428
|
1 /* Storage allocation and gc for XEmacs Lisp interpreter.
|
|
2 Copyright (C) 1985-1998 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995 Sun Microsystems, Inc.
|
1265
|
4 Copyright (C) 1995, 1996, 2001, 2002, 2003 Ben Wing.
|
428
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from
|
|
24 FSF. */
|
|
25
|
|
26 /* Authorship:
|
|
27
|
|
28 FSF: Original version; a long time ago.
|
|
29 Mly: Significantly rewritten to use new 3-bit tags and
|
|
30 nicely abstracted object definitions, for 19.8.
|
|
31 JWZ: Improved code to keep track of purespace usage and
|
|
32 issue nice purespace and GC stats.
|
|
33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking
|
|
34 and various changes for Mule, for 19.12.
|
|
35 Added bit vectors for 19.13.
|
|
36 Added lcrecord lists for 19.14.
|
|
37 slb: Lots of work on the purification and dump time code.
|
|
38 Synched Doug Lea malloc support from Emacs 20.2.
|
442
|
39 og: Killed the purespace. Portable dumper (moved to dumper.c)
|
428
|
40 */
|
|
41
|
|
42 #include <config.h>
|
|
43 #include "lisp.h"
|
|
44
|
|
45 #include "backtrace.h"
|
|
46 #include "buffer.h"
|
|
47 #include "bytecode.h"
|
|
48 #include "chartab.h"
|
|
49 #include "device.h"
|
|
50 #include "elhash.h"
|
|
51 #include "events.h"
|
872
|
52 #include "extents-impl.h"
|
1204
|
53 #include "file-coding.h"
|
872
|
54 #include "frame-impl.h"
|
428
|
55 #include "glyphs.h"
|
|
56 #include "opaque.h"
|
1204
|
57 #include "lstream.h"
|
872
|
58 #include "process.h"
|
1292
|
59 #include "profile.h"
|
428
|
60 #include "redisplay.h"
|
|
61 #include "specifier.h"
|
|
62 #include "sysfile.h"
|
442
|
63 #include "sysdep.h"
|
428
|
64 #include "window.h"
|
|
65 #include "console-stream.h"
|
|
66
|
|
67 #ifdef DOUG_LEA_MALLOC
|
|
68 #include <malloc.h>
|
|
69 #endif
|
|
70
|
|
71 EXFUN (Fgarbage_collect, 0);
|
|
72
|
814
|
73 static void recompute_need_to_garbage_collect (void);
|
|
74
|
428
|
75 #if 0 /* this is _way_ too slow to be part of the standard debug options */
|
|
76 #if defined(DEBUG_XEMACS) && defined(MULE)
|
|
77 #define VERIFY_STRING_CHARS_INTEGRITY
|
|
78 #endif
|
|
79 #endif
|
|
80
|
|
81 /* Define this to use malloc/free with no freelist for all datatypes,
|
|
82 the hope being that some debugging tools may help detect
|
|
83 freed memory references */
|
|
84 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */
|
|
85 #include <dmalloc.h>
|
|
86 #define ALLOC_NO_POOLS
|
|
87 #endif
|
|
88
|
|
89 #ifdef DEBUG_XEMACS
|
458
|
90 static Fixnum debug_allocation;
|
|
91 static Fixnum debug_allocation_backtrace_length;
|
428
|
92 #endif
|
|
93
|
|
94 /* Number of bytes of consing done since the last gc */
|
814
|
95 static EMACS_INT consing_since_gc;
|
1292
|
96 EMACS_UINT total_consing;
|
|
97
|
814
|
98 int need_to_garbage_collect;
|
851
|
99 int need_to_check_c_alloca;
|
887
|
100 int need_to_signal_post_gc;
|
851
|
101 int funcall_allocation_flag;
|
|
102 Bytecount __temp_alloca_size__;
|
|
103 Bytecount funcall_alloca_count;
|
814
|
104
|
|
105 /* Determine now whether we need to garbage collect or not, to make
|
|
106 Ffuncall() faster */
|
|
107 #define INCREMENT_CONS_COUNTER_1(size) \
|
|
108 do \
|
|
109 { \
|
|
110 consing_since_gc += (size); \
|
1292
|
111 total_consing += (size); \
|
|
112 if (profiling_active) \
|
|
113 profile_record_consing (size); \
|
814
|
114 recompute_need_to_garbage_collect (); \
|
|
115 } while (0)
|
428
|
116
|
|
117 #define debug_allocation_backtrace() \
|
|
118 do { \
|
|
119 if (debug_allocation_backtrace_length > 0) \
|
|
120 debug_short_backtrace (debug_allocation_backtrace_length); \
|
|
121 } while (0)
|
|
122
|
|
123 #ifdef DEBUG_XEMACS
|
801
|
124 #define INCREMENT_CONS_COUNTER(foosize, type) \
|
|
125 do { \
|
|
126 if (debug_allocation) \
|
|
127 { \
|
|
128 stderr_out ("allocating %s (size %ld)\n", type, \
|
|
129 (long) foosize); \
|
|
130 debug_allocation_backtrace (); \
|
|
131 } \
|
|
132 INCREMENT_CONS_COUNTER_1 (foosize); \
|
428
|
133 } while (0)
|
|
134 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \
|
|
135 do { \
|
|
136 if (debug_allocation > 1) \
|
|
137 { \
|
801
|
138 stderr_out ("allocating noseeum %s (size %ld)\n", type, \
|
|
139 (long) foosize); \
|
428
|
140 debug_allocation_backtrace (); \
|
|
141 } \
|
|
142 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
143 } while (0)
|
|
144 #else
|
|
145 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size)
|
|
146 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \
|
|
147 INCREMENT_CONS_COUNTER_1 (size)
|
|
148 #endif
|
|
149
|
|
150 #define DECREMENT_CONS_COUNTER(size) do { \
|
|
151 consing_since_gc -= (size); \
|
1292
|
152 total_consing -= (size); \
|
|
153 if (profiling_active) \
|
|
154 profile_record_unconsing (size); \
|
428
|
155 if (consing_since_gc < 0) \
|
|
156 consing_since_gc = 0; \
|
814
|
157 recompute_need_to_garbage_collect (); \
|
428
|
158 } while (0)
|
|
159
|
|
160 /* Number of bytes of consing since gc before another gc should be done. */
|
801
|
161 static EMACS_INT gc_cons_threshold;
|
|
162
|
|
163 /* Percentage of consing of total data size before another GC. */
|
|
164 static EMACS_INT gc_cons_percentage;
|
|
165
|
|
166 #ifdef ERROR_CHECK_GC
|
853
|
167 int always_gc; /* Debugging hack; equivalent to
|
|
168 (setq gc-cons-thresold -1) */
|
801
|
169 #else
|
|
170 #define always_gc 0
|
|
171 #endif
|
428
|
172
|
|
173 /* Nonzero during gc */
|
|
174 int gc_in_progress;
|
|
175
|
1154
|
176 /* Nonzero means display messages at beginning and end of GC. */
|
|
177
|
|
178 int garbage_collection_messages;
|
|
179
|
428
|
180 /* Number of times GC has happened at this level or below.
|
|
181 * Level 0 is most volatile, contrary to usual convention.
|
|
182 * (Of course, there's only one level at present) */
|
|
183 EMACS_INT gc_generation_number[1];
|
|
184
|
|
185 /* This is just for use by the printer, to allow things to print uniquely */
|
|
186 static int lrecord_uid_counter;
|
|
187
|
|
188 /* Nonzero when calling certain hooks or doing other things where
|
|
189 a GC would be bad */
|
1318
|
190 static int gc_currently_forbidden;
|
428
|
191
|
|
192 /* Hooks. */
|
|
193 Lisp_Object Vpre_gc_hook, Qpre_gc_hook;
|
|
194 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
|
|
195
|
|
196 /* "Garbage collecting" */
|
|
197 Lisp_Object Vgc_message;
|
|
198 Lisp_Object Vgc_pointer_glyph;
|
771
|
199 static const Char_ASCII gc_default_message[] = "Garbage collecting";
|
428
|
200 Lisp_Object Qgarbage_collecting;
|
|
201
|
1292
|
202 static Lisp_Object QSin_garbage_collection;
|
|
203
|
428
|
204 /* Non-zero means we're in the process of doing the dump */
|
|
205 int purify_flag;
|
|
206
|
1204
|
207 /* Non-zero means we're pdumping out or in */
|
|
208 #ifdef PDUMP
|
|
209 int in_pdump;
|
|
210 #endif
|
|
211
|
800
|
212 #ifdef ERROR_CHECK_TYPES
|
428
|
213
|
793
|
214 Error_Behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN, ERROR_ME_DEBUG_WARN;
|
428
|
215
|
|
216 #endif
|
|
217
|
801
|
218 /* Very cheesy ways of figuring out how much memory is being used for
|
|
219 data. #### Need better (system-dependent) ways. */
|
|
220 void *minimum_address_seen;
|
|
221 void *maximum_address_seen;
|
|
222
|
428
|
223 int
|
|
224 c_readonly (Lisp_Object obj)
|
|
225 {
|
|
226 return POINTER_TYPE_P (XTYPE (obj)) && C_READONLY (obj);
|
|
227 }
|
|
228
|
|
229 int
|
|
230 lisp_readonly (Lisp_Object obj)
|
|
231 {
|
|
232 return POINTER_TYPE_P (XTYPE (obj)) && LISP_READONLY (obj);
|
|
233 }
|
|
234
|
|
235
|
|
236 /* Maximum amount of C stack to save when a GC happens. */
|
|
237
|
|
238 #ifndef MAX_SAVE_STACK
|
|
239 #define MAX_SAVE_STACK 0 /* 16000 */
|
|
240 #endif
|
|
241
|
|
242 /* Non-zero means ignore malloc warnings. Set during initialization. */
|
|
243 int ignore_malloc_warnings;
|
|
244
|
|
245
|
|
246 static void *breathing_space;
|
|
247
|
|
248 void
|
|
249 release_breathing_space (void)
|
|
250 {
|
|
251 if (breathing_space)
|
|
252 {
|
|
253 void *tmp = breathing_space;
|
|
254 breathing_space = 0;
|
1726
|
255 xfree (tmp, void *);
|
428
|
256 }
|
|
257 }
|
|
258
|
|
259 /* malloc calls this if it finds we are near exhausting storage */
|
|
260 void
|
442
|
261 malloc_warning (const char *str)
|
428
|
262 {
|
|
263 if (ignore_malloc_warnings)
|
|
264 return;
|
|
265
|
|
266 warn_when_safe
|
793
|
267 (Qmemory, Qemergency,
|
428
|
268 "%s\n"
|
|
269 "Killing some buffers may delay running out of memory.\n"
|
|
270 "However, certainly by the time you receive the 95%% warning,\n"
|
|
271 "you should clean up, kill this Emacs, and start a new one.",
|
|
272 str);
|
|
273 }
|
|
274
|
|
275 /* Called if malloc returns zero */
|
|
276 DOESNT_RETURN
|
|
277 memory_full (void)
|
|
278 {
|
|
279 /* Force a GC next time eval is called.
|
|
280 It's better to loop garbage-collecting (we might reclaim enough
|
|
281 to win) than to loop beeping and barfing "Memory exhausted"
|
|
282 */
|
|
283 consing_since_gc = gc_cons_threshold + 1;
|
814
|
284 recompute_need_to_garbage_collect ();
|
428
|
285 release_breathing_space ();
|
|
286
|
|
287 /* Flush some histories which might conceivably contain garbalogical
|
|
288 inhibitors. */
|
|
289 if (!NILP (Fboundp (Qvalues)))
|
|
290 Fset (Qvalues, Qnil);
|
|
291 Vcommand_history = Qnil;
|
|
292
|
563
|
293 out_of_memory ("Memory exhausted", Qunbound);
|
428
|
294 }
|
|
295
|
801
|
296 static void
|
|
297 set_alloc_mins_and_maxes (void *val, Bytecount size)
|
|
298 {
|
|
299 if (!val)
|
|
300 return;
|
|
301 if ((char *) val + size > (char *) maximum_address_seen)
|
|
302 maximum_address_seen = (char *) val + size;
|
|
303 if (!minimum_address_seen)
|
|
304 minimum_address_seen =
|
|
305 #if SIZEOF_VOID_P == 8
|
|
306 (void *) 0xFFFFFFFFFFFFFFFF;
|
|
307 #else
|
|
308 (void *) 0xFFFFFFFF;
|
|
309 #endif
|
|
310 if ((char *) val < (char *) minimum_address_seen)
|
|
311 minimum_address_seen = (char *) val;
|
|
312 }
|
|
313
|
|
314 /* like malloc and realloc but check for no memory left. */
|
428
|
315
|
1315
|
316 #ifdef ERROR_CHECK_MALLOC
|
1292
|
317 static int in_malloc;
|
1333
|
318 extern int regex_malloc_disallowed;
|
1315
|
319 #endif
|
1292
|
320
|
428
|
321 #undef xmalloc
|
|
322 void *
|
665
|
323 xmalloc (Bytecount size)
|
428
|
324 {
|
1292
|
325 void *val;
|
|
326 #ifdef ERROR_CHECK_MALLOC
|
|
327 assert (!in_malloc);
|
1333
|
328 assert (!regex_malloc_disallowed);
|
1292
|
329 in_malloc = 1;
|
|
330 #endif
|
|
331 val = malloc (size);
|
|
332 #ifdef ERROR_CHECK_MALLOC
|
|
333 in_malloc = 0;
|
|
334 #endif
|
428
|
335 if (!val && (size != 0)) memory_full ();
|
801
|
336 set_alloc_mins_and_maxes (val, size);
|
428
|
337 return val;
|
|
338 }
|
|
339
|
|
340 #undef xcalloc
|
|
341 static void *
|
665
|
342 xcalloc (Elemcount nelem, Bytecount elsize)
|
428
|
343 {
|
1292
|
344 void *val;
|
|
345 #ifdef ERROR_CHECK_MALLOC
|
|
346 assert (!in_malloc);
|
1333
|
347 assert (!regex_malloc_disallowed);
|
1292
|
348 in_malloc = 1;
|
|
349 #endif
|
|
350 val= calloc (nelem, elsize);
|
|
351 #ifdef ERROR_CHECK_MALLOC
|
|
352 in_malloc = 0;
|
|
353 #endif
|
428
|
354
|
|
355 if (!val && (nelem != 0)) memory_full ();
|
801
|
356 set_alloc_mins_and_maxes (val, nelem * elsize);
|
428
|
357 return val;
|
|
358 }
|
|
359
|
|
360 void *
|
665
|
361 xmalloc_and_zero (Bytecount size)
|
428
|
362 {
|
|
363 return xcalloc (size, sizeof (char));
|
|
364 }
|
|
365
|
|
366 #undef xrealloc
|
|
367 void *
|
665
|
368 xrealloc (void *block, Bytecount size)
|
428
|
369 {
|
1292
|
370 #ifdef ERROR_CHECK_MALLOC
|
|
371 assert (!in_malloc);
|
1333
|
372 assert (!regex_malloc_disallowed);
|
1292
|
373 in_malloc = 1;
|
|
374 #endif
|
551
|
375 block = realloc (block, size);
|
1292
|
376 #ifdef ERROR_CHECK_MALLOC
|
|
377 in_malloc = 0;
|
|
378 #endif
|
551
|
379
|
|
380 if (!block && (size != 0)) memory_full ();
|
801
|
381 set_alloc_mins_and_maxes (block, size);
|
551
|
382 return block;
|
428
|
383 }
|
|
384
|
|
385 void
|
|
386 xfree_1 (void *block)
|
|
387 {
|
|
388 #ifdef ERROR_CHECK_MALLOC
|
|
389 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an
|
|
390 error until much later on for many system mallocs, such as
|
|
391 the one that comes with Solaris 2.3. FMH!! */
|
|
392 assert (block != (void *) 0xDEADBEEF);
|
|
393 assert (block);
|
1292
|
394 assert (!in_malloc);
|
1333
|
395 assert (!regex_malloc_disallowed);
|
1292
|
396 in_malloc = 1;
|
428
|
397 #endif /* ERROR_CHECK_MALLOC */
|
|
398 free (block);
|
1292
|
399 #ifdef ERROR_CHECK_MALLOC
|
|
400 in_malloc = 0;
|
|
401 #endif
|
428
|
402 }
|
|
403
|
|
404 #ifdef ERROR_CHECK_GC
|
|
405
|
|
406 static void
|
665
|
407 deadbeef_memory (void *ptr, Bytecount size)
|
428
|
408 {
|
826
|
409 UINT_32_BIT *ptr4 = (UINT_32_BIT *) ptr;
|
665
|
410 Bytecount beefs = size >> 2;
|
428
|
411
|
|
412 /* In practice, size will always be a multiple of four. */
|
|
413 while (beefs--)
|
1204
|
414 (*ptr4++) = 0xDEADBEEF; /* -559038737 base 10 */
|
428
|
415 }
|
|
416
|
|
417 #else /* !ERROR_CHECK_GC */
|
|
418
|
|
419
|
|
420 #define deadbeef_memory(ptr, size)
|
|
421
|
|
422 #endif /* !ERROR_CHECK_GC */
|
|
423
|
|
424 #undef xstrdup
|
|
425 char *
|
442
|
426 xstrdup (const char *str)
|
428
|
427 {
|
|
428 int len = strlen (str) + 1; /* for stupid terminating 0 */
|
|
429 void *val = xmalloc (len);
|
771
|
430
|
428
|
431 if (val == 0) return 0;
|
|
432 return (char *) memcpy (val, str, len);
|
|
433 }
|
|
434
|
|
435 #ifdef NEED_STRDUP
|
|
436 char *
|
442
|
437 strdup (const char *s)
|
428
|
438 {
|
|
439 return xstrdup (s);
|
|
440 }
|
|
441 #endif /* NEED_STRDUP */
|
|
442
|
|
443
|
|
444 static void *
|
665
|
445 allocate_lisp_storage (Bytecount size)
|
428
|
446 {
|
793
|
447 void *val = xmalloc (size);
|
|
448 /* We don't increment the cons counter anymore. Calling functions do
|
|
449 that now because we have two different kinds of cons counters -- one
|
|
450 for normal objects, and one for no-see-um conses (and possibly others
|
|
451 similar) where the conses are used totally internally, never escape,
|
|
452 and are created and then freed and shouldn't logically increment the
|
|
453 cons counting. #### (Or perhaps, we should decrement it when an object
|
|
454 get freed?) */
|
|
455
|
|
456 /* But we do now (as of 3-27-02) go and zero out the memory. This is a
|
|
457 good thing, as it will guarantee we won't get any intermittent bugs
|
1204
|
458 coming from an uninitiated field. The speed loss is unnoticeable,
|
|
459 esp. as the objects are not large -- large stuff like buffer text and
|
|
460 redisplay structures are allocated separately. */
|
793
|
461 memset (val, 0, size);
|
851
|
462
|
|
463 if (need_to_check_c_alloca)
|
|
464 xemacs_c_alloca (0);
|
|
465
|
793
|
466 return val;
|
428
|
467 }
|
|
468
|
|
469
|
442
|
470 /* lcrecords are chained together through their "next" field.
|
|
471 After doing the mark phase, GC will walk this linked list
|
|
472 and free any lcrecord which hasn't been marked. */
|
428
|
473 static struct lcrecord_header *all_lcrecords;
|
|
474
|
1204
|
475 /* The most basic of the lcrecord allocation functions. Not usually called
|
|
476 directly. Allocates an lrecord not managed by any lcrecord-list, of a
|
|
477 specified size. See lrecord.h. */
|
|
478
|
428
|
479 void *
|
1204
|
480 basic_alloc_lcrecord (Bytecount size,
|
|
481 const struct lrecord_implementation *implementation)
|
428
|
482 {
|
|
483 struct lcrecord_header *lcheader;
|
|
484
|
442
|
485 type_checking_assert
|
|
486 ((implementation->static_size == 0 ?
|
|
487 implementation->size_in_bytes_method != NULL :
|
|
488 implementation->static_size == size)
|
|
489 &&
|
|
490 (! implementation->basic_p)
|
|
491 &&
|
|
492 (! (implementation->hash == NULL && implementation->equal != NULL)));
|
428
|
493
|
|
494 lcheader = (struct lcrecord_header *) allocate_lisp_storage (size);
|
442
|
495 set_lheader_implementation (&lcheader->lheader, implementation);
|
428
|
496 lcheader->next = all_lcrecords;
|
|
497 #if 1 /* mly prefers to see small ID numbers */
|
|
498 lcheader->uid = lrecord_uid_counter++;
|
|
499 #else /* jwz prefers to see real addrs */
|
|
500 lcheader->uid = (int) &lcheader;
|
|
501 #endif
|
|
502 lcheader->free = 0;
|
|
503 all_lcrecords = lcheader;
|
|
504 INCREMENT_CONS_COUNTER (size, implementation->name);
|
|
505 return lcheader;
|
|
506 }
|
|
507
|
|
508 #if 0 /* Presently unused */
|
|
509 /* Very, very poor man's EGC?
|
|
510 * This may be slow and thrash pages all over the place.
|
|
511 * Only call it if you really feel you must (and if the
|
|
512 * lrecord was fairly recently allocated).
|
|
513 * Otherwise, just let the GC do its job -- that's what it's there for
|
|
514 */
|
|
515 void
|
771
|
516 very_old_free_lcrecord (struct lcrecord_header *lcrecord)
|
428
|
517 {
|
|
518 if (all_lcrecords == lcrecord)
|
|
519 {
|
|
520 all_lcrecords = lcrecord->next;
|
|
521 }
|
|
522 else
|
|
523 {
|
|
524 struct lrecord_header *header = all_lcrecords;
|
|
525 for (;;)
|
|
526 {
|
|
527 struct lrecord_header *next = header->next;
|
|
528 if (next == lcrecord)
|
|
529 {
|
|
530 header->next = lrecord->next;
|
|
531 break;
|
|
532 }
|
|
533 else if (next == 0)
|
|
534 abort ();
|
|
535 else
|
|
536 header = next;
|
|
537 }
|
|
538 }
|
|
539 if (lrecord->implementation->finalizer)
|
|
540 lrecord->implementation->finalizer (lrecord, 0);
|
|
541 xfree (lrecord);
|
|
542 return;
|
|
543 }
|
|
544 #endif /* Unused */
|
|
545
|
|
546
|
|
547 static void
|
|
548 disksave_object_finalization_1 (void)
|
|
549 {
|
|
550 struct lcrecord_header *header;
|
|
551
|
|
552 for (header = all_lcrecords; header; header = header->next)
|
|
553 {
|
442
|
554 if (LHEADER_IMPLEMENTATION (&header->lheader)->finalizer &&
|
428
|
555 !header->free)
|
442
|
556 LHEADER_IMPLEMENTATION (&header->lheader)->finalizer (header, 1);
|
428
|
557 }
|
|
558 }
|
|
559
|
1204
|
560 /* Bitwise copy all parts of a Lisp object other than the header */
|
|
561
|
|
562 void
|
|
563 copy_lisp_object (Lisp_Object dst, Lisp_Object src)
|
|
564 {
|
|
565 const struct lrecord_implementation *imp =
|
|
566 XRECORD_LHEADER_IMPLEMENTATION (src);
|
|
567 Bytecount size = lisp_object_size (src);
|
|
568
|
|
569 assert (imp == XRECORD_LHEADER_IMPLEMENTATION (dst));
|
|
570 assert (size == lisp_object_size (dst));
|
|
571
|
|
572 if (imp->basic_p)
|
|
573 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lrecord_header),
|
|
574 (char *) XRECORD_LHEADER (src) + sizeof (struct lrecord_header),
|
|
575 size - sizeof (struct lrecord_header));
|
|
576 else
|
|
577 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lcrecord_header),
|
|
578 (char *) XRECORD_LHEADER (src) + sizeof (struct lcrecord_header),
|
|
579 size - sizeof (struct lcrecord_header));
|
|
580 }
|
|
581
|
428
|
582
|
|
583 /************************************************************************/
|
|
584 /* Debugger support */
|
|
585 /************************************************************************/
|
|
586 /* Give gdb/dbx enough information to decode Lisp Objects. We make
|
|
587 sure certain symbols are always defined, so gdb doesn't complain
|
438
|
588 about expressions in src/.gdbinit. See src/.gdbinit or src/.dbxrc
|
|
589 to see how this is used. */
|
428
|
590
|
458
|
591 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS;
|
|
592 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1;
|
428
|
593
|
|
594 #ifdef USE_UNION_TYPE
|
458
|
595 unsigned char dbg_USE_UNION_TYPE = 1;
|
428
|
596 #else
|
458
|
597 unsigned char dbg_USE_UNION_TYPE = 0;
|
428
|
598 #endif
|
|
599
|
458
|
600 unsigned char dbg_valbits = VALBITS;
|
|
601 unsigned char dbg_gctypebits = GCTYPEBITS;
|
|
602
|
|
603 /* On some systems, the above definitions will be optimized away by
|
|
604 the compiler or linker unless they are referenced in some function. */
|
|
605 long dbg_inhibit_dbg_symbol_deletion (void);
|
|
606 long
|
|
607 dbg_inhibit_dbg_symbol_deletion (void)
|
|
608 {
|
|
609 return
|
|
610 (dbg_valmask +
|
|
611 dbg_typemask +
|
|
612 dbg_USE_UNION_TYPE +
|
|
613 dbg_valbits +
|
|
614 dbg_gctypebits);
|
|
615 }
|
428
|
616
|
|
617 /* Macros turned into functions for ease of debugging.
|
|
618 Debuggers don't know about macros! */
|
|
619 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2);
|
|
620 int
|
|
621 dbg_eq (Lisp_Object obj1, Lisp_Object obj2)
|
|
622 {
|
|
623 return EQ (obj1, obj2);
|
|
624 }
|
|
625
|
|
626
|
|
627 /************************************************************************/
|
|
628 /* Fixed-size type macros */
|
|
629 /************************************************************************/
|
|
630
|
|
631 /* For fixed-size types that are commonly used, we malloc() large blocks
|
|
632 of memory at a time and subdivide them into chunks of the correct
|
|
633 size for an object of that type. This is more efficient than
|
|
634 malloc()ing each object separately because we save on malloc() time
|
|
635 and overhead due to the fewer number of malloc()ed blocks, and
|
|
636 also because we don't need any extra pointers within each object
|
|
637 to keep them threaded together for GC purposes. For less common
|
|
638 (and frequently large-size) types, we use lcrecords, which are
|
|
639 malloc()ed individually and chained together through a pointer
|
|
640 in the lcrecord header. lcrecords do not need to be fixed-size
|
|
641 (i.e. two objects of the same type need not have the same size;
|
|
642 however, the size of a particular object cannot vary dynamically).
|
|
643 It is also much easier to create a new lcrecord type because no
|
|
644 additional code needs to be added to alloc.c. Finally, lcrecords
|
|
645 may be more efficient when there are only a small number of them.
|
|
646
|
|
647 The types that are stored in these large blocks (or "frob blocks")
|
|
648 are cons, float, compiled-function, symbol, marker, extent, event,
|
|
649 and string.
|
|
650
|
|
651 Note that strings are special in that they are actually stored in
|
|
652 two parts: a structure containing information about the string, and
|
|
653 the actual data associated with the string. The former structure
|
|
654 (a struct Lisp_String) is a fixed-size structure and is managed the
|
|
655 same way as all the other such types. This structure contains a
|
|
656 pointer to the actual string data, which is stored in structures of
|
|
657 type struct string_chars_block. Each string_chars_block consists
|
|
658 of a pointer to a struct Lisp_String, followed by the data for that
|
440
|
659 string, followed by another pointer to a Lisp_String, followed by
|
|
660 the data for that string, etc. At GC time, the data in these
|
|
661 blocks is compacted by searching sequentially through all the
|
428
|
662 blocks and compressing out any holes created by unmarked strings.
|
|
663 Strings that are more than a certain size (bigger than the size of
|
|
664 a string_chars_block, although something like half as big might
|
|
665 make more sense) are malloc()ed separately and not stored in
|
|
666 string_chars_blocks. Furthermore, no one string stretches across
|
|
667 two string_chars_blocks.
|
|
668
|
1204
|
669 Vectors are each malloc()ed separately as lcrecords.
|
428
|
670
|
|
671 In the following discussion, we use conses, but it applies equally
|
|
672 well to the other fixed-size types.
|
|
673
|
|
674 We store cons cells inside of cons_blocks, allocating a new
|
|
675 cons_block with malloc() whenever necessary. Cons cells reclaimed
|
|
676 by GC are put on a free list to be reallocated before allocating
|
|
677 any new cons cells from the latest cons_block. Each cons_block is
|
|
678 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least
|
|
679 the versions in malloc.c and gmalloc.c) really allocates in units
|
|
680 of powers of two and uses 4 bytes for its own overhead.
|
|
681
|
|
682 What GC actually does is to search through all the cons_blocks,
|
|
683 from the most recently allocated to the oldest, and put all
|
|
684 cons cells that are not marked (whether or not they're already
|
|
685 free) on a cons_free_list. The cons_free_list is a stack, and
|
|
686 so the cons cells in the oldest-allocated cons_block end up
|
|
687 at the head of the stack and are the first to be reallocated.
|
|
688 If any cons_block is entirely free, it is freed with free()
|
|
689 and its cons cells removed from the cons_free_list. Because
|
|
690 the cons_free_list ends up basically in memory order, we have
|
|
691 a high locality of reference (assuming a reasonable turnover
|
|
692 of allocating and freeing) and have a reasonable probability
|
|
693 of entirely freeing up cons_blocks that have been more recently
|
|
694 allocated. This stage is called the "sweep stage" of GC, and
|
|
695 is executed after the "mark stage", which involves starting
|
|
696 from all places that are known to point to in-use Lisp objects
|
|
697 (e.g. the obarray, where are all symbols are stored; the
|
|
698 current catches and condition-cases; the backtrace list of
|
|
699 currently executing functions; the gcpro list; etc.) and
|
|
700 recursively marking all objects that are accessible.
|
|
701
|
454
|
702 At the beginning of the sweep stage, the conses in the cons blocks
|
|
703 are in one of three states: in use and marked, in use but not
|
|
704 marked, and not in use (already freed). Any conses that are marked
|
|
705 have been marked in the mark stage just executed, because as part
|
|
706 of the sweep stage we unmark any marked objects. The way we tell
|
|
707 whether or not a cons cell is in use is through the LRECORD_FREE_P
|
|
708 macro. This uses a special lrecord type `lrecord_type_free',
|
|
709 which is never associated with any valid object.
|
|
710
|
|
711 Conses on the free_cons_list are threaded through a pointer stored
|
|
712 in the conses themselves. Because the cons is still in a
|
|
713 cons_block and needs to remain marked as not in use for the next
|
|
714 time that GC happens, we need room to store both the "free"
|
|
715 indicator and the chaining pointer. So this pointer is stored
|
|
716 after the lrecord header (actually where C places a pointer after
|
|
717 the lrecord header; they are not necessarily contiguous). This
|
|
718 implies that all fixed-size types must be big enough to contain at
|
|
719 least one pointer. This is true for all current fixed-size types,
|
|
720 with the possible exception of Lisp_Floats, for which we define the
|
|
721 meat of the struct using a union of a pointer and a double to
|
|
722 ensure adequate space for the free list chain pointer.
|
428
|
723
|
|
724 Some types of objects need additional "finalization" done
|
|
725 when an object is converted from in use to not in use;
|
|
726 this is the purpose of the ADDITIONAL_FREE_type macro.
|
|
727 For example, markers need to be removed from the chain
|
|
728 of markers that is kept in each buffer. This is because
|
|
729 markers in a buffer automatically disappear if the marker
|
|
730 is no longer referenced anywhere (the same does not
|
|
731 apply to extents, however).
|
|
732
|
|
733 WARNING: Things are in an extremely bizarre state when
|
|
734 the ADDITIONAL_FREE_type macros are called, so beware!
|
|
735
|
454
|
736 When ERROR_CHECK_GC is defined, we do things differently so as to
|
|
737 maximize our chances of catching places where there is insufficient
|
|
738 GCPROing. The thing we want to avoid is having an object that
|
|
739 we're using but didn't GCPRO get freed by GC and then reallocated
|
|
740 while we're in the process of using it -- this will result in
|
|
741 something seemingly unrelated getting trashed, and is extremely
|
|
742 difficult to track down. If the object gets freed but not
|
|
743 reallocated, we can usually catch this because we set most of the
|
|
744 bytes of a freed object to 0xDEADBEEF. (The lisp object type is set
|
|
745 to the invalid type `lrecord_type_free', however, and a pointer
|
|
746 used to chain freed objects together is stored after the lrecord
|
|
747 header; we play some tricks with this pointer to make it more
|
428
|
748 bogus, so crashes are more likely to occur right away.)
|
|
749
|
|
750 We want freed objects to stay free as long as possible,
|
|
751 so instead of doing what we do above, we maintain the
|
|
752 free objects in a first-in first-out queue. We also
|
|
753 don't recompute the free list each GC, unlike above;
|
|
754 this ensures that the queue ordering is preserved.
|
|
755 [This means that we are likely to have worse locality
|
|
756 of reference, and that we can never free a frob block
|
|
757 once it's allocated. (Even if we know that all cells
|
|
758 in it are free, there's no easy way to remove all those
|
|
759 cells from the free list because the objects on the
|
|
760 free list are unlikely to be in memory order.)]
|
|
761 Furthermore, we never take objects off the free list
|
|
762 unless there's a large number (usually 1000, but
|
|
763 varies depending on type) of them already on the list.
|
|
764 This way, we ensure that an object that gets freed will
|
|
765 remain free for the next 1000 (or whatever) times that
|
440
|
766 an object of that type is allocated. */
|
428
|
767
|
|
768 #ifndef MALLOC_OVERHEAD
|
|
769 #ifdef GNU_MALLOC
|
|
770 #define MALLOC_OVERHEAD 0
|
|
771 #elif defined (rcheck)
|
|
772 #define MALLOC_OVERHEAD 20
|
|
773 #else
|
|
774 #define MALLOC_OVERHEAD 8
|
|
775 #endif
|
|
776 #endif /* MALLOC_OVERHEAD */
|
|
777
|
|
778 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC)
|
|
779 /* If we released our reserve (due to running out of memory),
|
|
780 and we have a fair amount free once again,
|
|
781 try to set aside another reserve in case we run out once more.
|
|
782
|
|
783 This is called when a relocatable block is freed in ralloc.c. */
|
|
784 void refill_memory_reserve (void);
|
|
785 void
|
442
|
786 refill_memory_reserve (void)
|
428
|
787 {
|
|
788 if (breathing_space == 0)
|
|
789 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD);
|
|
790 }
|
|
791 #endif
|
|
792
|
|
793 #ifdef ALLOC_NO_POOLS
|
|
794 # define TYPE_ALLOC_SIZE(type, structtype) 1
|
|
795 #else
|
|
796 # define TYPE_ALLOC_SIZE(type, structtype) \
|
|
797 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \
|
|
798 / sizeof (structtype))
|
|
799 #endif /* ALLOC_NO_POOLS */
|
|
800
|
|
801 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \
|
|
802 \
|
|
803 struct type##_block \
|
|
804 { \
|
|
805 struct type##_block *prev; \
|
|
806 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \
|
|
807 }; \
|
|
808 \
|
|
809 static struct type##_block *current_##type##_block; \
|
|
810 static int current_##type##_block_index; \
|
|
811 \
|
454
|
812 static Lisp_Free *type##_free_list; \
|
|
813 static Lisp_Free *type##_free_list_tail; \
|
428
|
814 \
|
|
815 static void \
|
|
816 init_##type##_alloc (void) \
|
|
817 { \
|
|
818 current_##type##_block = 0; \
|
|
819 current_##type##_block_index = \
|
|
820 countof (current_##type##_block->block); \
|
|
821 type##_free_list = 0; \
|
|
822 type##_free_list_tail = 0; \
|
|
823 } \
|
|
824 \
|
|
825 static int gc_count_num_##type##_in_use; \
|
|
826 static int gc_count_num_##type##_freelist
|
|
827
|
|
828 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \
|
|
829 if (current_##type##_block_index \
|
|
830 == countof (current_##type##_block->block)) \
|
|
831 { \
|
|
832 struct type##_block *AFTFB_new = (struct type##_block *) \
|
|
833 allocate_lisp_storage (sizeof (struct type##_block)); \
|
|
834 AFTFB_new->prev = current_##type##_block; \
|
|
835 current_##type##_block = AFTFB_new; \
|
|
836 current_##type##_block_index = 0; \
|
|
837 } \
|
|
838 (result) = \
|
|
839 &(current_##type##_block->block[current_##type##_block_index++]); \
|
|
840 } while (0)
|
|
841
|
|
842 /* Allocate an instance of a type that is stored in blocks.
|
|
843 TYPE is the "name" of the type, STRUCTTYPE is the corresponding
|
|
844 structure type. */
|
|
845
|
|
846 #ifdef ERROR_CHECK_GC
|
|
847
|
|
848 /* Note: if you get crashes in this function, suspect incorrect calls
|
|
849 to free_cons() and friends. This happened once because the cons
|
|
850 cell was not GC-protected and was getting collected before
|
|
851 free_cons() was called. */
|
|
852
|
454
|
853 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \
|
|
854 if (gc_count_num_##type##_freelist > \
|
|
855 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \
|
|
856 { \
|
|
857 result = (structtype *) type##_free_list; \
|
1204
|
858 assert (LRECORD_FREE_P (result)); \
|
|
859 /* Before actually using the chain pointer, we complement \
|
|
860 all its bits; see PUT_FIXED_TYPE_ON_FREE_LIST(). */ \
|
454
|
861 type##_free_list = (Lisp_Free *) \
|
|
862 (~ (EMACS_UINT) (type##_free_list->chain)); \
|
|
863 gc_count_num_##type##_freelist--; \
|
|
864 } \
|
|
865 else \
|
|
866 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
867 MARK_LRECORD_AS_NOT_FREE (result); \
|
428
|
868 } while (0)
|
|
869
|
|
870 #else /* !ERROR_CHECK_GC */
|
|
871
|
454
|
872 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \
|
428
|
873 if (type##_free_list) \
|
|
874 { \
|
454
|
875 result = (structtype *) type##_free_list; \
|
|
876 type##_free_list = type##_free_list->chain; \
|
428
|
877 } \
|
|
878 else \
|
|
879 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
454
|
880 MARK_LRECORD_AS_NOT_FREE (result); \
|
428
|
881 } while (0)
|
|
882
|
|
883 #endif /* !ERROR_CHECK_GC */
|
|
884
|
454
|
885
|
428
|
886 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
887 do \
|
|
888 { \
|
|
889 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
890 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
891 } while (0)
|
|
892
|
|
893 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
894 do \
|
|
895 { \
|
|
896 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
897 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
898 } while (0)
|
|
899
|
454
|
900
|
|
901 /* Lisp_Free is the type to represent a free list member inside a frob
|
|
902 block of any lisp object type. */
|
|
903 typedef struct Lisp_Free
|
|
904 {
|
|
905 struct lrecord_header lheader;
|
|
906 struct Lisp_Free *chain;
|
|
907 } Lisp_Free;
|
|
908
|
|
909 #define LRECORD_FREE_P(ptr) \
|
771
|
910 (((struct lrecord_header *) ptr)->type == lrecord_type_free)
|
454
|
911
|
|
912 #define MARK_LRECORD_AS_FREE(ptr) \
|
771
|
913 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_free))
|
454
|
914
|
|
915 #ifdef ERROR_CHECK_GC
|
|
916 #define MARK_LRECORD_AS_NOT_FREE(ptr) \
|
771
|
917 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_undefined))
|
428
|
918 #else
|
454
|
919 #define MARK_LRECORD_AS_NOT_FREE(ptr) DO_NOTHING
|
428
|
920 #endif
|
|
921
|
|
922 #ifdef ERROR_CHECK_GC
|
|
923
|
454
|
924 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \
|
|
925 if (type##_free_list_tail) \
|
|
926 { \
|
|
927 /* When we store the chain pointer, we complement all \
|
|
928 its bits; this should significantly increase its \
|
|
929 bogosity in case someone tries to use the value, and \
|
|
930 should make us crash faster if someone overwrites the \
|
|
931 pointer because when it gets un-complemented in \
|
|
932 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \
|
|
933 extremely bogus. */ \
|
|
934 type##_free_list_tail->chain = \
|
|
935 (Lisp_Free *) ~ (EMACS_UINT) (ptr); \
|
|
936 } \
|
|
937 else \
|
|
938 type##_free_list = (Lisp_Free *) (ptr); \
|
|
939 type##_free_list_tail = (Lisp_Free *) (ptr); \
|
|
940 } while (0)
|
428
|
941
|
|
942 #else /* !ERROR_CHECK_GC */
|
|
943
|
454
|
944 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \
|
|
945 ((Lisp_Free *) (ptr))->chain = type##_free_list; \
|
|
946 type##_free_list = (Lisp_Free *) (ptr); \
|
|
947 } while (0) \
|
428
|
948
|
|
949 #endif /* !ERROR_CHECK_GC */
|
|
950
|
|
951 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */
|
|
952
|
|
953 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \
|
|
954 structtype *FFT_ptr = (ptr); \
|
1204
|
955 gc_checking_assert (!LRECORD_FREE_P (FFT_ptr)); \
|
428
|
956 ADDITIONAL_FREE_##type (FFT_ptr); \
|
|
957 deadbeef_memory (FFT_ptr, sizeof (structtype)); \
|
|
958 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \
|
454
|
959 MARK_LRECORD_AS_FREE (FFT_ptr); \
|
428
|
960 } while (0)
|
|
961
|
|
962 /* Like FREE_FIXED_TYPE() but used when we are explicitly
|
|
963 freeing a structure through free_cons(), free_marker(), etc.
|
|
964 rather than through the normal process of sweeping.
|
|
965 We attempt to undo the changes made to the allocation counters
|
|
966 as a result of this structure being allocated. This is not
|
|
967 completely necessary but helps keep things saner: e.g. this way,
|
|
968 repeatedly allocating and freeing a cons will not result in
|
|
969 the consing-since-gc counter advancing, which would cause a GC
|
1204
|
970 and somewhat defeat the purpose of explicitly freeing.
|
|
971
|
|
972 We also disable this mechanism entirely when ALLOC_NO_POOLS is
|
|
973 set, which is used for Purify and the like. */
|
|
974
|
|
975 #ifndef ALLOC_NO_POOLS
|
428
|
976 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \
|
|
977 do { FREE_FIXED_TYPE (type, structtype, ptr); \
|
|
978 DECREMENT_CONS_COUNTER (sizeof (structtype)); \
|
|
979 gc_count_num_##type##_freelist++; \
|
|
980 } while (0)
|
1204
|
981 #else
|
|
982 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr)
|
|
983 #endif
|
428
|
984
|
|
985
|
|
986
|
|
987 /************************************************************************/
|
|
988 /* Cons allocation */
|
|
989 /************************************************************************/
|
|
990
|
440
|
991 DECLARE_FIXED_TYPE_ALLOC (cons, Lisp_Cons);
|
428
|
992 /* conses are used and freed so often that we set this really high */
|
|
993 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */
|
|
994 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000
|
|
995
|
|
996 static Lisp_Object
|
|
997 mark_cons (Lisp_Object obj)
|
|
998 {
|
|
999 if (NILP (XCDR (obj)))
|
|
1000 return XCAR (obj);
|
|
1001
|
|
1002 mark_object (XCAR (obj));
|
|
1003 return XCDR (obj);
|
|
1004 }
|
|
1005
|
|
1006 static int
|
|
1007 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth)
|
|
1008 {
|
442
|
1009 depth++;
|
|
1010 while (internal_equal (XCAR (ob1), XCAR (ob2), depth))
|
428
|
1011 {
|
|
1012 ob1 = XCDR (ob1);
|
|
1013 ob2 = XCDR (ob2);
|
|
1014 if (! CONSP (ob1) || ! CONSP (ob2))
|
442
|
1015 return internal_equal (ob1, ob2, depth);
|
428
|
1016 }
|
|
1017 return 0;
|
|
1018 }
|
|
1019
|
1204
|
1020 static const struct memory_description cons_description[] = {
|
853
|
1021 { XD_LISP_OBJECT, offsetof (Lisp_Cons, car_) },
|
|
1022 { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr_) },
|
428
|
1023 { XD_END }
|
|
1024 };
|
|
1025
|
934
|
1026 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons,
|
|
1027 1, /*dumpable-flag*/
|
|
1028 mark_cons, print_cons, 0,
|
|
1029 cons_equal,
|
|
1030 /*
|
|
1031 * No `hash' method needed.
|
|
1032 * internal_hash knows how to
|
|
1033 * handle conses.
|
|
1034 */
|
|
1035 0,
|
|
1036 cons_description,
|
|
1037 Lisp_Cons);
|
428
|
1038
|
|
1039 DEFUN ("cons", Fcons, 2, 2, 0, /*
|
|
1040 Create a new cons, give it CAR and CDR as components, and return it.
|
|
1041 */
|
|
1042 (car, cdr))
|
|
1043 {
|
|
1044 /* This cannot GC. */
|
|
1045 Lisp_Object val;
|
440
|
1046 Lisp_Cons *c;
|
|
1047
|
|
1048 ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c);
|
442
|
1049 set_lheader_implementation (&c->lheader, &lrecord_cons);
|
793
|
1050 val = wrap_cons (c);
|
853
|
1051 XSETCAR (val, car);
|
|
1052 XSETCDR (val, cdr);
|
428
|
1053 return val;
|
|
1054 }
|
|
1055
|
|
1056 /* This is identical to Fcons() but it used for conses that we're
|
|
1057 going to free later, and is useful when trying to track down
|
|
1058 "real" consing. */
|
|
1059 Lisp_Object
|
|
1060 noseeum_cons (Lisp_Object car, Lisp_Object cdr)
|
|
1061 {
|
|
1062 Lisp_Object val;
|
440
|
1063 Lisp_Cons *c;
|
|
1064
|
|
1065 NOSEEUM_ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c);
|
442
|
1066 set_lheader_implementation (&c->lheader, &lrecord_cons);
|
793
|
1067 val = wrap_cons (c);
|
428
|
1068 XCAR (val) = car;
|
|
1069 XCDR (val) = cdr;
|
|
1070 return val;
|
|
1071 }
|
|
1072
|
|
1073 DEFUN ("list", Flist, 0, MANY, 0, /*
|
|
1074 Return a newly created list with specified arguments as elements.
|
|
1075 Any number of arguments, even zero arguments, are allowed.
|
|
1076 */
|
|
1077 (int nargs, Lisp_Object *args))
|
|
1078 {
|
|
1079 Lisp_Object val = Qnil;
|
|
1080 Lisp_Object *argp = args + nargs;
|
|
1081
|
|
1082 while (argp > args)
|
|
1083 val = Fcons (*--argp, val);
|
|
1084 return val;
|
|
1085 }
|
|
1086
|
|
1087 Lisp_Object
|
|
1088 list1 (Lisp_Object obj0)
|
|
1089 {
|
|
1090 /* This cannot GC. */
|
|
1091 return Fcons (obj0, Qnil);
|
|
1092 }
|
|
1093
|
|
1094 Lisp_Object
|
|
1095 list2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1096 {
|
|
1097 /* This cannot GC. */
|
|
1098 return Fcons (obj0, Fcons (obj1, Qnil));
|
|
1099 }
|
|
1100
|
|
1101 Lisp_Object
|
|
1102 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1103 {
|
|
1104 /* This cannot GC. */
|
|
1105 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil)));
|
|
1106 }
|
|
1107
|
|
1108 Lisp_Object
|
|
1109 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1110 {
|
|
1111 /* This cannot GC. */
|
|
1112 return Fcons (obj0, Fcons (obj1, obj2));
|
|
1113 }
|
|
1114
|
|
1115 Lisp_Object
|
|
1116 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist)
|
|
1117 {
|
|
1118 return Fcons (Fcons (key, value), alist);
|
|
1119 }
|
|
1120
|
|
1121 Lisp_Object
|
|
1122 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3)
|
|
1123 {
|
|
1124 /* This cannot GC. */
|
|
1125 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil))));
|
|
1126 }
|
|
1127
|
|
1128 Lisp_Object
|
|
1129 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1130 Lisp_Object obj4)
|
|
1131 {
|
|
1132 /* This cannot GC. */
|
|
1133 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil)))));
|
|
1134 }
|
|
1135
|
|
1136 Lisp_Object
|
|
1137 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1138 Lisp_Object obj4, Lisp_Object obj5)
|
|
1139 {
|
|
1140 /* This cannot GC. */
|
|
1141 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil))))));
|
|
1142 }
|
|
1143
|
|
1144 DEFUN ("make-list", Fmake_list, 2, 2, 0, /*
|
444
|
1145 Return a new list of length LENGTH, with each element being OBJECT.
|
428
|
1146 */
|
444
|
1147 (length, object))
|
428
|
1148 {
|
|
1149 CHECK_NATNUM (length);
|
|
1150
|
|
1151 {
|
|
1152 Lisp_Object val = Qnil;
|
647
|
1153 EMACS_INT size = XINT (length);
|
428
|
1154
|
|
1155 while (size--)
|
444
|
1156 val = Fcons (object, val);
|
428
|
1157 return val;
|
|
1158 }
|
|
1159 }
|
|
1160
|
|
1161
|
|
1162 /************************************************************************/
|
|
1163 /* Float allocation */
|
|
1164 /************************************************************************/
|
|
1165
|
440
|
1166 DECLARE_FIXED_TYPE_ALLOC (float, Lisp_Float);
|
428
|
1167 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000
|
|
1168
|
|
1169 Lisp_Object
|
|
1170 make_float (double float_value)
|
|
1171 {
|
440
|
1172 Lisp_Float *f;
|
|
1173
|
|
1174 ALLOCATE_FIXED_TYPE (float, Lisp_Float, f);
|
|
1175
|
|
1176 /* Avoid dump-time `uninitialized memory read' purify warnings. */
|
|
1177 if (sizeof (struct lrecord_header) + sizeof (double) != sizeof (*f))
|
|
1178 xzero (*f);
|
|
1179
|
442
|
1180 set_lheader_implementation (&f->lheader, &lrecord_float);
|
428
|
1181 float_data (f) = float_value;
|
793
|
1182 return wrap_float (f);
|
428
|
1183 }
|
|
1184
|
|
1185
|
|
1186 /************************************************************************/
|
|
1187 /* Vector allocation */
|
|
1188 /************************************************************************/
|
|
1189
|
|
1190 static Lisp_Object
|
|
1191 mark_vector (Lisp_Object obj)
|
|
1192 {
|
|
1193 Lisp_Vector *ptr = XVECTOR (obj);
|
|
1194 int len = vector_length (ptr);
|
|
1195 int i;
|
|
1196
|
|
1197 for (i = 0; i < len - 1; i++)
|
|
1198 mark_object (ptr->contents[i]);
|
|
1199 return (len > 0) ? ptr->contents[len - 1] : Qnil;
|
|
1200 }
|
|
1201
|
665
|
1202 static Bytecount
|
442
|
1203 size_vector (const void *lheader)
|
428
|
1204 {
|
456
|
1205 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, contents,
|
442
|
1206 ((Lisp_Vector *) lheader)->size);
|
428
|
1207 }
|
|
1208
|
|
1209 static int
|
|
1210 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
1211 {
|
|
1212 int len = XVECTOR_LENGTH (obj1);
|
|
1213 if (len != XVECTOR_LENGTH (obj2))
|
|
1214 return 0;
|
|
1215
|
|
1216 {
|
|
1217 Lisp_Object *ptr1 = XVECTOR_DATA (obj1);
|
|
1218 Lisp_Object *ptr2 = XVECTOR_DATA (obj2);
|
|
1219 while (len--)
|
|
1220 if (!internal_equal (*ptr1++, *ptr2++, depth + 1))
|
|
1221 return 0;
|
|
1222 }
|
|
1223 return 1;
|
|
1224 }
|
|
1225
|
665
|
1226 static Hashcode
|
442
|
1227 vector_hash (Lisp_Object obj, int depth)
|
|
1228 {
|
|
1229 return HASH2 (XVECTOR_LENGTH (obj),
|
|
1230 internal_array_hash (XVECTOR_DATA (obj),
|
|
1231 XVECTOR_LENGTH (obj),
|
|
1232 depth + 1));
|
|
1233 }
|
|
1234
|
1204
|
1235 static const struct memory_description vector_description[] = {
|
440
|
1236 { XD_LONG, offsetof (Lisp_Vector, size) },
|
|
1237 { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Vector, contents), XD_INDIRECT(0, 0) },
|
428
|
1238 { XD_END }
|
|
1239 };
|
|
1240
|
1204
|
1241 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION ("vector", vector,
|
|
1242 1, /*dumpable-flag*/
|
|
1243 mark_vector, print_vector, 0,
|
|
1244 vector_equal,
|
|
1245 vector_hash,
|
|
1246 vector_description,
|
|
1247 size_vector, Lisp_Vector);
|
428
|
1248 /* #### should allocate `small' vectors from a frob-block */
|
|
1249 static Lisp_Vector *
|
665
|
1250 make_vector_internal (Elemcount sizei)
|
428
|
1251 {
|
1204
|
1252 /* no `next' field; we use lcrecords */
|
665
|
1253 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object,
|
1204
|
1254 contents, sizei);
|
|
1255 Lisp_Vector *p =
|
|
1256 (Lisp_Vector *) basic_alloc_lcrecord (sizem, &lrecord_vector);
|
428
|
1257
|
|
1258 p->size = sizei;
|
|
1259 return p;
|
|
1260 }
|
|
1261
|
|
1262 Lisp_Object
|
665
|
1263 make_vector (Elemcount length, Lisp_Object object)
|
428
|
1264 {
|
|
1265 Lisp_Vector *vecp = make_vector_internal (length);
|
|
1266 Lisp_Object *p = vector_data (vecp);
|
|
1267
|
|
1268 while (length--)
|
444
|
1269 *p++ = object;
|
428
|
1270
|
793
|
1271 return wrap_vector (vecp);
|
428
|
1272 }
|
|
1273
|
|
1274 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /*
|
444
|
1275 Return a new vector of length LENGTH, with each element being OBJECT.
|
428
|
1276 See also the function `vector'.
|
|
1277 */
|
444
|
1278 (length, object))
|
428
|
1279 {
|
|
1280 CONCHECK_NATNUM (length);
|
444
|
1281 return make_vector (XINT (length), object);
|
428
|
1282 }
|
|
1283
|
|
1284 DEFUN ("vector", Fvector, 0, MANY, 0, /*
|
|
1285 Return a newly created vector with specified arguments as elements.
|
|
1286 Any number of arguments, even zero arguments, are allowed.
|
|
1287 */
|
|
1288 (int nargs, Lisp_Object *args))
|
|
1289 {
|
|
1290 Lisp_Vector *vecp = make_vector_internal (nargs);
|
|
1291 Lisp_Object *p = vector_data (vecp);
|
|
1292
|
|
1293 while (nargs--)
|
|
1294 *p++ = *args++;
|
|
1295
|
793
|
1296 return wrap_vector (vecp);
|
428
|
1297 }
|
|
1298
|
|
1299 Lisp_Object
|
|
1300 vector1 (Lisp_Object obj0)
|
|
1301 {
|
|
1302 return Fvector (1, &obj0);
|
|
1303 }
|
|
1304
|
|
1305 Lisp_Object
|
|
1306 vector2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1307 {
|
|
1308 Lisp_Object args[2];
|
|
1309 args[0] = obj0;
|
|
1310 args[1] = obj1;
|
|
1311 return Fvector (2, args);
|
|
1312 }
|
|
1313
|
|
1314 Lisp_Object
|
|
1315 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1316 {
|
|
1317 Lisp_Object args[3];
|
|
1318 args[0] = obj0;
|
|
1319 args[1] = obj1;
|
|
1320 args[2] = obj2;
|
|
1321 return Fvector (3, args);
|
|
1322 }
|
|
1323
|
|
1324 #if 0 /* currently unused */
|
|
1325
|
|
1326 Lisp_Object
|
|
1327 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1328 Lisp_Object obj3)
|
|
1329 {
|
|
1330 Lisp_Object args[4];
|
|
1331 args[0] = obj0;
|
|
1332 args[1] = obj1;
|
|
1333 args[2] = obj2;
|
|
1334 args[3] = obj3;
|
|
1335 return Fvector (4, args);
|
|
1336 }
|
|
1337
|
|
1338 Lisp_Object
|
|
1339 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1340 Lisp_Object obj3, Lisp_Object obj4)
|
|
1341 {
|
|
1342 Lisp_Object args[5];
|
|
1343 args[0] = obj0;
|
|
1344 args[1] = obj1;
|
|
1345 args[2] = obj2;
|
|
1346 args[3] = obj3;
|
|
1347 args[4] = obj4;
|
|
1348 return Fvector (5, args);
|
|
1349 }
|
|
1350
|
|
1351 Lisp_Object
|
|
1352 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1353 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5)
|
|
1354 {
|
|
1355 Lisp_Object args[6];
|
|
1356 args[0] = obj0;
|
|
1357 args[1] = obj1;
|
|
1358 args[2] = obj2;
|
|
1359 args[3] = obj3;
|
|
1360 args[4] = obj4;
|
|
1361 args[5] = obj5;
|
|
1362 return Fvector (6, args);
|
|
1363 }
|
|
1364
|
|
1365 Lisp_Object
|
|
1366 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1367 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1368 Lisp_Object obj6)
|
|
1369 {
|
|
1370 Lisp_Object args[7];
|
|
1371 args[0] = obj0;
|
|
1372 args[1] = obj1;
|
|
1373 args[2] = obj2;
|
|
1374 args[3] = obj3;
|
|
1375 args[4] = obj4;
|
|
1376 args[5] = obj5;
|
|
1377 args[6] = obj6;
|
|
1378 return Fvector (7, args);
|
|
1379 }
|
|
1380
|
|
1381 Lisp_Object
|
|
1382 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1383 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1384 Lisp_Object obj6, Lisp_Object obj7)
|
|
1385 {
|
|
1386 Lisp_Object args[8];
|
|
1387 args[0] = obj0;
|
|
1388 args[1] = obj1;
|
|
1389 args[2] = obj2;
|
|
1390 args[3] = obj3;
|
|
1391 args[4] = obj4;
|
|
1392 args[5] = obj5;
|
|
1393 args[6] = obj6;
|
|
1394 args[7] = obj7;
|
|
1395 return Fvector (8, args);
|
|
1396 }
|
|
1397 #endif /* unused */
|
|
1398
|
|
1399 /************************************************************************/
|
|
1400 /* Bit Vector allocation */
|
|
1401 /************************************************************************/
|
|
1402
|
|
1403 /* #### should allocate `small' bit vectors from a frob-block */
|
440
|
1404 static Lisp_Bit_Vector *
|
665
|
1405 make_bit_vector_internal (Elemcount sizei)
|
428
|
1406 {
|
1204
|
1407 /* no `next' field; we use lcrecords */
|
665
|
1408 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (sizei);
|
|
1409 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector,
|
1204
|
1410 unsigned long,
|
|
1411 bits, num_longs);
|
|
1412 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *)
|
|
1413 basic_alloc_lcrecord (sizem, &lrecord_bit_vector);
|
428
|
1414
|
|
1415 bit_vector_length (p) = sizei;
|
|
1416 return p;
|
|
1417 }
|
|
1418
|
|
1419 Lisp_Object
|
665
|
1420 make_bit_vector (Elemcount length, Lisp_Object bit)
|
428
|
1421 {
|
440
|
1422 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
665
|
1423 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (length);
|
428
|
1424
|
444
|
1425 CHECK_BIT (bit);
|
|
1426
|
|
1427 if (ZEROP (bit))
|
428
|
1428 memset (p->bits, 0, num_longs * sizeof (long));
|
|
1429 else
|
|
1430 {
|
665
|
1431 Elemcount bits_in_last = length & (LONGBITS_POWER_OF_2 - 1);
|
428
|
1432 memset (p->bits, ~0, num_longs * sizeof (long));
|
|
1433 /* But we have to make sure that the unused bits in the
|
|
1434 last long are 0, so that equal/hash is easy. */
|
|
1435 if (bits_in_last)
|
|
1436 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1;
|
|
1437 }
|
|
1438
|
793
|
1439 return wrap_bit_vector (p);
|
428
|
1440 }
|
|
1441
|
|
1442 Lisp_Object
|
665
|
1443 make_bit_vector_from_byte_vector (unsigned char *bytevec, Elemcount length)
|
428
|
1444 {
|
665
|
1445 Elemcount i;
|
428
|
1446 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
|
1447
|
|
1448 for (i = 0; i < length; i++)
|
|
1449 set_bit_vector_bit (p, i, bytevec[i]);
|
|
1450
|
793
|
1451 return wrap_bit_vector (p);
|
428
|
1452 }
|
|
1453
|
|
1454 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /*
|
444
|
1455 Return a new bit vector of length LENGTH. with each bit set to BIT.
|
|
1456 BIT must be one of the integers 0 or 1. See also the function `bit-vector'.
|
428
|
1457 */
|
444
|
1458 (length, bit))
|
428
|
1459 {
|
|
1460 CONCHECK_NATNUM (length);
|
|
1461
|
444
|
1462 return make_bit_vector (XINT (length), bit);
|
428
|
1463 }
|
|
1464
|
|
1465 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /*
|
|
1466 Return a newly created bit vector with specified arguments as elements.
|
|
1467 Any number of arguments, even zero arguments, are allowed.
|
444
|
1468 Each argument must be one of the integers 0 or 1.
|
428
|
1469 */
|
|
1470 (int nargs, Lisp_Object *args))
|
|
1471 {
|
|
1472 int i;
|
|
1473 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs);
|
|
1474
|
|
1475 for (i = 0; i < nargs; i++)
|
|
1476 {
|
|
1477 CHECK_BIT (args[i]);
|
|
1478 set_bit_vector_bit (p, i, !ZEROP (args[i]));
|
|
1479 }
|
|
1480
|
793
|
1481 return wrap_bit_vector (p);
|
428
|
1482 }
|
|
1483
|
|
1484
|
|
1485 /************************************************************************/
|
|
1486 /* Compiled-function allocation */
|
|
1487 /************************************************************************/
|
|
1488
|
|
1489 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function);
|
|
1490 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000
|
|
1491
|
|
1492 static Lisp_Object
|
|
1493 make_compiled_function (void)
|
|
1494 {
|
|
1495 Lisp_Compiled_Function *f;
|
|
1496
|
|
1497 ALLOCATE_FIXED_TYPE (compiled_function, Lisp_Compiled_Function, f);
|
442
|
1498 set_lheader_implementation (&f->lheader, &lrecord_compiled_function);
|
428
|
1499
|
|
1500 f->stack_depth = 0;
|
|
1501 f->specpdl_depth = 0;
|
|
1502 f->flags.documentationp = 0;
|
|
1503 f->flags.interactivep = 0;
|
|
1504 f->flags.domainp = 0; /* I18N3 */
|
|
1505 f->instructions = Qzero;
|
|
1506 f->constants = Qzero;
|
|
1507 f->arglist = Qnil;
|
1737
|
1508 f->args = f->max_args = f->min_args = f->args_in_array = 0;
|
428
|
1509 f->doc_and_interactive = Qnil;
|
|
1510 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
1511 f->annotated = Qnil;
|
|
1512 #endif
|
793
|
1513 return wrap_compiled_function (f);
|
428
|
1514 }
|
|
1515
|
|
1516 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /*
|
|
1517 Return a new compiled-function object.
|
|
1518 Usage: (arglist instructions constants stack-depth
|
|
1519 &optional doc-string interactive)
|
|
1520 Note that, unlike all other emacs-lisp functions, calling this with five
|
|
1521 arguments is NOT the same as calling it with six arguments, the last of
|
|
1522 which is nil. If the INTERACTIVE arg is specified as nil, then that means
|
|
1523 that this function was defined with `(interactive)'. If the arg is not
|
|
1524 specified, then that means the function is not interactive.
|
|
1525 This is terrible behavior which is retained for compatibility with old
|
|
1526 `.elc' files which expect these semantics.
|
|
1527 */
|
|
1528 (int nargs, Lisp_Object *args))
|
|
1529 {
|
|
1530 /* In a non-insane world this function would have this arglist...
|
|
1531 (arglist instructions constants stack_depth &optional doc_string interactive)
|
|
1532 */
|
|
1533 Lisp_Object fun = make_compiled_function ();
|
|
1534 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun);
|
|
1535
|
|
1536 Lisp_Object arglist = args[0];
|
|
1537 Lisp_Object instructions = args[1];
|
|
1538 Lisp_Object constants = args[2];
|
|
1539 Lisp_Object stack_depth = args[3];
|
|
1540 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil;
|
|
1541 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound;
|
|
1542
|
|
1543 if (nargs < 4 || nargs > 6)
|
|
1544 return Fsignal (Qwrong_number_of_arguments,
|
|
1545 list2 (intern ("make-byte-code"), make_int (nargs)));
|
|
1546
|
|
1547 /* Check for valid formal parameter list now, to allow us to use
|
|
1548 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */
|
|
1549 {
|
814
|
1550 EXTERNAL_LIST_LOOP_2 (symbol, arglist)
|
428
|
1551 {
|
|
1552 CHECK_SYMBOL (symbol);
|
|
1553 if (EQ (symbol, Qt) ||
|
|
1554 EQ (symbol, Qnil) ||
|
|
1555 SYMBOL_IS_KEYWORD (symbol))
|
563
|
1556 invalid_constant_2
|
428
|
1557 ("Invalid constant symbol in formal parameter list",
|
|
1558 symbol, arglist);
|
|
1559 }
|
|
1560 }
|
|
1561 f->arglist = arglist;
|
|
1562
|
|
1563 /* `instructions' is a string or a cons (string . int) for a
|
|
1564 lazy-loaded function. */
|
|
1565 if (CONSP (instructions))
|
|
1566 {
|
|
1567 CHECK_STRING (XCAR (instructions));
|
|
1568 CHECK_INT (XCDR (instructions));
|
|
1569 }
|
|
1570 else
|
|
1571 {
|
|
1572 CHECK_STRING (instructions);
|
|
1573 }
|
|
1574 f->instructions = instructions;
|
|
1575
|
|
1576 if (!NILP (constants))
|
|
1577 CHECK_VECTOR (constants);
|
|
1578 f->constants = constants;
|
|
1579
|
|
1580 CHECK_NATNUM (stack_depth);
|
442
|
1581 f->stack_depth = (unsigned short) XINT (stack_depth);
|
428
|
1582
|
|
1583 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
1584 if (!NILP (Vcurrent_compiled_function_annotation))
|
|
1585 f->annotated = Fcopy (Vcurrent_compiled_function_annotation);
|
|
1586 else if (!NILP (Vload_file_name_internal_the_purecopy))
|
|
1587 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1588 else if (!NILP (Vload_file_name_internal))
|
|
1589 {
|
|
1590 struct gcpro gcpro1;
|
|
1591 GCPRO1 (fun); /* don't let fun get reaped */
|
|
1592 Vload_file_name_internal_the_purecopy =
|
|
1593 Ffile_name_nondirectory (Vload_file_name_internal);
|
|
1594 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1595 UNGCPRO;
|
|
1596 }
|
|
1597 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */
|
|
1598
|
|
1599 /* doc_string may be nil, string, int, or a cons (string . int).
|
|
1600 interactive may be list or string (or unbound). */
|
|
1601 f->doc_and_interactive = Qunbound;
|
|
1602 #ifdef I18N3
|
|
1603 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0)
|
|
1604 f->doc_and_interactive = Vfile_domain;
|
|
1605 #endif
|
|
1606 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0)
|
|
1607 {
|
|
1608 f->doc_and_interactive
|
|
1609 = (UNBOUNDP (f->doc_and_interactive) ? interactive :
|
|
1610 Fcons (interactive, f->doc_and_interactive));
|
|
1611 }
|
|
1612 if ((f->flags.documentationp = !NILP (doc_string)) != 0)
|
|
1613 {
|
|
1614 f->doc_and_interactive
|
|
1615 = (UNBOUNDP (f->doc_and_interactive) ? doc_string :
|
|
1616 Fcons (doc_string, f->doc_and_interactive));
|
|
1617 }
|
|
1618 if (UNBOUNDP (f->doc_and_interactive))
|
|
1619 f->doc_and_interactive = Qnil;
|
|
1620
|
|
1621 return fun;
|
|
1622 }
|
|
1623
|
|
1624
|
|
1625 /************************************************************************/
|
|
1626 /* Symbol allocation */
|
|
1627 /************************************************************************/
|
|
1628
|
440
|
1629 DECLARE_FIXED_TYPE_ALLOC (symbol, Lisp_Symbol);
|
428
|
1630 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000
|
|
1631
|
|
1632 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /*
|
|
1633 Return a newly allocated uninterned symbol whose name is NAME.
|
|
1634 Its value and function definition are void, and its property list is nil.
|
|
1635 */
|
|
1636 (name))
|
|
1637 {
|
440
|
1638 Lisp_Symbol *p;
|
428
|
1639
|
|
1640 CHECK_STRING (name);
|
|
1641
|
440
|
1642 ALLOCATE_FIXED_TYPE (symbol, Lisp_Symbol, p);
|
442
|
1643 set_lheader_implementation (&p->lheader, &lrecord_symbol);
|
793
|
1644 p->name = name;
|
428
|
1645 p->plist = Qnil;
|
|
1646 p->value = Qunbound;
|
|
1647 p->function = Qunbound;
|
|
1648 symbol_next (p) = 0;
|
793
|
1649 return wrap_symbol (p);
|
428
|
1650 }
|
|
1651
|
|
1652
|
|
1653 /************************************************************************/
|
|
1654 /* Extent allocation */
|
|
1655 /************************************************************************/
|
|
1656
|
|
1657 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent);
|
|
1658 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000
|
|
1659
|
|
1660 struct extent *
|
|
1661 allocate_extent (void)
|
|
1662 {
|
|
1663 struct extent *e;
|
|
1664
|
|
1665 ALLOCATE_FIXED_TYPE (extent, struct extent, e);
|
442
|
1666 set_lheader_implementation (&e->lheader, &lrecord_extent);
|
428
|
1667 extent_object (e) = Qnil;
|
|
1668 set_extent_start (e, -1);
|
|
1669 set_extent_end (e, -1);
|
|
1670 e->plist = Qnil;
|
|
1671
|
|
1672 xzero (e->flags);
|
|
1673
|
|
1674 extent_face (e) = Qnil;
|
|
1675 e->flags.end_open = 1; /* default is for endpoints to behave like markers */
|
|
1676 e->flags.detachable = 1;
|
|
1677
|
|
1678 return e;
|
|
1679 }
|
|
1680
|
|
1681
|
|
1682 /************************************************************************/
|
|
1683 /* Event allocation */
|
|
1684 /************************************************************************/
|
|
1685
|
440
|
1686 DECLARE_FIXED_TYPE_ALLOC (event, Lisp_Event);
|
428
|
1687 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000
|
|
1688
|
|
1689 Lisp_Object
|
|
1690 allocate_event (void)
|
|
1691 {
|
440
|
1692 Lisp_Event *e;
|
|
1693
|
|
1694 ALLOCATE_FIXED_TYPE (event, Lisp_Event, e);
|
442
|
1695 set_lheader_implementation (&e->lheader, &lrecord_event);
|
428
|
1696
|
793
|
1697 return wrap_event (e);
|
428
|
1698 }
|
|
1699
|
1204
|
1700 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
1701 DECLARE_FIXED_TYPE_ALLOC (key_data, Lisp_Key_Data);
|
|
1702 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_key_data 1000
|
|
1703
|
|
1704 Lisp_Object
|
1204
|
1705 make_key_data (void)
|
934
|
1706 {
|
|
1707 Lisp_Key_Data *d;
|
|
1708
|
|
1709 ALLOCATE_FIXED_TYPE (key_data, Lisp_Key_Data, d);
|
1204
|
1710 xzero (*d);
|
934
|
1711 set_lheader_implementation (&d->lheader, &lrecord_key_data);
|
1204
|
1712 d->keysym = Qnil;
|
|
1713
|
|
1714 return wrap_key_data (d);
|
934
|
1715 }
|
|
1716
|
|
1717 DECLARE_FIXED_TYPE_ALLOC (button_data, Lisp_Button_Data);
|
|
1718 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_button_data 1000
|
|
1719
|
|
1720 Lisp_Object
|
1204
|
1721 make_button_data (void)
|
934
|
1722 {
|
|
1723 Lisp_Button_Data *d;
|
|
1724
|
|
1725 ALLOCATE_FIXED_TYPE (button_data, Lisp_Button_Data, d);
|
1204
|
1726 xzero (*d);
|
934
|
1727 set_lheader_implementation (&d->lheader, &lrecord_button_data);
|
|
1728
|
1204
|
1729 return wrap_button_data (d);
|
934
|
1730 }
|
|
1731
|
|
1732 DECLARE_FIXED_TYPE_ALLOC (motion_data, Lisp_Motion_Data);
|
|
1733 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_motion_data 1000
|
|
1734
|
|
1735 Lisp_Object
|
1204
|
1736 make_motion_data (void)
|
934
|
1737 {
|
|
1738 Lisp_Motion_Data *d;
|
|
1739
|
|
1740 ALLOCATE_FIXED_TYPE (motion_data, Lisp_Motion_Data, d);
|
1204
|
1741 xzero (*d);
|
934
|
1742 set_lheader_implementation (&d->lheader, &lrecord_motion_data);
|
|
1743
|
1204
|
1744 return wrap_motion_data (d);
|
934
|
1745 }
|
|
1746
|
|
1747 DECLARE_FIXED_TYPE_ALLOC (process_data, Lisp_Process_Data);
|
|
1748 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_process_data 1000
|
|
1749
|
|
1750 Lisp_Object
|
1204
|
1751 make_process_data (void)
|
934
|
1752 {
|
|
1753 Lisp_Process_Data *d;
|
|
1754
|
|
1755 ALLOCATE_FIXED_TYPE (process_data, Lisp_Process_Data, d);
|
1204
|
1756 xzero (*d);
|
934
|
1757 set_lheader_implementation (&d->lheader, &lrecord_process_data);
|
1204
|
1758 d->process = Qnil;
|
|
1759
|
|
1760 return wrap_process_data (d);
|
934
|
1761 }
|
|
1762
|
|
1763 DECLARE_FIXED_TYPE_ALLOC (timeout_data, Lisp_Timeout_Data);
|
|
1764 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_timeout_data 1000
|
|
1765
|
|
1766 Lisp_Object
|
1204
|
1767 make_timeout_data (void)
|
934
|
1768 {
|
|
1769 Lisp_Timeout_Data *d;
|
|
1770
|
|
1771 ALLOCATE_FIXED_TYPE (timeout_data, Lisp_Timeout_Data, d);
|
1204
|
1772 xzero (*d);
|
934
|
1773 set_lheader_implementation (&d->lheader, &lrecord_timeout_data);
|
1204
|
1774 d->function = Qnil;
|
|
1775 d->object = Qnil;
|
|
1776
|
|
1777 return wrap_timeout_data (d);
|
934
|
1778 }
|
|
1779
|
|
1780 DECLARE_FIXED_TYPE_ALLOC (magic_data, Lisp_Magic_Data);
|
|
1781 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_data 1000
|
|
1782
|
|
1783 Lisp_Object
|
1204
|
1784 make_magic_data (void)
|
934
|
1785 {
|
|
1786 Lisp_Magic_Data *d;
|
|
1787
|
|
1788 ALLOCATE_FIXED_TYPE (magic_data, Lisp_Magic_Data, d);
|
1204
|
1789 xzero (*d);
|
934
|
1790 set_lheader_implementation (&d->lheader, &lrecord_magic_data);
|
|
1791
|
1204
|
1792 return wrap_magic_data (d);
|
934
|
1793 }
|
|
1794
|
|
1795 DECLARE_FIXED_TYPE_ALLOC (magic_eval_data, Lisp_Magic_Eval_Data);
|
|
1796 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_eval_data 1000
|
|
1797
|
|
1798 Lisp_Object
|
1204
|
1799 make_magic_eval_data (void)
|
934
|
1800 {
|
|
1801 Lisp_Magic_Eval_Data *d;
|
|
1802
|
|
1803 ALLOCATE_FIXED_TYPE (magic_eval_data, Lisp_Magic_Eval_Data, d);
|
1204
|
1804 xzero (*d);
|
934
|
1805 set_lheader_implementation (&d->lheader, &lrecord_magic_eval_data);
|
1204
|
1806 d->object = Qnil;
|
|
1807
|
|
1808 return wrap_magic_eval_data (d);
|
934
|
1809 }
|
|
1810
|
|
1811 DECLARE_FIXED_TYPE_ALLOC (eval_data, Lisp_Eval_Data);
|
|
1812 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_eval_data 1000
|
|
1813
|
|
1814 Lisp_Object
|
1204
|
1815 make_eval_data (void)
|
934
|
1816 {
|
|
1817 Lisp_Eval_Data *d;
|
|
1818
|
|
1819 ALLOCATE_FIXED_TYPE (eval_data, Lisp_Eval_Data, d);
|
1204
|
1820 xzero (*d);
|
934
|
1821 set_lheader_implementation (&d->lheader, &lrecord_eval_data);
|
1204
|
1822 d->function = Qnil;
|
|
1823 d->object = Qnil;
|
|
1824
|
|
1825 return wrap_eval_data (d);
|
934
|
1826 }
|
|
1827
|
|
1828 DECLARE_FIXED_TYPE_ALLOC (misc_user_data, Lisp_Misc_User_Data);
|
|
1829 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_misc_user_data 1000
|
|
1830
|
|
1831 Lisp_Object
|
1204
|
1832 make_misc_user_data (void)
|
934
|
1833 {
|
|
1834 Lisp_Misc_User_Data *d;
|
|
1835
|
|
1836 ALLOCATE_FIXED_TYPE (misc_user_data, Lisp_Misc_User_Data, d);
|
1204
|
1837 xzero (*d);
|
934
|
1838 set_lheader_implementation (&d->lheader, &lrecord_misc_user_data);
|
1204
|
1839 d->function = Qnil;
|
|
1840 d->object = Qnil;
|
|
1841
|
|
1842 return wrap_misc_user_data (d);
|
934
|
1843 }
|
1204
|
1844
|
|
1845 #endif /* EVENT_DATA_AS_OBJECTS */
|
428
|
1846
|
|
1847 /************************************************************************/
|
|
1848 /* Marker allocation */
|
|
1849 /************************************************************************/
|
|
1850
|
440
|
1851 DECLARE_FIXED_TYPE_ALLOC (marker, Lisp_Marker);
|
428
|
1852 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000
|
|
1853
|
|
1854 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /*
|
|
1855 Return a new marker which does not point at any place.
|
|
1856 */
|
|
1857 ())
|
|
1858 {
|
440
|
1859 Lisp_Marker *p;
|
|
1860
|
|
1861 ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p);
|
442
|
1862 set_lheader_implementation (&p->lheader, &lrecord_marker);
|
428
|
1863 p->buffer = 0;
|
665
|
1864 p->membpos = 0;
|
428
|
1865 marker_next (p) = 0;
|
|
1866 marker_prev (p) = 0;
|
|
1867 p->insertion_type = 0;
|
793
|
1868 return wrap_marker (p);
|
428
|
1869 }
|
|
1870
|
|
1871 Lisp_Object
|
|
1872 noseeum_make_marker (void)
|
|
1873 {
|
440
|
1874 Lisp_Marker *p;
|
|
1875
|
|
1876 NOSEEUM_ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p);
|
442
|
1877 set_lheader_implementation (&p->lheader, &lrecord_marker);
|
428
|
1878 p->buffer = 0;
|
665
|
1879 p->membpos = 0;
|
428
|
1880 marker_next (p) = 0;
|
|
1881 marker_prev (p) = 0;
|
|
1882 p->insertion_type = 0;
|
793
|
1883 return wrap_marker (p);
|
428
|
1884 }
|
|
1885
|
|
1886
|
|
1887 /************************************************************************/
|
|
1888 /* String allocation */
|
|
1889 /************************************************************************/
|
|
1890
|
|
1891 /* The data for "short" strings generally resides inside of structs of type
|
|
1892 string_chars_block. The Lisp_String structure is allocated just like any
|
1204
|
1893 other basic lrecord, and these are freelisted when they get garbage
|
|
1894 collected. The data for short strings get compacted, but the data for
|
|
1895 large strings do not.
|
428
|
1896
|
|
1897 Previously Lisp_String structures were relocated, but this caused a lot
|
|
1898 of bus-errors because the C code didn't include enough GCPRO's for
|
|
1899 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so
|
|
1900 that the reference would get relocated).
|
|
1901
|
|
1902 This new method makes things somewhat bigger, but it is MUCH safer. */
|
|
1903
|
438
|
1904 DECLARE_FIXED_TYPE_ALLOC (string, Lisp_String);
|
428
|
1905 /* strings are used and freed quite often */
|
|
1906 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */
|
|
1907 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000
|
|
1908
|
|
1909 static Lisp_Object
|
|
1910 mark_string (Lisp_Object obj)
|
|
1911 {
|
793
|
1912 if (CONSP (XSTRING_PLIST (obj)) && EXTENT_INFOP (XCAR (XSTRING_PLIST (obj))))
|
|
1913 flush_cached_extent_info (XCAR (XSTRING_PLIST (obj)));
|
|
1914 return XSTRING_PLIST (obj);
|
428
|
1915 }
|
|
1916
|
|
1917 static int
|
|
1918 string_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
1919 {
|
|
1920 Bytecount len;
|
|
1921 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) &&
|
|
1922 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len));
|
|
1923 }
|
|
1924
|
1204
|
1925 static const struct memory_description string_description[] = {
|
793
|
1926 { XD_BYTECOUNT, offsetof (Lisp_String, size_) },
|
|
1927 { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data_), XD_INDIRECT(0, 1) },
|
440
|
1928 { XD_LISP_OBJECT, offsetof (Lisp_String, plist) },
|
428
|
1929 { XD_END }
|
|
1930 };
|
|
1931
|
442
|
1932 /* We store the string's extent info as the first element of the string's
|
|
1933 property list; and the string's MODIFF as the first or second element
|
|
1934 of the string's property list (depending on whether the extent info
|
|
1935 is present), but only if the string has been modified. This is ugly
|
|
1936 but it reduces the memory allocated for the string in the vast
|
|
1937 majority of cases, where the string is never modified and has no
|
|
1938 extent info.
|
|
1939
|
|
1940 #### This means you can't use an int as a key in a string's plist. */
|
|
1941
|
|
1942 static Lisp_Object *
|
|
1943 string_plist_ptr (Lisp_Object string)
|
|
1944 {
|
793
|
1945 Lisp_Object *ptr = &XSTRING_PLIST (string);
|
442
|
1946
|
|
1947 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
|
|
1948 ptr = &XCDR (*ptr);
|
|
1949 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
|
|
1950 ptr = &XCDR (*ptr);
|
|
1951 return ptr;
|
|
1952 }
|
|
1953
|
|
1954 static Lisp_Object
|
|
1955 string_getprop (Lisp_Object string, Lisp_Object property)
|
|
1956 {
|
|
1957 return external_plist_get (string_plist_ptr (string), property, 0, ERROR_ME);
|
|
1958 }
|
|
1959
|
|
1960 static int
|
|
1961 string_putprop (Lisp_Object string, Lisp_Object property, Lisp_Object value)
|
|
1962 {
|
|
1963 external_plist_put (string_plist_ptr (string), property, value, 0, ERROR_ME);
|
|
1964 return 1;
|
|
1965 }
|
|
1966
|
|
1967 static int
|
|
1968 string_remprop (Lisp_Object string, Lisp_Object property)
|
|
1969 {
|
|
1970 return external_remprop (string_plist_ptr (string), property, 0, ERROR_ME);
|
|
1971 }
|
|
1972
|
|
1973 static Lisp_Object
|
|
1974 string_plist (Lisp_Object string)
|
|
1975 {
|
|
1976 return *string_plist_ptr (string);
|
|
1977 }
|
|
1978
|
|
1979 /* No `finalize', or `hash' methods.
|
|
1980 internal_hash() already knows how to hash strings and finalization
|
|
1981 is done with the ADDITIONAL_FREE_string macro, which is the
|
|
1982 standard way to do finalization when using
|
|
1983 SWEEP_FIXED_TYPE_BLOCK(). */
|
934
|
1984 DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS ("string", string,
|
|
1985 1, /*dumpable-flag*/
|
|
1986 mark_string, print_string,
|
|
1987 0, string_equal, 0,
|
|
1988 string_description,
|
|
1989 string_getprop,
|
|
1990 string_putprop,
|
|
1991 string_remprop,
|
|
1992 string_plist,
|
|
1993 Lisp_String);
|
428
|
1994 /* String blocks contain this many useful bytes. */
|
|
1995 #define STRING_CHARS_BLOCK_SIZE \
|
814
|
1996 ((Bytecount) (8192 - MALLOC_OVERHEAD - \
|
|
1997 ((2 * sizeof (struct string_chars_block *)) \
|
|
1998 + sizeof (EMACS_INT))))
|
428
|
1999 /* Block header for small strings. */
|
|
2000 struct string_chars_block
|
|
2001 {
|
|
2002 EMACS_INT pos;
|
|
2003 struct string_chars_block *next;
|
|
2004 struct string_chars_block *prev;
|
|
2005 /* Contents of string_chars_block->string_chars are interleaved
|
|
2006 string_chars structures (see below) and the actual string data */
|
|
2007 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE];
|
|
2008 };
|
|
2009
|
|
2010 static struct string_chars_block *first_string_chars_block;
|
|
2011 static struct string_chars_block *current_string_chars_block;
|
|
2012
|
|
2013 /* If SIZE is the length of a string, this returns how many bytes
|
|
2014 * the string occupies in string_chars_block->string_chars
|
|
2015 * (including alignment padding).
|
|
2016 */
|
438
|
2017 #define STRING_FULLSIZE(size) \
|
826
|
2018 ALIGN_FOR_TYPE (((size) + 1 + sizeof (Lisp_String *)), Lisp_String *)
|
428
|
2019
|
|
2020 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE)
|
|
2021 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size)))
|
|
2022
|
454
|
2023 #define STRING_CHARS_FREE_P(ptr) ((ptr)->string == NULL)
|
|
2024 #define MARK_STRING_CHARS_AS_FREE(ptr) ((void) ((ptr)->string = NULL))
|
|
2025
|
428
|
2026 struct string_chars
|
|
2027 {
|
438
|
2028 Lisp_String *string;
|
428
|
2029 unsigned char chars[1];
|
|
2030 };
|
|
2031
|
|
2032 struct unused_string_chars
|
|
2033 {
|
438
|
2034 Lisp_String *string;
|
428
|
2035 EMACS_INT fullsize;
|
|
2036 };
|
|
2037
|
|
2038 static void
|
|
2039 init_string_chars_alloc (void)
|
|
2040 {
|
|
2041 first_string_chars_block = xnew (struct string_chars_block);
|
|
2042 first_string_chars_block->prev = 0;
|
|
2043 first_string_chars_block->next = 0;
|
|
2044 first_string_chars_block->pos = 0;
|
|
2045 current_string_chars_block = first_string_chars_block;
|
|
2046 }
|
|
2047
|
1550
|
2048 static Ibyte *
|
|
2049 allocate_big_string_chars (Bytecount length)
|
|
2050 {
|
|
2051 Ibyte *p = xnew_array (Ibyte, length);
|
|
2052 INCREMENT_CONS_COUNTER (length, "string chars");
|
|
2053 return p;
|
|
2054 }
|
|
2055
|
428
|
2056 static struct string_chars *
|
793
|
2057 allocate_string_chars_struct (Lisp_Object string_it_goes_with,
|
814
|
2058 Bytecount fullsize)
|
428
|
2059 {
|
|
2060 struct string_chars *s_chars;
|
|
2061
|
438
|
2062 if (fullsize <=
|
|
2063 (countof (current_string_chars_block->string_chars)
|
|
2064 - current_string_chars_block->pos))
|
428
|
2065 {
|
|
2066 /* This string can fit in the current string chars block */
|
|
2067 s_chars = (struct string_chars *)
|
|
2068 (current_string_chars_block->string_chars
|
|
2069 + current_string_chars_block->pos);
|
|
2070 current_string_chars_block->pos += fullsize;
|
|
2071 }
|
|
2072 else
|
|
2073 {
|
|
2074 /* Make a new current string chars block */
|
|
2075 struct string_chars_block *new_scb = xnew (struct string_chars_block);
|
|
2076
|
|
2077 current_string_chars_block->next = new_scb;
|
|
2078 new_scb->prev = current_string_chars_block;
|
|
2079 new_scb->next = 0;
|
|
2080 current_string_chars_block = new_scb;
|
|
2081 new_scb->pos = fullsize;
|
|
2082 s_chars = (struct string_chars *)
|
|
2083 current_string_chars_block->string_chars;
|
|
2084 }
|
|
2085
|
793
|
2086 s_chars->string = XSTRING (string_it_goes_with);
|
428
|
2087
|
|
2088 INCREMENT_CONS_COUNTER (fullsize, "string chars");
|
|
2089
|
|
2090 return s_chars;
|
|
2091 }
|
|
2092
|
771
|
2093 #ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN
|
|
2094 void
|
|
2095 sledgehammer_check_ascii_begin (Lisp_Object str)
|
|
2096 {
|
|
2097 Bytecount i;
|
|
2098
|
|
2099 for (i = 0; i < XSTRING_LENGTH (str); i++)
|
|
2100 {
|
826
|
2101 if (!byte_ascii_p (string_byte (str, i)))
|
771
|
2102 break;
|
|
2103 }
|
|
2104
|
|
2105 assert (i == (Bytecount) XSTRING_ASCII_BEGIN (str) ||
|
|
2106 (i > MAX_STRING_ASCII_BEGIN &&
|
|
2107 (Bytecount) XSTRING_ASCII_BEGIN (str) ==
|
|
2108 (Bytecount) MAX_STRING_ASCII_BEGIN));
|
|
2109 }
|
|
2110 #endif
|
|
2111
|
|
2112 /* You do NOT want to be calling this! (And if you do, you must call
|
851
|
2113 XSET_STRING_ASCII_BEGIN() after modifying the string.) Use ALLOCA ()
|
771
|
2114 instead and then call make_string() like the rest of the world. */
|
|
2115
|
428
|
2116 Lisp_Object
|
|
2117 make_uninit_string (Bytecount length)
|
|
2118 {
|
438
|
2119 Lisp_String *s;
|
814
|
2120 Bytecount fullsize = STRING_FULLSIZE (length);
|
428
|
2121
|
438
|
2122 assert (length >= 0 && fullsize > 0);
|
428
|
2123
|
|
2124 /* Allocate the string header */
|
438
|
2125 ALLOCATE_FIXED_TYPE (string, Lisp_String, s);
|
793
|
2126 xzero (*s);
|
771
|
2127 set_lheader_implementation (&s->u.lheader, &lrecord_string);
|
793
|
2128
|
826
|
2129 set_lispstringp_data (s, BIG_STRING_FULLSIZE_P (fullsize)
|
1550
|
2130 ? allocate_big_string_chars (length + 1)
|
793
|
2131 : allocate_string_chars_struct (wrap_string (s),
|
|
2132 fullsize)->chars);
|
438
|
2133
|
826
|
2134 set_lispstringp_length (s, length);
|
428
|
2135 s->plist = Qnil;
|
793
|
2136 set_string_byte (wrap_string (s), length, 0);
|
|
2137
|
|
2138 return wrap_string (s);
|
428
|
2139 }
|
|
2140
|
|
2141 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
2142 static void verify_string_chars_integrity (void);
|
|
2143 #endif
|
|
2144
|
|
2145 /* Resize the string S so that DELTA bytes can be inserted starting
|
|
2146 at POS. If DELTA < 0, it means deletion starting at POS. If
|
|
2147 POS < 0, resize the string but don't copy any characters. Use
|
|
2148 this if you're planning on completely overwriting the string.
|
|
2149 */
|
|
2150
|
|
2151 void
|
793
|
2152 resize_string (Lisp_Object s, Bytecount pos, Bytecount delta)
|
428
|
2153 {
|
438
|
2154 Bytecount oldfullsize, newfullsize;
|
428
|
2155 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
2156 verify_string_chars_integrity ();
|
|
2157 #endif
|
|
2158
|
800
|
2159 #ifdef ERROR_CHECK_TEXT
|
428
|
2160 if (pos >= 0)
|
|
2161 {
|
793
|
2162 assert (pos <= XSTRING_LENGTH (s));
|
428
|
2163 if (delta < 0)
|
793
|
2164 assert (pos + (-delta) <= XSTRING_LENGTH (s));
|
428
|
2165 }
|
|
2166 else
|
|
2167 {
|
|
2168 if (delta < 0)
|
793
|
2169 assert ((-delta) <= XSTRING_LENGTH (s));
|
428
|
2170 }
|
800
|
2171 #endif /* ERROR_CHECK_TEXT */
|
428
|
2172
|
|
2173 if (delta == 0)
|
|
2174 /* simplest case: no size change. */
|
|
2175 return;
|
438
|
2176
|
|
2177 if (pos >= 0 && delta < 0)
|
|
2178 /* If DELTA < 0, the functions below will delete the characters
|
|
2179 before POS. We want to delete characters *after* POS, however,
|
|
2180 so convert this to the appropriate form. */
|
|
2181 pos += -delta;
|
|
2182
|
793
|
2183 oldfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s));
|
|
2184 newfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s) + delta);
|
438
|
2185
|
|
2186 if (BIG_STRING_FULLSIZE_P (oldfullsize))
|
428
|
2187 {
|
438
|
2188 if (BIG_STRING_FULLSIZE_P (newfullsize))
|
428
|
2189 {
|
440
|
2190 /* Both strings are big. We can just realloc().
|
|
2191 But careful! If the string is shrinking, we have to
|
|
2192 memmove() _before_ realloc(), and if growing, we have to
|
|
2193 memmove() _after_ realloc() - otherwise the access is
|
|
2194 illegal, and we might crash. */
|
793
|
2195 Bytecount len = XSTRING_LENGTH (s) + 1 - pos;
|
440
|
2196
|
|
2197 if (delta < 0 && pos >= 0)
|
793
|
2198 memmove (XSTRING_DATA (s) + pos + delta,
|
|
2199 XSTRING_DATA (s) + pos, len);
|
|
2200 XSET_STRING_DATA
|
867
|
2201 (s, (Ibyte *) xrealloc (XSTRING_DATA (s),
|
793
|
2202 XSTRING_LENGTH (s) + delta + 1));
|
440
|
2203 if (delta > 0 && pos >= 0)
|
793
|
2204 memmove (XSTRING_DATA (s) + pos + delta, XSTRING_DATA (s) + pos,
|
|
2205 len);
|
1550
|
2206 /* Bump the cons counter.
|
|
2207 Conservative; Martin let the increment be delta. */
|
|
2208 INCREMENT_CONS_COUNTER (newfullsize, "string chars");
|
428
|
2209 }
|
438
|
2210 else /* String has been demoted from BIG_STRING. */
|
428
|
2211 {
|
867
|
2212 Ibyte *new_data =
|
438
|
2213 allocate_string_chars_struct (s, newfullsize)->chars;
|
867
|
2214 Ibyte *old_data = XSTRING_DATA (s);
|
438
|
2215
|
|
2216 if (pos >= 0)
|
|
2217 {
|
|
2218 memcpy (new_data, old_data, pos);
|
|
2219 memcpy (new_data + pos + delta, old_data + pos,
|
793
|
2220 XSTRING_LENGTH (s) + 1 - pos);
|
438
|
2221 }
|
793
|
2222 XSET_STRING_DATA (s, new_data);
|
1726
|
2223 xfree (old_data, Ibyte *);
|
438
|
2224 }
|
|
2225 }
|
|
2226 else /* old string is small */
|
|
2227 {
|
|
2228 if (oldfullsize == newfullsize)
|
|
2229 {
|
|
2230 /* special case; size change but the necessary
|
|
2231 allocation size won't change (up or down; code
|
|
2232 somewhere depends on there not being any unused
|
|
2233 allocation space, modulo any alignment
|
|
2234 constraints). */
|
428
|
2235 if (pos >= 0)
|
|
2236 {
|
867
|
2237 Ibyte *addroff = pos + XSTRING_DATA (s);
|
428
|
2238
|
|
2239 memmove (addroff + delta, addroff,
|
|
2240 /* +1 due to zero-termination. */
|
793
|
2241 XSTRING_LENGTH (s) + 1 - pos);
|
428
|
2242 }
|
|
2243 }
|
|
2244 else
|
|
2245 {
|
867
|
2246 Ibyte *old_data = XSTRING_DATA (s);
|
|
2247 Ibyte *new_data =
|
438
|
2248 BIG_STRING_FULLSIZE_P (newfullsize)
|
1550
|
2249 ? allocate_big_string_chars (XSTRING_LENGTH (s) + delta + 1)
|
438
|
2250 : allocate_string_chars_struct (s, newfullsize)->chars;
|
|
2251
|
428
|
2252 if (pos >= 0)
|
|
2253 {
|
438
|
2254 memcpy (new_data, old_data, pos);
|
|
2255 memcpy (new_data + pos + delta, old_data + pos,
|
793
|
2256 XSTRING_LENGTH (s) + 1 - pos);
|
428
|
2257 }
|
793
|
2258 XSET_STRING_DATA (s, new_data);
|
438
|
2259
|
|
2260 {
|
|
2261 /* We need to mark this chunk of the string_chars_block
|
|
2262 as unused so that compact_string_chars() doesn't
|
|
2263 freak. */
|
|
2264 struct string_chars *old_s_chars = (struct string_chars *)
|
|
2265 ((char *) old_data - offsetof (struct string_chars, chars));
|
|
2266 /* Sanity check to make sure we aren't hosed by strange
|
|
2267 alignment/padding. */
|
793
|
2268 assert (old_s_chars->string == XSTRING (s));
|
454
|
2269 MARK_STRING_CHARS_AS_FREE (old_s_chars);
|
438
|
2270 ((struct unused_string_chars *) old_s_chars)->fullsize =
|
|
2271 oldfullsize;
|
|
2272 }
|
428
|
2273 }
|
438
|
2274 }
|
|
2275
|
793
|
2276 XSET_STRING_LENGTH (s, XSTRING_LENGTH (s) + delta);
|
438
|
2277 /* If pos < 0, the string won't be zero-terminated.
|
|
2278 Terminate now just to make sure. */
|
793
|
2279 XSTRING_DATA (s)[XSTRING_LENGTH (s)] = '\0';
|
438
|
2280
|
|
2281 if (pos >= 0)
|
793
|
2282 /* We also have to adjust all of the extent indices after the
|
|
2283 place we did the change. We say "pos - 1" because
|
|
2284 adjust_extents() is exclusive of the starting position
|
|
2285 passed to it. */
|
|
2286 adjust_extents (s, pos - 1, XSTRING_LENGTH (s), delta);
|
428
|
2287
|
|
2288 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
2289 verify_string_chars_integrity ();
|
|
2290 #endif
|
|
2291 }
|
|
2292
|
|
2293 #ifdef MULE
|
|
2294
|
771
|
2295 /* WARNING: If you modify an existing string, you must call
|
|
2296 CHECK_LISP_WRITEABLE() before and bump_string_modiff() afterwards. */
|
428
|
2297 void
|
867
|
2298 set_string_char (Lisp_Object s, Charcount i, Ichar c)
|
428
|
2299 {
|
867
|
2300 Ibyte newstr[MAX_ICHAR_LEN];
|
771
|
2301 Bytecount bytoff = string_index_char_to_byte (s, i);
|
867
|
2302 Bytecount oldlen = itext_ichar_len (XSTRING_DATA (s) + bytoff);
|
|
2303 Bytecount newlen = set_itext_ichar (newstr, c);
|
428
|
2304
|
793
|
2305 sledgehammer_check_ascii_begin (s);
|
428
|
2306 if (oldlen != newlen)
|
|
2307 resize_string (s, bytoff, newlen - oldlen);
|
793
|
2308 /* Remember, XSTRING_DATA (s) might have changed so we can't cache it. */
|
|
2309 memcpy (XSTRING_DATA (s) + bytoff, newstr, newlen);
|
771
|
2310 if (oldlen != newlen)
|
|
2311 {
|
793
|
2312 if (newlen > 1 && i <= (Charcount) XSTRING_ASCII_BEGIN (s))
|
771
|
2313 /* Everything starting with the new char is no longer part of
|
|
2314 ascii_begin */
|
793
|
2315 XSET_STRING_ASCII_BEGIN (s, i);
|
|
2316 else if (newlen == 1 && i == (Charcount) XSTRING_ASCII_BEGIN (s))
|
771
|
2317 /* We've extended ascii_begin, and we have to figure out how much by */
|
|
2318 {
|
|
2319 Bytecount j;
|
814
|
2320 for (j = (Bytecount) i + 1; j < XSTRING_LENGTH (s); j++)
|
771
|
2321 {
|
826
|
2322 if (!byte_ascii_p (XSTRING_DATA (s)[j]))
|
771
|
2323 break;
|
|
2324 }
|
814
|
2325 XSET_STRING_ASCII_BEGIN (s, min (j, (Bytecount) MAX_STRING_ASCII_BEGIN));
|
771
|
2326 }
|
|
2327 }
|
793
|
2328 sledgehammer_check_ascii_begin (s);
|
428
|
2329 }
|
|
2330
|
|
2331 #endif /* MULE */
|
|
2332
|
|
2333 DEFUN ("make-string", Fmake_string, 2, 2, 0, /*
|
444
|
2334 Return a new string consisting of LENGTH copies of CHARACTER.
|
|
2335 LENGTH must be a non-negative integer.
|
428
|
2336 */
|
444
|
2337 (length, character))
|
428
|
2338 {
|
|
2339 CHECK_NATNUM (length);
|
444
|
2340 CHECK_CHAR_COERCE_INT (character);
|
428
|
2341 {
|
867
|
2342 Ibyte init_str[MAX_ICHAR_LEN];
|
|
2343 int len = set_itext_ichar (init_str, XCHAR (character));
|
428
|
2344 Lisp_Object val = make_uninit_string (len * XINT (length));
|
|
2345
|
|
2346 if (len == 1)
|
771
|
2347 {
|
|
2348 /* Optimize the single-byte case */
|
|
2349 memset (XSTRING_DATA (val), XCHAR (character), XSTRING_LENGTH (val));
|
793
|
2350 XSET_STRING_ASCII_BEGIN (val, min (MAX_STRING_ASCII_BEGIN,
|
|
2351 len * XINT (length)));
|
771
|
2352 }
|
428
|
2353 else
|
|
2354 {
|
647
|
2355 EMACS_INT i;
|
867
|
2356 Ibyte *ptr = XSTRING_DATA (val);
|
428
|
2357
|
|
2358 for (i = XINT (length); i; i--)
|
|
2359 {
|
867
|
2360 Ibyte *init_ptr = init_str;
|
428
|
2361 switch (len)
|
|
2362 {
|
|
2363 case 4: *ptr++ = *init_ptr++;
|
|
2364 case 3: *ptr++ = *init_ptr++;
|
|
2365 case 2: *ptr++ = *init_ptr++;
|
|
2366 case 1: *ptr++ = *init_ptr++;
|
|
2367 }
|
|
2368 }
|
|
2369 }
|
771
|
2370 sledgehammer_check_ascii_begin (val);
|
428
|
2371 return val;
|
|
2372 }
|
|
2373 }
|
|
2374
|
|
2375 DEFUN ("string", Fstring, 0, MANY, 0, /*
|
|
2376 Concatenate all the argument characters and make the result a string.
|
|
2377 */
|
|
2378 (int nargs, Lisp_Object *args))
|
|
2379 {
|
867
|
2380 Ibyte *storage = alloca_array (Ibyte, nargs * MAX_ICHAR_LEN);
|
|
2381 Ibyte *p = storage;
|
428
|
2382
|
|
2383 for (; nargs; nargs--, args++)
|
|
2384 {
|
|
2385 Lisp_Object lisp_char = *args;
|
|
2386 CHECK_CHAR_COERCE_INT (lisp_char);
|
867
|
2387 p += set_itext_ichar (p, XCHAR (lisp_char));
|
428
|
2388 }
|
|
2389 return make_string (storage, p - storage);
|
|
2390 }
|
|
2391
|
771
|
2392 /* Initialize the ascii_begin member of a string to the correct value. */
|
|
2393
|
|
2394 void
|
|
2395 init_string_ascii_begin (Lisp_Object string)
|
|
2396 {
|
|
2397 #ifdef MULE
|
|
2398 int i;
|
|
2399 Bytecount length = XSTRING_LENGTH (string);
|
867
|
2400 Ibyte *contents = XSTRING_DATA (string);
|
771
|
2401
|
|
2402 for (i = 0; i < length; i++)
|
|
2403 {
|
826
|
2404 if (!byte_ascii_p (contents[i]))
|
771
|
2405 break;
|
|
2406 }
|
793
|
2407 XSET_STRING_ASCII_BEGIN (string, min (i, MAX_STRING_ASCII_BEGIN));
|
771
|
2408 #else
|
793
|
2409 XSET_STRING_ASCII_BEGIN (string, min (XSTRING_LENGTH (string),
|
|
2410 MAX_STRING_ASCII_BEGIN));
|
771
|
2411 #endif
|
|
2412 sledgehammer_check_ascii_begin (string);
|
|
2413 }
|
428
|
2414
|
|
2415 /* Take some raw memory, which MUST already be in internal format,
|
|
2416 and package it up into a Lisp string. */
|
|
2417 Lisp_Object
|
867
|
2418 make_string (const Ibyte *contents, Bytecount length)
|
428
|
2419 {
|
|
2420 Lisp_Object val;
|
|
2421
|
|
2422 /* Make sure we find out about bad make_string's when they happen */
|
800
|
2423 #if defined (ERROR_CHECK_TEXT) && defined (MULE)
|
428
|
2424 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2425 #endif
|
|
2426
|
|
2427 val = make_uninit_string (length);
|
|
2428 memcpy (XSTRING_DATA (val), contents, length);
|
771
|
2429 init_string_ascii_begin (val);
|
|
2430 sledgehammer_check_ascii_begin (val);
|
428
|
2431 return val;
|
|
2432 }
|
|
2433
|
|
2434 /* Take some raw memory, encoded in some external data format,
|
|
2435 and convert it into a Lisp string. */
|
|
2436 Lisp_Object
|
442
|
2437 make_ext_string (const Extbyte *contents, EMACS_INT length,
|
440
|
2438 Lisp_Object coding_system)
|
428
|
2439 {
|
440
|
2440 Lisp_Object string;
|
|
2441 TO_INTERNAL_FORMAT (DATA, (contents, length),
|
|
2442 LISP_STRING, string,
|
|
2443 coding_system);
|
|
2444 return string;
|
428
|
2445 }
|
|
2446
|
|
2447 Lisp_Object
|
867
|
2448 build_intstring (const Ibyte *str)
|
771
|
2449 {
|
|
2450 /* Some strlen's crash and burn if passed null. */
|
814
|
2451 return make_string (str, (str ? qxestrlen (str) : (Bytecount) 0));
|
771
|
2452 }
|
|
2453
|
|
2454 Lisp_Object
|
867
|
2455 build_string (const CIbyte *str)
|
428
|
2456 {
|
|
2457 /* Some strlen's crash and burn if passed null. */
|
867
|
2458 return make_string ((const Ibyte *) str, (str ? strlen (str) : 0));
|
428
|
2459 }
|
|
2460
|
|
2461 Lisp_Object
|
593
|
2462 build_ext_string (const Extbyte *str, Lisp_Object coding_system)
|
428
|
2463 {
|
|
2464 /* Some strlen's crash and burn if passed null. */
|
442
|
2465 return make_ext_string ((const Extbyte *) str, (str ? strlen(str) : 0),
|
440
|
2466 coding_system);
|
428
|
2467 }
|
|
2468
|
|
2469 Lisp_Object
|
867
|
2470 build_msg_intstring (const Ibyte *str)
|
428
|
2471 {
|
771
|
2472 return build_intstring (GETTEXT (str));
|
|
2473 }
|
|
2474
|
|
2475 Lisp_Object
|
867
|
2476 build_msg_string (const CIbyte *str)
|
771
|
2477 {
|
|
2478 return build_string (CGETTEXT (str));
|
428
|
2479 }
|
|
2480
|
|
2481 Lisp_Object
|
867
|
2482 make_string_nocopy (const Ibyte *contents, Bytecount length)
|
428
|
2483 {
|
438
|
2484 Lisp_String *s;
|
428
|
2485 Lisp_Object val;
|
|
2486
|
|
2487 /* Make sure we find out about bad make_string_nocopy's when they happen */
|
800
|
2488 #if defined (ERROR_CHECK_TEXT) && defined (MULE)
|
428
|
2489 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2490 #endif
|
|
2491
|
|
2492 /* Allocate the string header */
|
438
|
2493 ALLOCATE_FIXED_TYPE (string, Lisp_String, s);
|
771
|
2494 set_lheader_implementation (&s->u.lheader, &lrecord_string);
|
|
2495 SET_C_READONLY_RECORD_HEADER (&s->u.lheader);
|
428
|
2496 s->plist = Qnil;
|
867
|
2497 set_lispstringp_data (s, (Ibyte *) contents);
|
826
|
2498 set_lispstringp_length (s, length);
|
793
|
2499 val = wrap_string (s);
|
771
|
2500 init_string_ascii_begin (val);
|
|
2501 sledgehammer_check_ascii_begin (val);
|
|
2502
|
428
|
2503 return val;
|
|
2504 }
|
|
2505
|
|
2506
|
|
2507 /************************************************************************/
|
|
2508 /* lcrecord lists */
|
|
2509 /************************************************************************/
|
|
2510
|
|
2511 /* Lcrecord lists are used to manage the allocation of particular
|
1204
|
2512 sorts of lcrecords, to avoid calling basic_alloc_lcrecord() (and thus
|
428
|
2513 malloc() and garbage-collection junk) as much as possible.
|
|
2514 It is similar to the Blocktype class.
|
|
2515
|
1204
|
2516 See detailed comment in lcrecord.h.
|
|
2517 */
|
|
2518
|
|
2519 const struct memory_description free_description[] = {
|
|
2520 { XD_LISP_OBJECT, offsetof (struct free_lcrecord_header, chain), 0, 0,
|
|
2521 XD_FLAG_FREE_LISP_OBJECT },
|
|
2522 { XD_END }
|
|
2523 };
|
|
2524
|
|
2525 DEFINE_LRECORD_IMPLEMENTATION ("free", free,
|
|
2526 0, /*dumpable-flag*/
|
|
2527 0, internal_object_printer,
|
|
2528 0, 0, 0, free_description,
|
|
2529 struct free_lcrecord_header);
|
|
2530
|
|
2531 const struct memory_description lcrecord_list_description[] = {
|
|
2532 { XD_LISP_OBJECT, offsetof (struct lcrecord_list, free), 0, 0,
|
|
2533 XD_FLAG_FREE_LISP_OBJECT },
|
|
2534 { XD_END }
|
|
2535 };
|
428
|
2536
|
|
2537 static Lisp_Object
|
|
2538 mark_lcrecord_list (Lisp_Object obj)
|
|
2539 {
|
|
2540 struct lcrecord_list *list = XLCRECORD_LIST (obj);
|
|
2541 Lisp_Object chain = list->free;
|
|
2542
|
|
2543 while (!NILP (chain))
|
|
2544 {
|
|
2545 struct lrecord_header *lheader = XRECORD_LHEADER (chain);
|
|
2546 struct free_lcrecord_header *free_header =
|
|
2547 (struct free_lcrecord_header *) lheader;
|
|
2548
|
442
|
2549 gc_checking_assert
|
|
2550 (/* There should be no other pointers to the free list. */
|
|
2551 ! MARKED_RECORD_HEADER_P (lheader)
|
|
2552 &&
|
|
2553 /* Only lcrecords should be here. */
|
1204
|
2554 ! list->implementation->basic_p
|
442
|
2555 &&
|
|
2556 /* Only free lcrecords should be here. */
|
|
2557 free_header->lcheader.free
|
|
2558 &&
|
|
2559 /* The type of the lcrecord must be right. */
|
1204
|
2560 lheader->type == lrecord_type_free
|
442
|
2561 &&
|
|
2562 /* So must the size. */
|
1204
|
2563 (list->implementation->static_size == 0 ||
|
|
2564 list->implementation->static_size == list->size)
|
442
|
2565 );
|
428
|
2566
|
|
2567 MARK_RECORD_HEADER (lheader);
|
|
2568 chain = free_header->chain;
|
|
2569 }
|
|
2570
|
|
2571 return Qnil;
|
|
2572 }
|
|
2573
|
934
|
2574 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list,
|
|
2575 0, /*dumpable-flag*/
|
|
2576 mark_lcrecord_list, internal_object_printer,
|
1204
|
2577 0, 0, 0, lcrecord_list_description,
|
|
2578 struct lcrecord_list);
|
934
|
2579
|
428
|
2580 Lisp_Object
|
665
|
2581 make_lcrecord_list (Elemcount size,
|
442
|
2582 const struct lrecord_implementation *implementation)
|
428
|
2583 {
|
1204
|
2584 /* Don't use alloc_lcrecord_type() avoid infinite recursion
|
|
2585 allocating this, */
|
|
2586 struct lcrecord_list *p = (struct lcrecord_list *)
|
|
2587 basic_alloc_lcrecord (sizeof (struct lcrecord_list),
|
|
2588 &lrecord_lcrecord_list);
|
428
|
2589
|
|
2590 p->implementation = implementation;
|
|
2591 p->size = size;
|
|
2592 p->free = Qnil;
|
793
|
2593 return wrap_lcrecord_list (p);
|
428
|
2594 }
|
|
2595
|
|
2596 Lisp_Object
|
1204
|
2597 alloc_managed_lcrecord (Lisp_Object lcrecord_list)
|
428
|
2598 {
|
|
2599 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2600 if (!NILP (list->free))
|
|
2601 {
|
|
2602 Lisp_Object val = list->free;
|
|
2603 struct free_lcrecord_header *free_header =
|
|
2604 (struct free_lcrecord_header *) XPNTR (val);
|
1204
|
2605 struct lrecord_header *lheader = &free_header->lcheader.lheader;
|
428
|
2606
|
|
2607 #ifdef ERROR_CHECK_GC
|
1204
|
2608 /* Major overkill here. */
|
428
|
2609 /* There should be no other pointers to the free list. */
|
442
|
2610 assert (! MARKED_RECORD_HEADER_P (lheader));
|
428
|
2611 /* Only free lcrecords should be here. */
|
|
2612 assert (free_header->lcheader.free);
|
1204
|
2613 assert (lheader->type == lrecord_type_free);
|
|
2614 /* Only lcrecords should be here. */
|
|
2615 assert (! (list->implementation->basic_p));
|
|
2616 #if 0 /* Not used anymore, now that we set the type of the header to
|
|
2617 lrecord_type_free. */
|
428
|
2618 /* The type of the lcrecord must be right. */
|
442
|
2619 assert (LHEADER_IMPLEMENTATION (lheader) == list->implementation);
|
1204
|
2620 #endif /* 0 */
|
428
|
2621 /* So must the size. */
|
1204
|
2622 assert (list->implementation->static_size == 0 ||
|
|
2623 list->implementation->static_size == list->size);
|
428
|
2624 #endif /* ERROR_CHECK_GC */
|
442
|
2625
|
428
|
2626 list->free = free_header->chain;
|
|
2627 free_header->lcheader.free = 0;
|
1204
|
2628 /* Put back the correct type, as we set it to lrecord_type_free. */
|
|
2629 lheader->type = list->implementation->lrecord_type_index;
|
|
2630 zero_sized_lcrecord (free_header, list->size);
|
428
|
2631 return val;
|
|
2632 }
|
|
2633 else
|
1204
|
2634 return wrap_pointer_1 (basic_alloc_lcrecord (list->size,
|
|
2635 list->implementation));
|
428
|
2636 }
|
|
2637
|
771
|
2638 /* "Free" a Lisp object LCRECORD by placing it on its associated free list
|
1204
|
2639 LCRECORD_LIST; next time alloc_managed_lcrecord() is called with the
|
771
|
2640 same LCRECORD_LIST as its parameter, it will return an object from the
|
|
2641 free list, which may be this one. Be VERY VERY SURE there are no
|
|
2642 pointers to this object hanging around anywhere where they might be
|
|
2643 used!
|
|
2644
|
|
2645 The first thing this does before making any global state change is to
|
|
2646 call the finalize method of the object, if it exists. */
|
|
2647
|
428
|
2648 void
|
|
2649 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord)
|
|
2650 {
|
|
2651 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2652 struct free_lcrecord_header *free_header =
|
|
2653 (struct free_lcrecord_header *) XPNTR (lcrecord);
|
442
|
2654 struct lrecord_header *lheader = &free_header->lcheader.lheader;
|
|
2655 const struct lrecord_implementation *implementation
|
428
|
2656 = LHEADER_IMPLEMENTATION (lheader);
|
|
2657
|
771
|
2658 /* Finalizer methods may try to free objects within them, which typically
|
|
2659 won't be marked and thus are scheduled for demolition. Putting them
|
|
2660 on the free list would be very bad, as we'd have xfree()d memory in
|
|
2661 the list. Even if for some reason the objects are still live
|
|
2662 (generally a logic error!), we still will have problems putting such
|
|
2663 an object on the free list right now (e.g. we'd have to avoid calling
|
|
2664 the finalizer twice, etc.). So basically, those finalizers should not
|
|
2665 be freeing any objects if during GC. Abort now to catch those
|
|
2666 problems. */
|
|
2667 gc_checking_assert (!gc_in_progress);
|
|
2668
|
428
|
2669 /* Make sure the size is correct. This will catch, for example,
|
|
2670 putting a window configuration on the wrong free list. */
|
1204
|
2671 gc_checking_assert (detagged_lisp_object_size (lheader) == list->size);
|
771
|
2672 /* Make sure the object isn't already freed. */
|
|
2673 gc_checking_assert (!free_header->lcheader.free);
|
|
2674
|
428
|
2675 if (implementation->finalizer)
|
|
2676 implementation->finalizer (lheader, 0);
|
1204
|
2677 /* Yes, there are two ways to indicate freeness -- the type is
|
|
2678 lrecord_type_free or the ->free flag is set. We used to do only the
|
|
2679 latter; now we do the former as well for KKCC purposes. Probably
|
|
2680 safer in any case, as we will lose quicker this way than keeping
|
|
2681 around an lrecord of apparently correct type but bogus junk in it. */
|
|
2682 MARK_LRECORD_AS_FREE (lheader);
|
428
|
2683 free_header->chain = list->free;
|
|
2684 free_header->lcheader.free = 1;
|
|
2685 list->free = lcrecord;
|
|
2686 }
|
|
2687
|
771
|
2688 static Lisp_Object all_lcrecord_lists[countof (lrecord_implementations_table)];
|
|
2689
|
|
2690 void *
|
|
2691 alloc_automanaged_lcrecord (Bytecount size,
|
|
2692 const struct lrecord_implementation *imp)
|
|
2693 {
|
|
2694 if (EQ (all_lcrecord_lists[imp->lrecord_type_index], Qzero))
|
|
2695 all_lcrecord_lists[imp->lrecord_type_index] =
|
|
2696 make_lcrecord_list (size, imp);
|
|
2697
|
1204
|
2698 return XPNTR (alloc_managed_lcrecord
|
771
|
2699 (all_lcrecord_lists[imp->lrecord_type_index]));
|
|
2700 }
|
|
2701
|
|
2702 void
|
|
2703 free_lcrecord (Lisp_Object rec)
|
|
2704 {
|
|
2705 int type = XRECORD_LHEADER (rec)->type;
|
|
2706
|
|
2707 assert (!EQ (all_lcrecord_lists[type], Qzero));
|
|
2708
|
|
2709 free_managed_lcrecord (all_lcrecord_lists[type], rec);
|
|
2710 }
|
428
|
2711
|
|
2712
|
|
2713 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /*
|
|
2714 Kept for compatibility, returns its argument.
|
|
2715 Old:
|
|
2716 Make a copy of OBJECT in pure storage.
|
|
2717 Recursively copies contents of vectors and cons cells.
|
|
2718 Does not copy symbols.
|
|
2719 */
|
444
|
2720 (object))
|
428
|
2721 {
|
444
|
2722 return object;
|
428
|
2723 }
|
|
2724
|
|
2725
|
|
2726 /************************************************************************/
|
|
2727 /* Garbage Collection */
|
|
2728 /************************************************************************/
|
|
2729
|
442
|
2730 /* All the built-in lisp object types are enumerated in `enum lrecord_type'.
|
|
2731 Additional ones may be defined by a module (none yet). We leave some
|
|
2732 room in `lrecord_implementations_table' for such new lisp object types. */
|
647
|
2733 const struct lrecord_implementation *lrecord_implementations_table[(int)lrecord_type_last_built_in_type + MODULE_DEFINABLE_TYPE_COUNT];
|
|
2734 int lrecord_type_count = lrecord_type_last_built_in_type;
|
1676
|
2735 #ifndef USE_KKCC
|
442
|
2736 /* Object marker functions are in the lrecord_implementation structure.
|
|
2737 But copying them to a parallel array is much more cache-friendly.
|
|
2738 This hack speeds up (garbage-collect) by about 5%. */
|
|
2739 Lisp_Object (*lrecord_markers[countof (lrecord_implementations_table)]) (Lisp_Object);
|
1676
|
2740 #endif /* not USE_KKCC */
|
428
|
2741
|
|
2742 struct gcpro *gcprolist;
|
|
2743
|
771
|
2744 /* We want the staticpro list relocated, but not the pointers found
|
|
2745 therein, because they refer to locations in the global data segment, not
|
|
2746 in the heap; we only dump heap objects. Hence we use a trivial
|
|
2747 description, as for pointerless objects. (Note that the data segment
|
|
2748 objects, which are global variables like Qfoo or Vbar, themselves are
|
|
2749 pointers to heap objects. Each needs to be described to pdump as a
|
|
2750 "root pointer"; this happens in the call to staticpro(). */
|
1204
|
2751 static const struct memory_description staticpro_description_1[] = {
|
452
|
2752 { XD_END }
|
|
2753 };
|
|
2754
|
1204
|
2755 static const struct sized_memory_description staticpro_description = {
|
452
|
2756 sizeof (Lisp_Object *),
|
|
2757 staticpro_description_1
|
|
2758 };
|
|
2759
|
1204
|
2760 static const struct memory_description staticpros_description_1[] = {
|
452
|
2761 XD_DYNARR_DESC (Lisp_Object_ptr_dynarr, &staticpro_description),
|
|
2762 { XD_END }
|
|
2763 };
|
|
2764
|
1204
|
2765 static const struct sized_memory_description staticpros_description = {
|
452
|
2766 sizeof (Lisp_Object_ptr_dynarr),
|
|
2767 staticpros_description_1
|
|
2768 };
|
|
2769
|
771
|
2770 #ifdef DEBUG_XEMACS
|
|
2771
|
1204
|
2772 static const struct memory_description staticpro_one_name_description_1[] = {
|
771
|
2773 { XD_C_STRING, 0 },
|
|
2774 { XD_END }
|
|
2775 };
|
|
2776
|
1204
|
2777 static const struct sized_memory_description staticpro_one_name_description = {
|
771
|
2778 sizeof (char *),
|
|
2779 staticpro_one_name_description_1
|
|
2780 };
|
|
2781
|
1204
|
2782 static const struct memory_description staticpro_names_description_1[] = {
|
771
|
2783 XD_DYNARR_DESC (char_ptr_dynarr, &staticpro_one_name_description),
|
|
2784 { XD_END }
|
|
2785 };
|
|
2786
|
1204
|
2787
|
|
2788 extern const struct sized_memory_description staticpro_names_description;
|
|
2789
|
|
2790 const struct sized_memory_description staticpro_names_description = {
|
771
|
2791 sizeof (char_ptr_dynarr),
|
|
2792 staticpro_names_description_1
|
|
2793 };
|
|
2794
|
|
2795 /* Help debug crashes gc-marking a staticpro'ed object. */
|
|
2796
|
|
2797 Lisp_Object_ptr_dynarr *staticpros;
|
|
2798 char_ptr_dynarr *staticpro_names;
|
|
2799
|
|
2800 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for
|
|
2801 garbage collection, and for dumping. */
|
|
2802 void
|
|
2803 staticpro_1 (Lisp_Object *varaddress, char *varname)
|
|
2804 {
|
|
2805 Dynarr_add (staticpros, varaddress);
|
|
2806 Dynarr_add (staticpro_names, varname);
|
1204
|
2807 dump_add_root_lisp_object (varaddress);
|
771
|
2808 }
|
|
2809
|
|
2810
|
|
2811 Lisp_Object_ptr_dynarr *staticpros_nodump;
|
|
2812 char_ptr_dynarr *staticpro_nodump_names;
|
|
2813
|
|
2814 /* Mark the Lisp_Object at heap VARADDRESS as a root object for
|
|
2815 garbage collection, but not for dumping. (See below.) */
|
|
2816 void
|
|
2817 staticpro_nodump_1 (Lisp_Object *varaddress, char *varname)
|
|
2818 {
|
|
2819 Dynarr_add (staticpros_nodump, varaddress);
|
|
2820 Dynarr_add (staticpro_nodump_names, varname);
|
|
2821 }
|
|
2822
|
996
|
2823 #ifdef HAVE_SHLIB
|
|
2824 /* Stop treating the Lisp_Object at non-heap VARADDRESS as a root object
|
|
2825 for garbage collection, but not for dumping. */
|
|
2826 void
|
|
2827 unstaticpro_nodump_1 (Lisp_Object *varaddress, char *varname)
|
|
2828 {
|
|
2829 Dynarr_delete_object (staticpros, varaddress);
|
|
2830 Dynarr_delete_object (staticpro_names, varname);
|
|
2831 }
|
|
2832 #endif
|
|
2833
|
771
|
2834 #else /* not DEBUG_XEMACS */
|
|
2835
|
452
|
2836 Lisp_Object_ptr_dynarr *staticpros;
|
|
2837
|
|
2838 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for
|
|
2839 garbage collection, and for dumping. */
|
428
|
2840 void
|
|
2841 staticpro (Lisp_Object *varaddress)
|
|
2842 {
|
452
|
2843 Dynarr_add (staticpros, varaddress);
|
1204
|
2844 dump_add_root_lisp_object (varaddress);
|
428
|
2845 }
|
|
2846
|
442
|
2847
|
452
|
2848 Lisp_Object_ptr_dynarr *staticpros_nodump;
|
|
2849
|
771
|
2850 /* Mark the Lisp_Object at heap VARADDRESS as a root object for garbage
|
|
2851 collection, but not for dumping. This is used for objects where the
|
|
2852 only sure pointer is in the heap (rather than in the global data
|
|
2853 segment, as must be the case for pdump root pointers), but not inside of
|
|
2854 another Lisp object (where it will be marked as a result of that Lisp
|
|
2855 object's mark method). The call to staticpro_nodump() must occur *BOTH*
|
|
2856 at initialization time and at "reinitialization" time (startup, after
|
|
2857 pdump load.) (For example, this is the case with the predicate symbols
|
|
2858 for specifier and coding system types. The pointer to this symbol is
|
|
2859 inside of a methods structure, which is allocated on the heap. The
|
|
2860 methods structure will be written out to the pdump data file, and may be
|
|
2861 reloaded at a different address.)
|
|
2862
|
|
2863 #### The necessity for reinitialization is a bug in pdump. Pdump should
|
|
2864 automatically regenerate the staticpro()s for these symbols when it
|
|
2865 loads the data in. */
|
|
2866
|
428
|
2867 void
|
|
2868 staticpro_nodump (Lisp_Object *varaddress)
|
|
2869 {
|
452
|
2870 Dynarr_add (staticpros_nodump, varaddress);
|
428
|
2871 }
|
|
2872
|
996
|
2873 #ifdef HAVE_SHLIB
|
|
2874 /* Unmark the Lisp_Object at non-heap VARADDRESS as a root object for
|
|
2875 garbage collection, but not for dumping. */
|
|
2876 void
|
|
2877 unstaticpro_nodump (Lisp_Object *varaddress)
|
|
2878 {
|
|
2879 Dynarr_delete_object (staticpros, varaddress);
|
|
2880 }
|
|
2881 #endif
|
|
2882
|
771
|
2883 #endif /* not DEBUG_XEMACS */
|
|
2884
|
442
|
2885 #ifdef ERROR_CHECK_GC
|
|
2886 #define GC_CHECK_LHEADER_INVARIANTS(lheader) do { \
|
|
2887 struct lrecord_header * GCLI_lh = (lheader); \
|
|
2888 assert (GCLI_lh != 0); \
|
647
|
2889 assert (GCLI_lh->type < (unsigned int) lrecord_type_count); \
|
442
|
2890 assert (! C_READONLY_RECORD_HEADER_P (GCLI_lh) || \
|
|
2891 (MARKED_RECORD_HEADER_P (GCLI_lh) && \
|
|
2892 LISP_READONLY_RECORD_HEADER_P (GCLI_lh))); \
|
|
2893 } while (0)
|
|
2894 #else
|
|
2895 #define GC_CHECK_LHEADER_INVARIANTS(lheader)
|
|
2896 #endif
|
|
2897
|
934
|
2898
|
1204
|
2899 static const struct memory_description lisp_object_description_1[] = {
|
|
2900 { XD_LISP_OBJECT, 0 },
|
|
2901 { XD_END }
|
|
2902 };
|
|
2903
|
|
2904 const struct sized_memory_description lisp_object_description = {
|
|
2905 sizeof (Lisp_Object),
|
|
2906 lisp_object_description_1
|
|
2907 };
|
|
2908
|
|
2909 #if defined (USE_KKCC) || defined (PDUMP)
|
934
|
2910
|
|
2911 /* This function extracts the value of a count variable described somewhere
|
|
2912 else in the description. It is converted corresponding to the type */
|
1204
|
2913 EMACS_INT
|
|
2914 lispdesc_indirect_count_1 (EMACS_INT code,
|
|
2915 const struct memory_description *idesc,
|
|
2916 const void *idata)
|
934
|
2917 {
|
|
2918 EMACS_INT count;
|
|
2919 const void *irdata;
|
|
2920
|
|
2921 int line = XD_INDIRECT_VAL (code);
|
|
2922 int delta = XD_INDIRECT_DELTA (code);
|
|
2923
|
1204
|
2924 irdata = ((char *) idata) +
|
|
2925 lispdesc_indirect_count (idesc[line].offset, idesc, idata);
|
934
|
2926 switch (idesc[line].type)
|
|
2927 {
|
|
2928 case XD_BYTECOUNT:
|
1204
|
2929 count = * (Bytecount *) irdata;
|
934
|
2930 break;
|
|
2931 case XD_ELEMCOUNT:
|
1204
|
2932 count = * (Elemcount *) irdata;
|
934
|
2933 break;
|
|
2934 case XD_HASHCODE:
|
1204
|
2935 count = * (Hashcode *) irdata;
|
934
|
2936 break;
|
|
2937 case XD_INT:
|
1204
|
2938 count = * (int *) irdata;
|
934
|
2939 break;
|
|
2940 case XD_LONG:
|
1204
|
2941 count = * (long *) irdata;
|
934
|
2942 break;
|
|
2943 default:
|
|
2944 stderr_out ("Unsupported count type : %d (line = %d, code = %ld)\n",
|
1204
|
2945 idesc[line].type, line, (long) code);
|
|
2946 #ifdef PDUMP
|
|
2947 if (in_pdump)
|
|
2948 pdump_backtrace ();
|
|
2949 #endif
|
934
|
2950 count = 0; /* warning suppression */
|
|
2951 abort ();
|
|
2952 }
|
|
2953 count += delta;
|
|
2954 return count;
|
|
2955 }
|
|
2956
|
1204
|
2957 /* SDESC is a "description map" (basically, a list of offsets used for
|
|
2958 successive indirections) and OBJ is the first object to indirect off of.
|
|
2959 Return the description ultimately found. */
|
|
2960
|
|
2961 const struct sized_memory_description *
|
|
2962 lispdesc_indirect_description_1 (const void *obj,
|
|
2963 const struct sized_memory_description *sdesc)
|
934
|
2964 {
|
|
2965 int pos;
|
|
2966
|
1204
|
2967 for (pos = 0; sdesc[pos].size >= 0; pos++)
|
|
2968 obj = * (const void **) ((const char *) obj + sdesc[pos].size);
|
|
2969
|
|
2970 return (const struct sized_memory_description *) obj;
|
|
2971 }
|
|
2972
|
|
2973 /* Compute the size of the data at RDATA, described by a single entry
|
|
2974 DESC1 in a description array. OBJ and DESC are used for
|
|
2975 XD_INDIRECT references. */
|
|
2976
|
|
2977 static Bytecount
|
|
2978 lispdesc_one_description_line_size (void *rdata,
|
|
2979 const struct memory_description *desc1,
|
|
2980 const void *obj,
|
|
2981 const struct memory_description *desc)
|
|
2982 {
|
|
2983 union_switcheroo:
|
|
2984 switch (desc1->type)
|
934
|
2985 {
|
1204
|
2986 case XD_LISP_OBJECT_ARRAY:
|
|
2987 {
|
|
2988 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj);
|
|
2989 return (val * sizeof (Lisp_Object));
|
|
2990 }
|
|
2991 case XD_LISP_OBJECT:
|
|
2992 case XD_LO_LINK:
|
|
2993 return sizeof (Lisp_Object);
|
|
2994 case XD_OPAQUE_PTR:
|
|
2995 return sizeof (void *);
|
|
2996 case XD_STRUCT_PTR:
|
|
2997 {
|
|
2998 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj);
|
|
2999 return val * sizeof (void *);
|
|
3000 }
|
|
3001 case XD_STRUCT_ARRAY:
|
|
3002 {
|
|
3003 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj);
|
|
3004
|
|
3005 return (val *
|
|
3006 lispdesc_structure_size
|
|
3007 (rdata, lispdesc_indirect_description (obj, desc1->data2)));
|
|
3008 }
|
|
3009 case XD_OPAQUE_DATA_PTR:
|
|
3010 return sizeof (void *);
|
|
3011 case XD_UNION_DYNAMIC_SIZE:
|
|
3012 {
|
|
3013 /* If an explicit size was given in the first-level structure
|
|
3014 description, use it; else compute size based on current union
|
|
3015 constant. */
|
|
3016 const struct sized_memory_description *sdesc =
|
|
3017 lispdesc_indirect_description (obj, desc1->data2);
|
|
3018 if (sdesc->size)
|
|
3019 return sdesc->size;
|
|
3020 else
|
|
3021 {
|
|
3022 desc1 = lispdesc_process_xd_union (desc1, desc, obj);
|
|
3023 if (desc1)
|
|
3024 goto union_switcheroo;
|
934
|
3025 break;
|
1204
|
3026 }
|
|
3027 }
|
|
3028 case XD_UNION:
|
|
3029 {
|
|
3030 /* If an explicit size was given in the first-level structure
|
|
3031 description, use it; else compute size based on maximum of all
|
|
3032 possible structures. */
|
|
3033 const struct sized_memory_description *sdesc =
|
|
3034 lispdesc_indirect_description (obj, desc1->data2);
|
|
3035 if (sdesc->size)
|
|
3036 return sdesc->size;
|
|
3037 else
|
|
3038 {
|
|
3039 int count;
|
|
3040 Bytecount max_size = -1, size;
|
|
3041
|
|
3042 desc1 = sdesc->description;
|
|
3043
|
|
3044 for (count = 0; desc1[count].type != XD_END; count++)
|
|
3045 {
|
|
3046 size = lispdesc_one_description_line_size (rdata,
|
|
3047 &desc1[count],
|
|
3048 obj, desc);
|
|
3049 if (size > max_size)
|
|
3050 max_size = size;
|
|
3051 }
|
|
3052 return max_size;
|
|
3053 }
|
934
|
3054 }
|
1204
|
3055 case XD_C_STRING:
|
|
3056 return sizeof (void *);
|
|
3057 case XD_DOC_STRING:
|
|
3058 return sizeof (void *);
|
|
3059 case XD_INT_RESET:
|
|
3060 return sizeof (int);
|
|
3061 case XD_BYTECOUNT:
|
|
3062 return sizeof (Bytecount);
|
|
3063 case XD_ELEMCOUNT:
|
|
3064 return sizeof (Elemcount);
|
|
3065 case XD_HASHCODE:
|
|
3066 return sizeof (Hashcode);
|
|
3067 case XD_INT:
|
|
3068 return sizeof (int);
|
|
3069 case XD_LONG:
|
|
3070 return sizeof (long);
|
|
3071 default:
|
|
3072 stderr_out ("Unsupported dump type : %d\n", desc1->type);
|
|
3073 abort ();
|
934
|
3074 }
|
|
3075
|
1204
|
3076 return 0;
|
934
|
3077 }
|
|
3078
|
|
3079
|
1204
|
3080 /* Return the size of the memory block (NOT necessarily a structure!)
|
|
3081 described by SDESC and pointed to by OBJ. If SDESC records an
|
|
3082 explicit size (i.e. non-zero), it is simply returned; otherwise,
|
|
3083 the size is calculated by the maximum offset and the size of the
|
|
3084 object at that offset, rounded up to the maximum alignment. In
|
|
3085 this case, we may need the object, for example when retrieving an
|
|
3086 "indirect count" of an inlined array (the count is not constant,
|
|
3087 but is specified by one of the elements of the memory block). (It
|
|
3088 is generally not a problem if we return an overly large size -- we
|
|
3089 will simply end up reserving more space than necessary; but if the
|
|
3090 size is too small we could be in serious trouble, in particular
|
|
3091 with nested inlined structures, where there may be alignment
|
|
3092 padding in the middle of a block. #### In fact there is an (at
|
|
3093 least theoretical) problem with an overly large size -- we may
|
|
3094 trigger a protection fault when reading from invalid memory. We
|
|
3095 need to handle this -- perhaps in a stupid but dependable way,
|
|
3096 i.e. by trapping SIGSEGV and SIGBUS.) */
|
|
3097
|
|
3098 Bytecount
|
|
3099 lispdesc_structure_size (const void *obj,
|
|
3100 const struct sized_memory_description *sdesc)
|
934
|
3101 {
|
1204
|
3102 EMACS_INT max_offset = -1;
|
934
|
3103 int max_offset_pos = -1;
|
|
3104 int pos;
|
1204
|
3105 const struct memory_description *desc;
|
934
|
3106
|
|
3107 if (sdesc->size)
|
|
3108 return sdesc->size;
|
|
3109
|
|
3110 desc = sdesc->description;
|
|
3111
|
|
3112 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
3113 {
|
1204
|
3114 EMACS_INT offset = lispdesc_indirect_count (desc[pos].offset, desc, obj);
|
|
3115 if (offset == max_offset)
|
934
|
3116 {
|
|
3117 stderr_out ("Two relocatable elements at same offset?\n");
|
|
3118 abort ();
|
|
3119 }
|
1204
|
3120 else if (offset > max_offset)
|
934
|
3121 {
|
1204
|
3122 max_offset = offset;
|
934
|
3123 max_offset_pos = pos;
|
|
3124 }
|
|
3125 }
|
|
3126
|
|
3127 if (max_offset_pos < 0)
|
|
3128 return 0;
|
|
3129
|
1204
|
3130 {
|
|
3131 Bytecount size_at_max;
|
|
3132 size_at_max =
|
|
3133 lispdesc_one_description_line_size ((char *) obj + max_offset,
|
|
3134 &desc[max_offset_pos], obj, desc);
|
|
3135
|
|
3136 /* We have no way of knowing the required alignment for this structure,
|
|
3137 so just make it maximally aligned. */
|
|
3138 return MAX_ALIGN_SIZE (max_offset + size_at_max);
|
|
3139 }
|
|
3140 }
|
|
3141
|
|
3142 #endif /* defined (USE_KKCC) || defined (PDUMP) */
|
|
3143
|
1276
|
3144 #define GC_CHECK_NOT_FREE(lheader) \
|
|
3145 gc_checking_assert (LHEADER_IMPLEMENTATION (lheader)->basic_p || \
|
|
3146 ! ((struct lcrecord_header *) lheader)->free)
|
|
3147
|
1204
|
3148 #ifdef USE_KKCC
|
|
3149 /* The following functions implement the new mark algorithm.
|
|
3150 They mark objects according to their descriptions. They
|
|
3151 are modeled on the corresponding pdumper procedures. */
|
|
3152
|
1676
|
3153 /* Object memory descriptions are in the lrecord_implementation structure.
|
|
3154 But copying them to a parallel array is much more cache-friendly. */
|
|
3155 const struct memory_description *lrecord_memory_descriptions[countof (lrecord_implementations_table)];
|
|
3156
|
|
3157 /* the initial stack size in kkcc_gc_stack_entries */
|
|
3158 #define KKCC_INIT_GC_STACK_SIZE 16384
|
|
3159
|
|
3160 typedef struct
|
|
3161 {
|
|
3162 void *data;
|
|
3163 const struct memory_description *desc;
|
|
3164 } kkcc_gc_stack_entry;
|
|
3165
|
|
3166 static kkcc_gc_stack_entry *kkcc_gc_stack_ptr;
|
|
3167 static kkcc_gc_stack_entry *kkcc_gc_stack_top;
|
|
3168 static kkcc_gc_stack_entry *kkcc_gc_stack_last_entry;
|
|
3169 static int kkcc_gc_stack_size;
|
|
3170
|
|
3171 static void
|
|
3172 kkcc_gc_stack_init (void)
|
|
3173 {
|
|
3174 kkcc_gc_stack_size = KKCC_INIT_GC_STACK_SIZE;
|
|
3175 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *)
|
|
3176 malloc (kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry));
|
|
3177 if (!kkcc_gc_stack_ptr)
|
|
3178 {
|
|
3179 stderr_out ("stack init failed for size %d\n", kkcc_gc_stack_size);
|
|
3180 exit(23);
|
|
3181 }
|
|
3182 kkcc_gc_stack_top = kkcc_gc_stack_ptr - 1;
|
|
3183 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1;
|
|
3184 }
|
|
3185
|
|
3186 static void
|
|
3187 kkcc_gc_stack_free (void)
|
|
3188 {
|
|
3189 free (kkcc_gc_stack_ptr);
|
|
3190 kkcc_gc_stack_ptr = 0;
|
|
3191 kkcc_gc_stack_top = 0;
|
|
3192 kkcc_gc_stack_size = 0;
|
|
3193 }
|
|
3194
|
|
3195 static void
|
|
3196 kkcc_gc_stack_realloc (void)
|
|
3197 {
|
|
3198 int current_offset = (int)(kkcc_gc_stack_top - kkcc_gc_stack_ptr);
|
|
3199 kkcc_gc_stack_size *= 2;
|
|
3200 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *)
|
|
3201 realloc (kkcc_gc_stack_ptr,
|
|
3202 kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry));
|
|
3203 if (!kkcc_gc_stack_ptr)
|
|
3204 {
|
|
3205 stderr_out ("stack realloc failed for size %d\n", kkcc_gc_stack_size);
|
|
3206 exit(23);
|
|
3207 }
|
|
3208 kkcc_gc_stack_top = kkcc_gc_stack_ptr + current_offset;
|
|
3209 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1;
|
|
3210 }
|
|
3211
|
|
3212 #define KKCC_GC_STACK_FULL (kkcc_gc_stack_top >= kkcc_gc_stack_last_entry)
|
|
3213 #define KKCC_GC_STACK_EMPTY (kkcc_gc_stack_top < kkcc_gc_stack_ptr)
|
|
3214
|
|
3215 static void
|
|
3216 kkcc_gc_stack_push (void *data, const struct memory_description *desc)
|
|
3217 {
|
|
3218 if (KKCC_GC_STACK_FULL)
|
|
3219 kkcc_gc_stack_realloc();
|
|
3220 kkcc_gc_stack_top++;
|
|
3221 kkcc_gc_stack_top->data = data;
|
|
3222 kkcc_gc_stack_top->desc = desc;
|
|
3223 }
|
|
3224
|
|
3225 static kkcc_gc_stack_entry *
|
|
3226 kkcc_gc_stack_pop (void)
|
|
3227 {
|
|
3228 if (KKCC_GC_STACK_EMPTY)
|
|
3229 return 0;
|
|
3230 kkcc_gc_stack_top--;
|
|
3231 return kkcc_gc_stack_top + 1;
|
|
3232 }
|
|
3233
|
|
3234 void
|
|
3235 kkcc_gc_stack_push_lisp_object (Lisp_Object obj)
|
|
3236 {
|
|
3237 if (XTYPE (obj) == Lisp_Type_Record)
|
|
3238 {
|
|
3239 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
|
3240 const struct memory_description *desc;
|
|
3241 GC_CHECK_LHEADER_INVARIANTS (lheader);
|
|
3242 desc = RECORD_DESCRIPTION (lheader);
|
|
3243 if (! MARKED_RECORD_HEADER_P (lheader))
|
|
3244 {
|
|
3245 MARK_RECORD_HEADER (lheader);
|
|
3246 kkcc_gc_stack_push((void*) lheader, desc);
|
|
3247 }
|
|
3248 }
|
|
3249 }
|
|
3250
|
1265
|
3251 #ifdef ERROR_CHECK_GC
|
|
3252 #define KKCC_DO_CHECK_FREE(obj, allow_free) \
|
|
3253 do \
|
|
3254 { \
|
|
3255 if (!allow_free && XTYPE (obj) == Lisp_Type_Record) \
|
|
3256 { \
|
|
3257 struct lrecord_header *lheader = XRECORD_LHEADER (obj); \
|
|
3258 GC_CHECK_NOT_FREE (lheader); \
|
|
3259 } \
|
|
3260 } while (0)
|
|
3261 #else
|
|
3262 #define KKCC_DO_CHECK_FREE(obj, allow_free)
|
|
3263 #endif
|
1204
|
3264
|
|
3265 #ifdef ERROR_CHECK_GC
|
1598
|
3266 static void
|
1204
|
3267 mark_object_maybe_checking_free (Lisp_Object obj, int allow_free)
|
|
3268 {
|
1265
|
3269 KKCC_DO_CHECK_FREE (obj, allow_free);
|
1598
|
3270 kkcc_gc_stack_push_lisp_object (obj);
|
1204
|
3271 }
|
|
3272 #else
|
1643
|
3273 #define mark_object_maybe_checking_free(obj, allow_free) \
|
|
3274 kkcc_gc_stack_push_lisp_object (obj)
|
1204
|
3275 #endif /* ERROR_CHECK_GC */
|
|
3276
|
934
|
3277
|
|
3278 /* This function loops all elements of a struct pointer and calls
|
|
3279 mark_with_description with each element. */
|
|
3280 static void
|
|
3281 mark_struct_contents (const void *data,
|
1204
|
3282 const struct sized_memory_description *sdesc,
|
|
3283 int count)
|
934
|
3284 {
|
|
3285 int i;
|
|
3286 Bytecount elsize;
|
1204
|
3287 elsize = lispdesc_structure_size (data, sdesc);
|
934
|
3288
|
|
3289 for (i = 0; i < count; i++)
|
|
3290 {
|
1598
|
3291 kkcc_gc_stack_push (((char *) data) + elsize * i, sdesc->description);
|
934
|
3292 }
|
|
3293 }
|
|
3294
|
1598
|
3295
|
|
3296 /* This function implements the KKCC mark algorithm.
|
|
3297 Instead of calling mark_object, all the alive Lisp_Objects are pushed
|
|
3298 on the kkcc_gc_stack. This function processes all elements on the stack
|
|
3299 according to their descriptions. */
|
|
3300 static void
|
|
3301 kkcc_marking (void)
|
|
3302 {
|
|
3303 kkcc_gc_stack_entry *stack_entry = 0;
|
|
3304 void *data = 0;
|
|
3305 const struct memory_description *desc = 0;
|
|
3306 int pos;
|
|
3307
|
|
3308 while ((stack_entry = kkcc_gc_stack_pop ()) != 0)
|
|
3309 {
|
|
3310 data = stack_entry->data;
|
|
3311 desc = stack_entry->desc;
|
|
3312
|
|
3313 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
3314 {
|
|
3315 const struct memory_description *desc1 = &desc[pos];
|
|
3316 const void *rdata =
|
|
3317 (const char *) data + lispdesc_indirect_count (desc1->offset,
|
|
3318 desc, data);
|
|
3319 union_switcheroo:
|
|
3320
|
|
3321 /* If the flag says don't mark, then don't mark. */
|
|
3322 if ((desc1->flags) & XD_FLAG_NO_KKCC)
|
|
3323 continue;
|
|
3324
|
|
3325 switch (desc1->type)
|
|
3326 {
|
|
3327 case XD_BYTECOUNT:
|
|
3328 case XD_ELEMCOUNT:
|
|
3329 case XD_HASHCODE:
|
|
3330 case XD_INT:
|
|
3331 case XD_LONG:
|
|
3332 case XD_INT_RESET:
|
|
3333 case XD_LO_LINK:
|
|
3334 case XD_OPAQUE_PTR:
|
|
3335 case XD_OPAQUE_DATA_PTR:
|
|
3336 case XD_C_STRING:
|
|
3337 case XD_DOC_STRING:
|
|
3338 break;
|
|
3339 case XD_LISP_OBJECT:
|
|
3340 {
|
|
3341 const Lisp_Object *stored_obj = (const Lisp_Object *) rdata;
|
|
3342
|
|
3343 /* Because of the way that tagged objects work (pointers and
|
|
3344 Lisp_Objects have the same representation), XD_LISP_OBJECT
|
|
3345 can be used for untagged pointers. They might be NULL,
|
|
3346 though. */
|
|
3347 if (EQ (*stored_obj, Qnull_pointer))
|
|
3348 break;
|
|
3349 mark_object_maybe_checking_free
|
|
3350 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT);
|
|
3351
|
|
3352 break;
|
|
3353 }
|
|
3354 case XD_LISP_OBJECT_ARRAY:
|
|
3355 {
|
|
3356 int i;
|
|
3357 EMACS_INT count =
|
|
3358 lispdesc_indirect_count (desc1->data1, desc, data);
|
|
3359
|
|
3360 for (i = 0; i < count; i++)
|
|
3361 {
|
|
3362 const Lisp_Object *stored_obj =
|
|
3363 (const Lisp_Object *) rdata + i;
|
|
3364
|
|
3365 if (EQ (*stored_obj, Qnull_pointer))
|
|
3366 break;
|
|
3367
|
|
3368 mark_object_maybe_checking_free
|
|
3369 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT);
|
|
3370 }
|
|
3371 break;
|
|
3372 }
|
|
3373 case XD_STRUCT_PTR:
|
|
3374 {
|
|
3375 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc,
|
|
3376 data);
|
|
3377 const struct sized_memory_description *sdesc =
|
|
3378 lispdesc_indirect_description (data, desc1->data2);
|
|
3379 const char *dobj = * (const char **) rdata;
|
|
3380 if (dobj)
|
|
3381 mark_struct_contents (dobj, sdesc, count);
|
|
3382 break;
|
|
3383 }
|
|
3384 case XD_STRUCT_ARRAY:
|
|
3385 {
|
|
3386 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc,
|
|
3387 data);
|
|
3388 const struct sized_memory_description *sdesc =
|
|
3389 lispdesc_indirect_description (data, desc1->data2);
|
|
3390
|
|
3391 mark_struct_contents (rdata, sdesc, count);
|
|
3392 break;
|
|
3393 }
|
|
3394 case XD_UNION:
|
|
3395 case XD_UNION_DYNAMIC_SIZE:
|
|
3396 desc1 = lispdesc_process_xd_union (desc1, desc, data);
|
|
3397 if (desc1)
|
|
3398 goto union_switcheroo;
|
|
3399 break;
|
|
3400
|
|
3401 default:
|
|
3402 stderr_out ("Unsupported description type : %d\n", desc1->type);
|
|
3403 abort ();
|
|
3404 }
|
|
3405 }
|
|
3406 }
|
|
3407 }
|
934
|
3408 #endif /* USE_KKCC */
|
|
3409
|
428
|
3410 /* Mark reference to a Lisp_Object. If the object referred to has not been
|
|
3411 seen yet, recursively mark all the references contained in it. */
|
|
3412
|
|
3413 void
|
|
3414 mark_object (Lisp_Object obj)
|
|
3415 {
|
1598
|
3416 #ifdef USE_KKCC
|
|
3417 /* this code should never be reached when configured for KKCC */
|
|
3418 stderr_out ("KKCC: Invalid mark_object call.\n");
|
|
3419 stderr_out ("Replace mark_object with kkcc_gc_stack_push_lisp_object.\n");
|
|
3420 abort ();
|
1676
|
3421 #else /* not USE_KKCC */
|
1598
|
3422
|
428
|
3423 tail_recurse:
|
|
3424
|
|
3425 /* Checks we used to perform */
|
|
3426 /* if (EQ (obj, Qnull_pointer)) return; */
|
|
3427 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */
|
|
3428 /* if (PURIFIED (XPNTR (obj))) return; */
|
|
3429
|
|
3430 if (XTYPE (obj) == Lisp_Type_Record)
|
|
3431 {
|
|
3432 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
442
|
3433
|
|
3434 GC_CHECK_LHEADER_INVARIANTS (lheader);
|
|
3435
|
1204
|
3436 /* We handle this separately, above, so we can mark free objects */
|
1265
|
3437 GC_CHECK_NOT_FREE (lheader);
|
1204
|
3438
|
442
|
3439 /* All c_readonly objects have their mark bit set,
|
|
3440 so that we only need to check the mark bit here. */
|
|
3441 if (! MARKED_RECORD_HEADER_P (lheader))
|
428
|
3442 {
|
|
3443 MARK_RECORD_HEADER (lheader);
|
442
|
3444
|
1598
|
3445 if (RECORD_MARKER (lheader))
|
|
3446 {
|
|
3447 obj = RECORD_MARKER (lheader) (obj);
|
|
3448 if (!NILP (obj)) goto tail_recurse;
|
|
3449 }
|
428
|
3450 }
|
|
3451 }
|
1676
|
3452 #endif /* not KKCC */
|
428
|
3453 }
|
|
3454
|
|
3455
|
|
3456 static int gc_count_num_short_string_in_use;
|
647
|
3457 static Bytecount gc_count_string_total_size;
|
|
3458 static Bytecount gc_count_short_string_total_size;
|
428
|
3459
|
|
3460 /* static int gc_count_total_records_used, gc_count_records_total_size; */
|
|
3461
|
|
3462
|
|
3463 /* stats on lcrecords in use - kinda kludgy */
|
|
3464
|
|
3465 static struct
|
|
3466 {
|
|
3467 int instances_in_use;
|
|
3468 int bytes_in_use;
|
|
3469 int instances_freed;
|
|
3470 int bytes_freed;
|
|
3471 int instances_on_free_list;
|
707
|
3472 } lcrecord_stats [countof (lrecord_implementations_table)
|
|
3473 + MODULE_DEFINABLE_TYPE_COUNT];
|
428
|
3474
|
|
3475 static void
|
442
|
3476 tick_lcrecord_stats (const struct lrecord_header *h, int free_p)
|
428
|
3477 {
|
647
|
3478 int type_index = h->type;
|
428
|
3479
|
|
3480 if (((struct lcrecord_header *) h)->free)
|
|
3481 {
|
442
|
3482 gc_checking_assert (!free_p);
|
428
|
3483 lcrecord_stats[type_index].instances_on_free_list++;
|
|
3484 }
|
|
3485 else
|
|
3486 {
|
1204
|
3487 Bytecount sz = detagged_lisp_object_size (h);
|
|
3488
|
428
|
3489 if (free_p)
|
|
3490 {
|
|
3491 lcrecord_stats[type_index].instances_freed++;
|
|
3492 lcrecord_stats[type_index].bytes_freed += sz;
|
|
3493 }
|
|
3494 else
|
|
3495 {
|
|
3496 lcrecord_stats[type_index].instances_in_use++;
|
|
3497 lcrecord_stats[type_index].bytes_in_use += sz;
|
|
3498 }
|
|
3499 }
|
|
3500 }
|
|
3501
|
|
3502
|
|
3503 /* Free all unmarked records */
|
|
3504 static void
|
|
3505 sweep_lcrecords_1 (struct lcrecord_header **prev, int *used)
|
|
3506 {
|
|
3507 struct lcrecord_header *header;
|
|
3508 int num_used = 0;
|
|
3509 /* int total_size = 0; */
|
|
3510
|
|
3511 xzero (lcrecord_stats); /* Reset all statistics to 0. */
|
|
3512
|
|
3513 /* First go through and call all the finalize methods.
|
|
3514 Then go through and free the objects. There used to
|
|
3515 be only one loop here, with the call to the finalizer
|
|
3516 occurring directly before the xfree() below. That
|
|
3517 is marginally faster but much less safe -- if the
|
|
3518 finalize method for an object needs to reference any
|
|
3519 other objects contained within it (and many do),
|
|
3520 we could easily be screwed by having already freed that
|
|
3521 other object. */
|
|
3522
|
|
3523 for (header = *prev; header; header = header->next)
|
|
3524 {
|
|
3525 struct lrecord_header *h = &(header->lheader);
|
442
|
3526
|
|
3527 GC_CHECK_LHEADER_INVARIANTS (h);
|
|
3528
|
|
3529 if (! MARKED_RECORD_HEADER_P (h) && ! header->free)
|
428
|
3530 {
|
|
3531 if (LHEADER_IMPLEMENTATION (h)->finalizer)
|
|
3532 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0);
|
|
3533 }
|
|
3534 }
|
|
3535
|
|
3536 for (header = *prev; header; )
|
|
3537 {
|
|
3538 struct lrecord_header *h = &(header->lheader);
|
442
|
3539 if (MARKED_RECORD_HEADER_P (h))
|
428
|
3540 {
|
442
|
3541 if (! C_READONLY_RECORD_HEADER_P (h))
|
428
|
3542 UNMARK_RECORD_HEADER (h);
|
|
3543 num_used++;
|
|
3544 /* total_size += n->implementation->size_in_bytes (h);*/
|
440
|
3545 /* #### May modify header->next on a C_READONLY lcrecord */
|
428
|
3546 prev = &(header->next);
|
|
3547 header = *prev;
|
|
3548 tick_lcrecord_stats (h, 0);
|
|
3549 }
|
|
3550 else
|
|
3551 {
|
|
3552 struct lcrecord_header *next = header->next;
|
|
3553 *prev = next;
|
|
3554 tick_lcrecord_stats (h, 1);
|
|
3555 /* used to call finalizer right here. */
|
1726
|
3556 xfree (header, struct lcrecord_header *);
|
428
|
3557 header = next;
|
|
3558 }
|
|
3559 }
|
|
3560 *used = num_used;
|
|
3561 /* *total = total_size; */
|
|
3562 }
|
|
3563
|
|
3564 /* And the Lord said: Thou shalt use the `c-backslash-region' command
|
|
3565 to make macros prettier. */
|
|
3566
|
|
3567 #ifdef ERROR_CHECK_GC
|
|
3568
|
771
|
3569 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \
|
428
|
3570 do { \
|
|
3571 struct typename##_block *SFTB_current; \
|
|
3572 int SFTB_limit; \
|
|
3573 int num_free = 0, num_used = 0; \
|
|
3574 \
|
444
|
3575 for (SFTB_current = current_##typename##_block, \
|
428
|
3576 SFTB_limit = current_##typename##_block_index; \
|
|
3577 SFTB_current; \
|
|
3578 ) \
|
|
3579 { \
|
|
3580 int SFTB_iii; \
|
|
3581 \
|
|
3582 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
|
3583 { \
|
|
3584 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
|
3585 \
|
454
|
3586 if (LRECORD_FREE_P (SFTB_victim)) \
|
428
|
3587 { \
|
|
3588 num_free++; \
|
|
3589 } \
|
|
3590 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
3591 { \
|
|
3592 num_used++; \
|
|
3593 } \
|
442
|
3594 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
428
|
3595 { \
|
|
3596 num_free++; \
|
|
3597 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
|
3598 } \
|
|
3599 else \
|
|
3600 { \
|
|
3601 num_used++; \
|
|
3602 UNMARK_##typename (SFTB_victim); \
|
|
3603 } \
|
|
3604 } \
|
|
3605 SFTB_current = SFTB_current->prev; \
|
|
3606 SFTB_limit = countof (current_##typename##_block->block); \
|
|
3607 } \
|
|
3608 \
|
|
3609 gc_count_num_##typename##_in_use = num_used; \
|
|
3610 gc_count_num_##typename##_freelist = num_free; \
|
|
3611 } while (0)
|
|
3612
|
|
3613 #else /* !ERROR_CHECK_GC */
|
|
3614
|
771
|
3615 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \
|
|
3616 do { \
|
|
3617 struct typename##_block *SFTB_current; \
|
|
3618 struct typename##_block **SFTB_prev; \
|
|
3619 int SFTB_limit; \
|
|
3620 int num_free = 0, num_used = 0; \
|
|
3621 \
|
|
3622 typename##_free_list = 0; \
|
|
3623 \
|
|
3624 for (SFTB_prev = ¤t_##typename##_block, \
|
|
3625 SFTB_current = current_##typename##_block, \
|
|
3626 SFTB_limit = current_##typename##_block_index; \
|
|
3627 SFTB_current; \
|
|
3628 ) \
|
|
3629 { \
|
|
3630 int SFTB_iii; \
|
|
3631 int SFTB_empty = 1; \
|
|
3632 Lisp_Free *SFTB_old_free_list = typename##_free_list; \
|
|
3633 \
|
|
3634 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
|
3635 { \
|
|
3636 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
|
3637 \
|
|
3638 if (LRECORD_FREE_P (SFTB_victim)) \
|
|
3639 { \
|
|
3640 num_free++; \
|
|
3641 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \
|
|
3642 } \
|
|
3643 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
3644 { \
|
|
3645 SFTB_empty = 0; \
|
|
3646 num_used++; \
|
|
3647 } \
|
|
3648 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
3649 { \
|
|
3650 num_free++; \
|
|
3651 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
|
3652 } \
|
|
3653 else \
|
|
3654 { \
|
|
3655 SFTB_empty = 0; \
|
|
3656 num_used++; \
|
|
3657 UNMARK_##typename (SFTB_victim); \
|
|
3658 } \
|
|
3659 } \
|
|
3660 if (!SFTB_empty) \
|
|
3661 { \
|
|
3662 SFTB_prev = &(SFTB_current->prev); \
|
|
3663 SFTB_current = SFTB_current->prev; \
|
|
3664 } \
|
|
3665 else if (SFTB_current == current_##typename##_block \
|
|
3666 && !SFTB_current->prev) \
|
|
3667 { \
|
|
3668 /* No real point in freeing sole allocation block */ \
|
|
3669 break; \
|
|
3670 } \
|
|
3671 else \
|
|
3672 { \
|
|
3673 struct typename##_block *SFTB_victim_block = SFTB_current; \
|
|
3674 if (SFTB_victim_block == current_##typename##_block) \
|
|
3675 current_##typename##_block_index \
|
|
3676 = countof (current_##typename##_block->block); \
|
|
3677 SFTB_current = SFTB_current->prev; \
|
|
3678 { \
|
|
3679 *SFTB_prev = SFTB_current; \
|
1726
|
3680 xfree (SFTB_victim_block, struct typename##_block *); \
|
771
|
3681 /* Restore free list to what it was before victim was swept */ \
|
|
3682 typename##_free_list = SFTB_old_free_list; \
|
|
3683 num_free -= SFTB_limit; \
|
|
3684 } \
|
|
3685 } \
|
|
3686 SFTB_limit = countof (current_##typename##_block->block); \
|
|
3687 } \
|
|
3688 \
|
|
3689 gc_count_num_##typename##_in_use = num_used; \
|
|
3690 gc_count_num_##typename##_freelist = num_free; \
|
428
|
3691 } while (0)
|
|
3692
|
|
3693 #endif /* !ERROR_CHECK_GC */
|
|
3694
|
771
|
3695 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
3696 SWEEP_FIXED_TYPE_BLOCK_1 (typename, obj_type, lheader)
|
|
3697
|
428
|
3698
|
|
3699
|
|
3700
|
|
3701 static void
|
|
3702 sweep_conses (void)
|
|
3703 {
|
|
3704 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3705 #define ADDITIONAL_FREE_cons(ptr)
|
|
3706
|
440
|
3707 SWEEP_FIXED_TYPE_BLOCK (cons, Lisp_Cons);
|
428
|
3708 }
|
|
3709
|
|
3710 /* Explicitly free a cons cell. */
|
|
3711 void
|
853
|
3712 free_cons (Lisp_Object cons)
|
428
|
3713 {
|
853
|
3714 Lisp_Cons *ptr = XCONS (cons);
|
|
3715
|
428
|
3716 #ifdef ERROR_CHECK_GC
|
|
3717 /* If the CAR is not an int, then it will be a pointer, which will
|
|
3718 always be four-byte aligned. If this cons cell has already been
|
|
3719 placed on the free list, however, its car will probably contain
|
|
3720 a chain pointer to the next cons on the list, which has cleverly
|
|
3721 had all its 0's and 1's inverted. This allows for a quick
|
1204
|
3722 check to make sure we're not freeing something already freed.
|
|
3723
|
|
3724 NOTE: This check may not be necessary. Freeing an object sets its
|
|
3725 type to lrecord_type_free, which will trip up the XCONS() above -- as
|
|
3726 well as a check in FREE_FIXED_TYPE(). */
|
853
|
3727 if (POINTER_TYPE_P (XTYPE (cons_car (ptr))))
|
|
3728 ASSERT_VALID_POINTER (XPNTR (cons_car (ptr)));
|
428
|
3729 #endif /* ERROR_CHECK_GC */
|
|
3730
|
440
|
3731 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, Lisp_Cons, ptr);
|
428
|
3732 }
|
|
3733
|
|
3734 /* explicitly free a list. You **must make sure** that you have
|
|
3735 created all the cons cells that make up this list and that there
|
|
3736 are no pointers to any of these cons cells anywhere else. If there
|
|
3737 are, you will lose. */
|
|
3738
|
|
3739 void
|
|
3740 free_list (Lisp_Object list)
|
|
3741 {
|
|
3742 Lisp_Object rest, next;
|
|
3743
|
|
3744 for (rest = list; !NILP (rest); rest = next)
|
|
3745 {
|
|
3746 next = XCDR (rest);
|
853
|
3747 free_cons (rest);
|
428
|
3748 }
|
|
3749 }
|
|
3750
|
|
3751 /* explicitly free an alist. You **must make sure** that you have
|
|
3752 created all the cons cells that make up this alist and that there
|
|
3753 are no pointers to any of these cons cells anywhere else. If there
|
|
3754 are, you will lose. */
|
|
3755
|
|
3756 void
|
|
3757 free_alist (Lisp_Object alist)
|
|
3758 {
|
|
3759 Lisp_Object rest, next;
|
|
3760
|
|
3761 for (rest = alist; !NILP (rest); rest = next)
|
|
3762 {
|
|
3763 next = XCDR (rest);
|
853
|
3764 free_cons (XCAR (rest));
|
|
3765 free_cons (rest);
|
428
|
3766 }
|
|
3767 }
|
|
3768
|
|
3769 static void
|
|
3770 sweep_compiled_functions (void)
|
|
3771 {
|
|
3772 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
945
|
3773 #define ADDITIONAL_FREE_compiled_function(ptr) \
|
1726
|
3774 if (ptr->args_in_array) xfree (ptr->args, Lisp_Object *)
|
428
|
3775
|
|
3776 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function);
|
|
3777 }
|
|
3778
|
|
3779 static void
|
|
3780 sweep_floats (void)
|
|
3781 {
|
|
3782 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3783 #define ADDITIONAL_FREE_float(ptr)
|
|
3784
|
440
|
3785 SWEEP_FIXED_TYPE_BLOCK (float, Lisp_Float);
|
428
|
3786 }
|
|
3787
|
|
3788 static void
|
|
3789 sweep_symbols (void)
|
|
3790 {
|
|
3791 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3792 #define ADDITIONAL_FREE_symbol(ptr)
|
|
3793
|
440
|
3794 SWEEP_FIXED_TYPE_BLOCK (symbol, Lisp_Symbol);
|
428
|
3795 }
|
|
3796
|
|
3797 static void
|
|
3798 sweep_extents (void)
|
|
3799 {
|
|
3800 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3801 #define ADDITIONAL_FREE_extent(ptr)
|
|
3802
|
|
3803 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent);
|
|
3804 }
|
|
3805
|
|
3806 static void
|
|
3807 sweep_events (void)
|
|
3808 {
|
|
3809 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3810 #define ADDITIONAL_FREE_event(ptr)
|
|
3811
|
440
|
3812 SWEEP_FIXED_TYPE_BLOCK (event, Lisp_Event);
|
428
|
3813 }
|
|
3814
|
1204
|
3815 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
3816
|
|
3817 static void
|
|
3818 sweep_key_data (void)
|
|
3819 {
|
|
3820 #define UNMARK_key_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3821 #define ADDITIONAL_FREE_key_data(ptr)
|
|
3822
|
|
3823 SWEEP_FIXED_TYPE_BLOCK (key_data, Lisp_Key_Data);
|
|
3824 }
|
|
3825
|
1204
|
3826 void
|
|
3827 free_key_data (Lisp_Object ptr)
|
|
3828 {
|
|
3829 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (key_data, Lisp_Key_Data, XKEY_DATA (ptr));
|
|
3830 }
|
|
3831
|
934
|
3832 static void
|
|
3833 sweep_button_data (void)
|
|
3834 {
|
|
3835 #define UNMARK_button_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3836 #define ADDITIONAL_FREE_button_data(ptr)
|
|
3837
|
|
3838 SWEEP_FIXED_TYPE_BLOCK (button_data, Lisp_Button_Data);
|
|
3839 }
|
|
3840
|
1204
|
3841 void
|
|
3842 free_button_data (Lisp_Object ptr)
|
|
3843 {
|
|
3844 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (button_data, Lisp_Button_Data, XBUTTON_DATA (ptr));
|
|
3845 }
|
|
3846
|
934
|
3847 static void
|
|
3848 sweep_motion_data (void)
|
|
3849 {
|
|
3850 #define UNMARK_motion_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3851 #define ADDITIONAL_FREE_motion_data(ptr)
|
|
3852
|
|
3853 SWEEP_FIXED_TYPE_BLOCK (motion_data, Lisp_Motion_Data);
|
|
3854 }
|
|
3855
|
1204
|
3856 void
|
|
3857 free_motion_data (Lisp_Object ptr)
|
|
3858 {
|
|
3859 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (motion_data, Lisp_Motion_Data, XMOTION_DATA (ptr));
|
|
3860 }
|
|
3861
|
934
|
3862 static void
|
|
3863 sweep_process_data (void)
|
|
3864 {
|
|
3865 #define UNMARK_process_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3866 #define ADDITIONAL_FREE_process_data(ptr)
|
|
3867
|
|
3868 SWEEP_FIXED_TYPE_BLOCK (process_data, Lisp_Process_Data);
|
|
3869 }
|
|
3870
|
1204
|
3871 void
|
|
3872 free_process_data (Lisp_Object ptr)
|
|
3873 {
|
|
3874 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (process_data, Lisp_Process_Data, XPROCESS_DATA (ptr));
|
|
3875 }
|
|
3876
|
934
|
3877 static void
|
|
3878 sweep_timeout_data (void)
|
|
3879 {
|
|
3880 #define UNMARK_timeout_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3881 #define ADDITIONAL_FREE_timeout_data(ptr)
|
|
3882
|
|
3883 SWEEP_FIXED_TYPE_BLOCK (timeout_data, Lisp_Timeout_Data);
|
|
3884 }
|
|
3885
|
1204
|
3886 void
|
|
3887 free_timeout_data (Lisp_Object ptr)
|
|
3888 {
|
|
3889 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (timeout_data, Lisp_Timeout_Data, XTIMEOUT_DATA (ptr));
|
|
3890 }
|
|
3891
|
934
|
3892 static void
|
|
3893 sweep_magic_data (void)
|
|
3894 {
|
|
3895 #define UNMARK_magic_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3896 #define ADDITIONAL_FREE_magic_data(ptr)
|
|
3897
|
|
3898 SWEEP_FIXED_TYPE_BLOCK (magic_data, Lisp_Magic_Data);
|
|
3899 }
|
|
3900
|
1204
|
3901 void
|
|
3902 free_magic_data (Lisp_Object ptr)
|
|
3903 {
|
|
3904 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_data, Lisp_Magic_Data, XMAGIC_DATA (ptr));
|
|
3905 }
|
|
3906
|
934
|
3907 static void
|
|
3908 sweep_magic_eval_data (void)
|
|
3909 {
|
|
3910 #define UNMARK_magic_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3911 #define ADDITIONAL_FREE_magic_eval_data(ptr)
|
|
3912
|
|
3913 SWEEP_FIXED_TYPE_BLOCK (magic_eval_data, Lisp_Magic_Eval_Data);
|
|
3914 }
|
|
3915
|
1204
|
3916 void
|
|
3917 free_magic_eval_data (Lisp_Object ptr)
|
|
3918 {
|
|
3919 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_eval_data, Lisp_Magic_Eval_Data, XMAGIC_EVAL_DATA (ptr));
|
|
3920 }
|
|
3921
|
934
|
3922 static void
|
|
3923 sweep_eval_data (void)
|
|
3924 {
|
|
3925 #define UNMARK_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3926 #define ADDITIONAL_FREE_eval_data(ptr)
|
|
3927
|
|
3928 SWEEP_FIXED_TYPE_BLOCK (eval_data, Lisp_Eval_Data);
|
|
3929 }
|
|
3930
|
1204
|
3931 void
|
|
3932 free_eval_data (Lisp_Object ptr)
|
|
3933 {
|
|
3934 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (eval_data, Lisp_Eval_Data, XEVAL_DATA (ptr));
|
|
3935 }
|
|
3936
|
934
|
3937 static void
|
|
3938 sweep_misc_user_data (void)
|
|
3939 {
|
|
3940 #define UNMARK_misc_user_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3941 #define ADDITIONAL_FREE_misc_user_data(ptr)
|
|
3942
|
|
3943 SWEEP_FIXED_TYPE_BLOCK (misc_user_data, Lisp_Misc_User_Data);
|
|
3944 }
|
|
3945
|
1204
|
3946 void
|
|
3947 free_misc_user_data (Lisp_Object ptr)
|
|
3948 {
|
|
3949 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (misc_user_data, Lisp_Misc_User_Data, XMISC_USER_DATA (ptr));
|
|
3950 }
|
|
3951
|
|
3952 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
3953
|
428
|
3954 static void
|
|
3955 sweep_markers (void)
|
|
3956 {
|
|
3957 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3958 #define ADDITIONAL_FREE_marker(ptr) \
|
|
3959 do { Lisp_Object tem; \
|
793
|
3960 tem = wrap_marker (ptr); \
|
428
|
3961 unchain_marker (tem); \
|
|
3962 } while (0)
|
|
3963
|
440
|
3964 SWEEP_FIXED_TYPE_BLOCK (marker, Lisp_Marker);
|
428
|
3965 }
|
|
3966
|
|
3967 /* Explicitly free a marker. */
|
|
3968 void
|
1204
|
3969 free_marker (Lisp_Object ptr)
|
428
|
3970 {
|
1204
|
3971 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, Lisp_Marker, XMARKER (ptr));
|
428
|
3972 }
|
|
3973
|
|
3974
|
|
3975 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY)
|
|
3976
|
|
3977 static void
|
|
3978 verify_string_chars_integrity (void)
|
|
3979 {
|
|
3980 struct string_chars_block *sb;
|
|
3981
|
|
3982 /* Scan each existing string block sequentially, string by string. */
|
|
3983 for (sb = first_string_chars_block; sb; sb = sb->next)
|
|
3984 {
|
|
3985 int pos = 0;
|
|
3986 /* POS is the index of the next string in the block. */
|
|
3987 while (pos < sb->pos)
|
|
3988 {
|
|
3989 struct string_chars *s_chars =
|
|
3990 (struct string_chars *) &(sb->string_chars[pos]);
|
438
|
3991 Lisp_String *string;
|
428
|
3992 int size;
|
|
3993 int fullsize;
|
|
3994
|
454
|
3995 /* If the string_chars struct is marked as free (i.e. the
|
|
3996 STRING pointer is NULL) then this is an unused chunk of
|
|
3997 string storage. (See below.) */
|
|
3998
|
|
3999 if (STRING_CHARS_FREE_P (s_chars))
|
428
|
4000 {
|
|
4001 fullsize = ((struct unused_string_chars *) s_chars)->fullsize;
|
|
4002 pos += fullsize;
|
|
4003 continue;
|
|
4004 }
|
|
4005
|
|
4006 string = s_chars->string;
|
|
4007 /* Must be 32-bit aligned. */
|
|
4008 assert ((((int) string) & 3) == 0);
|
|
4009
|
793
|
4010 size = string->size_;
|
428
|
4011 fullsize = STRING_FULLSIZE (size);
|
|
4012
|
|
4013 assert (!BIG_STRING_FULLSIZE_P (fullsize));
|
793
|
4014 assert (string->data_ == s_chars->chars);
|
428
|
4015 pos += fullsize;
|
|
4016 }
|
|
4017 assert (pos == sb->pos);
|
|
4018 }
|
|
4019 }
|
|
4020
|
1204
|
4021 #endif /* defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) */
|
428
|
4022
|
|
4023 /* Compactify string chars, relocating the reference to each --
|
|
4024 free any empty string_chars_block we see. */
|
|
4025 static void
|
|
4026 compact_string_chars (void)
|
|
4027 {
|
|
4028 struct string_chars_block *to_sb = first_string_chars_block;
|
|
4029 int to_pos = 0;
|
|
4030 struct string_chars_block *from_sb;
|
|
4031
|
|
4032 /* Scan each existing string block sequentially, string by string. */
|
|
4033 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next)
|
|
4034 {
|
|
4035 int from_pos = 0;
|
|
4036 /* FROM_POS is the index of the next string in the block. */
|
|
4037 while (from_pos < from_sb->pos)
|
|
4038 {
|
|
4039 struct string_chars *from_s_chars =
|
|
4040 (struct string_chars *) &(from_sb->string_chars[from_pos]);
|
|
4041 struct string_chars *to_s_chars;
|
438
|
4042 Lisp_String *string;
|
428
|
4043 int size;
|
|
4044 int fullsize;
|
|
4045
|
454
|
4046 /* If the string_chars struct is marked as free (i.e. the
|
|
4047 STRING pointer is NULL) then this is an unused chunk of
|
|
4048 string storage. This happens under Mule when a string's
|
|
4049 size changes in such a way that its fullsize changes.
|
|
4050 (Strings can change size because a different-length
|
|
4051 character can be substituted for another character.)
|
|
4052 In this case, after the bogus string pointer is the
|
|
4053 "fullsize" of this entry, i.e. how many bytes to skip. */
|
|
4054
|
|
4055 if (STRING_CHARS_FREE_P (from_s_chars))
|
428
|
4056 {
|
|
4057 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize;
|
|
4058 from_pos += fullsize;
|
|
4059 continue;
|
|
4060 }
|
|
4061
|
|
4062 string = from_s_chars->string;
|
1204
|
4063 gc_checking_assert (!(LRECORD_FREE_P (string)));
|
428
|
4064
|
793
|
4065 size = string->size_;
|
428
|
4066 fullsize = STRING_FULLSIZE (size);
|
|
4067
|
442
|
4068 gc_checking_assert (! BIG_STRING_FULLSIZE_P (fullsize));
|
428
|
4069
|
|
4070 /* Just skip it if it isn't marked. */
|
771
|
4071 if (! MARKED_RECORD_HEADER_P (&(string->u.lheader)))
|
428
|
4072 {
|
|
4073 from_pos += fullsize;
|
|
4074 continue;
|
|
4075 }
|
|
4076
|
|
4077 /* If it won't fit in what's left of TO_SB, close TO_SB out
|
|
4078 and go on to the next string_chars_block. We know that TO_SB
|
|
4079 cannot advance past FROM_SB here since FROM_SB is large enough
|
|
4080 to currently contain this string. */
|
|
4081 if ((to_pos + fullsize) > countof (to_sb->string_chars))
|
|
4082 {
|
|
4083 to_sb->pos = to_pos;
|
|
4084 to_sb = to_sb->next;
|
|
4085 to_pos = 0;
|
|
4086 }
|
|
4087
|
|
4088 /* Compute new address of this string
|
|
4089 and update TO_POS for the space being used. */
|
|
4090 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]);
|
|
4091
|
|
4092 /* Copy the string_chars to the new place. */
|
|
4093 if (from_s_chars != to_s_chars)
|
|
4094 memmove (to_s_chars, from_s_chars, fullsize);
|
|
4095
|
|
4096 /* Relocate FROM_S_CHARS's reference */
|
826
|
4097 set_lispstringp_data (string, &(to_s_chars->chars[0]));
|
428
|
4098
|
|
4099 from_pos += fullsize;
|
|
4100 to_pos += fullsize;
|
|
4101 }
|
|
4102 }
|
|
4103
|
|
4104 /* Set current to the last string chars block still used and
|
|
4105 free any that follow. */
|
|
4106 {
|
|
4107 struct string_chars_block *victim;
|
|
4108
|
|
4109 for (victim = to_sb->next; victim; )
|
|
4110 {
|
|
4111 struct string_chars_block *next = victim->next;
|
1726
|
4112 xfree (victim, struct string_chars_block *);
|
428
|
4113 victim = next;
|
|
4114 }
|
|
4115
|
|
4116 current_string_chars_block = to_sb;
|
|
4117 current_string_chars_block->pos = to_pos;
|
|
4118 current_string_chars_block->next = 0;
|
|
4119 }
|
|
4120 }
|
|
4121
|
|
4122 #if 1 /* Hack to debug missing purecopy's */
|
|
4123 static int debug_string_purity;
|
|
4124
|
|
4125 static void
|
793
|
4126 debug_string_purity_print (Lisp_Object p)
|
428
|
4127 {
|
|
4128 Charcount i;
|
826
|
4129 Charcount s = string_char_length (p);
|
442
|
4130 stderr_out ("\"");
|
428
|
4131 for (i = 0; i < s; i++)
|
|
4132 {
|
867
|
4133 Ichar ch = string_ichar (p, i);
|
428
|
4134 if (ch < 32 || ch >= 126)
|
|
4135 stderr_out ("\\%03o", ch);
|
|
4136 else if (ch == '\\' || ch == '\"')
|
|
4137 stderr_out ("\\%c", ch);
|
|
4138 else
|
|
4139 stderr_out ("%c", ch);
|
|
4140 }
|
|
4141 stderr_out ("\"\n");
|
|
4142 }
|
|
4143 #endif /* 1 */
|
|
4144
|
|
4145
|
|
4146 static void
|
|
4147 sweep_strings (void)
|
|
4148 {
|
647
|
4149 int num_small_used = 0;
|
|
4150 Bytecount num_small_bytes = 0, num_bytes = 0;
|
428
|
4151 int debug = debug_string_purity;
|
|
4152
|
793
|
4153 #define UNMARK_string(ptr) do { \
|
|
4154 Lisp_String *p = (ptr); \
|
|
4155 Bytecount size = p->size_; \
|
|
4156 UNMARK_RECORD_HEADER (&(p->u.lheader)); \
|
|
4157 num_bytes += size; \
|
|
4158 if (!BIG_STRING_SIZE_P (size)) \
|
|
4159 { \
|
|
4160 num_small_bytes += size; \
|
|
4161 num_small_used++; \
|
|
4162 } \
|
|
4163 if (debug) \
|
|
4164 debug_string_purity_print (wrap_string (p)); \
|
438
|
4165 } while (0)
|
|
4166 #define ADDITIONAL_FREE_string(ptr) do { \
|
793
|
4167 Bytecount size = ptr->size_; \
|
438
|
4168 if (BIG_STRING_SIZE_P (size)) \
|
1726
|
4169 xfree (ptr->data_, Ibyte *); \
|
438
|
4170 } while (0)
|
|
4171
|
771
|
4172 SWEEP_FIXED_TYPE_BLOCK_1 (string, Lisp_String, u.lheader);
|
428
|
4173
|
|
4174 gc_count_num_short_string_in_use = num_small_used;
|
|
4175 gc_count_string_total_size = num_bytes;
|
|
4176 gc_count_short_string_total_size = num_small_bytes;
|
|
4177 }
|
|
4178
|
|
4179
|
|
4180 /* I hate duplicating all this crap! */
|
|
4181 int
|
|
4182 marked_p (Lisp_Object obj)
|
|
4183 {
|
|
4184 /* Checks we used to perform. */
|
|
4185 /* if (EQ (obj, Qnull_pointer)) return 1; */
|
|
4186 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */
|
|
4187 /* if (PURIFIED (XPNTR (obj))) return 1; */
|
|
4188
|
|
4189 if (XTYPE (obj) == Lisp_Type_Record)
|
|
4190 {
|
|
4191 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
442
|
4192
|
|
4193 GC_CHECK_LHEADER_INVARIANTS (lheader);
|
|
4194
|
|
4195 return MARKED_RECORD_HEADER_P (lheader);
|
428
|
4196 }
|
|
4197 return 1;
|
|
4198 }
|
|
4199
|
|
4200 static void
|
|
4201 gc_sweep (void)
|
|
4202 {
|
|
4203 /* Free all unmarked records. Do this at the very beginning,
|
|
4204 before anything else, so that the finalize methods can safely
|
|
4205 examine items in the objects. sweep_lcrecords_1() makes
|
|
4206 sure to call all the finalize methods *before* freeing anything,
|
|
4207 to complete the safety. */
|
|
4208 {
|
|
4209 int ignored;
|
|
4210 sweep_lcrecords_1 (&all_lcrecords, &ignored);
|
|
4211 }
|
|
4212
|
|
4213 compact_string_chars ();
|
|
4214
|
|
4215 /* Finalize methods below (called through the ADDITIONAL_FREE_foo
|
|
4216 macros) must be *extremely* careful to make sure they're not
|
|
4217 referencing freed objects. The only two existing finalize
|
|
4218 methods (for strings and markers) pass muster -- the string
|
|
4219 finalizer doesn't look at anything but its own specially-
|
|
4220 created block, and the marker finalizer only looks at live
|
|
4221 buffers (which will never be freed) and at the markers before
|
|
4222 and after it in the chain (which, by induction, will never be
|
|
4223 freed because if so, they would have already removed themselves
|
|
4224 from the chain). */
|
|
4225
|
|
4226 /* Put all unmarked strings on free list, free'ing the string chars
|
|
4227 of large unmarked strings */
|
|
4228 sweep_strings ();
|
|
4229
|
|
4230 /* Put all unmarked conses on free list */
|
|
4231 sweep_conses ();
|
|
4232
|
|
4233 /* Free all unmarked compiled-function objects */
|
|
4234 sweep_compiled_functions ();
|
|
4235
|
|
4236 /* Put all unmarked floats on free list */
|
|
4237 sweep_floats ();
|
|
4238
|
|
4239 /* Put all unmarked symbols on free list */
|
|
4240 sweep_symbols ();
|
|
4241
|
|
4242 /* Put all unmarked extents on free list */
|
|
4243 sweep_extents ();
|
|
4244
|
|
4245 /* Put all unmarked markers on free list.
|
|
4246 Dechain each one first from the buffer into which it points. */
|
|
4247 sweep_markers ();
|
|
4248
|
|
4249 sweep_events ();
|
|
4250
|
1204
|
4251 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
4252 sweep_key_data ();
|
|
4253 sweep_button_data ();
|
|
4254 sweep_motion_data ();
|
|
4255 sweep_process_data ();
|
|
4256 sweep_timeout_data ();
|
|
4257 sweep_magic_data ();
|
|
4258 sweep_magic_eval_data ();
|
|
4259 sweep_eval_data ();
|
|
4260 sweep_misc_user_data ();
|
1204
|
4261 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
4262
|
428
|
4263 #ifdef PDUMP
|
442
|
4264 pdump_objects_unmark ();
|
428
|
4265 #endif
|
|
4266 }
|
|
4267
|
|
4268 /* Clearing for disksave. */
|
|
4269
|
|
4270 void
|
|
4271 disksave_object_finalization (void)
|
|
4272 {
|
|
4273 /* It's important that certain information from the environment not get
|
|
4274 dumped with the executable (pathnames, environment variables, etc.).
|
|
4275 To make it easier to tell when this has happened with strings(1) we
|
|
4276 clear some known-to-be-garbage blocks of memory, so that leftover
|
|
4277 results of old evaluation don't look like potential problems.
|
|
4278 But first we set some notable variables to nil and do one more GC,
|
|
4279 to turn those strings into garbage.
|
440
|
4280 */
|
428
|
4281
|
|
4282 /* Yeah, this list is pretty ad-hoc... */
|
|
4283 Vprocess_environment = Qnil;
|
771
|
4284 env_initted = 0;
|
428
|
4285 Vexec_directory = Qnil;
|
|
4286 Vdata_directory = Qnil;
|
|
4287 Vsite_directory = Qnil;
|
|
4288 Vdoc_directory = Qnil;
|
|
4289 Vexec_path = Qnil;
|
|
4290 Vload_path = Qnil;
|
|
4291 /* Vdump_load_path = Qnil; */
|
|
4292 /* Release hash tables for locate_file */
|
|
4293 Flocate_file_clear_hashing (Qt);
|
771
|
4294 uncache_home_directory ();
|
776
|
4295 zero_out_command_line_status_vars ();
|
872
|
4296 clear_default_devices ();
|
428
|
4297
|
|
4298 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \
|
|
4299 defined(LOADHIST_BUILTIN))
|
|
4300 Vload_history = Qnil;
|
|
4301 #endif
|
|
4302 Vshell_file_name = Qnil;
|
|
4303
|
|
4304 garbage_collect_1 ();
|
|
4305
|
|
4306 /* Run the disksave finalization methods of all live objects. */
|
|
4307 disksave_object_finalization_1 ();
|
|
4308
|
|
4309 /* Zero out the uninitialized (really, unused) part of the containers
|
|
4310 for the live strings. */
|
|
4311 {
|
|
4312 struct string_chars_block *scb;
|
|
4313 for (scb = first_string_chars_block; scb; scb = scb->next)
|
|
4314 {
|
|
4315 int count = sizeof (scb->string_chars) - scb->pos;
|
|
4316
|
|
4317 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE);
|
440
|
4318 if (count != 0)
|
|
4319 {
|
|
4320 /* from the block's fill ptr to the end */
|
|
4321 memset ((scb->string_chars + scb->pos), 0, count);
|
|
4322 }
|
428
|
4323 }
|
|
4324 }
|
|
4325
|
|
4326 /* There, that ought to be enough... */
|
|
4327
|
|
4328 }
|
|
4329
|
|
4330
|
771
|
4331 int
|
|
4332 begin_gc_forbidden (void)
|
|
4333 {
|
853
|
4334 return internal_bind_int (&gc_currently_forbidden, 1);
|
771
|
4335 }
|
|
4336
|
|
4337 void
|
|
4338 end_gc_forbidden (int count)
|
|
4339 {
|
|
4340 unbind_to (count);
|
|
4341 }
|
|
4342
|
428
|
4343 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */
|
|
4344 static int gc_hooks_inhibited;
|
|
4345
|
611
|
4346 struct post_gc_action
|
|
4347 {
|
|
4348 void (*fun) (void *);
|
|
4349 void *arg;
|
|
4350 };
|
|
4351
|
|
4352 typedef struct post_gc_action post_gc_action;
|
|
4353
|
|
4354 typedef struct
|
|
4355 {
|
|
4356 Dynarr_declare (post_gc_action);
|
|
4357 } post_gc_action_dynarr;
|
|
4358
|
|
4359 static post_gc_action_dynarr *post_gc_actions;
|
|
4360
|
|
4361 /* Register an action to be called at the end of GC.
|
|
4362 gc_in_progress is 0 when this is called.
|
|
4363 This is used when it is discovered that an action needs to be taken,
|
|
4364 but it's during GC, so it's not safe. (e.g. in a finalize method.)
|
|
4365
|
|
4366 As a general rule, do not use Lisp objects here.
|
|
4367 And NEVER signal an error.
|
|
4368 */
|
|
4369
|
|
4370 void
|
|
4371 register_post_gc_action (void (*fun) (void *), void *arg)
|
|
4372 {
|
|
4373 post_gc_action action;
|
|
4374
|
|
4375 if (!post_gc_actions)
|
|
4376 post_gc_actions = Dynarr_new (post_gc_action);
|
|
4377
|
|
4378 action.fun = fun;
|
|
4379 action.arg = arg;
|
|
4380
|
|
4381 Dynarr_add (post_gc_actions, action);
|
|
4382 }
|
|
4383
|
|
4384 static void
|
|
4385 run_post_gc_actions (void)
|
|
4386 {
|
|
4387 int i;
|
|
4388
|
|
4389 if (post_gc_actions)
|
|
4390 {
|
|
4391 for (i = 0; i < Dynarr_length (post_gc_actions); i++)
|
|
4392 {
|
|
4393 post_gc_action action = Dynarr_at (post_gc_actions, i);
|
|
4394 (action.fun) (action.arg);
|
|
4395 }
|
|
4396
|
|
4397 Dynarr_reset (post_gc_actions);
|
|
4398 }
|
|
4399 }
|
|
4400
|
428
|
4401
|
|
4402 void
|
|
4403 garbage_collect_1 (void)
|
|
4404 {
|
|
4405 #if MAX_SAVE_STACK > 0
|
|
4406 char stack_top_variable;
|
|
4407 extern char *stack_bottom;
|
|
4408 #endif
|
|
4409 struct frame *f;
|
|
4410 int speccount;
|
|
4411 int cursor_changed;
|
|
4412 Lisp_Object pre_gc_cursor;
|
|
4413 struct gcpro gcpro1;
|
1292
|
4414 PROFILE_DECLARE ();
|
428
|
4415
|
1123
|
4416 assert (!in_display || gc_currently_forbidden);
|
|
4417
|
428
|
4418 if (gc_in_progress
|
|
4419 || gc_currently_forbidden
|
|
4420 || in_display
|
|
4421 || preparing_for_armageddon)
|
|
4422 return;
|
|
4423
|
1292
|
4424 PROFILE_RECORD_ENTERING_SECTION (QSin_garbage_collection);
|
|
4425
|
428
|
4426 /* We used to call selected_frame() here.
|
|
4427
|
|
4428 The following functions cannot be called inside GC
|
|
4429 so we move to after the above tests. */
|
|
4430 {
|
|
4431 Lisp_Object frame;
|
|
4432 Lisp_Object device = Fselected_device (Qnil);
|
|
4433 if (NILP (device)) /* Could happen during startup, eg. if always_gc */
|
|
4434 return;
|
872
|
4435 frame = Fselected_frame (device);
|
428
|
4436 if (NILP (frame))
|
563
|
4437 invalid_state ("No frames exist on device", device);
|
428
|
4438 f = XFRAME (frame);
|
|
4439 }
|
|
4440
|
|
4441 pre_gc_cursor = Qnil;
|
|
4442 cursor_changed = 0;
|
|
4443
|
|
4444 GCPRO1 (pre_gc_cursor);
|
|
4445
|
|
4446 /* Very important to prevent GC during any of the following
|
|
4447 stuff that might run Lisp code; otherwise, we'll likely
|
|
4448 have infinite GC recursion. */
|
771
|
4449 speccount = begin_gc_forbidden ();
|
428
|
4450
|
887
|
4451 need_to_signal_post_gc = 0;
|
1318
|
4452 recompute_funcall_allocation_flag ();
|
887
|
4453
|
428
|
4454 if (!gc_hooks_inhibited)
|
853
|
4455 run_hook_trapping_problems
|
1333
|
4456 (Qgarbage_collecting, Qpre_gc_hook,
|
853
|
4457 INHIBIT_EXISTING_PERMANENT_DISPLAY_OBJECT_DELETION);
|
428
|
4458
|
|
4459 /* Now show the GC cursor/message. */
|
|
4460 if (!noninteractive)
|
|
4461 {
|
|
4462 if (FRAME_WIN_P (f))
|
|
4463 {
|
771
|
4464 Lisp_Object frame = wrap_frame (f);
|
428
|
4465 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph,
|
|
4466 FRAME_SELECTED_WINDOW (f),
|
|
4467 ERROR_ME_NOT, 1);
|
|
4468 pre_gc_cursor = f->pointer;
|
|
4469 if (POINTER_IMAGE_INSTANCEP (cursor)
|
|
4470 /* don't change if we don't know how to change back. */
|
|
4471 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor))
|
|
4472 {
|
|
4473 cursor_changed = 1;
|
|
4474 Fset_frame_pointer (frame, cursor);
|
|
4475 }
|
|
4476 }
|
|
4477
|
|
4478 /* Don't print messages to the stream device. */
|
|
4479 if (!cursor_changed && !FRAME_STREAM_P (f))
|
|
4480 {
|
1154
|
4481 if (garbage_collection_messages)
|
|
4482 {
|
|
4483 Lisp_Object args[2], whole_msg;
|
|
4484 args[0] = (STRINGP (Vgc_message) ? Vgc_message :
|
|
4485 build_msg_string (gc_default_message));
|
|
4486 args[1] = build_string ("...");
|
|
4487 whole_msg = Fconcat (2, args);
|
|
4488 echo_area_message (f, (Ibyte *) 0, whole_msg, 0, -1,
|
|
4489 Qgarbage_collecting);
|
|
4490 }
|
428
|
4491 }
|
|
4492 }
|
|
4493
|
|
4494 /***** Now we actually start the garbage collection. */
|
|
4495
|
|
4496 gc_in_progress = 1;
|
771
|
4497 inhibit_non_essential_printing_operations = 1;
|
428
|
4498
|
|
4499 gc_generation_number[0]++;
|
|
4500
|
|
4501 #if MAX_SAVE_STACK > 0
|
|
4502
|
|
4503 /* Save a copy of the contents of the stack, for debugging. */
|
|
4504 if (!purify_flag)
|
|
4505 {
|
|
4506 /* Static buffer in which we save a copy of the C stack at each GC. */
|
|
4507 static char *stack_copy;
|
665
|
4508 static Bytecount stack_copy_size;
|
428
|
4509
|
|
4510 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom;
|
665
|
4511 Bytecount stack_size = (stack_diff > 0 ? stack_diff : -stack_diff);
|
428
|
4512 if (stack_size < MAX_SAVE_STACK)
|
|
4513 {
|
|
4514 if (stack_copy_size < stack_size)
|
|
4515 {
|
|
4516 stack_copy = (char *) xrealloc (stack_copy, stack_size);
|
|
4517 stack_copy_size = stack_size;
|
|
4518 }
|
|
4519
|
|
4520 memcpy (stack_copy,
|
|
4521 stack_diff > 0 ? stack_bottom : &stack_top_variable,
|
|
4522 stack_size);
|
|
4523 }
|
|
4524 }
|
|
4525 #endif /* MAX_SAVE_STACK > 0 */
|
|
4526
|
|
4527 /* Do some totally ad-hoc resource clearing. */
|
|
4528 /* #### generalize this? */
|
|
4529 clear_event_resource ();
|
|
4530 cleanup_specifiers ();
|
1204
|
4531 cleanup_buffer_undo_lists ();
|
428
|
4532
|
|
4533 /* Mark all the special slots that serve as the roots of accessibility. */
|
|
4534
|
1598
|
4535 #ifdef USE_KKCC
|
|
4536 /* initialize kkcc stack */
|
|
4537 kkcc_gc_stack_init();
|
1676
|
4538 #define mark_object kkcc_gc_stack_push_lisp_object
|
1598
|
4539 #endif /* USE_KKCC */
|
|
4540
|
428
|
4541 { /* staticpro() */
|
452
|
4542 Lisp_Object **p = Dynarr_begin (staticpros);
|
665
|
4543 Elemcount count;
|
452
|
4544 for (count = Dynarr_length (staticpros); count; count--)
|
|
4545 mark_object (**p++);
|
|
4546 }
|
|
4547
|
|
4548 { /* staticpro_nodump() */
|
|
4549 Lisp_Object **p = Dynarr_begin (staticpros_nodump);
|
665
|
4550 Elemcount count;
|
452
|
4551 for (count = Dynarr_length (staticpros_nodump); count; count--)
|
|
4552 mark_object (**p++);
|
428
|
4553 }
|
|
4554
|
|
4555 { /* GCPRO() */
|
|
4556 struct gcpro *tail;
|
|
4557 int i;
|
|
4558 for (tail = gcprolist; tail; tail = tail->next)
|
|
4559 for (i = 0; i < tail->nvars; i++)
|
|
4560 mark_object (tail->var[i]);
|
|
4561 }
|
|
4562
|
|
4563 { /* specbind() */
|
|
4564 struct specbinding *bind;
|
|
4565 for (bind = specpdl; bind != specpdl_ptr; bind++)
|
|
4566 {
|
|
4567 mark_object (bind->symbol);
|
|
4568 mark_object (bind->old_value);
|
|
4569 }
|
|
4570 }
|
|
4571
|
|
4572 {
|
|
4573 struct catchtag *catch;
|
|
4574 for (catch = catchlist; catch; catch = catch->next)
|
|
4575 {
|
|
4576 mark_object (catch->tag);
|
|
4577 mark_object (catch->val);
|
853
|
4578 mark_object (catch->actual_tag);
|
428
|
4579 }
|
|
4580 }
|
|
4581
|
|
4582 {
|
|
4583 struct backtrace *backlist;
|
|
4584 for (backlist = backtrace_list; backlist; backlist = backlist->next)
|
|
4585 {
|
|
4586 int nargs = backlist->nargs;
|
|
4587 int i;
|
|
4588
|
|
4589 mark_object (*backlist->function);
|
1292
|
4590 if (nargs < 0 /* nargs == UNEVALLED || nargs == MANY */
|
|
4591 /* might be fake (internal profiling entry) */
|
|
4592 && backlist->args)
|
428
|
4593 mark_object (backlist->args[0]);
|
|
4594 else
|
|
4595 for (i = 0; i < nargs; i++)
|
|
4596 mark_object (backlist->args[i]);
|
|
4597 }
|
|
4598 }
|
|
4599
|
|
4600 mark_profiling_info ();
|
|
4601
|
|
4602 /* OK, now do the after-mark stuff. This is for things that
|
|
4603 are only marked when something else is marked (e.g. weak hash tables).
|
|
4604 There may be complex dependencies between such objects -- e.g.
|
|
4605 a weak hash table might be unmarked, but after processing a later
|
|
4606 weak hash table, the former one might get marked. So we have to
|
|
4607 iterate until nothing more gets marked. */
|
1598
|
4608 #ifdef USE_KKCC
|
|
4609 kkcc_marking ();
|
|
4610 #endif /* USE_KKCC */
|
1590
|
4611 init_marking_ephemerons ();
|
428
|
4612 while (finish_marking_weak_hash_tables () > 0 ||
|
887
|
4613 finish_marking_weak_lists () > 0 ||
|
1590
|
4614 continue_marking_ephemerons () > 0)
|
|
4615 ;
|
|
4616
|
1598
|
4617 #ifdef USE_KKCC
|
|
4618 kkcc_marking ();
|
|
4619 #endif /* USE_KKCC */
|
|
4620
|
1590
|
4621 /* At this point, we know which objects need to be finalized: we
|
|
4622 still need to resurrect them */
|
|
4623
|
|
4624 while (finish_marking_ephemerons () > 0 ||
|
|
4625 finish_marking_weak_lists () > 0 ||
|
|
4626 finish_marking_weak_hash_tables () > 0)
|
428
|
4627 ;
|
|
4628
|
1643
|
4629 #ifdef USE_KKCC
|
|
4630 kkcc_marking ();
|
|
4631 kkcc_gc_stack_free ();
|
1676
|
4632 #undef mark_object
|
1643
|
4633 #endif /* USE_KKCC */
|
|
4634
|
428
|
4635 /* And prune (this needs to be called after everything else has been
|
|
4636 marked and before we do any sweeping). */
|
|
4637 /* #### this is somewhat ad-hoc and should probably be an object
|
|
4638 method */
|
|
4639 prune_weak_hash_tables ();
|
|
4640 prune_weak_lists ();
|
|
4641 prune_specifiers ();
|
|
4642 prune_syntax_tables ();
|
|
4643
|
887
|
4644 prune_ephemerons ();
|
858
|
4645 prune_weak_boxes ();
|
|
4646
|
428
|
4647 gc_sweep ();
|
|
4648
|
|
4649 consing_since_gc = 0;
|
|
4650 #ifndef DEBUG_XEMACS
|
|
4651 /* Allow you to set it really fucking low if you really want ... */
|
|
4652 if (gc_cons_threshold < 10000)
|
|
4653 gc_cons_threshold = 10000;
|
|
4654 #endif
|
814
|
4655 recompute_need_to_garbage_collect ();
|
428
|
4656
|
771
|
4657 inhibit_non_essential_printing_operations = 0;
|
428
|
4658 gc_in_progress = 0;
|
|
4659
|
611
|
4660 run_post_gc_actions ();
|
|
4661
|
428
|
4662 /******* End of garbage collection ********/
|
|
4663
|
|
4664 /* Now remove the GC cursor/message */
|
|
4665 if (!noninteractive)
|
|
4666 {
|
|
4667 if (cursor_changed)
|
771
|
4668 Fset_frame_pointer (wrap_frame (f), pre_gc_cursor);
|
428
|
4669 else if (!FRAME_STREAM_P (f))
|
|
4670 {
|
|
4671 /* Show "...done" only if the echo area would otherwise be empty. */
|
|
4672 if (NILP (clear_echo_area (selected_frame (),
|
|
4673 Qgarbage_collecting, 0)))
|
|
4674 {
|
1154
|
4675 if (garbage_collection_messages)
|
|
4676 {
|
|
4677 Lisp_Object args[2], whole_msg;
|
|
4678 args[0] = (STRINGP (Vgc_message) ? Vgc_message :
|
|
4679 build_msg_string (gc_default_message));
|
|
4680 args[1] = build_msg_string ("... done");
|
|
4681 whole_msg = Fconcat (2, args);
|
|
4682 echo_area_message (selected_frame (), (Ibyte *) 0,
|
|
4683 whole_msg, 0, -1,
|
|
4684 Qgarbage_collecting);
|
|
4685 }
|
428
|
4686 }
|
|
4687 }
|
|
4688 }
|
|
4689
|
|
4690 /* now stop inhibiting GC */
|
771
|
4691 unbind_to (speccount);
|
428
|
4692
|
|
4693 if (!breathing_space)
|
|
4694 {
|
|
4695 breathing_space = malloc (4096 - MALLOC_OVERHEAD);
|
|
4696 }
|
|
4697
|
|
4698 UNGCPRO;
|
887
|
4699
|
|
4700 need_to_signal_post_gc = 1;
|
|
4701 funcall_allocation_flag = 1;
|
|
4702
|
1292
|
4703 PROFILE_RECORD_EXITING_SECTION (QSin_garbage_collection);
|
|
4704
|
428
|
4705 return;
|
|
4706 }
|
|
4707
|
|
4708 /* Debugging aids. */
|
|
4709
|
|
4710 static Lisp_Object
|
771
|
4711 gc_plist_hack (const Char_ASCII *name, int value, Lisp_Object tail)
|
428
|
4712 {
|
|
4713 /* C doesn't have local functions (or closures, or GC, or readable syntax,
|
|
4714 or portable numeric datatypes, or bit-vectors, or characters, or
|
|
4715 arrays, or exceptions, or ...) */
|
|
4716 return cons3 (intern (name), make_int (value), tail);
|
|
4717 }
|
|
4718
|
|
4719 #define HACK_O_MATIC(type, name, pl) do { \
|
|
4720 int s = 0; \
|
|
4721 struct type##_block *x = current_##type##_block; \
|
|
4722 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \
|
|
4723 (pl) = gc_plist_hack ((name), s, (pl)); \
|
|
4724 } while (0)
|
|
4725
|
|
4726 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /*
|
|
4727 Reclaim storage for Lisp objects no longer needed.
|
|
4728 Return info on amount of space in use:
|
|
4729 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
|
|
4730 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
|
|
4731 PLIST)
|
|
4732 where `PLIST' is a list of alternating keyword/value pairs providing
|
|
4733 more detailed information.
|
|
4734 Garbage collection happens automatically if you cons more than
|
|
4735 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
|
|
4736 */
|
|
4737 ())
|
|
4738 {
|
|
4739 Lisp_Object pl = Qnil;
|
647
|
4740 int i;
|
428
|
4741 int gc_count_vector_total_size = 0;
|
|
4742 garbage_collect_1 ();
|
|
4743
|
442
|
4744 for (i = 0; i < lrecord_type_count; i++)
|
428
|
4745 {
|
|
4746 if (lcrecord_stats[i].bytes_in_use != 0
|
|
4747 || lcrecord_stats[i].bytes_freed != 0
|
|
4748 || lcrecord_stats[i].instances_on_free_list != 0)
|
|
4749 {
|
|
4750 char buf [255];
|
442
|
4751 const char *name = lrecord_implementations_table[i]->name;
|
428
|
4752 int len = strlen (name);
|
|
4753 /* save this for the FSFmacs-compatible part of the summary */
|
460
|
4754 if (i == lrecord_type_vector)
|
428
|
4755 gc_count_vector_total_size =
|
|
4756 lcrecord_stats[i].bytes_in_use + lcrecord_stats[i].bytes_freed;
|
|
4757
|
|
4758 sprintf (buf, "%s-storage", name);
|
|
4759 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl);
|
|
4760 /* Okay, simple pluralization check for `symbol-value-varalias' */
|
|
4761 if (name[len-1] == 's')
|
|
4762 sprintf (buf, "%ses-freed", name);
|
|
4763 else
|
|
4764 sprintf (buf, "%ss-freed", name);
|
|
4765 if (lcrecord_stats[i].instances_freed != 0)
|
|
4766 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl);
|
|
4767 if (name[len-1] == 's')
|
|
4768 sprintf (buf, "%ses-on-free-list", name);
|
|
4769 else
|
|
4770 sprintf (buf, "%ss-on-free-list", name);
|
|
4771 if (lcrecord_stats[i].instances_on_free_list != 0)
|
|
4772 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list,
|
|
4773 pl);
|
|
4774 if (name[len-1] == 's')
|
|
4775 sprintf (buf, "%ses-used", name);
|
|
4776 else
|
|
4777 sprintf (buf, "%ss-used", name);
|
|
4778 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl);
|
|
4779 }
|
|
4780 }
|
|
4781
|
|
4782 HACK_O_MATIC (extent, "extent-storage", pl);
|
|
4783 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl);
|
|
4784 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl);
|
|
4785 HACK_O_MATIC (event, "event-storage", pl);
|
|
4786 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl);
|
|
4787 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl);
|
|
4788 HACK_O_MATIC (marker, "marker-storage", pl);
|
|
4789 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl);
|
|
4790 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl);
|
|
4791 HACK_O_MATIC (float, "float-storage", pl);
|
|
4792 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl);
|
|
4793 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl);
|
|
4794 HACK_O_MATIC (string, "string-header-storage", pl);
|
|
4795 pl = gc_plist_hack ("long-strings-total-length",
|
|
4796 gc_count_string_total_size
|
|
4797 - gc_count_short_string_total_size, pl);
|
|
4798 HACK_O_MATIC (string_chars, "short-string-storage", pl);
|
|
4799 pl = gc_plist_hack ("short-strings-total-length",
|
|
4800 gc_count_short_string_total_size, pl);
|
|
4801 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl);
|
|
4802 pl = gc_plist_hack ("long-strings-used",
|
|
4803 gc_count_num_string_in_use
|
|
4804 - gc_count_num_short_string_in_use, pl);
|
|
4805 pl = gc_plist_hack ("short-strings-used",
|
|
4806 gc_count_num_short_string_in_use, pl);
|
|
4807
|
|
4808 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl);
|
|
4809 pl = gc_plist_hack ("compiled-functions-free",
|
|
4810 gc_count_num_compiled_function_freelist, pl);
|
|
4811 pl = gc_plist_hack ("compiled-functions-used",
|
|
4812 gc_count_num_compiled_function_in_use, pl);
|
|
4813
|
|
4814 HACK_O_MATIC (symbol, "symbol-storage", pl);
|
|
4815 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl);
|
|
4816 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl);
|
|
4817
|
|
4818 HACK_O_MATIC (cons, "cons-storage", pl);
|
|
4819 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl);
|
|
4820 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl);
|
|
4821
|
|
4822 /* The things we do for backwards-compatibility */
|
|
4823 return
|
|
4824 list6 (Fcons (make_int (gc_count_num_cons_in_use),
|
|
4825 make_int (gc_count_num_cons_freelist)),
|
|
4826 Fcons (make_int (gc_count_num_symbol_in_use),
|
|
4827 make_int (gc_count_num_symbol_freelist)),
|
|
4828 Fcons (make_int (gc_count_num_marker_in_use),
|
|
4829 make_int (gc_count_num_marker_freelist)),
|
|
4830 make_int (gc_count_string_total_size),
|
|
4831 make_int (gc_count_vector_total_size),
|
|
4832 pl);
|
|
4833 }
|
|
4834 #undef HACK_O_MATIC
|
|
4835
|
|
4836 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /*
|
|
4837 Return the number of bytes consed since the last garbage collection.
|
|
4838 \"Consed\" is a misnomer in that this actually counts allocation
|
|
4839 of all different kinds of objects, not just conses.
|
|
4840
|
|
4841 If this value exceeds `gc-cons-threshold', a garbage collection happens.
|
|
4842 */
|
|
4843 ())
|
|
4844 {
|
|
4845 return make_int (consing_since_gc);
|
|
4846 }
|
|
4847
|
440
|
4848 #if 0
|
444
|
4849 DEFUN ("memory-limit", Fmemory_limit, 0, 0, 0, /*
|
801
|
4850 Return the address of the last byte XEmacs has allocated, divided by 1024.
|
|
4851 This may be helpful in debugging XEmacs's memory usage.
|
428
|
4852 The value is divided by 1024 to make sure it will fit in a lisp integer.
|
|
4853 */
|
|
4854 ())
|
|
4855 {
|
|
4856 return make_int ((EMACS_INT) sbrk (0) / 1024);
|
|
4857 }
|
440
|
4858 #endif
|
428
|
4859
|
801
|
4860 DEFUN ("memory-usage", Fmemory_usage, 0, 0, 0, /*
|
|
4861 Return the total number of bytes used by the data segment in XEmacs.
|
|
4862 This may be helpful in debugging XEmacs's memory usage.
|
|
4863 */
|
|
4864 ())
|
|
4865 {
|
|
4866 return make_int (total_data_usage ());
|
|
4867 }
|
|
4868
|
851
|
4869 void
|
|
4870 recompute_funcall_allocation_flag (void)
|
|
4871 {
|
887
|
4872 funcall_allocation_flag =
|
|
4873 need_to_garbage_collect ||
|
|
4874 need_to_check_c_alloca ||
|
|
4875 need_to_signal_post_gc;
|
851
|
4876 }
|
|
4877
|
801
|
4878 /* True if it's time to garbage collect now. */
|
814
|
4879 static void
|
|
4880 recompute_need_to_garbage_collect (void)
|
801
|
4881 {
|
|
4882 if (always_gc)
|
814
|
4883 need_to_garbage_collect = 1;
|
|
4884 else
|
|
4885 need_to_garbage_collect =
|
|
4886 (consing_since_gc > gc_cons_threshold
|
|
4887 #if 0 /* #### implement this better */
|
|
4888 &&
|
|
4889 (100 * consing_since_gc) / total_data_usage () >=
|
|
4890 gc_cons_percentage
|
|
4891 #endif /* 0 */
|
|
4892 );
|
851
|
4893 recompute_funcall_allocation_flag ();
|
801
|
4894 }
|
|
4895
|
428
|
4896
|
|
4897 int
|
|
4898 object_dead_p (Lisp_Object obj)
|
|
4899 {
|
|
4900 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) ||
|
|
4901 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) ||
|
|
4902 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) ||
|
|
4903 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) ||
|
|
4904 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) ||
|
|
4905 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) ||
|
|
4906 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj))));
|
|
4907 }
|
|
4908
|
|
4909 #ifdef MEMORY_USAGE_STATS
|
|
4910
|
|
4911 /* Attempt to determine the actual amount of space that is used for
|
|
4912 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE".
|
|
4913
|
|
4914 It seems that the following holds:
|
|
4915
|
|
4916 1. When using the old allocator (malloc.c):
|
|
4917
|
|
4918 -- blocks are always allocated in chunks of powers of two. For
|
|
4919 each block, there is an overhead of 8 bytes if rcheck is not
|
|
4920 defined, 20 bytes if it is defined. In other words, a
|
|
4921 one-byte allocation needs 8 bytes of overhead for a total of
|
|
4922 9 bytes, and needs to have 16 bytes of memory chunked out for
|
|
4923 it.
|
|
4924
|
|
4925 2. When using the new allocator (gmalloc.c):
|
|
4926
|
|
4927 -- blocks are always allocated in chunks of powers of two up
|
|
4928 to 4096 bytes. Larger blocks are allocated in chunks of
|
|
4929 an integral multiple of 4096 bytes. The minimum block
|
|
4930 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG
|
|
4931 is defined. There is no per-block overhead, but there
|
|
4932 is an overhead of 3*sizeof (size_t) for each 4096 bytes
|
|
4933 allocated.
|
|
4934
|
|
4935 3. When using the system malloc, anything goes, but they are
|
|
4936 generally slower and more space-efficient than the GNU
|
|
4937 allocators. One possibly reasonable assumption to make
|
|
4938 for want of better data is that sizeof (void *), or maybe
|
|
4939 2 * sizeof (void *), is required as overhead and that
|
|
4940 blocks are allocated in the minimum required size except
|
|
4941 that some minimum block size is imposed (e.g. 16 bytes). */
|
|
4942
|
665
|
4943 Bytecount
|
|
4944 malloced_storage_size (void *ptr, Bytecount claimed_size,
|
428
|
4945 struct overhead_stats *stats)
|
|
4946 {
|
665
|
4947 Bytecount orig_claimed_size = claimed_size;
|
428
|
4948
|
|
4949 #ifdef GNU_MALLOC
|
665
|
4950 if (claimed_size < (Bytecount) (2 * sizeof (void *)))
|
428
|
4951 claimed_size = 2 * sizeof (void *);
|
|
4952 # ifdef SUNOS_LOCALTIME_BUG
|
|
4953 if (claimed_size < 16)
|
|
4954 claimed_size = 16;
|
|
4955 # endif
|
|
4956 if (claimed_size < 4096)
|
|
4957 {
|
|
4958 int log = 1;
|
|
4959
|
|
4960 /* compute the log base two, more or less, then use it to compute
|
|
4961 the block size needed. */
|
|
4962 claimed_size--;
|
|
4963 /* It's big, it's heavy, it's wood! */
|
|
4964 while ((claimed_size /= 2) != 0)
|
|
4965 ++log;
|
|
4966 claimed_size = 1;
|
|
4967 /* It's better than bad, it's good! */
|
|
4968 while (log > 0)
|
|
4969 {
|
|
4970 claimed_size *= 2;
|
|
4971 log--;
|
|
4972 }
|
|
4973 /* We have to come up with some average about the amount of
|
|
4974 blocks used. */
|
665
|
4975 if ((Bytecount) (rand () & 4095) < claimed_size)
|
428
|
4976 claimed_size += 3 * sizeof (void *);
|
|
4977 }
|
|
4978 else
|
|
4979 {
|
|
4980 claimed_size += 4095;
|
|
4981 claimed_size &= ~4095;
|
|
4982 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t);
|
|
4983 }
|
|
4984
|
|
4985 #elif defined (SYSTEM_MALLOC)
|
|
4986
|
|
4987 if (claimed_size < 16)
|
|
4988 claimed_size = 16;
|
|
4989 claimed_size += 2 * sizeof (void *);
|
|
4990
|
|
4991 #else /* old GNU allocator */
|
|
4992
|
|
4993 # ifdef rcheck /* #### may not be defined here */
|
|
4994 claimed_size += 20;
|
|
4995 # else
|
|
4996 claimed_size += 8;
|
|
4997 # endif
|
|
4998 {
|
|
4999 int log = 1;
|
|
5000
|
|
5001 /* compute the log base two, more or less, then use it to compute
|
|
5002 the block size needed. */
|
|
5003 claimed_size--;
|
|
5004 /* It's big, it's heavy, it's wood! */
|
|
5005 while ((claimed_size /= 2) != 0)
|
|
5006 ++log;
|
|
5007 claimed_size = 1;
|
|
5008 /* It's better than bad, it's good! */
|
|
5009 while (log > 0)
|
|
5010 {
|
|
5011 claimed_size *= 2;
|
|
5012 log--;
|
|
5013 }
|
|
5014 }
|
|
5015
|
|
5016 #endif /* old GNU allocator */
|
|
5017
|
|
5018 if (stats)
|
|
5019 {
|
|
5020 stats->was_requested += orig_claimed_size;
|
|
5021 stats->malloc_overhead += claimed_size - orig_claimed_size;
|
|
5022 }
|
|
5023 return claimed_size;
|
|
5024 }
|
|
5025
|
665
|
5026 Bytecount
|
|
5027 fixed_type_block_overhead (Bytecount size)
|
428
|
5028 {
|
665
|
5029 Bytecount per_block = TYPE_ALLOC_SIZE (cons, unsigned char);
|
|
5030 Bytecount overhead = 0;
|
|
5031 Bytecount storage_size = malloced_storage_size (0, per_block, 0);
|
428
|
5032 while (size >= per_block)
|
|
5033 {
|
|
5034 size -= per_block;
|
|
5035 overhead += sizeof (void *) + per_block - storage_size;
|
|
5036 }
|
|
5037 if (rand () % per_block < size)
|
|
5038 overhead += sizeof (void *) + per_block - storage_size;
|
|
5039 return overhead;
|
|
5040 }
|
|
5041
|
|
5042 #endif /* MEMORY_USAGE_STATS */
|
|
5043
|
|
5044
|
|
5045 /* Initialization */
|
771
|
5046 static void
|
1204
|
5047 common_init_alloc_early (void)
|
428
|
5048 {
|
771
|
5049 #ifndef Qzero
|
|
5050 Qzero = make_int (0); /* Only used if Lisp_Object is a union type */
|
|
5051 #endif
|
|
5052
|
|
5053 #ifndef Qnull_pointer
|
|
5054 /* C guarantees that Qnull_pointer will be initialized to all 0 bits,
|
|
5055 so the following is actually a no-op. */
|
793
|
5056 Qnull_pointer = wrap_pointer_1 (0);
|
771
|
5057 #endif
|
|
5058
|
428
|
5059 gc_generation_number[0] = 0;
|
|
5060 breathing_space = 0;
|
771
|
5061 Vgc_message = Qzero;
|
428
|
5062 all_lcrecords = 0;
|
|
5063 ignore_malloc_warnings = 1;
|
|
5064 #ifdef DOUG_LEA_MALLOC
|
|
5065 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
|
|
5066 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
|
|
5067 #if 0 /* Moved to emacs.c */
|
|
5068 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */
|
|
5069 #endif
|
|
5070 #endif
|
|
5071 init_string_alloc ();
|
|
5072 init_string_chars_alloc ();
|
|
5073 init_cons_alloc ();
|
|
5074 init_symbol_alloc ();
|
|
5075 init_compiled_function_alloc ();
|
|
5076 init_float_alloc ();
|
|
5077 init_marker_alloc ();
|
|
5078 init_extent_alloc ();
|
|
5079 init_event_alloc ();
|
1204
|
5080 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
5081 init_key_data_alloc ();
|
|
5082 init_button_data_alloc ();
|
|
5083 init_motion_data_alloc ();
|
|
5084 init_process_data_alloc ();
|
|
5085 init_timeout_data_alloc ();
|
|
5086 init_magic_data_alloc ();
|
|
5087 init_magic_eval_data_alloc ();
|
|
5088 init_eval_data_alloc ();
|
|
5089 init_misc_user_data_alloc ();
|
1204
|
5090 #endif /* EVENT_DATA_AS_OBJECTS */
|
428
|
5091
|
|
5092 ignore_malloc_warnings = 0;
|
|
5093
|
452
|
5094 if (staticpros_nodump)
|
|
5095 Dynarr_free (staticpros_nodump);
|
|
5096 staticpros_nodump = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *);
|
|
5097 Dynarr_resize (staticpros_nodump, 100); /* merely a small optimization */
|
771
|
5098 #ifdef DEBUG_XEMACS
|
|
5099 if (staticpro_nodump_names)
|
|
5100 Dynarr_free (staticpro_nodump_names);
|
|
5101 staticpro_nodump_names = Dynarr_new2 (char_ptr_dynarr, char *);
|
|
5102 Dynarr_resize (staticpro_nodump_names, 100); /* ditto */
|
|
5103 #endif
|
428
|
5104
|
|
5105 consing_since_gc = 0;
|
814
|
5106 need_to_garbage_collect = always_gc;
|
851
|
5107 need_to_check_c_alloca = 0;
|
|
5108 funcall_allocation_flag = 0;
|
|
5109 funcall_alloca_count = 0;
|
814
|
5110
|
428
|
5111 #if 1
|
|
5112 gc_cons_threshold = 500000; /* XEmacs change */
|
|
5113 #else
|
|
5114 gc_cons_threshold = 15000; /* debugging */
|
|
5115 #endif
|
801
|
5116 gc_cons_percentage = 0; /* #### 20; Don't have an accurate measure of
|
|
5117 memory usage on Windows; not verified on other
|
|
5118 systems */
|
428
|
5119 lrecord_uid_counter = 259;
|
|
5120 debug_string_purity = 0;
|
|
5121
|
|
5122 gc_currently_forbidden = 0;
|
|
5123 gc_hooks_inhibited = 0;
|
|
5124
|
800
|
5125 #ifdef ERROR_CHECK_TYPES
|
428
|
5126 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
5127 666;
|
|
5128 ERROR_ME_NOT.
|
|
5129 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42;
|
|
5130 ERROR_ME_WARN.
|
|
5131 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
5132 3333632;
|
793
|
5133 ERROR_ME_DEBUG_WARN.
|
|
5134 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
5135 8675309;
|
800
|
5136 #endif /* ERROR_CHECK_TYPES */
|
428
|
5137 }
|
|
5138
|
771
|
5139 static void
|
|
5140 init_lcrecord_lists (void)
|
|
5141 {
|
|
5142 int i;
|
|
5143
|
|
5144 for (i = 0; i < countof (lrecord_implementations_table); i++)
|
|
5145 {
|
|
5146 all_lcrecord_lists[i] = Qzero; /* Qnil not yet set */
|
|
5147 staticpro_nodump (&all_lcrecord_lists[i]);
|
|
5148 }
|
|
5149 }
|
|
5150
|
|
5151 void
|
1204
|
5152 init_alloc_early (void)
|
771
|
5153 {
|
1204
|
5154 #if defined (__cplusplus) && defined (ERROR_CHECK_GC)
|
|
5155 static struct gcpro initial_gcpro;
|
|
5156
|
|
5157 initial_gcpro.next = 0;
|
|
5158 initial_gcpro.var = &Qnil;
|
|
5159 initial_gcpro.nvars = 1;
|
|
5160 gcprolist = &initial_gcpro;
|
|
5161 #else
|
|
5162 gcprolist = 0;
|
|
5163 #endif /* defined (__cplusplus) && defined (ERROR_CHECK_GC) */
|
|
5164 }
|
|
5165
|
|
5166 void
|
|
5167 reinit_alloc_early (void)
|
|
5168 {
|
|
5169 common_init_alloc_early ();
|
771
|
5170 init_lcrecord_lists ();
|
|
5171 }
|
|
5172
|
428
|
5173 void
|
|
5174 init_alloc_once_early (void)
|
|
5175 {
|
1204
|
5176 common_init_alloc_early ();
|
428
|
5177
|
442
|
5178 {
|
|
5179 int i;
|
|
5180 for (i = 0; i < countof (lrecord_implementations_table); i++)
|
|
5181 lrecord_implementations_table[i] = 0;
|
|
5182 }
|
|
5183
|
|
5184 INIT_LRECORD_IMPLEMENTATION (cons);
|
|
5185 INIT_LRECORD_IMPLEMENTATION (vector);
|
|
5186 INIT_LRECORD_IMPLEMENTATION (string);
|
|
5187 INIT_LRECORD_IMPLEMENTATION (lcrecord_list);
|
1204
|
5188 INIT_LRECORD_IMPLEMENTATION (free);
|
428
|
5189
|
452
|
5190 staticpros = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *);
|
|
5191 Dynarr_resize (staticpros, 1410); /* merely a small optimization */
|
|
5192 dump_add_root_struct_ptr (&staticpros, &staticpros_description);
|
771
|
5193 #ifdef DEBUG_XEMACS
|
|
5194 staticpro_names = Dynarr_new2 (char_ptr_dynarr, char *);
|
|
5195 Dynarr_resize (staticpro_names, 1410); /* merely a small optimization */
|
|
5196 dump_add_root_struct_ptr (&staticpro_names, &staticpro_names_description);
|
|
5197 #endif
|
|
5198
|
|
5199 init_lcrecord_lists ();
|
428
|
5200 }
|
|
5201
|
|
5202 void
|
|
5203 syms_of_alloc (void)
|
|
5204 {
|
442
|
5205 DEFSYMBOL (Qpre_gc_hook);
|
|
5206 DEFSYMBOL (Qpost_gc_hook);
|
|
5207 DEFSYMBOL (Qgarbage_collecting);
|
428
|
5208
|
|
5209 DEFSUBR (Fcons);
|
|
5210 DEFSUBR (Flist);
|
|
5211 DEFSUBR (Fvector);
|
|
5212 DEFSUBR (Fbit_vector);
|
|
5213 DEFSUBR (Fmake_byte_code);
|
|
5214 DEFSUBR (Fmake_list);
|
|
5215 DEFSUBR (Fmake_vector);
|
|
5216 DEFSUBR (Fmake_bit_vector);
|
|
5217 DEFSUBR (Fmake_string);
|
|
5218 DEFSUBR (Fstring);
|
|
5219 DEFSUBR (Fmake_symbol);
|
|
5220 DEFSUBR (Fmake_marker);
|
|
5221 DEFSUBR (Fpurecopy);
|
|
5222 DEFSUBR (Fgarbage_collect);
|
440
|
5223 #if 0
|
428
|
5224 DEFSUBR (Fmemory_limit);
|
440
|
5225 #endif
|
801
|
5226 DEFSUBR (Fmemory_usage);
|
428
|
5227 DEFSUBR (Fconsing_since_gc);
|
|
5228 }
|
|
5229
|
|
5230 void
|
|
5231 vars_of_alloc (void)
|
|
5232 {
|
1292
|
5233 QSin_garbage_collection = build_msg_string ("(in garbage collection)");
|
|
5234 staticpro (&QSin_garbage_collection);
|
|
5235
|
428
|
5236 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /*
|
|
5237 *Number of bytes of consing between garbage collections.
|
|
5238 \"Consing\" is a misnomer in that this actually counts allocation
|
|
5239 of all different kinds of objects, not just conses.
|
|
5240 Garbage collection can happen automatically once this many bytes have been
|
|
5241 allocated since the last garbage collection. All data types count.
|
|
5242
|
|
5243 Garbage collection happens automatically when `eval' or `funcall' are
|
|
5244 called. (Note that `funcall' is called implicitly as part of evaluation.)
|
|
5245 By binding this temporarily to a large number, you can effectively
|
|
5246 prevent garbage collection during a part of the program.
|
|
5247
|
853
|
5248 Normally, you cannot set this value less than 10,000 (if you do, it is
|
|
5249 automatically reset during the next garbage collection). However, if
|
|
5250 XEmacs was compiled with DEBUG_XEMACS, this does not happen, allowing
|
|
5251 you to set this value very low to track down problems with insufficient
|
|
5252 GCPRO'ing. If you set this to a negative number, garbage collection will
|
|
5253 happen at *EVERY* call to `eval' or `funcall'. This is an extremely
|
|
5254 effective way to check GCPRO problems, but be warned that your XEmacs
|
|
5255 will be unusable! You almost certainly won't have the patience to wait
|
|
5256 long enough to be able to set it back.
|
|
5257
|
428
|
5258 See also `consing-since-gc'.
|
|
5259 */ );
|
|
5260
|
801
|
5261 DEFVAR_INT ("gc-cons-percentage", &gc_cons_percentage /*
|
|
5262 *Percentage of memory allocated between garbage collections.
|
|
5263
|
|
5264 Garbage collection will happen if this percentage of the total amount of
|
|
5265 memory used for data has been allocated since the last garbage collection.
|
|
5266 However, it will not happen if less than `gc-cons-threshold' bytes have
|
|
5267 been allocated -- this sets an absolute minimum in case very little data
|
|
5268 has been allocated or the percentage is set very low. Set this to 0 to
|
|
5269 have garbage collection always happen after `gc-cons-threshold' bytes have
|
|
5270 been allocated, regardless of current memory usage.
|
|
5271
|
|
5272 Garbage collection happens automatically when `eval' or `funcall' are
|
|
5273 called. (Note that `funcall' is called implicitly as part of evaluation.)
|
|
5274 By binding this temporarily to a large number, you can effectively
|
|
5275 prevent garbage collection during a part of the program.
|
|
5276
|
|
5277 See also `consing-since-gc'.
|
|
5278 */ );
|
|
5279
|
428
|
5280 #ifdef DEBUG_XEMACS
|
|
5281 DEFVAR_INT ("debug-allocation", &debug_allocation /*
|
|
5282 If non-zero, print out information to stderr about all objects allocated.
|
|
5283 See also `debug-allocation-backtrace-length'.
|
|
5284 */ );
|
|
5285 debug_allocation = 0;
|
|
5286
|
|
5287 DEFVAR_INT ("debug-allocation-backtrace-length",
|
|
5288 &debug_allocation_backtrace_length /*
|
|
5289 Length (in stack frames) of short backtrace printed out by `debug-allocation'.
|
|
5290 */ );
|
|
5291 debug_allocation_backtrace_length = 2;
|
|
5292 #endif
|
|
5293
|
|
5294 DEFVAR_BOOL ("purify-flag", &purify_flag /*
|
|
5295 Non-nil means loading Lisp code in order to dump an executable.
|
|
5296 This means that certain objects should be allocated in readonly space.
|
|
5297 */ );
|
|
5298
|
1154
|
5299 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages /*
|
|
5300 Non-nil means display messages at start and end of garbage collection.
|
|
5301 */ );
|
|
5302 garbage_collection_messages = 0;
|
|
5303
|
428
|
5304 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /*
|
|
5305 Function or functions to be run just before each garbage collection.
|
|
5306 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
5307 runs, so be extremely careful in what you add here. In particular, avoid
|
|
5308 consing, and do not interact with the user.
|
|
5309 */ );
|
|
5310 Vpre_gc_hook = Qnil;
|
|
5311
|
|
5312 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /*
|
|
5313 Function or functions to be run just after each garbage collection.
|
|
5314 Interrupts, garbage collection, and errors are inhibited while this hook
|
887
|
5315 runs. Each hook is called with one argument which is an alist with
|
|
5316 finalization data.
|
428
|
5317 */ );
|
|
5318 Vpost_gc_hook = Qnil;
|
|
5319
|
|
5320 DEFVAR_LISP ("gc-message", &Vgc_message /*
|
|
5321 String to print to indicate that a garbage collection is in progress.
|
|
5322 This is printed in the echo area. If the selected frame is on a
|
|
5323 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer
|
|
5324 image instance) in the domain of the selected frame, the mouse pointer
|
|
5325 will change instead of this message being printed.
|
|
5326 */ );
|
|
5327 Vgc_message = build_string (gc_default_message);
|
|
5328
|
|
5329 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /*
|
|
5330 Pointer glyph used to indicate that a garbage collection is in progress.
|
|
5331 If the selected window is on a window system and this glyph specifies a
|
|
5332 value (i.e. a pointer image instance) in the domain of the selected
|
|
5333 window, the pointer will be changed as specified during garbage collection.
|
|
5334 Otherwise, a message will be printed in the echo area, as controlled
|
|
5335 by `gc-message'.
|
|
5336 */ );
|
|
5337 }
|
|
5338
|
|
5339 void
|
|
5340 complex_vars_of_alloc (void)
|
|
5341 {
|
|
5342 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer);
|
|
5343 }
|