Mercurial > hg > xemacs-beta
annotate src/alloc.c @ 3070:e409aa086a15
[xemacs-hg @ 2005-11-15 22:50:50 by viteno]
Update xemacs_extra_name.
author | viteno |
---|---|
date | Tue, 15 Nov 2005 22:50:50 +0000 |
parents | d30cd499e445 |
children | 141c2920ea48 3742ea8250b5 |
rev | line source |
---|---|
428 | 1 /* Storage allocation and gc for XEmacs Lisp interpreter. |
2 Copyright (C) 1985-1998 Free Software Foundation, Inc. | |
3 Copyright (C) 1995 Sun Microsystems, Inc. | |
2994 | 4 Copyright (C) 1995, 1996, 2001, 2002, 2003, 2004, 2005 Ben Wing. |
428 | 5 |
6 This file is part of XEmacs. | |
7 | |
8 XEmacs is free software; you can redistribute it and/or modify it | |
9 under the terms of the GNU General Public License as published by the | |
10 Free Software Foundation; either version 2, or (at your option) any | |
11 later version. | |
12 | |
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
16 for more details. | |
17 | |
18 You should have received a copy of the GNU General Public License | |
19 along with XEmacs; see the file COPYING. If not, write to | |
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
21 Boston, MA 02111-1307, USA. */ | |
22 | |
23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from | |
24 FSF. */ | |
25 | |
26 /* Authorship: | |
27 | |
28 FSF: Original version; a long time ago. | |
29 Mly: Significantly rewritten to use new 3-bit tags and | |
30 nicely abstracted object definitions, for 19.8. | |
31 JWZ: Improved code to keep track of purespace usage and | |
32 issue nice purespace and GC stats. | |
33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking | |
34 and various changes for Mule, for 19.12. | |
35 Added bit vectors for 19.13. | |
36 Added lcrecord lists for 19.14. | |
37 slb: Lots of work on the purification and dump time code. | |
38 Synched Doug Lea malloc support from Emacs 20.2. | |
442 | 39 og: Killed the purespace. Portable dumper (moved to dumper.c) |
428 | 40 */ |
41 | |
42 #include <config.h> | |
43 #include "lisp.h" | |
44 | |
45 #include "backtrace.h" | |
46 #include "buffer.h" | |
47 #include "bytecode.h" | |
48 #include "chartab.h" | |
49 #include "device.h" | |
50 #include "elhash.h" | |
51 #include "events.h" | |
872 | 52 #include "extents-impl.h" |
1204 | 53 #include "file-coding.h" |
872 | 54 #include "frame-impl.h" |
428 | 55 #include "glyphs.h" |
56 #include "opaque.h" | |
1204 | 57 #include "lstream.h" |
872 | 58 #include "process.h" |
1292 | 59 #include "profile.h" |
428 | 60 #include "redisplay.h" |
61 #include "specifier.h" | |
62 #include "sysfile.h" | |
442 | 63 #include "sysdep.h" |
428 | 64 #include "window.h" |
65 #include "console-stream.h" | |
66 | |
67 #ifdef DOUG_LEA_MALLOC | |
68 #include <malloc.h> | |
69 #endif | |
70 | |
71 EXFUN (Fgarbage_collect, 0); | |
72 | |
814 | 73 static void recompute_need_to_garbage_collect (void); |
74 | |
428 | 75 #if 0 /* this is _way_ too slow to be part of the standard debug options */ |
76 #if defined(DEBUG_XEMACS) && defined(MULE) | |
77 #define VERIFY_STRING_CHARS_INTEGRITY | |
78 #endif | |
79 #endif | |
80 | |
81 /* Define this to use malloc/free with no freelist for all datatypes, | |
82 the hope being that some debugging tools may help detect | |
83 freed memory references */ | |
84 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */ | |
85 #include <dmalloc.h> | |
86 #define ALLOC_NO_POOLS | |
87 #endif | |
88 | |
89 #ifdef DEBUG_XEMACS | |
458 | 90 static Fixnum debug_allocation; |
91 static Fixnum debug_allocation_backtrace_length; | |
428 | 92 #endif |
93 | |
94 /* Number of bytes of consing done since the last gc */ | |
814 | 95 static EMACS_INT consing_since_gc; |
1292 | 96 EMACS_UINT total_consing; |
2994 | 97 EMACS_INT total_gc_usage; |
98 int total_gc_usage_set; | |
1292 | 99 |
814 | 100 int need_to_garbage_collect; |
851 | 101 int need_to_check_c_alloca; |
887 | 102 int need_to_signal_post_gc; |
851 | 103 int funcall_allocation_flag; |
104 Bytecount __temp_alloca_size__; | |
105 Bytecount funcall_alloca_count; | |
814 | 106 |
107 /* Determine now whether we need to garbage collect or not, to make | |
108 Ffuncall() faster */ | |
109 #define INCREMENT_CONS_COUNTER_1(size) \ | |
110 do \ | |
111 { \ | |
112 consing_since_gc += (size); \ | |
1292 | 113 total_consing += (size); \ |
114 if (profiling_active) \ | |
115 profile_record_consing (size); \ | |
814 | 116 recompute_need_to_garbage_collect (); \ |
117 } while (0) | |
428 | 118 |
119 #define debug_allocation_backtrace() \ | |
120 do { \ | |
121 if (debug_allocation_backtrace_length > 0) \ | |
122 debug_short_backtrace (debug_allocation_backtrace_length); \ | |
123 } while (0) | |
124 | |
125 #ifdef DEBUG_XEMACS | |
801 | 126 #define INCREMENT_CONS_COUNTER(foosize, type) \ |
127 do { \ | |
128 if (debug_allocation) \ | |
129 { \ | |
130 stderr_out ("allocating %s (size %ld)\n", type, \ | |
131 (long) foosize); \ | |
132 debug_allocation_backtrace (); \ | |
133 } \ | |
134 INCREMENT_CONS_COUNTER_1 (foosize); \ | |
428 | 135 } while (0) |
136 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \ | |
137 do { \ | |
138 if (debug_allocation > 1) \ | |
139 { \ | |
801 | 140 stderr_out ("allocating noseeum %s (size %ld)\n", type, \ |
141 (long) foosize); \ | |
428 | 142 debug_allocation_backtrace (); \ |
143 } \ | |
144 INCREMENT_CONS_COUNTER_1 (foosize); \ | |
145 } while (0) | |
146 #else | |
147 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size) | |
148 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \ | |
149 INCREMENT_CONS_COUNTER_1 (size) | |
150 #endif | |
151 | |
152 #define DECREMENT_CONS_COUNTER(size) do { \ | |
153 consing_since_gc -= (size); \ | |
1292 | 154 total_consing -= (size); \ |
155 if (profiling_active) \ | |
156 profile_record_unconsing (size); \ | |
428 | 157 if (consing_since_gc < 0) \ |
158 consing_since_gc = 0; \ | |
814 | 159 recompute_need_to_garbage_collect (); \ |
428 | 160 } while (0) |
161 | |
162 /* Number of bytes of consing since gc before another gc should be done. */ | |
801 | 163 static EMACS_INT gc_cons_threshold; |
164 | |
165 /* Percentage of consing of total data size before another GC. */ | |
166 static EMACS_INT gc_cons_percentage; | |
167 | |
168 #ifdef ERROR_CHECK_GC | |
853 | 169 int always_gc; /* Debugging hack; equivalent to |
170 (setq gc-cons-thresold -1) */ | |
801 | 171 #else |
172 #define always_gc 0 | |
173 #endif | |
428 | 174 |
175 /* Nonzero during gc */ | |
176 int gc_in_progress; | |
177 | |
1154 | 178 /* Nonzero means display messages at beginning and end of GC. */ |
179 | |
180 int garbage_collection_messages; | |
181 | |
428 | 182 /* Number of times GC has happened at this level or below. |
183 * Level 0 is most volatile, contrary to usual convention. | |
184 * (Of course, there's only one level at present) */ | |
185 EMACS_INT gc_generation_number[1]; | |
186 | |
187 /* This is just for use by the printer, to allow things to print uniquely */ | |
3063 | 188 int lrecord_uid_counter; |
428 | 189 |
190 /* Nonzero when calling certain hooks or doing other things where | |
191 a GC would be bad */ | |
1957 | 192 int gc_currently_forbidden; |
428 | 193 |
194 /* Hooks. */ | |
195 Lisp_Object Vpre_gc_hook, Qpre_gc_hook; | |
196 Lisp_Object Vpost_gc_hook, Qpost_gc_hook; | |
197 | |
198 /* "Garbage collecting" */ | |
199 Lisp_Object Vgc_message; | |
200 Lisp_Object Vgc_pointer_glyph; | |
2367 | 201 static const Ascbyte gc_default_message[] = "Garbage collecting"; |
428 | 202 Lisp_Object Qgarbage_collecting; |
203 | |
1292 | 204 static Lisp_Object QSin_garbage_collection; |
205 | |
428 | 206 /* Non-zero means we're in the process of doing the dump */ |
207 int purify_flag; | |
208 | |
1204 | 209 /* Non-zero means we're pdumping out or in */ |
210 #ifdef PDUMP | |
211 int in_pdump; | |
212 #endif | |
213 | |
800 | 214 #ifdef ERROR_CHECK_TYPES |
428 | 215 |
793 | 216 Error_Behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN, ERROR_ME_DEBUG_WARN; |
428 | 217 |
218 #endif | |
219 | |
801 | 220 /* Very cheesy ways of figuring out how much memory is being used for |
221 data. #### Need better (system-dependent) ways. */ | |
222 void *minimum_address_seen; | |
223 void *maximum_address_seen; | |
224 | |
2720 | 225 #ifndef MC_ALLOC |
428 | 226 int |
227 c_readonly (Lisp_Object obj) | |
228 { | |
229 return POINTER_TYPE_P (XTYPE (obj)) && C_READONLY (obj); | |
230 } | |
2720 | 231 #endif /* MC_ALLOC */ |
428 | 232 |
233 int | |
234 lisp_readonly (Lisp_Object obj) | |
235 { | |
236 return POINTER_TYPE_P (XTYPE (obj)) && LISP_READONLY (obj); | |
237 } | |
238 | |
239 | |
240 /* Maximum amount of C stack to save when a GC happens. */ | |
241 | |
242 #ifndef MAX_SAVE_STACK | |
243 #define MAX_SAVE_STACK 0 /* 16000 */ | |
244 #endif | |
245 | |
246 /* Non-zero means ignore malloc warnings. Set during initialization. */ | |
247 int ignore_malloc_warnings; | |
248 | |
249 | |
2720 | 250 #ifndef MC_ALLOC |
428 | 251 static void *breathing_space; |
252 | |
253 void | |
254 release_breathing_space (void) | |
255 { | |
256 if (breathing_space) | |
257 { | |
258 void *tmp = breathing_space; | |
259 breathing_space = 0; | |
1726 | 260 xfree (tmp, void *); |
428 | 261 } |
262 } | |
2720 | 263 #endif /* not MC_ALLOC */ |
428 | 264 |
265 /* malloc calls this if it finds we are near exhausting storage */ | |
266 void | |
442 | 267 malloc_warning (const char *str) |
428 | 268 { |
269 if (ignore_malloc_warnings) | |
270 return; | |
271 | |
272 warn_when_safe | |
793 | 273 (Qmemory, Qemergency, |
428 | 274 "%s\n" |
275 "Killing some buffers may delay running out of memory.\n" | |
276 "However, certainly by the time you receive the 95%% warning,\n" | |
277 "you should clean up, kill this Emacs, and start a new one.", | |
278 str); | |
279 } | |
280 | |
281 /* Called if malloc returns zero */ | |
282 DOESNT_RETURN | |
283 memory_full (void) | |
284 { | |
285 /* Force a GC next time eval is called. | |
286 It's better to loop garbage-collecting (we might reclaim enough | |
287 to win) than to loop beeping and barfing "Memory exhausted" | |
288 */ | |
289 consing_since_gc = gc_cons_threshold + 1; | |
814 | 290 recompute_need_to_garbage_collect (); |
2720 | 291 #ifndef MC_ALLOC |
428 | 292 release_breathing_space (); |
2720 | 293 #endif /* not MC_ALLOC */ |
428 | 294 |
295 /* Flush some histories which might conceivably contain garbalogical | |
296 inhibitors. */ | |
297 if (!NILP (Fboundp (Qvalues))) | |
298 Fset (Qvalues, Qnil); | |
299 Vcommand_history = Qnil; | |
300 | |
563 | 301 out_of_memory ("Memory exhausted", Qunbound); |
428 | 302 } |
303 | |
801 | 304 static void |
305 set_alloc_mins_and_maxes (void *val, Bytecount size) | |
306 { | |
307 if (!val) | |
308 return; | |
309 if ((char *) val + size > (char *) maximum_address_seen) | |
310 maximum_address_seen = (char *) val + size; | |
311 if (!minimum_address_seen) | |
312 minimum_address_seen = | |
313 #if SIZEOF_VOID_P == 8 | |
314 (void *) 0xFFFFFFFFFFFFFFFF; | |
315 #else | |
316 (void *) 0xFFFFFFFF; | |
317 #endif | |
318 if ((char *) val < (char *) minimum_address_seen) | |
319 minimum_address_seen = (char *) val; | |
320 } | |
321 | |
1315 | 322 #ifdef ERROR_CHECK_MALLOC |
1292 | 323 static int in_malloc; |
1333 | 324 extern int regex_malloc_disallowed; |
2367 | 325 |
326 #define MALLOC_BEGIN() \ | |
327 do \ | |
328 { \ | |
329 assert (!in_malloc); \ | |
330 assert (!regex_malloc_disallowed); \ | |
331 in_malloc = 1; \ | |
332 } \ | |
333 while (0) | |
334 | |
2720 | 335 #ifdef MC_ALLOC |
336 #define FREE_OR_REALLOC_BEGIN(block) \ | |
337 do \ | |
338 { \ | |
339 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an \ | |
340 error until much later on for many system mallocs, such as \ | |
341 the one that comes with Solaris 2.3. FMH!! */ \ | |
342 assert (block != (void *) 0xDEADBEEF); \ | |
343 MALLOC_BEGIN (); \ | |
344 } \ | |
345 while (0) | |
346 #else /* not MC_ALLOC */ | |
2367 | 347 #define FREE_OR_REALLOC_BEGIN(block) \ |
348 do \ | |
349 { \ | |
350 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an \ | |
351 error until much later on for many system mallocs, such as \ | |
352 the one that comes with Solaris 2.3. FMH!! */ \ | |
353 assert (block != (void *) 0xDEADBEEF); \ | |
354 /* You cannot free something within dumped space, because there is \ | |
355 no longer any sort of malloc structure associated with the block. \ | |
356 If you are tripping this, you may need to conditionalize on \ | |
357 DUMPEDP. */ \ | |
358 assert (!DUMPEDP (block)); \ | |
359 MALLOC_BEGIN (); \ | |
360 } \ | |
361 while (0) | |
2720 | 362 #endif /* not MC_ALLOC */ |
2367 | 363 |
364 #define MALLOC_END() \ | |
365 do \ | |
366 { \ | |
367 in_malloc = 0; \ | |
368 } \ | |
369 while (0) | |
370 | |
371 #else /* ERROR_CHECK_MALLOC */ | |
372 | |
2658 | 373 #define MALLOC_BEGIN() |
2367 | 374 #define FREE_OR_REALLOC_BEGIN(block) |
375 #define MALLOC_END() | |
376 | |
377 #endif /* ERROR_CHECK_MALLOC */ | |
378 | |
379 static void | |
380 malloc_after (void *val, Bytecount size) | |
381 { | |
382 if (!val && size != 0) | |
383 memory_full (); | |
384 set_alloc_mins_and_maxes (val, size); | |
385 } | |
386 | |
387 /* like malloc, calloc, realloc, free but: | |
388 | |
389 -- check for no memory left | |
390 -- set internal mins and maxes | |
391 -- with error-checking on, check for reentrancy, invalid freeing, etc. | |
392 */ | |
1292 | 393 |
428 | 394 #undef xmalloc |
395 void * | |
665 | 396 xmalloc (Bytecount size) |
428 | 397 { |
1292 | 398 void *val; |
2367 | 399 MALLOC_BEGIN (); |
1292 | 400 val = malloc (size); |
2367 | 401 MALLOC_END (); |
402 malloc_after (val, size); | |
428 | 403 return val; |
404 } | |
405 | |
406 #undef xcalloc | |
407 static void * | |
665 | 408 xcalloc (Elemcount nelem, Bytecount elsize) |
428 | 409 { |
1292 | 410 void *val; |
2367 | 411 MALLOC_BEGIN (); |
1292 | 412 val= calloc (nelem, elsize); |
2367 | 413 MALLOC_END (); |
414 malloc_after (val, nelem * elsize); | |
428 | 415 return val; |
416 } | |
417 | |
418 void * | |
665 | 419 xmalloc_and_zero (Bytecount size) |
428 | 420 { |
421 return xcalloc (size, sizeof (char)); | |
422 } | |
423 | |
424 #undef xrealloc | |
425 void * | |
665 | 426 xrealloc (void *block, Bytecount size) |
428 | 427 { |
2367 | 428 FREE_OR_REALLOC_BEGIN (block); |
551 | 429 block = realloc (block, size); |
2367 | 430 MALLOC_END (); |
431 malloc_after (block, size); | |
551 | 432 return block; |
428 | 433 } |
434 | |
435 void | |
436 xfree_1 (void *block) | |
437 { | |
438 #ifdef ERROR_CHECK_MALLOC | |
439 assert (block); | |
440 #endif /* ERROR_CHECK_MALLOC */ | |
2367 | 441 FREE_OR_REALLOC_BEGIN (block); |
428 | 442 free (block); |
2367 | 443 MALLOC_END (); |
428 | 444 } |
445 | |
446 #ifdef ERROR_CHECK_GC | |
447 | |
2720 | 448 #ifndef MC_ALLOC |
428 | 449 static void |
665 | 450 deadbeef_memory (void *ptr, Bytecount size) |
428 | 451 { |
826 | 452 UINT_32_BIT *ptr4 = (UINT_32_BIT *) ptr; |
665 | 453 Bytecount beefs = size >> 2; |
428 | 454 |
455 /* In practice, size will always be a multiple of four. */ | |
456 while (beefs--) | |
1204 | 457 (*ptr4++) = 0xDEADBEEF; /* -559038737 base 10 */ |
428 | 458 } |
2720 | 459 #endif /* not MC_ALLOC */ |
428 | 460 |
461 #else /* !ERROR_CHECK_GC */ | |
462 | |
463 | |
464 #define deadbeef_memory(ptr, size) | |
465 | |
466 #endif /* !ERROR_CHECK_GC */ | |
467 | |
468 #undef xstrdup | |
469 char * | |
442 | 470 xstrdup (const char *str) |
428 | 471 { |
472 int len = strlen (str) + 1; /* for stupid terminating 0 */ | |
473 void *val = xmalloc (len); | |
771 | 474 |
428 | 475 if (val == 0) return 0; |
476 return (char *) memcpy (val, str, len); | |
477 } | |
478 | |
479 #ifdef NEED_STRDUP | |
480 char * | |
442 | 481 strdup (const char *s) |
428 | 482 { |
483 return xstrdup (s); | |
484 } | |
485 #endif /* NEED_STRDUP */ | |
486 | |
487 | |
2720 | 488 #ifndef MC_ALLOC |
428 | 489 static void * |
665 | 490 allocate_lisp_storage (Bytecount size) |
428 | 491 { |
793 | 492 void *val = xmalloc (size); |
493 /* We don't increment the cons counter anymore. Calling functions do | |
494 that now because we have two different kinds of cons counters -- one | |
495 for normal objects, and one for no-see-um conses (and possibly others | |
496 similar) where the conses are used totally internally, never escape, | |
497 and are created and then freed and shouldn't logically increment the | |
498 cons counting. #### (Or perhaps, we should decrement it when an object | |
499 get freed?) */ | |
500 | |
501 /* But we do now (as of 3-27-02) go and zero out the memory. This is a | |
502 good thing, as it will guarantee we won't get any intermittent bugs | |
1204 | 503 coming from an uninitiated field. The speed loss is unnoticeable, |
504 esp. as the objects are not large -- large stuff like buffer text and | |
505 redisplay structures are allocated separately. */ | |
793 | 506 memset (val, 0, size); |
851 | 507 |
508 if (need_to_check_c_alloca) | |
509 xemacs_c_alloca (0); | |
510 | |
793 | 511 return val; |
428 | 512 } |
2720 | 513 #endif /* not MC_ALLOC */ |
514 | |
2994 | 515 #if defined (MC_ALLOC) && defined (ALLOC_TYPE_STATS) |
2720 | 516 static struct |
517 { | |
518 int instances_in_use; | |
519 int bytes_in_use; | |
520 int bytes_in_use_including_overhead; | |
521 } lrecord_stats [countof (lrecord_implementations_table) | |
522 + MODULE_DEFINABLE_TYPE_COUNT]; | |
523 | |
2775 | 524 int lrecord_string_data_instances_in_use; |
525 int lrecord_string_data_bytes_in_use; | |
526 int lrecord_string_data_bytes_in_use_including_overhead; | |
527 | |
2720 | 528 void |
529 init_lrecord_stats () | |
530 { | |
531 xzero (lrecord_stats); | |
2775 | 532 lrecord_string_data_instances_in_use = 0; |
533 lrecord_string_data_bytes_in_use = 0; | |
534 lrecord_string_data_bytes_in_use_including_overhead = 0; | |
535 } | |
536 | |
537 void | |
538 inc_lrecord_string_data_stats (Bytecount size) | |
539 { | |
540 lrecord_string_data_instances_in_use++; | |
541 lrecord_string_data_bytes_in_use += size; | |
542 lrecord_string_data_bytes_in_use_including_overhead += size; | |
543 } | |
544 | |
545 void | |
546 dec_lrecord_string_data_stats (Bytecount size) | |
547 { | |
548 lrecord_string_data_instances_in_use--; | |
549 lrecord_string_data_bytes_in_use -= size; | |
550 lrecord_string_data_bytes_in_use_including_overhead -= size; | |
2720 | 551 } |
552 | |
553 void | |
554 inc_lrecord_stats (Bytecount size, const struct lrecord_header *h) | |
555 { | |
556 int type_index = h->type; | |
557 if (!size) | |
558 size = detagged_lisp_object_size (h); | |
559 | |
560 lrecord_stats[type_index].instances_in_use++; | |
561 lrecord_stats[type_index].bytes_in_use += size; | |
562 lrecord_stats[type_index].bytes_in_use_including_overhead | |
563 #ifdef MEMORY_USAGE_STATS | |
564 += mc_alloced_storage_size (size, 0); | |
565 #else /* not MEMORY_USAGE_STATS */ | |
566 += size; | |
567 #endif /* not MEMORY_USAGE_STATS */ | |
568 } | |
569 | |
570 void | |
571 dec_lrecord_stats (Bytecount size_including_overhead, | |
572 const struct lrecord_header *h) | |
573 { | |
574 int type_index = h->type; | |
2775 | 575 int size = detagged_lisp_object_size (h); |
2720 | 576 |
577 lrecord_stats[type_index].instances_in_use--; | |
2775 | 578 lrecord_stats[type_index].bytes_in_use -= size; |
2720 | 579 lrecord_stats[type_index].bytes_in_use_including_overhead |
580 -= size_including_overhead; | |
581 | |
2775 | 582 DECREMENT_CONS_COUNTER (size); |
2720 | 583 } |
2994 | 584 #endif /* not (MC_ALLOC && ALLOC_TYPE_STATS) */ |
2720 | 585 |
586 #ifndef MC_ALLOC | |
442 | 587 /* lcrecords are chained together through their "next" field. |
588 After doing the mark phase, GC will walk this linked list | |
589 and free any lcrecord which hasn't been marked. */ | |
3024 | 590 static struct old_lcrecord_header *all_lcrecords; |
2720 | 591 #endif /* not MC_ALLOC */ |
592 | |
593 #ifdef MC_ALLOC | |
594 /* The basic lrecord allocation functions. See lrecord.h for details. */ | |
595 void * | |
596 alloc_lrecord (Bytecount size, | |
597 const struct lrecord_implementation *implementation) | |
598 { | |
599 struct lrecord_header *lheader; | |
600 | |
601 type_checking_assert | |
602 ((implementation->static_size == 0 ? | |
603 implementation->size_in_bytes_method != NULL : | |
604 implementation->static_size == size)); | |
605 | |
606 lheader = (struct lrecord_header *) mc_alloc (size); | |
607 gc_checking_assert (LRECORD_FREE_P (lheader)); | |
608 set_lheader_implementation (lheader, implementation); | |
2994 | 609 #ifdef ALLOC_TYPE_STATS |
2720 | 610 inc_lrecord_stats (size, lheader); |
2994 | 611 #endif /* ALLOC_TYPE_STATS */ |
2720 | 612 INCREMENT_CONS_COUNTER (size, implementation->name); |
613 return lheader; | |
614 } | |
615 | |
616 void * | |
617 noseeum_alloc_lrecord (Bytecount size, | |
618 const struct lrecord_implementation *implementation) | |
619 { | |
620 struct lrecord_header *lheader; | |
621 | |
622 type_checking_assert | |
623 ((implementation->static_size == 0 ? | |
624 implementation->size_in_bytes_method != NULL : | |
625 implementation->static_size == size)); | |
626 | |
627 lheader = (struct lrecord_header *) mc_alloc (size); | |
628 gc_checking_assert (LRECORD_FREE_P (lheader)); | |
629 set_lheader_implementation (lheader, implementation); | |
2994 | 630 #ifdef ALLOC_TYPE_STATS |
2720 | 631 inc_lrecord_stats (size, lheader); |
2994 | 632 #endif /* ALLOC_TYPE_STATS */ |
2720 | 633 NOSEEUM_INCREMENT_CONS_COUNTER (size, implementation->name); |
634 return lheader; | |
635 } | |
636 | |
637 void | |
638 free_lrecord (Lisp_Object lrecord) | |
639 { | |
640 gc_checking_assert (!gc_in_progress); | |
641 gc_checking_assert (!LRECORD_FREE_P (XRECORD_LHEADER (lrecord))); | |
642 gc_checking_assert (!XRECORD_LHEADER (lrecord)->free); | |
643 | |
644 MC_ALLOC_CALL_FINALIZER (XPNTR (lrecord)); | |
645 mc_free (XPNTR (lrecord)); | |
646 } | |
647 #else /* not MC_ALLOC */ | |
428 | 648 |
1204 | 649 /* The most basic of the lcrecord allocation functions. Not usually called |
650 directly. Allocates an lrecord not managed by any lcrecord-list, of a | |
651 specified size. See lrecord.h. */ | |
652 | |
428 | 653 void * |
3024 | 654 old_basic_alloc_lcrecord (Bytecount size, |
655 const struct lrecord_implementation *implementation) | |
656 { | |
657 struct old_lcrecord_header *lcheader; | |
428 | 658 |
442 | 659 type_checking_assert |
660 ((implementation->static_size == 0 ? | |
661 implementation->size_in_bytes_method != NULL : | |
662 implementation->static_size == size) | |
663 && | |
664 (! implementation->basic_p) | |
665 && | |
666 (! (implementation->hash == NULL && implementation->equal != NULL))); | |
428 | 667 |
3024 | 668 lcheader = (struct old_lcrecord_header *) allocate_lisp_storage (size); |
442 | 669 set_lheader_implementation (&lcheader->lheader, implementation); |
428 | 670 lcheader->next = all_lcrecords; |
671 #if 1 /* mly prefers to see small ID numbers */ | |
672 lcheader->uid = lrecord_uid_counter++; | |
673 #else /* jwz prefers to see real addrs */ | |
674 lcheader->uid = (int) &lcheader; | |
675 #endif | |
676 lcheader->free = 0; | |
677 all_lcrecords = lcheader; | |
678 INCREMENT_CONS_COUNTER (size, implementation->name); | |
679 return lcheader; | |
680 } | |
681 | |
682 #if 0 /* Presently unused */ | |
683 /* Very, very poor man's EGC? | |
684 * This may be slow and thrash pages all over the place. | |
685 * Only call it if you really feel you must (and if the | |
686 * lrecord was fairly recently allocated). | |
687 * Otherwise, just let the GC do its job -- that's what it's there for | |
688 */ | |
689 void | |
3024 | 690 very_old_free_lcrecord (struct old_lcrecord_header *lcrecord) |
428 | 691 { |
692 if (all_lcrecords == lcrecord) | |
693 { | |
694 all_lcrecords = lcrecord->next; | |
695 } | |
696 else | |
697 { | |
3024 | 698 struct old_lcrecord_header *header = all_lcrecords; |
428 | 699 for (;;) |
700 { | |
3024 | 701 struct old_lcrecord_header *next = header->next; |
428 | 702 if (next == lcrecord) |
703 { | |
704 header->next = lrecord->next; | |
705 break; | |
706 } | |
707 else if (next == 0) | |
2500 | 708 ABORT (); |
428 | 709 else |
710 header = next; | |
711 } | |
712 } | |
713 if (lrecord->implementation->finalizer) | |
714 lrecord->implementation->finalizer (lrecord, 0); | |
715 xfree (lrecord); | |
716 return; | |
717 } | |
718 #endif /* Unused */ | |
2720 | 719 #endif /* not MC_ALLOC */ |
428 | 720 |
721 | |
722 static void | |
723 disksave_object_finalization_1 (void) | |
724 { | |
2720 | 725 #ifdef MC_ALLOC |
726 mc_finalize_for_disksave (); | |
727 #else /* not MC_ALLOC */ | |
3024 | 728 struct old_lcrecord_header *header; |
428 | 729 |
730 for (header = all_lcrecords; header; header = header->next) | |
731 { | |
442 | 732 if (LHEADER_IMPLEMENTATION (&header->lheader)->finalizer && |
428 | 733 !header->free) |
442 | 734 LHEADER_IMPLEMENTATION (&header->lheader)->finalizer (header, 1); |
428 | 735 } |
2720 | 736 #endif /* not MC_ALLOC */ |
428 | 737 } |
738 | |
1204 | 739 /* Bitwise copy all parts of a Lisp object other than the header */ |
740 | |
741 void | |
742 copy_lisp_object (Lisp_Object dst, Lisp_Object src) | |
743 { | |
744 const struct lrecord_implementation *imp = | |
745 XRECORD_LHEADER_IMPLEMENTATION (src); | |
746 Bytecount size = lisp_object_size (src); | |
747 | |
748 assert (imp == XRECORD_LHEADER_IMPLEMENTATION (dst)); | |
749 assert (size == lisp_object_size (dst)); | |
750 | |
2720 | 751 #ifdef MC_ALLOC |
752 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lrecord_header), | |
753 (char *) XRECORD_LHEADER (src) + sizeof (struct lrecord_header), | |
754 size - sizeof (struct lrecord_header)); | |
755 #else /* not MC_ALLOC */ | |
1204 | 756 if (imp->basic_p) |
757 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lrecord_header), | |
758 (char *) XRECORD_LHEADER (src) + sizeof (struct lrecord_header), | |
759 size - sizeof (struct lrecord_header)); | |
760 else | |
3024 | 761 memcpy ((char *) XRECORD_LHEADER (dst) + |
762 sizeof (struct old_lcrecord_header), | |
763 (char *) XRECORD_LHEADER (src) + | |
764 sizeof (struct old_lcrecord_header), | |
765 size - sizeof (struct old_lcrecord_header)); | |
2720 | 766 #endif /* not MC_ALLOC */ |
1204 | 767 } |
768 | |
428 | 769 |
770 /************************************************************************/ | |
771 /* Debugger support */ | |
772 /************************************************************************/ | |
773 /* Give gdb/dbx enough information to decode Lisp Objects. We make | |
774 sure certain symbols are always defined, so gdb doesn't complain | |
438 | 775 about expressions in src/.gdbinit. See src/.gdbinit or src/.dbxrc |
776 to see how this is used. */ | |
428 | 777 |
458 | 778 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS; |
779 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1; | |
428 | 780 |
781 #ifdef USE_UNION_TYPE | |
458 | 782 unsigned char dbg_USE_UNION_TYPE = 1; |
428 | 783 #else |
458 | 784 unsigned char dbg_USE_UNION_TYPE = 0; |
428 | 785 #endif |
786 | |
458 | 787 unsigned char dbg_valbits = VALBITS; |
788 unsigned char dbg_gctypebits = GCTYPEBITS; | |
789 | |
790 /* On some systems, the above definitions will be optimized away by | |
791 the compiler or linker unless they are referenced in some function. */ | |
792 long dbg_inhibit_dbg_symbol_deletion (void); | |
793 long | |
794 dbg_inhibit_dbg_symbol_deletion (void) | |
795 { | |
796 return | |
797 (dbg_valmask + | |
798 dbg_typemask + | |
799 dbg_USE_UNION_TYPE + | |
800 dbg_valbits + | |
801 dbg_gctypebits); | |
802 } | |
428 | 803 |
804 /* Macros turned into functions for ease of debugging. | |
805 Debuggers don't know about macros! */ | |
806 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2); | |
807 int | |
808 dbg_eq (Lisp_Object obj1, Lisp_Object obj2) | |
809 { | |
810 return EQ (obj1, obj2); | |
811 } | |
812 | |
813 | |
3017 | 814 #ifdef MC_ALLOC |
815 #define DECLARE_FIXED_TYPE_ALLOC(type, structture) struct __foo__ | |
816 #else | |
428 | 817 /************************************************************************/ |
818 /* Fixed-size type macros */ | |
819 /************************************************************************/ | |
820 | |
821 /* For fixed-size types that are commonly used, we malloc() large blocks | |
822 of memory at a time and subdivide them into chunks of the correct | |
823 size for an object of that type. This is more efficient than | |
824 malloc()ing each object separately because we save on malloc() time | |
825 and overhead due to the fewer number of malloc()ed blocks, and | |
826 also because we don't need any extra pointers within each object | |
827 to keep them threaded together for GC purposes. For less common | |
828 (and frequently large-size) types, we use lcrecords, which are | |
829 malloc()ed individually and chained together through a pointer | |
830 in the lcrecord header. lcrecords do not need to be fixed-size | |
831 (i.e. two objects of the same type need not have the same size; | |
832 however, the size of a particular object cannot vary dynamically). | |
833 It is also much easier to create a new lcrecord type because no | |
834 additional code needs to be added to alloc.c. Finally, lcrecords | |
835 may be more efficient when there are only a small number of them. | |
836 | |
837 The types that are stored in these large blocks (or "frob blocks") | |
1983 | 838 are cons, all number types except fixnum, compiled-function, symbol, |
839 marker, extent, event, and string. | |
428 | 840 |
841 Note that strings are special in that they are actually stored in | |
842 two parts: a structure containing information about the string, and | |
843 the actual data associated with the string. The former structure | |
844 (a struct Lisp_String) is a fixed-size structure and is managed the | |
845 same way as all the other such types. This structure contains a | |
846 pointer to the actual string data, which is stored in structures of | |
847 type struct string_chars_block. Each string_chars_block consists | |
848 of a pointer to a struct Lisp_String, followed by the data for that | |
440 | 849 string, followed by another pointer to a Lisp_String, followed by |
850 the data for that string, etc. At GC time, the data in these | |
851 blocks is compacted by searching sequentially through all the | |
428 | 852 blocks and compressing out any holes created by unmarked strings. |
853 Strings that are more than a certain size (bigger than the size of | |
854 a string_chars_block, although something like half as big might | |
855 make more sense) are malloc()ed separately and not stored in | |
856 string_chars_blocks. Furthermore, no one string stretches across | |
857 two string_chars_blocks. | |
858 | |
1204 | 859 Vectors are each malloc()ed separately as lcrecords. |
428 | 860 |
861 In the following discussion, we use conses, but it applies equally | |
862 well to the other fixed-size types. | |
863 | |
864 We store cons cells inside of cons_blocks, allocating a new | |
865 cons_block with malloc() whenever necessary. Cons cells reclaimed | |
866 by GC are put on a free list to be reallocated before allocating | |
867 any new cons cells from the latest cons_block. Each cons_block is | |
868 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least | |
869 the versions in malloc.c and gmalloc.c) really allocates in units | |
870 of powers of two and uses 4 bytes for its own overhead. | |
871 | |
872 What GC actually does is to search through all the cons_blocks, | |
873 from the most recently allocated to the oldest, and put all | |
874 cons cells that are not marked (whether or not they're already | |
875 free) on a cons_free_list. The cons_free_list is a stack, and | |
876 so the cons cells in the oldest-allocated cons_block end up | |
877 at the head of the stack and are the first to be reallocated. | |
878 If any cons_block is entirely free, it is freed with free() | |
879 and its cons cells removed from the cons_free_list. Because | |
880 the cons_free_list ends up basically in memory order, we have | |
881 a high locality of reference (assuming a reasonable turnover | |
882 of allocating and freeing) and have a reasonable probability | |
883 of entirely freeing up cons_blocks that have been more recently | |
884 allocated. This stage is called the "sweep stage" of GC, and | |
885 is executed after the "mark stage", which involves starting | |
886 from all places that are known to point to in-use Lisp objects | |
887 (e.g. the obarray, where are all symbols are stored; the | |
888 current catches and condition-cases; the backtrace list of | |
889 currently executing functions; the gcpro list; etc.) and | |
890 recursively marking all objects that are accessible. | |
891 | |
454 | 892 At the beginning of the sweep stage, the conses in the cons blocks |
893 are in one of three states: in use and marked, in use but not | |
894 marked, and not in use (already freed). Any conses that are marked | |
895 have been marked in the mark stage just executed, because as part | |
896 of the sweep stage we unmark any marked objects. The way we tell | |
897 whether or not a cons cell is in use is through the LRECORD_FREE_P | |
898 macro. This uses a special lrecord type `lrecord_type_free', | |
899 which is never associated with any valid object. | |
900 | |
901 Conses on the free_cons_list are threaded through a pointer stored | |
902 in the conses themselves. Because the cons is still in a | |
903 cons_block and needs to remain marked as not in use for the next | |
904 time that GC happens, we need room to store both the "free" | |
905 indicator and the chaining pointer. So this pointer is stored | |
906 after the lrecord header (actually where C places a pointer after | |
907 the lrecord header; they are not necessarily contiguous). This | |
908 implies that all fixed-size types must be big enough to contain at | |
909 least one pointer. This is true for all current fixed-size types, | |
910 with the possible exception of Lisp_Floats, for which we define the | |
911 meat of the struct using a union of a pointer and a double to | |
912 ensure adequate space for the free list chain pointer. | |
428 | 913 |
914 Some types of objects need additional "finalization" done | |
915 when an object is converted from in use to not in use; | |
916 this is the purpose of the ADDITIONAL_FREE_type macro. | |
917 For example, markers need to be removed from the chain | |
918 of markers that is kept in each buffer. This is because | |
919 markers in a buffer automatically disappear if the marker | |
920 is no longer referenced anywhere (the same does not | |
921 apply to extents, however). | |
922 | |
923 WARNING: Things are in an extremely bizarre state when | |
924 the ADDITIONAL_FREE_type macros are called, so beware! | |
925 | |
454 | 926 When ERROR_CHECK_GC is defined, we do things differently so as to |
927 maximize our chances of catching places where there is insufficient | |
928 GCPROing. The thing we want to avoid is having an object that | |
929 we're using but didn't GCPRO get freed by GC and then reallocated | |
930 while we're in the process of using it -- this will result in | |
931 something seemingly unrelated getting trashed, and is extremely | |
932 difficult to track down. If the object gets freed but not | |
933 reallocated, we can usually catch this because we set most of the | |
934 bytes of a freed object to 0xDEADBEEF. (The lisp object type is set | |
935 to the invalid type `lrecord_type_free', however, and a pointer | |
936 used to chain freed objects together is stored after the lrecord | |
937 header; we play some tricks with this pointer to make it more | |
428 | 938 bogus, so crashes are more likely to occur right away.) |
939 | |
940 We want freed objects to stay free as long as possible, | |
941 so instead of doing what we do above, we maintain the | |
942 free objects in a first-in first-out queue. We also | |
943 don't recompute the free list each GC, unlike above; | |
944 this ensures that the queue ordering is preserved. | |
945 [This means that we are likely to have worse locality | |
946 of reference, and that we can never free a frob block | |
947 once it's allocated. (Even if we know that all cells | |
948 in it are free, there's no easy way to remove all those | |
949 cells from the free list because the objects on the | |
950 free list are unlikely to be in memory order.)] | |
951 Furthermore, we never take objects off the free list | |
952 unless there's a large number (usually 1000, but | |
953 varies depending on type) of them already on the list. | |
954 This way, we ensure that an object that gets freed will | |
955 remain free for the next 1000 (or whatever) times that | |
440 | 956 an object of that type is allocated. */ |
428 | 957 |
958 #ifndef MALLOC_OVERHEAD | |
959 #ifdef GNU_MALLOC | |
960 #define MALLOC_OVERHEAD 0 | |
961 #elif defined (rcheck) | |
962 #define MALLOC_OVERHEAD 20 | |
963 #else | |
964 #define MALLOC_OVERHEAD 8 | |
965 #endif | |
966 #endif /* MALLOC_OVERHEAD */ | |
967 | |
968 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC) | |
969 /* If we released our reserve (due to running out of memory), | |
970 and we have a fair amount free once again, | |
971 try to set aside another reserve in case we run out once more. | |
972 | |
973 This is called when a relocatable block is freed in ralloc.c. */ | |
974 void refill_memory_reserve (void); | |
975 void | |
442 | 976 refill_memory_reserve (void) |
428 | 977 { |
978 if (breathing_space == 0) | |
979 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD); | |
980 } | |
981 #endif | |
982 | |
983 #ifdef ALLOC_NO_POOLS | |
984 # define TYPE_ALLOC_SIZE(type, structtype) 1 | |
985 #else | |
986 # define TYPE_ALLOC_SIZE(type, structtype) \ | |
987 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \ | |
988 / sizeof (structtype)) | |
989 #endif /* ALLOC_NO_POOLS */ | |
990 | |
991 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \ | |
992 \ | |
993 struct type##_block \ | |
994 { \ | |
995 struct type##_block *prev; \ | |
996 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \ | |
997 }; \ | |
998 \ | |
999 static struct type##_block *current_##type##_block; \ | |
1000 static int current_##type##_block_index; \ | |
1001 \ | |
454 | 1002 static Lisp_Free *type##_free_list; \ |
1003 static Lisp_Free *type##_free_list_tail; \ | |
428 | 1004 \ |
1005 static void \ | |
1006 init_##type##_alloc (void) \ | |
1007 { \ | |
1008 current_##type##_block = 0; \ | |
1009 current_##type##_block_index = \ | |
1010 countof (current_##type##_block->block); \ | |
1011 type##_free_list = 0; \ | |
1012 type##_free_list_tail = 0; \ | |
1013 } \ | |
1014 \ | |
1015 static int gc_count_num_##type##_in_use; \ | |
1016 static int gc_count_num_##type##_freelist | |
1017 | |
1018 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \ | |
1019 if (current_##type##_block_index \ | |
1020 == countof (current_##type##_block->block)) \ | |
1021 { \ | |
1022 struct type##_block *AFTFB_new = (struct type##_block *) \ | |
1023 allocate_lisp_storage (sizeof (struct type##_block)); \ | |
1024 AFTFB_new->prev = current_##type##_block; \ | |
1025 current_##type##_block = AFTFB_new; \ | |
1026 current_##type##_block_index = 0; \ | |
1027 } \ | |
1028 (result) = \ | |
1029 &(current_##type##_block->block[current_##type##_block_index++]); \ | |
1030 } while (0) | |
1031 | |
1032 /* Allocate an instance of a type that is stored in blocks. | |
1033 TYPE is the "name" of the type, STRUCTTYPE is the corresponding | |
1034 structure type. */ | |
1035 | |
1036 #ifdef ERROR_CHECK_GC | |
1037 | |
1038 /* Note: if you get crashes in this function, suspect incorrect calls | |
1039 to free_cons() and friends. This happened once because the cons | |
1040 cell was not GC-protected and was getting collected before | |
1041 free_cons() was called. */ | |
1042 | |
454 | 1043 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \ |
1044 if (gc_count_num_##type##_freelist > \ | |
1045 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \ | |
1046 { \ | |
1047 result = (structtype *) type##_free_list; \ | |
1204 | 1048 assert (LRECORD_FREE_P (result)); \ |
1049 /* Before actually using the chain pointer, we complement \ | |
1050 all its bits; see PUT_FIXED_TYPE_ON_FREE_LIST(). */ \ | |
454 | 1051 type##_free_list = (Lisp_Free *) \ |
1052 (~ (EMACS_UINT) (type##_free_list->chain)); \ | |
1053 gc_count_num_##type##_freelist--; \ | |
1054 } \ | |
1055 else \ | |
1056 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ | |
1057 MARK_LRECORD_AS_NOT_FREE (result); \ | |
428 | 1058 } while (0) |
1059 | |
1060 #else /* !ERROR_CHECK_GC */ | |
1061 | |
454 | 1062 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \ |
428 | 1063 if (type##_free_list) \ |
1064 { \ | |
454 | 1065 result = (structtype *) type##_free_list; \ |
1066 type##_free_list = type##_free_list->chain; \ | |
428 | 1067 } \ |
1068 else \ | |
1069 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ | |
454 | 1070 MARK_LRECORD_AS_NOT_FREE (result); \ |
428 | 1071 } while (0) |
1072 | |
1073 #endif /* !ERROR_CHECK_GC */ | |
1074 | |
454 | 1075 |
428 | 1076 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \ |
1077 do \ | |
1078 { \ | |
1079 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ | |
1080 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ | |
1081 } while (0) | |
1082 | |
1083 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \ | |
1084 do \ | |
1085 { \ | |
1086 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ | |
1087 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ | |
1088 } while (0) | |
1089 | |
454 | 1090 /* Lisp_Free is the type to represent a free list member inside a frob |
1091 block of any lisp object type. */ | |
1092 typedef struct Lisp_Free | |
1093 { | |
1094 struct lrecord_header lheader; | |
1095 struct Lisp_Free *chain; | |
1096 } Lisp_Free; | |
1097 | |
1098 #define LRECORD_FREE_P(ptr) \ | |
771 | 1099 (((struct lrecord_header *) ptr)->type == lrecord_type_free) |
454 | 1100 |
1101 #define MARK_LRECORD_AS_FREE(ptr) \ | |
771 | 1102 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_free)) |
454 | 1103 |
1104 #ifdef ERROR_CHECK_GC | |
1105 #define MARK_LRECORD_AS_NOT_FREE(ptr) \ | |
771 | 1106 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_undefined)) |
428 | 1107 #else |
454 | 1108 #define MARK_LRECORD_AS_NOT_FREE(ptr) DO_NOTHING |
428 | 1109 #endif |
1110 | |
1111 #ifdef ERROR_CHECK_GC | |
1112 | |
454 | 1113 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \ |
1114 if (type##_free_list_tail) \ | |
1115 { \ | |
1116 /* When we store the chain pointer, we complement all \ | |
1117 its bits; this should significantly increase its \ | |
1118 bogosity in case someone tries to use the value, and \ | |
1119 should make us crash faster if someone overwrites the \ | |
1120 pointer because when it gets un-complemented in \ | |
1121 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \ | |
1122 extremely bogus. */ \ | |
1123 type##_free_list_tail->chain = \ | |
1124 (Lisp_Free *) ~ (EMACS_UINT) (ptr); \ | |
1125 } \ | |
1126 else \ | |
1127 type##_free_list = (Lisp_Free *) (ptr); \ | |
1128 type##_free_list_tail = (Lisp_Free *) (ptr); \ | |
1129 } while (0) | |
428 | 1130 |
1131 #else /* !ERROR_CHECK_GC */ | |
1132 | |
454 | 1133 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \ |
1134 ((Lisp_Free *) (ptr))->chain = type##_free_list; \ | |
1135 type##_free_list = (Lisp_Free *) (ptr); \ | |
1136 } while (0) \ | |
428 | 1137 |
1138 #endif /* !ERROR_CHECK_GC */ | |
1139 | |
1140 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */ | |
1141 | |
1142 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \ | |
1143 structtype *FFT_ptr = (ptr); \ | |
1204 | 1144 gc_checking_assert (!LRECORD_FREE_P (FFT_ptr)); \ |
2367 | 1145 gc_checking_assert (!DUMPEDP (FFT_ptr)); \ |
428 | 1146 ADDITIONAL_FREE_##type (FFT_ptr); \ |
1147 deadbeef_memory (FFT_ptr, sizeof (structtype)); \ | |
1148 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \ | |
454 | 1149 MARK_LRECORD_AS_FREE (FFT_ptr); \ |
428 | 1150 } while (0) |
1151 | |
1152 /* Like FREE_FIXED_TYPE() but used when we are explicitly | |
1153 freeing a structure through free_cons(), free_marker(), etc. | |
1154 rather than through the normal process of sweeping. | |
1155 We attempt to undo the changes made to the allocation counters | |
1156 as a result of this structure being allocated. This is not | |
1157 completely necessary but helps keep things saner: e.g. this way, | |
1158 repeatedly allocating and freeing a cons will not result in | |
1159 the consing-since-gc counter advancing, which would cause a GC | |
1204 | 1160 and somewhat defeat the purpose of explicitly freeing. |
1161 | |
1162 We also disable this mechanism entirely when ALLOC_NO_POOLS is | |
1163 set, which is used for Purify and the like. */ | |
1164 | |
1165 #ifndef ALLOC_NO_POOLS | |
428 | 1166 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \ |
1167 do { FREE_FIXED_TYPE (type, structtype, ptr); \ | |
1168 DECREMENT_CONS_COUNTER (sizeof (structtype)); \ | |
1169 gc_count_num_##type##_freelist++; \ | |
1170 } while (0) | |
1204 | 1171 #else |
1172 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) | |
1173 #endif | |
2720 | 1174 #endif /* not MC_ALLOC */ |
428 | 1175 |
3017 | 1176 #ifdef MC_ALLOC |
1177 #define ALLOCATE_FIXED_TYPE_AND_SET_IMPL(type, lisp_type, var, lrec_ptr) \ | |
1178 do { \ | |
1179 (var) = alloc_lrecord_type (lisp_type, lrec_ptr); \ | |
1180 } while (0) | |
1181 #define NOSEEUM_ALLOCATE_FIXED_TYPE_AND_SET_IMPL(type, lisp_type, var, \ | |
1182 lrec_ptr) \ | |
1183 do { \ | |
1184 (var) = noseeum_alloc_lrecord_type (lisp_type, lrec_ptr); \ | |
1185 } while (0) | |
1186 #else /* not MC_ALLOC */ | |
1187 #define ALLOCATE_FIXED_TYPE_AND_SET_IMPL(type, lisp_type, var, lrec_ptr) \ | |
1188 do \ | |
1189 { \ | |
1190 ALLOCATE_FIXED_TYPE (type, lisp_type, var); \ | |
1191 set_lheader_implementation (&(var)->lheader, lrec_ptr); \ | |
1192 } while (0) | |
1193 #define NOSEEUM_ALLOCATE_FIXED_TYPE_AND_SET_IMPL(type, lisp_type, var, \ | |
1194 lrec_ptr) \ | |
1195 do \ | |
1196 { \ | |
1197 NOSEEUM_ALLOCATE_FIXED_TYPE (type, lisp_type, var); \ | |
1198 set_lheader_implementation (&(var)->lheader, lrec_ptr); \ | |
1199 } while (0) | |
1200 #endif /* MC_ALLOC */ | |
1201 | |
428 | 1202 |
1203 | |
1204 /************************************************************************/ | |
1205 /* Cons allocation */ | |
1206 /************************************************************************/ | |
1207 | |
440 | 1208 DECLARE_FIXED_TYPE_ALLOC (cons, Lisp_Cons); |
428 | 1209 /* conses are used and freed so often that we set this really high */ |
1210 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */ | |
1211 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000 | |
1212 | |
1213 static Lisp_Object | |
1214 mark_cons (Lisp_Object obj) | |
1215 { | |
1216 if (NILP (XCDR (obj))) | |
1217 return XCAR (obj); | |
1218 | |
1219 mark_object (XCAR (obj)); | |
1220 return XCDR (obj); | |
1221 } | |
1222 | |
1223 static int | |
1224 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth) | |
1225 { | |
442 | 1226 depth++; |
1227 while (internal_equal (XCAR (ob1), XCAR (ob2), depth)) | |
428 | 1228 { |
1229 ob1 = XCDR (ob1); | |
1230 ob2 = XCDR (ob2); | |
1231 if (! CONSP (ob1) || ! CONSP (ob2)) | |
442 | 1232 return internal_equal (ob1, ob2, depth); |
428 | 1233 } |
1234 return 0; | |
1235 } | |
1236 | |
1204 | 1237 static const struct memory_description cons_description[] = { |
853 | 1238 { XD_LISP_OBJECT, offsetof (Lisp_Cons, car_) }, |
1239 { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr_) }, | |
428 | 1240 { XD_END } |
1241 }; | |
1242 | |
934 | 1243 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons, |
1244 1, /*dumpable-flag*/ | |
1245 mark_cons, print_cons, 0, | |
1246 cons_equal, | |
1247 /* | |
1248 * No `hash' method needed. | |
1249 * internal_hash knows how to | |
1250 * handle conses. | |
1251 */ | |
1252 0, | |
1253 cons_description, | |
1254 Lisp_Cons); | |
428 | 1255 |
1256 DEFUN ("cons", Fcons, 2, 2, 0, /* | |
1257 Create a new cons, give it CAR and CDR as components, and return it. | |
1258 */ | |
1259 (car, cdr)) | |
1260 { | |
1261 /* This cannot GC. */ | |
1262 Lisp_Object val; | |
440 | 1263 Lisp_Cons *c; |
1264 | |
3017 | 1265 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (cons, Lisp_Cons, c, &lrecord_cons); |
793 | 1266 val = wrap_cons (c); |
853 | 1267 XSETCAR (val, car); |
1268 XSETCDR (val, cdr); | |
428 | 1269 return val; |
1270 } | |
1271 | |
1272 /* This is identical to Fcons() but it used for conses that we're | |
1273 going to free later, and is useful when trying to track down | |
1274 "real" consing. */ | |
1275 Lisp_Object | |
1276 noseeum_cons (Lisp_Object car, Lisp_Object cdr) | |
1277 { | |
1278 Lisp_Object val; | |
440 | 1279 Lisp_Cons *c; |
1280 | |
3017 | 1281 NOSEEUM_ALLOCATE_FIXED_TYPE_AND_SET_IMPL (cons, Lisp_Cons, c, &lrecord_cons); |
793 | 1282 val = wrap_cons (c); |
428 | 1283 XCAR (val) = car; |
1284 XCDR (val) = cdr; | |
1285 return val; | |
1286 } | |
1287 | |
1288 DEFUN ("list", Flist, 0, MANY, 0, /* | |
1289 Return a newly created list with specified arguments as elements. | |
1290 Any number of arguments, even zero arguments, are allowed. | |
1291 */ | |
1292 (int nargs, Lisp_Object *args)) | |
1293 { | |
1294 Lisp_Object val = Qnil; | |
1295 Lisp_Object *argp = args + nargs; | |
1296 | |
1297 while (argp > args) | |
1298 val = Fcons (*--argp, val); | |
1299 return val; | |
1300 } | |
1301 | |
1302 Lisp_Object | |
1303 list1 (Lisp_Object obj0) | |
1304 { | |
1305 /* This cannot GC. */ | |
1306 return Fcons (obj0, Qnil); | |
1307 } | |
1308 | |
1309 Lisp_Object | |
1310 list2 (Lisp_Object obj0, Lisp_Object obj1) | |
1311 { | |
1312 /* This cannot GC. */ | |
1313 return Fcons (obj0, Fcons (obj1, Qnil)); | |
1314 } | |
1315 | |
1316 Lisp_Object | |
1317 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
1318 { | |
1319 /* This cannot GC. */ | |
1320 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil))); | |
1321 } | |
1322 | |
1323 Lisp_Object | |
1324 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
1325 { | |
1326 /* This cannot GC. */ | |
1327 return Fcons (obj0, Fcons (obj1, obj2)); | |
1328 } | |
1329 | |
1330 Lisp_Object | |
1331 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist) | |
1332 { | |
1333 return Fcons (Fcons (key, value), alist); | |
1334 } | |
1335 | |
1336 Lisp_Object | |
1337 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3) | |
1338 { | |
1339 /* This cannot GC. */ | |
1340 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil)))); | |
1341 } | |
1342 | |
1343 Lisp_Object | |
1344 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, | |
1345 Lisp_Object obj4) | |
1346 { | |
1347 /* This cannot GC. */ | |
1348 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil))))); | |
1349 } | |
1350 | |
1351 Lisp_Object | |
1352 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, | |
1353 Lisp_Object obj4, Lisp_Object obj5) | |
1354 { | |
1355 /* This cannot GC. */ | |
1356 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil)))))); | |
1357 } | |
1358 | |
1359 DEFUN ("make-list", Fmake_list, 2, 2, 0, /* | |
444 | 1360 Return a new list of length LENGTH, with each element being OBJECT. |
428 | 1361 */ |
444 | 1362 (length, object)) |
428 | 1363 { |
1364 CHECK_NATNUM (length); | |
1365 | |
1366 { | |
1367 Lisp_Object val = Qnil; | |
647 | 1368 EMACS_INT size = XINT (length); |
428 | 1369 |
1370 while (size--) | |
444 | 1371 val = Fcons (object, val); |
428 | 1372 return val; |
1373 } | |
1374 } | |
1375 | |
1376 | |
1377 /************************************************************************/ | |
1378 /* Float allocation */ | |
1379 /************************************************************************/ | |
1380 | |
1983 | 1381 /*** With enhanced number support, these are short floats */ |
1382 | |
440 | 1383 DECLARE_FIXED_TYPE_ALLOC (float, Lisp_Float); |
428 | 1384 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000 |
1385 | |
1386 Lisp_Object | |
1387 make_float (double float_value) | |
1388 { | |
440 | 1389 Lisp_Float *f; |
1390 | |
3017 | 1391 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (float, Lisp_Float, f, &lrecord_float); |
440 | 1392 |
1393 /* Avoid dump-time `uninitialized memory read' purify warnings. */ | |
1394 if (sizeof (struct lrecord_header) + sizeof (double) != sizeof (*f)) | |
3017 | 1395 zero_lrecord (f); |
1396 | |
428 | 1397 float_data (f) = float_value; |
793 | 1398 return wrap_float (f); |
428 | 1399 } |
1400 | |
1401 | |
1402 /************************************************************************/ | |
1983 | 1403 /* Enhanced number allocation */ |
1404 /************************************************************************/ | |
1405 | |
1406 /*** Bignum ***/ | |
1407 #ifdef HAVE_BIGNUM | |
1408 DECLARE_FIXED_TYPE_ALLOC (bignum, Lisp_Bignum); | |
1409 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_bignum 250 | |
1410 | |
1411 /* WARNING: This function returns a bignum even if its argument fits into a | |
1412 fixnum. See Fcanonicalize_number(). */ | |
1413 Lisp_Object | |
1414 make_bignum (long bignum_value) | |
1415 { | |
1416 Lisp_Bignum *b; | |
1417 | |
3017 | 1418 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (bignum, Lisp_Bignum, b, &lrecord_bignum); |
1983 | 1419 bignum_init (bignum_data (b)); |
1420 bignum_set_long (bignum_data (b), bignum_value); | |
1421 return wrap_bignum (b); | |
1422 } | |
1423 | |
1424 /* WARNING: This function returns a bignum even if its argument fits into a | |
1425 fixnum. See Fcanonicalize_number(). */ | |
1426 Lisp_Object | |
1427 make_bignum_bg (bignum bg) | |
1428 { | |
1429 Lisp_Bignum *b; | |
1430 | |
3017 | 1431 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (bignum, Lisp_Bignum, b, &lrecord_bignum); |
1983 | 1432 bignum_init (bignum_data (b)); |
1433 bignum_set (bignum_data (b), bg); | |
1434 return wrap_bignum (b); | |
1435 } | |
1436 #endif /* HAVE_BIGNUM */ | |
1437 | |
1438 /*** Ratio ***/ | |
1439 #ifdef HAVE_RATIO | |
1440 DECLARE_FIXED_TYPE_ALLOC (ratio, Lisp_Ratio); | |
1441 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_ratio 250 | |
1442 | |
1443 Lisp_Object | |
1444 make_ratio (long numerator, unsigned long denominator) | |
1445 { | |
1446 Lisp_Ratio *r; | |
1447 | |
3017 | 1448 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (ratio, Lisp_Ratio, r, &lrecord_ratio); |
1983 | 1449 ratio_init (ratio_data (r)); |
1450 ratio_set_long_ulong (ratio_data (r), numerator, denominator); | |
1451 ratio_canonicalize (ratio_data (r)); | |
1452 return wrap_ratio (r); | |
1453 } | |
1454 | |
1455 Lisp_Object | |
1456 make_ratio_bg (bignum numerator, bignum denominator) | |
1457 { | |
1458 Lisp_Ratio *r; | |
1459 | |
3017 | 1460 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (ratio, Lisp_Ratio, r, &lrecord_ratio); |
1983 | 1461 ratio_init (ratio_data (r)); |
1462 ratio_set_bignum_bignum (ratio_data (r), numerator, denominator); | |
1463 ratio_canonicalize (ratio_data (r)); | |
1464 return wrap_ratio (r); | |
1465 } | |
1466 | |
1467 Lisp_Object | |
1468 make_ratio_rt (ratio rat) | |
1469 { | |
1470 Lisp_Ratio *r; | |
1471 | |
3017 | 1472 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (ratio, Lisp_Ratio, r, &lrecord_ratio); |
1983 | 1473 ratio_init (ratio_data (r)); |
1474 ratio_set (ratio_data (r), rat); | |
1475 return wrap_ratio (r); | |
1476 } | |
1477 #endif /* HAVE_RATIO */ | |
1478 | |
1479 /*** Bigfloat ***/ | |
1480 #ifdef HAVE_BIGFLOAT | |
1481 DECLARE_FIXED_TYPE_ALLOC (bigfloat, Lisp_Bigfloat); | |
1482 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_bigfloat 250 | |
1483 | |
1484 /* This function creates a bigfloat with the default precision if the | |
1485 PRECISION argument is zero. */ | |
1486 Lisp_Object | |
1487 make_bigfloat (double float_value, unsigned long precision) | |
1488 { | |
1489 Lisp_Bigfloat *f; | |
1490 | |
3017 | 1491 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (bigfloat, Lisp_Bigfloat, f, &lrecord_bigfloat); |
1983 | 1492 if (precision == 0UL) |
1493 bigfloat_init (bigfloat_data (f)); | |
1494 else | |
1495 bigfloat_init_prec (bigfloat_data (f), precision); | |
1496 bigfloat_set_double (bigfloat_data (f), float_value); | |
1497 return wrap_bigfloat (f); | |
1498 } | |
1499 | |
1500 /* This function creates a bigfloat with the precision of its argument */ | |
1501 Lisp_Object | |
1502 make_bigfloat_bf (bigfloat float_value) | |
1503 { | |
1504 Lisp_Bigfloat *f; | |
1505 | |
3017 | 1506 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (bigfloat, Lisp_Bigfloat, f, &lrecord_bigfloat); |
1983 | 1507 bigfloat_init_prec (bigfloat_data (f), bigfloat_get_prec (float_value)); |
1508 bigfloat_set (bigfloat_data (f), float_value); | |
1509 return wrap_bigfloat (f); | |
1510 } | |
1511 #endif /* HAVE_BIGFLOAT */ | |
1512 | |
1513 /************************************************************************/ | |
428 | 1514 /* Vector allocation */ |
1515 /************************************************************************/ | |
1516 | |
1517 static Lisp_Object | |
1518 mark_vector (Lisp_Object obj) | |
1519 { | |
1520 Lisp_Vector *ptr = XVECTOR (obj); | |
1521 int len = vector_length (ptr); | |
1522 int i; | |
1523 | |
1524 for (i = 0; i < len - 1; i++) | |
1525 mark_object (ptr->contents[i]); | |
1526 return (len > 0) ? ptr->contents[len - 1] : Qnil; | |
1527 } | |
1528 | |
665 | 1529 static Bytecount |
442 | 1530 size_vector (const void *lheader) |
428 | 1531 { |
456 | 1532 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, contents, |
442 | 1533 ((Lisp_Vector *) lheader)->size); |
428 | 1534 } |
1535 | |
1536 static int | |
1537 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
1538 { | |
1539 int len = XVECTOR_LENGTH (obj1); | |
1540 if (len != XVECTOR_LENGTH (obj2)) | |
1541 return 0; | |
1542 | |
1543 { | |
1544 Lisp_Object *ptr1 = XVECTOR_DATA (obj1); | |
1545 Lisp_Object *ptr2 = XVECTOR_DATA (obj2); | |
1546 while (len--) | |
1547 if (!internal_equal (*ptr1++, *ptr2++, depth + 1)) | |
1548 return 0; | |
1549 } | |
1550 return 1; | |
1551 } | |
1552 | |
665 | 1553 static Hashcode |
442 | 1554 vector_hash (Lisp_Object obj, int depth) |
1555 { | |
1556 return HASH2 (XVECTOR_LENGTH (obj), | |
1557 internal_array_hash (XVECTOR_DATA (obj), | |
1558 XVECTOR_LENGTH (obj), | |
1559 depth + 1)); | |
1560 } | |
1561 | |
1204 | 1562 static const struct memory_description vector_description[] = { |
440 | 1563 { XD_LONG, offsetof (Lisp_Vector, size) }, |
1564 { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Vector, contents), XD_INDIRECT(0, 0) }, | |
428 | 1565 { XD_END } |
1566 }; | |
1567 | |
1204 | 1568 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION ("vector", vector, |
1569 1, /*dumpable-flag*/ | |
1570 mark_vector, print_vector, 0, | |
1571 vector_equal, | |
1572 vector_hash, | |
1573 vector_description, | |
1574 size_vector, Lisp_Vector); | |
428 | 1575 /* #### should allocate `small' vectors from a frob-block */ |
1576 static Lisp_Vector * | |
665 | 1577 make_vector_internal (Elemcount sizei) |
428 | 1578 { |
1204 | 1579 /* no `next' field; we use lcrecords */ |
665 | 1580 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, |
1204 | 1581 contents, sizei); |
1582 Lisp_Vector *p = | |
3017 | 1583 (Lisp_Vector *) BASIC_ALLOC_LCRECORD (sizem, &lrecord_vector); |
428 | 1584 |
1585 p->size = sizei; | |
1586 return p; | |
1587 } | |
1588 | |
1589 Lisp_Object | |
665 | 1590 make_vector (Elemcount length, Lisp_Object object) |
428 | 1591 { |
1592 Lisp_Vector *vecp = make_vector_internal (length); | |
1593 Lisp_Object *p = vector_data (vecp); | |
1594 | |
1595 while (length--) | |
444 | 1596 *p++ = object; |
428 | 1597 |
793 | 1598 return wrap_vector (vecp); |
428 | 1599 } |
1600 | |
1601 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /* | |
444 | 1602 Return a new vector of length LENGTH, with each element being OBJECT. |
428 | 1603 See also the function `vector'. |
1604 */ | |
444 | 1605 (length, object)) |
428 | 1606 { |
1607 CONCHECK_NATNUM (length); | |
444 | 1608 return make_vector (XINT (length), object); |
428 | 1609 } |
1610 | |
1611 DEFUN ("vector", Fvector, 0, MANY, 0, /* | |
1612 Return a newly created vector with specified arguments as elements. | |
1613 Any number of arguments, even zero arguments, are allowed. | |
1614 */ | |
1615 (int nargs, Lisp_Object *args)) | |
1616 { | |
1617 Lisp_Vector *vecp = make_vector_internal (nargs); | |
1618 Lisp_Object *p = vector_data (vecp); | |
1619 | |
1620 while (nargs--) | |
1621 *p++ = *args++; | |
1622 | |
793 | 1623 return wrap_vector (vecp); |
428 | 1624 } |
1625 | |
1626 Lisp_Object | |
1627 vector1 (Lisp_Object obj0) | |
1628 { | |
1629 return Fvector (1, &obj0); | |
1630 } | |
1631 | |
1632 Lisp_Object | |
1633 vector2 (Lisp_Object obj0, Lisp_Object obj1) | |
1634 { | |
1635 Lisp_Object args[2]; | |
1636 args[0] = obj0; | |
1637 args[1] = obj1; | |
1638 return Fvector (2, args); | |
1639 } | |
1640 | |
1641 Lisp_Object | |
1642 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
1643 { | |
1644 Lisp_Object args[3]; | |
1645 args[0] = obj0; | |
1646 args[1] = obj1; | |
1647 args[2] = obj2; | |
1648 return Fvector (3, args); | |
1649 } | |
1650 | |
1651 #if 0 /* currently unused */ | |
1652 | |
1653 Lisp_Object | |
1654 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1655 Lisp_Object obj3) | |
1656 { | |
1657 Lisp_Object args[4]; | |
1658 args[0] = obj0; | |
1659 args[1] = obj1; | |
1660 args[2] = obj2; | |
1661 args[3] = obj3; | |
1662 return Fvector (4, args); | |
1663 } | |
1664 | |
1665 Lisp_Object | |
1666 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1667 Lisp_Object obj3, Lisp_Object obj4) | |
1668 { | |
1669 Lisp_Object args[5]; | |
1670 args[0] = obj0; | |
1671 args[1] = obj1; | |
1672 args[2] = obj2; | |
1673 args[3] = obj3; | |
1674 args[4] = obj4; | |
1675 return Fvector (5, args); | |
1676 } | |
1677 | |
1678 Lisp_Object | |
1679 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1680 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5) | |
1681 { | |
1682 Lisp_Object args[6]; | |
1683 args[0] = obj0; | |
1684 args[1] = obj1; | |
1685 args[2] = obj2; | |
1686 args[3] = obj3; | |
1687 args[4] = obj4; | |
1688 args[5] = obj5; | |
1689 return Fvector (6, args); | |
1690 } | |
1691 | |
1692 Lisp_Object | |
1693 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1694 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, | |
1695 Lisp_Object obj6) | |
1696 { | |
1697 Lisp_Object args[7]; | |
1698 args[0] = obj0; | |
1699 args[1] = obj1; | |
1700 args[2] = obj2; | |
1701 args[3] = obj3; | |
1702 args[4] = obj4; | |
1703 args[5] = obj5; | |
1704 args[6] = obj6; | |
1705 return Fvector (7, args); | |
1706 } | |
1707 | |
1708 Lisp_Object | |
1709 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1710 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, | |
1711 Lisp_Object obj6, Lisp_Object obj7) | |
1712 { | |
1713 Lisp_Object args[8]; | |
1714 args[0] = obj0; | |
1715 args[1] = obj1; | |
1716 args[2] = obj2; | |
1717 args[3] = obj3; | |
1718 args[4] = obj4; | |
1719 args[5] = obj5; | |
1720 args[6] = obj6; | |
1721 args[7] = obj7; | |
1722 return Fvector (8, args); | |
1723 } | |
1724 #endif /* unused */ | |
1725 | |
1726 /************************************************************************/ | |
1727 /* Bit Vector allocation */ | |
1728 /************************************************************************/ | |
1729 | |
1730 /* #### should allocate `small' bit vectors from a frob-block */ | |
440 | 1731 static Lisp_Bit_Vector * |
665 | 1732 make_bit_vector_internal (Elemcount sizei) |
428 | 1733 { |
1204 | 1734 /* no `next' field; we use lcrecords */ |
665 | 1735 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (sizei); |
1736 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, | |
1204 | 1737 unsigned long, |
1738 bits, num_longs); | |
1739 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *) | |
3017 | 1740 BASIC_ALLOC_LCRECORD (sizem, &lrecord_bit_vector); |
428 | 1741 |
1742 bit_vector_length (p) = sizei; | |
1743 return p; | |
1744 } | |
1745 | |
1746 Lisp_Object | |
665 | 1747 make_bit_vector (Elemcount length, Lisp_Object bit) |
428 | 1748 { |
440 | 1749 Lisp_Bit_Vector *p = make_bit_vector_internal (length); |
665 | 1750 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (length); |
428 | 1751 |
444 | 1752 CHECK_BIT (bit); |
1753 | |
1754 if (ZEROP (bit)) | |
428 | 1755 memset (p->bits, 0, num_longs * sizeof (long)); |
1756 else | |
1757 { | |
665 | 1758 Elemcount bits_in_last = length & (LONGBITS_POWER_OF_2 - 1); |
428 | 1759 memset (p->bits, ~0, num_longs * sizeof (long)); |
1760 /* But we have to make sure that the unused bits in the | |
1761 last long are 0, so that equal/hash is easy. */ | |
1762 if (bits_in_last) | |
1763 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1; | |
1764 } | |
1765 | |
793 | 1766 return wrap_bit_vector (p); |
428 | 1767 } |
1768 | |
1769 Lisp_Object | |
665 | 1770 make_bit_vector_from_byte_vector (unsigned char *bytevec, Elemcount length) |
428 | 1771 { |
665 | 1772 Elemcount i; |
428 | 1773 Lisp_Bit_Vector *p = make_bit_vector_internal (length); |
1774 | |
1775 for (i = 0; i < length; i++) | |
1776 set_bit_vector_bit (p, i, bytevec[i]); | |
1777 | |
793 | 1778 return wrap_bit_vector (p); |
428 | 1779 } |
1780 | |
1781 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /* | |
444 | 1782 Return a new bit vector of length LENGTH. with each bit set to BIT. |
1783 BIT must be one of the integers 0 or 1. See also the function `bit-vector'. | |
428 | 1784 */ |
444 | 1785 (length, bit)) |
428 | 1786 { |
1787 CONCHECK_NATNUM (length); | |
1788 | |
444 | 1789 return make_bit_vector (XINT (length), bit); |
428 | 1790 } |
1791 | |
1792 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /* | |
1793 Return a newly created bit vector with specified arguments as elements. | |
1794 Any number of arguments, even zero arguments, are allowed. | |
444 | 1795 Each argument must be one of the integers 0 or 1. |
428 | 1796 */ |
1797 (int nargs, Lisp_Object *args)) | |
1798 { | |
1799 int i; | |
1800 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs); | |
1801 | |
1802 for (i = 0; i < nargs; i++) | |
1803 { | |
1804 CHECK_BIT (args[i]); | |
1805 set_bit_vector_bit (p, i, !ZEROP (args[i])); | |
1806 } | |
1807 | |
793 | 1808 return wrap_bit_vector (p); |
428 | 1809 } |
1810 | |
1811 | |
1812 /************************************************************************/ | |
1813 /* Compiled-function allocation */ | |
1814 /************************************************************************/ | |
1815 | |
1816 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function); | |
1817 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000 | |
1818 | |
1819 static Lisp_Object | |
1820 make_compiled_function (void) | |
1821 { | |
1822 Lisp_Compiled_Function *f; | |
1823 | |
3017 | 1824 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (compiled_function, Lisp_Compiled_Function, |
1825 f, &lrecord_compiled_function); | |
428 | 1826 |
1827 f->stack_depth = 0; | |
1828 f->specpdl_depth = 0; | |
1829 f->flags.documentationp = 0; | |
1830 f->flags.interactivep = 0; | |
1831 f->flags.domainp = 0; /* I18N3 */ | |
1832 f->instructions = Qzero; | |
1833 f->constants = Qzero; | |
1834 f->arglist = Qnil; | |
1739 | 1835 f->args = NULL; |
1836 f->max_args = f->min_args = f->args_in_array = 0; | |
428 | 1837 f->doc_and_interactive = Qnil; |
1838 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK | |
1839 f->annotated = Qnil; | |
1840 #endif | |
793 | 1841 return wrap_compiled_function (f); |
428 | 1842 } |
1843 | |
1844 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /* | |
1845 Return a new compiled-function object. | |
1846 Usage: (arglist instructions constants stack-depth | |
1847 &optional doc-string interactive) | |
1848 Note that, unlike all other emacs-lisp functions, calling this with five | |
1849 arguments is NOT the same as calling it with six arguments, the last of | |
1850 which is nil. If the INTERACTIVE arg is specified as nil, then that means | |
1851 that this function was defined with `(interactive)'. If the arg is not | |
1852 specified, then that means the function is not interactive. | |
1853 This is terrible behavior which is retained for compatibility with old | |
1854 `.elc' files which expect these semantics. | |
1855 */ | |
1856 (int nargs, Lisp_Object *args)) | |
1857 { | |
1858 /* In a non-insane world this function would have this arglist... | |
1859 (arglist instructions constants stack_depth &optional doc_string interactive) | |
1860 */ | |
1861 Lisp_Object fun = make_compiled_function (); | |
1862 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun); | |
1863 | |
1864 Lisp_Object arglist = args[0]; | |
1865 Lisp_Object instructions = args[1]; | |
1866 Lisp_Object constants = args[2]; | |
1867 Lisp_Object stack_depth = args[3]; | |
1868 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil; | |
1869 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound; | |
1870 | |
1871 if (nargs < 4 || nargs > 6) | |
1872 return Fsignal (Qwrong_number_of_arguments, | |
1873 list2 (intern ("make-byte-code"), make_int (nargs))); | |
1874 | |
1875 /* Check for valid formal parameter list now, to allow us to use | |
1876 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */ | |
1877 { | |
814 | 1878 EXTERNAL_LIST_LOOP_2 (symbol, arglist) |
428 | 1879 { |
1880 CHECK_SYMBOL (symbol); | |
1881 if (EQ (symbol, Qt) || | |
1882 EQ (symbol, Qnil) || | |
1883 SYMBOL_IS_KEYWORD (symbol)) | |
563 | 1884 invalid_constant_2 |
428 | 1885 ("Invalid constant symbol in formal parameter list", |
1886 symbol, arglist); | |
1887 } | |
1888 } | |
1889 f->arglist = arglist; | |
1890 | |
1891 /* `instructions' is a string or a cons (string . int) for a | |
1892 lazy-loaded function. */ | |
1893 if (CONSP (instructions)) | |
1894 { | |
1895 CHECK_STRING (XCAR (instructions)); | |
1896 CHECK_INT (XCDR (instructions)); | |
1897 } | |
1898 else | |
1899 { | |
1900 CHECK_STRING (instructions); | |
1901 } | |
1902 f->instructions = instructions; | |
1903 | |
1904 if (!NILP (constants)) | |
1905 CHECK_VECTOR (constants); | |
1906 f->constants = constants; | |
1907 | |
1908 CHECK_NATNUM (stack_depth); | |
442 | 1909 f->stack_depth = (unsigned short) XINT (stack_depth); |
428 | 1910 |
1911 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK | |
1912 if (!NILP (Vcurrent_compiled_function_annotation)) | |
1913 f->annotated = Fcopy (Vcurrent_compiled_function_annotation); | |
1914 else if (!NILP (Vload_file_name_internal_the_purecopy)) | |
1915 f->annotated = Vload_file_name_internal_the_purecopy; | |
1916 else if (!NILP (Vload_file_name_internal)) | |
1917 { | |
1918 struct gcpro gcpro1; | |
1919 GCPRO1 (fun); /* don't let fun get reaped */ | |
1920 Vload_file_name_internal_the_purecopy = | |
1921 Ffile_name_nondirectory (Vload_file_name_internal); | |
1922 f->annotated = Vload_file_name_internal_the_purecopy; | |
1923 UNGCPRO; | |
1924 } | |
1925 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */ | |
1926 | |
1927 /* doc_string may be nil, string, int, or a cons (string . int). | |
1928 interactive may be list or string (or unbound). */ | |
1929 f->doc_and_interactive = Qunbound; | |
1930 #ifdef I18N3 | |
1931 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0) | |
1932 f->doc_and_interactive = Vfile_domain; | |
1933 #endif | |
1934 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0) | |
1935 { | |
1936 f->doc_and_interactive | |
1937 = (UNBOUNDP (f->doc_and_interactive) ? interactive : | |
1938 Fcons (interactive, f->doc_and_interactive)); | |
1939 } | |
1940 if ((f->flags.documentationp = !NILP (doc_string)) != 0) | |
1941 { | |
1942 f->doc_and_interactive | |
1943 = (UNBOUNDP (f->doc_and_interactive) ? doc_string : | |
1944 Fcons (doc_string, f->doc_and_interactive)); | |
1945 } | |
1946 if (UNBOUNDP (f->doc_and_interactive)) | |
1947 f->doc_and_interactive = Qnil; | |
1948 | |
1949 return fun; | |
1950 } | |
1951 | |
1952 | |
1953 /************************************************************************/ | |
1954 /* Symbol allocation */ | |
1955 /************************************************************************/ | |
1956 | |
440 | 1957 DECLARE_FIXED_TYPE_ALLOC (symbol, Lisp_Symbol); |
428 | 1958 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000 |
1959 | |
1960 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /* | |
1961 Return a newly allocated uninterned symbol whose name is NAME. | |
1962 Its value and function definition are void, and its property list is nil. | |
1963 */ | |
1964 (name)) | |
1965 { | |
440 | 1966 Lisp_Symbol *p; |
428 | 1967 |
1968 CHECK_STRING (name); | |
1969 | |
3017 | 1970 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (symbol, Lisp_Symbol, p, &lrecord_symbol); |
793 | 1971 p->name = name; |
428 | 1972 p->plist = Qnil; |
1973 p->value = Qunbound; | |
1974 p->function = Qunbound; | |
1975 symbol_next (p) = 0; | |
793 | 1976 return wrap_symbol (p); |
428 | 1977 } |
1978 | |
1979 | |
1980 /************************************************************************/ | |
1981 /* Extent allocation */ | |
1982 /************************************************************************/ | |
1983 | |
1984 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent); | |
1985 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000 | |
1986 | |
1987 struct extent * | |
1988 allocate_extent (void) | |
1989 { | |
1990 struct extent *e; | |
1991 | |
3017 | 1992 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (extent, struct extent, e, &lrecord_extent); |
428 | 1993 extent_object (e) = Qnil; |
1994 set_extent_start (e, -1); | |
1995 set_extent_end (e, -1); | |
1996 e->plist = Qnil; | |
1997 | |
1998 xzero (e->flags); | |
1999 | |
2000 extent_face (e) = Qnil; | |
2001 e->flags.end_open = 1; /* default is for endpoints to behave like markers */ | |
2002 e->flags.detachable = 1; | |
2003 | |
2004 return e; | |
2005 } | |
2006 | |
2007 | |
2008 /************************************************************************/ | |
2009 /* Event allocation */ | |
2010 /************************************************************************/ | |
2011 | |
440 | 2012 DECLARE_FIXED_TYPE_ALLOC (event, Lisp_Event); |
428 | 2013 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000 |
2014 | |
2015 Lisp_Object | |
2016 allocate_event (void) | |
2017 { | |
440 | 2018 Lisp_Event *e; |
2019 | |
3017 | 2020 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (event, Lisp_Event, e, &lrecord_event); |
428 | 2021 |
793 | 2022 return wrap_event (e); |
428 | 2023 } |
2024 | |
1204 | 2025 #ifdef EVENT_DATA_AS_OBJECTS |
934 | 2026 DECLARE_FIXED_TYPE_ALLOC (key_data, Lisp_Key_Data); |
2027 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_key_data 1000 | |
2028 | |
2029 Lisp_Object | |
1204 | 2030 make_key_data (void) |
934 | 2031 { |
2032 Lisp_Key_Data *d; | |
2033 | |
3017 | 2034 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (key_data, Lisp_Key_Data, d, |
2035 &lrecord_key_data); | |
2036 zero_lrecord (d); | |
1204 | 2037 d->keysym = Qnil; |
2038 | |
2039 return wrap_key_data (d); | |
934 | 2040 } |
2041 | |
2042 DECLARE_FIXED_TYPE_ALLOC (button_data, Lisp_Button_Data); | |
2043 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_button_data 1000 | |
2044 | |
2045 Lisp_Object | |
1204 | 2046 make_button_data (void) |
934 | 2047 { |
2048 Lisp_Button_Data *d; | |
2049 | |
3017 | 2050 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (button_data, Lisp_Button_Data, d, &lrecord_button_data); |
2051 zero_lrecord (d); | |
1204 | 2052 return wrap_button_data (d); |
934 | 2053 } |
2054 | |
2055 DECLARE_FIXED_TYPE_ALLOC (motion_data, Lisp_Motion_Data); | |
2056 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_motion_data 1000 | |
2057 | |
2058 Lisp_Object | |
1204 | 2059 make_motion_data (void) |
934 | 2060 { |
2061 Lisp_Motion_Data *d; | |
2062 | |
3017 | 2063 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (motion_data, Lisp_Motion_Data, d, &lrecord_motion_data); |
2064 zero_lrecord (d); | |
934 | 2065 |
1204 | 2066 return wrap_motion_data (d); |
934 | 2067 } |
2068 | |
2069 DECLARE_FIXED_TYPE_ALLOC (process_data, Lisp_Process_Data); | |
2070 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_process_data 1000 | |
2071 | |
2072 Lisp_Object | |
1204 | 2073 make_process_data (void) |
934 | 2074 { |
2075 Lisp_Process_Data *d; | |
2076 | |
3017 | 2077 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (process_data, Lisp_Process_Data, d, &lrecord_process_data); |
2078 zero_lrecord (d); | |
1204 | 2079 d->process = Qnil; |
2080 | |
2081 return wrap_process_data (d); | |
934 | 2082 } |
2083 | |
2084 DECLARE_FIXED_TYPE_ALLOC (timeout_data, Lisp_Timeout_Data); | |
2085 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_timeout_data 1000 | |
2086 | |
2087 Lisp_Object | |
1204 | 2088 make_timeout_data (void) |
934 | 2089 { |
2090 Lisp_Timeout_Data *d; | |
2091 | |
3017 | 2092 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (timeout_data, Lisp_Timeout_Data, d, &lrecord_timeout_data); |
2093 zero_lrecord (d); | |
1204 | 2094 d->function = Qnil; |
2095 d->object = Qnil; | |
2096 | |
2097 return wrap_timeout_data (d); | |
934 | 2098 } |
2099 | |
2100 DECLARE_FIXED_TYPE_ALLOC (magic_data, Lisp_Magic_Data); | |
2101 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_data 1000 | |
2102 | |
2103 Lisp_Object | |
1204 | 2104 make_magic_data (void) |
934 | 2105 { |
2106 Lisp_Magic_Data *d; | |
2107 | |
3017 | 2108 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (magic_data, Lisp_Magic_Data, d, &lrecord_magic_data); |
2109 zero_lrecord (d); | |
934 | 2110 |
1204 | 2111 return wrap_magic_data (d); |
934 | 2112 } |
2113 | |
2114 DECLARE_FIXED_TYPE_ALLOC (magic_eval_data, Lisp_Magic_Eval_Data); | |
2115 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_eval_data 1000 | |
2116 | |
2117 Lisp_Object | |
1204 | 2118 make_magic_eval_data (void) |
934 | 2119 { |
2120 Lisp_Magic_Eval_Data *d; | |
2121 | |
3017 | 2122 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (magic_eval_data, Lisp_Magic_Eval_Data, d, &lrecord_magic_eval_data); |
2123 zero_lrecord (d); | |
1204 | 2124 d->object = Qnil; |
2125 | |
2126 return wrap_magic_eval_data (d); | |
934 | 2127 } |
2128 | |
2129 DECLARE_FIXED_TYPE_ALLOC (eval_data, Lisp_Eval_Data); | |
2130 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_eval_data 1000 | |
2131 | |
2132 Lisp_Object | |
1204 | 2133 make_eval_data (void) |
934 | 2134 { |
2135 Lisp_Eval_Data *d; | |
2136 | |
3017 | 2137 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (eval_data, Lisp_Eval_Data, d, &lrecord_eval_data); |
2138 zero_lrecord (d); | |
1204 | 2139 d->function = Qnil; |
2140 d->object = Qnil; | |
2141 | |
2142 return wrap_eval_data (d); | |
934 | 2143 } |
2144 | |
2145 DECLARE_FIXED_TYPE_ALLOC (misc_user_data, Lisp_Misc_User_Data); | |
2146 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_misc_user_data 1000 | |
2147 | |
2148 Lisp_Object | |
1204 | 2149 make_misc_user_data (void) |
934 | 2150 { |
2151 Lisp_Misc_User_Data *d; | |
2152 | |
3017 | 2153 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (misc_user_data, Lisp_Misc_User_Data, d, &lrecord_misc_user_data); |
2154 zero_lrecord (d); | |
1204 | 2155 d->function = Qnil; |
2156 d->object = Qnil; | |
2157 | |
2158 return wrap_misc_user_data (d); | |
934 | 2159 } |
1204 | 2160 |
2161 #endif /* EVENT_DATA_AS_OBJECTS */ | |
428 | 2162 |
2163 /************************************************************************/ | |
2164 /* Marker allocation */ | |
2165 /************************************************************************/ | |
2166 | |
440 | 2167 DECLARE_FIXED_TYPE_ALLOC (marker, Lisp_Marker); |
428 | 2168 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000 |
2169 | |
2170 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /* | |
2171 Return a new marker which does not point at any place. | |
2172 */ | |
2173 ()) | |
2174 { | |
440 | 2175 Lisp_Marker *p; |
2176 | |
3017 | 2177 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (marker, Lisp_Marker, p, &lrecord_marker); |
428 | 2178 p->buffer = 0; |
665 | 2179 p->membpos = 0; |
428 | 2180 marker_next (p) = 0; |
2181 marker_prev (p) = 0; | |
2182 p->insertion_type = 0; | |
793 | 2183 return wrap_marker (p); |
428 | 2184 } |
2185 | |
2186 Lisp_Object | |
2187 noseeum_make_marker (void) | |
2188 { | |
440 | 2189 Lisp_Marker *p; |
2190 | |
3017 | 2191 NOSEEUM_ALLOCATE_FIXED_TYPE_AND_SET_IMPL (marker, Lisp_Marker, p, |
2192 &lrecord_marker); | |
428 | 2193 p->buffer = 0; |
665 | 2194 p->membpos = 0; |
428 | 2195 marker_next (p) = 0; |
2196 marker_prev (p) = 0; | |
2197 p->insertion_type = 0; | |
793 | 2198 return wrap_marker (p); |
428 | 2199 } |
2200 | |
2201 | |
2202 /************************************************************************/ | |
2203 /* String allocation */ | |
2204 /************************************************************************/ | |
2205 | |
2206 /* The data for "short" strings generally resides inside of structs of type | |
2207 string_chars_block. The Lisp_String structure is allocated just like any | |
1204 | 2208 other basic lrecord, and these are freelisted when they get garbage |
2209 collected. The data for short strings get compacted, but the data for | |
2210 large strings do not. | |
428 | 2211 |
2212 Previously Lisp_String structures were relocated, but this caused a lot | |
2213 of bus-errors because the C code didn't include enough GCPRO's for | |
2214 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so | |
2215 that the reference would get relocated). | |
2216 | |
2217 This new method makes things somewhat bigger, but it is MUCH safer. */ | |
2218 | |
438 | 2219 DECLARE_FIXED_TYPE_ALLOC (string, Lisp_String); |
428 | 2220 /* strings are used and freed quite often */ |
2221 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */ | |
2222 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000 | |
2223 | |
2224 static Lisp_Object | |
2225 mark_string (Lisp_Object obj) | |
2226 { | |
793 | 2227 if (CONSP (XSTRING_PLIST (obj)) && EXTENT_INFOP (XCAR (XSTRING_PLIST (obj)))) |
2228 flush_cached_extent_info (XCAR (XSTRING_PLIST (obj))); | |
2229 return XSTRING_PLIST (obj); | |
428 | 2230 } |
2231 | |
2232 static int | |
2286 | 2233 string_equal (Lisp_Object obj1, Lisp_Object obj2, int UNUSED (depth)) |
428 | 2234 { |
2235 Bytecount len; | |
2236 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) && | |
2237 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len)); | |
2238 } | |
2239 | |
1204 | 2240 static const struct memory_description string_description[] = { |
793 | 2241 { XD_BYTECOUNT, offsetof (Lisp_String, size_) }, |
2242 { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data_), XD_INDIRECT(0, 1) }, | |
440 | 2243 { XD_LISP_OBJECT, offsetof (Lisp_String, plist) }, |
428 | 2244 { XD_END } |
2245 }; | |
2246 | |
442 | 2247 /* We store the string's extent info as the first element of the string's |
2248 property list; and the string's MODIFF as the first or second element | |
2249 of the string's property list (depending on whether the extent info | |
2250 is present), but only if the string has been modified. This is ugly | |
2251 but it reduces the memory allocated for the string in the vast | |
2252 majority of cases, where the string is never modified and has no | |
2253 extent info. | |
2254 | |
2255 #### This means you can't use an int as a key in a string's plist. */ | |
2256 | |
2257 static Lisp_Object * | |
2258 string_plist_ptr (Lisp_Object string) | |
2259 { | |
793 | 2260 Lisp_Object *ptr = &XSTRING_PLIST (string); |
442 | 2261 |
2262 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr))) | |
2263 ptr = &XCDR (*ptr); | |
2264 if (CONSP (*ptr) && INTP (XCAR (*ptr))) | |
2265 ptr = &XCDR (*ptr); | |
2266 return ptr; | |
2267 } | |
2268 | |
2269 static Lisp_Object | |
2270 string_getprop (Lisp_Object string, Lisp_Object property) | |
2271 { | |
2272 return external_plist_get (string_plist_ptr (string), property, 0, ERROR_ME); | |
2273 } | |
2274 | |
2275 static int | |
2276 string_putprop (Lisp_Object string, Lisp_Object property, Lisp_Object value) | |
2277 { | |
2278 external_plist_put (string_plist_ptr (string), property, value, 0, ERROR_ME); | |
2279 return 1; | |
2280 } | |
2281 | |
2282 static int | |
2283 string_remprop (Lisp_Object string, Lisp_Object property) | |
2284 { | |
2285 return external_remprop (string_plist_ptr (string), property, 0, ERROR_ME); | |
2286 } | |
2287 | |
2288 static Lisp_Object | |
2289 string_plist (Lisp_Object string) | |
2290 { | |
2291 return *string_plist_ptr (string); | |
2292 } | |
2293 | |
2720 | 2294 #ifndef MC_ALLOC |
442 | 2295 /* No `finalize', or `hash' methods. |
2296 internal_hash() already knows how to hash strings and finalization | |
2297 is done with the ADDITIONAL_FREE_string macro, which is the | |
2298 standard way to do finalization when using | |
2299 SWEEP_FIXED_TYPE_BLOCK(). */ | |
2720 | 2300 |
934 | 2301 DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS ("string", string, |
2302 1, /*dumpable-flag*/ | |
2303 mark_string, print_string, | |
2304 0, string_equal, 0, | |
2305 string_description, | |
2306 string_getprop, | |
2307 string_putprop, | |
2308 string_remprop, | |
2309 string_plist, | |
2310 Lisp_String); | |
2720 | 2311 #endif /* not MC_ALLOC */ |
2312 | |
428 | 2313 /* String blocks contain this many useful bytes. */ |
2314 #define STRING_CHARS_BLOCK_SIZE \ | |
814 | 2315 ((Bytecount) (8192 - MALLOC_OVERHEAD - \ |
2316 ((2 * sizeof (struct string_chars_block *)) \ | |
2317 + sizeof (EMACS_INT)))) | |
428 | 2318 /* Block header for small strings. */ |
2319 struct string_chars_block | |
2320 { | |
2321 EMACS_INT pos; | |
2322 struct string_chars_block *next; | |
2323 struct string_chars_block *prev; | |
2324 /* Contents of string_chars_block->string_chars are interleaved | |
2325 string_chars structures (see below) and the actual string data */ | |
2326 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE]; | |
2327 }; | |
2328 | |
2329 static struct string_chars_block *first_string_chars_block; | |
2330 static struct string_chars_block *current_string_chars_block; | |
2331 | |
2332 /* If SIZE is the length of a string, this returns how many bytes | |
2333 * the string occupies in string_chars_block->string_chars | |
2334 * (including alignment padding). | |
2335 */ | |
438 | 2336 #define STRING_FULLSIZE(size) \ |
826 | 2337 ALIGN_FOR_TYPE (((size) + 1 + sizeof (Lisp_String *)), Lisp_String *) |
428 | 2338 |
2339 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE) | |
2340 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size))) | |
2341 | |
454 | 2342 #define STRING_CHARS_FREE_P(ptr) ((ptr)->string == NULL) |
2343 #define MARK_STRING_CHARS_AS_FREE(ptr) ((void) ((ptr)->string = NULL)) | |
2344 | |
2720 | 2345 #ifdef MC_ALLOC |
2346 static void | |
2347 finalize_string (void *header, int for_disksave) | |
2348 { | |
2349 if (!for_disksave) | |
2350 { | |
2351 Lisp_String *s = (Lisp_String *) header; | |
2352 Bytecount size = s->size_; | |
2994 | 2353 #ifdef ALLOC_TYPE_STATS |
2775 | 2354 dec_lrecord_string_data_stats (size); |
2994 | 2355 #endif /* ALLOC_TYPE_STATS */ |
2720 | 2356 if (BIG_STRING_SIZE_P (size)) |
2357 xfree (s->data_, Ibyte *); | |
2358 } | |
2359 } | |
2360 | |
2361 DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS ("string", string, | |
2362 1, /*dumpable-flag*/ | |
2363 mark_string, print_string, | |
2364 finalize_string, | |
2365 string_equal, 0, | |
2366 string_description, | |
2367 string_getprop, | |
2368 string_putprop, | |
2369 string_remprop, | |
2370 string_plist, | |
2371 Lisp_String); | |
2372 | |
2373 #endif /* MC_ALLOC */ | |
2374 | |
428 | 2375 struct string_chars |
2376 { | |
438 | 2377 Lisp_String *string; |
428 | 2378 unsigned char chars[1]; |
2379 }; | |
2380 | |
2381 struct unused_string_chars | |
2382 { | |
438 | 2383 Lisp_String *string; |
428 | 2384 EMACS_INT fullsize; |
2385 }; | |
2386 | |
2387 static void | |
2388 init_string_chars_alloc (void) | |
2389 { | |
2390 first_string_chars_block = xnew (struct string_chars_block); | |
2391 first_string_chars_block->prev = 0; | |
2392 first_string_chars_block->next = 0; | |
2393 first_string_chars_block->pos = 0; | |
2394 current_string_chars_block = first_string_chars_block; | |
2395 } | |
2396 | |
1550 | 2397 static Ibyte * |
2398 allocate_big_string_chars (Bytecount length) | |
2399 { | |
2400 Ibyte *p = xnew_array (Ibyte, length); | |
2401 INCREMENT_CONS_COUNTER (length, "string chars"); | |
2402 return p; | |
2403 } | |
2404 | |
428 | 2405 static struct string_chars * |
793 | 2406 allocate_string_chars_struct (Lisp_Object string_it_goes_with, |
814 | 2407 Bytecount fullsize) |
428 | 2408 { |
2409 struct string_chars *s_chars; | |
2410 | |
438 | 2411 if (fullsize <= |
2412 (countof (current_string_chars_block->string_chars) | |
2413 - current_string_chars_block->pos)) | |
428 | 2414 { |
2415 /* This string can fit in the current string chars block */ | |
2416 s_chars = (struct string_chars *) | |
2417 (current_string_chars_block->string_chars | |
2418 + current_string_chars_block->pos); | |
2419 current_string_chars_block->pos += fullsize; | |
2420 } | |
2421 else | |
2422 { | |
2423 /* Make a new current string chars block */ | |
2424 struct string_chars_block *new_scb = xnew (struct string_chars_block); | |
2425 | |
2426 current_string_chars_block->next = new_scb; | |
2427 new_scb->prev = current_string_chars_block; | |
2428 new_scb->next = 0; | |
2429 current_string_chars_block = new_scb; | |
2430 new_scb->pos = fullsize; | |
2431 s_chars = (struct string_chars *) | |
2432 current_string_chars_block->string_chars; | |
2433 } | |
2434 | |
793 | 2435 s_chars->string = XSTRING (string_it_goes_with); |
428 | 2436 |
2437 INCREMENT_CONS_COUNTER (fullsize, "string chars"); | |
2438 | |
2439 return s_chars; | |
2440 } | |
2441 | |
771 | 2442 #ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN |
2443 void | |
2444 sledgehammer_check_ascii_begin (Lisp_Object str) | |
2445 { | |
2446 Bytecount i; | |
2447 | |
2448 for (i = 0; i < XSTRING_LENGTH (str); i++) | |
2449 { | |
826 | 2450 if (!byte_ascii_p (string_byte (str, i))) |
771 | 2451 break; |
2452 } | |
2453 | |
2454 assert (i == (Bytecount) XSTRING_ASCII_BEGIN (str) || | |
2455 (i > MAX_STRING_ASCII_BEGIN && | |
2456 (Bytecount) XSTRING_ASCII_BEGIN (str) == | |
2457 (Bytecount) MAX_STRING_ASCII_BEGIN)); | |
2458 } | |
2459 #endif | |
2460 | |
2461 /* You do NOT want to be calling this! (And if you do, you must call | |
851 | 2462 XSET_STRING_ASCII_BEGIN() after modifying the string.) Use ALLOCA () |
771 | 2463 instead and then call make_string() like the rest of the world. */ |
2464 | |
428 | 2465 Lisp_Object |
2466 make_uninit_string (Bytecount length) | |
2467 { | |
438 | 2468 Lisp_String *s; |
814 | 2469 Bytecount fullsize = STRING_FULLSIZE (length); |
428 | 2470 |
438 | 2471 assert (length >= 0 && fullsize > 0); |
428 | 2472 |
2720 | 2473 #ifdef MC_ALLOC |
2474 s = alloc_lrecord_type (Lisp_String, &lrecord_string); | |
2994 | 2475 #ifdef ALLOC_TYPE_STATS |
2775 | 2476 inc_lrecord_string_data_stats (length); |
2994 | 2477 #endif /* ALLOC_TYPE_STATS */ |
2720 | 2478 #else /* not MC_ALLOC */ |
428 | 2479 /* Allocate the string header */ |
438 | 2480 ALLOCATE_FIXED_TYPE (string, Lisp_String, s); |
793 | 2481 xzero (*s); |
771 | 2482 set_lheader_implementation (&s->u.lheader, &lrecord_string); |
2720 | 2483 #endif /* not MC_ALLOC */ |
2484 | |
3063 | 2485 /* The above allocations set the UID field, which overlaps with the |
2486 ascii-length field, to some non-zero value. We need to zero it. */ | |
2487 XSET_STRING_ASCII_BEGIN (wrap_string (s), 0); | |
2488 | |
826 | 2489 set_lispstringp_data (s, BIG_STRING_FULLSIZE_P (fullsize) |
2720 | 2490 ? allocate_big_string_chars (length + 1) |
2491 : allocate_string_chars_struct (wrap_string (s), | |
2492 fullsize)->chars); | |
438 | 2493 |
826 | 2494 set_lispstringp_length (s, length); |
428 | 2495 s->plist = Qnil; |
793 | 2496 set_string_byte (wrap_string (s), length, 0); |
2497 | |
2498 return wrap_string (s); | |
428 | 2499 } |
2500 | |
2501 #ifdef VERIFY_STRING_CHARS_INTEGRITY | |
2502 static void verify_string_chars_integrity (void); | |
2503 #endif | |
2504 | |
2505 /* Resize the string S so that DELTA bytes can be inserted starting | |
2506 at POS. If DELTA < 0, it means deletion starting at POS. If | |
2507 POS < 0, resize the string but don't copy any characters. Use | |
2508 this if you're planning on completely overwriting the string. | |
2509 */ | |
2510 | |
2511 void | |
793 | 2512 resize_string (Lisp_Object s, Bytecount pos, Bytecount delta) |
428 | 2513 { |
438 | 2514 Bytecount oldfullsize, newfullsize; |
428 | 2515 #ifdef VERIFY_STRING_CHARS_INTEGRITY |
2516 verify_string_chars_integrity (); | |
2517 #endif | |
800 | 2518 #ifdef ERROR_CHECK_TEXT |
428 | 2519 if (pos >= 0) |
2520 { | |
793 | 2521 assert (pos <= XSTRING_LENGTH (s)); |
428 | 2522 if (delta < 0) |
793 | 2523 assert (pos + (-delta) <= XSTRING_LENGTH (s)); |
428 | 2524 } |
2525 else | |
2526 { | |
2527 if (delta < 0) | |
793 | 2528 assert ((-delta) <= XSTRING_LENGTH (s)); |
428 | 2529 } |
800 | 2530 #endif /* ERROR_CHECK_TEXT */ |
428 | 2531 |
2532 if (delta == 0) | |
2533 /* simplest case: no size change. */ | |
2534 return; | |
438 | 2535 |
2536 if (pos >= 0 && delta < 0) | |
2537 /* If DELTA < 0, the functions below will delete the characters | |
2538 before POS. We want to delete characters *after* POS, however, | |
2539 so convert this to the appropriate form. */ | |
2540 pos += -delta; | |
2541 | |
793 | 2542 oldfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s)); |
2543 newfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s) + delta); | |
438 | 2544 |
2545 if (BIG_STRING_FULLSIZE_P (oldfullsize)) | |
428 | 2546 { |
438 | 2547 if (BIG_STRING_FULLSIZE_P (newfullsize)) |
428 | 2548 { |
440 | 2549 /* Both strings are big. We can just realloc(). |
2550 But careful! If the string is shrinking, we have to | |
2551 memmove() _before_ realloc(), and if growing, we have to | |
2552 memmove() _after_ realloc() - otherwise the access is | |
2553 illegal, and we might crash. */ | |
793 | 2554 Bytecount len = XSTRING_LENGTH (s) + 1 - pos; |
440 | 2555 |
2556 if (delta < 0 && pos >= 0) | |
793 | 2557 memmove (XSTRING_DATA (s) + pos + delta, |
2558 XSTRING_DATA (s) + pos, len); | |
2559 XSET_STRING_DATA | |
867 | 2560 (s, (Ibyte *) xrealloc (XSTRING_DATA (s), |
793 | 2561 XSTRING_LENGTH (s) + delta + 1)); |
440 | 2562 if (delta > 0 && pos >= 0) |
793 | 2563 memmove (XSTRING_DATA (s) + pos + delta, XSTRING_DATA (s) + pos, |
2564 len); | |
1550 | 2565 /* Bump the cons counter. |
2566 Conservative; Martin let the increment be delta. */ | |
2567 INCREMENT_CONS_COUNTER (newfullsize, "string chars"); | |
428 | 2568 } |
438 | 2569 else /* String has been demoted from BIG_STRING. */ |
428 | 2570 { |
867 | 2571 Ibyte *new_data = |
438 | 2572 allocate_string_chars_struct (s, newfullsize)->chars; |
867 | 2573 Ibyte *old_data = XSTRING_DATA (s); |
438 | 2574 |
2575 if (pos >= 0) | |
2576 { | |
2577 memcpy (new_data, old_data, pos); | |
2578 memcpy (new_data + pos + delta, old_data + pos, | |
793 | 2579 XSTRING_LENGTH (s) + 1 - pos); |
438 | 2580 } |
793 | 2581 XSET_STRING_DATA (s, new_data); |
1726 | 2582 xfree (old_data, Ibyte *); |
438 | 2583 } |
2584 } | |
2585 else /* old string is small */ | |
2586 { | |
2587 if (oldfullsize == newfullsize) | |
2588 { | |
2589 /* special case; size change but the necessary | |
2590 allocation size won't change (up or down; code | |
2591 somewhere depends on there not being any unused | |
2592 allocation space, modulo any alignment | |
2593 constraints). */ | |
428 | 2594 if (pos >= 0) |
2595 { | |
867 | 2596 Ibyte *addroff = pos + XSTRING_DATA (s); |
428 | 2597 |
2598 memmove (addroff + delta, addroff, | |
2599 /* +1 due to zero-termination. */ | |
793 | 2600 XSTRING_LENGTH (s) + 1 - pos); |
428 | 2601 } |
2602 } | |
2603 else | |
2604 { | |
867 | 2605 Ibyte *old_data = XSTRING_DATA (s); |
2606 Ibyte *new_data = | |
438 | 2607 BIG_STRING_FULLSIZE_P (newfullsize) |
1550 | 2608 ? allocate_big_string_chars (XSTRING_LENGTH (s) + delta + 1) |
438 | 2609 : allocate_string_chars_struct (s, newfullsize)->chars; |
2610 | |
428 | 2611 if (pos >= 0) |
2612 { | |
438 | 2613 memcpy (new_data, old_data, pos); |
2614 memcpy (new_data + pos + delta, old_data + pos, | |
793 | 2615 XSTRING_LENGTH (s) + 1 - pos); |
428 | 2616 } |
793 | 2617 XSET_STRING_DATA (s, new_data); |
438 | 2618 |
2619 { | |
2620 /* We need to mark this chunk of the string_chars_block | |
2621 as unused so that compact_string_chars() doesn't | |
2622 freak. */ | |
2623 struct string_chars *old_s_chars = (struct string_chars *) | |
2624 ((char *) old_data - offsetof (struct string_chars, chars)); | |
2625 /* Sanity check to make sure we aren't hosed by strange | |
2626 alignment/padding. */ | |
793 | 2627 assert (old_s_chars->string == XSTRING (s)); |
454 | 2628 MARK_STRING_CHARS_AS_FREE (old_s_chars); |
438 | 2629 ((struct unused_string_chars *) old_s_chars)->fullsize = |
2630 oldfullsize; | |
2631 } | |
428 | 2632 } |
438 | 2633 } |
2634 | |
793 | 2635 XSET_STRING_LENGTH (s, XSTRING_LENGTH (s) + delta); |
438 | 2636 /* If pos < 0, the string won't be zero-terminated. |
2637 Terminate now just to make sure. */ | |
793 | 2638 XSTRING_DATA (s)[XSTRING_LENGTH (s)] = '\0'; |
438 | 2639 |
2640 if (pos >= 0) | |
793 | 2641 /* We also have to adjust all of the extent indices after the |
2642 place we did the change. We say "pos - 1" because | |
2643 adjust_extents() is exclusive of the starting position | |
2644 passed to it. */ | |
2645 adjust_extents (s, pos - 1, XSTRING_LENGTH (s), delta); | |
428 | 2646 |
2647 #ifdef VERIFY_STRING_CHARS_INTEGRITY | |
2648 verify_string_chars_integrity (); | |
2649 #endif | |
2650 } | |
2651 | |
2652 #ifdef MULE | |
2653 | |
771 | 2654 /* WARNING: If you modify an existing string, you must call |
2655 CHECK_LISP_WRITEABLE() before and bump_string_modiff() afterwards. */ | |
428 | 2656 void |
867 | 2657 set_string_char (Lisp_Object s, Charcount i, Ichar c) |
428 | 2658 { |
867 | 2659 Ibyte newstr[MAX_ICHAR_LEN]; |
771 | 2660 Bytecount bytoff = string_index_char_to_byte (s, i); |
867 | 2661 Bytecount oldlen = itext_ichar_len (XSTRING_DATA (s) + bytoff); |
2662 Bytecount newlen = set_itext_ichar (newstr, c); | |
428 | 2663 |
793 | 2664 sledgehammer_check_ascii_begin (s); |
428 | 2665 if (oldlen != newlen) |
2666 resize_string (s, bytoff, newlen - oldlen); | |
793 | 2667 /* Remember, XSTRING_DATA (s) might have changed so we can't cache it. */ |
2668 memcpy (XSTRING_DATA (s) + bytoff, newstr, newlen); | |
771 | 2669 if (oldlen != newlen) |
2670 { | |
793 | 2671 if (newlen > 1 && i <= (Charcount) XSTRING_ASCII_BEGIN (s)) |
771 | 2672 /* Everything starting with the new char is no longer part of |
2673 ascii_begin */ | |
793 | 2674 XSET_STRING_ASCII_BEGIN (s, i); |
2675 else if (newlen == 1 && i == (Charcount) XSTRING_ASCII_BEGIN (s)) | |
771 | 2676 /* We've extended ascii_begin, and we have to figure out how much by */ |
2677 { | |
2678 Bytecount j; | |
814 | 2679 for (j = (Bytecount) i + 1; j < XSTRING_LENGTH (s); j++) |
771 | 2680 { |
826 | 2681 if (!byte_ascii_p (XSTRING_DATA (s)[j])) |
771 | 2682 break; |
2683 } | |
814 | 2684 XSET_STRING_ASCII_BEGIN (s, min (j, (Bytecount) MAX_STRING_ASCII_BEGIN)); |
771 | 2685 } |
2686 } | |
793 | 2687 sledgehammer_check_ascii_begin (s); |
428 | 2688 } |
2689 | |
2690 #endif /* MULE */ | |
2691 | |
2692 DEFUN ("make-string", Fmake_string, 2, 2, 0, /* | |
444 | 2693 Return a new string consisting of LENGTH copies of CHARACTER. |
2694 LENGTH must be a non-negative integer. | |
428 | 2695 */ |
444 | 2696 (length, character)) |
428 | 2697 { |
2698 CHECK_NATNUM (length); | |
444 | 2699 CHECK_CHAR_COERCE_INT (character); |
428 | 2700 { |
867 | 2701 Ibyte init_str[MAX_ICHAR_LEN]; |
2702 int len = set_itext_ichar (init_str, XCHAR (character)); | |
428 | 2703 Lisp_Object val = make_uninit_string (len * XINT (length)); |
2704 | |
2705 if (len == 1) | |
771 | 2706 { |
2707 /* Optimize the single-byte case */ | |
2708 memset (XSTRING_DATA (val), XCHAR (character), XSTRING_LENGTH (val)); | |
793 | 2709 XSET_STRING_ASCII_BEGIN (val, min (MAX_STRING_ASCII_BEGIN, |
2710 len * XINT (length))); | |
771 | 2711 } |
428 | 2712 else |
2713 { | |
647 | 2714 EMACS_INT i; |
867 | 2715 Ibyte *ptr = XSTRING_DATA (val); |
428 | 2716 |
2717 for (i = XINT (length); i; i--) | |
2718 { | |
867 | 2719 Ibyte *init_ptr = init_str; |
428 | 2720 switch (len) |
2721 { | |
2722 case 4: *ptr++ = *init_ptr++; | |
2723 case 3: *ptr++ = *init_ptr++; | |
2724 case 2: *ptr++ = *init_ptr++; | |
2725 case 1: *ptr++ = *init_ptr++; | |
2726 } | |
2727 } | |
2728 } | |
771 | 2729 sledgehammer_check_ascii_begin (val); |
428 | 2730 return val; |
2731 } | |
2732 } | |
2733 | |
2734 DEFUN ("string", Fstring, 0, MANY, 0, /* | |
2735 Concatenate all the argument characters and make the result a string. | |
2736 */ | |
2737 (int nargs, Lisp_Object *args)) | |
2738 { | |
2367 | 2739 Ibyte *storage = alloca_ibytes (nargs * MAX_ICHAR_LEN); |
867 | 2740 Ibyte *p = storage; |
428 | 2741 |
2742 for (; nargs; nargs--, args++) | |
2743 { | |
2744 Lisp_Object lisp_char = *args; | |
2745 CHECK_CHAR_COERCE_INT (lisp_char); | |
867 | 2746 p += set_itext_ichar (p, XCHAR (lisp_char)); |
428 | 2747 } |
2748 return make_string (storage, p - storage); | |
2749 } | |
2750 | |
771 | 2751 /* Initialize the ascii_begin member of a string to the correct value. */ |
2752 | |
2753 void | |
2754 init_string_ascii_begin (Lisp_Object string) | |
2755 { | |
2756 #ifdef MULE | |
2757 int i; | |
2758 Bytecount length = XSTRING_LENGTH (string); | |
867 | 2759 Ibyte *contents = XSTRING_DATA (string); |
771 | 2760 |
2761 for (i = 0; i < length; i++) | |
2762 { | |
826 | 2763 if (!byte_ascii_p (contents[i])) |
771 | 2764 break; |
2765 } | |
793 | 2766 XSET_STRING_ASCII_BEGIN (string, min (i, MAX_STRING_ASCII_BEGIN)); |
771 | 2767 #else |
793 | 2768 XSET_STRING_ASCII_BEGIN (string, min (XSTRING_LENGTH (string), |
2769 MAX_STRING_ASCII_BEGIN)); | |
771 | 2770 #endif |
2771 sledgehammer_check_ascii_begin (string); | |
2772 } | |
428 | 2773 |
2774 /* Take some raw memory, which MUST already be in internal format, | |
2775 and package it up into a Lisp string. */ | |
2776 Lisp_Object | |
867 | 2777 make_string (const Ibyte *contents, Bytecount length) |
428 | 2778 { |
2779 Lisp_Object val; | |
2780 | |
2781 /* Make sure we find out about bad make_string's when they happen */ | |
800 | 2782 #if defined (ERROR_CHECK_TEXT) && defined (MULE) |
428 | 2783 bytecount_to_charcount (contents, length); /* Just for the assertions */ |
2784 #endif | |
2785 | |
2786 val = make_uninit_string (length); | |
2787 memcpy (XSTRING_DATA (val), contents, length); | |
771 | 2788 init_string_ascii_begin (val); |
2789 sledgehammer_check_ascii_begin (val); | |
428 | 2790 return val; |
2791 } | |
2792 | |
2793 /* Take some raw memory, encoded in some external data format, | |
2794 and convert it into a Lisp string. */ | |
2795 Lisp_Object | |
442 | 2796 make_ext_string (const Extbyte *contents, EMACS_INT length, |
440 | 2797 Lisp_Object coding_system) |
428 | 2798 { |
440 | 2799 Lisp_Object string; |
2800 TO_INTERNAL_FORMAT (DATA, (contents, length), | |
2801 LISP_STRING, string, | |
2802 coding_system); | |
2803 return string; | |
428 | 2804 } |
2805 | |
2806 Lisp_Object | |
867 | 2807 build_intstring (const Ibyte *str) |
771 | 2808 { |
2809 /* Some strlen's crash and burn if passed null. */ | |
814 | 2810 return make_string (str, (str ? qxestrlen (str) : (Bytecount) 0)); |
771 | 2811 } |
2812 | |
2813 Lisp_Object | |
867 | 2814 build_string (const CIbyte *str) |
428 | 2815 { |
2816 /* Some strlen's crash and burn if passed null. */ | |
867 | 2817 return make_string ((const Ibyte *) str, (str ? strlen (str) : 0)); |
428 | 2818 } |
2819 | |
2820 Lisp_Object | |
593 | 2821 build_ext_string (const Extbyte *str, Lisp_Object coding_system) |
428 | 2822 { |
2823 /* Some strlen's crash and burn if passed null. */ | |
2367 | 2824 return make_ext_string ((const Extbyte *) str, |
2825 (str ? dfc_external_data_len (str, coding_system) : | |
2826 0), | |
440 | 2827 coding_system); |
428 | 2828 } |
2829 | |
2830 Lisp_Object | |
867 | 2831 build_msg_intstring (const Ibyte *str) |
428 | 2832 { |
771 | 2833 return build_intstring (GETTEXT (str)); |
2834 } | |
2835 | |
2836 Lisp_Object | |
867 | 2837 build_msg_string (const CIbyte *str) |
771 | 2838 { |
2839 return build_string (CGETTEXT (str)); | |
428 | 2840 } |
2841 | |
2842 Lisp_Object | |
867 | 2843 make_string_nocopy (const Ibyte *contents, Bytecount length) |
428 | 2844 { |
438 | 2845 Lisp_String *s; |
428 | 2846 Lisp_Object val; |
2847 | |
2848 /* Make sure we find out about bad make_string_nocopy's when they happen */ | |
800 | 2849 #if defined (ERROR_CHECK_TEXT) && defined (MULE) |
428 | 2850 bytecount_to_charcount (contents, length); /* Just for the assertions */ |
2851 #endif | |
2852 | |
2720 | 2853 #ifdef MC_ALLOC |
2854 s = alloc_lrecord_type (Lisp_String, &lrecord_string); | |
2994 | 2855 #ifdef ALLOC_TYPE_STATS |
2775 | 2856 inc_lrecord_string_data_stats (length); |
2994 | 2857 #endif /* ALLOC_TYPE_STATS */ |
2720 | 2858 mcpro (wrap_pointer_1 (s)); /* otherwise nocopy_strings get |
2859 collected and static data is tried to | |
2860 be freed. */ | |
2861 #else /* not MC_ALLOC */ | |
428 | 2862 /* Allocate the string header */ |
438 | 2863 ALLOCATE_FIXED_TYPE (string, Lisp_String, s); |
771 | 2864 set_lheader_implementation (&s->u.lheader, &lrecord_string); |
2865 SET_C_READONLY_RECORD_HEADER (&s->u.lheader); | |
2720 | 2866 #endif /* not MC_ALLOC */ |
3063 | 2867 /* Don't need to XSET_STRING_ASCII_BEGIN() here because it happens in |
2868 init_string_ascii_begin(). */ | |
428 | 2869 s->plist = Qnil; |
867 | 2870 set_lispstringp_data (s, (Ibyte *) contents); |
826 | 2871 set_lispstringp_length (s, length); |
793 | 2872 val = wrap_string (s); |
771 | 2873 init_string_ascii_begin (val); |
2874 sledgehammer_check_ascii_begin (val); | |
2875 | |
428 | 2876 return val; |
2877 } | |
2878 | |
2879 | |
2720 | 2880 #ifndef MC_ALLOC |
428 | 2881 /************************************************************************/ |
2882 /* lcrecord lists */ | |
2883 /************************************************************************/ | |
2884 | |
2885 /* Lcrecord lists are used to manage the allocation of particular | |
3024 | 2886 sorts of lcrecords, to avoid calling BASIC_ALLOC_LCRECORD() (and thus |
428 | 2887 malloc() and garbage-collection junk) as much as possible. |
2888 It is similar to the Blocktype class. | |
2889 | |
1204 | 2890 See detailed comment in lcrecord.h. |
2891 */ | |
2892 | |
2893 const struct memory_description free_description[] = { | |
2551 | 2894 { XD_LISP_OBJECT, offsetof (struct free_lcrecord_header, chain), 0, { 0 }, |
1204 | 2895 XD_FLAG_FREE_LISP_OBJECT }, |
2896 { XD_END } | |
2897 }; | |
2898 | |
2899 DEFINE_LRECORD_IMPLEMENTATION ("free", free, | |
2900 0, /*dumpable-flag*/ | |
2901 0, internal_object_printer, | |
2902 0, 0, 0, free_description, | |
2903 struct free_lcrecord_header); | |
2904 | |
2905 const struct memory_description lcrecord_list_description[] = { | |
2551 | 2906 { XD_LISP_OBJECT, offsetof (struct lcrecord_list, free), 0, { 0 }, |
1204 | 2907 XD_FLAG_FREE_LISP_OBJECT }, |
2908 { XD_END } | |
2909 }; | |
428 | 2910 |
2911 static Lisp_Object | |
2912 mark_lcrecord_list (Lisp_Object obj) | |
2913 { | |
2914 struct lcrecord_list *list = XLCRECORD_LIST (obj); | |
2915 Lisp_Object chain = list->free; | |
2916 | |
2917 while (!NILP (chain)) | |
2918 { | |
2919 struct lrecord_header *lheader = XRECORD_LHEADER (chain); | |
2920 struct free_lcrecord_header *free_header = | |
2921 (struct free_lcrecord_header *) lheader; | |
2922 | |
442 | 2923 gc_checking_assert |
2924 (/* There should be no other pointers to the free list. */ | |
2925 ! MARKED_RECORD_HEADER_P (lheader) | |
2926 && | |
2927 /* Only lcrecords should be here. */ | |
1204 | 2928 ! list->implementation->basic_p |
442 | 2929 && |
2930 /* Only free lcrecords should be here. */ | |
2931 free_header->lcheader.free | |
2932 && | |
2933 /* The type of the lcrecord must be right. */ | |
1204 | 2934 lheader->type == lrecord_type_free |
442 | 2935 && |
2936 /* So must the size. */ | |
1204 | 2937 (list->implementation->static_size == 0 || |
2938 list->implementation->static_size == list->size) | |
442 | 2939 ); |
428 | 2940 |
2941 MARK_RECORD_HEADER (lheader); | |
2942 chain = free_header->chain; | |
2943 } | |
2944 | |
2945 return Qnil; | |
2946 } | |
2947 | |
934 | 2948 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list, |
2949 0, /*dumpable-flag*/ | |
2950 mark_lcrecord_list, internal_object_printer, | |
1204 | 2951 0, 0, 0, lcrecord_list_description, |
2952 struct lcrecord_list); | |
934 | 2953 |
428 | 2954 Lisp_Object |
665 | 2955 make_lcrecord_list (Elemcount size, |
442 | 2956 const struct lrecord_implementation *implementation) |
428 | 2957 { |
3024 | 2958 /* Don't use old_alloc_lcrecord_type() avoid infinite recursion |
1204 | 2959 allocating this, */ |
2960 struct lcrecord_list *p = (struct lcrecord_list *) | |
3024 | 2961 old_basic_alloc_lcrecord (sizeof (struct lcrecord_list), |
2962 &lrecord_lcrecord_list); | |
428 | 2963 |
2964 p->implementation = implementation; | |
2965 p->size = size; | |
2966 p->free = Qnil; | |
793 | 2967 return wrap_lcrecord_list (p); |
428 | 2968 } |
2969 | |
2970 Lisp_Object | |
1204 | 2971 alloc_managed_lcrecord (Lisp_Object lcrecord_list) |
428 | 2972 { |
2973 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); | |
2974 if (!NILP (list->free)) | |
2975 { | |
2976 Lisp_Object val = list->free; | |
2977 struct free_lcrecord_header *free_header = | |
2978 (struct free_lcrecord_header *) XPNTR (val); | |
1204 | 2979 struct lrecord_header *lheader = &free_header->lcheader.lheader; |
428 | 2980 |
2981 #ifdef ERROR_CHECK_GC | |
1204 | 2982 /* Major overkill here. */ |
428 | 2983 /* There should be no other pointers to the free list. */ |
442 | 2984 assert (! MARKED_RECORD_HEADER_P (lheader)); |
428 | 2985 /* Only free lcrecords should be here. */ |
2986 assert (free_header->lcheader.free); | |
1204 | 2987 assert (lheader->type == lrecord_type_free); |
2988 /* Only lcrecords should be here. */ | |
2989 assert (! (list->implementation->basic_p)); | |
2990 #if 0 /* Not used anymore, now that we set the type of the header to | |
2991 lrecord_type_free. */ | |
428 | 2992 /* The type of the lcrecord must be right. */ |
442 | 2993 assert (LHEADER_IMPLEMENTATION (lheader) == list->implementation); |
1204 | 2994 #endif /* 0 */ |
428 | 2995 /* So must the size. */ |
1204 | 2996 assert (list->implementation->static_size == 0 || |
2997 list->implementation->static_size == list->size); | |
428 | 2998 #endif /* ERROR_CHECK_GC */ |
442 | 2999 |
428 | 3000 list->free = free_header->chain; |
3001 free_header->lcheader.free = 0; | |
1204 | 3002 /* Put back the correct type, as we set it to lrecord_type_free. */ |
3003 lheader->type = list->implementation->lrecord_type_index; | |
3024 | 3004 old_zero_sized_lcrecord (free_header, list->size); |
428 | 3005 return val; |
3006 } | |
3007 else | |
3024 | 3008 return wrap_pointer_1 (old_basic_alloc_lcrecord (list->size, |
3009 list->implementation)); | |
428 | 3010 } |
3011 | |
771 | 3012 /* "Free" a Lisp object LCRECORD by placing it on its associated free list |
1204 | 3013 LCRECORD_LIST; next time alloc_managed_lcrecord() is called with the |
771 | 3014 same LCRECORD_LIST as its parameter, it will return an object from the |
3015 free list, which may be this one. Be VERY VERY SURE there are no | |
3016 pointers to this object hanging around anywhere where they might be | |
3017 used! | |
3018 | |
3019 The first thing this does before making any global state change is to | |
3020 call the finalize method of the object, if it exists. */ | |
3021 | |
428 | 3022 void |
3023 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord) | |
3024 { | |
3025 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); | |
3026 struct free_lcrecord_header *free_header = | |
3027 (struct free_lcrecord_header *) XPNTR (lcrecord); | |
442 | 3028 struct lrecord_header *lheader = &free_header->lcheader.lheader; |
3029 const struct lrecord_implementation *implementation | |
428 | 3030 = LHEADER_IMPLEMENTATION (lheader); |
3031 | |
771 | 3032 /* Finalizer methods may try to free objects within them, which typically |
3033 won't be marked and thus are scheduled for demolition. Putting them | |
3034 on the free list would be very bad, as we'd have xfree()d memory in | |
3035 the list. Even if for some reason the objects are still live | |
3036 (generally a logic error!), we still will have problems putting such | |
3037 an object on the free list right now (e.g. we'd have to avoid calling | |
3038 the finalizer twice, etc.). So basically, those finalizers should not | |
3039 be freeing any objects if during GC. Abort now to catch those | |
3040 problems. */ | |
3041 gc_checking_assert (!gc_in_progress); | |
3042 | |
428 | 3043 /* Make sure the size is correct. This will catch, for example, |
3044 putting a window configuration on the wrong free list. */ | |
1204 | 3045 gc_checking_assert (detagged_lisp_object_size (lheader) == list->size); |
771 | 3046 /* Make sure the object isn't already freed. */ |
3047 gc_checking_assert (!free_header->lcheader.free); | |
2367 | 3048 /* Freeing stuff in dumped memory is bad. If you trip this, you |
3049 may need to check for this before freeing. */ | |
3050 gc_checking_assert (!OBJECT_DUMPED_P (lcrecord)); | |
771 | 3051 |
428 | 3052 if (implementation->finalizer) |
3053 implementation->finalizer (lheader, 0); | |
1204 | 3054 /* Yes, there are two ways to indicate freeness -- the type is |
3055 lrecord_type_free or the ->free flag is set. We used to do only the | |
3056 latter; now we do the former as well for KKCC purposes. Probably | |
3057 safer in any case, as we will lose quicker this way than keeping | |
3058 around an lrecord of apparently correct type but bogus junk in it. */ | |
3059 MARK_LRECORD_AS_FREE (lheader); | |
428 | 3060 free_header->chain = list->free; |
3061 free_header->lcheader.free = 1; | |
3062 list->free = lcrecord; | |
3063 } | |
3064 | |
771 | 3065 static Lisp_Object all_lcrecord_lists[countof (lrecord_implementations_table)]; |
3066 | |
3067 void * | |
3068 alloc_automanaged_lcrecord (Bytecount size, | |
3069 const struct lrecord_implementation *imp) | |
3070 { | |
3071 if (EQ (all_lcrecord_lists[imp->lrecord_type_index], Qzero)) | |
3072 all_lcrecord_lists[imp->lrecord_type_index] = | |
3073 make_lcrecord_list (size, imp); | |
3074 | |
1204 | 3075 return XPNTR (alloc_managed_lcrecord |
771 | 3076 (all_lcrecord_lists[imp->lrecord_type_index])); |
3077 } | |
3078 | |
3079 void | |
3024 | 3080 old_free_lcrecord (Lisp_Object rec) |
771 | 3081 { |
3082 int type = XRECORD_LHEADER (rec)->type; | |
3083 | |
3084 assert (!EQ (all_lcrecord_lists[type], Qzero)); | |
3085 | |
3086 free_managed_lcrecord (all_lcrecord_lists[type], rec); | |
3087 } | |
2720 | 3088 #endif /* not MC_ALLOC */ |
428 | 3089 |
3090 | |
3091 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /* | |
3092 Kept for compatibility, returns its argument. | |
3093 Old: | |
3094 Make a copy of OBJECT in pure storage. | |
3095 Recursively copies contents of vectors and cons cells. | |
3096 Does not copy symbols. | |
3097 */ | |
444 | 3098 (object)) |
428 | 3099 { |
444 | 3100 return object; |
428 | 3101 } |
3102 | |
3103 | |
3104 /************************************************************************/ | |
3105 /* Garbage Collection */ | |
3106 /************************************************************************/ | |
3107 | |
442 | 3108 /* All the built-in lisp object types are enumerated in `enum lrecord_type'. |
3109 Additional ones may be defined by a module (none yet). We leave some | |
3110 room in `lrecord_implementations_table' for such new lisp object types. */ | |
647 | 3111 const struct lrecord_implementation *lrecord_implementations_table[(int)lrecord_type_last_built_in_type + MODULE_DEFINABLE_TYPE_COUNT]; |
3112 int lrecord_type_count = lrecord_type_last_built_in_type; | |
1676 | 3113 #ifndef USE_KKCC |
442 | 3114 /* Object marker functions are in the lrecord_implementation structure. |
3115 But copying them to a parallel array is much more cache-friendly. | |
3116 This hack speeds up (garbage-collect) by about 5%. */ | |
3117 Lisp_Object (*lrecord_markers[countof (lrecord_implementations_table)]) (Lisp_Object); | |
1676 | 3118 #endif /* not USE_KKCC */ |
428 | 3119 |
3120 struct gcpro *gcprolist; | |
3121 | |
771 | 3122 /* We want the staticpro list relocated, but not the pointers found |
3123 therein, because they refer to locations in the global data segment, not | |
3124 in the heap; we only dump heap objects. Hence we use a trivial | |
3125 description, as for pointerless objects. (Note that the data segment | |
3126 objects, which are global variables like Qfoo or Vbar, themselves are | |
3127 pointers to heap objects. Each needs to be described to pdump as a | |
3128 "root pointer"; this happens in the call to staticpro(). */ | |
1204 | 3129 static const struct memory_description staticpro_description_1[] = { |
452 | 3130 { XD_END } |
3131 }; | |
3132 | |
1204 | 3133 static const struct sized_memory_description staticpro_description = { |
452 | 3134 sizeof (Lisp_Object *), |
3135 staticpro_description_1 | |
3136 }; | |
3137 | |
1204 | 3138 static const struct memory_description staticpros_description_1[] = { |
452 | 3139 XD_DYNARR_DESC (Lisp_Object_ptr_dynarr, &staticpro_description), |
3140 { XD_END } | |
3141 }; | |
3142 | |
1204 | 3143 static const struct sized_memory_description staticpros_description = { |
452 | 3144 sizeof (Lisp_Object_ptr_dynarr), |
3145 staticpros_description_1 | |
3146 }; | |
3147 | |
771 | 3148 #ifdef DEBUG_XEMACS |
3149 | |
1204 | 3150 static const struct memory_description staticpro_one_name_description_1[] = { |
2367 | 3151 { XD_ASCII_STRING, 0 }, |
771 | 3152 { XD_END } |
3153 }; | |
3154 | |
1204 | 3155 static const struct sized_memory_description staticpro_one_name_description = { |
771 | 3156 sizeof (char *), |
3157 staticpro_one_name_description_1 | |
3158 }; | |
3159 | |
1204 | 3160 static const struct memory_description staticpro_names_description_1[] = { |
771 | 3161 XD_DYNARR_DESC (char_ptr_dynarr, &staticpro_one_name_description), |
3162 { XD_END } | |
3163 }; | |
3164 | |
1204 | 3165 |
3166 extern const struct sized_memory_description staticpro_names_description; | |
3167 | |
3168 const struct sized_memory_description staticpro_names_description = { | |
771 | 3169 sizeof (char_ptr_dynarr), |
3170 staticpro_names_description_1 | |
3171 }; | |
3172 | |
3173 /* Help debug crashes gc-marking a staticpro'ed object. */ | |
3174 | |
3175 Lisp_Object_ptr_dynarr *staticpros; | |
3176 char_ptr_dynarr *staticpro_names; | |
3177 | |
3178 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
3179 garbage collection, and for dumping. */ | |
3180 void | |
3181 staticpro_1 (Lisp_Object *varaddress, char *varname) | |
3182 { | |
3183 Dynarr_add (staticpros, varaddress); | |
3184 Dynarr_add (staticpro_names, varname); | |
1204 | 3185 dump_add_root_lisp_object (varaddress); |
771 | 3186 } |
3187 | |
3188 | |
3189 Lisp_Object_ptr_dynarr *staticpros_nodump; | |
3190 char_ptr_dynarr *staticpro_nodump_names; | |
3191 | |
3192 /* Mark the Lisp_Object at heap VARADDRESS as a root object for | |
3193 garbage collection, but not for dumping. (See below.) */ | |
3194 void | |
3195 staticpro_nodump_1 (Lisp_Object *varaddress, char *varname) | |
3196 { | |
3197 Dynarr_add (staticpros_nodump, varaddress); | |
3198 Dynarr_add (staticpro_nodump_names, varname); | |
3199 } | |
3200 | |
996 | 3201 #ifdef HAVE_SHLIB |
3202 /* Stop treating the Lisp_Object at non-heap VARADDRESS as a root object | |
3203 for garbage collection, but not for dumping. */ | |
3204 void | |
3205 unstaticpro_nodump_1 (Lisp_Object *varaddress, char *varname) | |
3206 { | |
3207 Dynarr_delete_object (staticpros, varaddress); | |
3208 Dynarr_delete_object (staticpro_names, varname); | |
3209 } | |
3210 #endif | |
3211 | |
771 | 3212 #else /* not DEBUG_XEMACS */ |
3213 | |
452 | 3214 Lisp_Object_ptr_dynarr *staticpros; |
3215 | |
3216 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
3217 garbage collection, and for dumping. */ | |
428 | 3218 void |
3219 staticpro (Lisp_Object *varaddress) | |
3220 { | |
452 | 3221 Dynarr_add (staticpros, varaddress); |
1204 | 3222 dump_add_root_lisp_object (varaddress); |
428 | 3223 } |
3224 | |
442 | 3225 |
452 | 3226 Lisp_Object_ptr_dynarr *staticpros_nodump; |
3227 | |
771 | 3228 /* Mark the Lisp_Object at heap VARADDRESS as a root object for garbage |
3229 collection, but not for dumping. This is used for objects where the | |
3230 only sure pointer is in the heap (rather than in the global data | |
3231 segment, as must be the case for pdump root pointers), but not inside of | |
3232 another Lisp object (where it will be marked as a result of that Lisp | |
3233 object's mark method). The call to staticpro_nodump() must occur *BOTH* | |
3234 at initialization time and at "reinitialization" time (startup, after | |
3235 pdump load.) (For example, this is the case with the predicate symbols | |
3236 for specifier and coding system types. The pointer to this symbol is | |
3237 inside of a methods structure, which is allocated on the heap. The | |
3238 methods structure will be written out to the pdump data file, and may be | |
3239 reloaded at a different address.) | |
3240 | |
3241 #### The necessity for reinitialization is a bug in pdump. Pdump should | |
3242 automatically regenerate the staticpro()s for these symbols when it | |
3243 loads the data in. */ | |
3244 | |
428 | 3245 void |
3246 staticpro_nodump (Lisp_Object *varaddress) | |
3247 { | |
452 | 3248 Dynarr_add (staticpros_nodump, varaddress); |
428 | 3249 } |
3250 | |
996 | 3251 #ifdef HAVE_SHLIB |
3252 /* Unmark the Lisp_Object at non-heap VARADDRESS as a root object for | |
3253 garbage collection, but not for dumping. */ | |
3254 void | |
3255 unstaticpro_nodump (Lisp_Object *varaddress) | |
3256 { | |
3257 Dynarr_delete_object (staticpros, varaddress); | |
3258 } | |
3259 #endif | |
3260 | |
771 | 3261 #endif /* not DEBUG_XEMACS */ |
3262 | |
2720 | 3263 |
3264 | |
3265 | |
3266 | |
3267 #ifdef MC_ALLOC | |
3268 static const struct memory_description mcpro_description_1[] = { | |
3269 { XD_END } | |
3270 }; | |
3271 | |
3272 static const struct sized_memory_description mcpro_description = { | |
3273 sizeof (Lisp_Object *), | |
3274 mcpro_description_1 | |
3275 }; | |
3276 | |
3277 static const struct memory_description mcpros_description_1[] = { | |
3278 XD_DYNARR_DESC (Lisp_Object_dynarr, &mcpro_description), | |
3279 { XD_END } | |
3280 }; | |
3281 | |
3282 static const struct sized_memory_description mcpros_description = { | |
3283 sizeof (Lisp_Object_dynarr), | |
3284 mcpros_description_1 | |
3285 }; | |
3286 | |
3287 #ifdef DEBUG_XEMACS | |
3288 | |
3289 static const struct memory_description mcpro_one_name_description_1[] = { | |
3290 { XD_ASCII_STRING, 0 }, | |
3291 { XD_END } | |
3292 }; | |
3293 | |
3294 static const struct sized_memory_description mcpro_one_name_description = { | |
3295 sizeof (char *), | |
3296 mcpro_one_name_description_1 | |
3297 }; | |
3298 | |
3299 static const struct memory_description mcpro_names_description_1[] = { | |
3300 XD_DYNARR_DESC (char_ptr_dynarr, &mcpro_one_name_description), | |
3301 { XD_END } | |
3302 }; | |
3303 | |
3304 extern const struct sized_memory_description mcpro_names_description; | |
3305 | |
3306 const struct sized_memory_description mcpro_names_description = { | |
3307 sizeof (char_ptr_dynarr), | |
3308 mcpro_names_description_1 | |
3309 }; | |
3310 | |
3311 /* Help debug crashes gc-marking a mcpro'ed object. */ | |
3312 | |
3313 Lisp_Object_dynarr *mcpros; | |
3314 char_ptr_dynarr *mcpro_names; | |
3315 | |
3316 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
3317 garbage collection, and for dumping. */ | |
3318 void | |
3319 mcpro_1 (Lisp_Object varaddress, char *varname) | |
3320 { | |
3321 Dynarr_add (mcpros, varaddress); | |
3322 Dynarr_add (mcpro_names, varname); | |
3323 } | |
3324 | |
3325 #else /* not DEBUG_XEMACS */ | |
3326 | |
3327 Lisp_Object_dynarr *mcpros; | |
3328 | |
3329 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
3330 garbage collection, and for dumping. */ | |
3331 void | |
3332 mcpro (Lisp_Object varaddress) | |
3333 { | |
3334 Dynarr_add (mcpros, varaddress); | |
3335 } | |
3336 | |
3337 #endif /* not DEBUG_XEMACS */ | |
3338 #endif /* MC_ALLOC */ | |
3339 | |
442 | 3340 #ifdef ERROR_CHECK_GC |
2720 | 3341 #ifdef MC_ALLOC |
3342 #define GC_CHECK_LHEADER_INVARIANTS(lheader) do { \ | |
3343 struct lrecord_header * GCLI_lh = (lheader); \ | |
3344 assert (GCLI_lh != 0); \ | |
3345 assert (GCLI_lh->type < (unsigned int) lrecord_type_count); \ | |
3346 } while (0) | |
3347 #else /* not MC_ALLOC */ | |
442 | 3348 #define GC_CHECK_LHEADER_INVARIANTS(lheader) do { \ |
3349 struct lrecord_header * GCLI_lh = (lheader); \ | |
3350 assert (GCLI_lh != 0); \ | |
647 | 3351 assert (GCLI_lh->type < (unsigned int) lrecord_type_count); \ |
442 | 3352 assert (! C_READONLY_RECORD_HEADER_P (GCLI_lh) || \ |
3353 (MARKED_RECORD_HEADER_P (GCLI_lh) && \ | |
3354 LISP_READONLY_RECORD_HEADER_P (GCLI_lh))); \ | |
3355 } while (0) | |
2720 | 3356 #endif /* not MC_ALLOC */ |
442 | 3357 #else |
3358 #define GC_CHECK_LHEADER_INVARIANTS(lheader) | |
3359 #endif | |
3360 | |
934 | 3361 |
1204 | 3362 static const struct memory_description lisp_object_description_1[] = { |
3363 { XD_LISP_OBJECT, 0 }, | |
3364 { XD_END } | |
3365 }; | |
3366 | |
3367 const struct sized_memory_description lisp_object_description = { | |
3368 sizeof (Lisp_Object), | |
3369 lisp_object_description_1 | |
3370 }; | |
3371 | |
3372 #if defined (USE_KKCC) || defined (PDUMP) | |
934 | 3373 |
3374 /* This function extracts the value of a count variable described somewhere | |
3375 else in the description. It is converted corresponding to the type */ | |
1204 | 3376 EMACS_INT |
3377 lispdesc_indirect_count_1 (EMACS_INT code, | |
3378 const struct memory_description *idesc, | |
3379 const void *idata) | |
934 | 3380 { |
3381 EMACS_INT count; | |
3382 const void *irdata; | |
3383 | |
3384 int line = XD_INDIRECT_VAL (code); | |
3385 int delta = XD_INDIRECT_DELTA (code); | |
3386 | |
1204 | 3387 irdata = ((char *) idata) + |
3388 lispdesc_indirect_count (idesc[line].offset, idesc, idata); | |
934 | 3389 switch (idesc[line].type) |
3390 { | |
3391 case XD_BYTECOUNT: | |
1204 | 3392 count = * (Bytecount *) irdata; |
934 | 3393 break; |
3394 case XD_ELEMCOUNT: | |
1204 | 3395 count = * (Elemcount *) irdata; |
934 | 3396 break; |
3397 case XD_HASHCODE: | |
1204 | 3398 count = * (Hashcode *) irdata; |
934 | 3399 break; |
3400 case XD_INT: | |
1204 | 3401 count = * (int *) irdata; |
934 | 3402 break; |
3403 case XD_LONG: | |
1204 | 3404 count = * (long *) irdata; |
934 | 3405 break; |
3406 default: | |
3407 stderr_out ("Unsupported count type : %d (line = %d, code = %ld)\n", | |
1204 | 3408 idesc[line].type, line, (long) code); |
2666 | 3409 #if defined(USE_KKCC) && defined(DEBUG_XEMACS) |
2645 | 3410 if (gc_in_progress) |
3411 kkcc_backtrace (); | |
3412 #endif | |
1204 | 3413 #ifdef PDUMP |
3414 if (in_pdump) | |
3415 pdump_backtrace (); | |
3416 #endif | |
934 | 3417 count = 0; /* warning suppression */ |
2500 | 3418 ABORT (); |
934 | 3419 } |
3420 count += delta; | |
3421 return count; | |
3422 } | |
3423 | |
1204 | 3424 /* SDESC is a "description map" (basically, a list of offsets used for |
3425 successive indirections) and OBJ is the first object to indirect off of. | |
3426 Return the description ultimately found. */ | |
3427 | |
3428 const struct sized_memory_description * | |
3429 lispdesc_indirect_description_1 (const void *obj, | |
3430 const struct sized_memory_description *sdesc) | |
934 | 3431 { |
3432 int pos; | |
3433 | |
1204 | 3434 for (pos = 0; sdesc[pos].size >= 0; pos++) |
3435 obj = * (const void **) ((const char *) obj + sdesc[pos].size); | |
3436 | |
3437 return (const struct sized_memory_description *) obj; | |
3438 } | |
3439 | |
3440 /* Compute the size of the data at RDATA, described by a single entry | |
3441 DESC1 in a description array. OBJ and DESC are used for | |
3442 XD_INDIRECT references. */ | |
3443 | |
3444 static Bytecount | |
3445 lispdesc_one_description_line_size (void *rdata, | |
3446 const struct memory_description *desc1, | |
3447 const void *obj, | |
3448 const struct memory_description *desc) | |
3449 { | |
3450 union_switcheroo: | |
3451 switch (desc1->type) | |
934 | 3452 { |
1204 | 3453 case XD_LISP_OBJECT_ARRAY: |
3454 { | |
3455 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
3456 return (val * sizeof (Lisp_Object)); | |
3457 } | |
3458 case XD_LISP_OBJECT: | |
3459 case XD_LO_LINK: | |
3460 return sizeof (Lisp_Object); | |
3461 case XD_OPAQUE_PTR: | |
3462 return sizeof (void *); | |
2367 | 3463 case XD_BLOCK_PTR: |
1204 | 3464 { |
3465 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
3466 return val * sizeof (void *); | |
3467 } | |
2367 | 3468 case XD_BLOCK_ARRAY: |
1204 | 3469 { |
3470 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
3471 | |
3472 return (val * | |
2367 | 3473 lispdesc_block_size |
2551 | 3474 (rdata, |
3475 lispdesc_indirect_description (obj, desc1->data2.descr))); | |
1204 | 3476 } |
3477 case XD_OPAQUE_DATA_PTR: | |
3478 return sizeof (void *); | |
3479 case XD_UNION_DYNAMIC_SIZE: | |
3480 { | |
3481 /* If an explicit size was given in the first-level structure | |
3482 description, use it; else compute size based on current union | |
3483 constant. */ | |
3484 const struct sized_memory_description *sdesc = | |
2551 | 3485 lispdesc_indirect_description (obj, desc1->data2.descr); |
1204 | 3486 if (sdesc->size) |
3487 return sdesc->size; | |
3488 else | |
3489 { | |
3490 desc1 = lispdesc_process_xd_union (desc1, desc, obj); | |
3491 if (desc1) | |
3492 goto union_switcheroo; | |
934 | 3493 break; |
1204 | 3494 } |
3495 } | |
3496 case XD_UNION: | |
3497 { | |
3498 /* If an explicit size was given in the first-level structure | |
3499 description, use it; else compute size based on maximum of all | |
3500 possible structures. */ | |
3501 const struct sized_memory_description *sdesc = | |
2551 | 3502 lispdesc_indirect_description (obj, desc1->data2.descr); |
1204 | 3503 if (sdesc->size) |
3504 return sdesc->size; | |
3505 else | |
3506 { | |
3507 int count; | |
3508 Bytecount max_size = -1, size; | |
3509 | |
3510 desc1 = sdesc->description; | |
3511 | |
3512 for (count = 0; desc1[count].type != XD_END; count++) | |
3513 { | |
3514 size = lispdesc_one_description_line_size (rdata, | |
3515 &desc1[count], | |
3516 obj, desc); | |
3517 if (size > max_size) | |
3518 max_size = size; | |
3519 } | |
3520 return max_size; | |
3521 } | |
934 | 3522 } |
2367 | 3523 case XD_ASCII_STRING: |
1204 | 3524 return sizeof (void *); |
3525 case XD_DOC_STRING: | |
3526 return sizeof (void *); | |
3527 case XD_INT_RESET: | |
3528 return sizeof (int); | |
3529 case XD_BYTECOUNT: | |
3530 return sizeof (Bytecount); | |
3531 case XD_ELEMCOUNT: | |
3532 return sizeof (Elemcount); | |
3533 case XD_HASHCODE: | |
3534 return sizeof (Hashcode); | |
3535 case XD_INT: | |
3536 return sizeof (int); | |
3537 case XD_LONG: | |
3538 return sizeof (long); | |
3539 default: | |
3540 stderr_out ("Unsupported dump type : %d\n", desc1->type); | |
2500 | 3541 ABORT (); |
934 | 3542 } |
3543 | |
1204 | 3544 return 0; |
934 | 3545 } |
3546 | |
3547 | |
1204 | 3548 /* Return the size of the memory block (NOT necessarily a structure!) |
3549 described by SDESC and pointed to by OBJ. If SDESC records an | |
3550 explicit size (i.e. non-zero), it is simply returned; otherwise, | |
3551 the size is calculated by the maximum offset and the size of the | |
3552 object at that offset, rounded up to the maximum alignment. In | |
3553 this case, we may need the object, for example when retrieving an | |
3554 "indirect count" of an inlined array (the count is not constant, | |
3555 but is specified by one of the elements of the memory block). (It | |
3556 is generally not a problem if we return an overly large size -- we | |
3557 will simply end up reserving more space than necessary; but if the | |
3558 size is too small we could be in serious trouble, in particular | |
3559 with nested inlined structures, where there may be alignment | |
3560 padding in the middle of a block. #### In fact there is an (at | |
3561 least theoretical) problem with an overly large size -- we may | |
3562 trigger a protection fault when reading from invalid memory. We | |
3563 need to handle this -- perhaps in a stupid but dependable way, | |
3564 i.e. by trapping SIGSEGV and SIGBUS.) */ | |
3565 | |
3566 Bytecount | |
2367 | 3567 lispdesc_block_size_1 (const void *obj, Bytecount size, |
3568 const struct memory_description *desc) | |
934 | 3569 { |
1204 | 3570 EMACS_INT max_offset = -1; |
934 | 3571 int max_offset_pos = -1; |
3572 int pos; | |
2367 | 3573 |
3574 if (size) | |
3575 return size; | |
934 | 3576 |
3577 for (pos = 0; desc[pos].type != XD_END; pos++) | |
3578 { | |
1204 | 3579 EMACS_INT offset = lispdesc_indirect_count (desc[pos].offset, desc, obj); |
3580 if (offset == max_offset) | |
934 | 3581 { |
3582 stderr_out ("Two relocatable elements at same offset?\n"); | |
2500 | 3583 ABORT (); |
934 | 3584 } |
1204 | 3585 else if (offset > max_offset) |
934 | 3586 { |
1204 | 3587 max_offset = offset; |
934 | 3588 max_offset_pos = pos; |
3589 } | |
3590 } | |
3591 | |
3592 if (max_offset_pos < 0) | |
3593 return 0; | |
3594 | |
1204 | 3595 { |
3596 Bytecount size_at_max; | |
3597 size_at_max = | |
3598 lispdesc_one_description_line_size ((char *) obj + max_offset, | |
3599 &desc[max_offset_pos], obj, desc); | |
3600 | |
3601 /* We have no way of knowing the required alignment for this structure, | |
3602 so just make it maximally aligned. */ | |
3603 return MAX_ALIGN_SIZE (max_offset + size_at_max); | |
3604 } | |
3605 } | |
3606 | |
3607 #endif /* defined (USE_KKCC) || defined (PDUMP) */ | |
3608 | |
2720 | 3609 #ifdef MC_ALLOC |
3610 #define GC_CHECK_NOT_FREE(lheader) \ | |
3611 gc_checking_assert (! LRECORD_FREE_P (lheader)); | |
3612 #else /* MC_ALLOC */ | |
1276 | 3613 #define GC_CHECK_NOT_FREE(lheader) \ |
2720 | 3614 gc_checking_assert (! LRECORD_FREE_P (lheader)); \ |
1276 | 3615 gc_checking_assert (LHEADER_IMPLEMENTATION (lheader)->basic_p || \ |
3024 | 3616 ! ((struct old_lcrecord_header *) lheader)->free) |
2720 | 3617 #endif /* MC_ALLOC */ |
1276 | 3618 |
1204 | 3619 #ifdef USE_KKCC |
3620 /* The following functions implement the new mark algorithm. | |
3621 They mark objects according to their descriptions. They | |
3622 are modeled on the corresponding pdumper procedures. */ | |
3623 | |
2666 | 3624 #ifdef DEBUG_XEMACS |
3625 /* The backtrace for the KKCC mark functions. */ | |
3626 #define KKCC_INIT_BT_STACK_SIZE 4096 | |
1676 | 3627 |
3628 typedef struct | |
3629 { | |
2645 | 3630 void *obj; |
3631 const struct memory_description *desc; | |
3632 int pos; | |
2666 | 3633 } kkcc_bt_stack_entry; |
3634 | |
3635 static kkcc_bt_stack_entry *kkcc_bt; | |
3636 static int kkcc_bt_stack_size; | |
2645 | 3637 static int kkcc_bt_depth = 0; |
3638 | |
2666 | 3639 static void |
3640 kkcc_bt_init (void) | |
3641 { | |
3642 kkcc_bt_depth = 0; | |
3643 kkcc_bt_stack_size = KKCC_INIT_BT_STACK_SIZE; | |
3644 kkcc_bt = (kkcc_bt_stack_entry *) | |
3645 malloc (kkcc_bt_stack_size * sizeof (kkcc_bt_stack_entry)); | |
3646 if (!kkcc_bt) | |
3647 { | |
3648 stderr_out ("KKCC backtrace stack init failed for size %d\n", | |
3649 kkcc_bt_stack_size); | |
3650 ABORT (); | |
3651 } | |
3652 } | |
2645 | 3653 |
3654 void | |
3655 kkcc_backtrace (void) | |
3656 { | |
3657 int i; | |
3658 stderr_out ("KKCC mark stack backtrace :\n"); | |
3659 for (i = kkcc_bt_depth - 1; i >= 0; i--) | |
3660 { | |
2650 | 3661 Lisp_Object obj = wrap_pointer_1 (kkcc_bt[i].obj); |
2645 | 3662 stderr_out (" [%d]", i); |
2720 | 3663 #ifdef MC_ALLOC |
3664 if ((XRECORD_LHEADER (obj)->type >= lrecord_type_last_built_in_type) | |
3665 #else /* not MC_ALLOC */ | |
2650 | 3666 if ((XRECORD_LHEADER (obj)->type >= lrecord_type_free) |
2720 | 3667 #endif /* not MC_ALLOC */ |
2650 | 3668 || (!LRECORDP (obj)) |
3669 || (!XRECORD_LHEADER_IMPLEMENTATION (obj))) | |
2645 | 3670 { |
3671 stderr_out (" non Lisp Object"); | |
3672 } | |
3673 else | |
3674 { | |
3675 stderr_out (" %s", | |
2650 | 3676 XRECORD_LHEADER_IMPLEMENTATION (obj)->name); |
2645 | 3677 } |
3678 stderr_out (" (addr: 0x%x, desc: 0x%x, ", | |
3679 (int) kkcc_bt[i].obj, | |
3680 (int) kkcc_bt[i].desc); | |
3681 if (kkcc_bt[i].pos >= 0) | |
3682 stderr_out ("pos: %d)\n", kkcc_bt[i].pos); | |
3683 else | |
3684 stderr_out ("root set)\n"); | |
3685 } | |
3686 } | |
3687 | |
3688 static void | |
2666 | 3689 kkcc_bt_stack_realloc (void) |
3690 { | |
3691 kkcc_bt_stack_size *= 2; | |
3692 kkcc_bt = (kkcc_bt_stack_entry *) | |
3693 realloc (kkcc_bt, kkcc_bt_stack_size * sizeof (kkcc_bt_stack_entry)); | |
3694 if (!kkcc_bt) | |
3695 { | |
3696 stderr_out ("KKCC backtrace stack realloc failed for size %d\n", | |
3697 kkcc_bt_stack_size); | |
3698 ABORT (); | |
3699 } | |
3700 } | |
3701 | |
3702 static void | |
3703 kkcc_bt_free (void) | |
3704 { | |
3705 free (kkcc_bt); | |
3706 kkcc_bt = 0; | |
3707 kkcc_bt_stack_size = 0; | |
3708 } | |
3709 | |
3710 static void | |
2645 | 3711 kkcc_bt_push (void *obj, const struct memory_description *desc, |
3712 int level, int pos) | |
3713 { | |
3714 kkcc_bt_depth = level; | |
3715 kkcc_bt[kkcc_bt_depth].obj = obj; | |
3716 kkcc_bt[kkcc_bt_depth].desc = desc; | |
3717 kkcc_bt[kkcc_bt_depth].pos = pos; | |
3718 kkcc_bt_depth++; | |
2666 | 3719 if (kkcc_bt_depth >= kkcc_bt_stack_size) |
3720 kkcc_bt_stack_realloc (); | |
2645 | 3721 } |
3722 | |
3723 #else /* not DEBUG_XEMACS */ | |
2666 | 3724 #define kkcc_bt_init() |
2645 | 3725 #define kkcc_bt_push(obj, desc, level, pos) |
3726 #endif /* not DEBUG_XEMACS */ | |
3727 | |
2666 | 3728 /* Object memory descriptions are in the lrecord_implementation structure. |
3729 But copying them to a parallel array is much more cache-friendly. */ | |
3730 const struct memory_description *lrecord_memory_descriptions[countof (lrecord_implementations_table)]; | |
3731 | |
3732 /* the initial stack size in kkcc_gc_stack_entries */ | |
3733 #define KKCC_INIT_GC_STACK_SIZE 16384 | |
3734 | |
3735 typedef struct | |
3736 { | |
3737 void *data; | |
3738 const struct memory_description *desc; | |
3739 #ifdef DEBUG_XEMACS | |
3740 int level; | |
3741 int pos; | |
3742 #endif | |
3743 } kkcc_gc_stack_entry; | |
3744 | |
3745 static kkcc_gc_stack_entry *kkcc_gc_stack_ptr; | |
3746 static kkcc_gc_stack_entry *kkcc_gc_stack_top; | |
3747 static kkcc_gc_stack_entry *kkcc_gc_stack_last_entry; | |
3748 static int kkcc_gc_stack_size; | |
3749 | |
1676 | 3750 static void |
3751 kkcc_gc_stack_init (void) | |
3752 { | |
3753 kkcc_gc_stack_size = KKCC_INIT_GC_STACK_SIZE; | |
3754 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *) | |
3755 malloc (kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry)); | |
3756 if (!kkcc_gc_stack_ptr) | |
3757 { | |
3758 stderr_out ("stack init failed for size %d\n", kkcc_gc_stack_size); | |
2666 | 3759 ABORT (); |
1676 | 3760 } |
3761 kkcc_gc_stack_top = kkcc_gc_stack_ptr - 1; | |
3762 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1; | |
3763 } | |
3764 | |
3765 static void | |
3766 kkcc_gc_stack_free (void) | |
3767 { | |
3768 free (kkcc_gc_stack_ptr); | |
3769 kkcc_gc_stack_ptr = 0; | |
3770 kkcc_gc_stack_top = 0; | |
3771 kkcc_gc_stack_size = 0; | |
3772 } | |
3773 | |
3774 static void | |
3775 kkcc_gc_stack_realloc (void) | |
3776 { | |
3777 int current_offset = (int)(kkcc_gc_stack_top - kkcc_gc_stack_ptr); | |
3778 kkcc_gc_stack_size *= 2; | |
3779 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *) | |
3780 realloc (kkcc_gc_stack_ptr, | |
3781 kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry)); | |
3782 if (!kkcc_gc_stack_ptr) | |
3783 { | |
3784 stderr_out ("stack realloc failed for size %d\n", kkcc_gc_stack_size); | |
2666 | 3785 ABORT (); |
1676 | 3786 } |
3787 kkcc_gc_stack_top = kkcc_gc_stack_ptr + current_offset; | |
3788 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1; | |
3789 } | |
3790 | |
3791 #define KKCC_GC_STACK_FULL (kkcc_gc_stack_top >= kkcc_gc_stack_last_entry) | |
3792 #define KKCC_GC_STACK_EMPTY (kkcc_gc_stack_top < kkcc_gc_stack_ptr) | |
3793 | |
3794 static void | |
2645 | 3795 #ifdef DEBUG_XEMACS |
3796 kkcc_gc_stack_push_1 (void *data, const struct memory_description *desc, | |
3797 int level, int pos) | |
3798 #else | |
3799 kkcc_gc_stack_push_1 (void *data, const struct memory_description *desc) | |
3800 #endif | |
1676 | 3801 { |
3802 if (KKCC_GC_STACK_FULL) | |
3803 kkcc_gc_stack_realloc(); | |
3804 kkcc_gc_stack_top++; | |
3805 kkcc_gc_stack_top->data = data; | |
3806 kkcc_gc_stack_top->desc = desc; | |
2645 | 3807 #ifdef DEBUG_XEMACS |
3808 kkcc_gc_stack_top->level = level; | |
3809 kkcc_gc_stack_top->pos = pos; | |
3810 #endif | |
3811 } | |
3812 | |
3813 #ifdef DEBUG_XEMACS | |
3814 #define kkcc_gc_stack_push(data, desc, level, pos) \ | |
3815 kkcc_gc_stack_push_1 (data, desc, level, pos) | |
3816 #else | |
3817 #define kkcc_gc_stack_push(data, desc, level, pos) \ | |
3818 kkcc_gc_stack_push_1 (data, desc) | |
3819 #endif | |
1676 | 3820 |
3821 static kkcc_gc_stack_entry * | |
3822 kkcc_gc_stack_pop (void) | |
3823 { | |
3824 if (KKCC_GC_STACK_EMPTY) | |
3825 return 0; | |
3826 kkcc_gc_stack_top--; | |
3827 return kkcc_gc_stack_top + 1; | |
3828 } | |
3829 | |
3830 void | |
2645 | 3831 #ifdef DEBUG_XEMACS |
3832 kkcc_gc_stack_push_lisp_object_1 (Lisp_Object obj, int level, int pos) | |
3833 #else | |
3834 kkcc_gc_stack_push_lisp_object_1 (Lisp_Object obj) | |
3835 #endif | |
1676 | 3836 { |
3837 if (XTYPE (obj) == Lisp_Type_Record) | |
3838 { | |
3839 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
3840 const struct memory_description *desc; | |
3841 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
3842 desc = RECORD_DESCRIPTION (lheader); | |
3843 if (! MARKED_RECORD_HEADER_P (lheader)) | |
3844 { | |
3845 MARK_RECORD_HEADER (lheader); | |
2666 | 3846 kkcc_gc_stack_push ((void*) lheader, desc, level, pos); |
1676 | 3847 } |
3848 } | |
3849 } | |
3850 | |
2645 | 3851 #ifdef DEBUG_XEMACS |
3852 #define kkcc_gc_stack_push_lisp_object(obj, level, pos) \ | |
3853 kkcc_gc_stack_push_lisp_object_1 (obj, level, pos) | |
3854 #else | |
3855 #define kkcc_gc_stack_push_lisp_object(obj, level, pos) \ | |
3856 kkcc_gc_stack_push_lisp_object_1 (obj) | |
3857 #endif | |
3858 | |
1265 | 3859 #ifdef ERROR_CHECK_GC |
3860 #define KKCC_DO_CHECK_FREE(obj, allow_free) \ | |
3861 do \ | |
3862 { \ | |
3863 if (!allow_free && XTYPE (obj) == Lisp_Type_Record) \ | |
3864 { \ | |
3865 struct lrecord_header *lheader = XRECORD_LHEADER (obj); \ | |
3866 GC_CHECK_NOT_FREE (lheader); \ | |
3867 } \ | |
3868 } while (0) | |
3869 #else | |
3870 #define KKCC_DO_CHECK_FREE(obj, allow_free) | |
3871 #endif | |
1204 | 3872 |
3873 #ifdef ERROR_CHECK_GC | |
2645 | 3874 #ifdef DEBUG_XEMACS |
1598 | 3875 static void |
2645 | 3876 mark_object_maybe_checking_free_1 (Lisp_Object obj, int allow_free, |
3877 int level, int pos) | |
3878 #else | |
3879 static void | |
3880 mark_object_maybe_checking_free_1 (Lisp_Object obj, int allow_free) | |
3881 #endif | |
1204 | 3882 { |
1265 | 3883 KKCC_DO_CHECK_FREE (obj, allow_free); |
2645 | 3884 kkcc_gc_stack_push_lisp_object (obj, level, pos); |
3885 } | |
3886 | |
3887 #ifdef DEBUG_XEMACS | |
3888 #define mark_object_maybe_checking_free(obj, allow_free, level, pos) \ | |
3889 mark_object_maybe_checking_free_1 (obj, allow_free, level, pos) | |
1204 | 3890 #else |
2645 | 3891 #define mark_object_maybe_checking_free(obj, allow_free, level, pos) \ |
3892 mark_object_maybe_checking_free_1 (obj, allow_free) | |
3893 #endif | |
3894 #else /* not ERROR_CHECK_GC */ | |
3895 #define mark_object_maybe_checking_free(obj, allow_free, level, pos) \ | |
3896 kkcc_gc_stack_push_lisp_object (obj, level, pos) | |
3897 #endif /* not ERROR_CHECK_GC */ | |
1204 | 3898 |
934 | 3899 |
3900 /* This function loops all elements of a struct pointer and calls | |
3901 mark_with_description with each element. */ | |
3902 static void | |
2645 | 3903 #ifdef DEBUG_XEMACS |
3904 mark_struct_contents_1 (const void *data, | |
3905 const struct sized_memory_description *sdesc, | |
3906 int count, int level, int pos) | |
3907 #else | |
3908 mark_struct_contents_1 (const void *data, | |
1204 | 3909 const struct sized_memory_description *sdesc, |
3910 int count) | |
2645 | 3911 #endif |
934 | 3912 { |
3913 int i; | |
3914 Bytecount elsize; | |
2367 | 3915 elsize = lispdesc_block_size (data, sdesc); |
934 | 3916 |
3917 for (i = 0; i < count; i++) | |
3918 { | |
2645 | 3919 kkcc_gc_stack_push (((char *) data) + elsize * i, sdesc->description, |
3920 level, pos); | |
934 | 3921 } |
3922 } | |
3923 | |
2645 | 3924 #ifdef DEBUG_XEMACS |
3925 #define mark_struct_contents(data, sdesc, count, level, pos) \ | |
3926 mark_struct_contents_1 (data, sdesc, count, level, pos) | |
3927 #else | |
3928 #define mark_struct_contents(data, sdesc, count, level, pos) \ | |
3929 mark_struct_contents_1 (data, sdesc, count) | |
3930 #endif | |
1598 | 3931 |
3932 /* This function implements the KKCC mark algorithm. | |
3933 Instead of calling mark_object, all the alive Lisp_Objects are pushed | |
3934 on the kkcc_gc_stack. This function processes all elements on the stack | |
3935 according to their descriptions. */ | |
3936 static void | |
3937 kkcc_marking (void) | |
3938 { | |
3939 kkcc_gc_stack_entry *stack_entry = 0; | |
3940 void *data = 0; | |
3941 const struct memory_description *desc = 0; | |
3942 int pos; | |
2645 | 3943 #ifdef DEBUG_XEMACS |
3944 int level = 0; | |
2666 | 3945 kkcc_bt_init (); |
2645 | 3946 #endif |
1598 | 3947 |
3948 while ((stack_entry = kkcc_gc_stack_pop ()) != 0) | |
3949 { | |
3950 data = stack_entry->data; | |
3951 desc = stack_entry->desc; | |
2645 | 3952 #ifdef DEBUG_XEMACS |
3953 level = stack_entry->level + 1; | |
3954 #endif | |
3955 | |
3956 kkcc_bt_push (data, desc, stack_entry->level, stack_entry->pos); | |
1598 | 3957 |
2720 | 3958 gc_checking_assert (data); |
3959 gc_checking_assert (desc); | |
3960 | |
1598 | 3961 for (pos = 0; desc[pos].type != XD_END; pos++) |
3962 { | |
3963 const struct memory_description *desc1 = &desc[pos]; | |
3964 const void *rdata = | |
3965 (const char *) data + lispdesc_indirect_count (desc1->offset, | |
3966 desc, data); | |
3967 union_switcheroo: | |
3968 | |
3969 /* If the flag says don't mark, then don't mark. */ | |
3970 if ((desc1->flags) & XD_FLAG_NO_KKCC) | |
3971 continue; | |
3972 | |
3973 switch (desc1->type) | |
3974 { | |
3975 case XD_BYTECOUNT: | |
3976 case XD_ELEMCOUNT: | |
3977 case XD_HASHCODE: | |
3978 case XD_INT: | |
3979 case XD_LONG: | |
3980 case XD_INT_RESET: | |
3981 case XD_LO_LINK: | |
3982 case XD_OPAQUE_PTR: | |
3983 case XD_OPAQUE_DATA_PTR: | |
2367 | 3984 case XD_ASCII_STRING: |
1598 | 3985 case XD_DOC_STRING: |
3986 break; | |
3987 case XD_LISP_OBJECT: | |
3988 { | |
3989 const Lisp_Object *stored_obj = (const Lisp_Object *) rdata; | |
3990 | |
3991 /* Because of the way that tagged objects work (pointers and | |
3992 Lisp_Objects have the same representation), XD_LISP_OBJECT | |
3993 can be used for untagged pointers. They might be NULL, | |
3994 though. */ | |
3995 if (EQ (*stored_obj, Qnull_pointer)) | |
3996 break; | |
2720 | 3997 #ifdef MC_ALLOC |
3998 mark_object_maybe_checking_free (*stored_obj, 0, level, pos); | |
3999 #else /* not MC_ALLOC */ | |
1598 | 4000 mark_object_maybe_checking_free |
2645 | 4001 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT, |
4002 level, pos); | |
2775 | 4003 #endif /* not MC_ALLOC */ |
1598 | 4004 break; |
4005 } | |
4006 case XD_LISP_OBJECT_ARRAY: | |
4007 { | |
4008 int i; | |
4009 EMACS_INT count = | |
4010 lispdesc_indirect_count (desc1->data1, desc, data); | |
4011 | |
4012 for (i = 0; i < count; i++) | |
4013 { | |
4014 const Lisp_Object *stored_obj = | |
4015 (const Lisp_Object *) rdata + i; | |
4016 | |
4017 if (EQ (*stored_obj, Qnull_pointer)) | |
4018 break; | |
2720 | 4019 #ifdef MC_ALLOC |
4020 mark_object_maybe_checking_free (*stored_obj, 0, level, pos); | |
4021 #else /* not MC_ALLOC */ | |
1598 | 4022 mark_object_maybe_checking_free |
2645 | 4023 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT, |
4024 level, pos); | |
2720 | 4025 #endif /* not MC_ALLOC */ |
1598 | 4026 } |
4027 break; | |
4028 } | |
2367 | 4029 case XD_BLOCK_PTR: |
1598 | 4030 { |
4031 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
4032 data); | |
4033 const struct sized_memory_description *sdesc = | |
2551 | 4034 lispdesc_indirect_description (data, desc1->data2.descr); |
1598 | 4035 const char *dobj = * (const char **) rdata; |
4036 if (dobj) | |
2645 | 4037 mark_struct_contents (dobj, sdesc, count, level, pos); |
1598 | 4038 break; |
4039 } | |
2367 | 4040 case XD_BLOCK_ARRAY: |
1598 | 4041 { |
4042 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
4043 data); | |
4044 const struct sized_memory_description *sdesc = | |
2551 | 4045 lispdesc_indirect_description (data, desc1->data2.descr); |
1598 | 4046 |
2645 | 4047 mark_struct_contents (rdata, sdesc, count, level, pos); |
1598 | 4048 break; |
4049 } | |
4050 case XD_UNION: | |
4051 case XD_UNION_DYNAMIC_SIZE: | |
4052 desc1 = lispdesc_process_xd_union (desc1, desc, data); | |
4053 if (desc1) | |
4054 goto union_switcheroo; | |
4055 break; | |
4056 | |
4057 default: | |
4058 stderr_out ("Unsupported description type : %d\n", desc1->type); | |
2645 | 4059 kkcc_backtrace (); |
2500 | 4060 ABORT (); |
1598 | 4061 } |
4062 } | |
4063 } | |
2666 | 4064 #ifdef DEBUG_XEMACS |
4065 kkcc_bt_free (); | |
4066 #endif | |
1598 | 4067 } |
934 | 4068 #endif /* USE_KKCC */ |
4069 | |
428 | 4070 /* Mark reference to a Lisp_Object. If the object referred to has not been |
4071 seen yet, recursively mark all the references contained in it. */ | |
4072 | |
4073 void | |
2286 | 4074 mark_object ( |
4075 #ifdef USE_KKCC | |
4076 Lisp_Object UNUSED (obj) | |
4077 #else | |
4078 Lisp_Object obj | |
4079 #endif | |
4080 ) | |
428 | 4081 { |
1598 | 4082 #ifdef USE_KKCC |
4083 /* this code should never be reached when configured for KKCC */ | |
4084 stderr_out ("KKCC: Invalid mark_object call.\n"); | |
4085 stderr_out ("Replace mark_object with kkcc_gc_stack_push_lisp_object.\n"); | |
2500 | 4086 ABORT (); |
1676 | 4087 #else /* not USE_KKCC */ |
1598 | 4088 |
428 | 4089 tail_recurse: |
4090 | |
4091 /* Checks we used to perform */ | |
4092 /* if (EQ (obj, Qnull_pointer)) return; */ | |
4093 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */ | |
4094 /* if (PURIFIED (XPNTR (obj))) return; */ | |
4095 | |
4096 if (XTYPE (obj) == Lisp_Type_Record) | |
4097 { | |
4098 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
442 | 4099 |
4100 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
4101 | |
1204 | 4102 /* We handle this separately, above, so we can mark free objects */ |
1265 | 4103 GC_CHECK_NOT_FREE (lheader); |
1204 | 4104 |
442 | 4105 /* All c_readonly objects have their mark bit set, |
4106 so that we only need to check the mark bit here. */ | |
4107 if (! MARKED_RECORD_HEADER_P (lheader)) | |
428 | 4108 { |
4109 MARK_RECORD_HEADER (lheader); | |
442 | 4110 |
1598 | 4111 if (RECORD_MARKER (lheader)) |
4112 { | |
4113 obj = RECORD_MARKER (lheader) (obj); | |
4114 if (!NILP (obj)) goto tail_recurse; | |
4115 } | |
428 | 4116 } |
4117 } | |
1676 | 4118 #endif /* not KKCC */ |
428 | 4119 } |
4120 | |
4121 | |
2720 | 4122 #ifndef MC_ALLOC |
428 | 4123 static int gc_count_num_short_string_in_use; |
647 | 4124 static Bytecount gc_count_string_total_size; |
4125 static Bytecount gc_count_short_string_total_size; | |
428 | 4126 |
4127 /* static int gc_count_total_records_used, gc_count_records_total_size; */ | |
4128 | |
4129 | |
4130 /* stats on lcrecords in use - kinda kludgy */ | |
4131 | |
4132 static struct | |
4133 { | |
4134 int instances_in_use; | |
4135 int bytes_in_use; | |
4136 int instances_freed; | |
4137 int bytes_freed; | |
4138 int instances_on_free_list; | |
707 | 4139 } lcrecord_stats [countof (lrecord_implementations_table) |
4140 + MODULE_DEFINABLE_TYPE_COUNT]; | |
428 | 4141 |
4142 static void | |
442 | 4143 tick_lcrecord_stats (const struct lrecord_header *h, int free_p) |
428 | 4144 { |
647 | 4145 int type_index = h->type; |
428 | 4146 |
3024 | 4147 if (((struct old_lcrecord_header *) h)->free) |
428 | 4148 { |
442 | 4149 gc_checking_assert (!free_p); |
428 | 4150 lcrecord_stats[type_index].instances_on_free_list++; |
4151 } | |
4152 else | |
4153 { | |
1204 | 4154 Bytecount sz = detagged_lisp_object_size (h); |
4155 | |
428 | 4156 if (free_p) |
4157 { | |
4158 lcrecord_stats[type_index].instances_freed++; | |
4159 lcrecord_stats[type_index].bytes_freed += sz; | |
4160 } | |
4161 else | |
4162 { | |
4163 lcrecord_stats[type_index].instances_in_use++; | |
4164 lcrecord_stats[type_index].bytes_in_use += sz; | |
4165 } | |
4166 } | |
4167 } | |
2720 | 4168 #endif /* not MC_ALLOC */ |
428 | 4169 |
4170 | |
2720 | 4171 #ifndef MC_ALLOC |
428 | 4172 /* Free all unmarked records */ |
4173 static void | |
3024 | 4174 sweep_lcrecords_1 (struct old_lcrecord_header **prev, int *used) |
4175 { | |
4176 struct old_lcrecord_header *header; | |
428 | 4177 int num_used = 0; |
4178 /* int total_size = 0; */ | |
4179 | |
4180 xzero (lcrecord_stats); /* Reset all statistics to 0. */ | |
4181 | |
4182 /* First go through and call all the finalize methods. | |
4183 Then go through and free the objects. There used to | |
4184 be only one loop here, with the call to the finalizer | |
4185 occurring directly before the xfree() below. That | |
4186 is marginally faster but much less safe -- if the | |
4187 finalize method for an object needs to reference any | |
4188 other objects contained within it (and many do), | |
4189 we could easily be screwed by having already freed that | |
4190 other object. */ | |
4191 | |
4192 for (header = *prev; header; header = header->next) | |
4193 { | |
4194 struct lrecord_header *h = &(header->lheader); | |
442 | 4195 |
4196 GC_CHECK_LHEADER_INVARIANTS (h); | |
4197 | |
4198 if (! MARKED_RECORD_HEADER_P (h) && ! header->free) | |
428 | 4199 { |
4200 if (LHEADER_IMPLEMENTATION (h)->finalizer) | |
4201 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0); | |
4202 } | |
4203 } | |
4204 | |
4205 for (header = *prev; header; ) | |
4206 { | |
4207 struct lrecord_header *h = &(header->lheader); | |
442 | 4208 if (MARKED_RECORD_HEADER_P (h)) |
428 | 4209 { |
442 | 4210 if (! C_READONLY_RECORD_HEADER_P (h)) |
428 | 4211 UNMARK_RECORD_HEADER (h); |
4212 num_used++; | |
4213 /* total_size += n->implementation->size_in_bytes (h);*/ | |
440 | 4214 /* #### May modify header->next on a C_READONLY lcrecord */ |
428 | 4215 prev = &(header->next); |
4216 header = *prev; | |
4217 tick_lcrecord_stats (h, 0); | |
4218 } | |
4219 else | |
4220 { | |
3024 | 4221 struct old_lcrecord_header *next = header->next; |
428 | 4222 *prev = next; |
4223 tick_lcrecord_stats (h, 1); | |
4224 /* used to call finalizer right here. */ | |
3024 | 4225 xfree (header, struct old_lcrecord_header *); |
428 | 4226 header = next; |
4227 } | |
4228 } | |
4229 *used = num_used; | |
4230 /* *total = total_size; */ | |
4231 } | |
4232 | |
4233 /* And the Lord said: Thou shalt use the `c-backslash-region' command | |
4234 to make macros prettier. */ | |
4235 | |
4236 #ifdef ERROR_CHECK_GC | |
4237 | |
771 | 4238 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \ |
428 | 4239 do { \ |
4240 struct typename##_block *SFTB_current; \ | |
4241 int SFTB_limit; \ | |
4242 int num_free = 0, num_used = 0; \ | |
4243 \ | |
444 | 4244 for (SFTB_current = current_##typename##_block, \ |
428 | 4245 SFTB_limit = current_##typename##_block_index; \ |
4246 SFTB_current; \ | |
4247 ) \ | |
4248 { \ | |
4249 int SFTB_iii; \ | |
4250 \ | |
4251 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ | |
4252 { \ | |
4253 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ | |
4254 \ | |
454 | 4255 if (LRECORD_FREE_P (SFTB_victim)) \ |
428 | 4256 { \ |
4257 num_free++; \ | |
4258 } \ | |
4259 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
4260 { \ | |
4261 num_used++; \ | |
4262 } \ | |
442 | 4263 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ |
428 | 4264 { \ |
4265 num_free++; \ | |
4266 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ | |
4267 } \ | |
4268 else \ | |
4269 { \ | |
4270 num_used++; \ | |
4271 UNMARK_##typename (SFTB_victim); \ | |
4272 } \ | |
4273 } \ | |
4274 SFTB_current = SFTB_current->prev; \ | |
4275 SFTB_limit = countof (current_##typename##_block->block); \ | |
4276 } \ | |
4277 \ | |
4278 gc_count_num_##typename##_in_use = num_used; \ | |
4279 gc_count_num_##typename##_freelist = num_free; \ | |
4280 } while (0) | |
4281 | |
4282 #else /* !ERROR_CHECK_GC */ | |
4283 | |
771 | 4284 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \ |
4285 do { \ | |
4286 struct typename##_block *SFTB_current; \ | |
4287 struct typename##_block **SFTB_prev; \ | |
4288 int SFTB_limit; \ | |
4289 int num_free = 0, num_used = 0; \ | |
4290 \ | |
4291 typename##_free_list = 0; \ | |
4292 \ | |
4293 for (SFTB_prev = ¤t_##typename##_block, \ | |
4294 SFTB_current = current_##typename##_block, \ | |
4295 SFTB_limit = current_##typename##_block_index; \ | |
4296 SFTB_current; \ | |
4297 ) \ | |
4298 { \ | |
4299 int SFTB_iii; \ | |
4300 int SFTB_empty = 1; \ | |
4301 Lisp_Free *SFTB_old_free_list = typename##_free_list; \ | |
4302 \ | |
4303 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ | |
4304 { \ | |
4305 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ | |
4306 \ | |
4307 if (LRECORD_FREE_P (SFTB_victim)) \ | |
4308 { \ | |
4309 num_free++; \ | |
4310 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \ | |
4311 } \ | |
4312 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
4313 { \ | |
4314 SFTB_empty = 0; \ | |
4315 num_used++; \ | |
4316 } \ | |
4317 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
4318 { \ | |
4319 num_free++; \ | |
4320 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ | |
4321 } \ | |
4322 else \ | |
4323 { \ | |
4324 SFTB_empty = 0; \ | |
4325 num_used++; \ | |
4326 UNMARK_##typename (SFTB_victim); \ | |
4327 } \ | |
4328 } \ | |
4329 if (!SFTB_empty) \ | |
4330 { \ | |
4331 SFTB_prev = &(SFTB_current->prev); \ | |
4332 SFTB_current = SFTB_current->prev; \ | |
4333 } \ | |
4334 else if (SFTB_current == current_##typename##_block \ | |
4335 && !SFTB_current->prev) \ | |
4336 { \ | |
4337 /* No real point in freeing sole allocation block */ \ | |
4338 break; \ | |
4339 } \ | |
4340 else \ | |
4341 { \ | |
4342 struct typename##_block *SFTB_victim_block = SFTB_current; \ | |
4343 if (SFTB_victim_block == current_##typename##_block) \ | |
4344 current_##typename##_block_index \ | |
4345 = countof (current_##typename##_block->block); \ | |
4346 SFTB_current = SFTB_current->prev; \ | |
4347 { \ | |
4348 *SFTB_prev = SFTB_current; \ | |
1726 | 4349 xfree (SFTB_victim_block, struct typename##_block *); \ |
771 | 4350 /* Restore free list to what it was before victim was swept */ \ |
4351 typename##_free_list = SFTB_old_free_list; \ | |
4352 num_free -= SFTB_limit; \ | |
4353 } \ | |
4354 } \ | |
4355 SFTB_limit = countof (current_##typename##_block->block); \ | |
4356 } \ | |
4357 \ | |
4358 gc_count_num_##typename##_in_use = num_used; \ | |
4359 gc_count_num_##typename##_freelist = num_free; \ | |
428 | 4360 } while (0) |
4361 | |
4362 #endif /* !ERROR_CHECK_GC */ | |
4363 | |
771 | 4364 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \ |
4365 SWEEP_FIXED_TYPE_BLOCK_1 (typename, obj_type, lheader) | |
4366 | |
2720 | 4367 #endif /* not MC_ALLOC */ |
4368 | |
428 | 4369 |
2720 | 4370 #ifndef MC_ALLOC |
428 | 4371 static void |
4372 sweep_conses (void) | |
4373 { | |
4374 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4375 #define ADDITIONAL_FREE_cons(ptr) | |
4376 | |
440 | 4377 SWEEP_FIXED_TYPE_BLOCK (cons, Lisp_Cons); |
428 | 4378 } |
2720 | 4379 #endif /* not MC_ALLOC */ |
428 | 4380 |
4381 /* Explicitly free a cons cell. */ | |
4382 void | |
853 | 4383 free_cons (Lisp_Object cons) |
428 | 4384 { |
2720 | 4385 #ifndef MC_ALLOC /* to avoid compiler warning */ |
853 | 4386 Lisp_Cons *ptr = XCONS (cons); |
2720 | 4387 #endif /* MC_ALLOC */ |
853 | 4388 |
428 | 4389 #ifdef ERROR_CHECK_GC |
2720 | 4390 #ifdef MC_ALLOC |
4391 Lisp_Cons *ptr = XCONS (cons); | |
4392 #endif /* MC_ALLOC */ | |
428 | 4393 /* If the CAR is not an int, then it will be a pointer, which will |
4394 always be four-byte aligned. If this cons cell has already been | |
4395 placed on the free list, however, its car will probably contain | |
4396 a chain pointer to the next cons on the list, which has cleverly | |
4397 had all its 0's and 1's inverted. This allows for a quick | |
1204 | 4398 check to make sure we're not freeing something already freed. |
4399 | |
4400 NOTE: This check may not be necessary. Freeing an object sets its | |
4401 type to lrecord_type_free, which will trip up the XCONS() above -- as | |
4402 well as a check in FREE_FIXED_TYPE(). */ | |
853 | 4403 if (POINTER_TYPE_P (XTYPE (cons_car (ptr)))) |
4404 ASSERT_VALID_POINTER (XPNTR (cons_car (ptr))); | |
428 | 4405 #endif /* ERROR_CHECK_GC */ |
4406 | |
2720 | 4407 #ifdef MC_ALLOC |
4408 free_lrecord (cons); | |
4409 #else /* not MC_ALLOC */ | |
440 | 4410 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, Lisp_Cons, ptr); |
2720 | 4411 #endif /* not MC_ALLOC */ |
428 | 4412 } |
4413 | |
4414 /* explicitly free a list. You **must make sure** that you have | |
4415 created all the cons cells that make up this list and that there | |
4416 are no pointers to any of these cons cells anywhere else. If there | |
4417 are, you will lose. */ | |
4418 | |
4419 void | |
4420 free_list (Lisp_Object list) | |
4421 { | |
4422 Lisp_Object rest, next; | |
4423 | |
4424 for (rest = list; !NILP (rest); rest = next) | |
4425 { | |
4426 next = XCDR (rest); | |
853 | 4427 free_cons (rest); |
428 | 4428 } |
4429 } | |
4430 | |
4431 /* explicitly free an alist. You **must make sure** that you have | |
4432 created all the cons cells that make up this alist and that there | |
4433 are no pointers to any of these cons cells anywhere else. If there | |
4434 are, you will lose. */ | |
4435 | |
4436 void | |
4437 free_alist (Lisp_Object alist) | |
4438 { | |
4439 Lisp_Object rest, next; | |
4440 | |
4441 for (rest = alist; !NILP (rest); rest = next) | |
4442 { | |
4443 next = XCDR (rest); | |
853 | 4444 free_cons (XCAR (rest)); |
4445 free_cons (rest); | |
428 | 4446 } |
4447 } | |
4448 | |
2720 | 4449 #ifndef MC_ALLOC |
428 | 4450 static void |
4451 sweep_compiled_functions (void) | |
4452 { | |
4453 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
945 | 4454 #define ADDITIONAL_FREE_compiled_function(ptr) \ |
1726 | 4455 if (ptr->args_in_array) xfree (ptr->args, Lisp_Object *) |
428 | 4456 |
4457 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function); | |
4458 } | |
4459 | |
4460 static void | |
4461 sweep_floats (void) | |
4462 { | |
4463 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4464 #define ADDITIONAL_FREE_float(ptr) | |
4465 | |
440 | 4466 SWEEP_FIXED_TYPE_BLOCK (float, Lisp_Float); |
428 | 4467 } |
4468 | |
1983 | 4469 #ifdef HAVE_BIGNUM |
4470 static void | |
4471 sweep_bignums (void) | |
4472 { | |
4473 #define UNMARK_bignum(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4474 #define ADDITIONAL_FREE_bignum(ptr) bignum_fini (ptr->data) | |
4475 | |
4476 SWEEP_FIXED_TYPE_BLOCK (bignum, Lisp_Bignum); | |
4477 } | |
4478 #endif /* HAVE_BIGNUM */ | |
4479 | |
4480 #ifdef HAVE_RATIO | |
4481 static void | |
4482 sweep_ratios (void) | |
4483 { | |
4484 #define UNMARK_ratio(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4485 #define ADDITIONAL_FREE_ratio(ptr) ratio_fini (ptr->data) | |
4486 | |
4487 SWEEP_FIXED_TYPE_BLOCK (ratio, Lisp_Ratio); | |
4488 } | |
4489 #endif /* HAVE_RATIO */ | |
4490 | |
4491 #ifdef HAVE_BIGFLOAT | |
4492 static void | |
4493 sweep_bigfloats (void) | |
4494 { | |
4495 #define UNMARK_bigfloat(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4496 #define ADDITIONAL_FREE_bigfloat(ptr) bigfloat_fini (ptr->bf) | |
4497 | |
4498 SWEEP_FIXED_TYPE_BLOCK (bigfloat, Lisp_Bigfloat); | |
4499 } | |
4500 #endif | |
4501 | |
428 | 4502 static void |
4503 sweep_symbols (void) | |
4504 { | |
4505 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4506 #define ADDITIONAL_FREE_symbol(ptr) | |
4507 | |
440 | 4508 SWEEP_FIXED_TYPE_BLOCK (symbol, Lisp_Symbol); |
428 | 4509 } |
4510 | |
4511 static void | |
4512 sweep_extents (void) | |
4513 { | |
4514 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4515 #define ADDITIONAL_FREE_extent(ptr) | |
4516 | |
4517 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent); | |
4518 } | |
4519 | |
4520 static void | |
4521 sweep_events (void) | |
4522 { | |
4523 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4524 #define ADDITIONAL_FREE_event(ptr) | |
4525 | |
440 | 4526 SWEEP_FIXED_TYPE_BLOCK (event, Lisp_Event); |
428 | 4527 } |
2720 | 4528 #endif /* not MC_ALLOC */ |
428 | 4529 |
1204 | 4530 #ifdef EVENT_DATA_AS_OBJECTS |
934 | 4531 |
2720 | 4532 #ifndef MC_ALLOC |
934 | 4533 static void |
4534 sweep_key_data (void) | |
4535 { | |
4536 #define UNMARK_key_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4537 #define ADDITIONAL_FREE_key_data(ptr) | |
4538 | |
4539 SWEEP_FIXED_TYPE_BLOCK (key_data, Lisp_Key_Data); | |
4540 } | |
2720 | 4541 #endif /* not MC_ALLOC */ |
934 | 4542 |
1204 | 4543 void |
4544 free_key_data (Lisp_Object ptr) | |
4545 { | |
2720 | 4546 #ifdef MC_ALLOC |
4547 free_lrecord (ptr); | |
4548 #else /* not MC_ALLOC */ | |
1204 | 4549 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (key_data, Lisp_Key_Data, XKEY_DATA (ptr)); |
2720 | 4550 #endif /* not MC_ALLOC */ |
4551 } | |
4552 | |
4553 #ifndef MC_ALLOC | |
934 | 4554 static void |
4555 sweep_button_data (void) | |
4556 { | |
4557 #define UNMARK_button_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4558 #define ADDITIONAL_FREE_button_data(ptr) | |
4559 | |
4560 SWEEP_FIXED_TYPE_BLOCK (button_data, Lisp_Button_Data); | |
4561 } | |
2720 | 4562 #endif /* not MC_ALLOC */ |
934 | 4563 |
1204 | 4564 void |
4565 free_button_data (Lisp_Object ptr) | |
4566 { | |
2720 | 4567 #ifdef MC_ALLOC |
4568 free_lrecord (ptr); | |
4569 #else /* not MC_ALLOC */ | |
1204 | 4570 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (button_data, Lisp_Button_Data, XBUTTON_DATA (ptr)); |
2720 | 4571 #endif /* not MC_ALLOC */ |
4572 } | |
4573 | |
4574 #ifndef MC_ALLOC | |
934 | 4575 static void |
4576 sweep_motion_data (void) | |
4577 { | |
4578 #define UNMARK_motion_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4579 #define ADDITIONAL_FREE_motion_data(ptr) | |
4580 | |
4581 SWEEP_FIXED_TYPE_BLOCK (motion_data, Lisp_Motion_Data); | |
4582 } | |
2720 | 4583 #endif /* not MC_ALLOC */ |
934 | 4584 |
1204 | 4585 void |
4586 free_motion_data (Lisp_Object ptr) | |
4587 { | |
2720 | 4588 #ifdef MC_ALLOC |
4589 free_lrecord (ptr); | |
4590 #else /* not MC_ALLOC */ | |
1204 | 4591 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (motion_data, Lisp_Motion_Data, XMOTION_DATA (ptr)); |
2720 | 4592 #endif /* not MC_ALLOC */ |
4593 } | |
4594 | |
4595 #ifndef MC_ALLOC | |
934 | 4596 static void |
4597 sweep_process_data (void) | |
4598 { | |
4599 #define UNMARK_process_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4600 #define ADDITIONAL_FREE_process_data(ptr) | |
4601 | |
4602 SWEEP_FIXED_TYPE_BLOCK (process_data, Lisp_Process_Data); | |
4603 } | |
2720 | 4604 #endif /* not MC_ALLOC */ |
934 | 4605 |
1204 | 4606 void |
4607 free_process_data (Lisp_Object ptr) | |
4608 { | |
2720 | 4609 #ifdef MC_ALLOC |
4610 free_lrecord (ptr); | |
4611 #else /* not MC_ALLOC */ | |
1204 | 4612 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (process_data, Lisp_Process_Data, XPROCESS_DATA (ptr)); |
2720 | 4613 #endif /* not MC_ALLOC */ |
4614 } | |
4615 | |
4616 #ifndef MC_ALLOC | |
934 | 4617 static void |
4618 sweep_timeout_data (void) | |
4619 { | |
4620 #define UNMARK_timeout_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4621 #define ADDITIONAL_FREE_timeout_data(ptr) | |
4622 | |
4623 SWEEP_FIXED_TYPE_BLOCK (timeout_data, Lisp_Timeout_Data); | |
4624 } | |
2720 | 4625 #endif /* not MC_ALLOC */ |
934 | 4626 |
1204 | 4627 void |
4628 free_timeout_data (Lisp_Object ptr) | |
4629 { | |
2720 | 4630 #ifdef MC_ALLOC |
4631 free_lrecord (ptr); | |
4632 #else /* not MC_ALLOC */ | |
1204 | 4633 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (timeout_data, Lisp_Timeout_Data, XTIMEOUT_DATA (ptr)); |
2720 | 4634 #endif /* not MC_ALLOC */ |
4635 } | |
4636 | |
4637 #ifndef MC_ALLOC | |
934 | 4638 static void |
4639 sweep_magic_data (void) | |
4640 { | |
4641 #define UNMARK_magic_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4642 #define ADDITIONAL_FREE_magic_data(ptr) | |
4643 | |
4644 SWEEP_FIXED_TYPE_BLOCK (magic_data, Lisp_Magic_Data); | |
4645 } | |
2720 | 4646 #endif /* not MC_ALLOC */ |
934 | 4647 |
1204 | 4648 void |
4649 free_magic_data (Lisp_Object ptr) | |
4650 { | |
2720 | 4651 #ifdef MC_ALLOC |
4652 free_lrecord (ptr); | |
4653 #else /* not MC_ALLOC */ | |
1204 | 4654 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_data, Lisp_Magic_Data, XMAGIC_DATA (ptr)); |
2720 | 4655 #endif /* not MC_ALLOC */ |
4656 } | |
4657 | |
4658 #ifndef MC_ALLOC | |
934 | 4659 static void |
4660 sweep_magic_eval_data (void) | |
4661 { | |
4662 #define UNMARK_magic_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4663 #define ADDITIONAL_FREE_magic_eval_data(ptr) | |
4664 | |
4665 SWEEP_FIXED_TYPE_BLOCK (magic_eval_data, Lisp_Magic_Eval_Data); | |
4666 } | |
2720 | 4667 #endif /* not MC_ALLOC */ |
934 | 4668 |
1204 | 4669 void |
4670 free_magic_eval_data (Lisp_Object ptr) | |
4671 { | |
2720 | 4672 #ifdef MC_ALLOC |
4673 free_lrecord (ptr); | |
4674 #else /* not MC_ALLOC */ | |
1204 | 4675 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_eval_data, Lisp_Magic_Eval_Data, XMAGIC_EVAL_DATA (ptr)); |
2720 | 4676 #endif /* not MC_ALLOC */ |
4677 } | |
4678 | |
4679 #ifndef MC_ALLOC | |
934 | 4680 static void |
4681 sweep_eval_data (void) | |
4682 { | |
4683 #define UNMARK_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4684 #define ADDITIONAL_FREE_eval_data(ptr) | |
4685 | |
4686 SWEEP_FIXED_TYPE_BLOCK (eval_data, Lisp_Eval_Data); | |
4687 } | |
2720 | 4688 #endif /* not MC_ALLOC */ |
934 | 4689 |
1204 | 4690 void |
4691 free_eval_data (Lisp_Object ptr) | |
4692 { | |
2720 | 4693 #ifdef MC_ALLOC |
4694 free_lrecord (ptr); | |
4695 #else /* not MC_ALLOC */ | |
1204 | 4696 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (eval_data, Lisp_Eval_Data, XEVAL_DATA (ptr)); |
2720 | 4697 #endif /* not MC_ALLOC */ |
4698 } | |
4699 | |
4700 #ifndef MC_ALLOC | |
934 | 4701 static void |
4702 sweep_misc_user_data (void) | |
4703 { | |
4704 #define UNMARK_misc_user_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4705 #define ADDITIONAL_FREE_misc_user_data(ptr) | |
4706 | |
4707 SWEEP_FIXED_TYPE_BLOCK (misc_user_data, Lisp_Misc_User_Data); | |
4708 } | |
2720 | 4709 #endif /* not MC_ALLOC */ |
934 | 4710 |
1204 | 4711 void |
4712 free_misc_user_data (Lisp_Object ptr) | |
4713 { | |
2720 | 4714 #ifdef MC_ALLOC |
4715 free_lrecord (ptr); | |
4716 #else /* not MC_ALLOC */ | |
1204 | 4717 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (misc_user_data, Lisp_Misc_User_Data, XMISC_USER_DATA (ptr)); |
2720 | 4718 #endif /* not MC_ALLOC */ |
1204 | 4719 } |
4720 | |
4721 #endif /* EVENT_DATA_AS_OBJECTS */ | |
934 | 4722 |
2720 | 4723 #ifndef MC_ALLOC |
428 | 4724 static void |
4725 sweep_markers (void) | |
4726 { | |
4727 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4728 #define ADDITIONAL_FREE_marker(ptr) \ | |
4729 do { Lisp_Object tem; \ | |
793 | 4730 tem = wrap_marker (ptr); \ |
428 | 4731 unchain_marker (tem); \ |
4732 } while (0) | |
4733 | |
440 | 4734 SWEEP_FIXED_TYPE_BLOCK (marker, Lisp_Marker); |
428 | 4735 } |
2720 | 4736 #endif /* not MC_ALLOC */ |
428 | 4737 |
4738 /* Explicitly free a marker. */ | |
4739 void | |
1204 | 4740 free_marker (Lisp_Object ptr) |
428 | 4741 { |
2720 | 4742 #ifdef MC_ALLOC |
4743 free_lrecord (ptr); | |
4744 #else /* not MC_ALLOC */ | |
1204 | 4745 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, Lisp_Marker, XMARKER (ptr)); |
2720 | 4746 #endif /* not MC_ALLOC */ |
428 | 4747 } |
4748 | |
4749 | |
4750 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) | |
4751 | |
4752 static void | |
4753 verify_string_chars_integrity (void) | |
4754 { | |
4755 struct string_chars_block *sb; | |
4756 | |
4757 /* Scan each existing string block sequentially, string by string. */ | |
4758 for (sb = first_string_chars_block; sb; sb = sb->next) | |
4759 { | |
4760 int pos = 0; | |
4761 /* POS is the index of the next string in the block. */ | |
4762 while (pos < sb->pos) | |
4763 { | |
4764 struct string_chars *s_chars = | |
4765 (struct string_chars *) &(sb->string_chars[pos]); | |
438 | 4766 Lisp_String *string; |
428 | 4767 int size; |
4768 int fullsize; | |
4769 | |
454 | 4770 /* If the string_chars struct is marked as free (i.e. the |
4771 STRING pointer is NULL) then this is an unused chunk of | |
4772 string storage. (See below.) */ | |
4773 | |
4774 if (STRING_CHARS_FREE_P (s_chars)) | |
428 | 4775 { |
4776 fullsize = ((struct unused_string_chars *) s_chars)->fullsize; | |
4777 pos += fullsize; | |
4778 continue; | |
4779 } | |
4780 | |
4781 string = s_chars->string; | |
4782 /* Must be 32-bit aligned. */ | |
4783 assert ((((int) string) & 3) == 0); | |
4784 | |
793 | 4785 size = string->size_; |
428 | 4786 fullsize = STRING_FULLSIZE (size); |
4787 | |
4788 assert (!BIG_STRING_FULLSIZE_P (fullsize)); | |
2720 | 4789 assert (XSTRING_DATA (string) == s_chars->chars); |
428 | 4790 pos += fullsize; |
4791 } | |
4792 assert (pos == sb->pos); | |
4793 } | |
4794 } | |
4795 | |
1204 | 4796 #endif /* defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) */ |
428 | 4797 |
4798 /* Compactify string chars, relocating the reference to each -- | |
4799 free any empty string_chars_block we see. */ | |
4800 static void | |
4801 compact_string_chars (void) | |
4802 { | |
4803 struct string_chars_block *to_sb = first_string_chars_block; | |
4804 int to_pos = 0; | |
4805 struct string_chars_block *from_sb; | |
4806 | |
4807 /* Scan each existing string block sequentially, string by string. */ | |
4808 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next) | |
4809 { | |
4810 int from_pos = 0; | |
4811 /* FROM_POS is the index of the next string in the block. */ | |
4812 while (from_pos < from_sb->pos) | |
4813 { | |
4814 struct string_chars *from_s_chars = | |
4815 (struct string_chars *) &(from_sb->string_chars[from_pos]); | |
4816 struct string_chars *to_s_chars; | |
438 | 4817 Lisp_String *string; |
428 | 4818 int size; |
4819 int fullsize; | |
4820 | |
454 | 4821 /* If the string_chars struct is marked as free (i.e. the |
4822 STRING pointer is NULL) then this is an unused chunk of | |
4823 string storage. This happens under Mule when a string's | |
4824 size changes in such a way that its fullsize changes. | |
4825 (Strings can change size because a different-length | |
4826 character can be substituted for another character.) | |
4827 In this case, after the bogus string pointer is the | |
4828 "fullsize" of this entry, i.e. how many bytes to skip. */ | |
4829 | |
4830 if (STRING_CHARS_FREE_P (from_s_chars)) | |
428 | 4831 { |
4832 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize; | |
4833 from_pos += fullsize; | |
4834 continue; | |
4835 } | |
4836 | |
4837 string = from_s_chars->string; | |
1204 | 4838 gc_checking_assert (!(LRECORD_FREE_P (string))); |
428 | 4839 |
793 | 4840 size = string->size_; |
428 | 4841 fullsize = STRING_FULLSIZE (size); |
4842 | |
442 | 4843 gc_checking_assert (! BIG_STRING_FULLSIZE_P (fullsize)); |
428 | 4844 |
4845 /* Just skip it if it isn't marked. */ | |
771 | 4846 if (! MARKED_RECORD_HEADER_P (&(string->u.lheader))) |
428 | 4847 { |
4848 from_pos += fullsize; | |
4849 continue; | |
4850 } | |
4851 | |
4852 /* If it won't fit in what's left of TO_SB, close TO_SB out | |
4853 and go on to the next string_chars_block. We know that TO_SB | |
4854 cannot advance past FROM_SB here since FROM_SB is large enough | |
4855 to currently contain this string. */ | |
4856 if ((to_pos + fullsize) > countof (to_sb->string_chars)) | |
4857 { | |
4858 to_sb->pos = to_pos; | |
4859 to_sb = to_sb->next; | |
4860 to_pos = 0; | |
4861 } | |
4862 | |
4863 /* Compute new address of this string | |
4864 and update TO_POS for the space being used. */ | |
4865 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]); | |
4866 | |
4867 /* Copy the string_chars to the new place. */ | |
4868 if (from_s_chars != to_s_chars) | |
4869 memmove (to_s_chars, from_s_chars, fullsize); | |
4870 | |
4871 /* Relocate FROM_S_CHARS's reference */ | |
826 | 4872 set_lispstringp_data (string, &(to_s_chars->chars[0])); |
428 | 4873 |
4874 from_pos += fullsize; | |
4875 to_pos += fullsize; | |
4876 } | |
4877 } | |
4878 | |
4879 /* Set current to the last string chars block still used and | |
4880 free any that follow. */ | |
4881 { | |
4882 struct string_chars_block *victim; | |
4883 | |
4884 for (victim = to_sb->next; victim; ) | |
4885 { | |
4886 struct string_chars_block *next = victim->next; | |
1726 | 4887 xfree (victim, struct string_chars_block *); |
428 | 4888 victim = next; |
4889 } | |
4890 | |
4891 current_string_chars_block = to_sb; | |
4892 current_string_chars_block->pos = to_pos; | |
4893 current_string_chars_block->next = 0; | |
4894 } | |
4895 } | |
4896 | |
2720 | 4897 #ifndef MC_ALLOC |
428 | 4898 #if 1 /* Hack to debug missing purecopy's */ |
4899 static int debug_string_purity; | |
4900 | |
4901 static void | |
793 | 4902 debug_string_purity_print (Lisp_Object p) |
428 | 4903 { |
4904 Charcount i; | |
826 | 4905 Charcount s = string_char_length (p); |
442 | 4906 stderr_out ("\""); |
428 | 4907 for (i = 0; i < s; i++) |
4908 { | |
867 | 4909 Ichar ch = string_ichar (p, i); |
428 | 4910 if (ch < 32 || ch >= 126) |
4911 stderr_out ("\\%03o", ch); | |
4912 else if (ch == '\\' || ch == '\"') | |
4913 stderr_out ("\\%c", ch); | |
4914 else | |
4915 stderr_out ("%c", ch); | |
4916 } | |
4917 stderr_out ("\"\n"); | |
4918 } | |
4919 #endif /* 1 */ | |
2720 | 4920 #endif /* not MC_ALLOC */ |
4921 | |
4922 #ifndef MC_ALLOC | |
428 | 4923 static void |
4924 sweep_strings (void) | |
4925 { | |
647 | 4926 int num_small_used = 0; |
4927 Bytecount num_small_bytes = 0, num_bytes = 0; | |
428 | 4928 int debug = debug_string_purity; |
4929 | |
793 | 4930 #define UNMARK_string(ptr) do { \ |
4931 Lisp_String *p = (ptr); \ | |
4932 Bytecount size = p->size_; \ | |
4933 UNMARK_RECORD_HEADER (&(p->u.lheader)); \ | |
4934 num_bytes += size; \ | |
4935 if (!BIG_STRING_SIZE_P (size)) \ | |
4936 { \ | |
4937 num_small_bytes += size; \ | |
4938 num_small_used++; \ | |
4939 } \ | |
4940 if (debug) \ | |
4941 debug_string_purity_print (wrap_string (p)); \ | |
438 | 4942 } while (0) |
4943 #define ADDITIONAL_FREE_string(ptr) do { \ | |
793 | 4944 Bytecount size = ptr->size_; \ |
438 | 4945 if (BIG_STRING_SIZE_P (size)) \ |
1726 | 4946 xfree (ptr->data_, Ibyte *); \ |
438 | 4947 } while (0) |
4948 | |
771 | 4949 SWEEP_FIXED_TYPE_BLOCK_1 (string, Lisp_String, u.lheader); |
428 | 4950 |
4951 gc_count_num_short_string_in_use = num_small_used; | |
4952 gc_count_string_total_size = num_bytes; | |
4953 gc_count_short_string_total_size = num_small_bytes; | |
4954 } | |
2720 | 4955 #endif /* not MC_ALLOC */ |
428 | 4956 |
4957 /* I hate duplicating all this crap! */ | |
4958 int | |
4959 marked_p (Lisp_Object obj) | |
4960 { | |
4961 /* Checks we used to perform. */ | |
4962 /* if (EQ (obj, Qnull_pointer)) return 1; */ | |
4963 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */ | |
4964 /* if (PURIFIED (XPNTR (obj))) return 1; */ | |
4965 | |
4966 if (XTYPE (obj) == Lisp_Type_Record) | |
4967 { | |
4968 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
442 | 4969 |
4970 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
4971 | |
4972 return MARKED_RECORD_HEADER_P (lheader); | |
428 | 4973 } |
4974 return 1; | |
4975 } | |
4976 | |
4977 static void | |
4978 gc_sweep (void) | |
4979 { | |
2720 | 4980 #ifdef MC_ALLOC |
4981 compact_string_chars (); | |
4982 mc_finalize (); | |
4983 mc_sweep (); | |
4984 #else /* not MC_ALLOC */ | |
428 | 4985 /* Free all unmarked records. Do this at the very beginning, |
4986 before anything else, so that the finalize methods can safely | |
4987 examine items in the objects. sweep_lcrecords_1() makes | |
4988 sure to call all the finalize methods *before* freeing anything, | |
4989 to complete the safety. */ | |
4990 { | |
4991 int ignored; | |
4992 sweep_lcrecords_1 (&all_lcrecords, &ignored); | |
4993 } | |
4994 | |
4995 compact_string_chars (); | |
4996 | |
4997 /* Finalize methods below (called through the ADDITIONAL_FREE_foo | |
4998 macros) must be *extremely* careful to make sure they're not | |
4999 referencing freed objects. The only two existing finalize | |
5000 methods (for strings and markers) pass muster -- the string | |
5001 finalizer doesn't look at anything but its own specially- | |
5002 created block, and the marker finalizer only looks at live | |
5003 buffers (which will never be freed) and at the markers before | |
5004 and after it in the chain (which, by induction, will never be | |
5005 freed because if so, they would have already removed themselves | |
5006 from the chain). */ | |
5007 | |
5008 /* Put all unmarked strings on free list, free'ing the string chars | |
5009 of large unmarked strings */ | |
5010 sweep_strings (); | |
5011 | |
5012 /* Put all unmarked conses on free list */ | |
5013 sweep_conses (); | |
5014 | |
5015 /* Free all unmarked compiled-function objects */ | |
5016 sweep_compiled_functions (); | |
5017 | |
5018 /* Put all unmarked floats on free list */ | |
5019 sweep_floats (); | |
5020 | |
1983 | 5021 #ifdef HAVE_BIGNUM |
5022 /* Put all unmarked bignums on free list */ | |
5023 sweep_bignums (); | |
5024 #endif | |
5025 | |
5026 #ifdef HAVE_RATIO | |
5027 /* Put all unmarked ratios on free list */ | |
5028 sweep_ratios (); | |
5029 #endif | |
5030 | |
5031 #ifdef HAVE_BIGFLOAT | |
5032 /* Put all unmarked bigfloats on free list */ | |
5033 sweep_bigfloats (); | |
5034 #endif | |
5035 | |
428 | 5036 /* Put all unmarked symbols on free list */ |
5037 sweep_symbols (); | |
5038 | |
5039 /* Put all unmarked extents on free list */ | |
5040 sweep_extents (); | |
5041 | |
5042 /* Put all unmarked markers on free list. | |
5043 Dechain each one first from the buffer into which it points. */ | |
5044 sweep_markers (); | |
5045 | |
5046 sweep_events (); | |
5047 | |
1204 | 5048 #ifdef EVENT_DATA_AS_OBJECTS |
934 | 5049 sweep_key_data (); |
5050 sweep_button_data (); | |
5051 sweep_motion_data (); | |
5052 sweep_process_data (); | |
5053 sweep_timeout_data (); | |
5054 sweep_magic_data (); | |
5055 sweep_magic_eval_data (); | |
5056 sweep_eval_data (); | |
5057 sweep_misc_user_data (); | |
1204 | 5058 #endif /* EVENT_DATA_AS_OBJECTS */ |
2720 | 5059 #endif /* not MC_ALLOC */ |
5060 | |
5061 #ifndef MC_ALLOC | |
428 | 5062 #ifdef PDUMP |
442 | 5063 pdump_objects_unmark (); |
428 | 5064 #endif |
2720 | 5065 #endif /* not MC_ALLOC */ |
428 | 5066 } |
5067 | |
5068 /* Clearing for disksave. */ | |
5069 | |
5070 void | |
5071 disksave_object_finalization (void) | |
5072 { | |
5073 /* It's important that certain information from the environment not get | |
5074 dumped with the executable (pathnames, environment variables, etc.). | |
5075 To make it easier to tell when this has happened with strings(1) we | |
5076 clear some known-to-be-garbage blocks of memory, so that leftover | |
5077 results of old evaluation don't look like potential problems. | |
5078 But first we set some notable variables to nil and do one more GC, | |
5079 to turn those strings into garbage. | |
440 | 5080 */ |
428 | 5081 |
5082 /* Yeah, this list is pretty ad-hoc... */ | |
5083 Vprocess_environment = Qnil; | |
771 | 5084 env_initted = 0; |
428 | 5085 Vexec_directory = Qnil; |
5086 Vdata_directory = Qnil; | |
5087 Vsite_directory = Qnil; | |
5088 Vdoc_directory = Qnil; | |
5089 Vexec_path = Qnil; | |
5090 Vload_path = Qnil; | |
5091 /* Vdump_load_path = Qnil; */ | |
5092 /* Release hash tables for locate_file */ | |
5093 Flocate_file_clear_hashing (Qt); | |
771 | 5094 uncache_home_directory (); |
776 | 5095 zero_out_command_line_status_vars (); |
872 | 5096 clear_default_devices (); |
428 | 5097 |
5098 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \ | |
5099 defined(LOADHIST_BUILTIN)) | |
5100 Vload_history = Qnil; | |
5101 #endif | |
5102 Vshell_file_name = Qnil; | |
5103 | |
5104 garbage_collect_1 (); | |
5105 | |
5106 /* Run the disksave finalization methods of all live objects. */ | |
5107 disksave_object_finalization_1 (); | |
5108 | |
5109 /* Zero out the uninitialized (really, unused) part of the containers | |
5110 for the live strings. */ | |
5111 { | |
5112 struct string_chars_block *scb; | |
5113 for (scb = first_string_chars_block; scb; scb = scb->next) | |
5114 { | |
5115 int count = sizeof (scb->string_chars) - scb->pos; | |
5116 | |
5117 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE); | |
440 | 5118 if (count != 0) |
5119 { | |
5120 /* from the block's fill ptr to the end */ | |
5121 memset ((scb->string_chars + scb->pos), 0, count); | |
5122 } | |
428 | 5123 } |
5124 } | |
5125 | |
5126 /* There, that ought to be enough... */ | |
5127 | |
5128 } | |
5129 | |
5130 | |
771 | 5131 int |
5132 begin_gc_forbidden (void) | |
5133 { | |
853 | 5134 return internal_bind_int (&gc_currently_forbidden, 1); |
771 | 5135 } |
5136 | |
5137 void | |
5138 end_gc_forbidden (int count) | |
5139 { | |
5140 unbind_to (count); | |
5141 } | |
5142 | |
428 | 5143 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */ |
5144 static int gc_hooks_inhibited; | |
5145 | |
611 | 5146 struct post_gc_action |
5147 { | |
5148 void (*fun) (void *); | |
5149 void *arg; | |
5150 }; | |
5151 | |
5152 typedef struct post_gc_action post_gc_action; | |
5153 | |
5154 typedef struct | |
5155 { | |
5156 Dynarr_declare (post_gc_action); | |
5157 } post_gc_action_dynarr; | |
5158 | |
5159 static post_gc_action_dynarr *post_gc_actions; | |
5160 | |
5161 /* Register an action to be called at the end of GC. | |
5162 gc_in_progress is 0 when this is called. | |
5163 This is used when it is discovered that an action needs to be taken, | |
5164 but it's during GC, so it's not safe. (e.g. in a finalize method.) | |
5165 | |
5166 As a general rule, do not use Lisp objects here. | |
5167 And NEVER signal an error. | |
5168 */ | |
5169 | |
5170 void | |
5171 register_post_gc_action (void (*fun) (void *), void *arg) | |
5172 { | |
5173 post_gc_action action; | |
5174 | |
5175 if (!post_gc_actions) | |
5176 post_gc_actions = Dynarr_new (post_gc_action); | |
5177 | |
5178 action.fun = fun; | |
5179 action.arg = arg; | |
5180 | |
5181 Dynarr_add (post_gc_actions, action); | |
5182 } | |
5183 | |
5184 static void | |
5185 run_post_gc_actions (void) | |
5186 { | |
5187 int i; | |
5188 | |
5189 if (post_gc_actions) | |
5190 { | |
5191 for (i = 0; i < Dynarr_length (post_gc_actions); i++) | |
5192 { | |
5193 post_gc_action action = Dynarr_at (post_gc_actions, i); | |
5194 (action.fun) (action.arg); | |
5195 } | |
5196 | |
5197 Dynarr_reset (post_gc_actions); | |
5198 } | |
5199 } | |
5200 | |
428 | 5201 |
5202 void | |
5203 garbage_collect_1 (void) | |
5204 { | |
5205 #if MAX_SAVE_STACK > 0 | |
5206 char stack_top_variable; | |
5207 extern char *stack_bottom; | |
5208 #endif | |
5209 struct frame *f; | |
5210 int speccount; | |
5211 int cursor_changed; | |
5212 Lisp_Object pre_gc_cursor; | |
5213 struct gcpro gcpro1; | |
1292 | 5214 PROFILE_DECLARE (); |
428 | 5215 |
1123 | 5216 assert (!in_display || gc_currently_forbidden); |
5217 | |
428 | 5218 if (gc_in_progress |
5219 || gc_currently_forbidden | |
5220 || in_display | |
5221 || preparing_for_armageddon) | |
5222 return; | |
5223 | |
1292 | 5224 PROFILE_RECORD_ENTERING_SECTION (QSin_garbage_collection); |
5225 | |
428 | 5226 /* We used to call selected_frame() here. |
5227 | |
5228 The following functions cannot be called inside GC | |
5229 so we move to after the above tests. */ | |
5230 { | |
5231 Lisp_Object frame; | |
5232 Lisp_Object device = Fselected_device (Qnil); | |
5233 if (NILP (device)) /* Could happen during startup, eg. if always_gc */ | |
5234 return; | |
872 | 5235 frame = Fselected_frame (device); |
428 | 5236 if (NILP (frame)) |
563 | 5237 invalid_state ("No frames exist on device", device); |
428 | 5238 f = XFRAME (frame); |
5239 } | |
5240 | |
5241 pre_gc_cursor = Qnil; | |
5242 cursor_changed = 0; | |
5243 | |
5244 GCPRO1 (pre_gc_cursor); | |
5245 | |
5246 /* Very important to prevent GC during any of the following | |
5247 stuff that might run Lisp code; otherwise, we'll likely | |
5248 have infinite GC recursion. */ | |
771 | 5249 speccount = begin_gc_forbidden (); |
428 | 5250 |
887 | 5251 need_to_signal_post_gc = 0; |
1318 | 5252 recompute_funcall_allocation_flag (); |
887 | 5253 |
428 | 5254 if (!gc_hooks_inhibited) |
853 | 5255 run_hook_trapping_problems |
1333 | 5256 (Qgarbage_collecting, Qpre_gc_hook, |
853 | 5257 INHIBIT_EXISTING_PERMANENT_DISPLAY_OBJECT_DELETION); |
428 | 5258 |
5259 /* Now show the GC cursor/message. */ | |
5260 if (!noninteractive) | |
5261 { | |
5262 if (FRAME_WIN_P (f)) | |
5263 { | |
771 | 5264 Lisp_Object frame = wrap_frame (f); |
428 | 5265 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph, |
5266 FRAME_SELECTED_WINDOW (f), | |
5267 ERROR_ME_NOT, 1); | |
5268 pre_gc_cursor = f->pointer; | |
5269 if (POINTER_IMAGE_INSTANCEP (cursor) | |
5270 /* don't change if we don't know how to change back. */ | |
5271 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor)) | |
5272 { | |
5273 cursor_changed = 1; | |
5274 Fset_frame_pointer (frame, cursor); | |
5275 } | |
5276 } | |
5277 | |
5278 /* Don't print messages to the stream device. */ | |
5279 if (!cursor_changed && !FRAME_STREAM_P (f)) | |
5280 { | |
1154 | 5281 if (garbage_collection_messages) |
5282 { | |
5283 Lisp_Object args[2], whole_msg; | |
5284 args[0] = (STRINGP (Vgc_message) ? Vgc_message : | |
5285 build_msg_string (gc_default_message)); | |
5286 args[1] = build_string ("..."); | |
5287 whole_msg = Fconcat (2, args); | |
5288 echo_area_message (f, (Ibyte *) 0, whole_msg, 0, -1, | |
5289 Qgarbage_collecting); | |
5290 } | |
428 | 5291 } |
5292 } | |
5293 | |
5294 /***** Now we actually start the garbage collection. */ | |
5295 | |
5296 gc_in_progress = 1; | |
2367 | 5297 inhibit_non_essential_conversion_operations = 1; |
428 | 5298 |
5299 gc_generation_number[0]++; | |
5300 | |
5301 #if MAX_SAVE_STACK > 0 | |
5302 | |
5303 /* Save a copy of the contents of the stack, for debugging. */ | |
5304 if (!purify_flag) | |
5305 { | |
5306 /* Static buffer in which we save a copy of the C stack at each GC. */ | |
5307 static char *stack_copy; | |
665 | 5308 static Bytecount stack_copy_size; |
428 | 5309 |
5310 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom; | |
665 | 5311 Bytecount stack_size = (stack_diff > 0 ? stack_diff : -stack_diff); |
428 | 5312 if (stack_size < MAX_SAVE_STACK) |
5313 { | |
5314 if (stack_copy_size < stack_size) | |
5315 { | |
5316 stack_copy = (char *) xrealloc (stack_copy, stack_size); | |
5317 stack_copy_size = stack_size; | |
5318 } | |
5319 | |
5320 memcpy (stack_copy, | |
5321 stack_diff > 0 ? stack_bottom : &stack_top_variable, | |
5322 stack_size); | |
5323 } | |
5324 } | |
5325 #endif /* MAX_SAVE_STACK > 0 */ | |
5326 | |
5327 /* Do some totally ad-hoc resource clearing. */ | |
5328 /* #### generalize this? */ | |
5329 clear_event_resource (); | |
5330 cleanup_specifiers (); | |
1204 | 5331 cleanup_buffer_undo_lists (); |
428 | 5332 |
5333 /* Mark all the special slots that serve as the roots of accessibility. */ | |
5334 | |
1598 | 5335 #ifdef USE_KKCC |
5336 /* initialize kkcc stack */ | |
5337 kkcc_gc_stack_init(); | |
2645 | 5338 #define mark_object(obj) kkcc_gc_stack_push_lisp_object (obj, 0, -1) |
1598 | 5339 #endif /* USE_KKCC */ |
5340 | |
428 | 5341 { /* staticpro() */ |
452 | 5342 Lisp_Object **p = Dynarr_begin (staticpros); |
665 | 5343 Elemcount count; |
452 | 5344 for (count = Dynarr_length (staticpros); count; count--) |
5345 mark_object (**p++); | |
5346 } | |
5347 | |
5348 { /* staticpro_nodump() */ | |
5349 Lisp_Object **p = Dynarr_begin (staticpros_nodump); | |
665 | 5350 Elemcount count; |
452 | 5351 for (count = Dynarr_length (staticpros_nodump); count; count--) |
5352 mark_object (**p++); | |
428 | 5353 } |
5354 | |
2720 | 5355 #ifdef MC_ALLOC |
5356 { /* mcpro () */ | |
5357 Lisp_Object *p = Dynarr_begin (mcpros); | |
5358 Elemcount count; | |
5359 for (count = Dynarr_length (mcpros); count; count--) | |
5360 mark_object (*p++); | |
5361 } | |
5362 #endif /* MC_ALLOC */ | |
5363 | |
428 | 5364 { /* GCPRO() */ |
5365 struct gcpro *tail; | |
5366 int i; | |
5367 for (tail = gcprolist; tail; tail = tail->next) | |
5368 for (i = 0; i < tail->nvars; i++) | |
5369 mark_object (tail->var[i]); | |
5370 } | |
5371 | |
5372 { /* specbind() */ | |
5373 struct specbinding *bind; | |
5374 for (bind = specpdl; bind != specpdl_ptr; bind++) | |
5375 { | |
5376 mark_object (bind->symbol); | |
5377 mark_object (bind->old_value); | |
5378 } | |
5379 } | |
5380 | |
5381 { | |
2994 | 5382 struct catchtag *c; |
5383 for (c = catchlist; c; c = c->next) | |
428 | 5384 { |
2994 | 5385 mark_object (c->tag); |
5386 mark_object (c->val); | |
5387 mark_object (c->actual_tag); | |
5388 mark_object (c->backtrace); | |
428 | 5389 } |
5390 } | |
5391 | |
5392 { | |
5393 struct backtrace *backlist; | |
5394 for (backlist = backtrace_list; backlist; backlist = backlist->next) | |
5395 { | |
5396 int nargs = backlist->nargs; | |
5397 int i; | |
5398 | |
5399 mark_object (*backlist->function); | |
1292 | 5400 if (nargs < 0 /* nargs == UNEVALLED || nargs == MANY */ |
5401 /* might be fake (internal profiling entry) */ | |
5402 && backlist->args) | |
428 | 5403 mark_object (backlist->args[0]); |
5404 else | |
5405 for (i = 0; i < nargs; i++) | |
5406 mark_object (backlist->args[i]); | |
5407 } | |
5408 } | |
5409 | |
5410 mark_profiling_info (); | |
5411 | |
5412 /* OK, now do the after-mark stuff. This is for things that | |
5413 are only marked when something else is marked (e.g. weak hash tables). | |
5414 There may be complex dependencies between such objects -- e.g. | |
5415 a weak hash table might be unmarked, but after processing a later | |
5416 weak hash table, the former one might get marked. So we have to | |
5417 iterate until nothing more gets marked. */ | |
1598 | 5418 #ifdef USE_KKCC |
5419 kkcc_marking (); | |
5420 #endif /* USE_KKCC */ | |
1590 | 5421 init_marking_ephemerons (); |
428 | 5422 while (finish_marking_weak_hash_tables () > 0 || |
887 | 5423 finish_marking_weak_lists () > 0 || |
1590 | 5424 continue_marking_ephemerons () > 0) |
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5425 #ifdef USE_KKCC |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5426 { |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5427 kkcc_marking (); |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5428 } |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5429 #else /* NOT USE_KKCC */ |
1590 | 5430 ; |
1598 | 5431 #endif /* USE_KKCC */ |
5432 | |
1590 | 5433 /* At this point, we know which objects need to be finalized: we |
5434 still need to resurrect them */ | |
5435 | |
5436 while (finish_marking_ephemerons () > 0 || | |
5437 finish_marking_weak_lists () > 0 || | |
5438 finish_marking_weak_hash_tables () > 0) | |
1643 | 5439 #ifdef USE_KKCC |
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5440 { |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5441 kkcc_marking (); |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5442 } |
1643 | 5443 kkcc_gc_stack_free (); |
1676 | 5444 #undef mark_object |
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5445 #else /* NOT USE_KKCC */ |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5446 ; |
1643 | 5447 #endif /* USE_KKCC */ |
5448 | |
428 | 5449 /* And prune (this needs to be called after everything else has been |
5450 marked and before we do any sweeping). */ | |
5451 /* #### this is somewhat ad-hoc and should probably be an object | |
5452 method */ | |
5453 prune_weak_hash_tables (); | |
5454 prune_weak_lists (); | |
5455 prune_specifiers (); | |
5456 prune_syntax_tables (); | |
5457 | |
887 | 5458 prune_ephemerons (); |
858 | 5459 prune_weak_boxes (); |
5460 | |
428 | 5461 gc_sweep (); |
5462 | |
5463 consing_since_gc = 0; | |
5464 #ifndef DEBUG_XEMACS | |
5465 /* Allow you to set it really fucking low if you really want ... */ | |
5466 if (gc_cons_threshold < 10000) | |
5467 gc_cons_threshold = 10000; | |
5468 #endif | |
814 | 5469 recompute_need_to_garbage_collect (); |
428 | 5470 |
2367 | 5471 inhibit_non_essential_conversion_operations = 0; |
428 | 5472 gc_in_progress = 0; |
5473 | |
611 | 5474 run_post_gc_actions (); |
5475 | |
428 | 5476 /******* End of garbage collection ********/ |
5477 | |
5478 /* Now remove the GC cursor/message */ | |
5479 if (!noninteractive) | |
5480 { | |
5481 if (cursor_changed) | |
771 | 5482 Fset_frame_pointer (wrap_frame (f), pre_gc_cursor); |
428 | 5483 else if (!FRAME_STREAM_P (f)) |
5484 { | |
5485 /* Show "...done" only if the echo area would otherwise be empty. */ | |
5486 if (NILP (clear_echo_area (selected_frame (), | |
5487 Qgarbage_collecting, 0))) | |
5488 { | |
1154 | 5489 if (garbage_collection_messages) |
5490 { | |
5491 Lisp_Object args[2], whole_msg; | |
5492 args[0] = (STRINGP (Vgc_message) ? Vgc_message : | |
5493 build_msg_string (gc_default_message)); | |
5494 args[1] = build_msg_string ("... done"); | |
5495 whole_msg = Fconcat (2, args); | |
5496 echo_area_message (selected_frame (), (Ibyte *) 0, | |
5497 whole_msg, 0, -1, | |
5498 Qgarbage_collecting); | |
5499 } | |
428 | 5500 } |
5501 } | |
5502 } | |
5503 | |
5504 /* now stop inhibiting GC */ | |
771 | 5505 unbind_to (speccount); |
428 | 5506 |
2720 | 5507 #ifndef MC_ALLOC |
428 | 5508 if (!breathing_space) |
5509 { | |
5510 breathing_space = malloc (4096 - MALLOC_OVERHEAD); | |
5511 } | |
2720 | 5512 #endif /* not MC_ALLOC */ |
428 | 5513 |
5514 UNGCPRO; | |
887 | 5515 |
5516 need_to_signal_post_gc = 1; | |
5517 funcall_allocation_flag = 1; | |
5518 | |
1292 | 5519 PROFILE_RECORD_EXITING_SECTION (QSin_garbage_collection); |
5520 | |
428 | 5521 return; |
5522 } | |
5523 | |
2994 | 5524 #ifdef ALLOC_TYPE_STATS |
5525 | |
2720 | 5526 static Lisp_Object |
2994 | 5527 gc_plist_hack (const Ascbyte *name, EMACS_INT value, Lisp_Object tail) |
2720 | 5528 { |
5529 /* C doesn't have local functions (or closures, or GC, or readable syntax, | |
5530 or portable numeric datatypes, or bit-vectors, or characters, or | |
5531 arrays, or exceptions, or ...) */ | |
5532 return cons3 (intern (name), make_int (value), tail); | |
5533 } | |
2775 | 5534 |
2994 | 5535 static Lisp_Object |
5536 object_memory_usage_stats (int set_total_gc_usage) | |
2720 | 5537 { |
5538 Lisp_Object pl = Qnil; | |
5539 int i; | |
2994 | 5540 EMACS_INT tgu_val = 0; |
5541 | |
5542 #ifdef MC_ALLOC | |
2775 | 5543 |
2720 | 5544 for (i = 0; i < (countof (lrecord_implementations_table) |
5545 + MODULE_DEFINABLE_TYPE_COUNT); i++) | |
5546 { | |
5547 if (lrecord_stats[i].instances_in_use != 0) | |
5548 { | |
5549 char buf [255]; | |
5550 const char *name = lrecord_implementations_table[i]->name; | |
5551 int len = strlen (name); | |
5552 | |
5553 if (lrecord_stats[i].bytes_in_use_including_overhead != | |
5554 lrecord_stats[i].bytes_in_use) | |
5555 { | |
5556 sprintf (buf, "%s-storage-including-overhead", name); | |
5557 pl = gc_plist_hack (buf, | |
5558 lrecord_stats[i] | |
5559 .bytes_in_use_including_overhead, | |
5560 pl); | |
5561 } | |
5562 | |
5563 sprintf (buf, "%s-storage", name); | |
5564 pl = gc_plist_hack (buf, | |
5565 lrecord_stats[i].bytes_in_use, | |
5566 pl); | |
2994 | 5567 tgu_val += lrecord_stats[i].bytes_in_use_including_overhead; |
2720 | 5568 |
5569 if (name[len-1] == 's') | |
5570 sprintf (buf, "%ses-used", name); | |
5571 else | |
5572 sprintf (buf, "%ss-used", name); | |
5573 pl = gc_plist_hack (buf, lrecord_stats[i].instances_in_use, pl); | |
5574 } | |
5575 } | |
2775 | 5576 pl = gc_plist_hack ("string-data-storage-including-overhead", |
5577 lrecord_string_data_bytes_in_use_including_overhead, pl); | |
5578 pl = gc_plist_hack ("string-data-storage-additional", | |
5579 lrecord_string_data_bytes_in_use, pl); | |
5580 pl = gc_plist_hack ("string-data-used", | |
5581 lrecord_string_data_instances_in_use, pl); | |
2994 | 5582 tgu_val += lrecord_string_data_bytes_in_use_including_overhead; |
5583 | |
2720 | 5584 #else /* not MC_ALLOC */ |
428 | 5585 |
5586 #define HACK_O_MATIC(type, name, pl) do { \ | |
2994 | 5587 EMACS_INT s = 0; \ |
428 | 5588 struct type##_block *x = current_##type##_block; \ |
5589 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \ | |
2994 | 5590 tgu_val += s; \ |
428 | 5591 (pl) = gc_plist_hack ((name), s, (pl)); \ |
5592 } while (0) | |
5593 | |
442 | 5594 for (i = 0; i < lrecord_type_count; i++) |
428 | 5595 { |
5596 if (lcrecord_stats[i].bytes_in_use != 0 | |
5597 || lcrecord_stats[i].bytes_freed != 0 | |
5598 || lcrecord_stats[i].instances_on_free_list != 0) | |
5599 { | |
5600 char buf [255]; | |
442 | 5601 const char *name = lrecord_implementations_table[i]->name; |
428 | 5602 int len = strlen (name); |
5603 | |
5604 sprintf (buf, "%s-storage", name); | |
5605 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl); | |
2994 | 5606 tgu_val += lcrecord_stats[i].bytes_in_use; |
428 | 5607 /* Okay, simple pluralization check for `symbol-value-varalias' */ |
5608 if (name[len-1] == 's') | |
5609 sprintf (buf, "%ses-freed", name); | |
5610 else | |
5611 sprintf (buf, "%ss-freed", name); | |
5612 if (lcrecord_stats[i].instances_freed != 0) | |
5613 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl); | |
5614 if (name[len-1] == 's') | |
5615 sprintf (buf, "%ses-on-free-list", name); | |
5616 else | |
5617 sprintf (buf, "%ss-on-free-list", name); | |
5618 if (lcrecord_stats[i].instances_on_free_list != 0) | |
5619 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list, | |
5620 pl); | |
5621 if (name[len-1] == 's') | |
5622 sprintf (buf, "%ses-used", name); | |
5623 else | |
5624 sprintf (buf, "%ss-used", name); | |
5625 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl); | |
5626 } | |
5627 } | |
5628 | |
5629 HACK_O_MATIC (extent, "extent-storage", pl); | |
5630 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl); | |
5631 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl); | |
5632 HACK_O_MATIC (event, "event-storage", pl); | |
5633 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl); | |
5634 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl); | |
5635 HACK_O_MATIC (marker, "marker-storage", pl); | |
5636 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl); | |
5637 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl); | |
5638 HACK_O_MATIC (float, "float-storage", pl); | |
5639 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl); | |
5640 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl); | |
1983 | 5641 #ifdef HAVE_BIGNUM |
5642 HACK_O_MATIC (bignum, "bignum-storage", pl); | |
5643 pl = gc_plist_hack ("bignums-free", gc_count_num_bignum_freelist, pl); | |
5644 pl = gc_plist_hack ("bignums-used", gc_count_num_bignum_in_use, pl); | |
5645 #endif /* HAVE_BIGNUM */ | |
5646 #ifdef HAVE_RATIO | |
5647 HACK_O_MATIC (ratio, "ratio-storage", pl); | |
5648 pl = gc_plist_hack ("ratios-free", gc_count_num_ratio_freelist, pl); | |
5649 pl = gc_plist_hack ("ratios-used", gc_count_num_ratio_in_use, pl); | |
5650 #endif /* HAVE_RATIO */ | |
5651 #ifdef HAVE_BIGFLOAT | |
5652 HACK_O_MATIC (bigfloat, "bigfloat-storage", pl); | |
5653 pl = gc_plist_hack ("bigfloats-free", gc_count_num_bigfloat_freelist, pl); | |
5654 pl = gc_plist_hack ("bigfloats-used", gc_count_num_bigfloat_in_use, pl); | |
5655 #endif /* HAVE_BIGFLOAT */ | |
428 | 5656 HACK_O_MATIC (string, "string-header-storage", pl); |
5657 pl = gc_plist_hack ("long-strings-total-length", | |
5658 gc_count_string_total_size | |
5659 - gc_count_short_string_total_size, pl); | |
5660 HACK_O_MATIC (string_chars, "short-string-storage", pl); | |
5661 pl = gc_plist_hack ("short-strings-total-length", | |
5662 gc_count_short_string_total_size, pl); | |
5663 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl); | |
5664 pl = gc_plist_hack ("long-strings-used", | |
5665 gc_count_num_string_in_use | |
5666 - gc_count_num_short_string_in_use, pl); | |
5667 pl = gc_plist_hack ("short-strings-used", | |
5668 gc_count_num_short_string_in_use, pl); | |
5669 | |
5670 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl); | |
5671 pl = gc_plist_hack ("compiled-functions-free", | |
5672 gc_count_num_compiled_function_freelist, pl); | |
5673 pl = gc_plist_hack ("compiled-functions-used", | |
5674 gc_count_num_compiled_function_in_use, pl); | |
5675 | |
5676 HACK_O_MATIC (symbol, "symbol-storage", pl); | |
5677 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl); | |
5678 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl); | |
5679 | |
5680 HACK_O_MATIC (cons, "cons-storage", pl); | |
5681 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl); | |
5682 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl); | |
5683 | |
2994 | 5684 #undef HACK_O_MATIC |
5685 | |
5686 #endif /* MC_ALLOC */ | |
5687 | |
5688 if (set_total_gc_usage) | |
5689 { | |
5690 total_gc_usage = tgu_val; | |
5691 total_gc_usage_set = 1; | |
5692 } | |
5693 | |
5694 return pl; | |
5695 } | |
5696 | |
5697 DEFUN("object-memory-usage-stats", Fobject_memory_usage_stats, 0, 0 ,"", /* | |
5698 Return statistics about memory usage of Lisp objects. | |
5699 */ | |
5700 ()) | |
5701 { | |
5702 return object_memory_usage_stats (0); | |
5703 } | |
5704 | |
5705 #endif /* ALLOC_TYPE_STATS */ | |
5706 | |
5707 /* Debugging aids. */ | |
5708 | |
5709 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /* | |
5710 Reclaim storage for Lisp objects no longer needed. | |
5711 Return info on amount of space in use: | |
5712 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS) | |
5713 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS | |
5714 PLIST) | |
5715 where `PLIST' is a list of alternating keyword/value pairs providing | |
5716 more detailed information. | |
5717 Garbage collection happens automatically if you cons more than | |
5718 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. | |
5719 */ | |
5720 ()) | |
5721 { | |
5722 /* Record total usage for purposes of determining next GC */ | |
5723 garbage_collect_1 (); | |
5724 | |
5725 /* This will get set to 1, and total_gc_usage computed, as part of the | |
5726 call to object_memory_usage_stats() -- if ALLOC_TYPE_STATS is enabled. */ | |
5727 total_gc_usage_set = 0; | |
5728 #ifdef ALLOC_TYPE_STATS | |
428 | 5729 /* The things we do for backwards-compatibility */ |
2994 | 5730 #ifdef MC_ALLOC |
5731 return | |
5732 list6 | |
5733 (Fcons (make_int (lrecord_stats[lrecord_type_cons].instances_in_use), | |
5734 make_int (lrecord_stats[lrecord_type_cons] | |
5735 .bytes_in_use_including_overhead)), | |
5736 Fcons (make_int (lrecord_stats[lrecord_type_symbol].instances_in_use), | |
5737 make_int (lrecord_stats[lrecord_type_symbol] | |
5738 .bytes_in_use_including_overhead)), | |
5739 Fcons (make_int (lrecord_stats[lrecord_type_marker].instances_in_use), | |
5740 make_int (lrecord_stats[lrecord_type_marker] | |
5741 .bytes_in_use_including_overhead)), | |
5742 make_int (lrecord_stats[lrecord_type_string] | |
5743 .bytes_in_use_including_overhead), | |
5744 make_int (lrecord_stats[lrecord_type_vector] | |
5745 .bytes_in_use_including_overhead), | |
5746 object_memory_usage_stats (1)); | |
5747 #else /* not MC_ALLOC */ | |
428 | 5748 return |
5749 list6 (Fcons (make_int (gc_count_num_cons_in_use), | |
5750 make_int (gc_count_num_cons_freelist)), | |
5751 Fcons (make_int (gc_count_num_symbol_in_use), | |
5752 make_int (gc_count_num_symbol_freelist)), | |
5753 Fcons (make_int (gc_count_num_marker_in_use), | |
5754 make_int (gc_count_num_marker_freelist)), | |
5755 make_int (gc_count_string_total_size), | |
2994 | 5756 make_int (lcrecord_stats[lrecord_type_vector].bytes_in_use + |
5757 lcrecord_stats[lrecord_type_vector].bytes_freed), | |
5758 object_memory_usage_stats (1)); | |
2720 | 5759 #endif /* not MC_ALLOC */ |
2994 | 5760 #else /* not ALLOC_TYPE_STATS */ |
5761 return Qnil; | |
5762 #endif /* ALLOC_TYPE_STATS */ | |
5763 } | |
428 | 5764 |
5765 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /* | |
5766 Return the number of bytes consed since the last garbage collection. | |
5767 \"Consed\" is a misnomer in that this actually counts allocation | |
5768 of all different kinds of objects, not just conses. | |
5769 | |
5770 If this value exceeds `gc-cons-threshold', a garbage collection happens. | |
5771 */ | |
5772 ()) | |
5773 { | |
5774 return make_int (consing_since_gc); | |
5775 } | |
5776 | |
440 | 5777 #if 0 |
444 | 5778 DEFUN ("memory-limit", Fmemory_limit, 0, 0, 0, /* |
801 | 5779 Return the address of the last byte XEmacs has allocated, divided by 1024. |
5780 This may be helpful in debugging XEmacs's memory usage. | |
428 | 5781 The value is divided by 1024 to make sure it will fit in a lisp integer. |
5782 */ | |
5783 ()) | |
5784 { | |
5785 return make_int ((EMACS_INT) sbrk (0) / 1024); | |
5786 } | |
440 | 5787 #endif |
428 | 5788 |
2994 | 5789 DEFUN ("total-memory-usage", Ftotal_memory_usage, 0, 0, 0, /* |
801 | 5790 Return the total number of bytes used by the data segment in XEmacs. |
5791 This may be helpful in debugging XEmacs's memory usage. | |
2994 | 5792 NOTE: This may or may not be accurate! It is hard to determine this |
5793 value in a system-independent fashion. On Windows, for example, the | |
5794 returned number tends to be much greater than reality. | |
801 | 5795 */ |
5796 ()) | |
5797 { | |
5798 return make_int (total_data_usage ()); | |
5799 } | |
5800 | |
2994 | 5801 #ifdef ALLOC_TYPE_STATS |
5802 DEFUN ("object-memory-usage", Fobject_memory_usage, 0, 0, 0, /* | |
5803 Return total number of bytes used for object storage in XEmacs. | |
5804 This may be helpful in debugging XEmacs's memory usage. | |
5805 See also `consing-since-gc' and `object-memory-usage-stats'. | |
5806 */ | |
5807 ()) | |
5808 { | |
5809 return make_int (total_gc_usage + consing_since_gc); | |
5810 } | |
5811 #endif /* ALLOC_TYPE_STATS */ | |
5812 | |
851 | 5813 void |
5814 recompute_funcall_allocation_flag (void) | |
5815 { | |
887 | 5816 funcall_allocation_flag = |
5817 need_to_garbage_collect || | |
5818 need_to_check_c_alloca || | |
5819 need_to_signal_post_gc; | |
851 | 5820 } |
5821 | |
801 | 5822 /* True if it's time to garbage collect now. */ |
814 | 5823 static void |
5824 recompute_need_to_garbage_collect (void) | |
801 | 5825 { |
5826 if (always_gc) | |
814 | 5827 need_to_garbage_collect = 1; |
5828 else | |
5829 need_to_garbage_collect = | |
5830 (consing_since_gc > gc_cons_threshold | |
2994 | 5831 && |
2971 | 5832 #if 0 /* #### implement this better */ |
814 | 5833 (100 * consing_since_gc) / total_data_usage () >= |
5834 gc_cons_percentage | |
2994 | 5835 #else |
5836 (!total_gc_usage_set || | |
5837 (100 * consing_since_gc) / total_gc_usage >= | |
5838 gc_cons_percentage) | |
5839 #endif | |
814 | 5840 ); |
851 | 5841 recompute_funcall_allocation_flag (); |
801 | 5842 } |
5843 | |
428 | 5844 |
5845 int | |
5846 object_dead_p (Lisp_Object obj) | |
5847 { | |
5848 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) || | |
5849 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) || | |
5850 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) || | |
5851 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) || | |
5852 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) || | |
5853 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) || | |
5854 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj)))); | |
5855 } | |
5856 | |
5857 #ifdef MEMORY_USAGE_STATS | |
5858 | |
5859 /* Attempt to determine the actual amount of space that is used for | |
5860 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE". | |
5861 | |
5862 It seems that the following holds: | |
5863 | |
5864 1. When using the old allocator (malloc.c): | |
5865 | |
5866 -- blocks are always allocated in chunks of powers of two. For | |
5867 each block, there is an overhead of 8 bytes if rcheck is not | |
5868 defined, 20 bytes if it is defined. In other words, a | |
5869 one-byte allocation needs 8 bytes of overhead for a total of | |
5870 9 bytes, and needs to have 16 bytes of memory chunked out for | |
5871 it. | |
5872 | |
5873 2. When using the new allocator (gmalloc.c): | |
5874 | |
5875 -- blocks are always allocated in chunks of powers of two up | |
5876 to 4096 bytes. Larger blocks are allocated in chunks of | |
5877 an integral multiple of 4096 bytes. The minimum block | |
5878 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG | |
5879 is defined. There is no per-block overhead, but there | |
5880 is an overhead of 3*sizeof (size_t) for each 4096 bytes | |
5881 allocated. | |
5882 | |
5883 3. When using the system malloc, anything goes, but they are | |
5884 generally slower and more space-efficient than the GNU | |
5885 allocators. One possibly reasonable assumption to make | |
5886 for want of better data is that sizeof (void *), or maybe | |
5887 2 * sizeof (void *), is required as overhead and that | |
5888 blocks are allocated in the minimum required size except | |
5889 that some minimum block size is imposed (e.g. 16 bytes). */ | |
5890 | |
665 | 5891 Bytecount |
2286 | 5892 malloced_storage_size (void *UNUSED (ptr), Bytecount claimed_size, |
428 | 5893 struct overhead_stats *stats) |
5894 { | |
665 | 5895 Bytecount orig_claimed_size = claimed_size; |
428 | 5896 |
5897 #ifdef GNU_MALLOC | |
665 | 5898 if (claimed_size < (Bytecount) (2 * sizeof (void *))) |
428 | 5899 claimed_size = 2 * sizeof (void *); |
5900 # ifdef SUNOS_LOCALTIME_BUG | |
5901 if (claimed_size < 16) | |
5902 claimed_size = 16; | |
5903 # endif | |
5904 if (claimed_size < 4096) | |
5905 { | |
2260 | 5906 /* fxg: rename log->log2 to supress gcc3 shadow warning */ |
5907 int log2 = 1; | |
428 | 5908 |
5909 /* compute the log base two, more or less, then use it to compute | |
5910 the block size needed. */ | |
5911 claimed_size--; | |
5912 /* It's big, it's heavy, it's wood! */ | |
5913 while ((claimed_size /= 2) != 0) | |
2260 | 5914 ++log2; |
428 | 5915 claimed_size = 1; |
5916 /* It's better than bad, it's good! */ | |
2260 | 5917 while (log2 > 0) |
428 | 5918 { |
5919 claimed_size *= 2; | |
2260 | 5920 log2--; |
428 | 5921 } |
5922 /* We have to come up with some average about the amount of | |
5923 blocks used. */ | |
665 | 5924 if ((Bytecount) (rand () & 4095) < claimed_size) |
428 | 5925 claimed_size += 3 * sizeof (void *); |
5926 } | |
5927 else | |
5928 { | |
5929 claimed_size += 4095; | |
5930 claimed_size &= ~4095; | |
5931 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t); | |
5932 } | |
5933 | |
5934 #elif defined (SYSTEM_MALLOC) | |
5935 | |
5936 if (claimed_size < 16) | |
5937 claimed_size = 16; | |
5938 claimed_size += 2 * sizeof (void *); | |
5939 | |
5940 #else /* old GNU allocator */ | |
5941 | |
5942 # ifdef rcheck /* #### may not be defined here */ | |
5943 claimed_size += 20; | |
5944 # else | |
5945 claimed_size += 8; | |
5946 # endif | |
5947 { | |
2260 | 5948 /* fxg: rename log->log2 to supress gcc3 shadow warning */ |
5949 int log2 = 1; | |
428 | 5950 |
5951 /* compute the log base two, more or less, then use it to compute | |
5952 the block size needed. */ | |
5953 claimed_size--; | |
5954 /* It's big, it's heavy, it's wood! */ | |
5955 while ((claimed_size /= 2) != 0) | |
2260 | 5956 ++log2; |
428 | 5957 claimed_size = 1; |
5958 /* It's better than bad, it's good! */ | |
2260 | 5959 while (log2 > 0) |
428 | 5960 { |
5961 claimed_size *= 2; | |
2260 | 5962 log2--; |
428 | 5963 } |
5964 } | |
5965 | |
5966 #endif /* old GNU allocator */ | |
5967 | |
5968 if (stats) | |
5969 { | |
5970 stats->was_requested += orig_claimed_size; | |
5971 stats->malloc_overhead += claimed_size - orig_claimed_size; | |
5972 } | |
5973 return claimed_size; | |
5974 } | |
5975 | |
2720 | 5976 #ifndef MC_ALLOC |
665 | 5977 Bytecount |
5978 fixed_type_block_overhead (Bytecount size) | |
428 | 5979 { |
665 | 5980 Bytecount per_block = TYPE_ALLOC_SIZE (cons, unsigned char); |
5981 Bytecount overhead = 0; | |
5982 Bytecount storage_size = malloced_storage_size (0, per_block, 0); | |
428 | 5983 while (size >= per_block) |
5984 { | |
5985 size -= per_block; | |
5986 overhead += sizeof (void *) + per_block - storage_size; | |
5987 } | |
5988 if (rand () % per_block < size) | |
5989 overhead += sizeof (void *) + per_block - storage_size; | |
5990 return overhead; | |
5991 } | |
2720 | 5992 #endif /* not MC_ALLOC */ |
428 | 5993 #endif /* MEMORY_USAGE_STATS */ |
5994 | |
5995 | |
5996 /* Initialization */ | |
771 | 5997 static void |
1204 | 5998 common_init_alloc_early (void) |
428 | 5999 { |
771 | 6000 #ifndef Qzero |
6001 Qzero = make_int (0); /* Only used if Lisp_Object is a union type */ | |
6002 #endif | |
6003 | |
6004 #ifndef Qnull_pointer | |
6005 /* C guarantees that Qnull_pointer will be initialized to all 0 bits, | |
6006 so the following is actually a no-op. */ | |
793 | 6007 Qnull_pointer = wrap_pointer_1 (0); |
771 | 6008 #endif |
6009 | |
428 | 6010 gc_generation_number[0] = 0; |
2720 | 6011 #ifndef MC_ALLOC |
428 | 6012 breathing_space = 0; |
2720 | 6013 #endif /* not MC_ALLOC */ |
771 | 6014 Vgc_message = Qzero; |
2720 | 6015 #ifndef MC_ALLOC |
428 | 6016 all_lcrecords = 0; |
2720 | 6017 #endif /* not MC_ALLOC */ |
428 | 6018 ignore_malloc_warnings = 1; |
6019 #ifdef DOUG_LEA_MALLOC | |
6020 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */ | |
6021 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */ | |
6022 #if 0 /* Moved to emacs.c */ | |
6023 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */ | |
6024 #endif | |
6025 #endif | |
2720 | 6026 init_string_chars_alloc (); |
6027 #ifndef MC_ALLOC | |
428 | 6028 init_string_alloc (); |
6029 init_string_chars_alloc (); | |
6030 init_cons_alloc (); | |
6031 init_symbol_alloc (); | |
6032 init_compiled_function_alloc (); | |
6033 init_float_alloc (); | |
1983 | 6034 #ifdef HAVE_BIGNUM |
6035 init_bignum_alloc (); | |
6036 #endif | |
6037 #ifdef HAVE_RATIO | |
6038 init_ratio_alloc (); | |
6039 #endif | |
6040 #ifdef HAVE_BIGFLOAT | |
6041 init_bigfloat_alloc (); | |
6042 #endif | |
428 | 6043 init_marker_alloc (); |
6044 init_extent_alloc (); | |
6045 init_event_alloc (); | |
1204 | 6046 #ifdef EVENT_DATA_AS_OBJECTS |
934 | 6047 init_key_data_alloc (); |
6048 init_button_data_alloc (); | |
6049 init_motion_data_alloc (); | |
6050 init_process_data_alloc (); | |
6051 init_timeout_data_alloc (); | |
6052 init_magic_data_alloc (); | |
6053 init_magic_eval_data_alloc (); | |
6054 init_eval_data_alloc (); | |
6055 init_misc_user_data_alloc (); | |
1204 | 6056 #endif /* EVENT_DATA_AS_OBJECTS */ |
2720 | 6057 #endif /* not MC_ALLOC */ |
428 | 6058 |
6059 ignore_malloc_warnings = 0; | |
6060 | |
452 | 6061 if (staticpros_nodump) |
6062 Dynarr_free (staticpros_nodump); | |
6063 staticpros_nodump = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); | |
6064 Dynarr_resize (staticpros_nodump, 100); /* merely a small optimization */ | |
771 | 6065 #ifdef DEBUG_XEMACS |
6066 if (staticpro_nodump_names) | |
6067 Dynarr_free (staticpro_nodump_names); | |
6068 staticpro_nodump_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
6069 Dynarr_resize (staticpro_nodump_names, 100); /* ditto */ | |
6070 #endif | |
428 | 6071 |
2720 | 6072 #ifdef MC_ALLOC |
6073 mcpros = Dynarr_new2 (Lisp_Object_dynarr, Lisp_Object); | |
6074 Dynarr_resize (mcpros, 1410); /* merely a small optimization */ | |
6075 dump_add_root_block_ptr (&mcpros, &mcpros_description); | |
6076 #ifdef DEBUG_XEMACS | |
6077 mcpro_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
6078 Dynarr_resize (mcpro_names, 1410); /* merely a small optimization */ | |
6079 dump_add_root_block_ptr (&mcpro_names, &mcpro_names_description); | |
6080 #endif | |
6081 #endif /* MC_ALLOC */ | |
6082 | |
428 | 6083 consing_since_gc = 0; |
814 | 6084 need_to_garbage_collect = always_gc; |
851 | 6085 need_to_check_c_alloca = 0; |
6086 funcall_allocation_flag = 0; | |
6087 funcall_alloca_count = 0; | |
814 | 6088 |
428 | 6089 #if 1 |
2994 | 6090 gc_cons_threshold = 2000000; /* XEmacs change */ |
428 | 6091 #else |
6092 gc_cons_threshold = 15000; /* debugging */ | |
6093 #endif | |
2994 | 6094 gc_cons_percentage = 40; /* #### what is optimal? */ |
6095 total_gc_usage_set = 0; | |
428 | 6096 lrecord_uid_counter = 259; |
2720 | 6097 #ifndef MC_ALLOC |
428 | 6098 debug_string_purity = 0; |
2720 | 6099 #endif /* not MC_ALLOC */ |
428 | 6100 |
6101 gc_currently_forbidden = 0; | |
6102 gc_hooks_inhibited = 0; | |
6103 | |
800 | 6104 #ifdef ERROR_CHECK_TYPES |
428 | 6105 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = |
6106 666; | |
6107 ERROR_ME_NOT. | |
6108 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42; | |
6109 ERROR_ME_WARN. | |
6110 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = | |
6111 3333632; | |
793 | 6112 ERROR_ME_DEBUG_WARN. |
6113 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = | |
6114 8675309; | |
800 | 6115 #endif /* ERROR_CHECK_TYPES */ |
428 | 6116 } |
6117 | |
2720 | 6118 #ifndef MC_ALLOC |
771 | 6119 static void |
6120 init_lcrecord_lists (void) | |
6121 { | |
6122 int i; | |
6123 | |
6124 for (i = 0; i < countof (lrecord_implementations_table); i++) | |
6125 { | |
6126 all_lcrecord_lists[i] = Qzero; /* Qnil not yet set */ | |
6127 staticpro_nodump (&all_lcrecord_lists[i]); | |
6128 } | |
6129 } | |
2720 | 6130 #endif /* not MC_ALLOC */ |
771 | 6131 |
6132 void | |
1204 | 6133 init_alloc_early (void) |
771 | 6134 { |
1204 | 6135 #if defined (__cplusplus) && defined (ERROR_CHECK_GC) |
6136 static struct gcpro initial_gcpro; | |
6137 | |
6138 initial_gcpro.next = 0; | |
6139 initial_gcpro.var = &Qnil; | |
6140 initial_gcpro.nvars = 1; | |
6141 gcprolist = &initial_gcpro; | |
6142 #else | |
6143 gcprolist = 0; | |
6144 #endif /* defined (__cplusplus) && defined (ERROR_CHECK_GC) */ | |
6145 } | |
6146 | |
6147 void | |
6148 reinit_alloc_early (void) | |
6149 { | |
6150 common_init_alloc_early (); | |
2720 | 6151 #ifndef MC_ALLOC |
771 | 6152 init_lcrecord_lists (); |
2720 | 6153 #endif /* not MC_ALLOC */ |
771 | 6154 } |
6155 | |
428 | 6156 void |
6157 init_alloc_once_early (void) | |
6158 { | |
1204 | 6159 common_init_alloc_early (); |
428 | 6160 |
442 | 6161 { |
6162 int i; | |
6163 for (i = 0; i < countof (lrecord_implementations_table); i++) | |
6164 lrecord_implementations_table[i] = 0; | |
6165 } | |
6166 | |
6167 INIT_LRECORD_IMPLEMENTATION (cons); | |
6168 INIT_LRECORD_IMPLEMENTATION (vector); | |
6169 INIT_LRECORD_IMPLEMENTATION (string); | |
2720 | 6170 #ifndef MC_ALLOC |
442 | 6171 INIT_LRECORD_IMPLEMENTATION (lcrecord_list); |
1204 | 6172 INIT_LRECORD_IMPLEMENTATION (free); |
2720 | 6173 #endif /* not MC_ALLOC */ |
428 | 6174 |
452 | 6175 staticpros = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); |
6176 Dynarr_resize (staticpros, 1410); /* merely a small optimization */ | |
2367 | 6177 dump_add_root_block_ptr (&staticpros, &staticpros_description); |
771 | 6178 #ifdef DEBUG_XEMACS |
6179 staticpro_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
6180 Dynarr_resize (staticpro_names, 1410); /* merely a small optimization */ | |
2367 | 6181 dump_add_root_block_ptr (&staticpro_names, &staticpro_names_description); |
771 | 6182 #endif |
6183 | |
2720 | 6184 #ifdef MC_ALLOC |
6185 mcpros = Dynarr_new2 (Lisp_Object_dynarr, Lisp_Object); | |
6186 Dynarr_resize (mcpros, 1410); /* merely a small optimization */ | |
6187 dump_add_root_block_ptr (&mcpros, &mcpros_description); | |
6188 #ifdef DEBUG_XEMACS | |
6189 mcpro_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
6190 Dynarr_resize (mcpro_names, 1410); /* merely a small optimization */ | |
6191 dump_add_root_block_ptr (&mcpro_names, &mcpro_names_description); | |
6192 #endif | |
6193 #endif /* MC_ALLOC */ | |
6194 | |
6195 #ifndef MC_ALLOC | |
771 | 6196 init_lcrecord_lists (); |
2720 | 6197 #endif /* not MC_ALLOC */ |
428 | 6198 } |
6199 | |
6200 void | |
6201 syms_of_alloc (void) | |
6202 { | |
442 | 6203 DEFSYMBOL (Qpre_gc_hook); |
6204 DEFSYMBOL (Qpost_gc_hook); | |
6205 DEFSYMBOL (Qgarbage_collecting); | |
428 | 6206 |
6207 DEFSUBR (Fcons); | |
6208 DEFSUBR (Flist); | |
6209 DEFSUBR (Fvector); | |
6210 DEFSUBR (Fbit_vector); | |
6211 DEFSUBR (Fmake_byte_code); | |
6212 DEFSUBR (Fmake_list); | |
6213 DEFSUBR (Fmake_vector); | |
6214 DEFSUBR (Fmake_bit_vector); | |
6215 DEFSUBR (Fmake_string); | |
6216 DEFSUBR (Fstring); | |
6217 DEFSUBR (Fmake_symbol); | |
6218 DEFSUBR (Fmake_marker); | |
6219 DEFSUBR (Fpurecopy); | |
2994 | 6220 #ifdef ALLOC_TYPE_STATS |
6221 DEFSUBR (Fobject_memory_usage_stats); | |
6222 DEFSUBR (Fobject_memory_usage); | |
6223 #endif /* ALLOC_TYPE_STATS */ | |
428 | 6224 DEFSUBR (Fgarbage_collect); |
440 | 6225 #if 0 |
428 | 6226 DEFSUBR (Fmemory_limit); |
440 | 6227 #endif |
2994 | 6228 DEFSUBR (Ftotal_memory_usage); |
428 | 6229 DEFSUBR (Fconsing_since_gc); |
6230 } | |
6231 | |
6232 void | |
6233 vars_of_alloc (void) | |
6234 { | |
1292 | 6235 QSin_garbage_collection = build_msg_string ("(in garbage collection)"); |
6236 staticpro (&QSin_garbage_collection); | |
6237 | |
428 | 6238 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /* |
6239 *Number of bytes of consing between garbage collections. | |
6240 \"Consing\" is a misnomer in that this actually counts allocation | |
6241 of all different kinds of objects, not just conses. | |
6242 Garbage collection can happen automatically once this many bytes have been | |
6243 allocated since the last garbage collection. All data types count. | |
6244 | |
6245 Garbage collection happens automatically when `eval' or `funcall' are | |
6246 called. (Note that `funcall' is called implicitly as part of evaluation.) | |
6247 By binding this temporarily to a large number, you can effectively | |
6248 prevent garbage collection during a part of the program. | |
6249 | |
853 | 6250 Normally, you cannot set this value less than 10,000 (if you do, it is |
6251 automatically reset during the next garbage collection). However, if | |
6252 XEmacs was compiled with DEBUG_XEMACS, this does not happen, allowing | |
6253 you to set this value very low to track down problems with insufficient | |
6254 GCPRO'ing. If you set this to a negative number, garbage collection will | |
6255 happen at *EVERY* call to `eval' or `funcall'. This is an extremely | |
6256 effective way to check GCPRO problems, but be warned that your XEmacs | |
6257 will be unusable! You almost certainly won't have the patience to wait | |
6258 long enough to be able to set it back. | |
6259 | |
2994 | 6260 See also `consing-since-gc' and `gc-cons-percentage'. |
428 | 6261 */ ); |
6262 | |
801 | 6263 DEFVAR_INT ("gc-cons-percentage", &gc_cons_percentage /* |
6264 *Percentage of memory allocated between garbage collections. | |
6265 | |
6266 Garbage collection will happen if this percentage of the total amount of | |
2994 | 6267 memory used for data (see `lisp-object-memory-usage') has been allocated |
6268 since the last garbage collection. However, it will not happen if less | |
6269 than `gc-cons-threshold' bytes have been allocated -- this sets an absolute | |
6270 minimum in case very little data has been allocated or the percentage is | |
6271 set very low. Set this to 0 to have garbage collection always happen after | |
6272 `gc-cons-threshold' bytes have been allocated, regardless of current memory | |
6273 usage. | |
6274 | |
6275 See also `consing-since-gc' and `gc-cons-threshold'. | |
801 | 6276 */ ); |
6277 | |
428 | 6278 #ifdef DEBUG_XEMACS |
6279 DEFVAR_INT ("debug-allocation", &debug_allocation /* | |
6280 If non-zero, print out information to stderr about all objects allocated. | |
6281 See also `debug-allocation-backtrace-length'. | |
6282 */ ); | |
6283 debug_allocation = 0; | |
6284 | |
6285 DEFVAR_INT ("debug-allocation-backtrace-length", | |
6286 &debug_allocation_backtrace_length /* | |
6287 Length (in stack frames) of short backtrace printed out by `debug-allocation'. | |
6288 */ ); | |
6289 debug_allocation_backtrace_length = 2; | |
6290 #endif | |
6291 | |
6292 DEFVAR_BOOL ("purify-flag", &purify_flag /* | |
6293 Non-nil means loading Lisp code in order to dump an executable. | |
6294 This means that certain objects should be allocated in readonly space. | |
6295 */ ); | |
6296 | |
1154 | 6297 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages /* |
6298 Non-nil means display messages at start and end of garbage collection. | |
6299 */ ); | |
6300 garbage_collection_messages = 0; | |
6301 | |
428 | 6302 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /* |
6303 Function or functions to be run just before each garbage collection. | |
6304 Interrupts, garbage collection, and errors are inhibited while this hook | |
6305 runs, so be extremely careful in what you add here. In particular, avoid | |
6306 consing, and do not interact with the user. | |
6307 */ ); | |
6308 Vpre_gc_hook = Qnil; | |
6309 | |
6310 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /* | |
6311 Function or functions to be run just after each garbage collection. | |
6312 Interrupts, garbage collection, and errors are inhibited while this hook | |
887 | 6313 runs. Each hook is called with one argument which is an alist with |
6314 finalization data. | |
428 | 6315 */ ); |
6316 Vpost_gc_hook = Qnil; | |
6317 | |
6318 DEFVAR_LISP ("gc-message", &Vgc_message /* | |
6319 String to print to indicate that a garbage collection is in progress. | |
6320 This is printed in the echo area. If the selected frame is on a | |
6321 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer | |
6322 image instance) in the domain of the selected frame, the mouse pointer | |
6323 will change instead of this message being printed. | |
6324 */ ); | |
6325 Vgc_message = build_string (gc_default_message); | |
6326 | |
6327 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /* | |
6328 Pointer glyph used to indicate that a garbage collection is in progress. | |
6329 If the selected window is on a window system and this glyph specifies a | |
6330 value (i.e. a pointer image instance) in the domain of the selected | |
6331 window, the pointer will be changed as specified during garbage collection. | |
6332 Otherwise, a message will be printed in the echo area, as controlled | |
6333 by `gc-message'. | |
6334 */ ); | |
6335 } | |
6336 | |
6337 void | |
6338 complex_vars_of_alloc (void) | |
6339 { | |
6340 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer); | |
6341 } |