrecord_header header;
|
665
|
106 Elemcount size;
|
|
107 Elemcount count;
|
|
108 Elemcount rehash_count;
|
428
|
109 double rehash_size;
|
|
110 double rehash_threshold;
|
665
|
111 Elemcount golden_ratio;
|
428
|
112 hash_table_hash_function_t hash_function;
|
|
113 hash_table_test_function_t test_function;
|
1204
|
114 htentry *hentries;
|
428
|
115 enum hash_table_weakness weakness;
|
|
116 Lisp_Object next_weak; /* Used to chain together all of the weak
|
|
117 hash tables. Don't mark through this. */
|
|
118 };
|
|
119
|
1204
|
120 #define HTENTRY_CLEAR_P(htentry) ((*(EMACS_UINT*)(&((htentry)->key))) == 0)
|
|
121 #define CLEAR_HTENTRY(htentry) \
|
|
122 ((*(EMACS_UINT*)(&((htentry)->key))) = 0, \
|
|
123 (*(EMACS_UINT*)(&((htentry)->value))) = 0)
|
428
|
124
|
|
125 #define HASH_TABLE_DEFAULT_SIZE 16
|
|
126 #define HASH_TABLE_DEFAULT_REHASH_SIZE 1.3
|
|
127 #define HASH_TABLE_MIN_SIZE 10
|
|
128
|
665
|
129 #define HASHCODE(key, ht) \
|
444
|
130 ((((ht)->hash_function ? (ht)->hash_function (key) : LISP_HASH (key)) \
|
|
131 * (ht)->golden_ratio) \
|
|
132 % (ht)->size)
|
428
|
133
|
|
134 #define KEYS_EQUAL_P(key1, key2, testfun) \
|
434
|
135 (EQ (key1, key2) || ((testfun) && (testfun) (key1, key2)))
|
428
|
136
|
|
137 #define LINEAR_PROBING_LOOP(probe, entries, size) \
|
|
138 for (; \
|
1204
|
139 !HTENTRY_CLEAR_P (probe) || \
|
428
|
140 (probe == entries + size ? \
|
1204
|
141 (probe = entries, !HTENTRY_CLEAR_P (probe)) : 0); \
|
428
|
142 probe++)
|
|
143
|
800
|
144 #ifdef ERROR_CHECK_STRUCTURES
|
428
|
145 static void
|
|
146 check_hash_table_invariants (Lisp_Hash_Table *ht)
|
|
147 {
|
|
148 assert (ht->count < ht->size);
|
|
149 assert (ht->count <= ht->rehash_count);
|
|
150 assert (ht->rehash_count < ht->size);
|
|
151 assert ((double) ht->count * ht->rehash_threshold - 1 <= (double) ht->rehash_count);
|
1204
|
152 assert (HTENTRY_CLEAR_P (ht->hentries + ht->size));
|
428
|
153 }
|
|
154 #else
|
|
155 #define check_hash_table_invariants(ht)
|
|
156 #endif
|
|
157
|
|
158 /* Return a suitable size for a hash table, with at least SIZE slots. */
|
665
|
159 static Elemcount
|
|
160 hash_table_size (Elemcount requested_size)
|
428
|
161 {
|
|
162 /* Return some prime near, but greater than or equal to, SIZE.
|
|
163 Decades from the time of writing, someone will have a system large
|
|
164 enough that the list below will be too short... */
|
665
|
165 static const Elemcount primes [] =
|
428
|
166 {
|
|
167 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031,
|
|
168 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783,
|
|
169 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941,
|
|
170 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519,
|
|
171 1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301,
|
|
172 10445899, 13579681, 17653589, 22949669, 29834603, 38784989,
|
|
173 50420551, 65546729, 85210757, 110774011, 144006217, 187208107,
|
|
174 243370577, 316381771, 411296309, 534685237, 695090819, 903618083,
|
647
|
175 1174703521, 1527114613, 1985248999 /* , 2580823717UL, 3355070839UL */
|
428
|
176 };
|
|
177 /* We've heard of binary search. */
|
|
178 int low, high;
|
|
179 for (low = 0, high = countof (primes) - 1; high - low > 1;)
|
|
180 {
|
|
181 /* Loop Invariant: size < primes [high] */
|
|
182 int mid = (low + high) / 2;
|
|
183 if (primes [mid] < requested_size)
|
|
184 low = mid;
|
|
185 else
|
|
186 high = mid;
|
|
187 }
|
|
188 return primes [high];
|
|
189 }
|
|
190
|
|
191
|
|
192 #if 0 /* I don't think these are needed any more.
|
|
193 If using the general lisp_object_equal_*() functions
|
|
194 causes efficiency problems, these can be resurrected. --ben */
|
|
195 /* equality and hash functions for Lisp strings */
|
|
196 int
|
|
197 lisp_string_equal (Lisp_Object str1, Lisp_Object str2)
|
|
198 {
|
|
199 /* This is wrong anyway. You can't use strcmp() on Lisp strings,
|
|
200 because they can contain zero characters. */
|
|
201 return !strcmp ((char *) XSTRING_DATA (str1), (char *) XSTRING_DATA (str2));
|
|
202 }
|
|
203
|
665
|
204 static Hashcode
|
428
|
205 lisp_string_hash (Lisp_Object obj)
|
|
206 {
|
|
207 return hash_string (XSTRING_DATA (str), XSTRING_LENGTH (str));
|
|
208 }
|
|
209
|
|
210 #endif /* 0 */
|
|
211
|
|
212 static int
|
|
213 lisp_object_eql_equal (Lisp_Object obj1, Lisp_Object obj2)
|
|
214 {
|
|
215 return EQ (obj1, obj2) || (FLOATP (obj1) && internal_equal (obj1, obj2, 0));
|
|
216 }
|
|
217
|
665
|
218 static Hashcode
|
428
|
219 lisp_object_eql_hash (Lisp_Object obj)
|
|
220 {
|
|
221 return FLOATP (obj) ? internal_hash (obj, 0) : LISP_HASH (obj);
|
|
222 }
|
|
223
|
|
224 static int
|
|
225 lisp_object_equal_equal (Lisp_Object obj1, Lisp_Object obj2)
|
|
226 {
|
|
227 return internal_equal (obj1, obj2, 0);
|
|
228 }
|
|
229
|
665
|
230 static Hashcode
|
428
|
231 lisp_object_equal_hash (Lisp_Object obj)
|
|
232 {
|
|
233 return internal_hash (obj, 0);
|
|
234 }
|
|
235
|
|
236
|
|
237 static Lisp_Object
|
|
238 mark_hash_table (Lisp_Object obj)
|
|
239 {
|
|
240 Lisp_Hash_Table *ht = XHASH_TABLE (obj);
|
|
241
|
|
242 /* If the hash table is weak, we don't want to mark the keys and
|
|
243 values (we scan over them after everything else has been marked,
|
|
244 and mark or remove them as necessary). */
|
|
245 if (ht->weakness == HASH_TABLE_NON_WEAK)
|
|
246 {
|
1204
|
247 htentry *e, *sentinel;
|
428
|
248
|
|
249 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
1204
|
250 if (!HTENTRY_CLEAR_P (e))
|
428
|
251 {
|
|
252 mark_object (e->key);
|
|
253 mark_object (e->value);
|
|
254 }
|
|
255 }
|
|
256 return Qnil;
|
|
257 }
|
|
258
|
|
259 /* Equality of hash tables. Two hash tables are equal when they are of
|
|
260 the same weakness and test function, they have the same number of
|
|
261 elements, and for each key in the hash table, the values are `equal'.
|
|
262
|
|
263 This is similar to Common Lisp `equalp' of hash tables, with the
|
|
264 difference that CL requires the keys to be compared with the test
|
|
265 function, which we don't do. Doing that would require consing, and
|
|
266 consing is a bad idea in `equal'. Anyway, our method should provide
|
|
267 the same result -- if the keys are not equal according to the test
|
|
268 function, then Fgethash() in hash_table_equal_mapper() will fail. */
|
|
269 static int
|
|
270 hash_table_equal (Lisp_Object hash_table1, Lisp_Object hash_table2, int depth)
|
|
271 {
|
|
272 Lisp_Hash_Table *ht1 = XHASH_TABLE (hash_table1);
|
|
273 Lisp_Hash_Table *ht2 = XHASH_TABLE (hash_table2);
|
1204
|
274 htentry *e, *sentinel;
|
428
|
275
|
|
276 if ((ht1->test_function != ht2->test_function) ||
|
|
277 (ht1->weakness != ht2->weakness) ||
|
|
278 (ht1->count != ht2->count))
|
|
279 return 0;
|
|
280
|
|
281 depth++;
|
|
282
|
|
283 for (e = ht1->hentries, sentinel = e + ht1->size; e < sentinel; e++)
|
1204
|
284 if (!HTENTRY_CLEAR_P (e))
|
428
|
285 /* Look up the key in the other hash table, and compare the values. */
|
|
286 {
|
|
287 Lisp_Object value_in_other = Fgethash (e->key, hash_table2, Qunbound);
|
|
288 if (UNBOUNDP (value_in_other) ||
|
|
289 !internal_equal (e->value, value_in_other, depth))
|
|
290 return 0; /* Give up */
|
|
291 }
|
|
292
|
|
293 return 1;
|
|
294 }
|
442
|
295
|
|
296 /* This is not a great hash function, but it _is_ correct and fast.
|
|
297 Examining all entries is too expensive, and examining a random
|
|
298 subset does not yield a correct hash function. */
|
665
|
299 static Hashcode
|
2286
|
300 hash_table_hash (Lisp_Object hash_table, int UNUSED (depth))
|
442
|
301 {
|
|
302 return XHASH_TABLE (hash_table)->count;
|
|
303 }
|
|
304
|
428
|
305
|
|
306 /* Printing hash tables.
|
|
307
|
|
308 This is non-trivial, because we use a readable structure-style
|
|
309 syntax for hash tables. This means that a typical hash table will be
|
|
310 readably printed in the form of:
|
|
311
|
|
312 #s(hash-table size 2 data (key1 value1 key2 value2))
|
|
313
|
|
314 The supported hash table structure keywords and their values are:
|
|
315 `test' (eql (or nil), eq or equal)
|
|
316 `size' (a natnum or nil)
|
|
317 `rehash-size' (a float)
|
|
318 `rehash-threshold' (a float)
|
442
|
319 `weakness' (nil, key, value, key-and-value, or key-or-value)
|
428
|
320 `data' (a list)
|
|
321
|
430
|
322 If `print-readably' is nil, then a simpler syntax is used, for example
|
428
|
323
|
|
324 #<hash-table size 2/13 data (key1 value1 key2 value2) 0x874d>
|
|
325
|
|
326 The data is truncated to four pairs, and the rest is shown with
|
|
327 `...'. This printer does not cons. */
|
|
328
|
|
329
|
|
330 /* Print the data of the hash table. This maps through a Lisp
|
|
331 hash table and prints key/value pairs using PRINTCHARFUN. */
|
|
332 static void
|
|
333 print_hash_table_data (Lisp_Hash_Table *ht, Lisp_Object printcharfun)
|
|
334 {
|
|
335 int count = 0;
|
1204
|
336 htentry *e, *sentinel;
|
428
|
337
|
826
|
338 write_c_string (printcharfun, " data (");
|
428
|
339
|
|
340 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
1204
|
341 if (!HTENTRY_CLEAR_P (e))
|
428
|
342 {
|
|
343 if (count > 0)
|
826
|
344 write_c_string (printcharfun, " ");
|
428
|
345 if (!print_readably && count > 3)
|
|
346 {
|
826
|
347 write_c_string (printcharfun, "...");
|
428
|
348 break;
|
|
349 }
|
|
350 print_internal (e->key, printcharfun, 1);
|
800
|
351 write_fmt_string_lisp (printcharfun, " %S", 1, e->value);
|
428
|
352 count++;
|
|
353 }
|
|
354
|
826
|
355 write_c_string (printcharfun, ")");
|
428
|
356 }
|
|
357
|
|
358 static void
|
2286
|
359 print_hash_table (Lisp_Object obj, Lisp_Object printcharfun,
|
|
360 int UNUSED (escapeflag))
|
428
|
361 {
|
|
362 Lisp_Hash_Table *ht = XHASH_TABLE (obj);
|
|
363
|
826
|
364 write_c_string (printcharfun,
|
|
365 print_readably ? "#s(hash-table" : "#<hash-table");
|
428
|
366
|
|
367 /* These checks have a kludgy look to them, but they are safe.
|
|
368 Due to nature of hashing, you cannot use arbitrary
|
|
369 test functions anyway. */
|
|
370 if (!ht->test_function)
|
826
|
371 write_c_string (printcharfun, " test eq");
|
428
|
372 else if (ht->test_function == lisp_object_equal_equal)
|
826
|
373 write_c_string (printcharfun, " test equal");
|
428
|
374 else if (ht->test_function == lisp_object_eql_equal)
|
|
375 DO_NOTHING;
|
|
376 else
|
2500
|
377 ABORT ();
|
428
|
378
|
|
379 if (ht->count || !print_readably)
|
|
380 {
|
|
381 if (print_readably)
|
800
|
382 write_fmt_string (printcharfun, " size %ld", (long) ht->count);
|
428
|
383 else
|
800
|
384 write_fmt_string (printcharfun, " size %ld/%ld", (long) ht->count,
|
|
385 (long) ht->size);
|
428
|
386 }
|
|
387
|
|
388 if (ht->weakness != HASH_TABLE_NON_WEAK)
|
|
389 {
|
800
|
390 write_fmt_string
|
|
391 (printcharfun, " weakness %s",
|
|
392 (ht->weakness == HASH_TABLE_WEAK ? "key-and-value" :
|
|
393 ht->weakness == HASH_TABLE_KEY_WEAK ? "key" :
|
|
394 ht->weakness == HASH_TABLE_VALUE_WEAK ? "value" :
|
|
395 ht->weakness == HASH_TABLE_KEY_VALUE_WEAK ? "key-or-value" :
|
|
396 "you-d-better-not-see-this"));
|
428
|
397 }
|
|
398
|
|
399 if (ht->count)
|
|
400 print_hash_table_data (ht, printcharfun);
|
|
401
|
|
402 if (print_readably)
|
826
|
403 write_c_string (printcharfun, ")");
|
428
|
404 else
|
2421
|
405 write_fmt_string (printcharfun, " 0x%x>", ht->header.uid);
|
428
|
406 }
|
|
407
|
|
408 static void
|
2333
|
409 free_hentries (htentry *hentries,
|
|
410 #ifdef ERROR_CHECK_STRUCTURES
|
|
411 size_t size
|
|
412 #else
|
|
413 size_t UNUSED (size)
|
|
414 #endif
|
|
415 )
|
489
|
416 {
|
800
|
417 #ifdef ERROR_CHECK_STRUCTURES
|
489
|
418 /* Ensure a crash if other code uses the discarded entries afterwards. */
|
1204
|
419 htentry *e, *sentinel;
|
489
|
420
|
|
421 for (e = hentries, sentinel = e + size; e < sentinel; e++)
|
1204
|
422 * (unsigned long *) e = 0xdeadbeef; /* -559038737 base 10 */
|
489
|
423 #endif
|
|
424
|
|
425 if (!DUMPEDP (hentries))
|
1726
|
426 xfree (hentries, htentry *);
|
489
|
427 }
|
|
428
|
|
429 static void
|
428
|
430 finalize_hash_table (void *header, int for_disksave)
|
|
431 {
|
|
432 if (!for_disksave)
|
|
433 {
|
|
434 Lisp_Hash_Table *ht = (Lisp_Hash_Table *) header;
|
489
|
435 free_hentries (ht->hentries, ht->size);
|
428
|
436 ht->hentries = 0;
|
|
437 }
|
|
438 }
|
|
439
|
1204
|
440 static const struct memory_description htentry_description_1[] = {
|
|
441 { XD_LISP_OBJECT, offsetof (htentry, key) },
|
|
442 { XD_LISP_OBJECT, offsetof (htentry, value) },
|
428
|
443 { XD_END }
|
|
444 };
|
|
445
|
1204
|
446 static const struct sized_memory_description htentry_description = {
|
|
447 sizeof (htentry),
|
|
448 htentry_description_1
|
428
|
449 };
|
|
450
|
1204
|
451 static const struct memory_description htentry_union_description_1[] = {
|
|
452 /* Note: XD_INDIRECT in this table refers to the surrounding table,
|
|
453 and so this will work. */
|
2367
|
454 { XD_BLOCK_PTR, HASH_TABLE_NON_WEAK, XD_INDIRECT (0, 1),
|
2551
|
455 { &htentry_description } },
|
|
456 { XD_BLOCK_PTR, 0, XD_INDIRECT (0, 1), { &htentry_description },
|
1204
|
457 XD_FLAG_UNION_DEFAULT_ENTRY | XD_FLAG_NO_KKCC },
|
|
458 { XD_END }
|
|
459 };
|
|
460
|
|
461 static const struct sized_memory_description htentry_union_description = {
|
|
462 sizeof (htentry *),
|
|
463 htentry_union_description_1
|
|
464 };
|
|
465
|
|
466 const struct memory_description hash_table_description[] = {
|
|
467 { XD_ELEMCOUNT, offsetof (Lisp_Hash_Table, size) },
|
|
468 { XD_INT, offsetof (Lisp_Hash_Table, weakness) },
|
|
469 { XD_UNION, offsetof (Lisp_Hash_Table, hentries), XD_INDIRECT (1, 0),
|
2551
|
470 { &htentry_union_description } },
|
440
|
471 { XD_LO_LINK, offsetof (Lisp_Hash_Table, next_weak) },
|
428
|
472 { XD_END }
|
|
473 };
|
|
474
|
934
|
475 DEFINE_LRECORD_IMPLEMENTATION ("hash-table", hash_table,
|
|
476 1, /*dumpable-flag*/
|
|
477 mark_hash_table, print_hash_table,
|
|
478 finalize_hash_table,
|
|
479 hash_table_equal, hash_table_hash,
|
|
480 hash_table_description,
|
|
481 Lisp_Hash_Table);
|
428
|
482
|
|
483 static Lisp_Hash_Table *
|
|
484 xhash_table (Lisp_Object hash_table)
|
|
485 {
|
1123
|
486 /* #### What's going on here? Why the gc_in_progress check? */
|
428
|
487 if (!gc_in_progress)
|
|
488 CHECK_HASH_TABLE (hash_table);
|
|
489 check_hash_table_invariants (XHASH_TABLE (hash_table));
|
|
490 return XHASH_TABLE (hash_table);
|
|
491 }
|
|
492
|
|
493
|
|
494 /************************************************************************/
|
|
495 /* Creation of Hash Tables */
|
|
496 /************************************************************************/
|
|
497
|
|
498 /* Creation of hash tables, without error-checking. */
|
|
499 static void
|
|
500 compute_hash_table_derived_values (Lisp_Hash_Table *ht)
|
|
501 {
|
665
|
502 ht->rehash_count = (Elemcount)
|
438
|
503 ((double) ht->size * ht->rehash_threshold);
|
665
|
504 ht->golden_ratio = (Elemcount)
|
428
|
505 ((double) ht->size * (.6180339887 / (double) sizeof (Lisp_Object)));
|
|
506 }
|
|
507
|
|
508 Lisp_Object
|
450
|
509 make_standard_lisp_hash_table (enum hash_table_test test,
|
665
|
510 Elemcount size,
|
450
|
511 double rehash_size,
|
|
512 double rehash_threshold,
|
|
513 enum hash_table_weakness weakness)
|
|
514 {
|
462
|
515 hash_table_hash_function_t hash_function = 0;
|
450
|
516 hash_table_test_function_t test_function = 0;
|
|
517
|
|
518 switch (test)
|
|
519 {
|
|
520 case HASH_TABLE_EQ:
|
|
521 test_function = 0;
|
|
522 hash_function = 0;
|
|
523 break;
|
|
524
|
|
525 case HASH_TABLE_EQL:
|
|
526 test_function = lisp_object_eql_equal;
|
|
527 hash_function = lisp_object_eql_hash;
|
|
528 break;
|
|
529
|
|
530 case HASH_TABLE_EQUAL:
|
|
531 test_function = lisp_object_equal_equal;
|
|
532 hash_function = lisp_object_equal_hash;
|
|
533 break;
|
|
534
|
|
535 default:
|
2500
|
536 ABORT ();
|
450
|
537 }
|
|
538
|
|
539 return make_general_lisp_hash_table (hash_function, test_function,
|
|
540 size, rehash_size, rehash_threshold,
|
|
541 weakness);
|
|
542 }
|
|
543
|
|
544 Lisp_Object
|
|
545 make_general_lisp_hash_table (hash_table_hash_function_t hash_function,
|
|
546 hash_table_test_function_t test_function,
|
665
|
547 Elemcount size,
|
428
|
548 double rehash_size,
|
|
549 double rehash_threshold,
|
|
550 enum hash_table_weakness weakness)
|
|
551 {
|
|
552 Lisp_Object hash_table;
|
|
553 Lisp_Hash_Table *ht = alloc_lcrecord_type (Lisp_Hash_Table, &lrecord_hash_table);
|
|
554
|
450
|
555 ht->test_function = test_function;
|
|
556 ht->hash_function = hash_function;
|
438
|
557 ht->weakness = weakness;
|
|
558
|
|
559 ht->rehash_size =
|
|
560 rehash_size > 1.0 ? rehash_size : HASH_TABLE_DEFAULT_REHASH_SIZE;
|
|
561
|
|
562 ht->rehash_threshold =
|
|
563 rehash_threshold > 0.0 ? rehash_threshold :
|
|
564 size > 4096 && !ht->test_function ? 0.7 : 0.6;
|
|
565
|
428
|
566 if (size < HASH_TABLE_MIN_SIZE)
|
|
567 size = HASH_TABLE_MIN_SIZE;
|
665
|
568 ht->size = hash_table_size ((Elemcount) (((double) size / ht->rehash_threshold)
|
438
|
569 + 1.0));
|
428
|
570 ht->count = 0;
|
438
|
571
|
428
|
572 compute_hash_table_derived_values (ht);
|
|
573
|
1204
|
574 /* We leave room for one never-occupied sentinel htentry at the end. */
|
|
575 ht->hentries = xnew_array_and_zero (htentry, ht->size + 1);
|
428
|
576
|
793
|
577 hash_table = wrap_hash_table (ht);
|
428
|
578
|
|
579 if (weakness == HASH_TABLE_NON_WEAK)
|
|
580 ht->next_weak = Qunbound;
|
|
581 else
|
|
582 ht->next_weak = Vall_weak_hash_tables, Vall_weak_hash_tables = hash_table;
|
|
583
|
|
584 return hash_table;
|
|
585 }
|
|
586
|
|
587 Lisp_Object
|
665
|
588 make_lisp_hash_table (Elemcount size,
|
428
|
589 enum hash_table_weakness weakness,
|
|
590 enum hash_table_test test)
|
|
591 {
|
450
|
592 return make_standard_lisp_hash_table (test, size, -1.0, -1.0, weakness);
|
428
|
593 }
|
|
594
|
|
595 /* Pretty reading of hash tables.
|
|
596
|
|
597 Here we use the existing structures mechanism (which is,
|
|
598 unfortunately, pretty cumbersome) for validating and instantiating
|
|
599 the hash tables. The idea is that the side-effect of reading a
|
|
600 #s(hash-table PLIST) object is creation of a hash table with desired
|
|
601 properties, and that the hash table is returned. */
|
|
602
|
|
603 /* Validation functions: each keyword provides its own validation
|
|
604 function. The errors should maybe be continuable, but it is
|
|
605 unclear how this would cope with ERRB. */
|
|
606 static int
|
2286
|
607 hash_table_size_validate (Lisp_Object UNUSED (keyword), Lisp_Object value,
|
|
608 Error_Behavior errb)
|
428
|
609 {
|
|
610 if (NATNUMP (value))
|
|
611 return 1;
|
|
612
|
563
|
613 maybe_signal_error_1 (Qwrong_type_argument, list2 (Qnatnump, value),
|
2286
|
614 Qhash_table, errb);
|
428
|
615 return 0;
|
|
616 }
|
|
617
|
665
|
618 static Elemcount
|
428
|
619 decode_hash_table_size (Lisp_Object obj)
|
|
620 {
|
|
621 return NILP (obj) ? HASH_TABLE_DEFAULT_SIZE : XINT (obj);
|
|
622 }
|
|
623
|
|
624 static int
|
2286
|
625 hash_table_weakness_validate (Lisp_Object UNUSED (keyword), Lisp_Object value,
|
578
|
626 Error_Behavior errb)
|
428
|
627 {
|
442
|
628 if (EQ (value, Qnil)) return 1;
|
|
629 if (EQ (value, Qt)) return 1;
|
|
630 if (EQ (value, Qkey)) return 1;
|
|
631 if (EQ (value, Qkey_and_value)) return 1;
|
|
632 if (EQ (value, Qkey_or_value)) return 1;
|
|
633 if (EQ (value, Qvalue)) return 1;
|
428
|
634
|
|
635 /* Following values are obsolete as of 19990901 in xemacs-21.2 */
|
442
|
636 if (EQ (value, Qnon_weak)) return 1;
|
|
637 if (EQ (value, Qweak)) return 1;
|
|
638 if (EQ (value, Qkey_weak)) return 1;
|
|
639 if (EQ (value, Qkey_or_value_weak)) return 1;
|
|
640 if (EQ (value, Qvalue_weak)) return 1;
|
428
|
641
|
563
|
642 maybe_invalid_constant ("Invalid hash table weakness",
|
428
|
643 value, Qhash_table, errb);
|
|
644 return 0;
|
|
645 }
|
|
646
|
|
647 static enum hash_table_weakness
|
|
648 decode_hash_table_weakness (Lisp_Object obj)
|
|
649 {
|
442
|
650 if (EQ (obj, Qnil)) return HASH_TABLE_NON_WEAK;
|
|
651 if (EQ (obj, Qt)) return HASH_TABLE_WEAK;
|
|
652 if (EQ (obj, Qkey_and_value)) return HASH_TABLE_WEAK;
|
|
653 if (EQ (obj, Qkey)) return HASH_TABLE_KEY_WEAK;
|
|
654 if (EQ (obj, Qkey_or_value)) return HASH_TABLE_KEY_VALUE_WEAK;
|
|
655 if (EQ (obj, Qvalue)) return HASH_TABLE_VALUE_WEAK;
|
428
|
656
|
|
657 /* Following values are obsolete as of 19990901 in xemacs-21.2 */
|
442
|
658 if (EQ (obj, Qnon_weak)) return HASH_TABLE_NON_WEAK;
|
|
659 if (EQ (obj, Qweak)) return HASH_TABLE_WEAK;
|
|
660 if (EQ (obj, Qkey_weak)) return HASH_TABLE_KEY_WEAK;
|
|
661 if (EQ (obj, Qkey_or_value_weak)) return HASH_TABLE_KEY_VALUE_WEAK;
|
|
662 if (EQ (obj, Qvalue_weak)) return HASH_TABLE_VALUE_WEAK;
|
428
|
663
|
563
|
664 invalid_constant ("Invalid hash table weakness", obj);
|
1204
|
665 RETURN_NOT_REACHED (HASH_TABLE_NON_WEAK);
|
428
|
666 }
|
|
667
|
|
668 static int
|
2286
|
669 hash_table_test_validate (Lisp_Object UNUSED (keyword), Lisp_Object value,
|
|
670 Error_Behavior errb)
|
428
|
671 {
|
|
672 if (EQ (value, Qnil)) return 1;
|
|
673 if (EQ (value, Qeq)) return 1;
|
|
674 if (EQ (value, Qequal)) return 1;
|
|
675 if (EQ (value, Qeql)) return 1;
|
|
676
|
563
|
677 maybe_invalid_constant ("Invalid hash table test",
|
2286
|
678 value, Qhash_table, errb);
|
428
|
679 return 0;
|
|
680 }
|
|
681
|
|
682 static enum hash_table_test
|
|
683 decode_hash_table_test (Lisp_Object obj)
|
|
684 {
|
|
685 if (EQ (obj, Qnil)) return HASH_TABLE_EQL;
|
|
686 if (EQ (obj, Qeq)) return HASH_TABLE_EQ;
|
|
687 if (EQ (obj, Qequal)) return HASH_TABLE_EQUAL;
|
|
688 if (EQ (obj, Qeql)) return HASH_TABLE_EQL;
|
|
689
|
563
|
690 invalid_constant ("Invalid hash table test", obj);
|
1204
|
691 RETURN_NOT_REACHED (HASH_TABLE_EQ);
|
428
|
692 }
|
|
693
|
|
694 static int
|
2286
|
695 hash_table_rehash_size_validate (Lisp_Object UNUSED (keyword),
|
|
696 Lisp_Object value, Error_Behavior errb)
|
428
|
697 {
|
|
698 if (!FLOATP (value))
|
|
699 {
|
563
|
700 maybe_signal_error_1 (Qwrong_type_argument, list2 (Qfloatp, value),
|
428
|
701 Qhash_table, errb);
|
|
702 return 0;
|
|
703 }
|
|
704
|
|
705 {
|
|
706 double rehash_size = XFLOAT_DATA (value);
|
|
707 if (rehash_size <= 1.0)
|
|
708 {
|
563
|
709 maybe_invalid_argument
|
428
|
710 ("Hash table rehash size must be greater than 1.0",
|
|
711 value, Qhash_table, errb);
|
|
712 return 0;
|
|
713 }
|
|
714 }
|
|
715
|
|
716 return 1;
|
|
717 }
|
|
718
|
|
719 static double
|
|
720 decode_hash_table_rehash_size (Lisp_Object rehash_size)
|
|
721 {
|
|
722 return NILP (rehash_size) ? -1.0 : XFLOAT_DATA (rehash_size);
|
|
723 }
|
|
724
|
|
725 static int
|
2286
|
726 hash_table_rehash_threshold_validate (Lisp_Object UNUSED (keyword),
|
|
727 Lisp_Object value, Error_Behavior errb)
|
428
|
728 {
|
|
729 if (!FLOATP (value))
|
|
730 {
|
563
|
731 maybe_signal_error_1 (Qwrong_type_argument, list2 (Qfloatp, value),
|
428
|
732 Qhash_table, errb);
|
|
733 return 0;
|
|
734 }
|
|
735
|
|
736 {
|
|
737 double rehash_threshold = XFLOAT_DATA (value);
|
|
738 if (rehash_threshold <= 0.0 || rehash_threshold >= 1.0)
|
|
739 {
|
563
|
740 maybe_invalid_argument
|
428
|
741 ("Hash table rehash threshold must be between 0.0 and 1.0",
|
|
742 value, Qhash_table, errb);
|
|
743 return 0;
|
|
744 }
|
|
745 }
|
|
746
|
|
747 return 1;
|
|
748 }
|
|
749
|
|
750 static double
|
|
751 decode_hash_table_rehash_threshold (Lisp_Object rehash_threshold)
|
|
752 {
|
|
753 return NILP (rehash_threshold) ? -1.0 : XFLOAT_DATA (rehash_threshold);
|
|
754 }
|
|
755
|
|
756 static int
|
2286
|
757 hash_table_data_validate (Lisp_Object UNUSED (keyword), Lisp_Object value,
|
|
758 Error_Behavior errb)
|
428
|
759 {
|
|
760 int len;
|
|
761
|
|
762 GET_EXTERNAL_LIST_LENGTH (value, len);
|
|
763
|
|
764 if (len & 1)
|
|
765 {
|
563
|
766 maybe_sferror
|
428
|
767 ("Hash table data must have alternating key/value pairs",
|
|
768 value, Qhash_table, errb);
|
|
769 return 0;
|
|
770 }
|
|
771 return 1;
|
|
772 }
|
|
773
|
|
774 /* The actual instantiation of a hash table. This does practically no
|
|
775 error checking, because it relies on the fact that the paranoid
|
|
776 functions above have error-checked everything to the last details.
|
|
777 If this assumption is wrong, we will get a crash immediately (with
|
|
778 error-checking compiled in), and we'll know if there is a bug in
|
|
779 the structure mechanism. So there. */
|
|
780 static Lisp_Object
|
|
781 hash_table_instantiate (Lisp_Object plist)
|
|
782 {
|
|
783 Lisp_Object hash_table;
|
|
784 Lisp_Object test = Qnil;
|
|
785 Lisp_Object size = Qnil;
|
|
786 Lisp_Object rehash_size = Qnil;
|
|
787 Lisp_Object rehash_threshold = Qnil;
|
|
788 Lisp_Object weakness = Qnil;
|
|
789 Lisp_Object data = Qnil;
|
|
790
|
2421
|
791 PROPERTY_LIST_LOOP_3 (key, value, plist)
|
428
|
792 {
|
|
793 if (EQ (key, Qtest)) test = value;
|
|
794 else if (EQ (key, Qsize)) size = value;
|
|
795 else if (EQ (key, Qrehash_size)) rehash_size = value;
|
|
796 else if (EQ (key, Qrehash_threshold)) rehash_threshold = value;
|
|
797 else if (EQ (key, Qweakness)) weakness = value;
|
|
798 else if (EQ (key, Qdata)) data = value;
|
|
799 else if (EQ (key, Qtype))/*obsolete*/ weakness = value;
|
|
800 else
|
2500
|
801 ABORT ();
|
428
|
802 }
|
|
803
|
|
804 /* Create the hash table. */
|
450
|
805 hash_table = make_standard_lisp_hash_table
|
428
|
806 (decode_hash_table_test (test),
|
|
807 decode_hash_table_size (size),
|
|
808 decode_hash_table_rehash_size (rehash_size),
|
|
809 decode_hash_table_rehash_threshold (rehash_threshold),
|
|
810 decode_hash_table_weakness (weakness));
|
|
811
|
|
812 /* I'm not sure whether this can GC, but better safe than sorry. */
|
|
813 {
|
|
814 struct gcpro gcpro1;
|
|
815 GCPRO1 (hash_table);
|
|
816
|
|
817 /* And fill it with data. */
|
|
818 while (!NILP (data))
|
|
819 {
|
|
820 Lisp_Object key, value;
|
|
821 key = XCAR (data); data = XCDR (data);
|
|
822 value = XCAR (data); data = XCDR (data);
|
|
823 Fputhash (key, value, hash_table);
|
|
824 }
|
|
825 UNGCPRO;
|
|
826 }
|
|
827
|
|
828 return hash_table;
|
|
829 }
|
|
830
|
|
831 static void
|
|
832 structure_type_create_hash_table_structure_name (Lisp_Object structure_name)
|
|
833 {
|
|
834 struct structure_type *st;
|
|
835
|
|
836 st = define_structure_type (structure_name, 0, hash_table_instantiate);
|
|
837 define_structure_type_keyword (st, Qtest, hash_table_test_validate);
|
|
838 define_structure_type_keyword (st, Qsize, hash_table_size_validate);
|
|
839 define_structure_type_keyword (st, Qrehash_size, hash_table_rehash_size_validate);
|
|
840 define_structure_type_keyword (st, Qrehash_threshold, hash_table_rehash_threshold_validate);
|
|
841 define_structure_type_keyword (st, Qweakness, hash_table_weakness_validate);
|
|
842 define_structure_type_keyword (st, Qdata, hash_table_data_validate);
|
|
843
|
|
844 /* obsolete as of 19990901 in xemacs-21.2 */
|
|
845 define_structure_type_keyword (st, Qtype, hash_table_weakness_validate);
|
|
846 }
|
|
847
|
|
848 /* Create a built-in Lisp structure type named `hash-table'.
|
|
849 We make #s(hashtable ...) equivalent to #s(hash-table ...),
|
|
850 for backward compatibility.
|
|
851 This is called from emacs.c. */
|
|
852 void
|
|
853 structure_type_create_hash_table (void)
|
|
854 {
|
|
855 structure_type_create_hash_table_structure_name (Qhash_table);
|
|
856 structure_type_create_hash_table_structure_name (Qhashtable); /* compat */
|
|
857 }
|
|
858
|
|
859
|
|
860 /************************************************************************/
|
|
861 /* Definition of Lisp-visible methods */
|
|
862 /************************************************************************/
|
|
863
|
|
864 DEFUN ("hash-table-p", Fhash_table_p, 1, 1, 0, /*
|
|
865 Return t if OBJECT is a hash table, else nil.
|
|
866 */
|
|
867 (object))
|
|
868 {
|
|
869 return HASH_TABLEP (object) ? Qt : Qnil;
|
|
870 }
|
|
871
|
|
872 DEFUN ("make-hash-table", Fmake_hash_table, 0, MANY, 0, /*
|
|
873 Return a new empty hash table object.
|
|
874 Use Common Lisp style keywords to specify hash table properties.
|
|
875 (make-hash-table &key test size rehash-size rehash-threshold weakness)
|
|
876
|
|
877 Keyword :test can be `eq', `eql' (default) or `equal'.
|
|
878 Comparison between keys is done using this function.
|
|
879 If speed is important, consider using `eq'.
|
|
880 When storing strings in the hash table, you will likely need to use `equal'.
|
|
881
|
|
882 Keyword :size specifies the number of keys likely to be inserted.
|
|
883 This number of entries can be inserted without enlarging the hash table.
|
|
884
|
|
885 Keyword :rehash-size must be a float greater than 1.0, and specifies
|
|
886 the factor by which to increase the size of the hash table when enlarging.
|
|
887
|
|
888 Keyword :rehash-threshold must be a float between 0.0 and 1.0,
|
|
889 and specifies the load factor of the hash table which triggers enlarging.
|
|
890
|
442
|
891 Non-standard keyword :weakness can be `nil' (default), `t', `key-and-value',
|
|
892 `key', `value' or `key-or-value'. `t' is an alias for `key-and-value'.
|
428
|
893
|
442
|
894 A key-and-value-weak hash table, also known as a fully-weak or simply
|
|
895 as a weak hash table, is one whose pointers do not count as GC
|
|
896 referents: for any key-value pair in the hash table, if the only
|
|
897 remaining pointer to either the key or the value is in a weak hash
|
|
898 table, then the pair will be removed from the hash table, and the key
|
|
899 and value collected. A non-weak hash table (or any other pointer)
|
|
900 would prevent the object from being collected.
|
428
|
901
|
|
902 A key-weak hash table is similar to a fully-weak hash table except that
|
|
903 a key-value pair will be removed only if the key remains unmarked
|
|
904 outside of weak hash tables. The pair will remain in the hash table if
|
|
905 the key is pointed to by something other than a weak hash table, even
|
|
906 if the value is not.
|
|
907
|
|
908 A value-weak hash table is similar to a fully-weak hash table except
|
|
909 that a key-value pair will be removed only if the value remains
|
|
910 unmarked outside of weak hash tables. The pair will remain in the
|
|
911 hash table if the value is pointed to by something other than a weak
|
|
912 hash table, even if the key is not.
|
442
|
913
|
|
914 A key-or-value-weak hash table is similar to a fully-weak hash table except
|
|
915 that a key-value pair will be removed only if the value and the key remain
|
|
916 unmarked outside of weak hash tables. The pair will remain in the
|
|
917 hash table if the value or key are pointed to by something other than a weak
|
|
918 hash table, even if the other is not.
|
428
|
919 */
|
|
920 (int nargs, Lisp_Object *args))
|
|
921 {
|
|
922 int i = 0;
|
|
923 Lisp_Object test = Qnil;
|
|
924 Lisp_Object size = Qnil;
|
|
925 Lisp_Object rehash_size = Qnil;
|
|
926 Lisp_Object rehash_threshold = Qnil;
|
|
927 Lisp_Object weakness = Qnil;
|
|
928
|
|
929 while (i + 1 < nargs)
|
|
930 {
|
|
931 Lisp_Object keyword = args[i++];
|
|
932 Lisp_Object value = args[i++];
|
|
933
|
|
934 if (EQ (keyword, Q_test)) test = value;
|
|
935 else if (EQ (keyword, Q_size)) size = value;
|
|
936 else if (EQ (keyword, Q_rehash_size)) rehash_size = value;
|
|
937 else if (EQ (keyword, Q_rehash_threshold)) rehash_threshold = value;
|
|
938 else if (EQ (keyword, Q_weakness)) weakness = value;
|
|
939 else if (EQ (keyword, Q_type))/*obsolete*/ weakness = value;
|
563
|
940 else invalid_constant ("Invalid hash table property keyword", keyword);
|
428
|
941 }
|
|
942
|
|
943 if (i < nargs)
|
563
|
944 sferror ("Hash table property requires a value", args[i]);
|
428
|
945
|
|
946 #define VALIDATE_VAR(var) \
|
|
947 if (!NILP (var)) hash_table_##var##_validate (Q##var, var, ERROR_ME);
|
|
948
|
|
949 VALIDATE_VAR (test);
|
|
950 VALIDATE_VAR (size);
|
|
951 VALIDATE_VAR (rehash_size);
|
|
952 VALIDATE_VAR (rehash_threshold);
|
|
953 VALIDATE_VAR (weakness);
|
|
954
|
450
|
955 return make_standard_lisp_hash_table
|
428
|
956 (decode_hash_table_test (test),
|
|
957 decode_hash_table_size (size),
|
|
958 decode_hash_table_rehash_size (rehash_size),
|
|
959 decode_hash_table_rehash_threshold (rehash_threshold),
|
|
960 decode_hash_table_weakness (weakness));
|
|
961 }
|
|
962
|
|
963 DEFUN ("copy-hash-table", Fcopy_hash_table, 1, 1, 0, /*
|
|
964 Return a new hash table containing the same keys and values as HASH-TABLE.
|
|
965 The keys and values will not themselves be copied.
|
|
966 */
|
|
967 (hash_table))
|
|
968 {
|
442
|
969 const Lisp_Hash_Table *ht_old = xhash_table (hash_table);
|
428
|
970 Lisp_Hash_Table *ht = alloc_lcrecord_type (Lisp_Hash_Table, &lrecord_hash_table);
|
|
971
|
|
972 copy_lcrecord (ht, ht_old);
|
|
973
|
1204
|
974 ht->hentries = xnew_array (htentry, ht_old->size + 1);
|
|
975 memcpy (ht->hentries, ht_old->hentries, (ht_old->size + 1) * sizeof (htentry));
|
428
|
976
|
793
|
977 hash_table = wrap_hash_table (ht);
|
428
|
978
|
|
979 if (! EQ (ht->next_weak, Qunbound))
|
|
980 {
|
|
981 ht->next_weak = Vall_weak_hash_tables;
|
|
982 Vall_weak_hash_tables = hash_table;
|
|
983 }
|
|
984
|
|
985 return hash_table;
|
|
986 }
|
|
987
|
|
988 static void
|
665
|
989 resize_hash_table (Lisp_Hash_Table *ht, Elemcount new_size)
|
428
|
990 {
|
1204
|
991 htentry *old_entries, *new_entries, *sentinel, *e;
|
665
|
992 Elemcount old_size;
|
428
|
993
|
|
994 old_size = ht->size;
|
|
995 ht->size = new_size;
|
|
996
|
|
997 old_entries = ht->hentries;
|
|
998
|
1204
|
999 ht->hentries = xnew_array_and_zero (htentry, new_size + 1);
|
428
|
1000 new_entries = ht->hentries;
|
|
1001
|
|
1002 compute_hash_table_derived_values (ht);
|
|
1003
|
440
|
1004 for (e = old_entries, sentinel = e + old_size; e < sentinel; e++)
|
1204
|
1005 if (!HTENTRY_CLEAR_P (e))
|
428
|
1006 {
|
1204
|
1007 htentry *probe = new_entries + HASHCODE (e->key, ht);
|
428
|
1008 LINEAR_PROBING_LOOP (probe, new_entries, new_size)
|
|
1009 ;
|
|
1010 *probe = *e;
|
|
1011 }
|
|
1012
|
489
|
1013 free_hentries (old_entries, old_size);
|
428
|
1014 }
|
|
1015
|
440
|
1016 /* After a hash table has been saved to disk and later restored by the
|
|
1017 portable dumper, it contains the same objects, but their addresses
|
665
|
1018 and thus their HASHCODEs have changed. */
|
428
|
1019 void
|
440
|
1020 pdump_reorganize_hash_table (Lisp_Object hash_table)
|
428
|
1021 {
|
442
|
1022 const Lisp_Hash_Table *ht = xhash_table (hash_table);
|
1204
|
1023 htentry *new_entries = xnew_array_and_zero (htentry, ht->size + 1);
|
|
1024 htentry *e, *sentinel;
|
440
|
1025
|
|
1026 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
1204
|
1027 if (!HTENTRY_CLEAR_P (e))
|
440
|
1028 {
|
1204
|
1029 htentry *probe = new_entries + HASHCODE (e->key, ht);
|
440
|
1030 LINEAR_PROBING_LOOP (probe, new_entries, ht->size)
|
|
1031 ;
|
|
1032 *probe = *e;
|
|
1033 }
|
|
1034
|
1204
|
1035 memcpy (ht->hentries, new_entries, ht->size * sizeof (htentry));
|
440
|
1036
|
1726
|
1037 xfree (new_entries, htentry *);
|
428
|
1038 }
|
|
1039
|
|
1040 static void
|
|
1041 enlarge_hash_table (Lisp_Hash_Table *ht)
|
|
1042 {
|
665
|
1043 Elemcount new_size =
|
|
1044 hash_table_size ((Elemcount) ((double) ht->size * ht->rehash_size));
|
428
|
1045 resize_hash_table (ht, new_size);
|
|
1046 }
|
|
1047
|
1204
|
1048 static htentry *
|
|
1049 find_htentry (Lisp_Object key, const Lisp_Hash_Table *ht)
|
428
|
1050 {
|
|
1051 hash_table_test_function_t test_function = ht->test_function;
|
1204
|
1052 htentry *entries = ht->hentries;
|
|
1053 htentry *probe = entries + HASHCODE (key, ht);
|
428
|
1054
|
|
1055 LINEAR_PROBING_LOOP (probe, entries, ht->size)
|
|
1056 if (KEYS_EQUAL_P (probe->key, key, test_function))
|
|
1057 break;
|
|
1058
|
|
1059 return probe;
|
|
1060 }
|
|
1061
|
2421
|
1062 /* A version of Fputhash() that increments the value by the specified
|
|
1063 amount and dispenses will all error checks. Assumes that tables does
|
|
1064 comparison using EQ. Used by the profiling routines to avoid
|
|
1065 overhead -- profiling overhead was being recorded at up to 15% of the
|
|
1066 total time. */
|
|
1067
|
|
1068 void
|
|
1069 inchash_eq (Lisp_Object key, Lisp_Object table, EMACS_INT offset)
|
|
1070 {
|
|
1071 Lisp_Hash_Table *ht = XHASH_TABLE (table);
|
|
1072 htentry *entries = ht->hentries;
|
|
1073 htentry *probe = entries + HASHCODE (key, ht);
|
|
1074
|
|
1075 LINEAR_PROBING_LOOP (probe, entries, ht->size)
|
|
1076 if (EQ (probe->key, key))
|
|
1077 break;
|
|
1078
|
|
1079 if (!HTENTRY_CLEAR_P (probe))
|
|
1080 probe->value = make_int (XINT (probe->value) + offset);
|
|
1081 else
|
|
1082 {
|
|
1083 probe->key = key;
|
|
1084 probe->value = make_int (offset);
|
|
1085
|
|
1086 if (++ht->count >= ht->rehash_count)
|
|
1087 enlarge_hash_table (ht);
|
|
1088 }
|
|
1089 }
|
|
1090
|
428
|
1091 DEFUN ("gethash", Fgethash, 2, 3, 0, /*
|
|
1092 Find hash value for KEY in HASH-TABLE.
|
|
1093 If there is no corresponding value, return DEFAULT (which defaults to nil).
|
|
1094 */
|
|
1095 (key, hash_table, default_))
|
|
1096 {
|
442
|
1097 const Lisp_Hash_Table *ht = xhash_table (hash_table);
|
1204
|
1098 htentry *e = find_htentry (key, ht);
|
428
|
1099
|
1204
|
1100 return HTENTRY_CLEAR_P (e) ? default_ : e->value;
|
428
|
1101 }
|
|
1102
|
|
1103 DEFUN ("puthash", Fputhash, 3, 3, 0, /*
|
|
1104 Hash KEY to VALUE in HASH-TABLE.
|
|
1105 */
|
|
1106 (key, value, hash_table))
|
|
1107 {
|
|
1108 Lisp_Hash_Table *ht = xhash_table (hash_table);
|
1204
|
1109 htentry *e = find_htentry (key, ht);
|
428
|
1110
|
1204
|
1111 if (!HTENTRY_CLEAR_P (e))
|
428
|
1112 return e->value = value;
|
|
1113
|
|
1114 e->key = key;
|
|
1115 e->value = value;
|
|
1116
|
|
1117 if (++ht->count >= ht->rehash_count)
|
|
1118 enlarge_hash_table (ht);
|
|
1119
|
|
1120 return value;
|
|
1121 }
|
|
1122
|
1204
|
1123 /* Remove htentry pointed at by PROBE.
|
428
|
1124 Subsequent entries are removed and reinserted.
|
|
1125 We don't use tombstones - too wasteful. */
|
|
1126 static void
|
1204
|
1127 remhash_1 (Lisp_Hash_Table *ht, htentry *entries, htentry *probe)
|
428
|
1128 {
|
665
|
1129 Elemcount size = ht->size;
|
1204
|
1130 CLEAR_HTENTRY (probe);
|
428
|
1131 probe++;
|
|
1132 ht->count--;
|
|
1133
|
|
1134 LINEAR_PROBING_LOOP (probe, entries, size)
|
|
1135 {
|
|
1136 Lisp_Object key = probe->key;
|
1204
|
1137 htentry *probe2 = entries + HASHCODE (key, ht);
|
428
|
1138 LINEAR_PROBING_LOOP (probe2, entries, size)
|
|
1139 if (EQ (probe2->key, key))
|
1204
|
1140 /* htentry at probe doesn't need to move. */
|
428
|
1141 goto continue_outer_loop;
|
1204
|
1142 /* Move htentry from probe to new home at probe2. */
|
428
|
1143 *probe2 = *probe;
|
1204
|
1144 CLEAR_HTENTRY (probe);
|
428
|
1145 continue_outer_loop: continue;
|
|
1146 }
|
|
1147 }
|
|
1148
|
|
1149 DEFUN ("remhash", Fremhash, 2, 2, 0, /*
|
|
1150 Remove the entry for KEY from HASH-TABLE.
|
|
1151 Do nothing if there is no entry for KEY in HASH-TABLE.
|
617
|
1152 Return non-nil if an entry was removed.
|
428
|
1153 */
|
|
1154 (key, hash_table))
|
|
1155 {
|
|
1156 Lisp_Hash_Table *ht = xhash_table (hash_table);
|
1204
|
1157 htentry *e = find_htentry (key, ht);
|
428
|
1158
|
1204
|
1159 if (HTENTRY_CLEAR_P (e))
|
428
|
1160 return Qnil;
|
|
1161
|
|
1162 remhash_1 (ht, ht->hentries, e);
|
|
1163 return Qt;
|
|
1164 }
|
|
1165
|
|
1166 DEFUN ("clrhash", Fclrhash, 1, 1, 0, /*
|
|
1167 Remove all entries from HASH-TABLE, leaving it empty.
|
|
1168 */
|
|
1169 (hash_table))
|
|
1170 {
|
|
1171 Lisp_Hash_Table *ht = xhash_table (hash_table);
|
1204
|
1172 htentry *e, *sentinel;
|
428
|
1173
|
|
1174 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
1204
|
1175 CLEAR_HTENTRY (e);
|
428
|
1176 ht->count = 0;
|
|
1177
|
|
1178 return hash_table;
|
|
1179 }
|
|
1180
|
|
1181 /************************************************************************/
|
|
1182 /* Accessor Functions */
|
|
1183 /************************************************************************/
|
|
1184
|
|
1185 DEFUN ("hash-table-count", Fhash_table_count, 1, 1, 0, /*
|
|
1186 Return the number of entries in HASH-TABLE.
|
|
1187 */
|
|
1188 (hash_table))
|
|
1189 {
|
|
1190 return make_int (xhash_table (hash_table)->count);
|
|
1191 }
|
|
1192
|
|
1193 DEFUN ("hash-table-test", Fhash_table_test, 1, 1, 0, /*
|
|
1194 Return the test function of HASH-TABLE.
|
|
1195 This can be one of `eq', `eql' or `equal'.
|
|
1196 */
|
|
1197 (hash_table))
|
|
1198 {
|
|
1199 hash_table_test_function_t fun = xhash_table (hash_table)->test_function;
|
|
1200
|
|
1201 return (fun == lisp_object_eql_equal ? Qeql :
|
|
1202 fun == lisp_object_equal_equal ? Qequal :
|
|
1203 Qeq);
|
|
1204 }
|
|
1205
|
|
1206 DEFUN ("hash-table-size", Fhash_table_size, 1, 1, 0, /*
|
|
1207 Return the size of HASH-TABLE.
|
|
1208 This is the current number of slots in HASH-TABLE, whether occupied or not.
|
|
1209 */
|
|
1210 (hash_table))
|
|
1211 {
|
|
1212 return make_int (xhash_table (hash_table)->size);
|
|
1213 }
|
|
1214
|
|
1215 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size, 1, 1, 0, /*
|
|
1216 Return the current rehash size of HASH-TABLE.
|
|
1217 This is a float greater than 1.0; the factor by which HASH-TABLE
|
|
1218 is enlarged when the rehash threshold is exceeded.
|
|
1219 */
|
|
1220 (hash_table))
|
|
1221 {
|
|
1222 return make_float (xhash_table (hash_table)->rehash_size);
|
|
1223 }
|
|
1224
|
|
1225 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold, 1, 1, 0, /*
|
|
1226 Return the current rehash threshold of HASH-TABLE.
|
|
1227 This is a float between 0.0 and 1.0; the maximum `load factor' of HASH-TABLE,
|
|
1228 beyond which the HASH-TABLE is enlarged by rehashing.
|
|
1229 */
|
|
1230 (hash_table))
|
|
1231 {
|
438
|
1232 return make_float (xhash_table (hash_table)->rehash_threshold);
|
428
|
1233 }
|
|
1234
|
|
1235 DEFUN ("hash-table-weakness", Fhash_table_weakness, 1, 1, 0, /*
|
|
1236 Return the weakness of HASH-TABLE.
|
442
|
1237 This can be one of `nil', `key-and-value', `key-or-value', `key' or `value'.
|
428
|
1238 */
|
|
1239 (hash_table))
|
|
1240 {
|
|
1241 switch (xhash_table (hash_table)->weakness)
|
|
1242 {
|
442
|
1243 case HASH_TABLE_WEAK: return Qkey_and_value;
|
|
1244 case HASH_TABLE_KEY_WEAK: return Qkey;
|
|
1245 case HASH_TABLE_KEY_VALUE_WEAK: return Qkey_or_value;
|
|
1246 case HASH_TABLE_VALUE_WEAK: return Qvalue;
|
|
1247 default: return Qnil;
|
428
|
1248 }
|
|
1249 }
|
|
1250
|
|
1251 /* obsolete as of 19990901 in xemacs-21.2 */
|
|
1252 DEFUN ("hash-table-type", Fhash_table_type, 1, 1, 0, /*
|
|
1253 Return the type of HASH-TABLE.
|
|
1254 This can be one of `non-weak', `weak', `key-weak' or `value-weak'.
|
|
1255 */
|
|
1256 (hash_table))
|
|
1257 {
|
|
1258 switch (xhash_table (hash_table)->weakness)
|
|
1259 {
|
442
|
1260 case HASH_TABLE_WEAK: return Qweak;
|
|
1261 case HASH_TABLE_KEY_WEAK: return Qkey_weak;
|
|
1262 case HASH_TABLE_KEY_VALUE_WEAK: return Qkey_or_value_weak;
|
|
1263 case HASH_TABLE_VALUE_WEAK: return Qvalue_weak;
|
|
1264 default: return Qnon_weak;
|
428
|
1265 }
|
|
1266 }
|
|
1267
|
|
1268 /************************************************************************/
|
|
1269 /* Mapping Functions */
|
|
1270 /************************************************************************/
|
489
|
1271
|
|
1272 /* We need to be careful when mapping over hash tables because the
|
|
1273 hash table might be modified during the mapping operation:
|
|
1274 - by the mapping function
|
|
1275 - by gc (if the hash table is weak)
|
|
1276
|
|
1277 So we make a copy of the hentries at the beginning of the mapping
|
497
|
1278 operation, and iterate over the copy. Naturally, this is
|
|
1279 expensive, but not as expensive as you might think, because no
|
|
1280 actual memory has to be collected by our notoriously inefficient
|
|
1281 GC; we use an unwind-protect instead to free the memory directly.
|
|
1282
|
|
1283 We could avoid the copying by having the hash table modifiers
|
|
1284 puthash and remhash check for currently active mapping functions.
|
|
1285 Disadvantages: it's hard to get right, and IMO hash mapping
|
|
1286 functions are basically rare, and no extra space in the hash table
|
|
1287 object and no extra cpu in puthash or remhash should be wasted to
|
|
1288 make maphash 3% faster. From a design point of view, the basic
|
|
1289 functions gethash, puthash and remhash should be implementable
|
|
1290 without having to think about maphash.
|
|
1291
|
|
1292 Note: We don't (yet) have Common Lisp's with-hash-table-iterator.
|
|
1293 If you implement this naively, you cannot have more than one
|
|
1294 concurrently active iterator over the same hash table. The `each'
|
|
1295 function in perl has this limitation.
|
|
1296
|
|
1297 Note: We GCPRO memory on the heap, not on the stack. There is no
|
|
1298 obvious reason why this is bad, but as of this writing this is the
|
|
1299 only known occurrence of this technique in the code.
|
504
|
1300
|
|
1301 -- Martin
|
|
1302 */
|
|
1303
|
|
1304 /* Ben disagrees with the "copying hentries" design, and says:
|
|
1305
|
|
1306 Another solution is the same as I've already proposed -- when
|
|
1307 mapping, mark the table as "change-unsafe", and in this case, use a
|
|
1308 secondary table to maintain changes. this could be basically a
|
|
1309 standard hash table, but with entries only for added or deleted
|
|
1310 entries in the primary table, and a marker like Qunbound to
|
|
1311 indicate a deleted entry. puthash, gethash and remhash need a
|
|
1312 single extra check for this secondary table -- totally
|
|
1313 insignificant speedwise. if you really cared about making
|
|
1314 recursive maphashes completely correct, you'd have to do a bit of
|
|
1315 extra work here -- when maphashing, if the secondary table exists,
|
|
1316 make a copy of it, and use the copy in conjunction with the primary
|
|
1317 table when mapping. the advantages of this are
|
|
1318
|
|
1319 [a] easy to demonstrate correct, even with weak hashtables.
|
|
1320
|
|
1321 [b] no extra overhead in the general maphash case -- only when you
|
|
1322 modify the table while maphashing, and even then the overhead is
|
|
1323 very small.
|
497
|
1324 */
|
|
1325
|
489
|
1326 static Lisp_Object
|
|
1327 maphash_unwind (Lisp_Object unwind_obj)
|
|
1328 {
|
|
1329 void *ptr = (void *) get_opaque_ptr (unwind_obj);
|
1726
|
1330 xfree (ptr, void *);
|
489
|
1331 free_opaque_ptr (unwind_obj);
|
|
1332 return Qnil;
|
|
1333 }
|
|
1334
|
|
1335 /* Return a malloced array of alternating key/value pairs from HT. */
|
|
1336 static Lisp_Object *
|
|
1337 copy_compress_hentries (const Lisp_Hash_Table *ht)
|
|
1338 {
|
|
1339 Lisp_Object * const objs =
|
|
1340 /* If the hash table is empty, ht->count could be 0. */
|
|
1341 xnew_array (Lisp_Object, 2 * (ht->count > 0 ? ht->count : 1));
|
1204
|
1342 const htentry *e, *sentinel;
|
489
|
1343 Lisp_Object *pobj;
|
|
1344
|
|
1345 for (e = ht->hentries, sentinel = e + ht->size, pobj = objs; e < sentinel; e++)
|
1204
|
1346 if (!HTENTRY_CLEAR_P (e))
|
489
|
1347 {
|
|
1348 *(pobj++) = e->key;
|
|
1349 *(pobj++) = e->value;
|
|
1350 }
|
|
1351
|
|
1352 type_checking_assert (pobj == objs + 2 * ht->count);
|
|
1353
|
|
1354 return objs;
|
|
1355 }
|
|
1356
|
428
|
1357 DEFUN ("maphash", Fmaphash, 2, 2, 0, /*
|
|
1358 Map FUNCTION over entries in HASH-TABLE, calling it with two args,
|
|
1359 each key and value in HASH-TABLE.
|
|
1360
|
489
|
1361 FUNCTION must not modify HASH-TABLE, with the one exception that FUNCTION
|
428
|
1362 may remhash or puthash the entry currently being processed by FUNCTION.
|
|
1363 */
|
|
1364 (function, hash_table))
|
|
1365 {
|
489
|
1366 const Lisp_Hash_Table * const ht = xhash_table (hash_table);
|
|
1367 Lisp_Object * const objs = copy_compress_hentries (ht);
|
|
1368 Lisp_Object args[3];
|
|
1369 const Lisp_Object *pobj, *end;
|
|
1370 int speccount = specpdl_depth ();
|
|
1371 struct gcpro gcpro1;
|
|
1372
|
|
1373 record_unwind_protect (maphash_unwind, make_opaque_ptr ((void *)objs));
|
|
1374 GCPRO1 (objs[0]);
|
|
1375 gcpro1.nvars = 2 * ht->count;
|
428
|
1376
|
489
|
1377 args[0] = function;
|
|
1378
|
|
1379 for (pobj = objs, end = pobj + 2 * ht->count; pobj < end; pobj += 2)
|
|
1380 {
|
|
1381 args[1] = pobj[0];
|
|
1382 args[2] = pobj[1];
|
|
1383 Ffuncall (countof (args), args);
|
|
1384 }
|
|
1385
|
771
|
1386 unbind_to (speccount);
|
489
|
1387 UNGCPRO;
|
428
|
1388
|
|
1389 return Qnil;
|
|
1390 }
|
|
1391
|
489
|
1392 /* Map *C* function FUNCTION over the elements of a non-weak lisp hash table.
|
|
1393 FUNCTION must not modify HASH-TABLE, with the one exception that FUNCTION
|
|
1394 may puthash the entry currently being processed by FUNCTION.
|
|
1395 Mapping terminates if FUNCTION returns something other than 0. */
|
428
|
1396 void
|
489
|
1397 elisp_maphash_unsafe (maphash_function_t function,
|
428
|
1398 Lisp_Object hash_table, void *extra_arg)
|
|
1399 {
|
442
|
1400 const Lisp_Hash_Table *ht = XHASH_TABLE (hash_table);
|
1204
|
1401 const htentry *e, *sentinel;
|
428
|
1402
|
|
1403 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
1204
|
1404 if (!HTENTRY_CLEAR_P (e))
|
489
|
1405 if (function (e->key, e->value, extra_arg))
|
|
1406 return;
|
428
|
1407 }
|
|
1408
|
489
|
1409 /* Map *C* function FUNCTION over the elements of a lisp hash table.
|
|
1410 It is safe for FUNCTION to modify HASH-TABLE.
|
|
1411 Mapping terminates if FUNCTION returns something other than 0. */
|
|
1412 void
|
|
1413 elisp_maphash (maphash_function_t function,
|
|
1414 Lisp_Object hash_table, void *extra_arg)
|
|
1415 {
|
|
1416 const Lisp_Hash_Table * const ht = xhash_table (hash_table);
|
|
1417 Lisp_Object * const objs = copy_compress_hentries (ht);
|
|
1418 const Lisp_Object *pobj, *end;
|
|
1419 int speccount = specpdl_depth ();
|
|
1420 struct gcpro gcpro1;
|
|
1421
|
|
1422 record_unwind_protect (maphash_unwind, make_opaque_ptr ((void *)objs));
|
|
1423 GCPRO1 (objs[0]);
|
|
1424 gcpro1.nvars = 2 * ht->count;
|
|
1425
|
|
1426 for (pobj = objs, end = pobj + 2 * ht->count; pobj < end; pobj += 2)
|
|
1427 if (function (pobj[0], pobj[1], extra_arg))
|
|
1428 break;
|
|
1429
|
771
|
1430 unbind_to (speccount);
|
489
|
1431 UNGCPRO;
|
|
1432 }
|
|
1433
|
|
1434 /* Remove all elements of a lisp hash table satisfying *C* predicate PREDICATE.
|
|
1435 PREDICATE must not modify HASH-TABLE. */
|
428
|
1436 void
|
|
1437 elisp_map_remhash (maphash_function_t predicate,
|
|
1438 Lisp_Object hash_table, void *extra_arg)
|
|
1439 {
|
489
|
1440 const Lisp_Hash_Table * const ht = xhash_table (hash_table);
|
|
1441 Lisp_Object * const objs = copy_compress_hentries (ht);
|
|
1442 const Lisp_Object *pobj, *end;
|
|
1443 int speccount = specpdl_depth ();
|
|
1444 struct gcpro gcpro1;
|
428
|
1445
|
489
|
1446 record_unwind_protect (maphash_unwind, make_opaque_ptr ((void *)objs));
|
|
1447 GCPRO1 (objs[0]);
|
|
1448 gcpro1.nvars = 2 * ht->count;
|
|
1449
|
|
1450 for (pobj = objs, end = pobj + 2 * ht->count; pobj < end; pobj += 2)
|
|
1451 if (predicate (pobj[0], pobj[1], extra_arg))
|
|
1452 Fremhash (pobj[0], hash_table);
|
|
1453
|
771
|
1454 unbind_to (speccount);
|
489
|
1455 UNGCPRO;
|
428
|
1456 }
|
|
1457
|
|
1458
|
|
1459 /************************************************************************/
|
|
1460 /* garbage collecting weak hash tables */
|
|
1461 /************************************************************************/
|
1598
|
1462 #ifdef USE_KKCC
|
2645
|
1463 #define MARK_OBJ(obj) do { \
|
|
1464 Lisp_Object mo_obj = (obj); \
|
|
1465 if (!marked_p (mo_obj)) \
|
|
1466 { \
|
|
1467 kkcc_gc_stack_push_lisp_object (mo_obj, 0, -1); \
|
|
1468 did_mark = 1; \
|
|
1469 } \
|
1598
|
1470 } while (0)
|
|
1471
|
|
1472 #else /* NO USE_KKCC */
|
|
1473
|
442
|
1474 #define MARK_OBJ(obj) do { \
|
|
1475 Lisp_Object mo_obj = (obj); \
|
|
1476 if (!marked_p (mo_obj)) \
|
|
1477 { \
|
|
1478 mark_object (mo_obj); \
|
|
1479 did_mark = 1; \
|
|
1480 } \
|
|
1481 } while (0)
|
1598
|
1482 #endif /*NO USE_KKCC */
|
442
|
1483
|
428
|
1484
|
|
1485 /* Complete the marking for semi-weak hash tables. */
|
|
1486 int
|
|
1487 finish_marking_weak_hash_tables (void)
|
|
1488 {
|
|
1489 Lisp_Object hash_table;
|
|
1490 int did_mark = 0;
|
|
1491
|
|
1492 for (hash_table = Vall_weak_hash_tables;
|
|
1493 !NILP (hash_table);
|
|
1494 hash_table = XHASH_TABLE (hash_table)->next_weak)
|
|
1495 {
|
442
|
1496 const Lisp_Hash_Table *ht = XHASH_TABLE (hash_table);
|
1204
|
1497 const htentry *e = ht->hentries;
|
|
1498 const htentry *sentinel = e + ht->size;
|
428
|
1499
|
|
1500 if (! marked_p (hash_table))
|
|
1501 /* The hash table is probably garbage. Ignore it. */
|
|
1502 continue;
|
|
1503
|
|
1504 /* Now, scan over all the pairs. For all pairs that are
|
|
1505 half-marked, we may need to mark the other half if we're
|
|
1506 keeping this pair. */
|
|
1507 switch (ht->weakness)
|
|
1508 {
|
|
1509 case HASH_TABLE_KEY_WEAK:
|
|
1510 for (; e < sentinel; e++)
|
1204
|
1511 if (!HTENTRY_CLEAR_P (e))
|
428
|
1512 if (marked_p (e->key))
|
|
1513 MARK_OBJ (e->value);
|
|
1514 break;
|
|
1515
|
|
1516 case HASH_TABLE_VALUE_WEAK:
|
|
1517 for (; e < sentinel; e++)
|
1204
|
1518 if (!HTENTRY_CLEAR_P (e))
|
428
|
1519 if (marked_p (e->value))
|
|
1520 MARK_OBJ (e->key);
|
|
1521 break;
|
|
1522
|
442
|
1523 case HASH_TABLE_KEY_VALUE_WEAK:
|
|
1524 for (; e < sentinel; e++)
|
1204
|
1525 if (!HTENTRY_CLEAR_P (e))
|
442
|
1526 {
|
|
1527 if (marked_p (e->value))
|
|
1528 MARK_OBJ (e->key);
|
|
1529 else if (marked_p (e->key))
|
|
1530 MARK_OBJ (e->value);
|
|
1531 }
|
|
1532 break;
|
|
1533
|
428
|
1534 case HASH_TABLE_KEY_CAR_WEAK:
|
|
1535 for (; e < sentinel; e++)
|
1204
|
1536 if (!HTENTRY_CLEAR_P (e))
|
428
|
1537 if (!CONSP (e->key) || marked_p (XCAR (e->key)))
|
|
1538 {
|
|
1539 MARK_OBJ (e->key);
|
|
1540 MARK_OBJ (e->value);
|
|
1541 }
|
|
1542 break;
|
|
1543
|
450
|
1544 /* We seem to be sprouting new weakness types at an alarming
|
|
1545 rate. At least this is not externally visible - and in
|
|
1546 fact all of these KEY_CAR_* types are only used by the
|
|
1547 glyph code. */
|
|
1548 case HASH_TABLE_KEY_CAR_VALUE_WEAK:
|
|
1549 for (; e < sentinel; e++)
|
1204
|
1550 if (!HTENTRY_CLEAR_P (e))
|
450
|
1551 {
|
|
1552 if (!CONSP (e->key) || marked_p (XCAR (e->key)))
|
|
1553 {
|
|
1554 MARK_OBJ (e->key);
|
|
1555 MARK_OBJ (e->value);
|
|
1556 }
|
|
1557 else if (marked_p (e->value))
|
|
1558 MARK_OBJ (e->key);
|
|
1559 }
|
|
1560 break;
|
|
1561
|
428
|
1562 case HASH_TABLE_VALUE_CAR_WEAK:
|
|
1563 for (; e < sentinel; e++)
|
1204
|
1564 if (!HTENTRY_CLEAR_P (e))
|
428
|
1565 if (!CONSP (e->value) || marked_p (XCAR (e->value)))
|
|
1566 {
|
|
1567 MARK_OBJ (e->key);
|
|
1568 MARK_OBJ (e->value);
|
|
1569 }
|
|
1570 break;
|
|
1571
|
|
1572 default:
|
|
1573 break;
|
|
1574 }
|
|
1575 }
|
|
1576
|
|
1577 return did_mark;
|
|
1578 }
|
|
1579
|
|
1580 void
|
|
1581 prune_weak_hash_tables (void)
|
|
1582 {
|
|
1583 Lisp_Object hash_table, prev = Qnil;
|
|
1584 for (hash_table = Vall_weak_hash_tables;
|
|
1585 !NILP (hash_table);
|
|
1586 hash_table = XHASH_TABLE (hash_table)->next_weak)
|
|
1587 {
|
|
1588 if (! marked_p (hash_table))
|
|
1589 {
|
|
1590 /* This hash table itself is garbage. Remove it from the list. */
|
|
1591 if (NILP (prev))
|
|
1592 Vall_weak_hash_tables = XHASH_TABLE (hash_table)->next_weak;
|
|
1593 else
|
|
1594 XHASH_TABLE (prev)->next_weak = XHASH_TABLE (hash_table)->next_weak;
|
|
1595 }
|
|
1596 else
|
|
1597 {
|
|
1598 /* Now, scan over all the pairs. Remove all of the pairs
|
|
1599 in which the key or value, or both, is unmarked
|
|
1600 (depending on the weakness of the hash table). */
|
|
1601 Lisp_Hash_Table *ht = XHASH_TABLE (hash_table);
|
1204
|
1602 htentry *entries = ht->hentries;
|
|
1603 htentry *sentinel = entries + ht->size;
|
|
1604 htentry *e;
|
428
|
1605
|
|
1606 for (e = entries; e < sentinel; e++)
|
1204
|
1607 if (!HTENTRY_CLEAR_P (e))
|
428
|
1608 {
|
|
1609 again:
|
|
1610 if (!marked_p (e->key) || !marked_p (e->value))
|
|
1611 {
|
|
1612 remhash_1 (ht, entries, e);
|
1204
|
1613 if (!HTENTRY_CLEAR_P (e))
|
428
|
1614 goto again;
|
|
1615 }
|
|
1616 }
|
|
1617
|
|
1618 prev = hash_table;
|
|
1619 }
|
|
1620 }
|
|
1621 }
|
|
1622
|
|
1623 /* Return a hash value for an array of Lisp_Objects of size SIZE. */
|
|
1624
|
665
|
1625 Hashcode
|
428
|
1626 internal_array_hash (Lisp_Object *arr, int size, int depth)
|
|
1627 {
|
|
1628 int i;
|
665
|
1629 Hashcode hash = 0;
|
442
|
1630 depth++;
|
428
|
1631
|
|
1632 if (size <= 5)
|
|
1633 {
|
|
1634 for (i = 0; i < size; i++)
|
442
|
1635 hash = HASH2 (hash, internal_hash (arr[i], depth));
|
428
|
1636 return hash;
|
|
1637 }
|
|
1638
|
|
1639 /* just pick five elements scattered throughout the array.
|
|
1640 A slightly better approach would be to offset by some
|
|
1641 noise factor from the points chosen below. */
|
|
1642 for (i = 0; i < 5; i++)
|
442
|
1643 hash = HASH2 (hash, internal_hash (arr[i*size/5], depth));
|
428
|
1644
|
|
1645 return hash;
|
|
1646 }
|
|
1647
|
|
1648 /* Return a hash value for a Lisp_Object. This is for use when hashing
|
|
1649 objects with the comparison being `equal' (for `eq', you can just
|
|
1650 use the Lisp_Object itself as the hash value). You need to make a
|
|
1651 tradeoff between the speed of the hash function and how good the
|
|
1652 hashing is. In particular, the hash function needs to be FAST,
|
|
1653 so you can't just traipse down the whole tree hashing everything
|
|
1654 together. Most of the time, objects will differ in the first
|
|
1655 few elements you hash. Thus, we only go to a short depth (5)
|
|
1656 and only hash at most 5 elements out of a vector. Theoretically
|
|
1657 we could still take 5^5 time (a big big number) to compute a
|
|
1658 hash, but practically this won't ever happen. */
|
|
1659
|
665
|
1660 Hashcode
|
428
|
1661 internal_hash (Lisp_Object obj, int depth)
|
|
1662 {
|
|
1663 if (depth > 5)
|
|
1664 return 0;
|
|
1665 if (CONSP (obj))
|
|
1666 {
|
|
1667 /* no point in worrying about tail recursion, since we're not
|
|
1668 going very deep */
|
|
1669 return HASH2 (internal_hash (XCAR (obj), depth + 1),
|
|
1670 internal_hash (XCDR (obj), depth + 1));
|
|
1671 }
|
|
1672 if (STRINGP (obj))
|
|
1673 {
|
|
1674 return hash_string (XSTRING_DATA (obj), XSTRING_LENGTH (obj));
|
|
1675 }
|
|
1676 if (LRECORDP (obj))
|
|
1677 {
|
442
|
1678 const struct lrecord_implementation
|
428
|
1679 *imp = XRECORD_LHEADER_IMPLEMENTATION (obj);
|
|
1680 if (imp->hash)
|
|
1681 return imp->hash (obj, depth);
|
|
1682 }
|
|
1683
|
|
1684 return LISP_HASH (obj);
|
|
1685 }
|
|
1686
|
|
1687 DEFUN ("sxhash", Fsxhash, 1, 1, 0, /*
|
|
1688 Return a hash value for OBJECT.
|
444
|
1689 \(equal obj1 obj2) implies (= (sxhash obj1) (sxhash obj2)).
|
428
|
1690 */
|
|
1691 (object))
|
|
1692 {
|
|
1693 return make_int (internal_hash (object, 0));
|
|
1694 }
|
|
1695
|
|
1696 #if 0
|
826
|
1697 DEFUN ("internal-hash-value", Finternal_hash_value, 1, 1, 0, /*
|
428
|
1698 Hash value of OBJECT. For debugging.
|
|
1699 The value is returned as (HIGH . LOW).
|
|
1700 */
|
|
1701 (object))
|
|
1702 {
|
|
1703 /* This function is pretty 32bit-centric. */
|
665
|
1704 Hashcode hash = internal_hash (object, 0);
|
428
|
1705 return Fcons (hash >> 16, hash & 0xffff);
|
|
1706 }
|
|
1707 #endif
|
|
1708
|
|
1709
|
|
1710 /************************************************************************/
|
|
1711 /* initialization */
|
|
1712 /************************************************************************/
|
|
1713
|
|
1714 void
|
|
1715 syms_of_elhash (void)
|
|
1716 {
|
|
1717 DEFSUBR (Fhash_table_p);
|
|
1718 DEFSUBR (Fmake_hash_table);
|
|
1719 DEFSUBR (Fcopy_hash_table);
|
|
1720 DEFSUBR (Fgethash);
|
|
1721 DEFSUBR (Fremhash);
|
|
1722 DEFSUBR (Fputhash);
|
|
1723 DEFSUBR (Fclrhash);
|
|
1724 DEFSUBR (Fmaphash);
|
|
1725 DEFSUBR (Fhash_table_count);
|
|
1726 DEFSUBR (Fhash_table_test);
|
|
1727 DEFSUBR (Fhash_table_size);
|
|
1728 DEFSUBR (Fhash_table_rehash_size);
|
|
1729 DEFSUBR (Fhash_table_rehash_threshold);
|
|
1730 DEFSUBR (Fhash_table_weakness);
|
|
1731 DEFSUBR (Fhash_table_type); /* obsolete */
|
|
1732 DEFSUBR (Fsxhash);
|
|
1733 #if 0
|
|
1734 DEFSUBR (Finternal_hash_value);
|
|
1735 #endif
|
|
1736
|
563
|
1737 DEFSYMBOL_MULTIWORD_PREDICATE (Qhash_tablep);
|
|
1738 DEFSYMBOL (Qhash_table);
|
|
1739 DEFSYMBOL (Qhashtable);
|
|
1740 DEFSYMBOL (Qweakness);
|
|
1741 DEFSYMBOL (Qvalue);
|
|
1742 DEFSYMBOL (Qkey_or_value);
|
|
1743 DEFSYMBOL (Qkey_and_value);
|
|
1744 DEFSYMBOL (Qrehash_size);
|
|
1745 DEFSYMBOL (Qrehash_threshold);
|
428
|
1746
|
563
|
1747 DEFSYMBOL (Qweak); /* obsolete */
|
|
1748 DEFSYMBOL (Qkey_weak); /* obsolete */
|
|
1749 DEFSYMBOL (Qkey_or_value_weak); /* obsolete */
|
|
1750 DEFSYMBOL (Qvalue_weak); /* obsolete */
|
|
1751 DEFSYMBOL (Qnon_weak); /* obsolete */
|
428
|
1752
|
563
|
1753 DEFKEYWORD (Q_test);
|
|
1754 DEFKEYWORD (Q_size);
|
|
1755 DEFKEYWORD (Q_rehash_size);
|
|
1756 DEFKEYWORD (Q_rehash_threshold);
|
|
1757 DEFKEYWORD (Q_weakness);
|
|
1758 DEFKEYWORD (Q_type); /* obsolete */
|
428
|
1759 }
|
|
1760
|
|
1761 void
|
771
|
1762 init_elhash_once_early (void)
|
428
|
1763 {
|
771
|
1764 INIT_LRECORD_IMPLEMENTATION (hash_table);
|
|
1765
|
428
|
1766 /* This must NOT be staticpro'd */
|
|
1767 Vall_weak_hash_tables = Qnil;
|
452
|
1768 dump_add_weak_object_chain (&Vall_weak_hash_tables);
|
428
|
1769 }
|