428
|
1 /* Implementation of the hash table lisp object type.
|
|
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995, 1996 Ben Wing.
|
|
4 Copyright (C) 1997 Free Software Foundation, Inc.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCNTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: Not in FSF. */
|
|
24
|
|
25 #include <config.h>
|
|
26 #include "lisp.h"
|
|
27 #include "bytecode.h"
|
|
28 #include "elhash.h"
|
|
29
|
|
30 Lisp_Object Qhash_tablep;
|
|
31 static Lisp_Object Qhashtable, Qhash_table;
|
|
32 static Lisp_Object Qweakness, Qvalue;
|
|
33 static Lisp_Object Vall_weak_hash_tables;
|
|
34 static Lisp_Object Qrehash_size, Qrehash_threshold;
|
|
35 static Lisp_Object Q_size, Q_test, Q_weakness, Q_rehash_size, Q_rehash_threshold;
|
|
36
|
|
37 /* obsolete as of 19990901 in xemacs-21.2 */
|
|
38 static Lisp_Object Qweak, Qkey_weak, Qvalue_weak, Qnon_weak, Q_type;
|
|
39
|
|
40 typedef struct hentry
|
|
41 {
|
|
42 Lisp_Object key;
|
|
43 Lisp_Object value;
|
|
44 } hentry;
|
|
45
|
|
46 struct Lisp_Hash_Table
|
|
47 {
|
|
48 struct lcrecord_header header;
|
|
49 size_t size;
|
|
50 size_t count;
|
|
51 size_t rehash_count;
|
|
52 double rehash_size;
|
|
53 double rehash_threshold;
|
|
54 size_t golden_ratio;
|
|
55 hash_table_hash_function_t hash_function;
|
|
56 hash_table_test_function_t test_function;
|
|
57 hentry *hentries;
|
|
58 enum hash_table_weakness weakness;
|
|
59 Lisp_Object next_weak; /* Used to chain together all of the weak
|
|
60 hash tables. Don't mark through this. */
|
|
61 };
|
|
62 typedef struct Lisp_Hash_Table Lisp_Hash_Table;
|
|
63
|
|
64 #define HENTRY_CLEAR_P(hentry) ((*(EMACS_UINT*)(&((hentry)->key))) == 0)
|
|
65 #define CLEAR_HENTRY(hentry) \
|
|
66 ((*(EMACS_UINT*)(&((hentry)->key))) = 0, \
|
|
67 (*(EMACS_UINT*)(&((hentry)->value))) = 0)
|
|
68
|
|
69 #define HASH_TABLE_DEFAULT_SIZE 16
|
|
70 #define HASH_TABLE_DEFAULT_REHASH_SIZE 1.3
|
|
71 #define HASH_TABLE_MIN_SIZE 10
|
|
72
|
|
73 #define HASH_CODE(key, ht) \
|
|
74 (((((ht)->hash_function ? (ht)->hash_function (key) : LISP_HASH (key)) \
|
|
75 * (ht)->golden_ratio) \
|
|
76 % (ht)->size))
|
|
77
|
|
78 #define KEYS_EQUAL_P(key1, key2, testfun) \
|
|
79 (EQ ((key1), (key2)) || ((testfun) && (testfun) ((key1), (key2))))
|
|
80
|
|
81 #define LINEAR_PROBING_LOOP(probe, entries, size) \
|
|
82 for (; \
|
|
83 !HENTRY_CLEAR_P (probe) || \
|
|
84 (probe == entries + size ? \
|
|
85 (probe = entries, !HENTRY_CLEAR_P (probe)) : 0); \
|
|
86 probe++)
|
|
87
|
|
88 #ifndef ERROR_CHECK_HASH_TABLE
|
|
89 # ifdef ERROR_CHECK_TYPECHECK
|
|
90 # define ERROR_CHECK_HASH_TABLE 1
|
|
91 # else
|
|
92 # define ERROR_CHECK_HASH_TABLE 0
|
|
93 # endif
|
|
94 #endif
|
|
95
|
|
96 #if ERROR_CHECK_HASH_TABLE
|
|
97 static void
|
|
98 check_hash_table_invariants (Lisp_Hash_Table *ht)
|
|
99 {
|
|
100 assert (ht->count < ht->size);
|
|
101 assert (ht->count <= ht->rehash_count);
|
|
102 assert (ht->rehash_count < ht->size);
|
|
103 assert ((double) ht->count * ht->rehash_threshold - 1 <= (double) ht->rehash_count);
|
|
104 assert (HENTRY_CLEAR_P (ht->hentries + ht->size));
|
|
105 }
|
|
106 #else
|
|
107 #define check_hash_table_invariants(ht)
|
|
108 #endif
|
|
109
|
|
110 /* We use linear probing instead of double hashing, despite its lack
|
|
111 of blessing by Knuth and company, because, as a result of the
|
|
112 increasing discrepancy between CPU speeds and memory speeds, cache
|
|
113 behavior is becoming increasingly important, e.g:
|
|
114
|
|
115 For a trivial loop, the penalty for non-sequential access of an array is:
|
|
116 - a factor of 3-4 on Pentium Pro 200 Mhz
|
|
117 - a factor of 10 on Ultrasparc 300 Mhz */
|
|
118
|
|
119 /* Return a suitable size for a hash table, with at least SIZE slots. */
|
|
120 static size_t
|
|
121 hash_table_size (size_t requested_size)
|
|
122 {
|
|
123 /* Return some prime near, but greater than or equal to, SIZE.
|
|
124 Decades from the time of writing, someone will have a system large
|
|
125 enough that the list below will be too short... */
|
|
126 static CONST size_t primes [] =
|
|
127 {
|
|
128 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031,
|
|
129 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783,
|
|
130 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941,
|
|
131 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519,
|
|
132 1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301,
|
|
133 10445899, 13579681, 17653589, 22949669, 29834603, 38784989,
|
|
134 50420551, 65546729, 85210757, 110774011, 144006217, 187208107,
|
|
135 243370577, 316381771, 411296309, 534685237, 695090819, 903618083,
|
|
136 1174703521, 1527114613, 1985248999, 2580823717UL, 3355070839UL
|
|
137 };
|
|
138 /* We've heard of binary search. */
|
|
139 int low, high;
|
|
140 for (low = 0, high = countof (primes) - 1; high - low > 1;)
|
|
141 {
|
|
142 /* Loop Invariant: size < primes [high] */
|
|
143 int mid = (low + high) / 2;
|
|
144 if (primes [mid] < requested_size)
|
|
145 low = mid;
|
|
146 else
|
|
147 high = mid;
|
|
148 }
|
|
149 return primes [high];
|
|
150 }
|
|
151
|
|
152
|
|
153 #if 0 /* I don't think these are needed any more.
|
|
154 If using the general lisp_object_equal_*() functions
|
|
155 causes efficiency problems, these can be resurrected. --ben */
|
|
156 /* equality and hash functions for Lisp strings */
|
|
157 int
|
|
158 lisp_string_equal (Lisp_Object str1, Lisp_Object str2)
|
|
159 {
|
|
160 /* This is wrong anyway. You can't use strcmp() on Lisp strings,
|
|
161 because they can contain zero characters. */
|
|
162 return !strcmp ((char *) XSTRING_DATA (str1), (char *) XSTRING_DATA (str2));
|
|
163 }
|
|
164
|
|
165 static hashcode_t
|
|
166 lisp_string_hash (Lisp_Object obj)
|
|
167 {
|
|
168 return hash_string (XSTRING_DATA (str), XSTRING_LENGTH (str));
|
|
169 }
|
|
170
|
|
171 #endif /* 0 */
|
|
172
|
|
173 static int
|
|
174 lisp_object_eql_equal (Lisp_Object obj1, Lisp_Object obj2)
|
|
175 {
|
|
176 return EQ (obj1, obj2) || (FLOATP (obj1) && internal_equal (obj1, obj2, 0));
|
|
177 }
|
|
178
|
|
179 static hashcode_t
|
|
180 lisp_object_eql_hash (Lisp_Object obj)
|
|
181 {
|
|
182 return FLOATP (obj) ? internal_hash (obj, 0) : LISP_HASH (obj);
|
|
183 }
|
|
184
|
|
185 static int
|
|
186 lisp_object_equal_equal (Lisp_Object obj1, Lisp_Object obj2)
|
|
187 {
|
|
188 return internal_equal (obj1, obj2, 0);
|
|
189 }
|
|
190
|
|
191 static hashcode_t
|
|
192 lisp_object_equal_hash (Lisp_Object obj)
|
|
193 {
|
|
194 return internal_hash (obj, 0);
|
|
195 }
|
|
196
|
|
197
|
|
198 static Lisp_Object
|
|
199 mark_hash_table (Lisp_Object obj)
|
|
200 {
|
|
201 Lisp_Hash_Table *ht = XHASH_TABLE (obj);
|
|
202
|
|
203 /* If the hash table is weak, we don't want to mark the keys and
|
|
204 values (we scan over them after everything else has been marked,
|
|
205 and mark or remove them as necessary). */
|
|
206 if (ht->weakness == HASH_TABLE_NON_WEAK)
|
|
207 {
|
|
208 hentry *e, *sentinel;
|
|
209
|
|
210 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
|
211 if (!HENTRY_CLEAR_P (e))
|
|
212 {
|
|
213 mark_object (e->key);
|
|
214 mark_object (e->value);
|
|
215 }
|
|
216 }
|
|
217 return Qnil;
|
|
218 }
|
|
219
|
|
220 /* Equality of hash tables. Two hash tables are equal when they are of
|
|
221 the same weakness and test function, they have the same number of
|
|
222 elements, and for each key in the hash table, the values are `equal'.
|
|
223
|
|
224 This is similar to Common Lisp `equalp' of hash tables, with the
|
|
225 difference that CL requires the keys to be compared with the test
|
|
226 function, which we don't do. Doing that would require consing, and
|
|
227 consing is a bad idea in `equal'. Anyway, our method should provide
|
|
228 the same result -- if the keys are not equal according to the test
|
|
229 function, then Fgethash() in hash_table_equal_mapper() will fail. */
|
|
230 static int
|
|
231 hash_table_equal (Lisp_Object hash_table1, Lisp_Object hash_table2, int depth)
|
|
232 {
|
|
233 Lisp_Hash_Table *ht1 = XHASH_TABLE (hash_table1);
|
|
234 Lisp_Hash_Table *ht2 = XHASH_TABLE (hash_table2);
|
|
235 hentry *e, *sentinel;
|
|
236
|
|
237 if ((ht1->test_function != ht2->test_function) ||
|
|
238 (ht1->weakness != ht2->weakness) ||
|
|
239 (ht1->count != ht2->count))
|
|
240 return 0;
|
|
241
|
|
242 depth++;
|
|
243
|
|
244 for (e = ht1->hentries, sentinel = e + ht1->size; e < sentinel; e++)
|
|
245 if (!HENTRY_CLEAR_P (e))
|
|
246 /* Look up the key in the other hash table, and compare the values. */
|
|
247 {
|
|
248 Lisp_Object value_in_other = Fgethash (e->key, hash_table2, Qunbound);
|
|
249 if (UNBOUNDP (value_in_other) ||
|
|
250 !internal_equal (e->value, value_in_other, depth))
|
|
251 return 0; /* Give up */
|
|
252 }
|
|
253
|
|
254 return 1;
|
|
255 }
|
|
256
|
|
257 /* Printing hash tables.
|
|
258
|
|
259 This is non-trivial, because we use a readable structure-style
|
|
260 syntax for hash tables. This means that a typical hash table will be
|
|
261 readably printed in the form of:
|
|
262
|
|
263 #s(hash-table size 2 data (key1 value1 key2 value2))
|
|
264
|
|
265 The supported hash table structure keywords and their values are:
|
|
266 `test' (eql (or nil), eq or equal)
|
|
267 `size' (a natnum or nil)
|
|
268 `rehash-size' (a float)
|
|
269 `rehash-threshold' (a float)
|
|
270 `weakness' (nil, t, key or value)
|
|
271 `data' (a list)
|
|
272
|
|
273 If `print-readably' is non-nil, then a simpler syntax is used; for
|
|
274 instance:
|
|
275
|
|
276 #<hash-table size 2/13 data (key1 value1 key2 value2) 0x874d>
|
|
277
|
|
278 The data is truncated to four pairs, and the rest is shown with
|
|
279 `...'. This printer does not cons. */
|
|
280
|
|
281
|
|
282 /* Print the data of the hash table. This maps through a Lisp
|
|
283 hash table and prints key/value pairs using PRINTCHARFUN. */
|
|
284 static void
|
|
285 print_hash_table_data (Lisp_Hash_Table *ht, Lisp_Object printcharfun)
|
|
286 {
|
|
287 int count = 0;
|
|
288 hentry *e, *sentinel;
|
|
289
|
|
290 write_c_string (" data (", printcharfun);
|
|
291
|
|
292 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
|
293 if (!HENTRY_CLEAR_P (e))
|
|
294 {
|
|
295 if (count > 0)
|
|
296 write_c_string (" ", printcharfun);
|
|
297 if (!print_readably && count > 3)
|
|
298 {
|
|
299 write_c_string ("...", printcharfun);
|
|
300 break;
|
|
301 }
|
|
302 print_internal (e->key, printcharfun, 1);
|
|
303 write_c_string (" ", printcharfun);
|
|
304 print_internal (e->value, printcharfun, 1);
|
|
305 count++;
|
|
306 }
|
|
307
|
|
308 write_c_string (")", printcharfun);
|
|
309 }
|
|
310
|
|
311 static void
|
|
312 print_hash_table (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
|
|
313 {
|
|
314 Lisp_Hash_Table *ht = XHASH_TABLE (obj);
|
|
315 char buf[128];
|
|
316
|
|
317 write_c_string (print_readably ? "#s(hash-table" : "#<hash-table",
|
|
318 printcharfun);
|
|
319
|
|
320 /* These checks have a kludgy look to them, but they are safe.
|
|
321 Due to nature of hashing, you cannot use arbitrary
|
|
322 test functions anyway. */
|
|
323 if (!ht->test_function)
|
|
324 write_c_string (" test eq", printcharfun);
|
|
325 else if (ht->test_function == lisp_object_equal_equal)
|
|
326 write_c_string (" test equal", printcharfun);
|
|
327 else if (ht->test_function == lisp_object_eql_equal)
|
|
328 DO_NOTHING;
|
|
329 else
|
|
330 abort ();
|
|
331
|
|
332 if (ht->count || !print_readably)
|
|
333 {
|
|
334 if (print_readably)
|
|
335 sprintf (buf, " size %lu", (unsigned long) ht->count);
|
|
336 else
|
|
337 sprintf (buf, " size %lu/%lu",
|
|
338 (unsigned long) ht->count,
|
|
339 (unsigned long) ht->size);
|
|
340 write_c_string (buf, printcharfun);
|
|
341 }
|
|
342
|
|
343 if (ht->weakness != HASH_TABLE_NON_WEAK)
|
|
344 {
|
|
345 sprintf (buf, " weakness %s",
|
|
346 (ht->weakness == HASH_TABLE_WEAK ? "t" :
|
|
347 ht->weakness == HASH_TABLE_KEY_WEAK ? "key" :
|
|
348 ht->weakness == HASH_TABLE_VALUE_WEAK ? "value" :
|
|
349 "you-d-better-not-see-this"));
|
|
350 write_c_string (buf, printcharfun);
|
|
351 }
|
|
352
|
|
353 if (ht->count)
|
|
354 print_hash_table_data (ht, printcharfun);
|
|
355
|
|
356 if (print_readably)
|
|
357 write_c_string (")", printcharfun);
|
|
358 else
|
|
359 {
|
|
360 sprintf (buf, " 0x%x>", ht->header.uid);
|
|
361 write_c_string (buf, printcharfun);
|
|
362 }
|
|
363 }
|
|
364
|
|
365 static void
|
|
366 finalize_hash_table (void *header, int for_disksave)
|
|
367 {
|
|
368 if (!for_disksave)
|
|
369 {
|
|
370 Lisp_Hash_Table *ht = (Lisp_Hash_Table *) header;
|
|
371
|
|
372 xfree (ht->hentries);
|
|
373 ht->hentries = 0;
|
|
374 }
|
|
375 }
|
|
376
|
|
377 static const struct lrecord_description hentry_description_1[] = {
|
|
378 { XD_LISP_OBJECT, offsetof(hentry, key), 2 },
|
|
379 { XD_END }
|
|
380 };
|
|
381
|
|
382 static const struct struct_description hentry_description = {
|
|
383 sizeof(hentry),
|
|
384 hentry_description_1
|
|
385 };
|
|
386
|
|
387 const struct lrecord_description hash_table_description[] = {
|
|
388 { XD_SIZE_T, offsetof(Lisp_Hash_Table, size) },
|
|
389 { XD_STRUCT_PTR, offsetof(Lisp_Hash_Table, hentries), XD_INDIRECT(0, 1), &hentry_description },
|
|
390 { XD_LO_LINK, offsetof(Lisp_Hash_Table, next_weak) },
|
|
391 { XD_END }
|
|
392 };
|
|
393
|
|
394 DEFINE_LRECORD_IMPLEMENTATION ("hash-table", hash_table,
|
|
395 mark_hash_table, print_hash_table,
|
|
396 finalize_hash_table,
|
|
397 /* #### Implement hash_table_hash()! */
|
|
398 hash_table_equal, 0,
|
|
399 hash_table_description,
|
|
400 Lisp_Hash_Table);
|
|
401
|
|
402 static Lisp_Hash_Table *
|
|
403 xhash_table (Lisp_Object hash_table)
|
|
404 {
|
|
405 if (!gc_in_progress)
|
|
406 CHECK_HASH_TABLE (hash_table);
|
|
407 check_hash_table_invariants (XHASH_TABLE (hash_table));
|
|
408 return XHASH_TABLE (hash_table);
|
|
409 }
|
|
410
|
|
411
|
|
412 /************************************************************************/
|
|
413 /* Creation of Hash Tables */
|
|
414 /************************************************************************/
|
|
415
|
|
416 /* Creation of hash tables, without error-checking. */
|
|
417 static double
|
|
418 hash_table_rehash_threshold (Lisp_Hash_Table *ht)
|
|
419 {
|
|
420 return
|
|
421 ht->rehash_threshold > 0.0 ? ht->rehash_threshold :
|
|
422 ht->size > 4096 && !ht->test_function ? 0.7 : 0.6;
|
|
423 }
|
|
424
|
|
425 static void
|
|
426 compute_hash_table_derived_values (Lisp_Hash_Table *ht)
|
|
427 {
|
|
428 ht->rehash_count = (size_t)
|
|
429 ((double) ht->size * hash_table_rehash_threshold (ht));
|
|
430 ht->golden_ratio = (size_t)
|
|
431 ((double) ht->size * (.6180339887 / (double) sizeof (Lisp_Object)));
|
|
432 }
|
|
433
|
|
434 Lisp_Object
|
|
435 make_general_lisp_hash_table (enum hash_table_test test,
|
|
436 size_t size,
|
|
437 double rehash_size,
|
|
438 double rehash_threshold,
|
|
439 enum hash_table_weakness weakness)
|
|
440 {
|
|
441 Lisp_Object hash_table;
|
|
442 Lisp_Hash_Table *ht = alloc_lcrecord_type (Lisp_Hash_Table, &lrecord_hash_table);
|
|
443
|
|
444 ht->rehash_size = rehash_size;
|
|
445 ht->rehash_threshold = rehash_threshold;
|
|
446 ht->weakness = weakness;
|
|
447
|
|
448 switch (test)
|
|
449 {
|
|
450 case HASH_TABLE_EQ:
|
|
451 ht->test_function = 0;
|
|
452 ht->hash_function = 0;
|
|
453 break;
|
|
454
|
|
455 case HASH_TABLE_EQL:
|
|
456 ht->test_function = lisp_object_eql_equal;
|
|
457 ht->hash_function = lisp_object_eql_hash;
|
|
458 break;
|
|
459
|
|
460 case HASH_TABLE_EQUAL:
|
|
461 ht->test_function = lisp_object_equal_equal;
|
|
462 ht->hash_function = lisp_object_equal_hash;
|
|
463 break;
|
|
464
|
|
465 default:
|
|
466 abort ();
|
|
467 }
|
|
468
|
|
469 if (ht->rehash_size <= 0.0)
|
|
470 ht->rehash_size = HASH_TABLE_DEFAULT_REHASH_SIZE;
|
|
471 if (size < HASH_TABLE_MIN_SIZE)
|
|
472 size = HASH_TABLE_MIN_SIZE;
|
|
473 if (rehash_threshold < 0.0)
|
|
474 rehash_threshold = 0.75;
|
|
475 ht->size =
|
|
476 hash_table_size ((size_t) ((double) size / hash_table_rehash_threshold (ht)) + 1);
|
|
477 ht->count = 0;
|
|
478 compute_hash_table_derived_values (ht);
|
|
479
|
|
480 /* We leave room for one never-occupied sentinel hentry at the end. */
|
|
481 ht->hentries = xnew_array (hentry, ht->size + 1);
|
|
482
|
|
483 {
|
|
484 hentry *e, *sentinel;
|
|
485 for (e = ht->hentries, sentinel = e + ht->size; e <= sentinel; e++)
|
|
486 CLEAR_HENTRY (e);
|
|
487 }
|
|
488
|
|
489 XSETHASH_TABLE (hash_table, ht);
|
|
490
|
|
491 if (weakness == HASH_TABLE_NON_WEAK)
|
|
492 ht->next_weak = Qunbound;
|
|
493 else
|
|
494 ht->next_weak = Vall_weak_hash_tables, Vall_weak_hash_tables = hash_table;
|
|
495
|
|
496 return hash_table;
|
|
497 }
|
|
498
|
|
499 Lisp_Object
|
|
500 make_lisp_hash_table (size_t size,
|
|
501 enum hash_table_weakness weakness,
|
|
502 enum hash_table_test test)
|
|
503 {
|
|
504 return make_general_lisp_hash_table
|
|
505 (test, size, HASH_TABLE_DEFAULT_REHASH_SIZE, -1.0, weakness);
|
|
506 }
|
|
507
|
|
508 /* Pretty reading of hash tables.
|
|
509
|
|
510 Here we use the existing structures mechanism (which is,
|
|
511 unfortunately, pretty cumbersome) for validating and instantiating
|
|
512 the hash tables. The idea is that the side-effect of reading a
|
|
513 #s(hash-table PLIST) object is creation of a hash table with desired
|
|
514 properties, and that the hash table is returned. */
|
|
515
|
|
516 /* Validation functions: each keyword provides its own validation
|
|
517 function. The errors should maybe be continuable, but it is
|
|
518 unclear how this would cope with ERRB. */
|
|
519 static int
|
|
520 hash_table_size_validate (Lisp_Object keyword, Lisp_Object value,
|
|
521 Error_behavior errb)
|
|
522 {
|
|
523 if (NATNUMP (value))
|
|
524 return 1;
|
|
525
|
|
526 maybe_signal_error (Qwrong_type_argument, list2 (Qnatnump, value),
|
|
527 Qhash_table, errb);
|
|
528 return 0;
|
|
529 }
|
|
530
|
|
531 static size_t
|
|
532 decode_hash_table_size (Lisp_Object obj)
|
|
533 {
|
|
534 return NILP (obj) ? HASH_TABLE_DEFAULT_SIZE : XINT (obj);
|
|
535 }
|
|
536
|
|
537 static int
|
|
538 hash_table_weakness_validate (Lisp_Object keyword, Lisp_Object value,
|
|
539 Error_behavior errb)
|
|
540 {
|
|
541 if (EQ (value, Qnil)) return 1;
|
|
542 if (EQ (value, Qt)) return 1;
|
|
543 if (EQ (value, Qkey)) return 1;
|
|
544 if (EQ (value, Qvalue)) return 1;
|
|
545
|
|
546 /* Following values are obsolete as of 19990901 in xemacs-21.2 */
|
|
547 if (EQ (value, Qnon_weak)) return 1;
|
|
548 if (EQ (value, Qweak)) return 1;
|
|
549 if (EQ (value, Qkey_weak)) return 1;
|
|
550 if (EQ (value, Qvalue_weak)) return 1;
|
|
551
|
|
552 maybe_signal_simple_error ("Invalid hash table weakness",
|
|
553 value, Qhash_table, errb);
|
|
554 return 0;
|
|
555 }
|
|
556
|
|
557 static enum hash_table_weakness
|
|
558 decode_hash_table_weakness (Lisp_Object obj)
|
|
559 {
|
|
560 if (EQ (obj, Qnil)) return HASH_TABLE_NON_WEAK;
|
|
561 if (EQ (obj, Qt)) return HASH_TABLE_WEAK;
|
|
562 if (EQ (obj, Qkey)) return HASH_TABLE_KEY_WEAK;
|
|
563 if (EQ (obj, Qvalue)) return HASH_TABLE_VALUE_WEAK;
|
|
564
|
|
565 /* Following values are obsolete as of 19990901 in xemacs-21.2 */
|
|
566 if (EQ (obj, Qnon_weak)) return HASH_TABLE_NON_WEAK;
|
|
567 if (EQ (obj, Qweak)) return HASH_TABLE_WEAK;
|
|
568 if (EQ (obj, Qkey_weak)) return HASH_TABLE_KEY_WEAK;
|
|
569 if (EQ (obj, Qvalue_weak)) return HASH_TABLE_VALUE_WEAK;
|
|
570
|
|
571 signal_simple_error ("Invalid hash table weakness", obj);
|
|
572 return HASH_TABLE_NON_WEAK; /* not reached */
|
|
573 }
|
|
574
|
|
575 static int
|
|
576 hash_table_test_validate (Lisp_Object keyword, Lisp_Object value,
|
|
577 Error_behavior errb)
|
|
578 {
|
|
579 if (EQ (value, Qnil)) return 1;
|
|
580 if (EQ (value, Qeq)) return 1;
|
|
581 if (EQ (value, Qequal)) return 1;
|
|
582 if (EQ (value, Qeql)) return 1;
|
|
583
|
|
584 maybe_signal_simple_error ("Invalid hash table test",
|
|
585 value, Qhash_table, errb);
|
|
586 return 0;
|
|
587 }
|
|
588
|
|
589 static enum hash_table_test
|
|
590 decode_hash_table_test (Lisp_Object obj)
|
|
591 {
|
|
592 if (EQ (obj, Qnil)) return HASH_TABLE_EQL;
|
|
593 if (EQ (obj, Qeq)) return HASH_TABLE_EQ;
|
|
594 if (EQ (obj, Qequal)) return HASH_TABLE_EQUAL;
|
|
595 if (EQ (obj, Qeql)) return HASH_TABLE_EQL;
|
|
596
|
|
597 signal_simple_error ("Invalid hash table test", obj);
|
|
598 return HASH_TABLE_EQ; /* not reached */
|
|
599 }
|
|
600
|
|
601 static int
|
|
602 hash_table_rehash_size_validate (Lisp_Object keyword, Lisp_Object value,
|
|
603 Error_behavior errb)
|
|
604 {
|
|
605 if (!FLOATP (value))
|
|
606 {
|
|
607 maybe_signal_error (Qwrong_type_argument, list2 (Qfloatp, value),
|
|
608 Qhash_table, errb);
|
|
609 return 0;
|
|
610 }
|
|
611
|
|
612 {
|
|
613 double rehash_size = XFLOAT_DATA (value);
|
|
614 if (rehash_size <= 1.0)
|
|
615 {
|
|
616 maybe_signal_simple_error
|
|
617 ("Hash table rehash size must be greater than 1.0",
|
|
618 value, Qhash_table, errb);
|
|
619 return 0;
|
|
620 }
|
|
621 }
|
|
622
|
|
623 return 1;
|
|
624 }
|
|
625
|
|
626 static double
|
|
627 decode_hash_table_rehash_size (Lisp_Object rehash_size)
|
|
628 {
|
|
629 return NILP (rehash_size) ? -1.0 : XFLOAT_DATA (rehash_size);
|
|
630 }
|
|
631
|
|
632 static int
|
|
633 hash_table_rehash_threshold_validate (Lisp_Object keyword, Lisp_Object value,
|
|
634 Error_behavior errb)
|
|
635 {
|
|
636 if (!FLOATP (value))
|
|
637 {
|
|
638 maybe_signal_error (Qwrong_type_argument, list2 (Qfloatp, value),
|
|
639 Qhash_table, errb);
|
|
640 return 0;
|
|
641 }
|
|
642
|
|
643 {
|
|
644 double rehash_threshold = XFLOAT_DATA (value);
|
|
645 if (rehash_threshold <= 0.0 || rehash_threshold >= 1.0)
|
|
646 {
|
|
647 maybe_signal_simple_error
|
|
648 ("Hash table rehash threshold must be between 0.0 and 1.0",
|
|
649 value, Qhash_table, errb);
|
|
650 return 0;
|
|
651 }
|
|
652 }
|
|
653
|
|
654 return 1;
|
|
655 }
|
|
656
|
|
657 static double
|
|
658 decode_hash_table_rehash_threshold (Lisp_Object rehash_threshold)
|
|
659 {
|
|
660 return NILP (rehash_threshold) ? -1.0 : XFLOAT_DATA (rehash_threshold);
|
|
661 }
|
|
662
|
|
663 static int
|
|
664 hash_table_data_validate (Lisp_Object keyword, Lisp_Object value,
|
|
665 Error_behavior errb)
|
|
666 {
|
|
667 int len;
|
|
668
|
|
669 GET_EXTERNAL_LIST_LENGTH (value, len);
|
|
670
|
|
671 if (len & 1)
|
|
672 {
|
|
673 maybe_signal_simple_error
|
|
674 ("Hash table data must have alternating key/value pairs",
|
|
675 value, Qhash_table, errb);
|
|
676 return 0;
|
|
677 }
|
|
678 return 1;
|
|
679 }
|
|
680
|
|
681 /* The actual instantiation of a hash table. This does practically no
|
|
682 error checking, because it relies on the fact that the paranoid
|
|
683 functions above have error-checked everything to the last details.
|
|
684 If this assumption is wrong, we will get a crash immediately (with
|
|
685 error-checking compiled in), and we'll know if there is a bug in
|
|
686 the structure mechanism. So there. */
|
|
687 static Lisp_Object
|
|
688 hash_table_instantiate (Lisp_Object plist)
|
|
689 {
|
|
690 Lisp_Object hash_table;
|
|
691 Lisp_Object test = Qnil;
|
|
692 Lisp_Object size = Qnil;
|
|
693 Lisp_Object rehash_size = Qnil;
|
|
694 Lisp_Object rehash_threshold = Qnil;
|
|
695 Lisp_Object weakness = Qnil;
|
|
696 Lisp_Object data = Qnil;
|
|
697
|
|
698 while (!NILP (plist))
|
|
699 {
|
|
700 Lisp_Object key, value;
|
|
701 key = XCAR (plist); plist = XCDR (plist);
|
|
702 value = XCAR (plist); plist = XCDR (plist);
|
|
703
|
|
704 if (EQ (key, Qtest)) test = value;
|
|
705 else if (EQ (key, Qsize)) size = value;
|
|
706 else if (EQ (key, Qrehash_size)) rehash_size = value;
|
|
707 else if (EQ (key, Qrehash_threshold)) rehash_threshold = value;
|
|
708 else if (EQ (key, Qweakness)) weakness = value;
|
|
709 else if (EQ (key, Qdata)) data = value;
|
|
710 else if (EQ (key, Qtype))/*obsolete*/ weakness = value;
|
|
711 else
|
|
712 abort ();
|
|
713 }
|
|
714
|
|
715 /* Create the hash table. */
|
|
716 hash_table = make_general_lisp_hash_table
|
|
717 (decode_hash_table_test (test),
|
|
718 decode_hash_table_size (size),
|
|
719 decode_hash_table_rehash_size (rehash_size),
|
|
720 decode_hash_table_rehash_threshold (rehash_threshold),
|
|
721 decode_hash_table_weakness (weakness));
|
|
722
|
|
723 /* I'm not sure whether this can GC, but better safe than sorry. */
|
|
724 {
|
|
725 struct gcpro gcpro1;
|
|
726 GCPRO1 (hash_table);
|
|
727
|
|
728 /* And fill it with data. */
|
|
729 while (!NILP (data))
|
|
730 {
|
|
731 Lisp_Object key, value;
|
|
732 key = XCAR (data); data = XCDR (data);
|
|
733 value = XCAR (data); data = XCDR (data);
|
|
734 Fputhash (key, value, hash_table);
|
|
735 }
|
|
736 UNGCPRO;
|
|
737 }
|
|
738
|
|
739 return hash_table;
|
|
740 }
|
|
741
|
|
742 static void
|
|
743 structure_type_create_hash_table_structure_name (Lisp_Object structure_name)
|
|
744 {
|
|
745 struct structure_type *st;
|
|
746
|
|
747 st = define_structure_type (structure_name, 0, hash_table_instantiate);
|
|
748 define_structure_type_keyword (st, Qtest, hash_table_test_validate);
|
|
749 define_structure_type_keyword (st, Qsize, hash_table_size_validate);
|
|
750 define_structure_type_keyword (st, Qrehash_size, hash_table_rehash_size_validate);
|
|
751 define_structure_type_keyword (st, Qrehash_threshold, hash_table_rehash_threshold_validate);
|
|
752 define_structure_type_keyword (st, Qweakness, hash_table_weakness_validate);
|
|
753 define_structure_type_keyword (st, Qdata, hash_table_data_validate);
|
|
754
|
|
755 /* obsolete as of 19990901 in xemacs-21.2 */
|
|
756 define_structure_type_keyword (st, Qtype, hash_table_weakness_validate);
|
|
757 }
|
|
758
|
|
759 /* Create a built-in Lisp structure type named `hash-table'.
|
|
760 We make #s(hashtable ...) equivalent to #s(hash-table ...),
|
|
761 for backward compatibility.
|
|
762 This is called from emacs.c. */
|
|
763 void
|
|
764 structure_type_create_hash_table (void)
|
|
765 {
|
|
766 structure_type_create_hash_table_structure_name (Qhash_table);
|
|
767 structure_type_create_hash_table_structure_name (Qhashtable); /* compat */
|
|
768 }
|
|
769
|
|
770
|
|
771 /************************************************************************/
|
|
772 /* Definition of Lisp-visible methods */
|
|
773 /************************************************************************/
|
|
774
|
|
775 DEFUN ("hash-table-p", Fhash_table_p, 1, 1, 0, /*
|
|
776 Return t if OBJECT is a hash table, else nil.
|
|
777 */
|
|
778 (object))
|
|
779 {
|
|
780 return HASH_TABLEP (object) ? Qt : Qnil;
|
|
781 }
|
|
782
|
|
783 DEFUN ("make-hash-table", Fmake_hash_table, 0, MANY, 0, /*
|
|
784 Return a new empty hash table object.
|
|
785 Use Common Lisp style keywords to specify hash table properties.
|
|
786 (make-hash-table &key test size rehash-size rehash-threshold weakness)
|
|
787
|
|
788 Keyword :test can be `eq', `eql' (default) or `equal'.
|
|
789 Comparison between keys is done using this function.
|
|
790 If speed is important, consider using `eq'.
|
|
791 When storing strings in the hash table, you will likely need to use `equal'.
|
|
792
|
|
793 Keyword :size specifies the number of keys likely to be inserted.
|
|
794 This number of entries can be inserted without enlarging the hash table.
|
|
795
|
|
796 Keyword :rehash-size must be a float greater than 1.0, and specifies
|
|
797 the factor by which to increase the size of the hash table when enlarging.
|
|
798
|
|
799 Keyword :rehash-threshold must be a float between 0.0 and 1.0,
|
|
800 and specifies the load factor of the hash table which triggers enlarging.
|
|
801
|
|
802 Non-standard keyword :weakness can be `nil' (default), `t', `key' or `value'.
|
|
803
|
|
804 A weak hash table is one whose pointers do not count as GC referents:
|
|
805 for any key-value pair in the hash table, if the only remaining pointer
|
|
806 to either the key or the value is in a weak hash table, then the pair
|
|
807 will be removed from the hash table, and the key and value collected.
|
|
808 A non-weak hash table (or any other pointer) would prevent the object
|
|
809 from being collected.
|
|
810
|
|
811 A key-weak hash table is similar to a fully-weak hash table except that
|
|
812 a key-value pair will be removed only if the key remains unmarked
|
|
813 outside of weak hash tables. The pair will remain in the hash table if
|
|
814 the key is pointed to by something other than a weak hash table, even
|
|
815 if the value is not.
|
|
816
|
|
817 A value-weak hash table is similar to a fully-weak hash table except
|
|
818 that a key-value pair will be removed only if the value remains
|
|
819 unmarked outside of weak hash tables. The pair will remain in the
|
|
820 hash table if the value is pointed to by something other than a weak
|
|
821 hash table, even if the key is not.
|
|
822 */
|
|
823 (int nargs, Lisp_Object *args))
|
|
824 {
|
|
825 int i = 0;
|
|
826 Lisp_Object test = Qnil;
|
|
827 Lisp_Object size = Qnil;
|
|
828 Lisp_Object rehash_size = Qnil;
|
|
829 Lisp_Object rehash_threshold = Qnil;
|
|
830 Lisp_Object weakness = Qnil;
|
|
831
|
|
832 while (i + 1 < nargs)
|
|
833 {
|
|
834 Lisp_Object keyword = args[i++];
|
|
835 Lisp_Object value = args[i++];
|
|
836
|
|
837 if (EQ (keyword, Q_test)) test = value;
|
|
838 else if (EQ (keyword, Q_size)) size = value;
|
|
839 else if (EQ (keyword, Q_rehash_size)) rehash_size = value;
|
|
840 else if (EQ (keyword, Q_rehash_threshold)) rehash_threshold = value;
|
|
841 else if (EQ (keyword, Q_weakness)) weakness = value;
|
|
842 else if (EQ (keyword, Q_type))/*obsolete*/ weakness = value;
|
|
843 else signal_simple_error ("Invalid hash table property keyword", keyword);
|
|
844 }
|
|
845
|
|
846 if (i < nargs)
|
|
847 signal_simple_error ("Hash table property requires a value", args[i]);
|
|
848
|
|
849 #define VALIDATE_VAR(var) \
|
|
850 if (!NILP (var)) hash_table_##var##_validate (Q##var, var, ERROR_ME);
|
|
851
|
|
852 VALIDATE_VAR (test);
|
|
853 VALIDATE_VAR (size);
|
|
854 VALIDATE_VAR (rehash_size);
|
|
855 VALIDATE_VAR (rehash_threshold);
|
|
856 VALIDATE_VAR (weakness);
|
|
857
|
|
858 return make_general_lisp_hash_table
|
|
859 (decode_hash_table_test (test),
|
|
860 decode_hash_table_size (size),
|
|
861 decode_hash_table_rehash_size (rehash_size),
|
|
862 decode_hash_table_rehash_threshold (rehash_threshold),
|
|
863 decode_hash_table_weakness (weakness));
|
|
864 }
|
|
865
|
|
866 DEFUN ("copy-hash-table", Fcopy_hash_table, 1, 1, 0, /*
|
|
867 Return a new hash table containing the same keys and values as HASH-TABLE.
|
|
868 The keys and values will not themselves be copied.
|
|
869 */
|
|
870 (hash_table))
|
|
871 {
|
|
872 CONST Lisp_Hash_Table *ht_old = xhash_table (hash_table);
|
|
873 Lisp_Hash_Table *ht = alloc_lcrecord_type (Lisp_Hash_Table, &lrecord_hash_table);
|
|
874
|
|
875 copy_lcrecord (ht, ht_old);
|
|
876
|
|
877 ht->hentries = xnew_array (hentry, ht_old->size + 1);
|
|
878 memcpy (ht->hentries, ht_old->hentries, (ht_old->size + 1) * sizeof (hentry));
|
|
879
|
|
880 XSETHASH_TABLE (hash_table, ht);
|
|
881
|
|
882 if (! EQ (ht->next_weak, Qunbound))
|
|
883 {
|
|
884 ht->next_weak = Vall_weak_hash_tables;
|
|
885 Vall_weak_hash_tables = hash_table;
|
|
886 }
|
|
887
|
|
888 return hash_table;
|
|
889 }
|
|
890
|
|
891 static void
|
|
892 resize_hash_table (Lisp_Hash_Table *ht, size_t new_size)
|
|
893 {
|
|
894 hentry *old_entries, *new_entries, *old_sentinel, *new_sentinel, *e;
|
|
895 size_t old_size;
|
|
896
|
|
897 old_size = ht->size;
|
|
898 ht->size = new_size;
|
|
899
|
|
900 old_entries = ht->hentries;
|
|
901
|
|
902 ht->hentries = xnew_array (hentry, new_size + 1);
|
|
903 new_entries = ht->hentries;
|
|
904
|
|
905 old_sentinel = old_entries + old_size;
|
|
906 new_sentinel = new_entries + new_size;
|
|
907
|
|
908 for (e = new_entries; e <= new_sentinel; e++)
|
|
909 CLEAR_HENTRY (e);
|
|
910
|
|
911 compute_hash_table_derived_values (ht);
|
|
912
|
|
913 for (e = old_entries; e < old_sentinel; e++)
|
|
914 if (!HENTRY_CLEAR_P (e))
|
|
915 {
|
|
916 hentry *probe = new_entries + HASH_CODE (e->key, ht);
|
|
917 LINEAR_PROBING_LOOP (probe, new_entries, new_size)
|
|
918 ;
|
|
919 *probe = *e;
|
|
920 }
|
|
921
|
|
922 if (!DUMPEDP (old_entries))
|
|
923 xfree (old_entries);
|
|
924 }
|
|
925
|
|
926 void
|
|
927 reorganize_hash_table (Lisp_Hash_Table *ht)
|
|
928 {
|
|
929 resize_hash_table (ht, ht->size);
|
|
930 }
|
|
931
|
|
932 static void
|
|
933 enlarge_hash_table (Lisp_Hash_Table *ht)
|
|
934 {
|
|
935 size_t new_size =
|
|
936 hash_table_size ((size_t) ((double) ht->size * ht->rehash_size));
|
|
937 resize_hash_table (ht, new_size);
|
|
938 }
|
|
939
|
|
940 static hentry *
|
|
941 find_hentry (Lisp_Object key, CONST Lisp_Hash_Table *ht)
|
|
942 {
|
|
943 hash_table_test_function_t test_function = ht->test_function;
|
|
944 hentry *entries = ht->hentries;
|
|
945 hentry *probe = entries + HASH_CODE (key, ht);
|
|
946
|
|
947 LINEAR_PROBING_LOOP (probe, entries, ht->size)
|
|
948 if (KEYS_EQUAL_P (probe->key, key, test_function))
|
|
949 break;
|
|
950
|
|
951 return probe;
|
|
952 }
|
|
953
|
|
954 DEFUN ("gethash", Fgethash, 2, 3, 0, /*
|
|
955 Find hash value for KEY in HASH-TABLE.
|
|
956 If there is no corresponding value, return DEFAULT (which defaults to nil).
|
|
957 */
|
|
958 (key, hash_table, default_))
|
|
959 {
|
|
960 CONST Lisp_Hash_Table *ht = xhash_table (hash_table);
|
|
961 hentry *e = find_hentry (key, ht);
|
|
962
|
|
963 return HENTRY_CLEAR_P (e) ? default_ : e->value;
|
|
964 }
|
|
965
|
|
966 DEFUN ("puthash", Fputhash, 3, 3, 0, /*
|
|
967 Hash KEY to VALUE in HASH-TABLE.
|
|
968 */
|
|
969 (key, value, hash_table))
|
|
970 {
|
|
971 Lisp_Hash_Table *ht = xhash_table (hash_table);
|
|
972 hentry *e = find_hentry (key, ht);
|
|
973
|
|
974 if (!HENTRY_CLEAR_P (e))
|
|
975 return e->value = value;
|
|
976
|
|
977 e->key = key;
|
|
978 e->value = value;
|
|
979
|
|
980 if (++ht->count >= ht->rehash_count)
|
|
981 enlarge_hash_table (ht);
|
|
982
|
|
983 return value;
|
|
984 }
|
|
985
|
|
986 /* Remove hentry pointed at by PROBE.
|
|
987 Subsequent entries are removed and reinserted.
|
|
988 We don't use tombstones - too wasteful. */
|
|
989 static void
|
|
990 remhash_1 (Lisp_Hash_Table *ht, hentry *entries, hentry *probe)
|
|
991 {
|
|
992 size_t size = ht->size;
|
|
993 CLEAR_HENTRY (probe);
|
|
994 probe++;
|
|
995 ht->count--;
|
|
996
|
|
997 LINEAR_PROBING_LOOP (probe, entries, size)
|
|
998 {
|
|
999 Lisp_Object key = probe->key;
|
|
1000 hentry *probe2 = entries + HASH_CODE (key, ht);
|
|
1001 LINEAR_PROBING_LOOP (probe2, entries, size)
|
|
1002 if (EQ (probe2->key, key))
|
|
1003 /* hentry at probe doesn't need to move. */
|
|
1004 goto continue_outer_loop;
|
|
1005 /* Move hentry from probe to new home at probe2. */
|
|
1006 *probe2 = *probe;
|
|
1007 CLEAR_HENTRY (probe);
|
|
1008 continue_outer_loop: continue;
|
|
1009 }
|
|
1010 }
|
|
1011
|
|
1012 DEFUN ("remhash", Fremhash, 2, 2, 0, /*
|
|
1013 Remove the entry for KEY from HASH-TABLE.
|
|
1014 Do nothing if there is no entry for KEY in HASH-TABLE.
|
|
1015 */
|
|
1016 (key, hash_table))
|
|
1017 {
|
|
1018 Lisp_Hash_Table *ht = xhash_table (hash_table);
|
|
1019 hentry *e = find_hentry (key, ht);
|
|
1020
|
|
1021 if (HENTRY_CLEAR_P (e))
|
|
1022 return Qnil;
|
|
1023
|
|
1024 remhash_1 (ht, ht->hentries, e);
|
|
1025 return Qt;
|
|
1026 }
|
|
1027
|
|
1028 DEFUN ("clrhash", Fclrhash, 1, 1, 0, /*
|
|
1029 Remove all entries from HASH-TABLE, leaving it empty.
|
|
1030 */
|
|
1031 (hash_table))
|
|
1032 {
|
|
1033 Lisp_Hash_Table *ht = xhash_table (hash_table);
|
|
1034 hentry *e, *sentinel;
|
|
1035
|
|
1036 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
|
1037 CLEAR_HENTRY (e);
|
|
1038 ht->count = 0;
|
|
1039
|
|
1040 return hash_table;
|
|
1041 }
|
|
1042
|
|
1043 /************************************************************************/
|
|
1044 /* Accessor Functions */
|
|
1045 /************************************************************************/
|
|
1046
|
|
1047 DEFUN ("hash-table-count", Fhash_table_count, 1, 1, 0, /*
|
|
1048 Return the number of entries in HASH-TABLE.
|
|
1049 */
|
|
1050 (hash_table))
|
|
1051 {
|
|
1052 return make_int (xhash_table (hash_table)->count);
|
|
1053 }
|
|
1054
|
|
1055 DEFUN ("hash-table-test", Fhash_table_test, 1, 1, 0, /*
|
|
1056 Return the test function of HASH-TABLE.
|
|
1057 This can be one of `eq', `eql' or `equal'.
|
|
1058 */
|
|
1059 (hash_table))
|
|
1060 {
|
|
1061 hash_table_test_function_t fun = xhash_table (hash_table)->test_function;
|
|
1062
|
|
1063 return (fun == lisp_object_eql_equal ? Qeql :
|
|
1064 fun == lisp_object_equal_equal ? Qequal :
|
|
1065 Qeq);
|
|
1066 }
|
|
1067
|
|
1068 DEFUN ("hash-table-size", Fhash_table_size, 1, 1, 0, /*
|
|
1069 Return the size of HASH-TABLE.
|
|
1070 This is the current number of slots in HASH-TABLE, whether occupied or not.
|
|
1071 */
|
|
1072 (hash_table))
|
|
1073 {
|
|
1074 return make_int (xhash_table (hash_table)->size);
|
|
1075 }
|
|
1076
|
|
1077 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size, 1, 1, 0, /*
|
|
1078 Return the current rehash size of HASH-TABLE.
|
|
1079 This is a float greater than 1.0; the factor by which HASH-TABLE
|
|
1080 is enlarged when the rehash threshold is exceeded.
|
|
1081 */
|
|
1082 (hash_table))
|
|
1083 {
|
|
1084 return make_float (xhash_table (hash_table)->rehash_size);
|
|
1085 }
|
|
1086
|
|
1087 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold, 1, 1, 0, /*
|
|
1088 Return the current rehash threshold of HASH-TABLE.
|
|
1089 This is a float between 0.0 and 1.0; the maximum `load factor' of HASH-TABLE,
|
|
1090 beyond which the HASH-TABLE is enlarged by rehashing.
|
|
1091 */
|
|
1092 (hash_table))
|
|
1093 {
|
|
1094 return make_float (hash_table_rehash_threshold (xhash_table (hash_table)));
|
|
1095 }
|
|
1096
|
|
1097 DEFUN ("hash-table-weakness", Fhash_table_weakness, 1, 1, 0, /*
|
|
1098 Return the weakness of HASH-TABLE.
|
|
1099 This can be one of `nil', `t', `key' or `value'.
|
|
1100 */
|
|
1101 (hash_table))
|
|
1102 {
|
|
1103 switch (xhash_table (hash_table)->weakness)
|
|
1104 {
|
|
1105 case HASH_TABLE_WEAK: return Qt;
|
|
1106 case HASH_TABLE_KEY_WEAK: return Qkey;
|
|
1107 case HASH_TABLE_VALUE_WEAK: return Qvalue;
|
|
1108 default: return Qnil;
|
|
1109 }
|
|
1110 }
|
|
1111
|
|
1112 /* obsolete as of 19990901 in xemacs-21.2 */
|
|
1113 DEFUN ("hash-table-type", Fhash_table_type, 1, 1, 0, /*
|
|
1114 Return the type of HASH-TABLE.
|
|
1115 This can be one of `non-weak', `weak', `key-weak' or `value-weak'.
|
|
1116 */
|
|
1117 (hash_table))
|
|
1118 {
|
|
1119 switch (xhash_table (hash_table)->weakness)
|
|
1120 {
|
|
1121 case HASH_TABLE_WEAK: return Qweak;
|
|
1122 case HASH_TABLE_KEY_WEAK: return Qkey_weak;
|
|
1123 case HASH_TABLE_VALUE_WEAK: return Qvalue_weak;
|
|
1124 default: return Qnon_weak;
|
|
1125 }
|
|
1126 }
|
|
1127
|
|
1128 /************************************************************************/
|
|
1129 /* Mapping Functions */
|
|
1130 /************************************************************************/
|
|
1131 DEFUN ("maphash", Fmaphash, 2, 2, 0, /*
|
|
1132 Map FUNCTION over entries in HASH-TABLE, calling it with two args,
|
|
1133 each key and value in HASH-TABLE.
|
|
1134
|
|
1135 FUNCTION may not modify HASH-TABLE, with the one exception that FUNCTION
|
|
1136 may remhash or puthash the entry currently being processed by FUNCTION.
|
|
1137 */
|
|
1138 (function, hash_table))
|
|
1139 {
|
|
1140 CONST Lisp_Hash_Table *ht = xhash_table (hash_table);
|
|
1141 CONST hentry *e, *sentinel;
|
|
1142
|
|
1143 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
|
1144 if (!HENTRY_CLEAR_P (e))
|
|
1145 {
|
|
1146 Lisp_Object args[3], key;
|
|
1147 again:
|
|
1148 key = e->key;
|
|
1149 args[0] = function;
|
|
1150 args[1] = key;
|
|
1151 args[2] = e->value;
|
|
1152 Ffuncall (countof (args), args);
|
|
1153 /* Has FUNCTION done a remhash? */
|
|
1154 if (!EQ (key, e->key) && !HENTRY_CLEAR_P (e))
|
|
1155 goto again;
|
|
1156 }
|
|
1157
|
|
1158 return Qnil;
|
|
1159 }
|
|
1160
|
|
1161 /* Map *C* function FUNCTION over the elements of a lisp hash table. */
|
|
1162 void
|
|
1163 elisp_maphash (maphash_function_t function,
|
|
1164 Lisp_Object hash_table, void *extra_arg)
|
|
1165 {
|
|
1166 CONST Lisp_Hash_Table *ht = XHASH_TABLE (hash_table);
|
|
1167 CONST hentry *e, *sentinel;
|
|
1168
|
|
1169 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
|
1170 if (!HENTRY_CLEAR_P (e))
|
|
1171 {
|
|
1172 Lisp_Object key;
|
|
1173 again:
|
|
1174 key = e->key;
|
|
1175 if (function (key, e->value, extra_arg))
|
|
1176 return;
|
|
1177 /* Has FUNCTION done a remhash? */
|
|
1178 if (!EQ (key, e->key) && !HENTRY_CLEAR_P (e))
|
|
1179 goto again;
|
|
1180 }
|
|
1181 }
|
|
1182
|
|
1183 /* Remove all elements of a lisp hash table satisfying *C* predicate PREDICATE. */
|
|
1184 void
|
|
1185 elisp_map_remhash (maphash_function_t predicate,
|
|
1186 Lisp_Object hash_table, void *extra_arg)
|
|
1187 {
|
|
1188 Lisp_Hash_Table *ht = XHASH_TABLE (hash_table);
|
|
1189 hentry *e, *entries, *sentinel;
|
|
1190
|
|
1191 for (e = entries = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
|
1192 if (!HENTRY_CLEAR_P (e))
|
|
1193 {
|
|
1194 again:
|
|
1195 if (predicate (e->key, e->value, extra_arg))
|
|
1196 {
|
|
1197 remhash_1 (ht, entries, e);
|
|
1198 if (!HENTRY_CLEAR_P (e))
|
|
1199 goto again;
|
|
1200 }
|
|
1201 }
|
|
1202 }
|
|
1203
|
|
1204
|
|
1205 /************************************************************************/
|
|
1206 /* garbage collecting weak hash tables */
|
|
1207 /************************************************************************/
|
|
1208
|
|
1209 /* Complete the marking for semi-weak hash tables. */
|
|
1210 int
|
|
1211 finish_marking_weak_hash_tables (void)
|
|
1212 {
|
|
1213 Lisp_Object hash_table;
|
|
1214 int did_mark = 0;
|
|
1215
|
|
1216 for (hash_table = Vall_weak_hash_tables;
|
|
1217 !NILP (hash_table);
|
|
1218 hash_table = XHASH_TABLE (hash_table)->next_weak)
|
|
1219 {
|
|
1220 CONST Lisp_Hash_Table *ht = XHASH_TABLE (hash_table);
|
|
1221 CONST hentry *e = ht->hentries;
|
|
1222 CONST hentry *sentinel = e + ht->size;
|
|
1223
|
|
1224 if (! marked_p (hash_table))
|
|
1225 /* The hash table is probably garbage. Ignore it. */
|
|
1226 continue;
|
|
1227
|
|
1228 /* Now, scan over all the pairs. For all pairs that are
|
|
1229 half-marked, we may need to mark the other half if we're
|
|
1230 keeping this pair. */
|
|
1231 #define MARK_OBJ(obj) \
|
|
1232 do { if (!marked_p (obj)) mark_object (obj), did_mark = 1; } while (0)
|
|
1233
|
|
1234 switch (ht->weakness)
|
|
1235 {
|
|
1236 case HASH_TABLE_KEY_WEAK:
|
|
1237 for (; e < sentinel; e++)
|
|
1238 if (!HENTRY_CLEAR_P (e))
|
|
1239 if (marked_p (e->key))
|
|
1240 MARK_OBJ (e->value);
|
|
1241 break;
|
|
1242
|
|
1243 case HASH_TABLE_VALUE_WEAK:
|
|
1244 for (; e < sentinel; e++)
|
|
1245 if (!HENTRY_CLEAR_P (e))
|
|
1246 if (marked_p (e->value))
|
|
1247 MARK_OBJ (e->key);
|
|
1248 break;
|
|
1249
|
|
1250 case HASH_TABLE_KEY_CAR_WEAK:
|
|
1251 for (; e < sentinel; e++)
|
|
1252 if (!HENTRY_CLEAR_P (e))
|
|
1253 if (!CONSP (e->key) || marked_p (XCAR (e->key)))
|
|
1254 {
|
|
1255 MARK_OBJ (e->key);
|
|
1256 MARK_OBJ (e->value);
|
|
1257 }
|
|
1258 break;
|
|
1259
|
|
1260 case HASH_TABLE_VALUE_CAR_WEAK:
|
|
1261 for (; e < sentinel; e++)
|
|
1262 if (!HENTRY_CLEAR_P (e))
|
|
1263 if (!CONSP (e->value) || marked_p (XCAR (e->value)))
|
|
1264 {
|
|
1265 MARK_OBJ (e->key);
|
|
1266 MARK_OBJ (e->value);
|
|
1267 }
|
|
1268 break;
|
|
1269
|
|
1270 default:
|
|
1271 break;
|
|
1272 }
|
|
1273 }
|
|
1274
|
|
1275 return did_mark;
|
|
1276 }
|
|
1277
|
|
1278 void
|
|
1279 prune_weak_hash_tables (void)
|
|
1280 {
|
|
1281 Lisp_Object hash_table, prev = Qnil;
|
|
1282 for (hash_table = Vall_weak_hash_tables;
|
|
1283 !NILP (hash_table);
|
|
1284 hash_table = XHASH_TABLE (hash_table)->next_weak)
|
|
1285 {
|
|
1286 if (! marked_p (hash_table))
|
|
1287 {
|
|
1288 /* This hash table itself is garbage. Remove it from the list. */
|
|
1289 if (NILP (prev))
|
|
1290 Vall_weak_hash_tables = XHASH_TABLE (hash_table)->next_weak;
|
|
1291 else
|
|
1292 XHASH_TABLE (prev)->next_weak = XHASH_TABLE (hash_table)->next_weak;
|
|
1293 }
|
|
1294 else
|
|
1295 {
|
|
1296 /* Now, scan over all the pairs. Remove all of the pairs
|
|
1297 in which the key or value, or both, is unmarked
|
|
1298 (depending on the weakness of the hash table). */
|
|
1299 Lisp_Hash_Table *ht = XHASH_TABLE (hash_table);
|
|
1300 hentry *entries = ht->hentries;
|
|
1301 hentry *sentinel = entries + ht->size;
|
|
1302 hentry *e;
|
|
1303
|
|
1304 for (e = entries; e < sentinel; e++)
|
|
1305 if (!HENTRY_CLEAR_P (e))
|
|
1306 {
|
|
1307 again:
|
|
1308 if (!marked_p (e->key) || !marked_p (e->value))
|
|
1309 {
|
|
1310 remhash_1 (ht, entries, e);
|
|
1311 if (!HENTRY_CLEAR_P (e))
|
|
1312 goto again;
|
|
1313 }
|
|
1314 }
|
|
1315
|
|
1316 prev = hash_table;
|
|
1317 }
|
|
1318 }
|
|
1319 }
|
|
1320
|
|
1321 /* Return a hash value for an array of Lisp_Objects of size SIZE. */
|
|
1322
|
|
1323 hashcode_t
|
|
1324 internal_array_hash (Lisp_Object *arr, int size, int depth)
|
|
1325 {
|
|
1326 int i;
|
|
1327 unsigned long hash = 0;
|
|
1328
|
|
1329 if (size <= 5)
|
|
1330 {
|
|
1331 for (i = 0; i < size; i++)
|
|
1332 hash = HASH2 (hash, internal_hash (arr[i], depth + 1));
|
|
1333 return hash;
|
|
1334 }
|
|
1335
|
|
1336 /* just pick five elements scattered throughout the array.
|
|
1337 A slightly better approach would be to offset by some
|
|
1338 noise factor from the points chosen below. */
|
|
1339 for (i = 0; i < 5; i++)
|
|
1340 hash = HASH2 (hash, internal_hash (arr[i*size/5], depth + 1));
|
|
1341
|
|
1342 return hash;
|
|
1343 }
|
|
1344
|
|
1345 /* Return a hash value for a Lisp_Object. This is for use when hashing
|
|
1346 objects with the comparison being `equal' (for `eq', you can just
|
|
1347 use the Lisp_Object itself as the hash value). You need to make a
|
|
1348 tradeoff between the speed of the hash function and how good the
|
|
1349 hashing is. In particular, the hash function needs to be FAST,
|
|
1350 so you can't just traipse down the whole tree hashing everything
|
|
1351 together. Most of the time, objects will differ in the first
|
|
1352 few elements you hash. Thus, we only go to a short depth (5)
|
|
1353 and only hash at most 5 elements out of a vector. Theoretically
|
|
1354 we could still take 5^5 time (a big big number) to compute a
|
|
1355 hash, but practically this won't ever happen. */
|
|
1356
|
|
1357 hashcode_t
|
|
1358 internal_hash (Lisp_Object obj, int depth)
|
|
1359 {
|
|
1360 if (depth > 5)
|
|
1361 return 0;
|
|
1362 if (CONSP (obj))
|
|
1363 {
|
|
1364 /* no point in worrying about tail recursion, since we're not
|
|
1365 going very deep */
|
|
1366 return HASH2 (internal_hash (XCAR (obj), depth + 1),
|
|
1367 internal_hash (XCDR (obj), depth + 1));
|
|
1368 }
|
|
1369 if (STRINGP (obj))
|
|
1370 {
|
|
1371 return hash_string (XSTRING_DATA (obj), XSTRING_LENGTH (obj));
|
|
1372 }
|
|
1373 if (VECTORP (obj))
|
|
1374 {
|
|
1375 return HASH2 (XVECTOR_LENGTH (obj),
|
|
1376 internal_array_hash (XVECTOR_DATA (obj),
|
|
1377 XVECTOR_LENGTH (obj),
|
|
1378 depth + 1));
|
|
1379 }
|
|
1380 if (LRECORDP (obj))
|
|
1381 {
|
|
1382 CONST struct lrecord_implementation
|
|
1383 *imp = XRECORD_LHEADER_IMPLEMENTATION (obj);
|
|
1384 if (imp->hash)
|
|
1385 return imp->hash (obj, depth);
|
|
1386 }
|
|
1387
|
|
1388 return LISP_HASH (obj);
|
|
1389 }
|
|
1390
|
|
1391 DEFUN ("sxhash", Fsxhash, 1, 1, 0, /*
|
|
1392 Return a hash value for OBJECT.
|
|
1393 (equal obj1 obj2) implies (= (sxhash obj1) (sxhash obj2)).
|
|
1394 */
|
|
1395 (object))
|
|
1396 {
|
|
1397 return make_int (internal_hash (object, 0));
|
|
1398 }
|
|
1399
|
|
1400 #if 0
|
|
1401 xxDEFUN ("internal-hash-value", Finternal_hash_value, 1, 1, 0, /*
|
|
1402 Hash value of OBJECT. For debugging.
|
|
1403 The value is returned as (HIGH . LOW).
|
|
1404 */
|
|
1405 (object))
|
|
1406 {
|
|
1407 /* This function is pretty 32bit-centric. */
|
|
1408 unsigned long hash = internal_hash (object, 0);
|
|
1409 return Fcons (hash >> 16, hash & 0xffff);
|
|
1410 }
|
|
1411 #endif
|
|
1412
|
|
1413
|
|
1414 /************************************************************************/
|
|
1415 /* initialization */
|
|
1416 /************************************************************************/
|
|
1417
|
|
1418 void
|
|
1419 syms_of_elhash (void)
|
|
1420 {
|
|
1421 DEFSUBR (Fhash_table_p);
|
|
1422 DEFSUBR (Fmake_hash_table);
|
|
1423 DEFSUBR (Fcopy_hash_table);
|
|
1424 DEFSUBR (Fgethash);
|
|
1425 DEFSUBR (Fremhash);
|
|
1426 DEFSUBR (Fputhash);
|
|
1427 DEFSUBR (Fclrhash);
|
|
1428 DEFSUBR (Fmaphash);
|
|
1429 DEFSUBR (Fhash_table_count);
|
|
1430 DEFSUBR (Fhash_table_test);
|
|
1431 DEFSUBR (Fhash_table_size);
|
|
1432 DEFSUBR (Fhash_table_rehash_size);
|
|
1433 DEFSUBR (Fhash_table_rehash_threshold);
|
|
1434 DEFSUBR (Fhash_table_weakness);
|
|
1435 DEFSUBR (Fhash_table_type); /* obsolete */
|
|
1436 DEFSUBR (Fsxhash);
|
|
1437 #if 0
|
|
1438 DEFSUBR (Finternal_hash_value);
|
|
1439 #endif
|
|
1440
|
|
1441 defsymbol (&Qhash_tablep, "hash-table-p");
|
|
1442 defsymbol (&Qhash_table, "hash-table");
|
|
1443 defsymbol (&Qhashtable, "hashtable");
|
|
1444 defsymbol (&Qweakness, "weakness");
|
|
1445 defsymbol (&Qvalue, "value");
|
|
1446 defsymbol (&Qrehash_size, "rehash-size");
|
|
1447 defsymbol (&Qrehash_threshold, "rehash-threshold");
|
|
1448
|
|
1449 defsymbol (&Qweak, "weak"); /* obsolete */
|
|
1450 defsymbol (&Qkey_weak, "key-weak"); /* obsolete */
|
|
1451 defsymbol (&Qvalue_weak, "value-weak"); /* obsolete */
|
|
1452 defsymbol (&Qnon_weak, "non-weak"); /* obsolete */
|
|
1453
|
|
1454 defkeyword (&Q_test, ":test");
|
|
1455 defkeyword (&Q_size, ":size");
|
|
1456 defkeyword (&Q_rehash_size, ":rehash-size");
|
|
1457 defkeyword (&Q_rehash_threshold, ":rehash-threshold");
|
|
1458 defkeyword (&Q_weakness, ":weakness");
|
|
1459 defkeyword (&Q_type, ":type"); /* obsolete */
|
|
1460 }
|
|
1461
|
|
1462 void
|
|
1463 vars_of_elhash (void)
|
|
1464 {
|
|
1465 /* This must NOT be staticpro'd */
|
|
1466 Vall_weak_hash_tables = Qnil;
|
|
1467 pdump_wire_list (&Vall_weak_hash_tables);
|
|
1468 }
|