428
|
1 /* Storage allocation and gc for XEmacs Lisp interpreter.
|
|
2 Copyright (C) 1985-1998 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995 Sun Microsystems, Inc.
|
1265
|
4 Copyright (C) 1995, 1996, 2001, 2002, 2003 Ben Wing.
|
428
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from
|
|
24 FSF. */
|
|
25
|
|
26 /* Authorship:
|
|
27
|
|
28 FSF: Original version; a long time ago.
|
|
29 Mly: Significantly rewritten to use new 3-bit tags and
|
|
30 nicely abstracted object definitions, for 19.8.
|
|
31 JWZ: Improved code to keep track of purespace usage and
|
|
32 issue nice purespace and GC stats.
|
|
33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking
|
|
34 and various changes for Mule, for 19.12.
|
|
35 Added bit vectors for 19.13.
|
|
36 Added lcrecord lists for 19.14.
|
|
37 slb: Lots of work on the purification and dump time code.
|
|
38 Synched Doug Lea malloc support from Emacs 20.2.
|
442
|
39 og: Killed the purespace. Portable dumper (moved to dumper.c)
|
428
|
40 */
|
|
41
|
|
42 #include <config.h>
|
|
43 #include "lisp.h"
|
|
44
|
|
45 #include "backtrace.h"
|
|
46 #include "buffer.h"
|
|
47 #include "bytecode.h"
|
|
48 #include "chartab.h"
|
|
49 #include "device.h"
|
|
50 #include "elhash.h"
|
|
51 #include "events.h"
|
872
|
52 #include "extents-impl.h"
|
1204
|
53 #include "file-coding.h"
|
872
|
54 #include "frame-impl.h"
|
428
|
55 #include "glyphs.h"
|
|
56 #include "opaque.h"
|
1204
|
57 #include "lstream.h"
|
872
|
58 #include "process.h"
|
1292
|
59 #include "profile.h"
|
428
|
60 #include "redisplay.h"
|
|
61 #include "specifier.h"
|
|
62 #include "sysfile.h"
|
442
|
63 #include "sysdep.h"
|
428
|
64 #include "window.h"
|
|
65 #include "console-stream.h"
|
|
66
|
|
67 #ifdef DOUG_LEA_MALLOC
|
|
68 #include <malloc.h>
|
|
69 #endif
|
|
70
|
|
71 EXFUN (Fgarbage_collect, 0);
|
|
72
|
814
|
73 static void recompute_need_to_garbage_collect (void);
|
|
74
|
428
|
75 #if 0 /* this is _way_ too slow to be part of the standard debug options */
|
|
76 #if defined(DEBUG_XEMACS) && defined(MULE)
|
|
77 #define VERIFY_STRING_CHARS_INTEGRITY
|
|
78 #endif
|
|
79 #endif
|
|
80
|
|
81 /* Define this to use malloc/free with no freelist for all datatypes,
|
|
82 the hope being that some debugging tools may help detect
|
|
83 freed memory references */
|
|
84 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */
|
|
85 #include <dmalloc.h>
|
|
86 #define ALLOC_NO_POOLS
|
|
87 #endif
|
|
88
|
|
89 #ifdef DEBUG_XEMACS
|
458
|
90 static Fixnum debug_allocation;
|
|
91 static Fixnum debug_allocation_backtrace_length;
|
428
|
92 #endif
|
|
93
|
|
94 /* Number of bytes of consing done since the last gc */
|
814
|
95 static EMACS_INT consing_since_gc;
|
1292
|
96 EMACS_UINT total_consing;
|
|
97
|
814
|
98 int need_to_garbage_collect;
|
851
|
99 int need_to_check_c_alloca;
|
887
|
100 int need_to_signal_post_gc;
|
851
|
101 int funcall_allocation_flag;
|
|
102 Bytecount __temp_alloca_size__;
|
|
103 Bytecount funcall_alloca_count;
|
814
|
104
|
|
105 /* Determine now whether we need to garbage collect or not, to make
|
|
106 Ffuncall() faster */
|
|
107 #define INCREMENT_CONS_COUNTER_1(size) \
|
|
108 do \
|
|
109 { \
|
|
110 consing_since_gc += (size); \
|
1292
|
111 total_consing += (size); \
|
|
112 if (profiling_active) \
|
|
113 profile_record_consing (size); \
|
814
|
114 recompute_need_to_garbage_collect (); \
|
|
115 } while (0)
|
428
|
116
|
|
117 #define debug_allocation_backtrace() \
|
|
118 do { \
|
|
119 if (debug_allocation_backtrace_length > 0) \
|
|
120 debug_short_backtrace (debug_allocation_backtrace_length); \
|
|
121 } while (0)
|
|
122
|
|
123 #ifdef DEBUG_XEMACS
|
801
|
124 #define INCREMENT_CONS_COUNTER(foosize, type) \
|
|
125 do { \
|
|
126 if (debug_allocation) \
|
|
127 { \
|
|
128 stderr_out ("allocating %s (size %ld)\n", type, \
|
|
129 (long) foosize); \
|
|
130 debug_allocation_backtrace (); \
|
|
131 } \
|
|
132 INCREMENT_CONS_COUNTER_1 (foosize); \
|
428
|
133 } while (0)
|
|
134 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \
|
|
135 do { \
|
|
136 if (debug_allocation > 1) \
|
|
137 { \
|
801
|
138 stderr_out ("allocating noseeum %s (size %ld)\n", type, \
|
|
139 (long) foosize); \
|
428
|
140 debug_allocation_backtrace (); \
|
|
141 } \
|
|
142 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
143 } while (0)
|
|
144 #else
|
|
145 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size)
|
|
146 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \
|
|
147 INCREMENT_CONS_COUNTER_1 (size)
|
|
148 #endif
|
|
149
|
|
150 #define DECREMENT_CONS_COUNTER(size) do { \
|
|
151 consing_since_gc -= (size); \
|
1292
|
152 total_consing -= (size); \
|
|
153 if (profiling_active) \
|
|
154 profile_record_unconsing (size); \
|
428
|
155 if (consing_since_gc < 0) \
|
|
156 consing_since_gc = 0; \
|
814
|
157 recompute_need_to_garbage_collect (); \
|
428
|
158 } while (0)
|
|
159
|
|
160 /* Number of bytes of consing since gc before another gc should be done. */
|
801
|
161 static EMACS_INT gc_cons_threshold;
|
|
162
|
|
163 /* Percentage of consing of total data size before another GC. */
|
|
164 static EMACS_INT gc_cons_percentage;
|
|
165
|
|
166 #ifdef ERROR_CHECK_GC
|
853
|
167 int always_gc; /* Debugging hack; equivalent to
|
|
168 (setq gc-cons-thresold -1) */
|
801
|
169 #else
|
|
170 #define always_gc 0
|
|
171 #endif
|
428
|
172
|
|
173 /* Nonzero during gc */
|
|
174 int gc_in_progress;
|
|
175
|
1154
|
176 /* Nonzero means display messages at beginning and end of GC. */
|
|
177
|
|
178 int garbage_collection_messages;
|
|
179
|
428
|
180 /* Number of times GC has happened at this level or below.
|
|
181 * Level 0 is most volatile, contrary to usual convention.
|
|
182 * (Of course, there's only one level at present) */
|
|
183 EMACS_INT gc_generation_number[1];
|
|
184
|
|
185 /* This is just for use by the printer, to allow things to print uniquely */
|
|
186 static int lrecord_uid_counter;
|
|
187
|
|
188 /* Nonzero when calling certain hooks or doing other things where
|
|
189 a GC would be bad */
|
1318
|
190 static int gc_currently_forbidden;
|
428
|
191
|
|
192 /* Hooks. */
|
|
193 Lisp_Object Vpre_gc_hook, Qpre_gc_hook;
|
|
194 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
|
|
195
|
|
196 /* "Garbage collecting" */
|
|
197 Lisp_Object Vgc_message;
|
|
198 Lisp_Object Vgc_pointer_glyph;
|
771
|
199 static const Char_ASCII gc_default_message[] = "Garbage collecting";
|
428
|
200 Lisp_Object Qgarbage_collecting;
|
|
201
|
1292
|
202 static Lisp_Object QSin_garbage_collection;
|
|
203
|
428
|
204 /* Non-zero means we're in the process of doing the dump */
|
|
205 int purify_flag;
|
|
206
|
1204
|
207 /* Non-zero means we're pdumping out or in */
|
|
208 #ifdef PDUMP
|
|
209 int in_pdump;
|
|
210 #endif
|
|
211
|
800
|
212 #ifdef ERROR_CHECK_TYPES
|
428
|
213
|
793
|
214 Error_Behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN, ERROR_ME_DEBUG_WARN;
|
428
|
215
|
|
216 #endif
|
|
217
|
801
|
218 /* Very cheesy ways of figuring out how much memory is being used for
|
|
219 data. #### Need better (system-dependent) ways. */
|
|
220 void *minimum_address_seen;
|
|
221 void *maximum_address_seen;
|
|
222
|
428
|
223 int
|
|
224 c_readonly (Lisp_Object obj)
|
|
225 {
|
|
226 return POINTER_TYPE_P (XTYPE (obj)) && C_READONLY (obj);
|
|
227 }
|
|
228
|
|
229 int
|
|
230 lisp_readonly (Lisp_Object obj)
|
|
231 {
|
|
232 return POINTER_TYPE_P (XTYPE (obj)) && LISP_READONLY (obj);
|
|
233 }
|
|
234
|
|
235
|
|
236 /* Maximum amount of C stack to save when a GC happens. */
|
|
237
|
|
238 #ifndef MAX_SAVE_STACK
|
|
239 #define MAX_SAVE_STACK 0 /* 16000 */
|
|
240 #endif
|
|
241
|
|
242 /* Non-zero means ignore malloc warnings. Set during initialization. */
|
|
243 int ignore_malloc_warnings;
|
|
244
|
|
245
|
|
246 static void *breathing_space;
|
|
247
|
|
248 void
|
|
249 release_breathing_space (void)
|
|
250 {
|
|
251 if (breathing_space)
|
|
252 {
|
|
253 void *tmp = breathing_space;
|
|
254 breathing_space = 0;
|
1726
|
255 xfree (tmp, void *);
|
428
|
256 }
|
|
257 }
|
|
258
|
|
259 /* malloc calls this if it finds we are near exhausting storage */
|
|
260 void
|
442
|
261 malloc_warning (const char *str)
|
428
|
262 {
|
|
263 if (ignore_malloc_warnings)
|
|
264 return;
|
|
265
|
|
266 warn_when_safe
|
793
|
267 (Qmemory, Qemergency,
|
428
|
268 "%s\n"
|
|
269 "Killing some buffers may delay running out of memory.\n"
|
|
270 "However, certainly by the time you receive the 95%% warning,\n"
|
|
271 "you should clean up, kill this Emacs, and start a new one.",
|
|
272 str);
|
|
273 }
|
|
274
|
|
275 /* Called if malloc returns zero */
|
|
276 DOESNT_RETURN
|
|
277 memory_full (void)
|
|
278 {
|
|
279 /* Force a GC next time eval is called.
|
|
280 It's better to loop garbage-collecting (we might reclaim enough
|
|
281 to win) than to loop beeping and barfing "Memory exhausted"
|
|
282 */
|
|
283 consing_since_gc = gc_cons_threshold + 1;
|
814
|
284 recompute_need_to_garbage_collect ();
|
428
|
285 release_breathing_space ();
|
|
286
|
|
287 /* Flush some histories which might conceivably contain garbalogical
|
|
288 inhibitors. */
|
|
289 if (!NILP (Fboundp (Qvalues)))
|
|
290 Fset (Qvalues, Qnil);
|
|
291 Vcommand_history = Qnil;
|
|
292
|
563
|
293 out_of_memory ("Memory exhausted", Qunbound);
|
428
|
294 }
|
|
295
|
801
|
296 static void
|
|
297 set_alloc_mins_and_maxes (void *val, Bytecount size)
|
|
298 {
|
|
299 if (!val)
|
|
300 return;
|
|
301 if ((char *) val + size > (char *) maximum_address_seen)
|
|
302 maximum_address_seen = (char *) val + size;
|
|
303 if (!minimum_address_seen)
|
|
304 minimum_address_seen =
|
|
305 #if SIZEOF_VOID_P == 8
|
|
306 (void *) 0xFFFFFFFFFFFFFFFF;
|
|
307 #else
|
|
308 (void *) 0xFFFFFFFF;
|
|
309 #endif
|
|
310 if ((char *) val < (char *) minimum_address_seen)
|
|
311 minimum_address_seen = (char *) val;
|
|
312 }
|
|
313
|
|
314 /* like malloc and realloc but check for no memory left. */
|
428
|
315
|
1315
|
316 #ifdef ERROR_CHECK_MALLOC
|
1292
|
317 static int in_malloc;
|
1333
|
318 extern int regex_malloc_disallowed;
|
1315
|
319 #endif
|
1292
|
320
|
428
|
321 #undef xmalloc
|
|
322 void *
|
665
|
323 xmalloc (Bytecount size)
|
428
|
324 {
|
1292
|
325 void *val;
|
|
326 #ifdef ERROR_CHECK_MALLOC
|
|
327 assert (!in_malloc);
|
1333
|
328 assert (!regex_malloc_disallowed);
|
1292
|
329 in_malloc = 1;
|
|
330 #endif
|
|
331 val = malloc (size);
|
|
332 #ifdef ERROR_CHECK_MALLOC
|
|
333 in_malloc = 0;
|
|
334 #endif
|
428
|
335 if (!val && (size != 0)) memory_full ();
|
801
|
336 set_alloc_mins_and_maxes (val, size);
|
428
|
337 return val;
|
|
338 }
|
|
339
|
|
340 #undef xcalloc
|
|
341 static void *
|
665
|
342 xcalloc (Elemcount nelem, Bytecount elsize)
|
428
|
343 {
|
1292
|
344 void *val;
|
|
345 #ifdef ERROR_CHECK_MALLOC
|
|
346 assert (!in_malloc);
|
1333
|
347 assert (!regex_malloc_disallowed);
|
1292
|
348 in_malloc = 1;
|
|
349 #endif
|
|
350 val= calloc (nelem, elsize);
|
|
351 #ifdef ERROR_CHECK_MALLOC
|
|
352 in_malloc = 0;
|
|
353 #endif
|
428
|
354
|
|
355 if (!val && (nelem != 0)) memory_full ();
|
801
|
356 set_alloc_mins_and_maxes (val, nelem * elsize);
|
428
|
357 return val;
|
|
358 }
|
|
359
|
|
360 void *
|
665
|
361 xmalloc_and_zero (Bytecount size)
|
428
|
362 {
|
|
363 return xcalloc (size, sizeof (char));
|
|
364 }
|
|
365
|
|
366 #undef xrealloc
|
|
367 void *
|
665
|
368 xrealloc (void *block, Bytecount size)
|
428
|
369 {
|
1292
|
370 #ifdef ERROR_CHECK_MALLOC
|
|
371 assert (!in_malloc);
|
1333
|
372 assert (!regex_malloc_disallowed);
|
1292
|
373 in_malloc = 1;
|
|
374 #endif
|
551
|
375 block = realloc (block, size);
|
1292
|
376 #ifdef ERROR_CHECK_MALLOC
|
|
377 in_malloc = 0;
|
|
378 #endif
|
551
|
379
|
|
380 if (!block && (size != 0)) memory_full ();
|
801
|
381 set_alloc_mins_and_maxes (block, size);
|
551
|
382 return block;
|
428
|
383 }
|
|
384
|
|
385 void
|
|
386 xfree_1 (void *block)
|
|
387 {
|
|
388 #ifdef ERROR_CHECK_MALLOC
|
|
389 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an
|
|
390 error until much later on for many system mallocs, such as
|
|
391 the one that comes with Solaris 2.3. FMH!! */
|
|
392 assert (block != (void *) 0xDEADBEEF);
|
|
393 assert (block);
|
1292
|
394 assert (!in_malloc);
|
1333
|
395 assert (!regex_malloc_disallowed);
|
1292
|
396 in_malloc = 1;
|
428
|
397 #endif /* ERROR_CHECK_MALLOC */
|
|
398 free (block);
|
1292
|
399 #ifdef ERROR_CHECK_MALLOC
|
|
400 in_malloc = 0;
|
|
401 #endif
|
428
|
402 }
|
|
403
|
|
404 #ifdef ERROR_CHECK_GC
|
|
405
|
|
406 static void
|
665
|
407 deadbeef_memory (void *ptr, Bytecount size)
|
428
|
408 {
|
826
|
409 UINT_32_BIT *ptr4 = (UINT_32_BIT *) ptr;
|
665
|
410 Bytecount beefs = size >> 2;
|
428
|
411
|
|
412 /* In practice, size will always be a multiple of four. */
|
|
413 while (beefs--)
|
1204
|
414 (*ptr4++) = 0xDEADBEEF; /* -559038737 base 10 */
|
428
|
415 }
|
|
416
|
|
417 #else /* !ERROR_CHECK_GC */
|
|
418
|
|
419
|
|
420 #define deadbeef_memory(ptr, size)
|
|
421
|
|
422 #endif /* !ERROR_CHECK_GC */
|
|
423
|
|
424 #undef xstrdup
|
|
425 char *
|
442
|
426 xstrdup (const char *str)
|
428
|
427 {
|
|
428 int len = strlen (str) + 1; /* for stupid terminating 0 */
|
|
429 void *val = xmalloc (len);
|
771
|
430
|
428
|
431 if (val == 0) return 0;
|
|
432 return (char *) memcpy (val, str, len);
|
|
433 }
|
|
434
|
|
435 #ifdef NEED_STRDUP
|
|
436 char *
|
442
|
437 strdup (const char *s)
|
428
|
438 {
|
|
439 return xstrdup (s);
|
|
440 }
|
|
441 #endif /* NEED_STRDUP */
|
|
442
|
|
443
|
|
444 static void *
|
665
|
445 allocate_lisp_storage (Bytecount size)
|
428
|
446 {
|
793
|
447 void *val = xmalloc (size);
|
|
448 /* We don't increment the cons counter anymore. Calling functions do
|
|
449 that now because we have two different kinds of cons counters -- one
|
|
450 for normal objects, and one for no-see-um conses (and possibly others
|
|
451 similar) where the conses are used totally internally, never escape,
|
|
452 and are created and then freed and shouldn't logically increment the
|
|
453 cons counting. #### (Or perhaps, we should decrement it when an object
|
|
454 get freed?) */
|
|
455
|
|
456 /* But we do now (as of 3-27-02) go and zero out the memory. This is a
|
|
457 good thing, as it will guarantee we won't get any intermittent bugs
|
1204
|
458 coming from an uninitiated field. The speed loss is unnoticeable,
|
|
459 esp. as the objects are not large -- large stuff like buffer text and
|
|
460 redisplay structures are allocated separately. */
|
793
|
461 memset (val, 0, size);
|
851
|
462
|
|
463 if (need_to_check_c_alloca)
|
|
464 xemacs_c_alloca (0);
|
|
465
|
793
|
466 return val;
|
428
|
467 }
|
|
468
|
|
469
|
442
|
470 /* lcrecords are chained together through their "next" field.
|
|
471 After doing the mark phase, GC will walk this linked list
|
|
472 and free any lcrecord which hasn't been marked. */
|
428
|
473 static struct lcrecord_header *all_lcrecords;
|
|
474
|
1204
|
475 /* The most basic of the lcrecord allocation functions. Not usually called
|
|
476 directly. Allocates an lrecord not managed by any lcrecord-list, of a
|
|
477 specified size. See lrecord.h. */
|
|
478
|
428
|
479 void *
|
1204
|
480 basic_alloc_lcrecord (Bytecount size,
|
|
481 const struct lrecord_implementation *implementation)
|
428
|
482 {
|
|
483 struct lcrecord_header *lcheader;
|
|
484
|
442
|
485 type_checking_assert
|
|
486 ((implementation->static_size == 0 ?
|
|
487 implementation->size_in_bytes_method != NULL :
|
|
488 implementation->static_size == size)
|
|
489 &&
|
|
490 (! implementation->basic_p)
|
|
491 &&
|
|
492 (! (implementation->hash == NULL && implementation->equal != NULL)));
|
428
|
493
|
|
494 lcheader = (struct lcrecord_header *) allocate_lisp_storage (size);
|
442
|
495 set_lheader_implementation (&lcheader->lheader, implementation);
|
428
|
496 lcheader->next = all_lcrecords;
|
|
497 #if 1 /* mly prefers to see small ID numbers */
|
|
498 lcheader->uid = lrecord_uid_counter++;
|
|
499 #else /* jwz prefers to see real addrs */
|
|
500 lcheader->uid = (int) &lcheader;
|
|
501 #endif
|
|
502 lcheader->free = 0;
|
|
503 all_lcrecords = lcheader;
|
|
504 INCREMENT_CONS_COUNTER (size, implementation->name);
|
|
505 return lcheader;
|
|
506 }
|
|
507
|
|
508 #if 0 /* Presently unused */
|
|
509 /* Very, very poor man's EGC?
|
|
510 * This may be slow and thrash pages all over the place.
|
|
511 * Only call it if you really feel you must (and if the
|
|
512 * lrecord was fairly recently allocated).
|
|
513 * Otherwise, just let the GC do its job -- that's what it's there for
|
|
514 */
|
|
515 void
|
771
|
516 very_old_free_lcrecord (struct lcrecord_header *lcrecord)
|
428
|
517 {
|
|
518 if (all_lcrecords == lcrecord)
|
|
519 {
|
|
520 all_lcrecords = lcrecord->next;
|
|
521 }
|
|
522 else
|
|
523 {
|
|
524 struct lrecord_header *header = all_lcrecords;
|
|
525 for (;;)
|
|
526 {
|
|
527 struct lrecord_header *next = header->next;
|
|
528 if (next == lcrecord)
|
|
529 {
|
|
530 header->next = lrecord->next;
|
|
531 break;
|
|
532 }
|
|
533 else if (next == 0)
|
|
534 abort ();
|
|
535 else
|
|
536 header = next;
|
|
537 }
|
|
538 }
|
|
539 if (lrecord->implementation->finalizer)
|
|
540 lrecord->implementation->finalizer (lrecord, 0);
|
|
541 xfree (lrecord);
|
|
542 return;
|
|
543 }
|
|
544 #endif /* Unused */
|
|
545
|
|
546
|
|
547 static void
|
|
548 disksave_object_finalization_1 (void)
|
|
549 {
|
|
550 struct lcrecord_header *header;
|
|
551
|
|
552 for (header = all_lcrecords; header; header = header->next)
|
|
553 {
|
442
|
554 if (LHEADER_IMPLEMENTATION (&header->lheader)->finalizer &&
|
428
|
555 !header->free)
|
442
|
556 LHEADER_IMPLEMENTATION (&header->lheader)->finalizer (header, 1);
|
428
|
557 }
|
|
558 }
|
|
559
|
1204
|
560 /* Bitwise copy all parts of a Lisp object other than the header */
|
|
561
|
|
562 void
|
|
563 copy_lisp_object (Lisp_Object dst, Lisp_Object src)
|
|
564 {
|
|
565 const struct lrecord_implementation *imp =
|
|
566 XRECORD_LHEADER_IMPLEMENTATION (src);
|
|
567 Bytecount size = lisp_object_size (src);
|
|
568
|
|
569 assert (imp == XRECORD_LHEADER_IMPLEMENTATION (dst));
|
|
570 assert (size == lisp_object_size (dst));
|
|
571
|
|
572 if (imp->basic_p)
|
|
573 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lrecord_header),
|
|
574 (char *) XRECORD_LHEADER (src) + sizeof (struct lrecord_header),
|
|
575 size - sizeof (struct lrecord_header));
|
|
576 else
|
|
577 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lcrecord_header),
|
|
578 (char *) XRECORD_LHEADER (src) + sizeof (struct lcrecord_header),
|
|
579 size - sizeof (struct lcrecord_header));
|
|
580 }
|
|
581
|
428
|
582
|
|
583 /************************************************************************/
|
|
584 /* Debugger support */
|
|
585 /************************************************************************/
|
|
586 /* Give gdb/dbx enough information to decode Lisp Objects. We make
|
|
587 sure certain symbols are always defined, so gdb doesn't complain
|
438
|
588 about expressions in src/.gdbinit. See src/.gdbinit or src/.dbxrc
|
|
589 to see how this is used. */
|
428
|
590
|
458
|
591 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS;
|
|
592 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1;
|
428
|
593
|
|
594 #ifdef USE_UNION_TYPE
|
458
|
595 unsigned char dbg_USE_UNION_TYPE = 1;
|
428
|
596 #else
|
458
|
597 unsigned char dbg_USE_UNION_TYPE = 0;
|
428
|
598 #endif
|
|
599
|
458
|
600 unsigned char dbg_valbits = VALBITS;
|
|
601 unsigned char dbg_gctypebits = GCTYPEBITS;
|
|
602
|
|
603 /* On some systems, the above definitions will be optimized away by
|
|
604 the compiler or linker unless they are referenced in some function. */
|
|
605 long dbg_inhibit_dbg_symbol_deletion (void);
|
|
606 long
|
|
607 dbg_inhibit_dbg_symbol_deletion (void)
|
|
608 {
|
|
609 return
|
|
610 (dbg_valmask +
|
|
611 dbg_typemask +
|
|
612 dbg_USE_UNION_TYPE +
|
|
613 dbg_valbits +
|
|
614 dbg_gctypebits);
|
|
615 }
|
428
|
616
|
|
617 /* Macros turned into functions for ease of debugging.
|
|
618 Debuggers don't know about macros! */
|
|
619 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2);
|
|
620 int
|
|
621 dbg_eq (Lisp_Object obj1, Lisp_Object obj2)
|
|
622 {
|
|
623 return EQ (obj1, obj2);
|
|
624 }
|
|
625
|
|
626
|
|
627 /************************************************************************/
|
|
628 /* Fixed-size type macros */
|
|
629 /************************************************************************/
|
|
630
|
|
631 /* For fixed-size types that are commonly used, we malloc() large blocks
|
|
632 of memory at a time and subdivide them into chunks of the correct
|
|
633 size for an object of that type. This is more efficient than
|
|
634 malloc()ing each object separately because we save on malloc() time
|
|
635 and overhead due to the fewer number of malloc()ed blocks, and
|
|
636 also because we don't need any extra pointers within each object
|
|
637 to keep them threaded together for GC purposes. For less common
|
|
638 (and frequently large-size) types, we use lcrecords, which are
|
|
639 malloc()ed individually and chained together through a pointer
|
|
640 in the lcrecord header. lcrecords do not need to be fixed-size
|
|
641 (i.e. two objects of the same type need not have the same size;
|
|
642 however, the size of a particular object cannot vary dynamically).
|
|
643 It is also much easier to create a new lcrecord type because no
|
|
644 additional code needs to be added to alloc.c. Finally, lcrecords
|
|
645 may be more efficient when there are only a small number of them.
|
|
646
|
|
647 The types that are stored in these large blocks (or "frob blocks")
|
|
648 are cons, float, compiled-function, symbol, marker, extent, event,
|
|
649 and string.
|
|
650
|
|
651 Note that strings are special in that they are actually stored in
|
|
652 two parts: a structure containing information about the string, and
|
|
653 the actual data associated with the string. The former structure
|
|
654 (a struct Lisp_String) is a fixed-size structure and is managed the
|
|
655 same way as all the other such types. This structure contains a
|
|
656 pointer to the actual string data, which is stored in structures of
|
|
657 type struct string_chars_block. Each string_chars_block consists
|
|
658 of a pointer to a struct Lisp_String, followed by the data for that
|
440
|
659 string, followed by another pointer to a Lisp_String, followed by
|
|
660 the data for that string, etc. At GC time, the data in these
|
|
661 blocks is compacted by searching sequentially through all the
|
428
|
662 blocks and compressing out any holes created by unmarked strings.
|
|
663 Strings that are more than a certain size (bigger than the size of
|
|
664 a string_chars_block, although something like half as big might
|
|
665 make more sense) are malloc()ed separately and not stored in
|
|
666 string_chars_blocks. Furthermore, no one string stretches across
|
|
667 two string_chars_blocks.
|
|
668
|
1204
|
669 Vectors are each malloc()ed separately as lcrecords.
|
428
|
670
|
|
671 In the following discussion, we use conses, but it applies equally
|
|
672 well to the other fixed-size types.
|
|
673
|
|
674 We store cons cells inside of cons_blocks, allocating a new
|
|
675 cons_block with malloc() whenever necessary. Cons cells reclaimed
|
|
676 by GC are put on a free list to be reallocated before allocating
|
|
677 any new cons cells from the latest cons_block. Each cons_block is
|
|
678 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least
|
|
679 the versions in malloc.c and gmalloc.c) really allocates in units
|
|
680 of powers of two and uses 4 bytes for its own overhead.
|
|
681
|
|
682 What GC actually does is to search through all the cons_blocks,
|
|
683 from the most recently allocated to the oldest, and put all
|
|
684 cons cells that are not marked (whether or not they're already
|
|
685 free) on a cons_free_list. The cons_free_list is a stack, and
|
|
686 so the cons cells in the oldest-allocated cons_block end up
|
|
687 at the head of the stack and are the first to be reallocated.
|
|
688 If any cons_block is entirely free, it is freed with free()
|
|
689 and its cons cells removed from the cons_free_list. Because
|
|
690 the cons_free_list ends up basically in memory order, we have
|
|
691 a high locality of reference (assuming a reasonable turnover
|
|
692 of allocating and freeing) and have a reasonable probability
|
|
693 of entirely freeing up cons_blocks that have been more recently
|
|
694 allocated. This stage is called the "sweep stage" of GC, and
|
|
695 is executed after the "mark stage", which involves starting
|
|
696 from all places that are known to point to in-use Lisp objects
|
|
697 (e.g. the obarray, where are all symbols are stored; the
|
|
698 current catches and condition-cases; the backtrace list of
|
|
699 currently executing functions; the gcpro list; etc.) and
|
|
700 recursively marking all objects that are accessible.
|
|
701
|
454
|
702 At the beginning of the sweep stage, the conses in the cons blocks
|
|
703 are in one of three states: in use and marked, in use but not
|
|
704 marked, and not in use (already freed). Any conses that are marked
|
|
705 have been marked in the mark stage just executed, because as part
|
|
706 of the sweep stage we unmark any marked objects. The way we tell
|
|
707 whether or not a cons cell is in use is through the LRECORD_FREE_P
|
|
708 macro. This uses a special lrecord type `lrecord_type_free',
|
|
709 which is never associated with any valid object.
|
|
710
|
|
711 Conses on the free_cons_list are threaded through a pointer stored
|
|
712 in the conses themselves. Because the cons is still in a
|
|
713 cons_block and needs to remain marked as not in use for the next
|
|
714 time that GC happens, we need room to store both the "free"
|
|
715 indicator and the chaining pointer. So this pointer is stored
|
|
716 after the lrecord header (actually where C places a pointer after
|
|
717 the lrecord header; they are not necessarily contiguous). This
|
|
718 implies that all fixed-size types must be big enough to contain at
|
|
719 least one pointer. This is true for all current fixed-size types,
|
|
720 with the possible exception of Lisp_Floats, for which we define the
|
|
721 meat of the struct using a union of a pointer and a double to
|
|
722 ensure adequate space for the free list chain pointer.
|
428
|
723
|
|
724 Some types of objects need additional "finalization" done
|
|
725 when an object is converted from in use to not in use;
|
|
726 this is the purpose of the ADDITIONAL_FREE_type macro.
|
|
727 For example, markers need to be removed from the chain
|
|
728 of markers that is kept in each buffer. This is because
|
|
729 markers in a buffer automatically disappear if the marker
|
|
730 is no longer referenced anywhere (the same does not
|
|
731 apply to extents, however).
|
|
732
|
|
733 WARNING: Things are in an extremely bizarre state when
|
|
734 the ADDITIONAL_FREE_type macros are called, so beware!
|
|
735
|
454
|
736 When ERROR_CHECK_GC is defined, we do things differently so as to
|
|
737 maximize our chances of catching places where there is insufficient
|
|
738 GCPROing. The thing we want to avoid is having an object that
|
|
739 we're using but didn't GCPRO get freed by GC and then reallocated
|
|
740 while we're in the process of using it -- this will result in
|
|
741 something seemingly unrelated getting trashed, and is extremely
|
|
742 difficult to track down. If the object gets freed but not
|
|
743 reallocated, we can usually catch this because we set most of the
|
|
744 bytes of a freed object to 0xDEADBEEF. (The lisp object type is set
|
|
745 to the invalid type `lrecord_type_free', however, and a pointer
|
|
746 used to chain freed objects together is stored after the lrecord
|
|
747 header; we play some tricks with this pointer to make it more
|
428
|
748 bogus, so crashes are more likely to occur right away.)
|
|
749
|
|
750 We want freed objects to stay free as long as possible,
|
|
751 so instead of doing what we do above, we maintain the
|
|
752 free objects in a first-in first-out queue. We also
|
|
753 don't recompute the free list each GC, unlike above;
|
|
754 this ensures that the queue ordering is preserved.
|
|
755 [This means that we are likely to have worse locality
|
|
756 of reference, and that we can never free a frob block
|
|
757 once it's allocated. (Even if we know that all cells
|
|
758 in it are free, there's no easy way to remove all those
|
|
759 cells from the free list because the objects on the
|
|
760 free list are unlikely to be in memory order.)]
|
|
761 Furthermore, we never take objects off the free list
|
|
762 unless there's a large number (usually 1000, but
|
|
763 varies depending on type) of them already on the list.
|
|
764 This way, we ensure that an object that gets freed will
|
|
765 remain free for the next 1000 (or whatever) times that
|
440
|
766 an object of that type is allocated. */
|
428
|
767
|
|
768 #ifndef MALLOC_OVERHEAD
|
|
769 #ifdef GNU_MALLOC
|
|
770 #define MALLOC_OVERHEAD 0
|
|
771 #elif defined (rcheck)
|
|
772 #define MALLOC_OVERHEAD 20
|
|
773 #else
|
|
774 #define MALLOC_OVERHEAD 8
|
|
775 #endif
|
|
776 #endif /* MALLOC_OVERHEAD */
|
|
777
|
|
778 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC)
|
|
779 /* If we released our reserve (due to running out of memory),
|
|
780 and we have a fair amount free once again,
|
|
781 try to set aside another reserve in case we run out once more.
|
|
782
|
|
783 This is called when a relocatable block is freed in ralloc.c. */
|
|
784 void refill_memory_reserve (void);
|
|
785 void
|
442
|
786 refill_memory_reserve (void)
|
428
|
787 {
|
|
788 if (breathing_space == 0)
|
|
789 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD);
|
|
790 }
|
|
791 #endif
|
|
792
|
|
793 #ifdef ALLOC_NO_POOLS
|
|
794 # define TYPE_ALLOC_SIZE(type, structtype) 1
|
|
795 #else
|
|
796 # define TYPE_ALLOC_SIZE(type, structtype) \
|
|
797 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \
|
|
798 / sizeof (structtype))
|
|
799 #endif /* ALLOC_NO_POOLS */
|
|
800
|
|
801 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \
|
|
802 \
|
|
803 struct type##_block \
|
|
804 { \
|
|
805 struct type##_block *prev; \
|
|
806 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \
|
|
807 }; \
|
|
808 \
|
|
809 static struct type##_block *current_##type##_block; \
|
|
810 static int current_##type##_block_index; \
|
|
811 \
|
454
|
812 static Lisp_Free *type##_free_list; \
|
|
813 static Lisp_Free *type##_free_list_tail; \
|
428
|
814 \
|
|
815 static void \
|
|
816 init_##type##_alloc (void) \
|
|
817 { \
|
|
818 current_##type##_block = 0; \
|
|
819 current_##type##_block_index = \
|
|
820 countof (current_##type##_block->block); \
|
|
821 type##_free_list = 0; \
|
|
822 type##_free_list_tail = 0; \
|
|
823 } \
|
|
824 \
|
|
825 static int gc_count_num_##type##_in_use; \
|
|
826 static int gc_count_num_##type##_freelist
|
|
827
|
|
828 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \
|
|
829 if (current_##type##_block_index \
|
|
830 == countof (current_##type##_block->block)) \
|
|
831 { \
|
|
832 struct type##_block *AFTFB_new = (struct type##_block *) \
|
|
833 allocate_lisp_storage (sizeof (struct type##_block)); \
|
|
834 AFTFB_new->prev = current_##type##_block; \
|
|
835 current_##type##_block = AFTFB_new; \
|
|
836 current_##type##_block_index = 0; \
|
|
837 } \
|
|
838 (result) = \
|
|
839 &(current_##type##_block->block[current_##type##_block_index++]); \
|
|
840 } while (0)
|
|
841
|
|
842 /* Allocate an instance of a type that is stored in blocks.
|
|
843 TYPE is the "name" of the type, STRUCTTYPE is the corresponding
|
|
844 structure type. */
|
|
845
|
|
846 #ifdef ERROR_CHECK_GC
|
|
847
|
|
848 /* Note: if you get crashes in this function, suspect incorrect calls
|
|
849 to free_cons() and friends. This happened once because the cons
|
|
850 cell was not GC-protected and was getting collected before
|
|
851 free_cons() was called. */
|
|
852
|
454
|
853 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \
|
|
854 if (gc_count_num_##type##_freelist > \
|
|
855 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \
|
|
856 { \
|
|
857 result = (structtype *) type##_free_list; \
|
1204
|
858 assert (LRECORD_FREE_P (result)); \
|
|
859 /* Before actually using the chain pointer, we complement \
|
|
860 all its bits; see PUT_FIXED_TYPE_ON_FREE_LIST(). */ \
|
454
|
861 type##_free_list = (Lisp_Free *) \
|
|
862 (~ (EMACS_UINT) (type##_free_list->chain)); \
|
|
863 gc_count_num_##type##_freelist--; \
|
|
864 } \
|
|
865 else \
|
|
866 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
867 MARK_LRECORD_AS_NOT_FREE (result); \
|
428
|
868 } while (0)
|
|
869
|
|
870 #else /* !ERROR_CHECK_GC */
|
|
871
|
454
|
872 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \
|
428
|
873 if (type##_free_list) \
|
|
874 { \
|
454
|
875 result = (structtype *) type##_free_list; \
|
|
876 type##_free_list = type##_free_list->chain; \
|
428
|
877 } \
|
|
878 else \
|
|
879 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
454
|
880 MARK_LRECORD_AS_NOT_FREE (result); \
|
428
|
881 } while (0)
|
|
882
|
|
883 #endif /* !ERROR_CHECK_GC */
|
|
884
|
454
|
885
|
428
|
886 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
887 do \
|
|
888 { \
|
|
889 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
890 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
891 } while (0)
|
|
892
|
|
893 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
894 do \
|
|
895 { \
|
|
896 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
897 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
898 } while (0)
|
|
899
|
454
|
900
|
|
901 /* Lisp_Free is the type to represent a free list member inside a frob
|
|
902 block of any lisp object type. */
|
|
903 typedef struct Lisp_Free
|
|
904 {
|
|
905 struct lrecord_header lheader;
|
|
906 struct Lisp_Free *chain;
|
|
907 } Lisp_Free;
|
|
908
|
|
909 #define LRECORD_FREE_P(ptr) \
|
771
|
910 (((struct lrecord_header *) ptr)->type == lrecord_type_free)
|
454
|
911
|
|
912 #define MARK_LRECORD_AS_FREE(ptr) \
|
771
|
913 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_free))
|
454
|
914
|
|
915 #ifdef ERROR_CHECK_GC
|
|
916 #define MARK_LRECORD_AS_NOT_FREE(ptr) \
|
771
|
917 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_undefined))
|
428
|
918 #else
|
454
|
919 #define MARK_LRECORD_AS_NOT_FREE(ptr) DO_NOTHING
|
428
|
920 #endif
|
|
921
|
|
922 #ifdef ERROR_CHECK_GC
|
|
923
|
454
|
924 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \
|
|
925 if (type##_free_list_tail) \
|
|
926 { \
|
|
927 /* When we store the chain pointer, we complement all \
|
|
928 its bits; this should significantly increase its \
|
|
929 bogosity in case someone tries to use the value, and \
|
|
930 should make us crash faster if someone overwrites the \
|
|
931 pointer because when it gets un-complemented in \
|
|
932 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \
|
|
933 extremely bogus. */ \
|
|
934 type##_free_list_tail->chain = \
|
|
935 (Lisp_Free *) ~ (EMACS_UINT) (ptr); \
|
|
936 } \
|
|
937 else \
|
|
938 type##_free_list = (Lisp_Free *) (ptr); \
|
|
939 type##_free_list_tail = (Lisp_Free *) (ptr); \
|
|
940 } while (0)
|
428
|
941
|
|
942 #else /* !ERROR_CHECK_GC */
|
|
943
|
454
|
944 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \
|
|
945 ((Lisp_Free *) (ptr))->chain = type##_free_list; \
|
|
946 type##_free_list = (Lisp_Free *) (ptr); \
|
|
947 } while (0) \
|
428
|
948
|
|
949 #endif /* !ERROR_CHECK_GC */
|
|
950
|
|
951 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */
|
|
952
|
|
953 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \
|
|
954 structtype *FFT_ptr = (ptr); \
|
1204
|
955 gc_checking_assert (!LRECORD_FREE_P (FFT_ptr)); \
|
428
|
956 ADDITIONAL_FREE_##type (FFT_ptr); \
|
|
957 deadbeef_memory (FFT_ptr, sizeof (structtype)); \
|
|
958 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \
|
454
|
959 MARK_LRECORD_AS_FREE (FFT_ptr); \
|
428
|
960 } while (0)
|
|
961
|
|
962 /* Like FREE_FIXED_TYPE() but used when we are explicitly
|
|
963 freeing a structure through free_cons(), free_marker(), etc.
|
|
964 rather than through the normal process of sweeping.
|
|
965 We attempt to undo the changes made to the allocation counters
|
|
966 as a result of this structure being allocated. This is not
|
|
967 completely necessary but helps keep things saner: e.g. this way,
|
|
968 repeatedly allocating and freeing a cons will not result in
|
|
969 the consing-since-gc counter advancing, which would cause a GC
|
1204
|
970 and somewhat defeat the purpose of explicitly freeing.
|
|
971
|
|
972 We also disable this mechanism entirely when ALLOC_NO_POOLS is
|
|
973 set, which is used for Purify and the like. */
|
|
974
|
|
975 #ifndef ALLOC_NO_POOLS
|
428
|
976 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \
|
|
977 do { FREE_FIXED_TYPE (type, structtype, ptr); \
|
|
978 DECREMENT_CONS_COUNTER (sizeof (structtype)); \
|
|
979 gc_count_num_##type##_freelist++; \
|
|
980 } while (0)
|
1204
|
981 #else
|
|
982 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr)
|
|
983 #endif
|
428
|
984
|
|
985
|
|
986
|
|
987 /************************************************************************/
|
|
988 /* Cons allocation */
|
|
989 /************************************************************************/
|
|
990
|
440
|
991 DECLARE_FIXED_TYPE_ALLOC (cons, Lisp_Cons);
|
428
|
992 /* conses are used and freed so often that we set this really high */
|
|
993 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */
|
|
994 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000
|
|
995
|
|
996 static Lisp_Object
|
|
997 mark_cons (Lisp_Object obj)
|
|
998 {
|
|
999 if (NILP (XCDR (obj)))
|
|
1000 return XCAR (obj);
|
|
1001
|
|
1002 mark_object (XCAR (obj));
|
|
1003 return XCDR (obj);
|
|
1004 }
|
|
1005
|
|
1006 static int
|
|
1007 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth)
|
|
1008 {
|
442
|
1009 depth++;
|
|
1010 while (internal_equal (XCAR (ob1), XCAR (ob2), depth))
|
428
|
1011 {
|
|
1012 ob1 = XCDR (ob1);
|
|
1013 ob2 = XCDR (ob2);
|
|
1014 if (! CONSP (ob1) || ! CONSP (ob2))
|
442
|
1015 return internal_equal (ob1, ob2, depth);
|
428
|
1016 }
|
|
1017 return 0;
|
|
1018 }
|
|
1019
|
1204
|
1020 static const struct memory_description cons_description[] = {
|
853
|
1021 { XD_LISP_OBJECT, offsetof (Lisp_Cons, car_) },
|
|
1022 { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr_) },
|
428
|
1023 { XD_END }
|
|
1024 };
|
|
1025
|
934
|
1026 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons,
|
|
1027 1, /*dumpable-flag*/
|
|
1028 mark_cons, print_cons, 0,
|
|
1029 cons_equal,
|
|
1030 /*
|
|
1031 * No `hash' method needed.
|
|
1032 * internal_hash knows how to
|
|
1033 * handle conses.
|
|
1034 */
|
|
1035 0,
|
|
1036 cons_description,
|
|
1037 Lisp_Cons);
|
428
|
1038
|
|
1039 DEFUN ("cons", Fcons, 2, 2, 0, /*
|
|
1040 Create a new cons, give it CAR and CDR as components, and return it.
|
|
1041 */
|
|
1042 (car, cdr))
|
|
1043 {
|
|
1044 /* This cannot GC. */
|
|
1045 Lisp_Object val;
|
440
|
1046 Lisp_Cons *c;
|
|
1047
|
|
1048 ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c);
|
442
|
1049 set_lheader_implementation (&c->lheader, &lrecord_cons);
|
793
|
1050 val = wrap_cons (c);
|
853
|
1051 XSETCAR (val, car);
|
|
1052 XSETCDR (val, cdr);
|
428
|
1053 return val;
|
|
1054 }
|
|
1055
|
|
1056 /* This is identical to Fcons() but it used for conses that we're
|
|
1057 going to free later, and is useful when trying to track down
|
|
1058 "real" consing. */
|
|
1059 Lisp_Object
|
|
1060 noseeum_cons (Lisp_Object car, Lisp_Object cdr)
|
|
1061 {
|
|
1062 Lisp_Object val;
|
440
|
1063 Lisp_Cons *c;
|
|
1064
|
|
1065 NOSEEUM_ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c);
|
442
|
1066 set_lheader_implementation (&c->lheader, &lrecord_cons);
|
793
|
1067 val = wrap_cons (c);
|
428
|
1068 XCAR (val) = car;
|
|
1069 XCDR (val) = cdr;
|
|
1070 return val;
|
|
1071 }
|
|
1072
|
|
1073 DEFUN ("list", Flist, 0, MANY, 0, /*
|
|
1074 Return a newly created list with specified arguments as elements.
|
|
1075 Any number of arguments, even zero arguments, are allowed.
|
|
1076 */
|
|
1077 (int nargs, Lisp_Object *args))
|
|
1078 {
|
|
1079 Lisp_Object val = Qnil;
|
|
1080 Lisp_Object *argp = args + nargs;
|
|
1081
|
|
1082 while (argp > args)
|
|
1083 val = Fcons (*--argp, val);
|
|
1084 return val;
|
|
1085 }
|
|
1086
|
|
1087 Lisp_Object
|
|
1088 list1 (Lisp_Object obj0)
|
|
1089 {
|
|
1090 /* This cannot GC. */
|
|
1091 return Fcons (obj0, Qnil);
|
|
1092 }
|
|
1093
|
|
1094 Lisp_Object
|
|
1095 list2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1096 {
|
|
1097 /* This cannot GC. */
|
|
1098 return Fcons (obj0, Fcons (obj1, Qnil));
|
|
1099 }
|
|
1100
|
|
1101 Lisp_Object
|
|
1102 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1103 {
|
|
1104 /* This cannot GC. */
|
|
1105 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil)));
|
|
1106 }
|
|
1107
|
|
1108 Lisp_Object
|
|
1109 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1110 {
|
|
1111 /* This cannot GC. */
|
|
1112 return Fcons (obj0, Fcons (obj1, obj2));
|
|
1113 }
|
|
1114
|
|
1115 Lisp_Object
|
|
1116 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist)
|
|
1117 {
|
|
1118 return Fcons (Fcons (key, value), alist);
|
|
1119 }
|
|
1120
|
|
1121 Lisp_Object
|
|
1122 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3)
|
|
1123 {
|
|
1124 /* This cannot GC. */
|
|
1125 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil))));
|
|
1126 }
|
|
1127
|
|
1128 Lisp_Object
|
|
1129 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1130 Lisp_Object obj4)
|
|
1131 {
|
|
1132 /* This cannot GC. */
|
|
1133 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil)))));
|
|
1134 }
|
|
1135
|
|
1136 Lisp_Object
|
|
1137 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1138 Lisp_Object obj4, Lisp_Object obj5)
|
|
1139 {
|
|
1140 /* This cannot GC. */
|
|
1141 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil))))));
|
|
1142 }
|
|
1143
|
|
1144 DEFUN ("make-list", Fmake_list, 2, 2, 0, /*
|
444
|
1145 Return a new list of length LENGTH, with each element being OBJECT.
|
428
|
1146 */
|
444
|
1147 (length, object))
|
428
|
1148 {
|
|
1149 CHECK_NATNUM (length);
|
|
1150
|
|
1151 {
|
|
1152 Lisp_Object val = Qnil;
|
647
|
1153 EMACS_INT size = XINT (length);
|
428
|
1154
|
|
1155 while (size--)
|
444
|
1156 val = Fcons (object, val);
|
428
|
1157 return val;
|
|
1158 }
|
|
1159 }
|
|
1160
|
|
1161
|
|
1162 /************************************************************************/
|
|
1163 /* Float allocation */
|
|
1164 /************************************************************************/
|
|
1165
|
440
|
1166 DECLARE_FIXED_TYPE_ALLOC (float, Lisp_Float);
|
428
|
1167 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000
|
|
1168
|
|
1169 Lisp_Object
|
|
1170 make_float (double float_value)
|
|
1171 {
|
440
|
1172 Lisp_Float *f;
|
|
1173
|
|
1174 ALLOCATE_FIXED_TYPE (float, Lisp_Float, f);
|
|
1175
|
|
1176 /* Avoid dump-time `uninitialized memory read' purify warnings. */
|
|
1177 if (sizeof (struct lrecord_header) + sizeof (double) != sizeof (*f))
|
|
1178 xzero (*f);
|
|
1179
|
442
|
1180 set_lheader_implementation (&f->lheader, &lrecord_float);
|
428
|
1181 float_data (f) = float_value;
|
793
|
1182 return wrap_float (f);
|
428
|
1183 }
|
|
1184
|
|
1185
|
|
1186 /************************************************************************/
|
|
1187 /* Vector allocation */
|
|
1188 /************************************************************************/
|
|
1189
|
|
1190 static Lisp_Object
|
|
1191 mark_vector (Lisp_Object obj)
|
|
1192 {
|
|
1193 Lisp_Vector *ptr = XVECTOR (obj);
|
|
1194 int len = vector_length (ptr);
|
|
1195 int i;
|
|
1196
|
|
1197 for (i = 0; i < len - 1; i++)
|
|
1198 mark_object (ptr->contents[i]);
|
|
1199 return (len > 0) ? ptr->contents[len - 1] : Qnil;
|
|
1200 }
|
|
1201
|
665
|
1202 static Bytecount
|
442
|
1203 size_vector (const void *lheader)
|
428
|
1204 {
|
456
|
1205 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, contents,
|
442
|
1206 ((Lisp_Vector *) lheader)->size);
|
428
|
1207 }
|
|
1208
|
|
1209 static int
|
|
1210 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
1211 {
|
|
1212 int len = XVECTOR_LENGTH (obj1);
|
|
1213 if (len != XVECTOR_LENGTH (obj2))
|
|
1214 return 0;
|
|
1215
|
|
1216 {
|
|
1217 Lisp_Object *ptr1 = XVECTOR_DATA (obj1);
|
|
1218 Lisp_Object *ptr2 = XVECTOR_DATA (obj2);
|
|
1219 while (len--)
|
|
1220 if (!internal_equal (*ptr1++, *ptr2++, depth + 1))
|
|
1221 return 0;
|
|
1222 }
|
|
1223 return 1;
|
|
1224 }
|
|
1225
|
665
|
1226 static Hashcode
|
442
|
1227 vector_hash (Lisp_Object obj, int depth)
|
|
1228 {
|
|
1229 return HASH2 (XVECTOR_LENGTH (obj),
|
|
1230 internal_array_hash (XVECTOR_DATA (obj),
|
|
1231 XVECTOR_LENGTH (obj),
|
|
1232 depth + 1));
|
|
1233 }
|
|
1234
|
1204
|
1235 static const struct memory_description vector_description[] = {
|
440
|
1236 { XD_LONG, offsetof (Lisp_Vector, size) },
|
|
1237 { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Vector, contents), XD_INDIRECT(0, 0) },
|
428
|
1238 { XD_END }
|
|
1239 };
|
|
1240
|
1204
|
1241 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION ("vector", vector,
|
|
1242 1, /*dumpable-flag*/
|
|
1243 mark_vector, print_vector, 0,
|
|
1244 vector_equal,
|
|
1245 vector_hash,
|
|
1246 vector_description,
|
|
1247 size_vector, Lisp_Vector);
|
428
|
1248 /* #### should allocate `small' vectors from a frob-block */
|
|
1249 static Lisp_Vector *
|
665
|
1250 make_vector_internal (Elemcount sizei)
|
428
|
1251 {
|
1204
|
1252 /* no `next' field; we use lcrecords */
|
665
|
1253 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object,
|
1204
|
1254 contents, sizei);
|
|
1255 Lisp_Vector *p =
|
|
1256 (Lisp_Vector *) basic_alloc_lcrecord (sizem, &lrecord_vector);
|
428
|
1257
|
|
1258 p->size = sizei;
|
|
1259 return p;
|
|
1260 }
|
|
1261
|
|
1262 Lisp_Object
|
665
|
1263 make_vector (Elemcount length, Lisp_Object object)
|
428
|
1264 {
|
|
1265 Lisp_Vector *vecp = make_vector_internal (length);
|
|
1266 Lisp_Object *p = vector_data (vecp);
|
|
1267
|
|
1268 while (length--)
|
444
|
1269 *p++ = object;
|
428
|
1270
|
793
|
1271 return wrap_vector (vecp);
|
428
|
1272 }
|
|
1273
|
|
1274 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /*
|
444
|
1275 Return a new vector of length LENGTH, with each element being OBJECT.
|
428
|
1276 See also the function `vector'.
|
|
1277 */
|
444
|
1278 (length, object))
|
428
|
1279 {
|
|
1280 CONCHECK_NATNUM (length);
|
444
|
1281 return make_vector (XINT (length), object);
|
428
|
1282 }
|
|
1283
|
|
1284 DEFUN ("vector", Fvector, 0, MANY, 0, /*
|
|
1285 Return a newly created vector with specified arguments as elements.
|
|
1286 Any number of arguments, even zero arguments, are allowed.
|
|
1287 */
|
|
1288 (int nargs, Lisp_Object *args))
|
|
1289 {
|
|
1290 Lisp_Vector *vecp = make_vector_internal (nargs);
|
|
1291 Lisp_Object *p = vector_data (vecp);
|
|
1292
|
|
1293 while (nargs--)
|
|
1294 *p++ = *args++;
|
|
1295
|
793
|
1296 return wrap_vector (vecp);
|
428
|
1297 }
|
|
1298
|
|
1299 Lisp_Object
|
|
1300 vector1 (Lisp_Object obj0)
|
|
1301 {
|
|
1302 return Fvector (1, &obj0);
|
|
1303 }
|
|
1304
|
|
1305 Lisp_Object
|
|
1306 vector2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1307 {
|
|
1308 Lisp_Object args[2];
|
|
1309 args[0] = obj0;
|
|
1310 args[1] = obj1;
|
|
1311 return Fvector (2, args);
|
|
1312 }
|
|
1313
|
|
1314 Lisp_Object
|
|
1315 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1316 {
|
|
1317 Lisp_Object args[3];
|
|
1318 args[0] = obj0;
|
|
1319 args[1] = obj1;
|
|
1320 args[2] = obj2;
|
|
1321 return Fvector (3, args);
|
|
1322 }
|
|
1323
|
|
1324 #if 0 /* currently unused */
|
|
1325
|
|
1326 Lisp_Object
|
|
1327 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1328 Lisp_Object obj3)
|
|
1329 {
|
|
1330 Lisp_Object args[4];
|
|
1331 args[0] = obj0;
|
|
1332 args[1] = obj1;
|
|
1333 args[2] = obj2;
|
|
1334 args[3] = obj3;
|
|
1335 return Fvector (4, args);
|
|
1336 }
|
|
1337
|
|
1338 Lisp_Object
|
|
1339 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1340 Lisp_Object obj3, Lisp_Object obj4)
|
|
1341 {
|
|
1342 Lisp_Object args[5];
|
|
1343 args[0] = obj0;
|
|
1344 args[1] = obj1;
|
|
1345 args[2] = obj2;
|
|
1346 args[3] = obj3;
|
|
1347 args[4] = obj4;
|
|
1348 return Fvector (5, args);
|
|
1349 }
|
|
1350
|
|
1351 Lisp_Object
|
|
1352 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1353 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5)
|
|
1354 {
|
|
1355 Lisp_Object args[6];
|
|
1356 args[0] = obj0;
|
|
1357 args[1] = obj1;
|
|
1358 args[2] = obj2;
|
|
1359 args[3] = obj3;
|
|
1360 args[4] = obj4;
|
|
1361 args[5] = obj5;
|
|
1362 return Fvector (6, args);
|
|
1363 }
|
|
1364
|
|
1365 Lisp_Object
|
|
1366 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1367 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1368 Lisp_Object obj6)
|
|
1369 {
|
|
1370 Lisp_Object args[7];
|
|
1371 args[0] = obj0;
|
|
1372 args[1] = obj1;
|
|
1373 args[2] = obj2;
|
|
1374 args[3] = obj3;
|
|
1375 args[4] = obj4;
|
|
1376 args[5] = obj5;
|
|
1377 args[6] = obj6;
|
|
1378 return Fvector (7, args);
|
|
1379 }
|
|
1380
|
|
1381 Lisp_Object
|
|
1382 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1383 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1384 Lisp_Object obj6, Lisp_Object obj7)
|
|
1385 {
|
|
1386 Lisp_Object args[8];
|
|
1387 args[0] = obj0;
|
|
1388 args[1] = obj1;
|
|
1389 args[2] = obj2;
|
|
1390 args[3] = obj3;
|
|
1391 args[4] = obj4;
|
|
1392 args[5] = obj5;
|
|
1393 args[6] = obj6;
|
|
1394 args[7] = obj7;
|
|
1395 return Fvector (8, args);
|
|
1396 }
|
|
1397 #endif /* unused */
|
|
1398
|
|
1399 /************************************************************************/
|
|
1400 /* Bit Vector allocation */
|
|
1401 /************************************************************************/
|
|
1402
|
|
1403 /* #### should allocate `small' bit vectors from a frob-block */
|
440
|
1404 static Lisp_Bit_Vector *
|
665
|
1405 make_bit_vector_internal (Elemcount sizei)
|
428
|
1406 {
|
1204
|
1407 /* no `next' field; we use lcrecords */
|
665
|
1408 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (sizei);
|
|
1409 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector,
|
1204
|
1410 unsigned long,
|
|
1411 bits, num_longs);
|
|
1412 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *)
|
|
1413 basic_alloc_lcrecord (sizem, &lrecord_bit_vector);
|
428
|
1414
|
|
1415 bit_vector_length (p) = sizei;
|
|
1416 return p;
|
|
1417 }
|
|
1418
|
|
1419 Lisp_Object
|
665
|
1420 make_bit_vector (Elemcount length, Lisp_Object bit)
|
428
|
1421 {
|
440
|
1422 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
665
|
1423 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (length);
|
428
|
1424
|
444
|
1425 CHECK_BIT (bit);
|
|
1426
|
|
1427 if (ZEROP (bit))
|
428
|
1428 memset (p->bits, 0, num_longs * sizeof (long));
|
|
1429 else
|
|
1430 {
|
665
|
1431 Elemcount bits_in_last = length & (LONGBITS_POWER_OF_2 - 1);
|
428
|
1432 memset (p->bits, ~0, num_longs * sizeof (long));
|
|
1433 /* But we have to make sure that the unused bits in the
|
|
1434 last long are 0, so that equal/hash is easy. */
|
|
1435 if (bits_in_last)
|
|
1436 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1;
|
|
1437 }
|
|
1438
|
793
|
1439 return wrap_bit_vector (p);
|
428
|
1440 }
|
|
1441
|
|
1442 Lisp_Object
|
665
|
1443 make_bit_vector_from_byte_vector (unsigned char *bytevec, Elemcount length)
|
428
|
1444 {
|
665
|
1445 Elemcount i;
|
428
|
1446 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
|
1447
|
|
1448 for (i = 0; i < length; i++)
|
|
1449 set_bit_vector_bit (p, i, bytevec[i]);
|
|
1450
|
793
|
1451 return wrap_bit_vector (p);
|
428
|
1452 }
|
|
1453
|
|
1454 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /*
|
444
|
1455 Return a new bit vector of length LENGTH. with each bit set to BIT.
|
|
1456 BIT must be one of the integers 0 or 1. See also the function `bit-vector'.
|
428
|
1457 */
|
444
|
1458 (length, bit))
|
428
|
1459 {
|
|
1460 CONCHECK_NATNUM (length);
|
|
1461
|
444
|
1462 return make_bit_vector (XINT (length), bit);
|
428
|
1463 }
|
|
1464
|
|
1465 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /*
|
|
1466 Return a newly created bit vector with specified arguments as elements.
|
|
1467 Any number of arguments, even zero arguments, are allowed.
|
444
|
1468 Each argument must be one of the integers 0 or 1.
|
428
|
1469 */
|
|
1470 (int nargs, Lisp_Object *args))
|
|
1471 {
|
|
1472 int i;
|
|
1473 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs);
|
|
1474
|
|
1475 for (i = 0; i < nargs; i++)
|
|
1476 {
|
|
1477 CHECK_BIT (args[i]);
|
|
1478 set_bit_vector_bit (p, i, !ZEROP (args[i]));
|
|
1479 }
|
|
1480
|
793
|
1481 return wrap_bit_vector (p);
|
428
|
1482 }
|
|
1483
|
|
1484
|
|
1485 /************************************************************************/
|
|
1486 /* Compiled-function allocation */
|
|
1487 /************************************************************************/
|
|
1488
|
|
1489 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function);
|
|
1490 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000
|
|
1491
|
|
1492 static Lisp_Object
|
|
1493 make_compiled_function (void)
|
|
1494 {
|
|
1495 Lisp_Compiled_Function *f;
|
|
1496
|
|
1497 ALLOCATE_FIXED_TYPE (compiled_function, Lisp_Compiled_Function, f);
|
442
|
1498 set_lheader_implementation (&f->lheader, &lrecord_compiled_function);
|
428
|
1499
|
|
1500 f->stack_depth = 0;
|
|
1501 f->specpdl_depth = 0;
|
|
1502 f->flags.documentationp = 0;
|
|
1503 f->flags.interactivep = 0;
|
|
1504 f->flags.domainp = 0; /* I18N3 */
|
|
1505 f->instructions = Qzero;
|
|
1506 f->constants = Qzero;
|
|
1507 f->arglist = Qnil;
|
1739
|
1508 f->args = NULL;
|
|
1509 f->max_args = f->min_args = f->args_in_array = 0;
|
428
|
1510 f->doc_and_interactive = Qnil;
|
|
1511 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
1512 f->annotated = Qnil;
|
|
1513 #endif
|
793
|
1514 return wrap_compiled_function (f);
|
428
|
1515 }
|
|
1516
|
|
1517 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /*
|
|
1518 Return a new compiled-function object.
|
|
1519 Usage: (arglist instructions constants stack-depth
|
|
1520 &optional doc-string interactive)
|
|
1521 Note that, unlike all other emacs-lisp functions, calling this with five
|
|
1522 arguments is NOT the same as calling it with six arguments, the last of
|
|
1523 which is nil. If the INTERACTIVE arg is specified as nil, then that means
|
|
1524 that this function was defined with `(interactive)'. If the arg is not
|
|
1525 specified, then that means the function is not interactive.
|
|
1526 This is terrible behavior which is retained for compatibility with old
|
|
1527 `.elc' files which expect these semantics.
|
|
1528 */
|
|
1529 (int nargs, Lisp_Object *args))
|
|
1530 {
|
|
1531 /* In a non-insane world this function would have this arglist...
|
|
1532 (arglist instructions constants stack_depth &optional doc_string interactive)
|
|
1533 */
|
|
1534 Lisp_Object fun = make_compiled_function ();
|
|
1535 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun);
|
|
1536
|
|
1537 Lisp_Object arglist = args[0];
|
|
1538 Lisp_Object instructions = args[1];
|
|
1539 Lisp_Object constants = args[2];
|
|
1540 Lisp_Object stack_depth = args[3];
|
|
1541 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil;
|
|
1542 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound;
|
|
1543
|
|
1544 if (nargs < 4 || nargs > 6)
|
|
1545 return Fsignal (Qwrong_number_of_arguments,
|
|
1546 list2 (intern ("make-byte-code"), make_int (nargs)));
|
|
1547
|
|
1548 /* Check for valid formal parameter list now, to allow us to use
|
|
1549 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */
|
|
1550 {
|
814
|
1551 EXTERNAL_LIST_LOOP_2 (symbol, arglist)
|
428
|
1552 {
|
|
1553 CHECK_SYMBOL (symbol);
|
|
1554 if (EQ (symbol, Qt) ||
|
|
1555 EQ (symbol, Qnil) ||
|
|
1556 SYMBOL_IS_KEYWORD (symbol))
|
563
|
1557 invalid_constant_2
|
428
|
1558 ("Invalid constant symbol in formal parameter list",
|
|
1559 symbol, arglist);
|
|
1560 }
|
|
1561 }
|
|
1562 f->arglist = arglist;
|
|
1563
|
|
1564 /* `instructions' is a string or a cons (string . int) for a
|
|
1565 lazy-loaded function. */
|
|
1566 if (CONSP (instructions))
|
|
1567 {
|
|
1568 CHECK_STRING (XCAR (instructions));
|
|
1569 CHECK_INT (XCDR (instructions));
|
|
1570 }
|
|
1571 else
|
|
1572 {
|
|
1573 CHECK_STRING (instructions);
|
|
1574 }
|
|
1575 f->instructions = instructions;
|
|
1576
|
|
1577 if (!NILP (constants))
|
|
1578 CHECK_VECTOR (constants);
|
|
1579 f->constants = constants;
|
|
1580
|
|
1581 CHECK_NATNUM (stack_depth);
|
442
|
1582 f->stack_depth = (unsigned short) XINT (stack_depth);
|
428
|
1583
|
|
1584 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
1585 if (!NILP (Vcurrent_compiled_function_annotation))
|
|
1586 f->annotated = Fcopy (Vcurrent_compiled_function_annotation);
|
|
1587 else if (!NILP (Vload_file_name_internal_the_purecopy))
|
|
1588 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1589 else if (!NILP (Vload_file_name_internal))
|
|
1590 {
|
|
1591 struct gcpro gcpro1;
|
|
1592 GCPRO1 (fun); /* don't let fun get reaped */
|
|
1593 Vload_file_name_internal_the_purecopy =
|
|
1594 Ffile_name_nondirectory (Vload_file_name_internal);
|
|
1595 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1596 UNGCPRO;
|
|
1597 }
|
|
1598 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */
|
|
1599
|
|
1600 /* doc_string may be nil, string, int, or a cons (string . int).
|
|
1601 interactive may be list or string (or unbound). */
|
|
1602 f->doc_and_interactive = Qunbound;
|
|
1603 #ifdef I18N3
|
|
1604 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0)
|
|
1605 f->doc_and_interactive = Vfile_domain;
|
|
1606 #endif
|
|
1607 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0)
|
|
1608 {
|
|
1609 f->doc_and_interactive
|
|
1610 = (UNBOUNDP (f->doc_and_interactive) ? interactive :
|
|
1611 Fcons (interactive, f->doc_and_interactive));
|
|
1612 }
|
|
1613 if ((f->flags.documentationp = !NILP (doc_string)) != 0)
|
|
1614 {
|
|
1615 f->doc_and_interactive
|
|
1616 = (UNBOUNDP (f->doc_and_interactive) ? doc_string :
|
|
1617 Fcons (doc_string, f->doc_and_interactive));
|
|
1618 }
|
|
1619 if (UNBOUNDP (f->doc_and_interactive))
|
|
1620 f->doc_and_interactive = Qnil;
|
|
1621
|
|
1622 return fun;
|
|
1623 }
|
|
1624
|
|
1625
|
|
1626 /************************************************************************/
|
|
1627 /* Symbol allocation */
|
|
1628 /************************************************************************/
|
|
1629
|
440
|
1630 DECLARE_FIXED_TYPE_ALLOC (symbol, Lisp_Symbol);
|
428
|
1631 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000
|
|
1632
|
|
1633 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /*
|
|
1634 Return a newly allocated uninterned symbol whose name is NAME.
|
|
1635 Its value and function definition are void, and its property list is nil.
|
|
1636 */
|
|
1637 (name))
|
|
1638 {
|
440
|
1639 Lisp_Symbol *p;
|
428
|
1640
|
|
1641 CHECK_STRING (name);
|
|
1642
|
440
|
1643 ALLOCATE_FIXED_TYPE (symbol, Lisp_Symbol, p);
|
442
|
1644 set_lheader_implementation (&p->lheader, &lrecord_symbol);
|
793
|
1645 p->name = name;
|
428
|
1646 p->plist = Qnil;
|
|
1647 p->value = Qunbound;
|
|
1648 p->function = Qunbound;
|
|
1649 symbol_next (p) = 0;
|
793
|
1650 return wrap_symbol (p);
|
428
|
1651 }
|
|
1652
|
|
1653
|
|
1654 /************************************************************************/
|
|
1655 /* Extent allocation */
|
|
1656 /************************************************************************/
|
|
1657
|
|
1658 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent);
|
|
1659 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000
|
|
1660
|
|
1661 struct extent *
|
|
1662 allocate_extent (void)
|
|
1663 {
|
|
1664 struct extent *e;
|
|
1665
|
|
1666 ALLOCATE_FIXED_TYPE (extent, struct extent, e);
|
442
|
1667 set_lheader_implementation (&e->lheader, &lrecord_extent);
|
428
|
1668 extent_object (e) = Qnil;
|
|
1669 set_extent_start (e, -1);
|
|
1670 set_extent_end (e, -1);
|
|
1671 e->plist = Qnil;
|
|
1672
|
|
1673 xzero (e->flags);
|
|
1674
|
|
1675 extent_face (e) = Qnil;
|
|
1676 e->flags.end_open = 1; /* default is for endpoints to behave like markers */
|
|
1677 e->flags.detachable = 1;
|
|
1678
|
|
1679 return e;
|
|
1680 }
|
|
1681
|
|
1682
|
|
1683 /************************************************************************/
|
|
1684 /* Event allocation */
|
|
1685 /************************************************************************/
|
|
1686
|
440
|
1687 DECLARE_FIXED_TYPE_ALLOC (event, Lisp_Event);
|
428
|
1688 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000
|
|
1689
|
|
1690 Lisp_Object
|
|
1691 allocate_event (void)
|
|
1692 {
|
440
|
1693 Lisp_Event *e;
|
|
1694
|
|
1695 ALLOCATE_FIXED_TYPE (event, Lisp_Event, e);
|
442
|
1696 set_lheader_implementation (&e->lheader, &lrecord_event);
|
428
|
1697
|
793
|
1698 return wrap_event (e);
|
428
|
1699 }
|
|
1700
|
1204
|
1701 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
1702 DECLARE_FIXED_TYPE_ALLOC (key_data, Lisp_Key_Data);
|
|
1703 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_key_data 1000
|
|
1704
|
|
1705 Lisp_Object
|
1204
|
1706 make_key_data (void)
|
934
|
1707 {
|
|
1708 Lisp_Key_Data *d;
|
|
1709
|
|
1710 ALLOCATE_FIXED_TYPE (key_data, Lisp_Key_Data, d);
|
1204
|
1711 xzero (*d);
|
934
|
1712 set_lheader_implementation (&d->lheader, &lrecord_key_data);
|
1204
|
1713 d->keysym = Qnil;
|
|
1714
|
|
1715 return wrap_key_data (d);
|
934
|
1716 }
|
|
1717
|
|
1718 DECLARE_FIXED_TYPE_ALLOC (button_data, Lisp_Button_Data);
|
|
1719 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_button_data 1000
|
|
1720
|
|
1721 Lisp_Object
|
1204
|
1722 make_button_data (void)
|
934
|
1723 {
|
|
1724 Lisp_Button_Data *d;
|
|
1725
|
|
1726 ALLOCATE_FIXED_TYPE (button_data, Lisp_Button_Data, d);
|
1204
|
1727 xzero (*d);
|
934
|
1728 set_lheader_implementation (&d->lheader, &lrecord_button_data);
|
|
1729
|
1204
|
1730 return wrap_button_data (d);
|
934
|
1731 }
|
|
1732
|
|
1733 DECLARE_FIXED_TYPE_ALLOC (motion_data, Lisp_Motion_Data);
|
|
1734 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_motion_data 1000
|
|
1735
|
|
1736 Lisp_Object
|
1204
|
1737 make_motion_data (void)
|
934
|
1738 {
|
|
1739 Lisp_Motion_Data *d;
|
|
1740
|
|
1741 ALLOCATE_FIXED_TYPE (motion_data, Lisp_Motion_Data, d);
|
1204
|
1742 xzero (*d);
|
934
|
1743 set_lheader_implementation (&d->lheader, &lrecord_motion_data);
|
|
1744
|
1204
|
1745 return wrap_motion_data (d);
|
934
|
1746 }
|
|
1747
|
|
1748 DECLARE_FIXED_TYPE_ALLOC (process_data, Lisp_Process_Data);
|
|
1749 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_process_data 1000
|
|
1750
|
|
1751 Lisp_Object
|
1204
|
1752 make_process_data (void)
|
934
|
1753 {
|
|
1754 Lisp_Process_Data *d;
|
|
1755
|
|
1756 ALLOCATE_FIXED_TYPE (process_data, Lisp_Process_Data, d);
|
1204
|
1757 xzero (*d);
|
934
|
1758 set_lheader_implementation (&d->lheader, &lrecord_process_data);
|
1204
|
1759 d->process = Qnil;
|
|
1760
|
|
1761 return wrap_process_data (d);
|
934
|
1762 }
|
|
1763
|
|
1764 DECLARE_FIXED_TYPE_ALLOC (timeout_data, Lisp_Timeout_Data);
|
|
1765 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_timeout_data 1000
|
|
1766
|
|
1767 Lisp_Object
|
1204
|
1768 make_timeout_data (void)
|
934
|
1769 {
|
|
1770 Lisp_Timeout_Data *d;
|
|
1771
|
|
1772 ALLOCATE_FIXED_TYPE (timeout_data, Lisp_Timeout_Data, d);
|
1204
|
1773 xzero (*d);
|
934
|
1774 set_lheader_implementation (&d->lheader, &lrecord_timeout_data);
|
1204
|
1775 d->function = Qnil;
|
|
1776 d->object = Qnil;
|
|
1777
|
|
1778 return wrap_timeout_data (d);
|
934
|
1779 }
|
|
1780
|
|
1781 DECLARE_FIXED_TYPE_ALLOC (magic_data, Lisp_Magic_Data);
|
|
1782 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_data 1000
|
|
1783
|
|
1784 Lisp_Object
|
1204
|
1785 make_magic_data (void)
|
934
|
1786 {
|
|
1787 Lisp_Magic_Data *d;
|
|
1788
|
|
1789 ALLOCATE_FIXED_TYPE (magic_data, Lisp_Magic_Data, d);
|
1204
|
1790 xzero (*d);
|
934
|
1791 set_lheader_implementation (&d->lheader, &lrecord_magic_data);
|
|
1792
|
1204
|
1793 return wrap_magic_data (d);
|
934
|
1794 }
|
|
1795
|
|
1796 DECLARE_FIXED_TYPE_ALLOC (magic_eval_data, Lisp_Magic_Eval_Data);
|
|
1797 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_eval_data 1000
|
|
1798
|
|
1799 Lisp_Object
|
1204
|
1800 make_magic_eval_data (void)
|
934
|
1801 {
|
|
1802 Lisp_Magic_Eval_Data *d;
|
|
1803
|
|
1804 ALLOCATE_FIXED_TYPE (magic_eval_data, Lisp_Magic_Eval_Data, d);
|
1204
|
1805 xzero (*d);
|
934
|
1806 set_lheader_implementation (&d->lheader, &lrecord_magic_eval_data);
|
1204
|
1807 d->object = Qnil;
|
|
1808
|
|
1809 return wrap_magic_eval_data (d);
|
934
|
1810 }
|
|
1811
|
|
1812 DECLARE_FIXED_TYPE_ALLOC (eval_data, Lisp_Eval_Data);
|
|
1813 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_eval_data 1000
|
|
1814
|
|
1815 Lisp_Object
|
1204
|
1816 make_eval_data (void)
|
934
|
1817 {
|
|
1818 Lisp_Eval_Data *d;
|
|
1819
|
|
1820 ALLOCATE_FIXED_TYPE (eval_data, Lisp_Eval_Data, d);
|
1204
|
1821 xzero (*d);
|
934
|
1822 set_lheader_implementation (&d->lheader, &lrecord_eval_data);
|
1204
|
1823 d->function = Qnil;
|
|
1824 d->object = Qnil;
|
|
1825
|
|
1826 return wrap_eval_data (d);
|
934
|
1827 }
|
|
1828
|
|
1829 DECLARE_FIXED_TYPE_ALLOC (misc_user_data, Lisp_Misc_User_Data);
|
|
1830 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_misc_user_data 1000
|
|
1831
|
|
1832 Lisp_Object
|
1204
|
1833 make_misc_user_data (void)
|
934
|
1834 {
|
|
1835 Lisp_Misc_User_Data *d;
|
|
1836
|
|
1837 ALLOCATE_FIXED_TYPE (misc_user_data, Lisp_Misc_User_Data, d);
|
1204
|
1838 xzero (*d);
|
934
|
1839 set_lheader_implementation (&d->lheader, &lrecord_misc_user_data);
|
1204
|
1840 d->function = Qnil;
|
|
1841 d->object = Qnil;
|
|
1842
|
|
1843 return wrap_misc_user_data (d);
|
934
|
1844 }
|
1204
|
1845
|
|
1846 #endif /* EVENT_DATA_AS_OBJECTS */
|
428
|
1847
|
|
1848 /************************************************************************/
|
|
1849 /* Marker allocation */
|
|
1850 /************************************************************************/
|
|
1851
|
440
|
1852 DECLARE_FIXED_TYPE_ALLOC (marker, Lisp_Marker);
|
428
|
1853 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000
|
|
1854
|
|
1855 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /*
|
|
1856 Return a new marker which does not point at any place.
|
|
1857 */
|
|
1858 ())
|
|
1859 {
|
440
|
1860 Lisp_Marker *p;
|
|
1861
|
|
1862 ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p);
|
442
|
1863 set_lheader_implementation (&p->lheader, &lrecord_marker);
|
428
|
1864 p->buffer = 0;
|
665
|
1865 p->membpos = 0;
|
428
|
1866 marker_next (p) = 0;
|
|
1867 marker_prev (p) = 0;
|
|
1868 p->insertion_type = 0;
|
793
|
1869 return wrap_marker (p);
|
428
|
1870 }
|
|
1871
|
|
1872 Lisp_Object
|
|
1873 noseeum_make_marker (void)
|
|
1874 {
|
440
|
1875 Lisp_Marker *p;
|
|
1876
|
|
1877 NOSEEUM_ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p);
|
442
|
1878 set_lheader_implementation (&p->lheader, &lrecord_marker);
|
428
|
1879 p->buffer = 0;
|
665
|
1880 p->membpos = 0;
|
428
|
1881 marker_next (p) = 0;
|
|
1882 marker_prev (p) = 0;
|
|
1883 p->insertion_type = 0;
|
793
|
1884 return wrap_marker (p);
|
428
|
1885 }
|
|
1886
|
|
1887
|
|
1888 /************************************************************************/
|
|
1889 /* String allocation */
|
|
1890 /************************************************************************/
|
|
1891
|
|
1892 /* The data for "short" strings generally resides inside of structs of type
|
|
1893 string_chars_block. The Lisp_String structure is allocated just like any
|
1204
|
1894 other basic lrecord, and these are freelisted when they get garbage
|
|
1895 collected. The data for short strings get compacted, but the data for
|
|
1896 large strings do not.
|
428
|
1897
|
|
1898 Previously Lisp_String structures were relocated, but this caused a lot
|
|
1899 of bus-errors because the C code didn't include enough GCPRO's for
|
|
1900 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so
|
|
1901 that the reference would get relocated).
|
|
1902
|
|
1903 This new method makes things somewhat bigger, but it is MUCH safer. */
|
|
1904
|
438
|
1905 DECLARE_FIXED_TYPE_ALLOC (string, Lisp_String);
|
428
|
1906 /* strings are used and freed quite often */
|
|
1907 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */
|
|
1908 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000
|
|
1909
|
|
1910 static Lisp_Object
|
|
1911 mark_string (Lisp_Object obj)
|
|
1912 {
|
793
|
1913 if (CONSP (XSTRING_PLIST (obj)) && EXTENT_INFOP (XCAR (XSTRING_PLIST (obj))))
|
|
1914 flush_cached_extent_info (XCAR (XSTRING_PLIST (obj)));
|
|
1915 return XSTRING_PLIST (obj);
|
428
|
1916 }
|
|
1917
|
|
1918 static int
|
|
1919 string_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
1920 {
|
|
1921 Bytecount len;
|
|
1922 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) &&
|
|
1923 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len));
|
|
1924 }
|
|
1925
|
1204
|
1926 static const struct memory_description string_description[] = {
|
793
|
1927 { XD_BYTECOUNT, offsetof (Lisp_String, size_) },
|
|
1928 { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data_), XD_INDIRECT(0, 1) },
|
440
|
1929 { XD_LISP_OBJECT, offsetof (Lisp_String, plist) },
|
428
|
1930 { XD_END }
|
|
1931 };
|
|
1932
|
442
|
1933 /* We store the string's extent info as the first element of the string's
|
|
1934 property list; and the string's MODIFF as the first or second element
|
|
1935 of the string's property list (depending on whether the extent info
|
|
1936 is present), but only if the string has been modified. This is ugly
|
|
1937 but it reduces the memory allocated for the string in the vast
|
|
1938 majority of cases, where the string is never modified and has no
|
|
1939 extent info.
|
|
1940
|
|
1941 #### This means you can't use an int as a key in a string's plist. */
|
|
1942
|
|
1943 static Lisp_Object *
|
|
1944 string_plist_ptr (Lisp_Object string)
|
|
1945 {
|
793
|
1946 Lisp_Object *ptr = &XSTRING_PLIST (string);
|
442
|
1947
|
|
1948 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
|
|
1949 ptr = &XCDR (*ptr);
|
|
1950 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
|
|
1951 ptr = &XCDR (*ptr);
|
|
1952 return ptr;
|
|
1953 }
|
|
1954
|
|
1955 static Lisp_Object
|
|
1956 string_getprop (Lisp_Object string, Lisp_Object property)
|
|
1957 {
|
|
1958 return external_plist_get (string_plist_ptr (string), property, 0, ERROR_ME);
|
|
1959 }
|
|
1960
|
|
1961 static int
|
|
1962 string_putprop (Lisp_Object string, Lisp_Object property, Lisp_Object value)
|
|
1963 {
|
|
1964 external_plist_put (string_plist_ptr (string), property, value, 0, ERROR_ME);
|
|
1965 return 1;
|
|
1966 }
|
|
1967
|
|
1968 static int
|
|
1969 string_remprop (Lisp_Object string, Lisp_Object property)
|
|
1970 {
|
|
1971 return external_remprop (string_plist_ptr (string), property, 0, ERROR_ME);
|
|
1972 }
|
|
1973
|
|
1974 static Lisp_Object
|
|
1975 string_plist (Lisp_Object string)
|
|
1976 {
|
|
1977 return *string_plist_ptr (string);
|
|
1978 }
|
|
1979
|
|
1980 /* No `finalize', or `hash' methods.
|
|
1981 internal_hash() already knows how to hash strings and finalization
|
|
1982 is done with the ADDITIONAL_FREE_string macro, which is the
|
|
1983 standard way to do finalization when using
|
|
1984 SWEEP_FIXED_TYPE_BLOCK(). */
|
934
|
1985 DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS ("string", string,
|
|
1986 1, /*dumpable-flag*/
|
|
1987 mark_string, print_string,
|
|
1988 0, string_equal, 0,
|
|
1989 string_description,
|
|
1990 string_getprop,
|
|
1991 string_putprop,
|
|
1992 string_remprop,
|
|
1993 string_plist,
|
|
1994 Lisp_String);
|
428
|
1995 /* String blocks contain this many useful bytes. */
|
|
1996 #define STRING_CHARS_BLOCK_SIZE \
|
814
|
1997 ((Bytecount) (8192 - MALLOC_OVERHEAD - \
|
|
1998 ((2 * sizeof (struct string_chars_block *)) \
|
|
1999 + sizeof (EMACS_INT))))
|
428
|
2000 /* Block header for small strings. */
|
|
2001 struct string_chars_block
|
|
2002 {
|
|
2003 EMACS_INT pos;
|
|
2004 struct string_chars_block *next;
|
|
2005 struct string_chars_block *prev;
|
|
2006 /* Contents of string_chars_block->string_chars are interleaved
|
|
2007 string_chars structures (see below) and the actual string data */
|
|
2008 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE];
|
|
2009 };
|
|
2010
|
|
2011 static struct string_chars_block *first_string_chars_block;
|
|
2012 static struct string_chars_block *current_string_chars_block;
|
|
2013
|
|
2014 /* If SIZE is the length of a string, this returns how many bytes
|
|
2015 * the string occupies in string_chars_block->string_chars
|
|
2016 * (including alignment padding).
|
|
2017 */
|
438
|
2018 #define STRING_FULLSIZE(size) \
|
826
|
2019 ALIGN_FOR_TYPE (((size) + 1 + sizeof (Lisp_String *)), Lisp_String *)
|
428
|
2020
|
|
2021 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE)
|
|
2022 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size)))
|
|
2023
|
454
|
2024 #define STRING_CHARS_FREE_P(ptr) ((ptr)->string == NULL)
|
|
2025 #define MARK_STRING_CHARS_AS_FREE(ptr) ((void) ((ptr)->string = NULL))
|
|
2026
|
428
|
2027 struct string_chars
|
|
2028 {
|
438
|
2029 Lisp_String *string;
|
428
|
2030 unsigned char chars[1];
|
|
2031 };
|
|
2032
|
|
2033 struct unused_string_chars
|
|
2034 {
|
438
|
2035 Lisp_String *string;
|
428
|
2036 EMACS_INT fullsize;
|
|
2037 };
|
|
2038
|
|
2039 static void
|
|
2040 init_string_chars_alloc (void)
|
|
2041 {
|
|
2042 first_string_chars_block = xnew (struct string_chars_block);
|
|
2043 first_string_chars_block->prev = 0;
|
|
2044 first_string_chars_block->next = 0;
|
|
2045 first_string_chars_block->pos = 0;
|
|
2046 current_string_chars_block = first_string_chars_block;
|
|
2047 }
|
|
2048
|
1550
|
2049 static Ibyte *
|
|
2050 allocate_big_string_chars (Bytecount length)
|
|
2051 {
|
|
2052 Ibyte *p = xnew_array (Ibyte, length);
|
|
2053 INCREMENT_CONS_COUNTER (length, "string chars");
|
|
2054 return p;
|
|
2055 }
|
|
2056
|
428
|
2057 static struct string_chars *
|
793
|
2058 allocate_string_chars_struct (Lisp_Object string_it_goes_with,
|
814
|
2059 Bytecount fullsize)
|
428
|
2060 {
|
|
2061 struct string_chars *s_chars;
|
|
2062
|
438
|
2063 if (fullsize <=
|
|
2064 (countof (current_string_chars_block->string_chars)
|
|
2065 - current_string_chars_block->pos))
|
428
|
2066 {
|
|
2067 /* This string can fit in the current string chars block */
|
|
2068 s_chars = (struct string_chars *)
|
|
2069 (current_string_chars_block->string_chars
|
|
2070 + current_string_chars_block->pos);
|
|
2071 current_string_chars_block->pos += fullsize;
|
|
2072 }
|
|
2073 else
|
|
2074 {
|
|
2075 /* Make a new current string chars block */
|
|
2076 struct string_chars_block *new_scb = xnew (struct string_chars_block);
|
|
2077
|
|
2078 current_string_chars_block->next = new_scb;
|
|
2079 new_scb->prev = current_string_chars_block;
|
|
2080 new_scb->next = 0;
|
|
2081 current_string_chars_block = new_scb;
|
|
2082 new_scb->pos = fullsize;
|
|
2083 s_chars = (struct string_chars *)
|
|
2084 current_string_chars_block->string_chars;
|
|
2085 }
|
|
2086
|
793
|
2087 s_chars->string = XSTRING (string_it_goes_with);
|
428
|
2088
|
|
2089 INCREMENT_CONS_COUNTER (fullsize, "string chars");
|
|
2090
|
|
2091 return s_chars;
|
|
2092 }
|
|
2093
|
771
|
2094 #ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN
|
|
2095 void
|
|
2096 sledgehammer_check_ascii_begin (Lisp_Object str)
|
|
2097 {
|
|
2098 Bytecount i;
|
|
2099
|
|
2100 for (i = 0; i < XSTRING_LENGTH (str); i++)
|
|
2101 {
|
826
|
2102 if (!byte_ascii_p (string_byte (str, i)))
|
771
|
2103 break;
|
|
2104 }
|
|
2105
|
|
2106 assert (i == (Bytecount) XSTRING_ASCII_BEGIN (str) ||
|
|
2107 (i > MAX_STRING_ASCII_BEGIN &&
|
|
2108 (Bytecount) XSTRING_ASCII_BEGIN (str) ==
|
|
2109 (Bytecount) MAX_STRING_ASCII_BEGIN));
|
|
2110 }
|
|
2111 #endif
|
|
2112
|
|
2113 /* You do NOT want to be calling this! (And if you do, you must call
|
851
|
2114 XSET_STRING_ASCII_BEGIN() after modifying the string.) Use ALLOCA ()
|
771
|
2115 instead and then call make_string() like the rest of the world. */
|
|
2116
|
428
|
2117 Lisp_Object
|
|
2118 make_uninit_string (Bytecount length)
|
|
2119 {
|
438
|
2120 Lisp_String *s;
|
814
|
2121 Bytecount fullsize = STRING_FULLSIZE (length);
|
428
|
2122
|
438
|
2123 assert (length >= 0 && fullsize > 0);
|
428
|
2124
|
|
2125 /* Allocate the string header */
|
438
|
2126 ALLOCATE_FIXED_TYPE (string, Lisp_String, s);
|
793
|
2127 xzero (*s);
|
771
|
2128 set_lheader_implementation (&s->u.lheader, &lrecord_string);
|
793
|
2129
|
826
|
2130 set_lispstringp_data (s, BIG_STRING_FULLSIZE_P (fullsize)
|
1550
|
2131 ? allocate_big_string_chars (length + 1)
|
793
|
2132 : allocate_string_chars_struct (wrap_string (s),
|
|
2133 fullsize)->chars);
|
438
|
2134
|
826
|
2135 set_lispstringp_length (s, length);
|
428
|
2136 s->plist = Qnil;
|
793
|
2137 set_string_byte (wrap_string (s), length, 0);
|
|
2138
|
|
2139 return wrap_string (s);
|
428
|
2140 }
|
|
2141
|
|
2142 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
2143 static void verify_string_chars_integrity (void);
|
|
2144 #endif
|
|
2145
|
|
2146 /* Resize the string S so that DELTA bytes can be inserted starting
|
|
2147 at POS. If DELTA < 0, it means deletion starting at POS. If
|
|
2148 POS < 0, resize the string but don't copy any characters. Use
|
|
2149 this if you're planning on completely overwriting the string.
|
|
2150 */
|
|
2151
|
|
2152 void
|
793
|
2153 resize_string (Lisp_Object s, Bytecount pos, Bytecount delta)
|
428
|
2154 {
|
438
|
2155 Bytecount oldfullsize, newfullsize;
|
428
|
2156 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
2157 verify_string_chars_integrity ();
|
|
2158 #endif
|
|
2159
|
800
|
2160 #ifdef ERROR_CHECK_TEXT
|
428
|
2161 if (pos >= 0)
|
|
2162 {
|
793
|
2163 assert (pos <= XSTRING_LENGTH (s));
|
428
|
2164 if (delta < 0)
|
793
|
2165 assert (pos + (-delta) <= XSTRING_LENGTH (s));
|
428
|
2166 }
|
|
2167 else
|
|
2168 {
|
|
2169 if (delta < 0)
|
793
|
2170 assert ((-delta) <= XSTRING_LENGTH (s));
|
428
|
2171 }
|
800
|
2172 #endif /* ERROR_CHECK_TEXT */
|
428
|
2173
|
|
2174 if (delta == 0)
|
|
2175 /* simplest case: no size change. */
|
|
2176 return;
|
438
|
2177
|
|
2178 if (pos >= 0 && delta < 0)
|
|
2179 /* If DELTA < 0, the functions below will delete the characters
|
|
2180 before POS. We want to delete characters *after* POS, however,
|
|
2181 so convert this to the appropriate form. */
|
|
2182 pos += -delta;
|
|
2183
|
793
|
2184 oldfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s));
|
|
2185 newfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s) + delta);
|
438
|
2186
|
|
2187 if (BIG_STRING_FULLSIZE_P (oldfullsize))
|
428
|
2188 {
|
438
|
2189 if (BIG_STRING_FULLSIZE_P (newfullsize))
|
428
|
2190 {
|
440
|
2191 /* Both strings are big. We can just realloc().
|
|
2192 But careful! If the string is shrinking, we have to
|
|
2193 memmove() _before_ realloc(), and if growing, we have to
|
|
2194 memmove() _after_ realloc() - otherwise the access is
|
|
2195 illegal, and we might crash. */
|
793
|
2196 Bytecount len = XSTRING_LENGTH (s) + 1 - pos;
|
440
|
2197
|
|
2198 if (delta < 0 && pos >= 0)
|
793
|
2199 memmove (XSTRING_DATA (s) + pos + delta,
|
|
2200 XSTRING_DATA (s) + pos, len);
|
|
2201 XSET_STRING_DATA
|
867
|
2202 (s, (Ibyte *) xrealloc (XSTRING_DATA (s),
|
793
|
2203 XSTRING_LENGTH (s) + delta + 1));
|
440
|
2204 if (delta > 0 && pos >= 0)
|
793
|
2205 memmove (XSTRING_DATA (s) + pos + delta, XSTRING_DATA (s) + pos,
|
|
2206 len);
|
1550
|
2207 /* Bump the cons counter.
|
|
2208 Conservative; Martin let the increment be delta. */
|
|
2209 INCREMENT_CONS_COUNTER (newfullsize, "string chars");
|
428
|
2210 }
|
438
|
2211 else /* String has been demoted from BIG_STRING. */
|
428
|
2212 {
|
867
|
2213 Ibyte *new_data =
|
438
|
2214 allocate_string_chars_struct (s, newfullsize)->chars;
|
867
|
2215 Ibyte *old_data = XSTRING_DATA (s);
|
438
|
2216
|
|
2217 if (pos >= 0)
|
|
2218 {
|
|
2219 memcpy (new_data, old_data, pos);
|
|
2220 memcpy (new_data + pos + delta, old_data + pos,
|
793
|
2221 XSTRING_LENGTH (s) + 1 - pos);
|
438
|
2222 }
|
793
|
2223 XSET_STRING_DATA (s, new_data);
|
1726
|
2224 xfree (old_data, Ibyte *);
|
438
|
2225 }
|
|
2226 }
|
|
2227 else /* old string is small */
|
|
2228 {
|
|
2229 if (oldfullsize == newfullsize)
|
|
2230 {
|
|
2231 /* special case; size change but the necessary
|
|
2232 allocation size won't change (up or down; code
|
|
2233 somewhere depends on there not being any unused
|
|
2234 allocation space, modulo any alignment
|
|
2235 constraints). */
|
428
|
2236 if (pos >= 0)
|
|
2237 {
|
867
|
2238 Ibyte *addroff = pos + XSTRING_DATA (s);
|
428
|
2239
|
|
2240 memmove (addroff + delta, addroff,
|
|
2241 /* +1 due to zero-termination. */
|
793
|
2242 XSTRING_LENGTH (s) + 1 - pos);
|
428
|
2243 }
|
|
2244 }
|
|
2245 else
|
|
2246 {
|
867
|
2247 Ibyte *old_data = XSTRING_DATA (s);
|
|
2248 Ibyte *new_data =
|
438
|
2249 BIG_STRING_FULLSIZE_P (newfullsize)
|
1550
|
2250 ? allocate_big_string_chars (XSTRING_LENGTH (s) + delta + 1)
|
438
|
2251 : allocate_string_chars_struct (s, newfullsize)->chars;
|
|
2252
|
428
|
2253 if (pos >= 0)
|
|
2254 {
|
438
|
2255 memcpy (new_data, old_data, pos);
|
|
2256 memcpy (new_data + pos + delta, old_data + pos,
|
793
|
2257 XSTRING_LENGTH (s) + 1 - pos);
|
428
|
2258 }
|
793
|
2259 XSET_STRING_DATA (s, new_data);
|
438
|
2260
|
|
2261 {
|
|
2262 /* We need to mark this chunk of the string_chars_block
|
|
2263 as unused so that compact_string_chars() doesn't
|
|
2264 freak. */
|
|
2265 struct string_chars *old_s_chars = (struct string_chars *)
|
|
2266 ((char *) old_data - offsetof (struct string_chars, chars));
|
|
2267 /* Sanity check to make sure we aren't hosed by strange
|
|
2268 alignment/padding. */
|
793
|
2269 assert (old_s_chars->string == XSTRING (s));
|
454
|
2270 MARK_STRING_CHARS_AS_FREE (old_s_chars);
|
438
|
2271 ((struct unused_string_chars *) old_s_chars)->fullsize =
|
|
2272 oldfullsize;
|
|
2273 }
|
428
|
2274 }
|
438
|
2275 }
|
|
2276
|
793
|
2277 XSET_STRING_LENGTH (s, XSTRING_LENGTH (s) + delta);
|
438
|
2278 /* If pos < 0, the string won't be zero-terminated.
|
|
2279 Terminate now just to make sure. */
|
793
|
2280 XSTRING_DATA (s)[XSTRING_LENGTH (s)] = '\0';
|
438
|
2281
|
|
2282 if (pos >= 0)
|
793
|
2283 /* We also have to adjust all of the extent indices after the
|
|
2284 place we did the change. We say "pos - 1" because
|
|
2285 adjust_extents() is exclusive of the starting position
|
|
2286 passed to it. */
|
|
2287 adjust_extents (s, pos - 1, XSTRING_LENGTH (s), delta);
|
428
|
2288
|
|
2289 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
2290 verify_string_chars_integrity ();
|
|
2291 #endif
|
|
2292 }
|
|
2293
|
|
2294 #ifdef MULE
|
|
2295
|
771
|
2296 /* WARNING: If you modify an existing string, you must call
|
|
2297 CHECK_LISP_WRITEABLE() before and bump_string_modiff() afterwards. */
|
428
|
2298 void
|
867
|
2299 set_string_char (Lisp_Object s, Charcount i, Ichar c)
|
428
|
2300 {
|
867
|
2301 Ibyte newstr[MAX_ICHAR_LEN];
|
771
|
2302 Bytecount bytoff = string_index_char_to_byte (s, i);
|
867
|
2303 Bytecount oldlen = itext_ichar_len (XSTRING_DATA (s) + bytoff);
|
|
2304 Bytecount newlen = set_itext_ichar (newstr, c);
|
428
|
2305
|
793
|
2306 sledgehammer_check_ascii_begin (s);
|
428
|
2307 if (oldlen != newlen)
|
|
2308 resize_string (s, bytoff, newlen - oldlen);
|
793
|
2309 /* Remember, XSTRING_DATA (s) might have changed so we can't cache it. */
|
|
2310 memcpy (XSTRING_DATA (s) + bytoff, newstr, newlen);
|
771
|
2311 if (oldlen != newlen)
|
|
2312 {
|
793
|
2313 if (newlen > 1 && i <= (Charcount) XSTRING_ASCII_BEGIN (s))
|
771
|
2314 /* Everything starting with the new char is no longer part of
|
|
2315 ascii_begin */
|
793
|
2316 XSET_STRING_ASCII_BEGIN (s, i);
|
|
2317 else if (newlen == 1 && i == (Charcount) XSTRING_ASCII_BEGIN (s))
|
771
|
2318 /* We've extended ascii_begin, and we have to figure out how much by */
|
|
2319 {
|
|
2320 Bytecount j;
|
814
|
2321 for (j = (Bytecount) i + 1; j < XSTRING_LENGTH (s); j++)
|
771
|
2322 {
|
826
|
2323 if (!byte_ascii_p (XSTRING_DATA (s)[j]))
|
771
|
2324 break;
|
|
2325 }
|
814
|
2326 XSET_STRING_ASCII_BEGIN (s, min (j, (Bytecount) MAX_STRING_ASCII_BEGIN));
|
771
|
2327 }
|
|
2328 }
|
793
|
2329 sledgehammer_check_ascii_begin (s);
|
428
|
2330 }
|
|
2331
|
|
2332 #endif /* MULE */
|
|
2333
|
|
2334 DEFUN ("make-string", Fmake_string, 2, 2, 0, /*
|
444
|
2335 Return a new string consisting of LENGTH copies of CHARACTER.
|
|
2336 LENGTH must be a non-negative integer.
|
428
|
2337 */
|
444
|
2338 (length, character))
|
428
|
2339 {
|
|
2340 CHECK_NATNUM (length);
|
444
|
2341 CHECK_CHAR_COERCE_INT (character);
|
428
|
2342 {
|
867
|
2343 Ibyte init_str[MAX_ICHAR_LEN];
|
|
2344 int len = set_itext_ichar (init_str, XCHAR (character));
|
428
|
2345 Lisp_Object val = make_uninit_string (len * XINT (length));
|
|
2346
|
|
2347 if (len == 1)
|
771
|
2348 {
|
|
2349 /* Optimize the single-byte case */
|
|
2350 memset (XSTRING_DATA (val), XCHAR (character), XSTRING_LENGTH (val));
|
793
|
2351 XSET_STRING_ASCII_BEGIN (val, min (MAX_STRING_ASCII_BEGIN,
|
|
2352 len * XINT (length)));
|
771
|
2353 }
|
428
|
2354 else
|
|
2355 {
|
647
|
2356 EMACS_INT i;
|
867
|
2357 Ibyte *ptr = XSTRING_DATA (val);
|
428
|
2358
|
|
2359 for (i = XINT (length); i; i--)
|
|
2360 {
|
867
|
2361 Ibyte *init_ptr = init_str;
|
428
|
2362 switch (len)
|
|
2363 {
|
|
2364 case 4: *ptr++ = *init_ptr++;
|
|
2365 case 3: *ptr++ = *init_ptr++;
|
|
2366 case 2: *ptr++ = *init_ptr++;
|
|
2367 case 1: *ptr++ = *init_ptr++;
|
|
2368 }
|
|
2369 }
|
|
2370 }
|
771
|
2371 sledgehammer_check_ascii_begin (val);
|
428
|
2372 return val;
|
|
2373 }
|
|
2374 }
|
|
2375
|
|
2376 DEFUN ("string", Fstring, 0, MANY, 0, /*
|
|
2377 Concatenate all the argument characters and make the result a string.
|
|
2378 */
|
|
2379 (int nargs, Lisp_Object *args))
|
|
2380 {
|
867
|
2381 Ibyte *storage = alloca_array (Ibyte, nargs * MAX_ICHAR_LEN);
|
|
2382 Ibyte *p = storage;
|
428
|
2383
|
|
2384 for (; nargs; nargs--, args++)
|
|
2385 {
|
|
2386 Lisp_Object lisp_char = *args;
|
|
2387 CHECK_CHAR_COERCE_INT (lisp_char);
|
867
|
2388 p += set_itext_ichar (p, XCHAR (lisp_char));
|
428
|
2389 }
|
|
2390 return make_string (storage, p - storage);
|
|
2391 }
|
|
2392
|
771
|
2393 /* Initialize the ascii_begin member of a string to the correct value. */
|
|
2394
|
|
2395 void
|
|
2396 init_string_ascii_begin (Lisp_Object string)
|
|
2397 {
|
|
2398 #ifdef MULE
|
|
2399 int i;
|
|
2400 Bytecount length = XSTRING_LENGTH (string);
|
867
|
2401 Ibyte *contents = XSTRING_DATA (string);
|
771
|
2402
|
|
2403 for (i = 0; i < length; i++)
|
|
2404 {
|
826
|
2405 if (!byte_ascii_p (contents[i]))
|
771
|
2406 break;
|
|
2407 }
|
793
|
2408 XSET_STRING_ASCII_BEGIN (string, min (i, MAX_STRING_ASCII_BEGIN));
|
771
|
2409 #else
|
793
|
2410 XSET_STRING_ASCII_BEGIN (string, min (XSTRING_LENGTH (string),
|
|
2411 MAX_STRING_ASCII_BEGIN));
|
771
|
2412 #endif
|
|
2413 sledgehammer_check_ascii_begin (string);
|
|
2414 }
|
428
|
2415
|
|
2416 /* Take some raw memory, which MUST already be in internal format,
|
|
2417 and package it up into a Lisp string. */
|
|
2418 Lisp_Object
|
867
|
2419 make_string (const Ibyte *contents, Bytecount length)
|
428
|
2420 {
|
|
2421 Lisp_Object val;
|
|
2422
|
|
2423 /* Make sure we find out about bad make_string's when they happen */
|
800
|
2424 #if defined (ERROR_CHECK_TEXT) && defined (MULE)
|
428
|
2425 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2426 #endif
|
|
2427
|
|
2428 val = make_uninit_string (length);
|
|
2429 memcpy (XSTRING_DATA (val), contents, length);
|
771
|
2430 init_string_ascii_begin (val);
|
|
2431 sledgehammer_check_ascii_begin (val);
|
428
|
2432 return val;
|
|
2433 }
|
|
2434
|
|
2435 /* Take some raw memory, encoded in some external data format,
|
|
2436 and convert it into a Lisp string. */
|
|
2437 Lisp_Object
|
442
|
2438 make_ext_string (const Extbyte *contents, EMACS_INT length,
|
440
|
2439 Lisp_Object coding_system)
|
428
|
2440 {
|
440
|
2441 Lisp_Object string;
|
|
2442 TO_INTERNAL_FORMAT (DATA, (contents, length),
|
|
2443 LISP_STRING, string,
|
|
2444 coding_system);
|
|
2445 return string;
|
428
|
2446 }
|
|
2447
|
|
2448 Lisp_Object
|
867
|
2449 build_intstring (const Ibyte *str)
|
771
|
2450 {
|
|
2451 /* Some strlen's crash and burn if passed null. */
|
814
|
2452 return make_string (str, (str ? qxestrlen (str) : (Bytecount) 0));
|
771
|
2453 }
|
|
2454
|
|
2455 Lisp_Object
|
867
|
2456 build_string (const CIbyte *str)
|
428
|
2457 {
|
|
2458 /* Some strlen's crash and burn if passed null. */
|
867
|
2459 return make_string ((const Ibyte *) str, (str ? strlen (str) : 0));
|
428
|
2460 }
|
|
2461
|
|
2462 Lisp_Object
|
593
|
2463 build_ext_string (const Extbyte *str, Lisp_Object coding_system)
|
428
|
2464 {
|
|
2465 /* Some strlen's crash and burn if passed null. */
|
442
|
2466 return make_ext_string ((const Extbyte *) str, (str ? strlen(str) : 0),
|
440
|
2467 coding_system);
|
428
|
2468 }
|
|
2469
|
|
2470 Lisp_Object
|
867
|
2471 build_msg_intstring (const Ibyte *str)
|
428
|
2472 {
|
771
|
2473 return build_intstring (GETTEXT (str));
|
|
2474 }
|
|
2475
|
|
2476 Lisp_Object
|
867
|
2477 build_msg_string (const CIbyte *str)
|
771
|
2478 {
|
|
2479 return build_string (CGETTEXT (str));
|
428
|
2480 }
|
|
2481
|
|
2482 Lisp_Object
|
867
|
2483 make_string_nocopy (const Ibyte *contents, Bytecount length)
|
428
|
2484 {
|
438
|
2485 Lisp_String *s;
|
428
|
2486 Lisp_Object val;
|
|
2487
|
|
2488 /* Make sure we find out about bad make_string_nocopy's when they happen */
|
800
|
2489 #if defined (ERROR_CHECK_TEXT) && defined (MULE)
|
428
|
2490 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2491 #endif
|
|
2492
|
|
2493 /* Allocate the string header */
|
438
|
2494 ALLOCATE_FIXED_TYPE (string, Lisp_String, s);
|
771
|
2495 set_lheader_implementation (&s->u.lheader, &lrecord_string);
|
|
2496 SET_C_READONLY_RECORD_HEADER (&s->u.lheader);
|
428
|
2497 s->plist = Qnil;
|
867
|
2498 set_lispstringp_data (s, (Ibyte *) contents);
|
826
|
2499 set_lispstringp_length (s, length);
|
793
|
2500 val = wrap_string (s);
|
771
|
2501 init_string_ascii_begin (val);
|
|
2502 sledgehammer_check_ascii_begin (val);
|
|
2503
|
428
|
2504 return val;
|
|
2505 }
|
|
2506
|
|
2507
|
|
2508 /************************************************************************/
|
|
2509 /* lcrecord lists */
|
|
2510 /************************************************************************/
|
|
2511
|
|
2512 /* Lcrecord lists are used to manage the allocation of particular
|
1204
|
2513 sorts of lcrecords, to avoid calling basic_alloc_lcrecord() (and thus
|
428
|
2514 malloc() and garbage-collection junk) as much as possible.
|
|
2515 It is similar to the Blocktype class.
|
|
2516
|
1204
|
2517 See detailed comment in lcrecord.h.
|
|
2518 */
|
|
2519
|
|
2520 const struct memory_description free_description[] = {
|
|
2521 { XD_LISP_OBJECT, offsetof (struct free_lcrecord_header, chain), 0, 0,
|
|
2522 XD_FLAG_FREE_LISP_OBJECT },
|
|
2523 { XD_END }
|
|
2524 };
|
|
2525
|
|
2526 DEFINE_LRECORD_IMPLEMENTATION ("free", free,
|
|
2527 0, /*dumpable-flag*/
|
|
2528 0, internal_object_printer,
|
|
2529 0, 0, 0, free_description,
|
|
2530 struct free_lcrecord_header);
|
|
2531
|
|
2532 const struct memory_description lcrecord_list_description[] = {
|
|
2533 { XD_LISP_OBJECT, offsetof (struct lcrecord_list, free), 0, 0,
|
|
2534 XD_FLAG_FREE_LISP_OBJECT },
|
|
2535 { XD_END }
|
|
2536 };
|
428
|
2537
|
|
2538 static Lisp_Object
|
|
2539 mark_lcrecord_list (Lisp_Object obj)
|
|
2540 {
|
|
2541 struct lcrecord_list *list = XLCRECORD_LIST (obj);
|
|
2542 Lisp_Object chain = list->free;
|
|
2543
|
|
2544 while (!NILP (chain))
|
|
2545 {
|
|
2546 struct lrecord_header *lheader = XRECORD_LHEADER (chain);
|
|
2547 struct free_lcrecord_header *free_header =
|
|
2548 (struct free_lcrecord_header *) lheader;
|
|
2549
|
442
|
2550 gc_checking_assert
|
|
2551 (/* There should be no other pointers to the free list. */
|
|
2552 ! MARKED_RECORD_HEADER_P (lheader)
|
|
2553 &&
|
|
2554 /* Only lcrecords should be here. */
|
1204
|
2555 ! list->implementation->basic_p
|
442
|
2556 &&
|
|
2557 /* Only free lcrecords should be here. */
|
|
2558 free_header->lcheader.free
|
|
2559 &&
|
|
2560 /* The type of the lcrecord must be right. */
|
1204
|
2561 lheader->type == lrecord_type_free
|
442
|
2562 &&
|
|
2563 /* So must the size. */
|
1204
|
2564 (list->implementation->static_size == 0 ||
|
|
2565 list->implementation->static_size == list->size)
|
442
|
2566 );
|
428
|
2567
|
|
2568 MARK_RECORD_HEADER (lheader);
|
|
2569 chain = free_header->chain;
|
|
2570 }
|
|
2571
|
|
2572 return Qnil;
|
|
2573 }
|
|
2574
|
934
|
2575 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list,
|
|
2576 0, /*dumpable-flag*/
|
|
2577 mark_lcrecord_list, internal_object_printer,
|
1204
|
2578 0, 0, 0, lcrecord_list_description,
|
|
2579 struct lcrecord_list);
|
934
|
2580
|
428
|
2581 Lisp_Object
|
665
|
2582 make_lcrecord_list (Elemcount size,
|
442
|
2583 const struct lrecord_implementation *implementation)
|
428
|
2584 {
|
1204
|
2585 /* Don't use alloc_lcrecord_type() avoid infinite recursion
|
|
2586 allocating this, */
|
|
2587 struct lcrecord_list *p = (struct lcrecord_list *)
|
|
2588 basic_alloc_lcrecord (sizeof (struct lcrecord_list),
|
|
2589 &lrecord_lcrecord_list);
|
428
|
2590
|
|
2591 p->implementation = implementation;
|
|
2592 p->size = size;
|
|
2593 p->free = Qnil;
|
793
|
2594 return wrap_lcrecord_list (p);
|
428
|
2595 }
|
|
2596
|
|
2597 Lisp_Object
|
1204
|
2598 alloc_managed_lcrecord (Lisp_Object lcrecord_list)
|
428
|
2599 {
|
|
2600 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2601 if (!NILP (list->free))
|
|
2602 {
|
|
2603 Lisp_Object val = list->free;
|
|
2604 struct free_lcrecord_header *free_header =
|
|
2605 (struct free_lcrecord_header *) XPNTR (val);
|
1204
|
2606 struct lrecord_header *lheader = &free_header->lcheader.lheader;
|
428
|
2607
|
|
2608 #ifdef ERROR_CHECK_GC
|
1204
|
2609 /* Major overkill here. */
|
428
|
2610 /* There should be no other pointers to the free list. */
|
442
|
2611 assert (! MARKED_RECORD_HEADER_P (lheader));
|
428
|
2612 /* Only free lcrecords should be here. */
|
|
2613 assert (free_header->lcheader.free);
|
1204
|
2614 assert (lheader->type == lrecord_type_free);
|
|
2615 /* Only lcrecords should be here. */
|
|
2616 assert (! (list->implementation->basic_p));
|
|
2617 #if 0 /* Not used anymore, now that we set the type of the header to
|
|
2618 lrecord_type_free. */
|
428
|
2619 /* The type of the lcrecord must be right. */
|
442
|
2620 assert (LHEADER_IMPLEMENTATION (lheader) == list->implementation);
|
1204
|
2621 #endif /* 0 */
|
428
|
2622 /* So must the size. */
|
1204
|
2623 assert (list->implementation->static_size == 0 ||
|
|
2624 list->implementation->static_size == list->size);
|
428
|
2625 #endif /* ERROR_CHECK_GC */
|
442
|
2626
|
428
|
2627 list->free = free_header->chain;
|
|
2628 free_header->lcheader.free = 0;
|
1204
|
2629 /* Put back the correct type, as we set it to lrecord_type_free. */
|
|
2630 lheader->type = list->implementation->lrecord_type_index;
|
|
2631 zero_sized_lcrecord (free_header, list->size);
|
428
|
2632 return val;
|
|
2633 }
|
|
2634 else
|
1204
|
2635 return wrap_pointer_1 (basic_alloc_lcrecord (list->size,
|
|
2636 list->implementation));
|
428
|
2637 }
|
|
2638
|
771
|
2639 /* "Free" a Lisp object LCRECORD by placing it on its associated free list
|
1204
|
2640 LCRECORD_LIST; next time alloc_managed_lcrecord() is called with the
|
771
|
2641 same LCRECORD_LIST as its parameter, it will return an object from the
|
|
2642 free list, which may be this one. Be VERY VERY SURE there are no
|
|
2643 pointers to this object hanging around anywhere where they might be
|
|
2644 used!
|
|
2645
|
|
2646 The first thing this does before making any global state change is to
|
|
2647 call the finalize method of the object, if it exists. */
|
|
2648
|
428
|
2649 void
|
|
2650 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord)
|
|
2651 {
|
|
2652 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2653 struct free_lcrecord_header *free_header =
|
|
2654 (struct free_lcrecord_header *) XPNTR (lcrecord);
|
442
|
2655 struct lrecord_header *lheader = &free_header->lcheader.lheader;
|
|
2656 const struct lrecord_implementation *implementation
|
428
|
2657 = LHEADER_IMPLEMENTATION (lheader);
|
|
2658
|
771
|
2659 /* Finalizer methods may try to free objects within them, which typically
|
|
2660 won't be marked and thus are scheduled for demolition. Putting them
|
|
2661 on the free list would be very bad, as we'd have xfree()d memory in
|
|
2662 the list. Even if for some reason the objects are still live
|
|
2663 (generally a logic error!), we still will have problems putting such
|
|
2664 an object on the free list right now (e.g. we'd have to avoid calling
|
|
2665 the finalizer twice, etc.). So basically, those finalizers should not
|
|
2666 be freeing any objects if during GC. Abort now to catch those
|
|
2667 problems. */
|
|
2668 gc_checking_assert (!gc_in_progress);
|
|
2669
|
428
|
2670 /* Make sure the size is correct. This will catch, for example,
|
|
2671 putting a window configuration on the wrong free list. */
|
1204
|
2672 gc_checking_assert (detagged_lisp_object_size (lheader) == list->size);
|
771
|
2673 /* Make sure the object isn't already freed. */
|
|
2674 gc_checking_assert (!free_header->lcheader.free);
|
|
2675
|
428
|
2676 if (implementation->finalizer)
|
|
2677 implementation->finalizer (lheader, 0);
|
1204
|
2678 /* Yes, there are two ways to indicate freeness -- the type is
|
|
2679 lrecord_type_free or the ->free flag is set. We used to do only the
|
|
2680 latter; now we do the former as well for KKCC purposes. Probably
|
|
2681 safer in any case, as we will lose quicker this way than keeping
|
|
2682 around an lrecord of apparently correct type but bogus junk in it. */
|
|
2683 MARK_LRECORD_AS_FREE (lheader);
|
428
|
2684 free_header->chain = list->free;
|
|
2685 free_header->lcheader.free = 1;
|
|
2686 list->free = lcrecord;
|
|
2687 }
|
|
2688
|
771
|
2689 static Lisp_Object all_lcrecord_lists[countof (lrecord_implementations_table)];
|
|
2690
|
|
2691 void *
|
|
2692 alloc_automanaged_lcrecord (Bytecount size,
|
|
2693 const struct lrecord_implementation *imp)
|
|
2694 {
|
|
2695 if (EQ (all_lcrecord_lists[imp->lrecord_type_index], Qzero))
|
|
2696 all_lcrecord_lists[imp->lrecord_type_index] =
|
|
2697 make_lcrecord_list (size, imp);
|
|
2698
|
1204
|
2699 return XPNTR (alloc_managed_lcrecord
|
771
|
2700 (all_lcrecord_lists[imp->lrecord_type_index]));
|
|
2701 }
|
|
2702
|
|
2703 void
|
|
2704 free_lcrecord (Lisp_Object rec)
|
|
2705 {
|
|
2706 int type = XRECORD_LHEADER (rec)->type;
|
|
2707
|
|
2708 assert (!EQ (all_lcrecord_lists[type], Qzero));
|
|
2709
|
|
2710 free_managed_lcrecord (all_lcrecord_lists[type], rec);
|
|
2711 }
|
428
|
2712
|
|
2713
|
|
2714 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /*
|
|
2715 Kept for compatibility, returns its argument.
|
|
2716 Old:
|
|
2717 Make a copy of OBJECT in pure storage.
|
|
2718 Recursively copies contents of vectors and cons cells.
|
|
2719 Does not copy symbols.
|
|
2720 */
|
444
|
2721 (object))
|
428
|
2722 {
|
444
|
2723 return object;
|
428
|
2724 }
|
|
2725
|
|
2726
|
|
2727 /************************************************************************/
|
|
2728 /* Garbage Collection */
|
|
2729 /************************************************************************/
|
|
2730
|
442
|
2731 /* All the built-in lisp object types are enumerated in `enum lrecord_type'.
|
|
2732 Additional ones may be defined by a module (none yet). We leave some
|
|
2733 room in `lrecord_implementations_table' for such new lisp object types. */
|
647
|
2734 const struct lrecord_implementation *lrecord_implementations_table[(int)lrecord_type_last_built_in_type + MODULE_DEFINABLE_TYPE_COUNT];
|
|
2735 int lrecord_type_count = lrecord_type_last_built_in_type;
|
1676
|
2736 #ifndef USE_KKCC
|
442
|
2737 /* Object marker functions are in the lrecord_implementation structure.
|
|
2738 But copying them to a parallel array is much more cache-friendly.
|
|
2739 This hack speeds up (garbage-collect) by about 5%. */
|
|
2740 Lisp_Object (*lrecord_markers[countof (lrecord_implementations_table)]) (Lisp_Object);
|
1676
|
2741 #endif /* not USE_KKCC */
|
428
|
2742
|
|
2743 struct gcpro *gcprolist;
|
|
2744
|
771
|
2745 /* We want the staticpro list relocated, but not the pointers found
|
|
2746 therein, because they refer to locations in the global data segment, not
|
|
2747 in the heap; we only dump heap objects. Hence we use a trivial
|
|
2748 description, as for pointerless objects. (Note that the data segment
|
|
2749 objects, which are global variables like Qfoo or Vbar, themselves are
|
|
2750 pointers to heap objects. Each needs to be described to pdump as a
|
|
2751 "root pointer"; this happens in the call to staticpro(). */
|
1204
|
2752 static const struct memory_description staticpro_description_1[] = {
|
452
|
2753 { XD_END }
|
|
2754 };
|
|
2755
|
1204
|
2756 static const struct sized_memory_description staticpro_description = {
|
452
|
2757 sizeof (Lisp_Object *),
|
|
2758 staticpro_description_1
|
|
2759 };
|
|
2760
|
1204
|
2761 static const struct memory_description staticpros_description_1[] = {
|
452
|
2762 XD_DYNARR_DESC (Lisp_Object_ptr_dynarr, &staticpro_description),
|
|
2763 { XD_END }
|
|
2764 };
|
|
2765
|
1204
|
2766 static const struct sized_memory_description staticpros_description = {
|
452
|
2767 sizeof (Lisp_Object_ptr_dynarr),
|
|
2768 staticpros_description_1
|
|
2769 };
|
|
2770
|
771
|
2771 #ifdef DEBUG_XEMACS
|
|
2772
|
1204
|
2773 static const struct memory_description staticpro_one_name_description_1[] = {
|
771
|
2774 { XD_C_STRING, 0 },
|
|
2775 { XD_END }
|
|
2776 };
|
|
2777
|
1204
|
2778 static const struct sized_memory_description staticpro_one_name_description = {
|
771
|
2779 sizeof (char *),
|
|
2780 staticpro_one_name_description_1
|
|
2781 };
|
|
2782
|
1204
|
2783 static const struct memory_description staticpro_names_description_1[] = {
|
771
|
2784 XD_DYNARR_DESC (char_ptr_dynarr, &staticpro_one_name_description),
|
|
2785 { XD_END }
|
|
2786 };
|
|
2787
|
1204
|
2788
|
|
2789 extern const struct sized_memory_description staticpro_names_description;
|
|
2790
|
|
2791 const struct sized_memory_description staticpro_names_description = {
|
771
|
2792 sizeof (char_ptr_dynarr),
|
|
2793 staticpro_names_description_1
|
|
2794 };
|
|
2795
|
|
2796 /* Help debug crashes gc-marking a staticpro'ed object. */
|
|
2797
|
|
2798 Lisp_Object_ptr_dynarr *staticpros;
|
|
2799 char_ptr_dynarr *staticpro_names;
|
|
2800
|
|
2801 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for
|
|
2802 garbage collection, and for dumping. */
|
|
2803 void
|
|
2804 staticpro_1 (Lisp_Object *varaddress, char *varname)
|
|
2805 {
|
|
2806 Dynarr_add (staticpros, varaddress);
|
|
2807 Dynarr_add (staticpro_names, varname);
|
1204
|
2808 dump_add_root_lisp_object (varaddress);
|
771
|
2809 }
|
|
2810
|
|
2811
|
|
2812 Lisp_Object_ptr_dynarr *staticpros_nodump;
|
|
2813 char_ptr_dynarr *staticpro_nodump_names;
|
|
2814
|
|
2815 /* Mark the Lisp_Object at heap VARADDRESS as a root object for
|
|
2816 garbage collection, but not for dumping. (See below.) */
|
|
2817 void
|
|
2818 staticpro_nodump_1 (Lisp_Object *varaddress, char *varname)
|
|
2819 {
|
|
2820 Dynarr_add (staticpros_nodump, varaddress);
|
|
2821 Dynarr_add (staticpro_nodump_names, varname);
|
|
2822 }
|
|
2823
|
996
|
2824 #ifdef HAVE_SHLIB
|
|
2825 /* Stop treating the Lisp_Object at non-heap VARADDRESS as a root object
|
|
2826 for garbage collection, but not for dumping. */
|
|
2827 void
|
|
2828 unstaticpro_nodump_1 (Lisp_Object *varaddress, char *varname)
|
|
2829 {
|
|
2830 Dynarr_delete_object (staticpros, varaddress);
|
|
2831 Dynarr_delete_object (staticpro_names, varname);
|
|
2832 }
|
|
2833 #endif
|
|
2834
|
771
|
2835 #else /* not DEBUG_XEMACS */
|
|
2836
|
452
|
2837 Lisp_Object_ptr_dynarr *staticpros;
|
|
2838
|
|
2839 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for
|
|
2840 garbage collection, and for dumping. */
|
428
|
2841 void
|
|
2842 staticpro (Lisp_Object *varaddress)
|
|
2843 {
|
452
|
2844 Dynarr_add (staticpros, varaddress);
|
1204
|
2845 dump_add_root_lisp_object (varaddress);
|
428
|
2846 }
|
|
2847
|
442
|
2848
|
452
|
2849 Lisp_Object_ptr_dynarr *staticpros_nodump;
|
|
2850
|
771
|
2851 /* Mark the Lisp_Object at heap VARADDRESS as a root object for garbage
|
|
2852 collection, but not for dumping. This is used for objects where the
|
|
2853 only sure pointer is in the heap (rather than in the global data
|
|
2854 segment, as must be the case for pdump root pointers), but not inside of
|
|
2855 another Lisp object (where it will be marked as a result of that Lisp
|
|
2856 object's mark method). The call to staticpro_nodump() must occur *BOTH*
|
|
2857 at initialization time and at "reinitialization" time (startup, after
|
|
2858 pdump load.) (For example, this is the case with the predicate symbols
|
|
2859 for specifier and coding system types. The pointer to this symbol is
|
|
2860 inside of a methods structure, which is allocated on the heap. The
|
|
2861 methods structure will be written out to the pdump data file, and may be
|
|
2862 reloaded at a different address.)
|
|
2863
|
|
2864 #### The necessity for reinitialization is a bug in pdump. Pdump should
|
|
2865 automatically regenerate the staticpro()s for these symbols when it
|
|
2866 loads the data in. */
|
|
2867
|
428
|
2868 void
|
|
2869 staticpro_nodump (Lisp_Object *varaddress)
|
|
2870 {
|
452
|
2871 Dynarr_add (staticpros_nodump, varaddress);
|
428
|
2872 }
|
|
2873
|
996
|
2874 #ifdef HAVE_SHLIB
|
|
2875 /* Unmark the Lisp_Object at non-heap VARADDRESS as a root object for
|
|
2876 garbage collection, but not for dumping. */
|
|
2877 void
|
|
2878 unstaticpro_nodump (Lisp_Object *varaddress)
|
|
2879 {
|
|
2880 Dynarr_delete_object (staticpros, varaddress);
|
|
2881 }
|
|
2882 #endif
|
|
2883
|
771
|
2884 #endif /* not DEBUG_XEMACS */
|
|
2885
|
442
|
2886 #ifdef ERROR_CHECK_GC
|
|
2887 #define GC_CHECK_LHEADER_INVARIANTS(lheader) do { \
|
|
2888 struct lrecord_header * GCLI_lh = (lheader); \
|
|
2889 assert (GCLI_lh != 0); \
|
647
|
2890 assert (GCLI_lh->type < (unsigned int) lrecord_type_count); \
|
442
|
2891 assert (! C_READONLY_RECORD_HEADER_P (GCLI_lh) || \
|
|
2892 (MARKED_RECORD_HEADER_P (GCLI_lh) && \
|
|
2893 LISP_READONLY_RECORD_HEADER_P (GCLI_lh))); \
|
|
2894 } while (0)
|
|
2895 #else
|
|
2896 #define GC_CHECK_LHEADER_INVARIANTS(lheader)
|
|
2897 #endif
|
|
2898
|
934
|
2899
|
1204
|
2900 static const struct memory_description lisp_object_description_1[] = {
|
|
2901 { XD_LISP_OBJECT, 0 },
|
|
2902 { XD_END }
|
|
2903 };
|
|
2904
|
|
2905 const struct sized_memory_description lisp_object_description = {
|
|
2906 sizeof (Lisp_Object),
|
|
2907 lisp_object_description_1
|
|
2908 };
|
|
2909
|
|
2910 #if defined (USE_KKCC) || defined (PDUMP)
|
934
|
2911
|
|
2912 /* This function extracts the value of a count variable described somewhere
|
|
2913 else in the description. It is converted corresponding to the type */
|
1204
|
2914 EMACS_INT
|
|
2915 lispdesc_indirect_count_1 (EMACS_INT code,
|
|
2916 const struct memory_description *idesc,
|
|
2917 const void *idata)
|
934
|
2918 {
|
|
2919 EMACS_INT count;
|
|
2920 const void *irdata;
|
|
2921
|
|
2922 int line = XD_INDIRECT_VAL (code);
|
|
2923 int delta = XD_INDIRECT_DELTA (code);
|
|
2924
|
1204
|
2925 irdata = ((char *) idata) +
|
|
2926 lispdesc_indirect_count (idesc[line].offset, idesc, idata);
|
934
|
2927 switch (idesc[line].type)
|
|
2928 {
|
|
2929 case XD_BYTECOUNT:
|
1204
|
2930 count = * (Bytecount *) irdata;
|
934
|
2931 break;
|
|
2932 case XD_ELEMCOUNT:
|
1204
|
2933 count = * (Elemcount *) irdata;
|
934
|
2934 break;
|
|
2935 case XD_HASHCODE:
|
1204
|
2936 count = * (Hashcode *) irdata;
|
934
|
2937 break;
|
|
2938 case XD_INT:
|
1204
|
2939 count = * (int *) irdata;
|
934
|
2940 break;
|
|
2941 case XD_LONG:
|
1204
|
2942 count = * (long *) irdata;
|
934
|
2943 break;
|
|
2944 default:
|
|
2945 stderr_out ("Unsupported count type : %d (line = %d, code = %ld)\n",
|
1204
|
2946 idesc[line].type, line, (long) code);
|
|
2947 #ifdef PDUMP
|
|
2948 if (in_pdump)
|
|
2949 pdump_backtrace ();
|
|
2950 #endif
|
934
|
2951 count = 0; /* warning suppression */
|
|
2952 abort ();
|
|
2953 }
|
|
2954 count += delta;
|
|
2955 return count;
|
|
2956 }
|
|
2957
|
1204
|
2958 /* SDESC is a "description map" (basically, a list of offsets used for
|
|
2959 successive indirections) and OBJ is the first object to indirect off of.
|
|
2960 Return the description ultimately found. */
|
|
2961
|
|
2962 const struct sized_memory_description *
|
|
2963 lispdesc_indirect_description_1 (const void *obj,
|
|
2964 const struct sized_memory_description *sdesc)
|
934
|
2965 {
|
|
2966 int pos;
|
|
2967
|
1204
|
2968 for (pos = 0; sdesc[pos].size >= 0; pos++)
|
|
2969 obj = * (const void **) ((const char *) obj + sdesc[pos].size);
|
|
2970
|
|
2971 return (const struct sized_memory_description *) obj;
|
|
2972 }
|
|
2973
|
|
2974 /* Compute the size of the data at RDATA, described by a single entry
|
|
2975 DESC1 in a description array. OBJ and DESC are used for
|
|
2976 XD_INDIRECT references. */
|
|
2977
|
|
2978 static Bytecount
|
|
2979 lispdesc_one_description_line_size (void *rdata,
|
|
2980 const struct memory_description *desc1,
|
|
2981 const void *obj,
|
|
2982 const struct memory_description *desc)
|
|
2983 {
|
|
2984 union_switcheroo:
|
|
2985 switch (desc1->type)
|
934
|
2986 {
|
1204
|
2987 case XD_LISP_OBJECT_ARRAY:
|
|
2988 {
|
|
2989 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj);
|
|
2990 return (val * sizeof (Lisp_Object));
|
|
2991 }
|
|
2992 case XD_LISP_OBJECT:
|
|
2993 case XD_LO_LINK:
|
|
2994 return sizeof (Lisp_Object);
|
|
2995 case XD_OPAQUE_PTR:
|
|
2996 return sizeof (void *);
|
|
2997 case XD_STRUCT_PTR:
|
|
2998 {
|
|
2999 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj);
|
|
3000 return val * sizeof (void *);
|
|
3001 }
|
|
3002 case XD_STRUCT_ARRAY:
|
|
3003 {
|
|
3004 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj);
|
|
3005
|
|
3006 return (val *
|
|
3007 lispdesc_structure_size
|
|
3008 (rdata, lispdesc_indirect_description (obj, desc1->data2)));
|
|
3009 }
|
|
3010 case XD_OPAQUE_DATA_PTR:
|
|
3011 return sizeof (void *);
|
|
3012 case XD_UNION_DYNAMIC_SIZE:
|
|
3013 {
|
|
3014 /* If an explicit size was given in the first-level structure
|
|
3015 description, use it; else compute size based on current union
|
|
3016 constant. */
|
|
3017 const struct sized_memory_description *sdesc =
|
|
3018 lispdesc_indirect_description (obj, desc1->data2);
|
|
3019 if (sdesc->size)
|
|
3020 return sdesc->size;
|
|
3021 else
|
|
3022 {
|
|
3023 desc1 = lispdesc_process_xd_union (desc1, desc, obj);
|
|
3024 if (desc1)
|
|
3025 goto union_switcheroo;
|
934
|
3026 break;
|
1204
|
3027 }
|
|
3028 }
|
|
3029 case XD_UNION:
|
|
3030 {
|
|
3031 /* If an explicit size was given in the first-level structure
|
|
3032 description, use it; else compute size based on maximum of all
|
|
3033 possible structures. */
|
|
3034 const struct sized_memory_description *sdesc =
|
|
3035 lispdesc_indirect_description (obj, desc1->data2);
|
|
3036 if (sdesc->size)
|
|
3037 return sdesc->size;
|
|
3038 else
|
|
3039 {
|
|
3040 int count;
|
|
3041 Bytecount max_size = -1, size;
|
|
3042
|
|
3043 desc1 = sdesc->description;
|
|
3044
|
|
3045 for (count = 0; desc1[count].type != XD_END; count++)
|
|
3046 {
|
|
3047 size = lispdesc_one_description_line_size (rdata,
|
|
3048 &desc1[count],
|
|
3049 obj, desc);
|
|
3050 if (size > max_size)
|
|
3051 max_size = size;
|
|
3052 }
|
|
3053 return max_size;
|
|
3054 }
|
934
|
3055 }
|
1204
|
3056 case XD_C_STRING:
|
|
3057 return sizeof (void *);
|
|
3058 case XD_DOC_STRING:
|
|
3059 return sizeof (void *);
|
|
3060 case XD_INT_RESET:
|
|
3061 return sizeof (int);
|
|
3062 case XD_BYTECOUNT:
|
|
3063 return sizeof (Bytecount);
|
|
3064 case XD_ELEMCOUNT:
|
|
3065 return sizeof (Elemcount);
|
|
3066 case XD_HASHCODE:
|
|
3067 return sizeof (Hashcode);
|
|
3068 case XD_INT:
|
|
3069 return sizeof (int);
|
|
3070 case XD_LONG:
|
|
3071 return sizeof (long);
|
|
3072 default:
|
|
3073 stderr_out ("Unsupported dump type : %d\n", desc1->type);
|
|
3074 abort ();
|
934
|
3075 }
|
|
3076
|
1204
|
3077 return 0;
|
934
|
3078 }
|
|
3079
|
|
3080
|
1204
|
3081 /* Return the size of the memory block (NOT necessarily a structure!)
|
|
3082 described by SDESC and pointed to by OBJ. If SDESC records an
|
|
3083 explicit size (i.e. non-zero), it is simply returned; otherwise,
|
|
3084 the size is calculated by the maximum offset and the size of the
|
|
3085 object at that offset, rounded up to the maximum alignment. In
|
|
3086 this case, we may need the object, for example when retrieving an
|
|
3087 "indirect count" of an inlined array (the count is not constant,
|
|
3088 but is specified by one of the elements of the memory block). (It
|
|
3089 is generally not a problem if we return an overly large size -- we
|
|
3090 will simply end up reserving more space than necessary; but if the
|
|
3091 size is too small we could be in serious trouble, in particular
|
|
3092 with nested inlined structures, where there may be alignment
|
|
3093 padding in the middle of a block. #### In fact there is an (at
|
|
3094 least theoretical) problem with an overly large size -- we may
|
|
3095 trigger a protection fault when reading from invalid memory. We
|
|
3096 need to handle this -- perhaps in a stupid but dependable way,
|
|
3097 i.e. by trapping SIGSEGV and SIGBUS.) */
|
|
3098
|
|
3099 Bytecount
|
|
3100 lispdesc_structure_size (const void *obj,
|
|
3101 const struct sized_memory_description *sdesc)
|
934
|
3102 {
|
1204
|
3103 EMACS_INT max_offset = -1;
|
934
|
3104 int max_offset_pos = -1;
|
|
3105 int pos;
|
1204
|
3106 const struct memory_description *desc;
|
934
|
3107
|
|
3108 if (sdesc->size)
|
|
3109 return sdesc->size;
|
|
3110
|
|
3111 desc = sdesc->description;
|
|
3112
|
|
3113 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
3114 {
|
1204
|
3115 EMACS_INT offset = lispdesc_indirect_count (desc[pos].offset, desc, obj);
|
|
3116 if (offset == max_offset)
|
934
|
3117 {
|
|
3118 stderr_out ("Two relocatable elements at same offset?\n");
|
|
3119 abort ();
|
|
3120 }
|
1204
|
3121 else if (offset > max_offset)
|
934
|
3122 {
|
1204
|
3123 max_offset = offset;
|
934
|
3124 max_offset_pos = pos;
|
|
3125 }
|
|
3126 }
|
|
3127
|
|
3128 if (max_offset_pos < 0)
|
|
3129 return 0;
|
|
3130
|
1204
|
3131 {
|
|
3132 Bytecount size_at_max;
|
|
3133 size_at_max =
|
|
3134 lispdesc_one_description_line_size ((char *) obj + max_offset,
|
|
3135 &desc[max_offset_pos], obj, desc);
|
|
3136
|
|
3137 /* We have no way of knowing the required alignment for this structure,
|
|
3138 so just make it maximally aligned. */
|
|
3139 return MAX_ALIGN_SIZE (max_offset + size_at_max);
|
|
3140 }
|
|
3141 }
|
|
3142
|
|
3143 #endif /* defined (USE_KKCC) || defined (PDUMP) */
|
|
3144
|
1276
|
3145 #define GC_CHECK_NOT_FREE(lheader) \
|
|
3146 gc_checking_assert (LHEADER_IMPLEMENTATION (lheader)->basic_p || \
|
|
3147 ! ((struct lcrecord_header *) lheader)->free)
|
|
3148
|
1204
|
3149 #ifdef USE_KKCC
|
|
3150 /* The following functions implement the new mark algorithm.
|
|
3151 They mark objects according to their descriptions. They
|
|
3152 are modeled on the corresponding pdumper procedures. */
|
|
3153
|
1676
|
3154 /* Object memory descriptions are in the lrecord_implementation structure.
|
|
3155 But copying them to a parallel array is much more cache-friendly. */
|
|
3156 const struct memory_description *lrecord_memory_descriptions[countof (lrecord_implementations_table)];
|
|
3157
|
|
3158 /* the initial stack size in kkcc_gc_stack_entries */
|
|
3159 #define KKCC_INIT_GC_STACK_SIZE 16384
|
|
3160
|
|
3161 typedef struct
|
|
3162 {
|
|
3163 void *data;
|
|
3164 const struct memory_description *desc;
|
|
3165 } kkcc_gc_stack_entry;
|
|
3166
|
|
3167 static kkcc_gc_stack_entry *kkcc_gc_stack_ptr;
|
|
3168 static kkcc_gc_stack_entry *kkcc_gc_stack_top;
|
|
3169 static kkcc_gc_stack_entry *kkcc_gc_stack_last_entry;
|
|
3170 static int kkcc_gc_stack_size;
|
|
3171
|
|
3172 static void
|
|
3173 kkcc_gc_stack_init (void)
|
|
3174 {
|
|
3175 kkcc_gc_stack_size = KKCC_INIT_GC_STACK_SIZE;
|
|
3176 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *)
|
|
3177 malloc (kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry));
|
|
3178 if (!kkcc_gc_stack_ptr)
|
|
3179 {
|
|
3180 stderr_out ("stack init failed for size %d\n", kkcc_gc_stack_size);
|
|
3181 exit(23);
|
|
3182 }
|
|
3183 kkcc_gc_stack_top = kkcc_gc_stack_ptr - 1;
|
|
3184 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1;
|
|
3185 }
|
|
3186
|
|
3187 static void
|
|
3188 kkcc_gc_stack_free (void)
|
|
3189 {
|
|
3190 free (kkcc_gc_stack_ptr);
|
|
3191 kkcc_gc_stack_ptr = 0;
|
|
3192 kkcc_gc_stack_top = 0;
|
|
3193 kkcc_gc_stack_size = 0;
|
|
3194 }
|
|
3195
|
|
3196 static void
|
|
3197 kkcc_gc_stack_realloc (void)
|
|
3198 {
|
|
3199 int current_offset = (int)(kkcc_gc_stack_top - kkcc_gc_stack_ptr);
|
|
3200 kkcc_gc_stack_size *= 2;
|
|
3201 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *)
|
|
3202 realloc (kkcc_gc_stack_ptr,
|
|
3203 kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry));
|
|
3204 if (!kkcc_gc_stack_ptr)
|
|
3205 {
|
|
3206 stderr_out ("stack realloc failed for size %d\n", kkcc_gc_stack_size);
|
|
3207 exit(23);
|
|
3208 }
|
|
3209 kkcc_gc_stack_top = kkcc_gc_stack_ptr + current_offset;
|
|
3210 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1;
|
|
3211 }
|
|
3212
|
|
3213 #define KKCC_GC_STACK_FULL (kkcc_gc_stack_top >= kkcc_gc_stack_last_entry)
|
|
3214 #define KKCC_GC_STACK_EMPTY (kkcc_gc_stack_top < kkcc_gc_stack_ptr)
|
|
3215
|
|
3216 static void
|
|
3217 kkcc_gc_stack_push (void *data, const struct memory_description *desc)
|
|
3218 {
|
|
3219 if (KKCC_GC_STACK_FULL)
|
|
3220 kkcc_gc_stack_realloc();
|
|
3221 kkcc_gc_stack_top++;
|
|
3222 kkcc_gc_stack_top->data = data;
|
|
3223 kkcc_gc_stack_top->desc = desc;
|
|
3224 }
|
|
3225
|
|
3226 static kkcc_gc_stack_entry *
|
|
3227 kkcc_gc_stack_pop (void)
|
|
3228 {
|
|
3229 if (KKCC_GC_STACK_EMPTY)
|
|
3230 return 0;
|
|
3231 kkcc_gc_stack_top--;
|
|
3232 return kkcc_gc_stack_top + 1;
|
|
3233 }
|
|
3234
|
|
3235 void
|
|
3236 kkcc_gc_stack_push_lisp_object (Lisp_Object obj)
|
|
3237 {
|
|
3238 if (XTYPE (obj) == Lisp_Type_Record)
|
|
3239 {
|
|
3240 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
|
3241 const struct memory_description *desc;
|
|
3242 GC_CHECK_LHEADER_INVARIANTS (lheader);
|
|
3243 desc = RECORD_DESCRIPTION (lheader);
|
|
3244 if (! MARKED_RECORD_HEADER_P (lheader))
|
|
3245 {
|
|
3246 MARK_RECORD_HEADER (lheader);
|
|
3247 kkcc_gc_stack_push((void*) lheader, desc);
|
|
3248 }
|
|
3249 }
|
|
3250 }
|
|
3251
|
1265
|
3252 #ifdef ERROR_CHECK_GC
|
|
3253 #define KKCC_DO_CHECK_FREE(obj, allow_free) \
|
|
3254 do \
|
|
3255 { \
|
|
3256 if (!allow_free && XTYPE (obj) == Lisp_Type_Record) \
|
|
3257 { \
|
|
3258 struct lrecord_header *lheader = XRECORD_LHEADER (obj); \
|
|
3259 GC_CHECK_NOT_FREE (lheader); \
|
|
3260 } \
|
|
3261 } while (0)
|
|
3262 #else
|
|
3263 #define KKCC_DO_CHECK_FREE(obj, allow_free)
|
|
3264 #endif
|
1204
|
3265
|
|
3266 #ifdef ERROR_CHECK_GC
|
1598
|
3267 static void
|
1204
|
3268 mark_object_maybe_checking_free (Lisp_Object obj, int allow_free)
|
|
3269 {
|
1265
|
3270 KKCC_DO_CHECK_FREE (obj, allow_free);
|
1598
|
3271 kkcc_gc_stack_push_lisp_object (obj);
|
1204
|
3272 }
|
|
3273 #else
|
1643
|
3274 #define mark_object_maybe_checking_free(obj, allow_free) \
|
|
3275 kkcc_gc_stack_push_lisp_object (obj)
|
1204
|
3276 #endif /* ERROR_CHECK_GC */
|
|
3277
|
934
|
3278
|
|
3279 /* This function loops all elements of a struct pointer and calls
|
|
3280 mark_with_description with each element. */
|
|
3281 static void
|
|
3282 mark_struct_contents (const void *data,
|
1204
|
3283 const struct sized_memory_description *sdesc,
|
|
3284 int count)
|
934
|
3285 {
|
|
3286 int i;
|
|
3287 Bytecount elsize;
|
1204
|
3288 elsize = lispdesc_structure_size (data, sdesc);
|
934
|
3289
|
|
3290 for (i = 0; i < count; i++)
|
|
3291 {
|
1598
|
3292 kkcc_gc_stack_push (((char *) data) + elsize * i, sdesc->description);
|
934
|
3293 }
|
|
3294 }
|
|
3295
|
1598
|
3296
|
|
3297 /* This function implements the KKCC mark algorithm.
|
|
3298 Instead of calling mark_object, all the alive Lisp_Objects are pushed
|
|
3299 on the kkcc_gc_stack. This function processes all elements on the stack
|
|
3300 according to their descriptions. */
|
|
3301 static void
|
|
3302 kkcc_marking (void)
|
|
3303 {
|
|
3304 kkcc_gc_stack_entry *stack_entry = 0;
|
|
3305 void *data = 0;
|
|
3306 const struct memory_description *desc = 0;
|
|
3307 int pos;
|
|
3308
|
|
3309 while ((stack_entry = kkcc_gc_stack_pop ()) != 0)
|
|
3310 {
|
|
3311 data = stack_entry->data;
|
|
3312 desc = stack_entry->desc;
|
|
3313
|
|
3314 for (pos = 0; desc[pos].type != XD_END; pos++)
|
|
3315 {
|
|
3316 const struct memory_description *desc1 = &desc[pos];
|
|
3317 const void *rdata =
|
|
3318 (const char *) data + lispdesc_indirect_count (desc1->offset,
|
|
3319 desc, data);
|
|
3320 union_switcheroo:
|
|
3321
|
|
3322 /* If the flag says don't mark, then don't mark. */
|
|
3323 if ((desc1->flags) & XD_FLAG_NO_KKCC)
|
|
3324 continue;
|
|
3325
|
|
3326 switch (desc1->type)
|
|
3327 {
|
|
3328 case XD_BYTECOUNT:
|
|
3329 case XD_ELEMCOUNT:
|
|
3330 case XD_HASHCODE:
|
|
3331 case XD_INT:
|
|
3332 case XD_LONG:
|
|
3333 case XD_INT_RESET:
|
|
3334 case XD_LO_LINK:
|
|
3335 case XD_OPAQUE_PTR:
|
|
3336 case XD_OPAQUE_DATA_PTR:
|
|
3337 case XD_C_STRING:
|
|
3338 case XD_DOC_STRING:
|
|
3339 break;
|
|
3340 case XD_LISP_OBJECT:
|
|
3341 {
|
|
3342 const Lisp_Object *stored_obj = (const Lisp_Object *) rdata;
|
|
3343
|
|
3344 /* Because of the way that tagged objects work (pointers and
|
|
3345 Lisp_Objects have the same representation), XD_LISP_OBJECT
|
|
3346 can be used for untagged pointers. They might be NULL,
|
|
3347 though. */
|
|
3348 if (EQ (*stored_obj, Qnull_pointer))
|
|
3349 break;
|
|
3350 mark_object_maybe_checking_free
|
|
3351 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT);
|
|
3352
|
|
3353 break;
|
|
3354 }
|
|
3355 case XD_LISP_OBJECT_ARRAY:
|
|
3356 {
|
|
3357 int i;
|
|
3358 EMACS_INT count =
|
|
3359 lispdesc_indirect_count (desc1->data1, desc, data);
|
|
3360
|
|
3361 for (i = 0; i < count; i++)
|
|
3362 {
|
|
3363 const Lisp_Object *stored_obj =
|
|
3364 (const Lisp_Object *) rdata + i;
|
|
3365
|
|
3366 if (EQ (*stored_obj, Qnull_pointer))
|
|
3367 break;
|
|
3368
|
|
3369 mark_object_maybe_checking_free
|
|
3370 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT);
|
|
3371 }
|
|
3372 break;
|
|
3373 }
|
|
3374 case XD_STRUCT_PTR:
|
|
3375 {
|
|
3376 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc,
|
|
3377 data);
|
|
3378 const struct sized_memory_description *sdesc =
|
|
3379 lispdesc_indirect_description (data, desc1->data2);
|
|
3380 const char *dobj = * (const char **) rdata;
|
|
3381 if (dobj)
|
|
3382 mark_struct_contents (dobj, sdesc, count);
|
|
3383 break;
|
|
3384 }
|
|
3385 case XD_STRUCT_ARRAY:
|
|
3386 {
|
|
3387 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc,
|
|
3388 data);
|
|
3389 const struct sized_memory_description *sdesc =
|
|
3390 lispdesc_indirect_description (data, desc1->data2);
|
|
3391
|
|
3392 mark_struct_contents (rdata, sdesc, count);
|
|
3393 break;
|
|
3394 }
|
|
3395 case XD_UNION:
|
|
3396 case XD_UNION_DYNAMIC_SIZE:
|
|
3397 desc1 = lispdesc_process_xd_union (desc1, desc, data);
|
|
3398 if (desc1)
|
|
3399 goto union_switcheroo;
|
|
3400 break;
|
|
3401
|
|
3402 default:
|
|
3403 stderr_out ("Unsupported description type : %d\n", desc1->type);
|
|
3404 abort ();
|
|
3405 }
|
|
3406 }
|
|
3407 }
|
|
3408 }
|
934
|
3409 #endif /* USE_KKCC */
|
|
3410
|
428
|
3411 /* Mark reference to a Lisp_Object. If the object referred to has not been
|
|
3412 seen yet, recursively mark all the references contained in it. */
|
|
3413
|
|
3414 void
|
|
3415 mark_object (Lisp_Object obj)
|
|
3416 {
|
1598
|
3417 #ifdef USE_KKCC
|
|
3418 /* this code should never be reached when configured for KKCC */
|
|
3419 stderr_out ("KKCC: Invalid mark_object call.\n");
|
|
3420 stderr_out ("Replace mark_object with kkcc_gc_stack_push_lisp_object.\n");
|
|
3421 abort ();
|
1676
|
3422 #else /* not USE_KKCC */
|
1598
|
3423
|
428
|
3424 tail_recurse:
|
|
3425
|
|
3426 /* Checks we used to perform */
|
|
3427 /* if (EQ (obj, Qnull_pointer)) return; */
|
|
3428 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */
|
|
3429 /* if (PURIFIED (XPNTR (obj))) return; */
|
|
3430
|
|
3431 if (XTYPE (obj) == Lisp_Type_Record)
|
|
3432 {
|
|
3433 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
442
|
3434
|
|
3435 GC_CHECK_LHEADER_INVARIANTS (lheader);
|
|
3436
|
1204
|
3437 /* We handle this separately, above, so we can mark free objects */
|
1265
|
3438 GC_CHECK_NOT_FREE (lheader);
|
1204
|
3439
|
442
|
3440 /* All c_readonly objects have their mark bit set,
|
|
3441 so that we only need to check the mark bit here. */
|
|
3442 if (! MARKED_RECORD_HEADER_P (lheader))
|
428
|
3443 {
|
|
3444 MARK_RECORD_HEADER (lheader);
|
442
|
3445
|
1598
|
3446 if (RECORD_MARKER (lheader))
|
|
3447 {
|
|
3448 obj = RECORD_MARKER (lheader) (obj);
|
|
3449 if (!NILP (obj)) goto tail_recurse;
|
|
3450 }
|
428
|
3451 }
|
|
3452 }
|
1676
|
3453 #endif /* not KKCC */
|
428
|
3454 }
|
|
3455
|
|
3456
|
|
3457 static int gc_count_num_short_string_in_use;
|
647
|
3458 static Bytecount gc_count_string_total_size;
|
|
3459 static Bytecount gc_count_short_string_total_size;
|
428
|
3460
|
|
3461 /* static int gc_count_total_records_used, gc_count_records_total_size; */
|
|
3462
|
|
3463
|
|
3464 /* stats on lcrecords in use - kinda kludgy */
|
|
3465
|
|
3466 static struct
|
|
3467 {
|
|
3468 int instances_in_use;
|
|
3469 int bytes_in_use;
|
|
3470 int instances_freed;
|
|
3471 int bytes_freed;
|
|
3472 int instances_on_free_list;
|
707
|
3473 } lcrecord_stats [countof (lrecord_implementations_table)
|
|
3474 + MODULE_DEFINABLE_TYPE_COUNT];
|
428
|
3475
|
|
3476 static void
|
442
|
3477 tick_lcrecord_stats (const struct lrecord_header *h, int free_p)
|
428
|
3478 {
|
647
|
3479 int type_index = h->type;
|
428
|
3480
|
|
3481 if (((struct lcrecord_header *) h)->free)
|
|
3482 {
|
442
|
3483 gc_checking_assert (!free_p);
|
428
|
3484 lcrecord_stats[type_index].instances_on_free_list++;
|
|
3485 }
|
|
3486 else
|
|
3487 {
|
1204
|
3488 Bytecount sz = detagged_lisp_object_size (h);
|
|
3489
|
428
|
3490 if (free_p)
|
|
3491 {
|
|
3492 lcrecord_stats[type_index].instances_freed++;
|
|
3493 lcrecord_stats[type_index].bytes_freed += sz;
|
|
3494 }
|
|
3495 else
|
|
3496 {
|
|
3497 lcrecord_stats[type_index].instances_in_use++;
|
|
3498 lcrecord_stats[type_index].bytes_in_use += sz;
|
|
3499 }
|
|
3500 }
|
|
3501 }
|
|
3502
|
|
3503
|
|
3504 /* Free all unmarked records */
|
|
3505 static void
|
|
3506 sweep_lcrecords_1 (struct lcrecord_header **prev, int *used)
|
|
3507 {
|
|
3508 struct lcrecord_header *header;
|
|
3509 int num_used = 0;
|
|
3510 /* int total_size = 0; */
|
|
3511
|
|
3512 xzero (lcrecord_stats); /* Reset all statistics to 0. */
|
|
3513
|
|
3514 /* First go through and call all the finalize methods.
|
|
3515 Then go through and free the objects. There used to
|
|
3516 be only one loop here, with the call to the finalizer
|
|
3517 occurring directly before the xfree() below. That
|
|
3518 is marginally faster but much less safe -- if the
|
|
3519 finalize method for an object needs to reference any
|
|
3520 other objects contained within it (and many do),
|
|
3521 we could easily be screwed by having already freed that
|
|
3522 other object. */
|
|
3523
|
|
3524 for (header = *prev; header; header = header->next)
|
|
3525 {
|
|
3526 struct lrecord_header *h = &(header->lheader);
|
442
|
3527
|
|
3528 GC_CHECK_LHEADER_INVARIANTS (h);
|
|
3529
|
|
3530 if (! MARKED_RECORD_HEADER_P (h) && ! header->free)
|
428
|
3531 {
|
|
3532 if (LHEADER_IMPLEMENTATION (h)->finalizer)
|
|
3533 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0);
|
|
3534 }
|
|
3535 }
|
|
3536
|
|
3537 for (header = *prev; header; )
|
|
3538 {
|
|
3539 struct lrecord_header *h = &(header->lheader);
|
442
|
3540 if (MARKED_RECORD_HEADER_P (h))
|
428
|
3541 {
|
442
|
3542 if (! C_READONLY_RECORD_HEADER_P (h))
|
428
|
3543 UNMARK_RECORD_HEADER (h);
|
|
3544 num_used++;
|
|
3545 /* total_size += n->implementation->size_in_bytes (h);*/
|
440
|
3546 /* #### May modify header->next on a C_READONLY lcrecord */
|
428
|
3547 prev = &(header->next);
|
|
3548 header = *prev;
|
|
3549 tick_lcrecord_stats (h, 0);
|
|
3550 }
|
|
3551 else
|
|
3552 {
|
|
3553 struct lcrecord_header *next = header->next;
|
|
3554 *prev = next;
|
|
3555 tick_lcrecord_stats (h, 1);
|
|
3556 /* used to call finalizer right here. */
|
1726
|
3557 xfree (header, struct lcrecord_header *);
|
428
|
3558 header = next;
|
|
3559 }
|
|
3560 }
|
|
3561 *used = num_used;
|
|
3562 /* *total = total_size; */
|
|
3563 }
|
|
3564
|
|
3565 /* And the Lord said: Thou shalt use the `c-backslash-region' command
|
|
3566 to make macros prettier. */
|
|
3567
|
|
3568 #ifdef ERROR_CHECK_GC
|
|
3569
|
771
|
3570 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \
|
428
|
3571 do { \
|
|
3572 struct typename##_block *SFTB_current; \
|
|
3573 int SFTB_limit; \
|
|
3574 int num_free = 0, num_used = 0; \
|
|
3575 \
|
444
|
3576 for (SFTB_current = current_##typename##_block, \
|
428
|
3577 SFTB_limit = current_##typename##_block_index; \
|
|
3578 SFTB_current; \
|
|
3579 ) \
|
|
3580 { \
|
|
3581 int SFTB_iii; \
|
|
3582 \
|
|
3583 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
|
3584 { \
|
|
3585 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
|
3586 \
|
454
|
3587 if (LRECORD_FREE_P (SFTB_victim)) \
|
428
|
3588 { \
|
|
3589 num_free++; \
|
|
3590 } \
|
|
3591 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
3592 { \
|
|
3593 num_used++; \
|
|
3594 } \
|
442
|
3595 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
428
|
3596 { \
|
|
3597 num_free++; \
|
|
3598 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
|
3599 } \
|
|
3600 else \
|
|
3601 { \
|
|
3602 num_used++; \
|
|
3603 UNMARK_##typename (SFTB_victim); \
|
|
3604 } \
|
|
3605 } \
|
|
3606 SFTB_current = SFTB_current->prev; \
|
|
3607 SFTB_limit = countof (current_##typename##_block->block); \
|
|
3608 } \
|
|
3609 \
|
|
3610 gc_count_num_##typename##_in_use = num_used; \
|
|
3611 gc_count_num_##typename##_freelist = num_free; \
|
|
3612 } while (0)
|
|
3613
|
|
3614 #else /* !ERROR_CHECK_GC */
|
|
3615
|
771
|
3616 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \
|
|
3617 do { \
|
|
3618 struct typename##_block *SFTB_current; \
|
|
3619 struct typename##_block **SFTB_prev; \
|
|
3620 int SFTB_limit; \
|
|
3621 int num_free = 0, num_used = 0; \
|
|
3622 \
|
|
3623 typename##_free_list = 0; \
|
|
3624 \
|
|
3625 for (SFTB_prev = ¤t_##typename##_block, \
|
|
3626 SFTB_current = current_##typename##_block, \
|
|
3627 SFTB_limit = current_##typename##_block_index; \
|
|
3628 SFTB_current; \
|
|
3629 ) \
|
|
3630 { \
|
|
3631 int SFTB_iii; \
|
|
3632 int SFTB_empty = 1; \
|
|
3633 Lisp_Free *SFTB_old_free_list = typename##_free_list; \
|
|
3634 \
|
|
3635 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
|
3636 { \
|
|
3637 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
|
3638 \
|
|
3639 if (LRECORD_FREE_P (SFTB_victim)) \
|
|
3640 { \
|
|
3641 num_free++; \
|
|
3642 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \
|
|
3643 } \
|
|
3644 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
3645 { \
|
|
3646 SFTB_empty = 0; \
|
|
3647 num_used++; \
|
|
3648 } \
|
|
3649 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
3650 { \
|
|
3651 num_free++; \
|
|
3652 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
|
3653 } \
|
|
3654 else \
|
|
3655 { \
|
|
3656 SFTB_empty = 0; \
|
|
3657 num_used++; \
|
|
3658 UNMARK_##typename (SFTB_victim); \
|
|
3659 } \
|
|
3660 } \
|
|
3661 if (!SFTB_empty) \
|
|
3662 { \
|
|
3663 SFTB_prev = &(SFTB_current->prev); \
|
|
3664 SFTB_current = SFTB_current->prev; \
|
|
3665 } \
|
|
3666 else if (SFTB_current == current_##typename##_block \
|
|
3667 && !SFTB_current->prev) \
|
|
3668 { \
|
|
3669 /* No real point in freeing sole allocation block */ \
|
|
3670 break; \
|
|
3671 } \
|
|
3672 else \
|
|
3673 { \
|
|
3674 struct typename##_block *SFTB_victim_block = SFTB_current; \
|
|
3675 if (SFTB_victim_block == current_##typename##_block) \
|
|
3676 current_##typename##_block_index \
|
|
3677 = countof (current_##typename##_block->block); \
|
|
3678 SFTB_current = SFTB_current->prev; \
|
|
3679 { \
|
|
3680 *SFTB_prev = SFTB_current; \
|
1726
|
3681 xfree (SFTB_victim_block, struct typename##_block *); \
|
771
|
3682 /* Restore free list to what it was before victim was swept */ \
|
|
3683 typename##_free_list = SFTB_old_free_list; \
|
|
3684 num_free -= SFTB_limit; \
|
|
3685 } \
|
|
3686 } \
|
|
3687 SFTB_limit = countof (current_##typename##_block->block); \
|
|
3688 } \
|
|
3689 \
|
|
3690 gc_count_num_##typename##_in_use = num_used; \
|
|
3691 gc_count_num_##typename##_freelist = num_free; \
|
428
|
3692 } while (0)
|
|
3693
|
|
3694 #endif /* !ERROR_CHECK_GC */
|
|
3695
|
771
|
3696 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
3697 SWEEP_FIXED_TYPE_BLOCK_1 (typename, obj_type, lheader)
|
|
3698
|
428
|
3699
|
|
3700
|
|
3701
|
|
3702 static void
|
|
3703 sweep_conses (void)
|
|
3704 {
|
|
3705 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3706 #define ADDITIONAL_FREE_cons(ptr)
|
|
3707
|
440
|
3708 SWEEP_FIXED_TYPE_BLOCK (cons, Lisp_Cons);
|
428
|
3709 }
|
|
3710
|
|
3711 /* Explicitly free a cons cell. */
|
|
3712 void
|
853
|
3713 free_cons (Lisp_Object cons)
|
428
|
3714 {
|
853
|
3715 Lisp_Cons *ptr = XCONS (cons);
|
|
3716
|
428
|
3717 #ifdef ERROR_CHECK_GC
|
|
3718 /* If the CAR is not an int, then it will be a pointer, which will
|
|
3719 always be four-byte aligned. If this cons cell has already been
|
|
3720 placed on the free list, however, its car will probably contain
|
|
3721 a chain pointer to the next cons on the list, which has cleverly
|
|
3722 had all its 0's and 1's inverted. This allows for a quick
|
1204
|
3723 check to make sure we're not freeing something already freed.
|
|
3724
|
|
3725 NOTE: This check may not be necessary. Freeing an object sets its
|
|
3726 type to lrecord_type_free, which will trip up the XCONS() above -- as
|
|
3727 well as a check in FREE_FIXED_TYPE(). */
|
853
|
3728 if (POINTER_TYPE_P (XTYPE (cons_car (ptr))))
|
|
3729 ASSERT_VALID_POINTER (XPNTR (cons_car (ptr)));
|
428
|
3730 #endif /* ERROR_CHECK_GC */
|
|
3731
|
440
|
3732 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, Lisp_Cons, ptr);
|
428
|
3733 }
|
|
3734
|
|
3735 /* explicitly free a list. You **must make sure** that you have
|
|
3736 created all the cons cells that make up this list and that there
|
|
3737 are no pointers to any of these cons cells anywhere else. If there
|
|
3738 are, you will lose. */
|
|
3739
|
|
3740 void
|
|
3741 free_list (Lisp_Object list)
|
|
3742 {
|
|
3743 Lisp_Object rest, next;
|
|
3744
|
|
3745 for (rest = list; !NILP (rest); rest = next)
|
|
3746 {
|
|
3747 next = XCDR (rest);
|
853
|
3748 free_cons (rest);
|
428
|
3749 }
|
|
3750 }
|
|
3751
|
|
3752 /* explicitly free an alist. You **must make sure** that you have
|
|
3753 created all the cons cells that make up this alist and that there
|
|
3754 are no pointers to any of these cons cells anywhere else. If there
|
|
3755 are, you will lose. */
|
|
3756
|
|
3757 void
|
|
3758 free_alist (Lisp_Object alist)
|
|
3759 {
|
|
3760 Lisp_Object rest, next;
|
|
3761
|
|
3762 for (rest = alist; !NILP (rest); rest = next)
|
|
3763 {
|
|
3764 next = XCDR (rest);
|
853
|
3765 free_cons (XCAR (rest));
|
|
3766 free_cons (rest);
|
428
|
3767 }
|
|
3768 }
|
|
3769
|
|
3770 static void
|
|
3771 sweep_compiled_functions (void)
|
|
3772 {
|
|
3773 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
945
|
3774 #define ADDITIONAL_FREE_compiled_function(ptr) \
|
1726
|
3775 if (ptr->args_in_array) xfree (ptr->args, Lisp_Object *)
|
428
|
3776
|
|
3777 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function);
|
|
3778 }
|
|
3779
|
|
3780 static void
|
|
3781 sweep_floats (void)
|
|
3782 {
|
|
3783 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3784 #define ADDITIONAL_FREE_float(ptr)
|
|
3785
|
440
|
3786 SWEEP_FIXED_TYPE_BLOCK (float, Lisp_Float);
|
428
|
3787 }
|
|
3788
|
|
3789 static void
|
|
3790 sweep_symbols (void)
|
|
3791 {
|
|
3792 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3793 #define ADDITIONAL_FREE_symbol(ptr)
|
|
3794
|
440
|
3795 SWEEP_FIXED_TYPE_BLOCK (symbol, Lisp_Symbol);
|
428
|
3796 }
|
|
3797
|
|
3798 static void
|
|
3799 sweep_extents (void)
|
|
3800 {
|
|
3801 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3802 #define ADDITIONAL_FREE_extent(ptr)
|
|
3803
|
|
3804 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent);
|
|
3805 }
|
|
3806
|
|
3807 static void
|
|
3808 sweep_events (void)
|
|
3809 {
|
|
3810 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3811 #define ADDITIONAL_FREE_event(ptr)
|
|
3812
|
440
|
3813 SWEEP_FIXED_TYPE_BLOCK (event, Lisp_Event);
|
428
|
3814 }
|
|
3815
|
1204
|
3816 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
3817
|
|
3818 static void
|
|
3819 sweep_key_data (void)
|
|
3820 {
|
|
3821 #define UNMARK_key_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3822 #define ADDITIONAL_FREE_key_data(ptr)
|
|
3823
|
|
3824 SWEEP_FIXED_TYPE_BLOCK (key_data, Lisp_Key_Data);
|
|
3825 }
|
|
3826
|
1204
|
3827 void
|
|
3828 free_key_data (Lisp_Object ptr)
|
|
3829 {
|
|
3830 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (key_data, Lisp_Key_Data, XKEY_DATA (ptr));
|
|
3831 }
|
|
3832
|
934
|
3833 static void
|
|
3834 sweep_button_data (void)
|
|
3835 {
|
|
3836 #define UNMARK_button_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3837 #define ADDITIONAL_FREE_button_data(ptr)
|
|
3838
|
|
3839 SWEEP_FIXED_TYPE_BLOCK (button_data, Lisp_Button_Data);
|
|
3840 }
|
|
3841
|
1204
|
3842 void
|
|
3843 free_button_data (Lisp_Object ptr)
|
|
3844 {
|
|
3845 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (button_data, Lisp_Button_Data, XBUTTON_DATA (ptr));
|
|
3846 }
|
|
3847
|
934
|
3848 static void
|
|
3849 sweep_motion_data (void)
|
|
3850 {
|
|
3851 #define UNMARK_motion_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3852 #define ADDITIONAL_FREE_motion_data(ptr)
|
|
3853
|
|
3854 SWEEP_FIXED_TYPE_BLOCK (motion_data, Lisp_Motion_Data);
|
|
3855 }
|
|
3856
|
1204
|
3857 void
|
|
3858 free_motion_data (Lisp_Object ptr)
|
|
3859 {
|
|
3860 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (motion_data, Lisp_Motion_Data, XMOTION_DATA (ptr));
|
|
3861 }
|
|
3862
|
934
|
3863 static void
|
|
3864 sweep_process_data (void)
|
|
3865 {
|
|
3866 #define UNMARK_process_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3867 #define ADDITIONAL_FREE_process_data(ptr)
|
|
3868
|
|
3869 SWEEP_FIXED_TYPE_BLOCK (process_data, Lisp_Process_Data);
|
|
3870 }
|
|
3871
|
1204
|
3872 void
|
|
3873 free_process_data (Lisp_Object ptr)
|
|
3874 {
|
|
3875 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (process_data, Lisp_Process_Data, XPROCESS_DATA (ptr));
|
|
3876 }
|
|
3877
|
934
|
3878 static void
|
|
3879 sweep_timeout_data (void)
|
|
3880 {
|
|
3881 #define UNMARK_timeout_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3882 #define ADDITIONAL_FREE_timeout_data(ptr)
|
|
3883
|
|
3884 SWEEP_FIXED_TYPE_BLOCK (timeout_data, Lisp_Timeout_Data);
|
|
3885 }
|
|
3886
|
1204
|
3887 void
|
|
3888 free_timeout_data (Lisp_Object ptr)
|
|
3889 {
|
|
3890 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (timeout_data, Lisp_Timeout_Data, XTIMEOUT_DATA (ptr));
|
|
3891 }
|
|
3892
|
934
|
3893 static void
|
|
3894 sweep_magic_data (void)
|
|
3895 {
|
|
3896 #define UNMARK_magic_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3897 #define ADDITIONAL_FREE_magic_data(ptr)
|
|
3898
|
|
3899 SWEEP_FIXED_TYPE_BLOCK (magic_data, Lisp_Magic_Data);
|
|
3900 }
|
|
3901
|
1204
|
3902 void
|
|
3903 free_magic_data (Lisp_Object ptr)
|
|
3904 {
|
|
3905 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_data, Lisp_Magic_Data, XMAGIC_DATA (ptr));
|
|
3906 }
|
|
3907
|
934
|
3908 static void
|
|
3909 sweep_magic_eval_data (void)
|
|
3910 {
|
|
3911 #define UNMARK_magic_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3912 #define ADDITIONAL_FREE_magic_eval_data(ptr)
|
|
3913
|
|
3914 SWEEP_FIXED_TYPE_BLOCK (magic_eval_data, Lisp_Magic_Eval_Data);
|
|
3915 }
|
|
3916
|
1204
|
3917 void
|
|
3918 free_magic_eval_data (Lisp_Object ptr)
|
|
3919 {
|
|
3920 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_eval_data, Lisp_Magic_Eval_Data, XMAGIC_EVAL_DATA (ptr));
|
|
3921 }
|
|
3922
|
934
|
3923 static void
|
|
3924 sweep_eval_data (void)
|
|
3925 {
|
|
3926 #define UNMARK_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3927 #define ADDITIONAL_FREE_eval_data(ptr)
|
|
3928
|
|
3929 SWEEP_FIXED_TYPE_BLOCK (eval_data, Lisp_Eval_Data);
|
|
3930 }
|
|
3931
|
1204
|
3932 void
|
|
3933 free_eval_data (Lisp_Object ptr)
|
|
3934 {
|
|
3935 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (eval_data, Lisp_Eval_Data, XEVAL_DATA (ptr));
|
|
3936 }
|
|
3937
|
934
|
3938 static void
|
|
3939 sweep_misc_user_data (void)
|
|
3940 {
|
|
3941 #define UNMARK_misc_user_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3942 #define ADDITIONAL_FREE_misc_user_data(ptr)
|
|
3943
|
|
3944 SWEEP_FIXED_TYPE_BLOCK (misc_user_data, Lisp_Misc_User_Data);
|
|
3945 }
|
|
3946
|
1204
|
3947 void
|
|
3948 free_misc_user_data (Lisp_Object ptr)
|
|
3949 {
|
|
3950 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (misc_user_data, Lisp_Misc_User_Data, XMISC_USER_DATA (ptr));
|
|
3951 }
|
|
3952
|
|
3953 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
3954
|
428
|
3955 static void
|
|
3956 sweep_markers (void)
|
|
3957 {
|
|
3958 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
3959 #define ADDITIONAL_FREE_marker(ptr) \
|
|
3960 do { Lisp_Object tem; \
|
793
|
3961 tem = wrap_marker (ptr); \
|
428
|
3962 unchain_marker (tem); \
|
|
3963 } while (0)
|
|
3964
|
440
|
3965 SWEEP_FIXED_TYPE_BLOCK (marker, Lisp_Marker);
|
428
|
3966 }
|
|
3967
|
|
3968 /* Explicitly free a marker. */
|
|
3969 void
|
1204
|
3970 free_marker (Lisp_Object ptr)
|
428
|
3971 {
|
1204
|
3972 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, Lisp_Marker, XMARKER (ptr));
|
428
|
3973 }
|
|
3974
|
|
3975
|
|
3976 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY)
|
|
3977
|
|
3978 static void
|
|
3979 verify_string_chars_integrity (void)
|
|
3980 {
|
|
3981 struct string_chars_block *sb;
|
|
3982
|
|
3983 /* Scan each existing string block sequentially, string by string. */
|
|
3984 for (sb = first_string_chars_block; sb; sb = sb->next)
|
|
3985 {
|
|
3986 int pos = 0;
|
|
3987 /* POS is the index of the next string in the block. */
|
|
3988 while (pos < sb->pos)
|
|
3989 {
|
|
3990 struct string_chars *s_chars =
|
|
3991 (struct string_chars *) &(sb->string_chars[pos]);
|
438
|
3992 Lisp_String *string;
|
428
|
3993 int size;
|
|
3994 int fullsize;
|
|
3995
|
454
|
3996 /* If the string_chars struct is marked as free (i.e. the
|
|
3997 STRING pointer is NULL) then this is an unused chunk of
|
|
3998 string storage. (See below.) */
|
|
3999
|
|
4000 if (STRING_CHARS_FREE_P (s_chars))
|
428
|
4001 {
|
|
4002 fullsize = ((struct unused_string_chars *) s_chars)->fullsize;
|
|
4003 pos += fullsize;
|
|
4004 continue;
|
|
4005 }
|
|
4006
|
|
4007 string = s_chars->string;
|
|
4008 /* Must be 32-bit aligned. */
|
|
4009 assert ((((int) string) & 3) == 0);
|
|
4010
|
793
|
4011 size = string->size_;
|
428
|
4012 fullsize = STRING_FULLSIZE (size);
|
|
4013
|
|
4014 assert (!BIG_STRING_FULLSIZE_P (fullsize));
|
793
|
4015 assert (string->data_ == s_chars->chars);
|
428
|
4016 pos += fullsize;
|
|
4017 }
|
|
4018 assert (pos == sb->pos);
|
|
4019 }
|
|
4020 }
|
|
4021
|
1204
|
4022 #endif /* defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) */
|
428
|
4023
|
|
4024 /* Compactify string chars, relocating the reference to each --
|
|
4025 free any empty string_chars_block we see. */
|
|
4026 static void
|
|
4027 compact_string_chars (void)
|
|
4028 {
|
|
4029 struct string_chars_block *to_sb = first_string_chars_block;
|
|
4030 int to_pos = 0;
|
|
4031 struct string_chars_block *from_sb;
|
|
4032
|
|
4033 /* Scan each existing string block sequentially, string by string. */
|
|
4034 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next)
|
|
4035 {
|
|
4036 int from_pos = 0;
|
|
4037 /* FROM_POS is the index of the next string in the block. */
|
|
4038 while (from_pos < from_sb->pos)
|
|
4039 {
|
|
4040 struct string_chars *from_s_chars =
|
|
4041 (struct string_chars *) &(from_sb->string_chars[from_pos]);
|
|
4042 struct string_chars *to_s_chars;
|
438
|
4043 Lisp_String *string;
|
428
|
4044 int size;
|
|
4045 int fullsize;
|
|
4046
|
454
|
4047 /* If the string_chars struct is marked as free (i.e. the
|
|
4048 STRING pointer is NULL) then this is an unused chunk of
|
|
4049 string storage. This happens under Mule when a string's
|
|
4050 size changes in such a way that its fullsize changes.
|
|
4051 (Strings can change size because a different-length
|
|
4052 character can be substituted for another character.)
|
|
4053 In this case, after the bogus string pointer is the
|
|
4054 "fullsize" of this entry, i.e. how many bytes to skip. */
|
|
4055
|
|
4056 if (STRING_CHARS_FREE_P (from_s_chars))
|
428
|
4057 {
|
|
4058 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize;
|
|
4059 from_pos += fullsize;
|
|
4060 continue;
|
|
4061 }
|
|
4062
|
|
4063 string = from_s_chars->string;
|
1204
|
4064 gc_checking_assert (!(LRECORD_FREE_P (string)));
|
428
|
4065
|
793
|
4066 size = string->size_;
|
428
|
4067 fullsize = STRING_FULLSIZE (size);
|
|
4068
|
442
|
4069 gc_checking_assert (! BIG_STRING_FULLSIZE_P (fullsize));
|
428
|
4070
|
|
4071 /* Just skip it if it isn't marked. */
|
771
|
4072 if (! MARKED_RECORD_HEADER_P (&(string->u.lheader)))
|
428
|
4073 {
|
|
4074 from_pos += fullsize;
|
|
4075 continue;
|
|
4076 }
|
|
4077
|
|
4078 /* If it won't fit in what's left of TO_SB, close TO_SB out
|
|
4079 and go on to the next string_chars_block. We know that TO_SB
|
|
4080 cannot advance past FROM_SB here since FROM_SB is large enough
|
|
4081 to currently contain this string. */
|
|
4082 if ((to_pos + fullsize) > countof (to_sb->string_chars))
|
|
4083 {
|
|
4084 to_sb->pos = to_pos;
|
|
4085 to_sb = to_sb->next;
|
|
4086 to_pos = 0;
|
|
4087 }
|
|
4088
|
|
4089 /* Compute new address of this string
|
|
4090 and update TO_POS for the space being used. */
|
|
4091 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]);
|
|
4092
|
|
4093 /* Copy the string_chars to the new place. */
|
|
4094 if (from_s_chars != to_s_chars)
|
|
4095 memmove (to_s_chars, from_s_chars, fullsize);
|
|
4096
|
|
4097 /* Relocate FROM_S_CHARS's reference */
|
826
|
4098 set_lispstringp_data (string, &(to_s_chars->chars[0]));
|
428
|
4099
|
|
4100 from_pos += fullsize;
|
|
4101 to_pos += fullsize;
|
|
4102 }
|
|
4103 }
|
|
4104
|
|
4105 /* Set current to the last string chars block still used and
|
|
4106 free any that follow. */
|
|
4107 {
|
|
4108 struct string_chars_block *victim;
|
|
4109
|
|
4110 for (victim = to_sb->next; victim; )
|
|
4111 {
|
|
4112 struct string_chars_block *next = victim->next;
|
1726
|
4113 xfree (victim, struct string_chars_block *);
|
428
|
4114 victim = next;
|
|
4115 }
|
|
4116
|
|
4117 current_string_chars_block = to_sb;
|
|
4118 current_string_chars_block->pos = to_pos;
|
|
4119 current_string_chars_block->next = 0;
|
|
4120 }
|
|
4121 }
|
|
4122
|
|
4123 #if 1 /* Hack to debug missing purecopy's */
|
|
4124 static int debug_string_purity;
|
|
4125
|
|
4126 static void
|
793
|
4127 debug_string_purity_print (Lisp_Object p)
|
428
|
4128 {
|
|
4129 Charcount i;
|
826
|
4130 Charcount s = string_char_length (p);
|
442
|
4131 stderr_out ("\"");
|
428
|
4132 for (i = 0; i < s; i++)
|
|
4133 {
|
867
|
4134 Ichar ch = string_ichar (p, i);
|
428
|
4135 if (ch < 32 || ch >= 126)
|
|
4136 stderr_out ("\\%03o", ch);
|
|
4137 else if (ch == '\\' || ch == '\"')
|
|
4138 stderr_out ("\\%c", ch);
|
|
4139 else
|
|
4140 stderr_out ("%c", ch);
|
|
4141 }
|
|
4142 stderr_out ("\"\n");
|
|
4143 }
|
|
4144 #endif /* 1 */
|
|
4145
|
|
4146
|
|
4147 static void
|
|
4148 sweep_strings (void)
|
|
4149 {
|
647
|
4150 int num_small_used = 0;
|
|
4151 Bytecount num_small_bytes = 0, num_bytes = 0;
|
428
|
4152 int debug = debug_string_purity;
|
|
4153
|
793
|
4154 #define UNMARK_string(ptr) do { \
|
|
4155 Lisp_String *p = (ptr); \
|
|
4156 Bytecount size = p->size_; \
|
|
4157 UNMARK_RECORD_HEADER (&(p->u.lheader)); \
|
|
4158 num_bytes += size; \
|
|
4159 if (!BIG_STRING_SIZE_P (size)) \
|
|
4160 { \
|
|
4161 num_small_bytes += size; \
|
|
4162 num_small_used++; \
|
|
4163 } \
|
|
4164 if (debug) \
|
|
4165 debug_string_purity_print (wrap_string (p)); \
|
438
|
4166 } while (0)
|
|
4167 #define ADDITIONAL_FREE_string(ptr) do { \
|
793
|
4168 Bytecount size = ptr->size_; \
|
438
|
4169 if (BIG_STRING_SIZE_P (size)) \
|
1726
|
4170 xfree (ptr->data_, Ibyte *); \
|
438
|
4171 } while (0)
|
|
4172
|
771
|
4173 SWEEP_FIXED_TYPE_BLOCK_1 (string, Lisp_String, u.lheader);
|
428
|
4174
|
|
4175 gc_count_num_short_string_in_use = num_small_used;
|
|
4176 gc_count_string_total_size = num_bytes;
|
|
4177 gc_count_short_string_total_size = num_small_bytes;
|
|
4178 }
|
|
4179
|
|
4180
|
|
4181 /* I hate duplicating all this crap! */
|
|
4182 int
|
|
4183 marked_p (Lisp_Object obj)
|
|
4184 {
|
|
4185 /* Checks we used to perform. */
|
|
4186 /* if (EQ (obj, Qnull_pointer)) return 1; */
|
|
4187 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */
|
|
4188 /* if (PURIFIED (XPNTR (obj))) return 1; */
|
|
4189
|
|
4190 if (XTYPE (obj) == Lisp_Type_Record)
|
|
4191 {
|
|
4192 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
442
|
4193
|
|
4194 GC_CHECK_LHEADER_INVARIANTS (lheader);
|
|
4195
|
|
4196 return MARKED_RECORD_HEADER_P (lheader);
|
428
|
4197 }
|
|
4198 return 1;
|
|
4199 }
|
|
4200
|
|
4201 static void
|
|
4202 gc_sweep (void)
|
|
4203 {
|
|
4204 /* Free all unmarked records. Do this at the very beginning,
|
|
4205 before anything else, so that the finalize methods can safely
|
|
4206 examine items in the objects. sweep_lcrecords_1() makes
|
|
4207 sure to call all the finalize methods *before* freeing anything,
|
|
4208 to complete the safety. */
|
|
4209 {
|
|
4210 int ignored;
|
|
4211 sweep_lcrecords_1 (&all_lcrecords, &ignored);
|
|
4212 }
|
|
4213
|
|
4214 compact_string_chars ();
|
|
4215
|
|
4216 /* Finalize methods below (called through the ADDITIONAL_FREE_foo
|
|
4217 macros) must be *extremely* careful to make sure they're not
|
|
4218 referencing freed objects. The only two existing finalize
|
|
4219 methods (for strings and markers) pass muster -- the string
|
|
4220 finalizer doesn't look at anything but its own specially-
|
|
4221 created block, and the marker finalizer only looks at live
|
|
4222 buffers (which will never be freed) and at the markers before
|
|
4223 and after it in the chain (which, by induction, will never be
|
|
4224 freed because if so, they would have already removed themselves
|
|
4225 from the chain). */
|
|
4226
|
|
4227 /* Put all unmarked strings on free list, free'ing the string chars
|
|
4228 of large unmarked strings */
|
|
4229 sweep_strings ();
|
|
4230
|
|
4231 /* Put all unmarked conses on free list */
|
|
4232 sweep_conses ();
|
|
4233
|
|
4234 /* Free all unmarked compiled-function objects */
|
|
4235 sweep_compiled_functions ();
|
|
4236
|
|
4237 /* Put all unmarked floats on free list */
|
|
4238 sweep_floats ();
|
|
4239
|
|
4240 /* Put all unmarked symbols on free list */
|
|
4241 sweep_symbols ();
|
|
4242
|
|
4243 /* Put all unmarked extents on free list */
|
|
4244 sweep_extents ();
|
|
4245
|
|
4246 /* Put all unmarked markers on free list.
|
|
4247 Dechain each one first from the buffer into which it points. */
|
|
4248 sweep_markers ();
|
|
4249
|
|
4250 sweep_events ();
|
|
4251
|
1204
|
4252 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
4253 sweep_key_data ();
|
|
4254 sweep_button_data ();
|
|
4255 sweep_motion_data ();
|
|
4256 sweep_process_data ();
|
|
4257 sweep_timeout_data ();
|
|
4258 sweep_magic_data ();
|
|
4259 sweep_magic_eval_data ();
|
|
4260 sweep_eval_data ();
|
|
4261 sweep_misc_user_data ();
|
1204
|
4262 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
4263
|
428
|
4264 #ifdef PDUMP
|
442
|
4265 pdump_objects_unmark ();
|
428
|
4266 #endif
|
|
4267 }
|
|
4268
|
|
4269 /* Clearing for disksave. */
|
|
4270
|
|
4271 void
|
|
4272 disksave_object_finalization (void)
|
|
4273 {
|
|
4274 /* It's important that certain information from the environment not get
|
|
4275 dumped with the executable (pathnames, environment variables, etc.).
|
|
4276 To make it easier to tell when this has happened with strings(1) we
|
|
4277 clear some known-to-be-garbage blocks of memory, so that leftover
|
|
4278 results of old evaluation don't look like potential problems.
|
|
4279 But first we set some notable variables to nil and do one more GC,
|
|
4280 to turn those strings into garbage.
|
440
|
4281 */
|
428
|
4282
|
|
4283 /* Yeah, this list is pretty ad-hoc... */
|
|
4284 Vprocess_environment = Qnil;
|
771
|
4285 env_initted = 0;
|
428
|
4286 Vexec_directory = Qnil;
|
|
4287 Vdata_directory = Qnil;
|
|
4288 Vsite_directory = Qnil;
|
|
4289 Vdoc_directory = Qnil;
|
|
4290 Vexec_path = Qnil;
|
|
4291 Vload_path = Qnil;
|
|
4292 /* Vdump_load_path = Qnil; */
|
|
4293 /* Release hash tables for locate_file */
|
|
4294 Flocate_file_clear_hashing (Qt);
|
771
|
4295 uncache_home_directory ();
|
776
|
4296 zero_out_command_line_status_vars ();
|
872
|
4297 clear_default_devices ();
|
428
|
4298
|
|
4299 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \
|
|
4300 defined(LOADHIST_BUILTIN))
|
|
4301 Vload_history = Qnil;
|
|
4302 #endif
|
|
4303 Vshell_file_name = Qnil;
|
|
4304
|
|
4305 garbage_collect_1 ();
|
|
4306
|
|
4307 /* Run the disksave finalization methods of all live objects. */
|
|
4308 disksave_object_finalization_1 ();
|
|
4309
|
|
4310 /* Zero out the uninitialized (really, unused) part of the containers
|
|
4311 for the live strings. */
|
|
4312 {
|
|
4313 struct string_chars_block *scb;
|
|
4314 for (scb = first_string_chars_block; scb; scb = scb->next)
|
|
4315 {
|
|
4316 int count = sizeof (scb->string_chars) - scb->pos;
|
|
4317
|
|
4318 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE);
|
440
|
4319 if (count != 0)
|
|
4320 {
|
|
4321 /* from the block's fill ptr to the end */
|
|
4322 memset ((scb->string_chars + scb->pos), 0, count);
|
|
4323 }
|
428
|
4324 }
|
|
4325 }
|
|
4326
|
|
4327 /* There, that ought to be enough... */
|
|
4328
|
|
4329 }
|
|
4330
|
|
4331
|
771
|
4332 int
|
|
4333 begin_gc_forbidden (void)
|
|
4334 {
|
853
|
4335 return internal_bind_int (&gc_currently_forbidden, 1);
|
771
|
4336 }
|
|
4337
|
|
4338 void
|
|
4339 end_gc_forbidden (int count)
|
|
4340 {
|
|
4341 unbind_to (count);
|
|
4342 }
|
|
4343
|
428
|
4344 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */
|
|
4345 static int gc_hooks_inhibited;
|
|
4346
|
611
|
4347 struct post_gc_action
|
|
4348 {
|
|
4349 void (*fun) (void *);
|
|
4350 void *arg;
|
|
4351 };
|
|
4352
|
|
4353 typedef struct post_gc_action post_gc_action;
|
|
4354
|
|
4355 typedef struct
|
|
4356 {
|
|
4357 Dynarr_declare (post_gc_action);
|
|
4358 } post_gc_action_dynarr;
|
|
4359
|
|
4360 static post_gc_action_dynarr *post_gc_actions;
|
|
4361
|
|
4362 /* Register an action to be called at the end of GC.
|
|
4363 gc_in_progress is 0 when this is called.
|
|
4364 This is used when it is discovered that an action needs to be taken,
|
|
4365 but it's during GC, so it's not safe. (e.g. in a finalize method.)
|
|
4366
|
|
4367 As a general rule, do not use Lisp objects here.
|
|
4368 And NEVER signal an error.
|
|
4369 */
|
|
4370
|
|
4371 void
|
|
4372 register_post_gc_action (void (*fun) (void *), void *arg)
|
|
4373 {
|
|
4374 post_gc_action action;
|
|
4375
|
|
4376 if (!post_gc_actions)
|
|
4377 post_gc_actions = Dynarr_new (post_gc_action);
|
|
4378
|
|
4379 action.fun = fun;
|
|
4380 action.arg = arg;
|
|
4381
|
|
4382 Dynarr_add (post_gc_actions, action);
|
|
4383 }
|
|
4384
|
|
4385 static void
|
|
4386 run_post_gc_actions (void)
|
|
4387 {
|
|
4388 int i;
|
|
4389
|
|
4390 if (post_gc_actions)
|
|
4391 {
|
|
4392 for (i = 0; i < Dynarr_length (post_gc_actions); i++)
|
|
4393 {
|
|
4394 post_gc_action action = Dynarr_at (post_gc_actions, i);
|
|
4395 (action.fun) (action.arg);
|
|
4396 }
|
|
4397
|
|
4398 Dynarr_reset (post_gc_actions);
|
|
4399 }
|
|
4400 }
|
|
4401
|
428
|
4402
|
|
4403 void
|
|
4404 garbage_collect_1 (void)
|
|
4405 {
|
|
4406 #if MAX_SAVE_STACK > 0
|
|
4407 char stack_top_variable;
|
|
4408 extern char *stack_bottom;
|
|
4409 #endif
|
|
4410 struct frame *f;
|
|
4411 int speccount;
|
|
4412 int cursor_changed;
|
|
4413 Lisp_Object pre_gc_cursor;
|
|
4414 struct gcpro gcpro1;
|
1292
|
4415 PROFILE_DECLARE ();
|
428
|
4416
|
1123
|
4417 assert (!in_display || gc_currently_forbidden);
|
|
4418
|
428
|
4419 if (gc_in_progress
|
|
4420 || gc_currently_forbidden
|
|
4421 || in_display
|
|
4422 || preparing_for_armageddon)
|
|
4423 return;
|
|
4424
|
1292
|
4425 PROFILE_RECORD_ENTERING_SECTION (QSin_garbage_collection);
|
|
4426
|
428
|
4427 /* We used to call selected_frame() here.
|
|
4428
|
|
4429 The following functions cannot be called inside GC
|
|
4430 so we move to after the above tests. */
|
|
4431 {
|
|
4432 Lisp_Object frame;
|
|
4433 Lisp_Object device = Fselected_device (Qnil);
|
|
4434 if (NILP (device)) /* Could happen during startup, eg. if always_gc */
|
|
4435 return;
|
872
|
4436 frame = Fselected_frame (device);
|
428
|
4437 if (NILP (frame))
|
563
|
4438 invalid_state ("No frames exist on device", device);
|
428
|
4439 f = XFRAME (frame);
|
|
4440 }
|
|
4441
|
|
4442 pre_gc_cursor = Qnil;
|
|
4443 cursor_changed = 0;
|
|
4444
|
|
4445 GCPRO1 (pre_gc_cursor);
|
|
4446
|
|
4447 /* Very important to prevent GC during any of the following
|
|
4448 stuff that might run Lisp code; otherwise, we'll likely
|
|
4449 have infinite GC recursion. */
|
771
|
4450 speccount = begin_gc_forbidden ();
|
428
|
4451
|
887
|
4452 need_to_signal_post_gc = 0;
|
1318
|
4453 recompute_funcall_allocation_flag ();
|
887
|
4454
|
428
|
4455 if (!gc_hooks_inhibited)
|
853
|
4456 run_hook_trapping_problems
|
1333
|
4457 (Qgarbage_collecting, Qpre_gc_hook,
|
853
|
4458 INHIBIT_EXISTING_PERMANENT_DISPLAY_OBJECT_DELETION);
|
428
|
4459
|
|
4460 /* Now show the GC cursor/message. */
|
|
4461 if (!noninteractive)
|
|
4462 {
|
|
4463 if (FRAME_WIN_P (f))
|
|
4464 {
|
771
|
4465 Lisp_Object frame = wrap_frame (f);
|
428
|
4466 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph,
|
|
4467 FRAME_SELECTED_WINDOW (f),
|
|
4468 ERROR_ME_NOT, 1);
|
|
4469 pre_gc_cursor = f->pointer;
|
|
4470 if (POINTER_IMAGE_INSTANCEP (cursor)
|
|
4471 /* don't change if we don't know how to change back. */
|
|
4472 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor))
|
|
4473 {
|
|
4474 cursor_changed = 1;
|
|
4475 Fset_frame_pointer (frame, cursor);
|
|
4476 }
|
|
4477 }
|
|
4478
|
|
4479 /* Don't print messages to the stream device. */
|
|
4480 if (!cursor_changed && !FRAME_STREAM_P (f))
|
|
4481 {
|
1154
|
4482 if (garbage_collection_messages)
|
|
4483 {
|
|
4484 Lisp_Object args[2], whole_msg;
|
|
4485 args[0] = (STRINGP (Vgc_message) ? Vgc_message :
|
|
4486 build_msg_string (gc_default_message));
|
|
4487 args[1] = build_string ("...");
|
|
4488 whole_msg = Fconcat (2, args);
|
|
4489 echo_area_message (f, (Ibyte *) 0, whole_msg, 0, -1,
|
|
4490 Qgarbage_collecting);
|
|
4491 }
|
428
|
4492 }
|
|
4493 }
|
|
4494
|
|
4495 /***** Now we actually start the garbage collection. */
|
|
4496
|
|
4497 gc_in_progress = 1;
|
771
|
4498 inhibit_non_essential_printing_operations = 1;
|
428
|
4499
|
|
4500 gc_generation_number[0]++;
|
|
4501
|
|
4502 #if MAX_SAVE_STACK > 0
|
|
4503
|
|
4504 /* Save a copy of the contents of the stack, for debugging. */
|
|
4505 if (!purify_flag)
|
|
4506 {
|
|
4507 /* Static buffer in which we save a copy of the C stack at each GC. */
|
|
4508 static char *stack_copy;
|
665
|
4509 static Bytecount stack_copy_size;
|
428
|
4510
|
|
4511 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom;
|
665
|
4512 Bytecount stack_size = (stack_diff > 0 ? stack_diff : -stack_diff);
|
428
|
4513 if (stack_size < MAX_SAVE_STACK)
|
|
4514 {
|
|
4515 if (stack_copy_size < stack_size)
|
|
4516 {
|
|
4517 stack_copy = (char *) xrealloc (stack_copy, stack_size);
|
|
4518 stack_copy_size = stack_size;
|
|
4519 }
|
|
4520
|
|
4521 memcpy (stack_copy,
|
|
4522 stack_diff > 0 ? stack_bottom : &stack_top_variable,
|
|
4523 stack_size);
|
|
4524 }
|
|
4525 }
|
|
4526 #endif /* MAX_SAVE_STACK > 0 */
|
|
4527
|
|
4528 /* Do some totally ad-hoc resource clearing. */
|
|
4529 /* #### generalize this? */
|
|
4530 clear_event_resource ();
|
|
4531 cleanup_specifiers ();
|
1204
|
4532 cleanup_buffer_undo_lists ();
|
428
|
4533
|
|
4534 /* Mark all the special slots that serve as the roots of accessibility. */
|
|
4535
|
1598
|
4536 #ifdef USE_KKCC
|
|
4537 /* initialize kkcc stack */
|
|
4538 kkcc_gc_stack_init();
|
1676
|
4539 #define mark_object kkcc_gc_stack_push_lisp_object
|
1598
|
4540 #endif /* USE_KKCC */
|
|
4541
|
428
|
4542 { /* staticpro() */
|
452
|
4543 Lisp_Object **p = Dynarr_begin (staticpros);
|
665
|
4544 Elemcount count;
|
452
|
4545 for (count = Dynarr_length (staticpros); count; count--)
|
|
4546 mark_object (**p++);
|
|
4547 }
|
|
4548
|
|
4549 { /* staticpro_nodump() */
|
|
4550 Lisp_Object **p = Dynarr_begin (staticpros_nodump);
|
665
|
4551 Elemcount count;
|
452
|
4552 for (count = Dynarr_length (staticpros_nodump); count; count--)
|
|
4553 mark_object (**p++);
|
428
|
4554 }
|
|
4555
|
|
4556 { /* GCPRO() */
|
|
4557 struct gcpro *tail;
|
|
4558 int i;
|
|
4559 for (tail = gcprolist; tail; tail = tail->next)
|
|
4560 for (i = 0; i < tail->nvars; i++)
|
|
4561 mark_object (tail->var[i]);
|
|
4562 }
|
|
4563
|
|
4564 { /* specbind() */
|
|
4565 struct specbinding *bind;
|
|
4566 for (bind = specpdl; bind != specpdl_ptr; bind++)
|
|
4567 {
|
|
4568 mark_object (bind->symbol);
|
|
4569 mark_object (bind->old_value);
|
|
4570 }
|
|
4571 }
|
|
4572
|
|
4573 {
|
|
4574 struct catchtag *catch;
|
|
4575 for (catch = catchlist; catch; catch = catch->next)
|
|
4576 {
|
|
4577 mark_object (catch->tag);
|
|
4578 mark_object (catch->val);
|
853
|
4579 mark_object (catch->actual_tag);
|
428
|
4580 }
|
|
4581 }
|
|
4582
|
|
4583 {
|
|
4584 struct backtrace *backlist;
|
|
4585 for (backlist = backtrace_list; backlist; backlist = backlist->next)
|
|
4586 {
|
|
4587 int nargs = backlist->nargs;
|
|
4588 int i;
|
|
4589
|
|
4590 mark_object (*backlist->function);
|
1292
|
4591 if (nargs < 0 /* nargs == UNEVALLED || nargs == MANY */
|
|
4592 /* might be fake (internal profiling entry) */
|
|
4593 && backlist->args)
|
428
|
4594 mark_object (backlist->args[0]);
|
|
4595 else
|
|
4596 for (i = 0; i < nargs; i++)
|
|
4597 mark_object (backlist->args[i]);
|
|
4598 }
|
|
4599 }
|
|
4600
|
|
4601 mark_profiling_info ();
|
|
4602
|
|
4603 /* OK, now do the after-mark stuff. This is for things that
|
|
4604 are only marked when something else is marked (e.g. weak hash tables).
|
|
4605 There may be complex dependencies between such objects -- e.g.
|
|
4606 a weak hash table might be unmarked, but after processing a later
|
|
4607 weak hash table, the former one might get marked. So we have to
|
|
4608 iterate until nothing more gets marked. */
|
1598
|
4609 #ifdef USE_KKCC
|
|
4610 kkcc_marking ();
|
|
4611 #endif /* USE_KKCC */
|
1590
|
4612 init_marking_ephemerons ();
|
428
|
4613 while (finish_marking_weak_hash_tables () > 0 ||
|
887
|
4614 finish_marking_weak_lists () > 0 ||
|
1590
|
4615 continue_marking_ephemerons () > 0)
|
|
4616 ;
|
|
4617
|
1598
|
4618 #ifdef USE_KKCC
|
|
4619 kkcc_marking ();
|
|
4620 #endif /* USE_KKCC */
|
|
4621
|
1590
|
4622 /* At this point, we know which objects need to be finalized: we
|
|
4623 still need to resurrect them */
|
|
4624
|
|
4625 while (finish_marking_ephemerons () > 0 ||
|
|
4626 finish_marking_weak_lists () > 0 ||
|
|
4627 finish_marking_weak_hash_tables () > 0)
|
428
|
4628 ;
|
|
4629
|
1643
|
4630 #ifdef USE_KKCC
|
|
4631 kkcc_marking ();
|
|
4632 kkcc_gc_stack_free ();
|
1676
|
4633 #undef mark_object
|
1643
|
4634 #endif /* USE_KKCC */
|
|
4635
|
428
|
4636 /* And prune (this needs to be called after everything else has been
|
|
4637 marked and before we do any sweeping). */
|
|
4638 /* #### this is somewhat ad-hoc and should probably be an object
|
|
4639 method */
|
|
4640 prune_weak_hash_tables ();
|
|
4641 prune_weak_lists ();
|
|
4642 prune_specifiers ();
|
|
4643 prune_syntax_tables ();
|
|
4644
|
887
|
4645 prune_ephemerons ();
|
858
|
4646 prune_weak_boxes ();
|
|
4647
|
428
|
4648 gc_sweep ();
|
|
4649
|
|
4650 consing_since_gc = 0;
|
|
4651 #ifndef DEBUG_XEMACS
|
|
4652 /* Allow you to set it really fucking low if you really want ... */
|
|
4653 if (gc_cons_threshold < 10000)
|
|
4654 gc_cons_threshold = 10000;
|
|
4655 #endif
|
814
|
4656 recompute_need_to_garbage_collect ();
|
428
|
4657
|
771
|
4658 inhibit_non_essential_printing_operations = 0;
|
428
|
4659 gc_in_progress = 0;
|
|
4660
|
611
|
4661 run_post_gc_actions ();
|
|
4662
|
428
|
4663 /******* End of garbage collection ********/
|
|
4664
|
|
4665 /* Now remove the GC cursor/message */
|
|
4666 if (!noninteractive)
|
|
4667 {
|
|
4668 if (cursor_changed)
|
771
|
4669 Fset_frame_pointer (wrap_frame (f), pre_gc_cursor);
|
428
|
4670 else if (!FRAME_STREAM_P (f))
|
|
4671 {
|
|
4672 /* Show "...done" only if the echo area would otherwise be empty. */
|
|
4673 if (NILP (clear_echo_area (selected_frame (),
|
|
4674 Qgarbage_collecting, 0)))
|
|
4675 {
|
1154
|
4676 if (garbage_collection_messages)
|
|
4677 {
|
|
4678 Lisp_Object args[2], whole_msg;
|
|
4679 args[0] = (STRINGP (Vgc_message) ? Vgc_message :
|
|
4680 build_msg_string (gc_default_message));
|
|
4681 args[1] = build_msg_string ("... done");
|
|
4682 whole_msg = Fconcat (2, args);
|
|
4683 echo_area_message (selected_frame (), (Ibyte *) 0,
|
|
4684 whole_msg, 0, -1,
|
|
4685 Qgarbage_collecting);
|
|
4686 }
|
428
|
4687 }
|
|
4688 }
|
|
4689 }
|
|
4690
|
|
4691 /* now stop inhibiting GC */
|
771
|
4692 unbind_to (speccount);
|
428
|
4693
|
|
4694 if (!breathing_space)
|
|
4695 {
|
|
4696 breathing_space = malloc (4096 - MALLOC_OVERHEAD);
|
|
4697 }
|
|
4698
|
|
4699 UNGCPRO;
|
887
|
4700
|
|
4701 need_to_signal_post_gc = 1;
|
|
4702 funcall_allocation_flag = 1;
|
|
4703
|
1292
|
4704 PROFILE_RECORD_EXITING_SECTION (QSin_garbage_collection);
|
|
4705
|
428
|
4706 return;
|
|
4707 }
|
|
4708
|
|
4709 /* Debugging aids. */
|
|
4710
|
|
4711 static Lisp_Object
|
771
|
4712 gc_plist_hack (const Char_ASCII *name, int value, Lisp_Object tail)
|
428
|
4713 {
|
|
4714 /* C doesn't have local functions (or closures, or GC, or readable syntax,
|
|
4715 or portable numeric datatypes, or bit-vectors, or characters, or
|
|
4716 arrays, or exceptions, or ...) */
|
|
4717 return cons3 (intern (name), make_int (value), tail);
|
|
4718 }
|
|
4719
|
|
4720 #define HACK_O_MATIC(type, name, pl) do { \
|
|
4721 int s = 0; \
|
|
4722 struct type##_block *x = current_##type##_block; \
|
|
4723 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \
|
|
4724 (pl) = gc_plist_hack ((name), s, (pl)); \
|
|
4725 } while (0)
|
|
4726
|
|
4727 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /*
|
|
4728 Reclaim storage for Lisp objects no longer needed.
|
|
4729 Return info on amount of space in use:
|
|
4730 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
|
|
4731 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
|
|
4732 PLIST)
|
|
4733 where `PLIST' is a list of alternating keyword/value pairs providing
|
|
4734 more detailed information.
|
|
4735 Garbage collection happens automatically if you cons more than
|
|
4736 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
|
|
4737 */
|
|
4738 ())
|
|
4739 {
|
|
4740 Lisp_Object pl = Qnil;
|
647
|
4741 int i;
|
428
|
4742 int gc_count_vector_total_size = 0;
|
|
4743 garbage_collect_1 ();
|
|
4744
|
442
|
4745 for (i = 0; i < lrecord_type_count; i++)
|
428
|
4746 {
|
|
4747 if (lcrecord_stats[i].bytes_in_use != 0
|
|
4748 || lcrecord_stats[i].bytes_freed != 0
|
|
4749 || lcrecord_stats[i].instances_on_free_list != 0)
|
|
4750 {
|
|
4751 char buf [255];
|
442
|
4752 const char *name = lrecord_implementations_table[i]->name;
|
428
|
4753 int len = strlen (name);
|
|
4754 /* save this for the FSFmacs-compatible part of the summary */
|
460
|
4755 if (i == lrecord_type_vector)
|
428
|
4756 gc_count_vector_total_size =
|
|
4757 lcrecord_stats[i].bytes_in_use + lcrecord_stats[i].bytes_freed;
|
|
4758
|
|
4759 sprintf (buf, "%s-storage", name);
|
|
4760 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl);
|
|
4761 /* Okay, simple pluralization check for `symbol-value-varalias' */
|
|
4762 if (name[len-1] == 's')
|
|
4763 sprintf (buf, "%ses-freed", name);
|
|
4764 else
|
|
4765 sprintf (buf, "%ss-freed", name);
|
|
4766 if (lcrecord_stats[i].instances_freed != 0)
|
|
4767 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl);
|
|
4768 if (name[len-1] == 's')
|
|
4769 sprintf (buf, "%ses-on-free-list", name);
|
|
4770 else
|
|
4771 sprintf (buf, "%ss-on-free-list", name);
|
|
4772 if (lcrecord_stats[i].instances_on_free_list != 0)
|
|
4773 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list,
|
|
4774 pl);
|
|
4775 if (name[len-1] == 's')
|
|
4776 sprintf (buf, "%ses-used", name);
|
|
4777 else
|
|
4778 sprintf (buf, "%ss-used", name);
|
|
4779 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl);
|
|
4780 }
|
|
4781 }
|
|
4782
|
|
4783 HACK_O_MATIC (extent, "extent-storage", pl);
|
|
4784 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl);
|
|
4785 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl);
|
|
4786 HACK_O_MATIC (event, "event-storage", pl);
|
|
4787 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl);
|
|
4788 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl);
|
|
4789 HACK_O_MATIC (marker, "marker-storage", pl);
|
|
4790 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl);
|
|
4791 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl);
|
|
4792 HACK_O_MATIC (float, "float-storage", pl);
|
|
4793 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl);
|
|
4794 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl);
|
|
4795 HACK_O_MATIC (string, "string-header-storage", pl);
|
|
4796 pl = gc_plist_hack ("long-strings-total-length",
|
|
4797 gc_count_string_total_size
|
|
4798 - gc_count_short_string_total_size, pl);
|
|
4799 HACK_O_MATIC (string_chars, "short-string-storage", pl);
|
|
4800 pl = gc_plist_hack ("short-strings-total-length",
|
|
4801 gc_count_short_string_total_size, pl);
|
|
4802 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl);
|
|
4803 pl = gc_plist_hack ("long-strings-used",
|
|
4804 gc_count_num_string_in_use
|
|
4805 - gc_count_num_short_string_in_use, pl);
|
|
4806 pl = gc_plist_hack ("short-strings-used",
|
|
4807 gc_count_num_short_string_in_use, pl);
|
|
4808
|
|
4809 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl);
|
|
4810 pl = gc_plist_hack ("compiled-functions-free",
|
|
4811 gc_count_num_compiled_function_freelist, pl);
|
|
4812 pl = gc_plist_hack ("compiled-functions-used",
|
|
4813 gc_count_num_compiled_function_in_use, pl);
|
|
4814
|
|
4815 HACK_O_MATIC (symbol, "symbol-storage", pl);
|
|
4816 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl);
|
|
4817 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl);
|
|
4818
|
|
4819 HACK_O_MATIC (cons, "cons-storage", pl);
|
|
4820 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl);
|
|
4821 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl);
|
|
4822
|
|
4823 /* The things we do for backwards-compatibility */
|
|
4824 return
|
|
4825 list6 (Fcons (make_int (gc_count_num_cons_in_use),
|
|
4826 make_int (gc_count_num_cons_freelist)),
|
|
4827 Fcons (make_int (gc_count_num_symbol_in_use),
|
|
4828 make_int (gc_count_num_symbol_freelist)),
|
|
4829 Fcons (make_int (gc_count_num_marker_in_use),
|
|
4830 make_int (gc_count_num_marker_freelist)),
|
|
4831 make_int (gc_count_string_total_size),
|
|
4832 make_int (gc_count_vector_total_size),
|
|
4833 pl);
|
|
4834 }
|
|
4835 #undef HACK_O_MATIC
|
|
4836
|
|
4837 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /*
|
|
4838 Return the number of bytes consed since the last garbage collection.
|
|
4839 \"Consed\" is a misnomer in that this actually counts allocation
|
|
4840 of all different kinds of objects, not just conses.
|
|
4841
|
|
4842 If this value exceeds `gc-cons-threshold', a garbage collection happens.
|
|
4843 */
|
|
4844 ())
|
|
4845 {
|
|
4846 return make_int (consing_since_gc);
|
|
4847 }
|
|
4848
|
440
|
4849 #if 0
|
444
|
4850 DEFUN ("memory-limit", Fmemory_limit, 0, 0, 0, /*
|
801
|
4851 Return the address of the last byte XEmacs has allocated, divided by 1024.
|
|
4852 This may be helpful in debugging XEmacs's memory usage.
|
428
|
4853 The value is divided by 1024 to make sure it will fit in a lisp integer.
|
|
4854 */
|
|
4855 ())
|
|
4856 {
|
|
4857 return make_int ((EMACS_INT) sbrk (0) / 1024);
|
|
4858 }
|
440
|
4859 #endif
|
428
|
4860
|
801
|
4861 DEFUN ("memory-usage", Fmemory_usage, 0, 0, 0, /*
|
|
4862 Return the total number of bytes used by the data segment in XEmacs.
|
|
4863 This may be helpful in debugging XEmacs's memory usage.
|
|
4864 */
|
|
4865 ())
|
|
4866 {
|
|
4867 return make_int (total_data_usage ());
|
|
4868 }
|
|
4869
|
851
|
4870 void
|
|
4871 recompute_funcall_allocation_flag (void)
|
|
4872 {
|
887
|
4873 funcall_allocation_flag =
|
|
4874 need_to_garbage_collect ||
|
|
4875 need_to_check_c_alloca ||
|
|
4876 need_to_signal_post_gc;
|
851
|
4877 }
|
|
4878
|
801
|
4879 /* True if it's time to garbage collect now. */
|
814
|
4880 static void
|
|
4881 recompute_need_to_garbage_collect (void)
|
801
|
4882 {
|
|
4883 if (always_gc)
|
814
|
4884 need_to_garbage_collect = 1;
|
|
4885 else
|
|
4886 need_to_garbage_collect =
|
|
4887 (consing_since_gc > gc_cons_threshold
|
|
4888 #if 0 /* #### implement this better */
|
|
4889 &&
|
|
4890 (100 * consing_since_gc) / total_data_usage () >=
|
|
4891 gc_cons_percentage
|
|
4892 #endif /* 0 */
|
|
4893 );
|
851
|
4894 recompute_funcall_allocation_flag ();
|
801
|
4895 }
|
|
4896
|
428
|
4897
|
|
4898 int
|
|
4899 object_dead_p (Lisp_Object obj)
|
|
4900 {
|
|
4901 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) ||
|
|
4902 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) ||
|
|
4903 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) ||
|
|
4904 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) ||
|
|
4905 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) ||
|
|
4906 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) ||
|
|
4907 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj))));
|
|
4908 }
|
|
4909
|
|
4910 #ifdef MEMORY_USAGE_STATS
|
|
4911
|
|
4912 /* Attempt to determine the actual amount of space that is used for
|
|
4913 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE".
|
|
4914
|
|
4915 It seems that the following holds:
|
|
4916
|
|
4917 1. When using the old allocator (malloc.c):
|
|
4918
|
|
4919 -- blocks are always allocated in chunks of powers of two. For
|
|
4920 each block, there is an overhead of 8 bytes if rcheck is not
|
|
4921 defined, 20 bytes if it is defined. In other words, a
|
|
4922 one-byte allocation needs 8 bytes of overhead for a total of
|
|
4923 9 bytes, and needs to have 16 bytes of memory chunked out for
|
|
4924 it.
|
|
4925
|
|
4926 2. When using the new allocator (gmalloc.c):
|
|
4927
|
|
4928 -- blocks are always allocated in chunks of powers of two up
|
|
4929 to 4096 bytes. Larger blocks are allocated in chunks of
|
|
4930 an integral multiple of 4096 bytes. The minimum block
|
|
4931 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG
|
|
4932 is defined. There is no per-block overhead, but there
|
|
4933 is an overhead of 3*sizeof (size_t) for each 4096 bytes
|
|
4934 allocated.
|
|
4935
|
|
4936 3. When using the system malloc, anything goes, but they are
|
|
4937 generally slower and more space-efficient than the GNU
|
|
4938 allocators. One possibly reasonable assumption to make
|
|
4939 for want of better data is that sizeof (void *), or maybe
|
|
4940 2 * sizeof (void *), is required as overhead and that
|
|
4941 blocks are allocated in the minimum required size except
|
|
4942 that some minimum block size is imposed (e.g. 16 bytes). */
|
|
4943
|
665
|
4944 Bytecount
|
|
4945 malloced_storage_size (void *ptr, Bytecount claimed_size,
|
428
|
4946 struct overhead_stats *stats)
|
|
4947 {
|
665
|
4948 Bytecount orig_claimed_size = claimed_size;
|
428
|
4949
|
|
4950 #ifdef GNU_MALLOC
|
665
|
4951 if (claimed_size < (Bytecount) (2 * sizeof (void *)))
|
428
|
4952 claimed_size = 2 * sizeof (void *);
|
|
4953 # ifdef SUNOS_LOCALTIME_BUG
|
|
4954 if (claimed_size < 16)
|
|
4955 claimed_size = 16;
|
|
4956 # endif
|
|
4957 if (claimed_size < 4096)
|
|
4958 {
|
|
4959 int log = 1;
|
|
4960
|
|
4961 /* compute the log base two, more or less, then use it to compute
|
|
4962 the block size needed. */
|
|
4963 claimed_size--;
|
|
4964 /* It's big, it's heavy, it's wood! */
|
|
4965 while ((claimed_size /= 2) != 0)
|
|
4966 ++log;
|
|
4967 claimed_size = 1;
|
|
4968 /* It's better than bad, it's good! */
|
|
4969 while (log > 0)
|
|
4970 {
|
|
4971 claimed_size *= 2;
|
|
4972 log--;
|
|
4973 }
|
|
4974 /* We have to come up with some average about the amount of
|
|
4975 blocks used. */
|
665
|
4976 if ((Bytecount) (rand () & 4095) < claimed_size)
|
428
|
4977 claimed_size += 3 * sizeof (void *);
|
|
4978 }
|
|
4979 else
|
|
4980 {
|
|
4981 claimed_size += 4095;
|
|
4982 claimed_size &= ~4095;
|
|
4983 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t);
|
|
4984 }
|
|
4985
|
|
4986 #elif defined (SYSTEM_MALLOC)
|
|
4987
|
|
4988 if (claimed_size < 16)
|
|
4989 claimed_size = 16;
|
|
4990 claimed_size += 2 * sizeof (void *);
|
|
4991
|
|
4992 #else /* old GNU allocator */
|
|
4993
|
|
4994 # ifdef rcheck /* #### may not be defined here */
|
|
4995 claimed_size += 20;
|
|
4996 # else
|
|
4997 claimed_size += 8;
|
|
4998 # endif
|
|
4999 {
|
|
5000 int log = 1;
|
|
5001
|
|
5002 /* compute the log base two, more or less, then use it to compute
|
|
5003 the block size needed. */
|
|
5004 claimed_size--;
|
|
5005 /* It's big, it's heavy, it's wood! */
|
|
5006 while ((claimed_size /= 2) != 0)
|
|
5007 ++log;
|
|
5008 claimed_size = 1;
|
|
5009 /* It's better than bad, it's good! */
|
|
5010 while (log > 0)
|
|
5011 {
|
|
5012 claimed_size *= 2;
|
|
5013 log--;
|
|
5014 }
|
|
5015 }
|
|
5016
|
|
5017 #endif /* old GNU allocator */
|
|
5018
|
|
5019 if (stats)
|
|
5020 {
|
|
5021 stats->was_requested += orig_claimed_size;
|
|
5022 stats->malloc_overhead += claimed_size - orig_claimed_size;
|
|
5023 }
|
|
5024 return claimed_size;
|
|
5025 }
|
|
5026
|
665
|
5027 Bytecount
|
|
5028 fixed_type_block_overhead (Bytecount size)
|
428
|
5029 {
|
665
|
5030 Bytecount per_block = TYPE_ALLOC_SIZE (cons, unsigned char);
|
|
5031 Bytecount overhead = 0;
|
|
5032 Bytecount storage_size = malloced_storage_size (0, per_block, 0);
|
428
|
5033 while (size >= per_block)
|
|
5034 {
|
|
5035 size -= per_block;
|
|
5036 overhead += sizeof (void *) + per_block - storage_size;
|
|
5037 }
|
|
5038 if (rand () % per_block < size)
|
|
5039 overhead += sizeof (void *) + per_block - storage_size;
|
|
5040 return overhead;
|
|
5041 }
|
|
5042
|
|
5043 #endif /* MEMORY_USAGE_STATS */
|
|
5044
|
|
5045
|
|
5046 /* Initialization */
|
771
|
5047 static void
|
1204
|
5048 common_init_alloc_early (void)
|
428
|
5049 {
|
771
|
5050 #ifndef Qzero
|
|
5051 Qzero = make_int (0); /* Only used if Lisp_Object is a union type */
|
|
5052 #endif
|
|
5053
|
|
5054 #ifndef Qnull_pointer
|
|
5055 /* C guarantees that Qnull_pointer will be initialized to all 0 bits,
|
|
5056 so the following is actually a no-op. */
|
793
|
5057 Qnull_pointer = wrap_pointer_1 (0);
|
771
|
5058 #endif
|
|
5059
|
428
|
5060 gc_generation_number[0] = 0;
|
|
5061 breathing_space = 0;
|
771
|
5062 Vgc_message = Qzero;
|
428
|
5063 all_lcrecords = 0;
|
|
5064 ignore_malloc_warnings = 1;
|
|
5065 #ifdef DOUG_LEA_MALLOC
|
|
5066 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
|
|
5067 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
|
|
5068 #if 0 /* Moved to emacs.c */
|
|
5069 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */
|
|
5070 #endif
|
|
5071 #endif
|
|
5072 init_string_alloc ();
|
|
5073 init_string_chars_alloc ();
|
|
5074 init_cons_alloc ();
|
|
5075 init_symbol_alloc ();
|
|
5076 init_compiled_function_alloc ();
|
|
5077 init_float_alloc ();
|
|
5078 init_marker_alloc ();
|
|
5079 init_extent_alloc ();
|
|
5080 init_event_alloc ();
|
1204
|
5081 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
5082 init_key_data_alloc ();
|
|
5083 init_button_data_alloc ();
|
|
5084 init_motion_data_alloc ();
|
|
5085 init_process_data_alloc ();
|
|
5086 init_timeout_data_alloc ();
|
|
5087 init_magic_data_alloc ();
|
|
5088 init_magic_eval_data_alloc ();
|
|
5089 init_eval_data_alloc ();
|
|
5090 init_misc_user_data_alloc ();
|
1204
|
5091 #endif /* EVENT_DATA_AS_OBJECTS */
|
428
|
5092
|
|
5093 ignore_malloc_warnings = 0;
|
|
5094
|
452
|
5095 if (staticpros_nodump)
|
|
5096 Dynarr_free (staticpros_nodump);
|
|
5097 staticpros_nodump = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *);
|
|
5098 Dynarr_resize (staticpros_nodump, 100); /* merely a small optimization */
|
771
|
5099 #ifdef DEBUG_XEMACS
|
|
5100 if (staticpro_nodump_names)
|
|
5101 Dynarr_free (staticpro_nodump_names);
|
|
5102 staticpro_nodump_names = Dynarr_new2 (char_ptr_dynarr, char *);
|
|
5103 Dynarr_resize (staticpro_nodump_names, 100); /* ditto */
|
|
5104 #endif
|
428
|
5105
|
|
5106 consing_since_gc = 0;
|
814
|
5107 need_to_garbage_collect = always_gc;
|
851
|
5108 need_to_check_c_alloca = 0;
|
|
5109 funcall_allocation_flag = 0;
|
|
5110 funcall_alloca_count = 0;
|
814
|
5111
|
428
|
5112 #if 1
|
|
5113 gc_cons_threshold = 500000; /* XEmacs change */
|
|
5114 #else
|
|
5115 gc_cons_threshold = 15000; /* debugging */
|
|
5116 #endif
|
801
|
5117 gc_cons_percentage = 0; /* #### 20; Don't have an accurate measure of
|
|
5118 memory usage on Windows; not verified on other
|
|
5119 systems */
|
428
|
5120 lrecord_uid_counter = 259;
|
|
5121 debug_string_purity = 0;
|
|
5122
|
|
5123 gc_currently_forbidden = 0;
|
|
5124 gc_hooks_inhibited = 0;
|
|
5125
|
800
|
5126 #ifdef ERROR_CHECK_TYPES
|
428
|
5127 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
5128 666;
|
|
5129 ERROR_ME_NOT.
|
|
5130 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42;
|
|
5131 ERROR_ME_WARN.
|
|
5132 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
5133 3333632;
|
793
|
5134 ERROR_ME_DEBUG_WARN.
|
|
5135 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
5136 8675309;
|
800
|
5137 #endif /* ERROR_CHECK_TYPES */
|
428
|
5138 }
|
|
5139
|
771
|
5140 static void
|
|
5141 init_lcrecord_lists (void)
|
|
5142 {
|
|
5143 int i;
|
|
5144
|
|
5145 for (i = 0; i < countof (lrecord_implementations_table); i++)
|
|
5146 {
|
|
5147 all_lcrecord_lists[i] = Qzero; /* Qnil not yet set */
|
|
5148 staticpro_nodump (&all_lcrecord_lists[i]);
|
|
5149 }
|
|
5150 }
|
|
5151
|
|
5152 void
|
1204
|
5153 init_alloc_early (void)
|
771
|
5154 {
|
1204
|
5155 #if defined (__cplusplus) && defined (ERROR_CHECK_GC)
|
|
5156 static struct gcpro initial_gcpro;
|
|
5157
|
|
5158 initial_gcpro.next = 0;
|
|
5159 initial_gcpro.var = &Qnil;
|
|
5160 initial_gcpro.nvars = 1;
|
|
5161 gcprolist = &initial_gcpro;
|
|
5162 #else
|
|
5163 gcprolist = 0;
|
|
5164 #endif /* defined (__cplusplus) && defined (ERROR_CHECK_GC) */
|
|
5165 }
|
|
5166
|
|
5167 void
|
|
5168 reinit_alloc_early (void)
|
|
5169 {
|
|
5170 common_init_alloc_early ();
|
771
|
5171 init_lcrecord_lists ();
|
|
5172 }
|
|
5173
|
428
|
5174 void
|
|
5175 init_alloc_once_early (void)
|
|
5176 {
|
1204
|
5177 common_init_alloc_early ();
|
428
|
5178
|
442
|
5179 {
|
|
5180 int i;
|
|
5181 for (i = 0; i < countof (lrecord_implementations_table); i++)
|
|
5182 lrecord_implementations_table[i] = 0;
|
|
5183 }
|
|
5184
|
|
5185 INIT_LRECORD_IMPLEMENTATION (cons);
|
|
5186 INIT_LRECORD_IMPLEMENTATION (vector);
|
|
5187 INIT_LRECORD_IMPLEMENTATION (string);
|
|
5188 INIT_LRECORD_IMPLEMENTATION (lcrecord_list);
|
1204
|
5189 INIT_LRECORD_IMPLEMENTATION (free);
|
428
|
5190
|
452
|
5191 staticpros = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *);
|
|
5192 Dynarr_resize (staticpros, 1410); /* merely a small optimization */
|
|
5193 dump_add_root_struct_ptr (&staticpros, &staticpros_description);
|
771
|
5194 #ifdef DEBUG_XEMACS
|
|
5195 staticpro_names = Dynarr_new2 (char_ptr_dynarr, char *);
|
|
5196 Dynarr_resize (staticpro_names, 1410); /* merely a small optimization */
|
|
5197 dump_add_root_struct_ptr (&staticpro_names, &staticpro_names_description);
|
|
5198 #endif
|
|
5199
|
|
5200 init_lcrecord_lists ();
|
428
|
5201 }
|
|
5202
|
|
5203 void
|
|
5204 syms_of_alloc (void)
|
|
5205 {
|
442
|
5206 DEFSYMBOL (Qpre_gc_hook);
|
|
5207 DEFSYMBOL (Qpost_gc_hook);
|
|
5208 DEFSYMBOL (Qgarbage_collecting);
|
428
|
5209
|
|
5210 DEFSUBR (Fcons);
|
|
5211 DEFSUBR (Flist);
|
|
5212 DEFSUBR (Fvector);
|
|
5213 DEFSUBR (Fbit_vector);
|
|
5214 DEFSUBR (Fmake_byte_code);
|
|
5215 DEFSUBR (Fmake_list);
|
|
5216 DEFSUBR (Fmake_vector);
|
|
5217 DEFSUBR (Fmake_bit_vector);
|
|
5218 DEFSUBR (Fmake_string);
|
|
5219 DEFSUBR (Fstring);
|
|
5220 DEFSUBR (Fmake_symbol);
|
|
5221 DEFSUBR (Fmake_marker);
|
|
5222 DEFSUBR (Fpurecopy);
|
|
5223 DEFSUBR (Fgarbage_collect);
|
440
|
5224 #if 0
|
428
|
5225 DEFSUBR (Fmemory_limit);
|
440
|
5226 #endif
|
801
|
5227 DEFSUBR (Fmemory_usage);
|
428
|
5228 DEFSUBR (Fconsing_since_gc);
|
|
5229 }
|
|
5230
|
|
5231 void
|
|
5232 vars_of_alloc (void)
|
|
5233 {
|
1292
|
5234 QSin_garbage_collection = build_msg_string ("(in garbage collection)");
|
|
5235 staticpro (&QSin_garbage_collection);
|
|
5236
|
428
|
5237 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /*
|
|
5238 *Number of bytes of consing between garbage collections.
|
|
5239 \"Consing\" is a misnomer in that this actually counts allocation
|
|
5240 of all different kinds of objects, not just conses.
|
|
5241 Garbage collection can happen automatically once this many bytes have been
|
|
5242 allocated since the last garbage collection. All data types count.
|
|
5243
|
|
5244 Garbage collection happens automatically when `eval' or `funcall' are
|
|
5245 called. (Note that `funcall' is called implicitly as part of evaluation.)
|
|
5246 By binding this temporarily to a large number, you can effectively
|
|
5247 prevent garbage collection during a part of the program.
|
|
5248
|
853
|
5249 Normally, you cannot set this value less than 10,000 (if you do, it is
|
|
5250 automatically reset during the next garbage collection). However, if
|
|
5251 XEmacs was compiled with DEBUG_XEMACS, this does not happen, allowing
|
|
5252 you to set this value very low to track down problems with insufficient
|
|
5253 GCPRO'ing. If you set this to a negative number, garbage collection will
|
|
5254 happen at *EVERY* call to `eval' or `funcall'. This is an extremely
|
|
5255 effective way to check GCPRO problems, but be warned that your XEmacs
|
|
5256 will be unusable! You almost certainly won't have the patience to wait
|
|
5257 long enough to be able to set it back.
|
|
5258
|
428
|
5259 See also `consing-since-gc'.
|
|
5260 */ );
|
|
5261
|
801
|
5262 DEFVAR_INT ("gc-cons-percentage", &gc_cons_percentage /*
|
|
5263 *Percentage of memory allocated between garbage collections.
|
|
5264
|
|
5265 Garbage collection will happen if this percentage of the total amount of
|
|
5266 memory used for data has been allocated since the last garbage collection.
|
|
5267 However, it will not happen if less than `gc-cons-threshold' bytes have
|
|
5268 been allocated -- this sets an absolute minimum in case very little data
|
|
5269 has been allocated or the percentage is set very low. Set this to 0 to
|
|
5270 have garbage collection always happen after `gc-cons-threshold' bytes have
|
|
5271 been allocated, regardless of current memory usage.
|
|
5272
|
|
5273 Garbage collection happens automatically when `eval' or `funcall' are
|
|
5274 called. (Note that `funcall' is called implicitly as part of evaluation.)
|
|
5275 By binding this temporarily to a large number, you can effectively
|
|
5276 prevent garbage collection during a part of the program.
|
|
5277
|
|
5278 See also `consing-since-gc'.
|
|
5279 */ );
|
|
5280
|
428
|
5281 #ifdef DEBUG_XEMACS
|
|
5282 DEFVAR_INT ("debug-allocation", &debug_allocation /*
|
|
5283 If non-zero, print out information to stderr about all objects allocated.
|
|
5284 See also `debug-allocation-backtrace-length'.
|
|
5285 */ );
|
|
5286 debug_allocation = 0;
|
|
5287
|
|
5288 DEFVAR_INT ("debug-allocation-backtrace-length",
|
|
5289 &debug_allocation_backtrace_length /*
|
|
5290 Length (in stack frames) of short backtrace printed out by `debug-allocation'.
|
|
5291 */ );
|
|
5292 debug_allocation_backtrace_length = 2;
|
|
5293 #endif
|
|
5294
|
|
5295 DEFVAR_BOOL ("purify-flag", &purify_flag /*
|
|
5296 Non-nil means loading Lisp code in order to dump an executable.
|
|
5297 This means that certain objects should be allocated in readonly space.
|
|
5298 */ );
|
|
5299
|
1154
|
5300 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages /*
|
|
5301 Non-nil means display messages at start and end of garbage collection.
|
|
5302 */ );
|
|
5303 garbage_collection_messages = 0;
|
|
5304
|
428
|
5305 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /*
|
|
5306 Function or functions to be run just before each garbage collection.
|
|
5307 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
5308 runs, so be extremely careful in what you add here. In particular, avoid
|
|
5309 consing, and do not interact with the user.
|
|
5310 */ );
|
|
5311 Vpre_gc_hook = Qnil;
|
|
5312
|
|
5313 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /*
|
|
5314 Function or functions to be run just after each garbage collection.
|
|
5315 Interrupts, garbage collection, and errors are inhibited while this hook
|
887
|
5316 runs. Each hook is called with one argument which is an alist with
|
|
5317 finalization data.
|
428
|
5318 */ );
|
|
5319 Vpost_gc_hook = Qnil;
|
|
5320
|
|
5321 DEFVAR_LISP ("gc-message", &Vgc_message /*
|
|
5322 String to print to indicate that a garbage collection is in progress.
|
|
5323 This is printed in the echo area. If the selected frame is on a
|
|
5324 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer
|
|
5325 image instance) in the domain of the selected frame, the mouse pointer
|
|
5326 will change instead of this message being printed.
|
|
5327 */ );
|
|
5328 Vgc_message = build_string (gc_default_message);
|
|
5329
|
|
5330 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /*
|
|
5331 Pointer glyph used to indicate that a garbage collection is in progress.
|
|
5332 If the selected window is on a window system and this glyph specifies a
|
|
5333 value (i.e. a pointer image instance) in the domain of the selected
|
|
5334 window, the pointer will be changed as specified during garbage collection.
|
|
5335 Otherwise, a message will be printed in the echo area, as controlled
|
|
5336 by `gc-message'.
|
|
5337 */ );
|
|
5338 }
|
|
5339
|
|
5340 void
|
|
5341 complex_vars_of_alloc (void)
|
|
5342 {
|
|
5343 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer);
|
|
5344 }
|