0
|
1 /* Random utility Lisp functions.
|
|
2 Copyright (C) 1985, 86, 87, 93, 94, 95 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995, 1996 Ben Wing.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: Mule 2.0, FSF 19.30. */
|
|
23
|
|
24 /* This file has been Mule-ized. */
|
|
25
|
|
26 /* Note: FSF 19.30 has bool vectors. We have bit vectors. */
|
|
27
|
|
28 /* Hacked on for Mule by Ben Wing, December 1994, January 1995. */
|
|
29
|
|
30 #include <config.h>
|
|
31
|
|
32 /* Note on some machines this defines `vector' as a typedef,
|
|
33 so make sure we don't use that name in this file. */
|
|
34 #undef vector
|
|
35 #define vector *****
|
|
36
|
|
37 #include "lisp.h"
|
|
38
|
410
|
39 #include "sysfile.h"
|
272
|
40
|
0
|
41 #include "buffer.h"
|
|
42 #include "bytecode.h"
|
|
43 #include "device.h"
|
|
44 #include "events.h"
|
|
45 #include "extents.h"
|
|
46 #include "frame.h"
|
|
47 #include "systime.h"
|
377
|
48 #include "insdel.h"
|
|
49 #include "lstream.h"
|
|
50 #include "opaque.h"
|
0
|
51
|
140
|
52 /* NOTE: This symbol is also used in lread.c */
|
|
53 #define FEATUREP_SYNTAX
|
|
54
|
0
|
55 Lisp_Object Qstring_lessp;
|
|
56 Lisp_Object Qidentity;
|
|
57
|
272
|
58 static int internal_old_equal (Lisp_Object, Lisp_Object, int);
|
0
|
59
|
|
60 static Lisp_Object
|
398
|
61 mark_bit_vector (Lisp_Object obj)
|
0
|
62 {
|
149
|
63 return Qnil;
|
0
|
64 }
|
|
65
|
|
66 static void
|
|
67 print_bit_vector (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
|
|
68 {
|
398
|
69 size_t i;
|
|
70 Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
|
|
71 size_t len = bit_vector_length (v);
|
|
72 size_t last = len;
|
0
|
73
|
|
74 if (INTP (Vprint_length))
|
|
75 last = min (len, XINT (Vprint_length));
|
|
76 write_c_string ("#*", printcharfun);
|
|
77 for (i = 0; i < last; i++)
|
|
78 {
|
|
79 if (bit_vector_bit (v, i))
|
|
80 write_c_string ("1", printcharfun);
|
|
81 else
|
|
82 write_c_string ("0", printcharfun);
|
|
83 }
|
|
84
|
|
85 if (last != len)
|
|
86 write_c_string ("...", printcharfun);
|
|
87 }
|
|
88
|
|
89 static int
|
380
|
90 bit_vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
0
|
91 {
|
398
|
92 Lisp_Bit_Vector *v1 = XBIT_VECTOR (obj1);
|
|
93 Lisp_Bit_Vector *v2 = XBIT_VECTOR (obj2);
|
0
|
94
|
272
|
95 return ((bit_vector_length (v1) == bit_vector_length (v2)) &&
|
|
96 !memcmp (v1->bits, v2->bits,
|
|
97 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v1)) *
|
|
98 sizeof (long)));
|
0
|
99 }
|
|
100
|
|
101 static unsigned long
|
|
102 bit_vector_hash (Lisp_Object obj, int depth)
|
|
103 {
|
398
|
104 Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
|
0
|
105 return HASH2 (bit_vector_length (v),
|
|
106 memory_hash (v->bits,
|
|
107 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)) *
|
|
108 sizeof (long)));
|
|
109 }
|
|
110
|
398
|
111 static size_t
|
|
112 size_bit_vector (const void *lheader)
|
|
113 {
|
|
114 Lisp_Bit_Vector *v = (Lisp_Bit_Vector *) lheader;
|
406
|
115 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits,
|
|
116 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)));
|
398
|
117 }
|
|
118
|
|
119 static const struct lrecord_description bit_vector_description[] = {
|
|
120 { XD_LISP_OBJECT, offsetof (Lisp_Bit_Vector, next) },
|
|
121 { XD_END }
|
|
122 };
|
|
123
|
|
124
|
|
125 DEFINE_BASIC_LRECORD_SEQUENCE_IMPLEMENTATION ("bit-vector", bit_vector,
|
|
126 mark_bit_vector, print_bit_vector, 0,
|
|
127 bit_vector_equal, bit_vector_hash,
|
|
128 bit_vector_description, size_bit_vector,
|
|
129 Lisp_Bit_Vector);
|
272
|
130
|
20
|
131 DEFUN ("identity", Fidentity, 1, 1, 0, /*
|
0
|
132 Return the argument unchanged.
|
20
|
133 */
|
|
134 (arg))
|
0
|
135 {
|
|
136 return arg;
|
|
137 }
|
|
138
|
|
139 extern long get_random (void);
|
|
140 extern void seed_random (long arg);
|
|
141
|
20
|
142 DEFUN ("random", Frandom, 0, 1, 0, /*
|
0
|
143 Return a pseudo-random number.
|
102
|
144 All integers representable in Lisp are equally likely.
|
|
145 On most systems, this is 28 bits' worth.
|
|
146 With positive integer argument N, return random number in interval [0,N).
|
0
|
147 With argument t, set the random number seed from the current time and pid.
|
20
|
148 */
|
|
149 (limit))
|
0
|
150 {
|
|
151 EMACS_INT val;
|
|
152 unsigned long denominator;
|
|
153
|
|
154 if (EQ (limit, Qt))
|
|
155 seed_random (getpid () + time (NULL));
|
|
156 if (NATNUMP (limit) && !ZEROP (limit))
|
|
157 {
|
|
158 /* Try to take our random number from the higher bits of VAL,
|
|
159 not the lower, since (says Gentzel) the low bits of `random'
|
|
160 are less random than the higher ones. We do this by using the
|
|
161 quotient rather than the remainder. At the high end of the RNG
|
|
162 it's possible to get a quotient larger than limit; discarding
|
|
163 these values eliminates the bias that would otherwise appear
|
|
164 when using a large limit. */
|
|
165 denominator = ((unsigned long)1 << VALBITS) / XINT (limit);
|
|
166 do
|
|
167 val = get_random () / denominator;
|
|
168 while (val >= XINT (limit));
|
|
169 }
|
|
170 else
|
|
171 val = get_random ();
|
272
|
172
|
|
173 return make_int (val);
|
0
|
174 }
|
|
175
|
|
176 /* Random data-structure functions */
|
|
177
|
|
178 #ifdef LOSING_BYTECODE
|
|
179
|
|
180 /* #### Delete this shit */
|
|
181
|
|
182 /* Charcount is a misnomer here as we might be dealing with the
|
|
183 length of a vector or list, but emphasizes that we're not dealing
|
|
184 with Bytecounts in strings */
|
|
185 static Charcount
|
|
186 length_with_bytecode_hack (Lisp_Object seq)
|
|
187 {
|
|
188 if (!COMPILED_FUNCTIONP (seq))
|
149
|
189 return XINT (Flength (seq));
|
0
|
190 else
|
|
191 {
|
398
|
192 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (seq);
|
380
|
193
|
|
194 return (f->flags.interactivep ? COMPILED_INTERACTIVE :
|
|
195 f->flags.domainp ? COMPILED_DOMAIN :
|
149
|
196 COMPILED_DOC_STRING)
|
|
197 + 1;
|
0
|
198 }
|
|
199 }
|
|
200
|
|
201 #endif /* LOSING_BYTECODE */
|
|
202
|
|
203 void
|
398
|
204 check_losing_bytecode (const char *function, Lisp_Object seq)
|
0
|
205 {
|
|
206 if (COMPILED_FUNCTIONP (seq))
|
|
207 error_with_frob
|
|
208 (seq,
|
169
|
209 "As of 20.3, `%s' no longer works with compiled-function objects",
|
0
|
210 function);
|
|
211 }
|
|
212
|
20
|
213 DEFUN ("length", Flength, 1, 1, 0, /*
|
0
|
214 Return the length of vector, bit vector, list or string SEQUENCE.
|
20
|
215 */
|
272
|
216 (sequence))
|
0
|
217 {
|
|
218 retry:
|
272
|
219 if (STRINGP (sequence))
|
|
220 return make_int (XSTRING_CHAR_LENGTH (sequence));
|
|
221 else if (CONSP (sequence))
|
0
|
222 {
|
398
|
223 size_t len;
|
380
|
224 GET_EXTERNAL_LIST_LENGTH (sequence, len);
|
|
225 return make_int (len);
|
0
|
226 }
|
272
|
227 else if (VECTORP (sequence))
|
|
228 return make_int (XVECTOR_LENGTH (sequence));
|
|
229 else if (NILP (sequence))
|
|
230 return Qzero;
|
|
231 else if (BIT_VECTORP (sequence))
|
|
232 return make_int (bit_vector_length (XBIT_VECTOR (sequence)));
|
0
|
233 else
|
|
234 {
|
272
|
235 check_losing_bytecode ("length", sequence);
|
|
236 sequence = wrong_type_argument (Qsequencep, sequence);
|
0
|
237 goto retry;
|
|
238 }
|
|
239 }
|
|
240
|
20
|
241 DEFUN ("safe-length", Fsafe_length, 1, 1, 0, /*
|
0
|
242 Return the length of a list, but avoid error or infinite loop.
|
|
243 This function never gets an error. If LIST is not really a list,
|
|
244 it returns 0. If LIST is circular, it returns a finite value
|
|
245 which is at least the number of distinct elements.
|
20
|
246 */
|
|
247 (list))
|
0
|
248 {
|
380
|
249 Lisp_Object hare, tortoise;
|
398
|
250 size_t len;
|
380
|
251
|
|
252 for (hare = tortoise = list, len = 0;
|
|
253 CONSP (hare) && (! EQ (hare, tortoise) || len == 0);
|
|
254 hare = XCDR (hare), len++)
|
0
|
255 {
|
380
|
256 if (len & 1)
|
|
257 tortoise = XCDR (tortoise);
|
0
|
258 }
|
|
259
|
272
|
260 return make_int (len);
|
0
|
261 }
|
|
262
|
|
263 /*** string functions. ***/
|
|
264
|
20
|
265 DEFUN ("string-equal", Fstring_equal, 2, 2, 0, /*
|
272
|
266 Return t if two strings have identical contents.
|
0
|
267 Case is significant. Text properties are ignored.
|
241
|
268 \(Under XEmacs, `equal' also ignores text properties and extents in
|
|
269 strings, but this is not the case under FSF Emacs 19. In FSF Emacs 20
|
|
270 `equal' is the same as in XEmacs, in that respect.)
|
0
|
271 Symbols are also allowed; their print names are used instead.
|
20
|
272 */
|
241
|
273 (s1, s2))
|
0
|
274 {
|
272
|
275 Bytecount len;
|
398
|
276 Lisp_String *p1, *p2;
|
0
|
277
|
|
278 if (SYMBOLP (s1))
|
272
|
279 p1 = XSYMBOL (s1)->name;
|
|
280 else
|
|
281 {
|
|
282 CHECK_STRING (s1);
|
|
283 p1 = XSTRING (s1);
|
|
284 }
|
|
285
|
0
|
286 if (SYMBOLP (s2))
|
272
|
287 p2 = XSYMBOL (s2)->name;
|
|
288 else
|
|
289 {
|
|
290 CHECK_STRING (s2);
|
|
291 p2 = XSTRING (s2);
|
|
292 }
|
|
293
|
|
294 return (((len = string_length (p1)) == string_length (p2)) &&
|
|
295 !memcmp (string_data (p1), string_data (p2), len)) ? Qt : Qnil;
|
0
|
296 }
|
|
297
|
|
298
|
20
|
299 DEFUN ("string-lessp", Fstring_lessp, 2, 2, 0, /*
|
272
|
300 Return t if first arg string is less than second in lexicographic order.
|
70
|
301 If I18N2 support (but not Mule support) was compiled in, ordering is
|
|
302 determined by the locale. (Case is significant for the default C locale.)
|
|
303 In all other cases, comparison is simply done on a character-by-
|
|
304 character basis using the numeric value of a character. (Note that
|
|
305 this may not produce particularly meaningful results under Mule if
|
|
306 characters from different charsets are being compared.)
|
|
307
|
0
|
308 Symbols are also allowed; their print names are used instead.
|
70
|
309
|
|
310 The reason that the I18N2 locale-specific collation is not used under
|
|
311 Mule is that the locale model of internationalization does not handle
|
|
312 multiple charsets and thus has no hope of working properly under Mule.
|
|
313 What we really should do is create a collation table over all built-in
|
|
314 charsets. This is extremely difficult to do from scratch, however.
|
|
315
|
|
316 Unicode is a good first step towards solving this problem. In fact,
|
|
317 it is quite likely that a collation table exists (or will exist) for
|
|
318 Unicode. When Unicode support is added to XEmacs/Mule, this problem
|
|
319 may be solved.
|
20
|
320 */
|
|
321 (s1, s2))
|
0
|
322 {
|
398
|
323 Lisp_String *p1, *p2;
|
0
|
324 Charcount end, len2;
|
272
|
325 int i;
|
0
|
326
|
|
327 if (SYMBOLP (s1))
|
272
|
328 p1 = XSYMBOL (s1)->name;
|
|
329 else
|
|
330 {
|
|
331 CHECK_STRING (s1);
|
|
332 p1 = XSTRING (s1);
|
|
333 }
|
|
334
|
0
|
335 if (SYMBOLP (s2))
|
272
|
336 p2 = XSYMBOL (s2)->name;
|
|
337 else
|
|
338 {
|
|
339 CHECK_STRING (s2);
|
|
340 p2 = XSTRING (s2);
|
|
341 }
|
|
342
|
|
343 end = string_char_length (p1);
|
|
344 len2 = string_char_length (p2);
|
0
|
345 if (end > len2)
|
|
346 end = len2;
|
|
347
|
70
|
348 #if defined (I18N2) && !defined (MULE)
|
272
|
349 /* There is no hope of this working under Mule. Even if we converted
|
|
350 the data into an external format so that strcoll() processed it
|
|
351 properly, it would still not work because strcoll() does not
|
|
352 handle multiple locales. This is the fundamental flaw in the
|
|
353 locale model. */
|
398
|
354 {
|
|
355 Bytecount bcend = charcount_to_bytecount (string_data (p1), end);
|
|
356 /* Compare strings using collation order of locale. */
|
|
357 /* Need to be tricky to handle embedded nulls. */
|
|
358
|
|
359 for (i = 0; i < bcend; i += strlen((char *) string_data (p1) + i) + 1)
|
|
360 {
|
|
361 int val = strcoll ((char *) string_data (p1) + i,
|
|
362 (char *) string_data (p2) + i);
|
|
363 if (val < 0)
|
|
364 return Qt;
|
|
365 if (val > 0)
|
|
366 return Qnil;
|
|
367 }
|
|
368 }
|
70
|
369 #else /* not I18N2, or MULE */
|
398
|
370 {
|
|
371 Bufbyte *ptr1 = string_data (p1);
|
|
372 Bufbyte *ptr2 = string_data (p2);
|
|
373
|
|
374 /* #### It is not really necessary to do this: We could compare
|
|
375 byte-by-byte and still get a reasonable comparison, since this
|
|
376 would compare characters with a charset in the same way. With
|
|
377 a little rearrangement of the leading bytes, we could make most
|
|
378 inter-charset comparisons work out the same, too; even if some
|
|
379 don't, this is not a big deal because inter-charset comparisons
|
|
380 aren't really well-defined anyway. */
|
|
381 for (i = 0; i < end; i++)
|
|
382 {
|
|
383 if (charptr_emchar (ptr1) != charptr_emchar (ptr2))
|
|
384 return charptr_emchar (ptr1) < charptr_emchar (ptr2) ? Qt : Qnil;
|
|
385 INC_CHARPTR (ptr1);
|
|
386 INC_CHARPTR (ptr2);
|
|
387 }
|
|
388 }
|
70
|
389 #endif /* not I18N2, or MULE */
|
272
|
390 /* Can't do i < len2 because then comparison between "foo" and "foo^@"
|
|
391 won't work right in I18N2 case */
|
|
392 return end < len2 ? Qt : Qnil;
|
0
|
393 }
|
|
394
|
20
|
395 DEFUN ("string-modified-tick", Fstring_modified_tick, 1, 1, 0, /*
|
0
|
396 Return STRING's tick counter, incremented for each change to the string.
|
|
397 Each string has a tick counter which is incremented each time the contents
|
|
398 of the string are changed (e.g. with `aset'). It wraps around occasionally.
|
20
|
399 */
|
|
400 (string))
|
0
|
401 {
|
398
|
402 Lisp_String *s;
|
0
|
403
|
|
404 CHECK_STRING (string);
|
|
405 s = XSTRING (string);
|
|
406 if (CONSP (s->plist) && INTP (XCAR (s->plist)))
|
|
407 return XCAR (s->plist);
|
|
408 else
|
|
409 return Qzero;
|
|
410 }
|
|
411
|
|
412 void
|
|
413 bump_string_modiff (Lisp_Object str)
|
|
414 {
|
398
|
415 Lisp_String *s = XSTRING (str);
|
0
|
416 Lisp_Object *ptr = &s->plist;
|
|
417
|
|
418 #ifdef I18N3
|
|
419 /* #### remove the `string-translatable' property from the string,
|
|
420 if there is one. */
|
|
421 #endif
|
|
422 /* skip over extent info if it's there */
|
|
423 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
|
|
424 ptr = &XCDR (*ptr);
|
|
425 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
|
|
426 XSETINT (XCAR (*ptr), 1+XINT (XCAR (*ptr)));
|
|
427 else
|
|
428 *ptr = Fcons (make_int (1), *ptr);
|
|
429 }
|
|
430
|
|
431
|
|
432 enum concat_target_type { c_cons, c_string, c_vector, c_bit_vector };
|
|
433 static Lisp_Object concat (int nargs, Lisp_Object *args,
|
|
434 enum concat_target_type target_type,
|
|
435 int last_special);
|
|
436
|
|
437 Lisp_Object
|
|
438 concat2 (Lisp_Object s1, Lisp_Object s2)
|
|
439 {
|
|
440 Lisp_Object args[2];
|
|
441 args[0] = s1;
|
|
442 args[1] = s2;
|
|
443 return concat (2, args, c_string, 0);
|
|
444 }
|
|
445
|
|
446 Lisp_Object
|
|
447 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
|
|
448 {
|
|
449 Lisp_Object args[3];
|
|
450 args[0] = s1;
|
|
451 args[1] = s2;
|
|
452 args[2] = s3;
|
|
453 return concat (3, args, c_string, 0);
|
|
454 }
|
|
455
|
|
456 Lisp_Object
|
|
457 vconcat2 (Lisp_Object s1, Lisp_Object s2)
|
|
458 {
|
|
459 Lisp_Object args[2];
|
|
460 args[0] = s1;
|
|
461 args[1] = s2;
|
|
462 return concat (2, args, c_vector, 0);
|
|
463 }
|
|
464
|
|
465 Lisp_Object
|
|
466 vconcat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
|
|
467 {
|
|
468 Lisp_Object args[3];
|
|
469 args[0] = s1;
|
|
470 args[1] = s2;
|
|
471 args[2] = s3;
|
|
472 return concat (3, args, c_vector, 0);
|
|
473 }
|
|
474
|
20
|
475 DEFUN ("append", Fappend, 0, MANY, 0, /*
|
0
|
476 Concatenate all the arguments and make the result a list.
|
|
477 The result is a list whose elements are the elements of all the arguments.
|
|
478 Each argument may be a list, vector, bit vector, or string.
|
|
479 The last argument is not copied, just used as the tail of the new list.
|
201
|
480 Also see: `nconc'.
|
20
|
481 */
|
|
482 (int nargs, Lisp_Object *args))
|
0
|
483 {
|
|
484 return concat (nargs, args, c_cons, 1);
|
|
485 }
|
|
486
|
20
|
487 DEFUN ("concat", Fconcat, 0, MANY, 0, /*
|
0
|
488 Concatenate all the arguments and make the result a string.
|
|
489 The result is a string whose elements are the elements of all the arguments.
|
120
|
490 Each argument may be a string or a list or vector of characters.
|
0
|
491
|
290
|
492 As of XEmacs 21.0, this function does NOT accept individual integers
|
|
493 as arguments. Old code that relies on, for example, (concat "foo" 50)
|
|
494 returning "foo50" will fail. To fix such code, either apply
|
|
495 `int-to-string' to the integer argument, or use `format'.
|
20
|
496 */
|
|
497 (int nargs, Lisp_Object *args))
|
0
|
498 {
|
|
499 return concat (nargs, args, c_string, 0);
|
|
500 }
|
|
501
|
20
|
502 DEFUN ("vconcat", Fvconcat, 0, MANY, 0, /*
|
0
|
503 Concatenate all the arguments and make the result a vector.
|
|
504 The result is a vector whose elements are the elements of all the arguments.
|
|
505 Each argument may be a list, vector, bit vector, or string.
|
20
|
506 */
|
|
507 (int nargs, Lisp_Object *args))
|
0
|
508 {
|
|
509 return concat (nargs, args, c_vector, 0);
|
|
510 }
|
|
511
|
20
|
512 DEFUN ("bvconcat", Fbvconcat, 0, MANY, 0, /*
|
0
|
513 Concatenate all the arguments and make the result a bit vector.
|
|
514 The result is a bit vector whose elements are the elements of all the
|
|
515 arguments. Each argument may be a list, vector, bit vector, or string.
|
20
|
516 */
|
|
517 (int nargs, Lisp_Object *args))
|
0
|
518 {
|
|
519 return concat (nargs, args, c_bit_vector, 0);
|
|
520 }
|
|
521
|
380
|
522 /* Copy a (possibly dotted) list. LIST must be a cons.
|
|
523 Can't use concat (1, &alist, c_cons, 0) - doesn't handle dotted lists. */
|
|
524 static Lisp_Object
|
|
525 copy_list (Lisp_Object list)
|
|
526 {
|
|
527 Lisp_Object list_copy = Fcons (XCAR (list), XCDR (list));
|
|
528 Lisp_Object last = list_copy;
|
|
529 Lisp_Object hare, tortoise;
|
398
|
530 size_t len;
|
380
|
531
|
|
532 for (tortoise = hare = XCDR (list), len = 1;
|
|
533 CONSP (hare);
|
|
534 hare = XCDR (hare), len++)
|
|
535 {
|
|
536 XCDR (last) = Fcons (XCAR (hare), XCDR (hare));
|
|
537 last = XCDR (last);
|
|
538
|
|
539 if (len < CIRCULAR_LIST_SUSPICION_LENGTH)
|
|
540 continue;
|
|
541 if (len & 1)
|
|
542 tortoise = XCDR (tortoise);
|
|
543 if (EQ (tortoise, hare))
|
|
544 signal_circular_list_error (list);
|
|
545 }
|
|
546
|
|
547 return list_copy;
|
|
548 }
|
|
549
|
|
550 DEFUN ("copy-list", Fcopy_list, 1, 1, 0, /*
|
|
551 Return a copy of list LIST, which may be a dotted list.
|
|
552 The elements of LIST are not copied; they are shared
|
0
|
553 with the original.
|
20
|
554 */
|
380
|
555 (list))
|
0
|
556 {
|
|
557 again:
|
380
|
558 if (NILP (list)) return list;
|
|
559 if (CONSP (list)) return copy_list (list);
|
|
560
|
|
561 list = wrong_type_argument (Qlistp, list);
|
|
562 goto again;
|
|
563 }
|
|
564
|
|
565 DEFUN ("copy-sequence", Fcopy_sequence, 1, 1, 0, /*
|
|
566 Return a copy of list, vector, bit vector or string SEQUENCE.
|
|
567 The elements of a list or vector are not copied; they are shared
|
|
568 with the original. SEQUENCE may be a dotted list.
|
|
569 */
|
|
570 (sequence))
|
|
571 {
|
|
572 again:
|
|
573 if (NILP (sequence)) return sequence;
|
|
574 if (CONSP (sequence)) return copy_list (sequence);
|
|
575 if (STRINGP (sequence)) return concat (1, &sequence, c_string, 0);
|
|
576 if (VECTORP (sequence)) return concat (1, &sequence, c_vector, 0);
|
|
577 if (BIT_VECTORP (sequence)) return concat (1, &sequence, c_bit_vector, 0);
|
|
578
|
|
579 check_losing_bytecode ("copy-sequence", sequence);
|
|
580 sequence = wrong_type_argument (Qsequencep, sequence);
|
169
|
581 goto again;
|
0
|
582 }
|
|
583
|
|
584 struct merge_string_extents_struct
|
|
585 {
|
|
586 Lisp_Object string;
|
|
587 Bytecount entry_offset;
|
|
588 Bytecount entry_length;
|
|
589 };
|
|
590
|
|
591 static Lisp_Object
|
|
592 concat (int nargs, Lisp_Object *args,
|
|
593 enum concat_target_type target_type,
|
|
594 int last_special)
|
|
595 {
|
|
596 Lisp_Object val;
|
|
597 Lisp_Object tail = Qnil;
|
|
598 int toindex;
|
|
599 int argnum;
|
|
600 Lisp_Object last_tail;
|
|
601 Lisp_Object prev;
|
|
602 struct merge_string_extents_struct *args_mse = 0;
|
|
603 Bufbyte *string_result = 0;
|
|
604 Bufbyte *string_result_ptr = 0;
|
|
605 struct gcpro gcpro1;
|
|
606
|
|
607 /* The modus operandi in Emacs is "caller gc-protects args".
|
|
608 However, concat is called many times in Emacs on freshly
|
|
609 created stuff. So we help those callers out by protecting
|
|
610 the args ourselves to save them a lot of temporary-variable
|
|
611 grief. */
|
|
612
|
|
613 GCPRO1 (args[0]);
|
|
614 gcpro1.nvars = nargs;
|
|
615
|
|
616 #ifdef I18N3
|
|
617 /* #### if the result is a string and any of the strings have a string
|
|
618 for the `string-translatable' property, then concat should also
|
|
619 concat the args but use the `string-translatable' strings, and store
|
|
620 the result in the returned string's `string-translatable' property. */
|
|
621 #endif
|
|
622 if (target_type == c_string)
|
185
|
623 args_mse = alloca_array (struct merge_string_extents_struct, nargs);
|
0
|
624
|
|
625 /* In append, the last arg isn't treated like the others */
|
|
626 if (last_special && nargs > 0)
|
|
627 {
|
|
628 nargs--;
|
|
629 last_tail = args[nargs];
|
|
630 }
|
|
631 else
|
|
632 last_tail = Qnil;
|
|
633
|
|
634 /* Check and coerce the arguments. */
|
|
635 for (argnum = 0; argnum < nargs; argnum++)
|
|
636 {
|
|
637 Lisp_Object seq = args[argnum];
|
272
|
638 if (LISTP (seq))
|
0
|
639 ;
|
|
640 else if (VECTORP (seq) || STRINGP (seq) || BIT_VECTORP (seq))
|
|
641 ;
|
|
642 #ifdef LOSING_BYTECODE
|
|
643 else if (COMPILED_FUNCTIONP (seq))
|
|
644 /* Urk! We allow this, for "compatibility"... */
|
|
645 ;
|
|
646 #endif
|
284
|
647 #if 0 /* removed for XEmacs 21 */
|
0
|
648 else if (INTP (seq))
|
|
649 /* This is too revolting to think about but maintains
|
|
650 compatibility with FSF (and lots and lots of old code). */
|
|
651 args[argnum] = Fnumber_to_string (seq);
|
284
|
652 #endif
|
0
|
653 else
|
|
654 {
|
|
655 check_losing_bytecode ("concat", seq);
|
|
656 args[argnum] = wrong_type_argument (Qsequencep, seq);
|
|
657 }
|
173
|
658
|
0
|
659 if (args_mse)
|
|
660 {
|
|
661 if (STRINGP (seq))
|
|
662 args_mse[argnum].string = seq;
|
|
663 else
|
|
664 args_mse[argnum].string = Qnil;
|
|
665 }
|
|
666 }
|
|
667
|
|
668 {
|
|
669 /* Charcount is a misnomer here as we might be dealing with the
|
|
670 length of a vector or list, but emphasizes that we're not dealing
|
|
671 with Bytecounts in strings */
|
|
672 Charcount total_length;
|
|
673
|
|
674 for (argnum = 0, total_length = 0; argnum < nargs; argnum++)
|
|
675 {
|
|
676 #ifdef LOSING_BYTECODE
|
|
677 Charcount thislen = length_with_bytecode_hack (args[argnum]);
|
|
678 #else
|
|
679 Charcount thislen = XINT (Flength (args[argnum]));
|
|
680 #endif
|
|
681 total_length += thislen;
|
|
682 }
|
|
683
|
|
684 switch (target_type)
|
|
685 {
|
|
686 case c_cons:
|
|
687 if (total_length == 0)
|
|
688 /* In append, if all but last arg are nil, return last arg */
|
|
689 RETURN_UNGCPRO (last_tail);
|
|
690 val = Fmake_list (make_int (total_length), Qnil);
|
|
691 break;
|
|
692 case c_vector:
|
|
693 val = make_vector (total_length, Qnil);
|
|
694 break;
|
|
695 case c_bit_vector:
|
|
696 val = make_bit_vector (total_length, Qzero);
|
|
697 break;
|
|
698 case c_string:
|
|
699 /* We don't make the string yet because we don't know the
|
|
700 actual number of bytes. This loop was formerly written
|
|
701 to call Fmake_string() here and then call set_string_char()
|
|
702 for each char. This seems logical enough but is waaaaaaaay
|
|
703 slow -- set_string_char() has to scan the whole string up
|
|
704 to the place where the substitution is called for in order
|
|
705 to find the place to change, and may have to do some
|
|
706 realloc()ing in order to make the char fit properly.
|
|
707 O(N^2) yuckage. */
|
|
708 val = Qnil;
|
|
709 string_result = (Bufbyte *) alloca (total_length * MAX_EMCHAR_LEN);
|
|
710 string_result_ptr = string_result;
|
|
711 break;
|
|
712 default:
|
|
713 abort ();
|
|
714 }
|
|
715 }
|
|
716
|
|
717
|
|
718 if (CONSP (val))
|
|
719 tail = val, toindex = -1; /* -1 in toindex is flag we are
|
|
720 making a list */
|
|
721 else
|
|
722 toindex = 0;
|
|
723
|
|
724 prev = Qnil;
|
|
725
|
|
726 for (argnum = 0; argnum < nargs; argnum++)
|
|
727 {
|
|
728 Charcount thisleni = 0;
|
|
729 Charcount thisindex = 0;
|
|
730 Lisp_Object seq = args[argnum];
|
|
731 Bufbyte *string_source_ptr = 0;
|
|
732 Bufbyte *string_prev_result_ptr = string_result_ptr;
|
|
733
|
|
734 if (!CONSP (seq))
|
|
735 {
|
|
736 #ifdef LOSING_BYTECODE
|
|
737 thisleni = length_with_bytecode_hack (seq);
|
|
738 #else
|
|
739 thisleni = XINT (Flength (seq));
|
|
740 #endif
|
|
741 }
|
|
742 if (STRINGP (seq))
|
14
|
743 string_source_ptr = XSTRING_DATA (seq);
|
0
|
744
|
|
745 while (1)
|
|
746 {
|
|
747 Lisp_Object elt;
|
|
748
|
|
749 /* We've come to the end of this arg, so exit. */
|
|
750 if (NILP (seq))
|
|
751 break;
|
|
752
|
|
753 /* Fetch next element of `seq' arg into `elt' */
|
|
754 if (CONSP (seq))
|
|
755 {
|
165
|
756 elt = XCAR (seq);
|
|
757 seq = XCDR (seq);
|
0
|
758 }
|
|
759 else
|
|
760 {
|
|
761 if (thisindex >= thisleni)
|
|
762 break;
|
|
763
|
|
764 if (STRINGP (seq))
|
|
765 {
|
|
766 elt = make_char (charptr_emchar (string_source_ptr));
|
|
767 INC_CHARPTR (string_source_ptr);
|
|
768 }
|
|
769 else if (VECTORP (seq))
|
173
|
770 elt = XVECTOR_DATA (seq)[thisindex];
|
0
|
771 else if (BIT_VECTORP (seq))
|
|
772 elt = make_int (bit_vector_bit (XBIT_VECTOR (seq),
|
|
773 thisindex));
|
|
774 else
|
|
775 elt = Felt (seq, make_int (thisindex));
|
|
776 thisindex++;
|
|
777 }
|
|
778
|
|
779 /* Store into result */
|
|
780 if (toindex < 0)
|
|
781 {
|
|
782 /* toindex negative means we are making a list */
|
|
783 XCAR (tail) = elt;
|
|
784 prev = tail;
|
|
785 tail = XCDR (tail);
|
|
786 }
|
|
787 else if (VECTORP (val))
|
173
|
788 XVECTOR_DATA (val)[toindex++] = elt;
|
0
|
789 else if (BIT_VECTORP (val))
|
|
790 {
|
|
791 CHECK_BIT (elt);
|
|
792 set_bit_vector_bit (XBIT_VECTOR (val), toindex++, XINT (elt));
|
|
793 }
|
|
794 else
|
|
795 {
|
|
796 CHECK_CHAR_COERCE_INT (elt);
|
|
797 string_result_ptr += set_charptr_emchar (string_result_ptr,
|
|
798 XCHAR (elt));
|
|
799 }
|
|
800 }
|
|
801 if (args_mse)
|
|
802 {
|
|
803 args_mse[argnum].entry_offset =
|
|
804 string_prev_result_ptr - string_result;
|
|
805 args_mse[argnum].entry_length =
|
|
806 string_result_ptr - string_prev_result_ptr;
|
|
807 }
|
|
808 }
|
|
809
|
|
810 /* Now we finally make the string. */
|
|
811 if (target_type == c_string)
|
|
812 {
|
|
813 val = make_string (string_result, string_result_ptr - string_result);
|
|
814 for (argnum = 0; argnum < nargs; argnum++)
|
|
815 {
|
|
816 if (STRINGP (args_mse[argnum].string))
|
|
817 copy_string_extents (val, args_mse[argnum].string,
|
|
818 args_mse[argnum].entry_offset, 0,
|
|
819 args_mse[argnum].entry_length);
|
|
820 }
|
|
821 }
|
|
822
|
|
823 if (!NILP (prev))
|
|
824 XCDR (prev) = last_tail;
|
|
825
|
173
|
826 RETURN_UNGCPRO (val);
|
0
|
827 }
|
|
828
|
20
|
829 DEFUN ("copy-alist", Fcopy_alist, 1, 1, 0, /*
|
0
|
830 Return a copy of ALIST.
|
|
831 This is an alist which represents the same mapping from objects to objects,
|
|
832 but does not share the alist structure with ALIST.
|
|
833 The objects mapped (cars and cdrs of elements of the alist)
|
|
834 are shared, however.
|
|
835 Elements of ALIST that are not conses are also shared.
|
20
|
836 */
|
|
837 (alist))
|
0
|
838 {
|
272
|
839 Lisp_Object tail;
|
|
840
|
0
|
841 if (NILP (alist))
|
|
842 return alist;
|
272
|
843 CHECK_CONS (alist);
|
|
844
|
0
|
845 alist = concat (1, &alist, c_cons, 0);
|
272
|
846 for (tail = alist; CONSP (tail); tail = XCDR (tail))
|
0
|
847 {
|
272
|
848 Lisp_Object car = XCAR (tail);
|
0
|
849
|
|
850 if (CONSP (car))
|
272
|
851 XCAR (tail) = Fcons (XCAR (car), XCDR (car));
|
0
|
852 }
|
|
853 return alist;
|
|
854 }
|
|
855
|
20
|
856 DEFUN ("copy-tree", Fcopy_tree, 1, 2, 0, /*
|
0
|
857 Return a copy of a list and substructures.
|
|
858 The argument is copied, and any lists contained within it are copied
|
|
859 recursively. Circularities and shared substructures are not preserved.
|
|
860 Second arg VECP causes vectors to be copied, too. Strings and bit vectors
|
|
861 are not copied.
|
20
|
862 */
|
|
863 (arg, vecp))
|
0
|
864 {
|
|
865 if (CONSP (arg))
|
|
866 {
|
|
867 Lisp_Object rest;
|
|
868 rest = arg = Fcopy_sequence (arg);
|
|
869 while (CONSP (rest))
|
|
870 {
|
|
871 Lisp_Object elt = XCAR (rest);
|
|
872 QUIT;
|
|
873 if (CONSP (elt) || VECTORP (elt))
|
|
874 XCAR (rest) = Fcopy_tree (elt, vecp);
|
|
875 if (VECTORP (XCDR (rest))) /* hack for (a b . [c d]) */
|
|
876 XCDR (rest) = Fcopy_tree (XCDR (rest), vecp);
|
|
877 rest = XCDR (rest);
|
|
878 }
|
|
879 }
|
|
880 else if (VECTORP (arg) && ! NILP (vecp))
|
|
881 {
|
173
|
882 int i = XVECTOR_LENGTH (arg);
|
0
|
883 int j;
|
|
884 arg = Fcopy_sequence (arg);
|
|
885 for (j = 0; j < i; j++)
|
|
886 {
|
173
|
887 Lisp_Object elt = XVECTOR_DATA (arg) [j];
|
0
|
888 QUIT;
|
|
889 if (CONSP (elt) || VECTORP (elt))
|
173
|
890 XVECTOR_DATA (arg) [j] = Fcopy_tree (elt, vecp);
|
0
|
891 }
|
|
892 }
|
|
893 return arg;
|
|
894 }
|
|
895
|
20
|
896 DEFUN ("substring", Fsubstring, 2, 3, 0, /*
|
0
|
897 Return a substring of STRING, starting at index FROM and ending before TO.
|
|
898 TO may be nil or omitted; then the substring runs to the end of STRING.
|
|
899 If FROM or TO is negative, it counts from the end.
|
|
900 Relevant parts of the string-extent-data are copied in the new string.
|
20
|
901 */
|
|
902 (string, from, to))
|
0
|
903 {
|
|
904 Charcount ccfr, ccto;
|
398
|
905 Bytecount bfr, blen;
|
0
|
906 Lisp_Object val;
|
|
907
|
|
908 CHECK_STRING (string);
|
|
909 CHECK_INT (from);
|
|
910 get_string_range_char (string, from, to, &ccfr, &ccto,
|
|
911 GB_HISTORICAL_STRING_BEHAVIOR);
|
14
|
912 bfr = charcount_to_bytecount (XSTRING_DATA (string), ccfr);
|
398
|
913 blen = charcount_to_bytecount (XSTRING_DATA (string) + bfr, ccto - ccfr);
|
|
914 val = make_string (XSTRING_DATA (string) + bfr, blen);
|
0
|
915 /* Copy any applicable extent information into the new string: */
|
398
|
916 copy_string_extents (val, string, 0, bfr, blen);
|
173
|
917 return val;
|
0
|
918 }
|
|
919
|
20
|
920 DEFUN ("subseq", Fsubseq, 2, 3, 0, /*
|
398
|
921 Return the subsequence of SEQUENCE starting at START and ending before END.
|
|
922 END may be omitted; then the subsequence runs to the end of SEQUENCE.
|
|
923 If START or END is negative, it counts from the end.
|
|
924 The returned subsequence is always of the same type as SEQUENCE.
|
|
925 If SEQUENCE is a string, relevant parts of the string-extent-data
|
|
926 are copied to the new string.
|
20
|
927 */
|
398
|
928 (sequence, start, end))
|
0
|
929 {
|
398
|
930 EMACS_INT len, s, e;
|
|
931
|
|
932 if (STRINGP (sequence))
|
|
933 return Fsubstring (sequence, start, end);
|
|
934
|
|
935 len = XINT (Flength (sequence));
|
|
936
|
|
937 CHECK_INT (start);
|
|
938 s = XINT (start);
|
|
939 if (s < 0)
|
|
940 s = len + s;
|
|
941
|
|
942 if (NILP (end))
|
|
943 e = len;
|
0
|
944 else
|
|
945 {
|
398
|
946 CHECK_INT (end);
|
|
947 e = XINT (end);
|
|
948 if (e < 0)
|
|
949 e = len + e;
|
0
|
950 }
|
173
|
951
|
398
|
952 if (!(0 <= s && s <= e && e <= len))
|
|
953 args_out_of_range_3 (sequence, make_int (s), make_int (e));
|
|
954
|
|
955 if (VECTORP (sequence))
|
0
|
956 {
|
398
|
957 Lisp_Object result = make_vector (e - s, Qnil);
|
|
958 EMACS_INT i;
|
|
959 Lisp_Object *in_elts = XVECTOR_DATA (sequence);
|
173
|
960 Lisp_Object *out_elts = XVECTOR_DATA (result);
|
0
|
961
|
398
|
962 for (i = s; i < e; i++)
|
|
963 out_elts[i - s] = in_elts[i];
|
0
|
964 return result;
|
|
965 }
|
398
|
966 else if (LISTP (sequence))
|
0
|
967 {
|
|
968 Lisp_Object result = Qnil;
|
398
|
969 EMACS_INT i;
|
|
970
|
|
971 sequence = Fnthcdr (make_int (s), sequence);
|
|
972
|
|
973 for (i = s; i < e; i++)
|
0
|
974 {
|
398
|
975 result = Fcons (Fcar (sequence), result);
|
|
976 sequence = Fcdr (sequence);
|
0
|
977 }
|
|
978
|
|
979 return Fnreverse (result);
|
|
980 }
|
398
|
981 else if (BIT_VECTORP (sequence))
|
|
982 {
|
|
983 Lisp_Object result = make_bit_vector (e - s, Qzero);
|
|
984 EMACS_INT i;
|
|
985
|
|
986 for (i = s; i < e; i++)
|
|
987 set_bit_vector_bit (XBIT_VECTOR (result), i - s,
|
|
988 bit_vector_bit (XBIT_VECTOR (sequence), i));
|
|
989 return result;
|
|
990 }
|
|
991 else
|
410
|
992 {
|
|
993 abort (); /* unreachable, since Flength (sequence) did not get
|
|
994 an error */
|
|
995 return Qnil;
|
|
996 }
|
0
|
997 }
|
|
998
|
|
999
|
20
|
1000 DEFUN ("nthcdr", Fnthcdr, 2, 2, 0, /*
|
272
|
1001 Take cdr N times on LIST, and return the result.
|
20
|
1002 */
|
|
1003 (n, list))
|
0
|
1004 {
|
398
|
1005 REGISTER size_t i;
|
274
|
1006 REGISTER Lisp_Object tail = list;
|
272
|
1007 CHECK_NATNUM (n);
|
|
1008 for (i = XINT (n); i; i--)
|
0
|
1009 {
|
274
|
1010 if (CONSP (tail))
|
|
1011 tail = XCDR (tail);
|
|
1012 else if (NILP (tail))
|
|
1013 return Qnil;
|
|
1014 else
|
|
1015 {
|
|
1016 tail = wrong_type_argument (Qlistp, tail);
|
|
1017 i++;
|
|
1018 }
|
0
|
1019 }
|
274
|
1020 return tail;
|
0
|
1021 }
|
|
1022
|
20
|
1023 DEFUN ("nth", Fnth, 2, 2, 0, /*
|
0
|
1024 Return the Nth element of LIST.
|
|
1025 N counts from zero. If LIST is not that long, nil is returned.
|
20
|
1026 */
|
|
1027 (n, list))
|
0
|
1028 {
|
|
1029 return Fcar (Fnthcdr (n, list));
|
|
1030 }
|
|
1031
|
20
|
1032 DEFUN ("elt", Felt, 2, 2, 0, /*
|
0
|
1033 Return element of SEQUENCE at index N.
|
20
|
1034 */
|
272
|
1035 (sequence, n))
|
0
|
1036 {
|
|
1037 retry:
|
|
1038 CHECK_INT_COERCE_CHAR (n); /* yuck! */
|
272
|
1039 if (LISTP (sequence))
|
0
|
1040 {
|
272
|
1041 Lisp_Object tem = Fnthcdr (n, sequence);
|
0
|
1042 /* #### Utterly, completely, fucking disgusting.
|
|
1043 * #### The whole point of "elt" is that it operates on
|
|
1044 * #### sequences, and does error- (bounds-) checking.
|
|
1045 */
|
|
1046 if (CONSP (tem))
|
173
|
1047 return XCAR (tem);
|
0
|
1048 else
|
|
1049 #if 1
|
|
1050 /* This is The Way It Has Always Been. */
|
|
1051 return Qnil;
|
|
1052 #else
|
274
|
1053 /* This is The Way Mly and Cltl2 say It Should Be. */
|
272
|
1054 args_out_of_range (sequence, n);
|
0
|
1055 #endif
|
|
1056 }
|
380
|
1057 else if (STRINGP (sequence) ||
|
|
1058 VECTORP (sequence) ||
|
|
1059 BIT_VECTORP (sequence))
|
272
|
1060 return Faref (sequence, n);
|
0
|
1061 #ifdef LOSING_BYTECODE
|
272
|
1062 else if (COMPILED_FUNCTIONP (sequence))
|
0
|
1063 {
|
398
|
1064 EMACS_INT idx = XINT (n);
|
0
|
1065 if (idx < 0)
|
|
1066 {
|
|
1067 lose:
|
272
|
1068 args_out_of_range (sequence, n);
|
0
|
1069 }
|
|
1070 /* Utter perversity */
|
|
1071 {
|
380
|
1072 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (sequence);
|
0
|
1073 switch (idx)
|
|
1074 {
|
|
1075 case COMPILED_ARGLIST:
|
380
|
1076 return compiled_function_arglist (f);
|
|
1077 case COMPILED_INSTRUCTIONS:
|
|
1078 return compiled_function_instructions (f);
|
0
|
1079 case COMPILED_CONSTANTS:
|
380
|
1080 return compiled_function_constants (f);
|
0
|
1081 case COMPILED_STACK_DEPTH:
|
380
|
1082 return compiled_function_stack_depth (f);
|
0
|
1083 case COMPILED_DOC_STRING:
|
380
|
1084 return compiled_function_documentation (f);
|
0
|
1085 case COMPILED_DOMAIN:
|
380
|
1086 return compiled_function_domain (f);
|
0
|
1087 case COMPILED_INTERACTIVE:
|
380
|
1088 if (f->flags.interactivep)
|
|
1089 return compiled_function_interactive (f);
|
0
|
1090 /* if we return nil, can't tell interactive with no args
|
|
1091 from noninteractive. */
|
|
1092 goto lose;
|
|
1093 default:
|
|
1094 goto lose;
|
|
1095 }
|
|
1096 }
|
|
1097 }
|
|
1098 #endif /* LOSING_BYTECODE */
|
|
1099 else
|
|
1100 {
|
272
|
1101 check_losing_bytecode ("elt", sequence);
|
|
1102 sequence = wrong_type_argument (Qsequencep, sequence);
|
0
|
1103 goto retry;
|
|
1104 }
|
|
1105 }
|
|
1106
|
380
|
1107 DEFUN ("last", Flast, 1, 2, 0, /*
|
|
1108 Return the tail of list LIST, of length N (default 1).
|
|
1109 LIST may be a dotted list, but not a circular list.
|
|
1110 Optional argument N must be a non-negative integer.
|
|
1111 If N is zero, then the atom that terminates the list is returned.
|
|
1112 If N is greater than the length of LIST, then LIST itself is returned.
|
|
1113 */
|
|
1114 (list, n))
|
|
1115 {
|
398
|
1116 EMACS_INT int_n, count;
|
380
|
1117 Lisp_Object retval, tortoise, hare;
|
|
1118
|
|
1119 CHECK_LIST (list);
|
|
1120
|
|
1121 if (NILP (n))
|
|
1122 int_n = 1;
|
|
1123 else
|
|
1124 {
|
|
1125 CHECK_NATNUM (n);
|
|
1126 int_n = XINT (n);
|
|
1127 }
|
|
1128
|
|
1129 for (retval = tortoise = hare = list, count = 0;
|
|
1130 CONSP (hare);
|
|
1131 hare = XCDR (hare),
|
|
1132 (int_n-- <= 0 ? ((void) (retval = XCDR (retval))) : (void)0),
|
|
1133 count++)
|
|
1134 {
|
|
1135 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue;
|
|
1136
|
|
1137 if (count & 1)
|
|
1138 tortoise = XCDR (tortoise);
|
|
1139 if (EQ (hare, tortoise))
|
|
1140 signal_circular_list_error (list);
|
|
1141 }
|
|
1142
|
|
1143 return retval;
|
|
1144 }
|
|
1145
|
|
1146 DEFUN ("nbutlast", Fnbutlast, 1, 2, 0, /*
|
|
1147 Modify LIST to remove the last N (default 1) elements.
|
|
1148 If LIST has N or fewer elements, nil is returned and LIST is unmodified.
|
|
1149 */
|
|
1150 (list, n))
|
|
1151 {
|
398
|
1152 EMACS_INT int_n;
|
380
|
1153
|
|
1154 CHECK_LIST (list);
|
|
1155
|
|
1156 if (NILP (n))
|
|
1157 int_n = 1;
|
|
1158 else
|
|
1159 {
|
|
1160 CHECK_NATNUM (n);
|
|
1161 int_n = XINT (n);
|
|
1162 }
|
|
1163
|
|
1164 {
|
|
1165 Lisp_Object last_cons = list;
|
|
1166
|
|
1167 EXTERNAL_LIST_LOOP_1 (list)
|
|
1168 {
|
|
1169 if (int_n-- < 0)
|
|
1170 last_cons = XCDR (last_cons);
|
|
1171 }
|
|
1172
|
|
1173 if (int_n >= 0)
|
|
1174 return Qnil;
|
|
1175
|
|
1176 XCDR (last_cons) = Qnil;
|
|
1177 return list;
|
|
1178 }
|
|
1179 }
|
|
1180
|
|
1181 DEFUN ("butlast", Fbutlast, 1, 2, 0, /*
|
|
1182 Return a copy of LIST with the last N (default 1) elements removed.
|
|
1183 If LIST has N or fewer elements, nil is returned.
|
|
1184 */
|
|
1185 (list, n))
|
|
1186 {
|
|
1187 int int_n;
|
|
1188
|
|
1189 CHECK_LIST (list);
|
|
1190
|
|
1191 if (NILP (n))
|
|
1192 int_n = 1;
|
|
1193 else
|
|
1194 {
|
|
1195 CHECK_NATNUM (n);
|
|
1196 int_n = XINT (n);
|
|
1197 }
|
|
1198
|
|
1199 {
|
|
1200 Lisp_Object retval = Qnil;
|
|
1201 Lisp_Object tail = list;
|
|
1202
|
|
1203 EXTERNAL_LIST_LOOP_1 (list)
|
|
1204 {
|
|
1205 if (--int_n < 0)
|
|
1206 {
|
|
1207 retval = Fcons (XCAR (tail), retval);
|
|
1208 tail = XCDR (tail);
|
|
1209 }
|
|
1210 }
|
|
1211
|
|
1212 return Fnreverse (retval);
|
|
1213 }
|
|
1214 }
|
|
1215
|
20
|
1216 DEFUN ("member", Fmember, 2, 2, 0, /*
|
0
|
1217 Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
|
|
1218 The value is actually the tail of LIST whose car is ELT.
|
20
|
1219 */
|
|
1220 (elt, list))
|
0
|
1221 {
|
380
|
1222 Lisp_Object list_elt, tail;
|
|
1223 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
0
|
1224 {
|
380
|
1225 if (internal_equal (elt, list_elt, 0))
|
272
|
1226 return tail;
|
0
|
1227 }
|
|
1228 return Qnil;
|
|
1229 }
|
|
1230
|
70
|
1231 DEFUN ("old-member", Fold_member, 2, 2, 0, /*
|
|
1232 Return non-nil if ELT is an element of LIST. Comparison done with `old-equal'.
|
|
1233 The value is actually the tail of LIST whose car is ELT.
|
|
1234 This function is provided only for byte-code compatibility with v19.
|
|
1235 Do not use it.
|
|
1236 */
|
|
1237 (elt, list))
|
|
1238 {
|
380
|
1239 Lisp_Object list_elt, tail;
|
|
1240 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
70
|
1241 {
|
380
|
1242 if (internal_old_equal (elt, list_elt, 0))
|
272
|
1243 return tail;
|
70
|
1244 }
|
|
1245 return Qnil;
|
|
1246 }
|
|
1247
|
20
|
1248 DEFUN ("memq", Fmemq, 2, 2, 0, /*
|
0
|
1249 Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
|
|
1250 The value is actually the tail of LIST whose car is ELT.
|
20
|
1251 */
|
|
1252 (elt, list))
|
0
|
1253 {
|
380
|
1254 Lisp_Object list_elt, tail;
|
|
1255 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
0
|
1256 {
|
380
|
1257 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt))
|
272
|
1258 return tail;
|
70
|
1259 }
|
|
1260 return Qnil;
|
|
1261 }
|
|
1262
|
|
1263 DEFUN ("old-memq", Fold_memq, 2, 2, 0, /*
|
|
1264 Return non-nil if ELT is an element of LIST. Comparison done with `old-eq'.
|
|
1265 The value is actually the tail of LIST whose car is ELT.
|
|
1266 This function is provided only for byte-code compatibility with v19.
|
|
1267 Do not use it.
|
|
1268 */
|
|
1269 (elt, list))
|
|
1270 {
|
380
|
1271 Lisp_Object list_elt, tail;
|
|
1272 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
70
|
1273 {
|
380
|
1274 if (HACKEQ_UNSAFE (elt, list_elt))
|
272
|
1275 return tail;
|
0
|
1276 }
|
|
1277 return Qnil;
|
|
1278 }
|
|
1279
|
|
1280 Lisp_Object
|
|
1281 memq_no_quit (Lisp_Object elt, Lisp_Object list)
|
|
1282 {
|
380
|
1283 Lisp_Object list_elt, tail;
|
|
1284 LIST_LOOP_3 (list_elt, list, tail)
|
0
|
1285 {
|
380
|
1286 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt))
|
272
|
1287 return tail;
|
0
|
1288 }
|
|
1289 return Qnil;
|
|
1290 }
|
|
1291
|
20
|
1292 DEFUN ("assoc", Fassoc, 2, 2, 0, /*
|
0
|
1293 Return non-nil if KEY is `equal' to the car of an element of LIST.
|
|
1294 The value is actually the element of LIST whose car equals KEY.
|
20
|
1295 */
|
|
1296 (key, list))
|
0
|
1297 {
|
|
1298 /* This function can GC. */
|
380
|
1299 Lisp_Object elt, elt_car, elt_cdr;
|
|
1300 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
0
|
1301 {
|
380
|
1302 if (internal_equal (key, elt_car, 0))
|
195
|
1303 return elt;
|
0
|
1304 }
|
|
1305 return Qnil;
|
|
1306 }
|
|
1307
|
70
|
1308 DEFUN ("old-assoc", Fold_assoc, 2, 2, 0, /*
|
|
1309 Return non-nil if KEY is `old-equal' to the car of an element of LIST.
|
|
1310 The value is actually the element of LIST whose car equals KEY.
|
|
1311 */
|
|
1312 (key, list))
|
|
1313 {
|
|
1314 /* This function can GC. */
|
380
|
1315 Lisp_Object elt, elt_car, elt_cdr;
|
|
1316 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
70
|
1317 {
|
380
|
1318 if (internal_old_equal (key, elt_car, 0))
|
195
|
1319 return elt;
|
70
|
1320 }
|
|
1321 return Qnil;
|
|
1322 }
|
|
1323
|
0
|
1324 Lisp_Object
|
|
1325 assoc_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1326 {
|
|
1327 int speccount = specpdl_depth ();
|
|
1328 specbind (Qinhibit_quit, Qt);
|
149
|
1329 return unbind_to (speccount, Fassoc (key, list));
|
0
|
1330 }
|
|
1331
|
20
|
1332 DEFUN ("assq", Fassq, 2, 2, 0, /*
|
0
|
1333 Return non-nil if KEY is `eq' to the car of an element of LIST.
|
|
1334 The value is actually the element of LIST whose car is KEY.
|
|
1335 Elements of LIST that are not conses are ignored.
|
20
|
1336 */
|
|
1337 (key, list))
|
0
|
1338 {
|
380
|
1339 Lisp_Object elt, elt_car, elt_cdr;
|
|
1340 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
0
|
1341 {
|
380
|
1342 if (EQ_WITH_EBOLA_NOTICE (key, elt_car))
|
195
|
1343 return elt;
|
70
|
1344 }
|
|
1345 return Qnil;
|
|
1346 }
|
|
1347
|
|
1348 DEFUN ("old-assq", Fold_assq, 2, 2, 0, /*
|
|
1349 Return non-nil if KEY is `old-eq' to the car of an element of LIST.
|
|
1350 The value is actually the element of LIST whose car is KEY.
|
|
1351 Elements of LIST that are not conses are ignored.
|
|
1352 This function is provided only for byte-code compatibility with v19.
|
|
1353 Do not use it.
|
|
1354 */
|
|
1355 (key, list))
|
|
1356 {
|
380
|
1357 Lisp_Object elt, elt_car, elt_cdr;
|
|
1358 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
70
|
1359 {
|
380
|
1360 if (HACKEQ_UNSAFE (key, elt_car))
|
195
|
1361 return elt;
|
0
|
1362 }
|
|
1363 return Qnil;
|
|
1364 }
|
|
1365
|
|
1366 /* Like Fassq but never report an error and do not allow quits.
|
|
1367 Use only on lists known never to be circular. */
|
|
1368
|
|
1369 Lisp_Object
|
|
1370 assq_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1371 {
|
|
1372 /* This cannot GC. */
|
380
|
1373 Lisp_Object elt;
|
|
1374 LIST_LOOP_2 (elt, list)
|
0
|
1375 {
|
380
|
1376 Lisp_Object elt_car = XCAR (elt);
|
|
1377 if (EQ_WITH_EBOLA_NOTICE (key, elt_car))
|
|
1378 return elt;
|
0
|
1379 }
|
|
1380 return Qnil;
|
|
1381 }
|
|
1382
|
20
|
1383 DEFUN ("rassoc", Frassoc, 2, 2, 0, /*
|
0
|
1384 Return non-nil if KEY is `equal' to the cdr of an element of LIST.
|
|
1385 The value is actually the element of LIST whose cdr equals KEY.
|
20
|
1386 */
|
|
1387 (key, list))
|
0
|
1388 {
|
380
|
1389 Lisp_Object elt, elt_car, elt_cdr;
|
|
1390 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
0
|
1391 {
|
380
|
1392 if (internal_equal (key, elt_cdr, 0))
|
195
|
1393 return elt;
|
0
|
1394 }
|
|
1395 return Qnil;
|
|
1396 }
|
|
1397
|
70
|
1398 DEFUN ("old-rassoc", Fold_rassoc, 2, 2, 0, /*
|
|
1399 Return non-nil if KEY is `old-equal' to the cdr of an element of LIST.
|
|
1400 The value is actually the element of LIST whose cdr equals KEY.
|
|
1401 */
|
|
1402 (key, list))
|
|
1403 {
|
380
|
1404 Lisp_Object elt, elt_car, elt_cdr;
|
|
1405 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
70
|
1406 {
|
380
|
1407 if (internal_old_equal (key, elt_cdr, 0))
|
195
|
1408 return elt;
|
70
|
1409 }
|
|
1410 return Qnil;
|
|
1411 }
|
|
1412
|
20
|
1413 DEFUN ("rassq", Frassq, 2, 2, 0, /*
|
0
|
1414 Return non-nil if KEY is `eq' to the cdr of an element of LIST.
|
|
1415 The value is actually the element of LIST whose cdr is KEY.
|
20
|
1416 */
|
|
1417 (key, list))
|
0
|
1418 {
|
380
|
1419 Lisp_Object elt, elt_car, elt_cdr;
|
|
1420 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
0
|
1421 {
|
380
|
1422 if (EQ_WITH_EBOLA_NOTICE (key, elt_cdr))
|
195
|
1423 return elt;
|
70
|
1424 }
|
|
1425 return Qnil;
|
|
1426 }
|
|
1427
|
|
1428 DEFUN ("old-rassq", Fold_rassq, 2, 2, 0, /*
|
|
1429 Return non-nil if KEY is `old-eq' to the cdr of an element of LIST.
|
|
1430 The value is actually the element of LIST whose cdr is KEY.
|
|
1431 */
|
|
1432 (key, list))
|
|
1433 {
|
380
|
1434 Lisp_Object elt, elt_car, elt_cdr;
|
|
1435 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
70
|
1436 {
|
380
|
1437 if (HACKEQ_UNSAFE (key, elt_cdr))
|
195
|
1438 return elt;
|
0
|
1439 }
|
|
1440 return Qnil;
|
|
1441 }
|
|
1442
|
380
|
1443 /* Like Frassq, but caller must ensure that LIST is properly
|
|
1444 nil-terminated and ebola-free. */
|
0
|
1445 Lisp_Object
|
|
1446 rassq_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1447 {
|
380
|
1448 Lisp_Object elt;
|
|
1449 LIST_LOOP_2 (elt, list)
|
0
|
1450 {
|
380
|
1451 Lisp_Object elt_cdr = XCDR (elt);
|
|
1452 if (EQ_WITH_EBOLA_NOTICE (key, elt_cdr))
|
272
|
1453 return elt;
|
0
|
1454 }
|
|
1455 return Qnil;
|
|
1456 }
|
|
1457
|
|
1458
|
20
|
1459 DEFUN ("delete", Fdelete, 2, 2, 0, /*
|
0
|
1460 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1461 The modified LIST is returned. Comparison is done with `equal'.
|
|
1462 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1463 effect; therefore, write `(setq foo (delete element foo))' to be sure
|
|
1464 of changing the value of `foo'.
|
201
|
1465 Also see: `remove'.
|
20
|
1466 */
|
|
1467 (elt, list))
|
0
|
1468 {
|
380
|
1469 Lisp_Object list_elt;
|
|
1470 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1471 (internal_equal (elt, list_elt, 0)));
|
0
|
1472 return list;
|
|
1473 }
|
|
1474
|
70
|
1475 DEFUN ("old-delete", Fold_delete, 2, 2, 0, /*
|
|
1476 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1477 The modified LIST is returned. Comparison is done with `old-equal'.
|
|
1478 If the first member of LIST is ELT, there is no way to remove it by side
|
272
|
1479 effect; therefore, write `(setq foo (old-delete element foo))' to be sure
|
70
|
1480 of changing the value of `foo'.
|
|
1481 */
|
|
1482 (elt, list))
|
|
1483 {
|
380
|
1484 Lisp_Object list_elt;
|
|
1485 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1486 (internal_old_equal (elt, list_elt, 0)));
|
70
|
1487 return list;
|
|
1488 }
|
|
1489
|
20
|
1490 DEFUN ("delq", Fdelq, 2, 2, 0, /*
|
0
|
1491 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1492 The modified LIST is returned. Comparison is done with `eq'.
|
|
1493 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1494 effect; therefore, write `(setq foo (delq element foo))' to be sure of
|
|
1495 changing the value of `foo'.
|
20
|
1496 */
|
|
1497 (elt, list))
|
0
|
1498 {
|
380
|
1499 Lisp_Object list_elt;
|
|
1500 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1501 (EQ_WITH_EBOLA_NOTICE (elt, list_elt)));
|
70
|
1502 return list;
|
|
1503 }
|
|
1504
|
|
1505 DEFUN ("old-delq", Fold_delq, 2, 2, 0, /*
|
|
1506 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1507 The modified LIST is returned. Comparison is done with `old-eq'.
|
|
1508 If the first member of LIST is ELT, there is no way to remove it by side
|
272
|
1509 effect; therefore, write `(setq foo (old-delq element foo))' to be sure of
|
70
|
1510 changing the value of `foo'.
|
|
1511 */
|
|
1512 (elt, list))
|
|
1513 {
|
380
|
1514 Lisp_Object list_elt;
|
|
1515 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1516 (HACKEQ_UNSAFE (elt, list_elt)));
|
0
|
1517 return list;
|
|
1518 }
|
|
1519
|
380
|
1520 /* Like Fdelq, but caller must ensure that LIST is properly
|
|
1521 nil-terminated and ebola-free. */
|
0
|
1522
|
|
1523 Lisp_Object
|
|
1524 delq_no_quit (Lisp_Object elt, Lisp_Object list)
|
|
1525 {
|
380
|
1526 Lisp_Object list_elt;
|
|
1527 LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1528 (EQ_WITH_EBOLA_NOTICE (elt, list_elt)));
|
0
|
1529 return list;
|
|
1530 }
|
|
1531
|
|
1532 /* Be VERY careful with this. This is like delq_no_quit() but
|
|
1533 also calls free_cons() on the removed conses. You must be SURE
|
|
1534 that no pointers to the freed conses remain around (e.g.
|
|
1535 someone else is pointing to part of the list). This function
|
|
1536 is useful on internal lists that are used frequently and where
|
|
1537 the actual list doesn't escape beyond known code bounds. */
|
|
1538
|
|
1539 Lisp_Object
|
|
1540 delq_no_quit_and_free_cons (Lisp_Object elt, Lisp_Object list)
|
|
1541 {
|
272
|
1542 REGISTER Lisp_Object tail = list;
|
|
1543 REGISTER Lisp_Object prev = Qnil;
|
380
|
1544
|
|
1545 while (!NILP (tail))
|
0
|
1546 {
|
380
|
1547 REGISTER Lisp_Object tem = XCAR (tail);
|
|
1548 if (EQ (elt, tem))
|
0
|
1549 {
|
380
|
1550 Lisp_Object cons_to_free = tail;
|
0
|
1551 if (NILP (prev))
|
|
1552 list = XCDR (tail);
|
|
1553 else
|
|
1554 XCDR (prev) = XCDR (tail);
|
380
|
1555 tail = XCDR (tail);
|
|
1556 free_cons (XCONS (cons_to_free));
|
0
|
1557 }
|
|
1558 else
|
272
|
1559 {
|
380
|
1560 prev = tail;
|
|
1561 tail = XCDR (tail);
|
272
|
1562 }
|
0
|
1563 }
|
|
1564 return list;
|
|
1565 }
|
|
1566
|
20
|
1567 DEFUN ("remassoc", Fremassoc, 2, 2, 0, /*
|
0
|
1568 Delete by side effect any elements of LIST whose car is `equal' to KEY.
|
|
1569 The modified LIST is returned. If the first member of LIST has a car
|
|
1570 that is `equal' to KEY, there is no way to remove it by side effect;
|
|
1571 therefore, write `(setq foo (remassoc key foo))' to be sure of changing
|
|
1572 the value of `foo'.
|
20
|
1573 */
|
|
1574 (key, list))
|
0
|
1575 {
|
380
|
1576 Lisp_Object elt;
|
|
1577 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list,
|
|
1578 (CONSP (elt) &&
|
|
1579 internal_equal (key, XCAR (elt), 0)));
|
0
|
1580 return list;
|
|
1581 }
|
|
1582
|
|
1583 Lisp_Object
|
|
1584 remassoc_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1585 {
|
|
1586 int speccount = specpdl_depth ();
|
|
1587 specbind (Qinhibit_quit, Qt);
|
149
|
1588 return unbind_to (speccount, Fremassoc (key, list));
|
0
|
1589 }
|
|
1590
|
20
|
1591 DEFUN ("remassq", Fremassq, 2, 2, 0, /*
|
0
|
1592 Delete by side effect any elements of LIST whose car is `eq' to KEY.
|
|
1593 The modified LIST is returned. If the first member of LIST has a car
|
|
1594 that is `eq' to KEY, there is no way to remove it by side effect;
|
|
1595 therefore, write `(setq foo (remassq key foo))' to be sure of changing
|
|
1596 the value of `foo'.
|
20
|
1597 */
|
|
1598 (key, list))
|
0
|
1599 {
|
380
|
1600 Lisp_Object elt;
|
|
1601 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list,
|
|
1602 (CONSP (elt) &&
|
|
1603 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt))));
|
0
|
1604 return list;
|
|
1605 }
|
|
1606
|
|
1607 /* no quit, no errors; be careful */
|
|
1608
|
|
1609 Lisp_Object
|
|
1610 remassq_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1611 {
|
380
|
1612 Lisp_Object elt;
|
|
1613 LIST_LOOP_DELETE_IF (elt, list,
|
|
1614 (CONSP (elt) &&
|
|
1615 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt))));
|
0
|
1616 return list;
|
|
1617 }
|
|
1618
|
20
|
1619 DEFUN ("remrassoc", Fremrassoc, 2, 2, 0, /*
|
0
|
1620 Delete by side effect any elements of LIST whose cdr is `equal' to VALUE.
|
|
1621 The modified LIST is returned. If the first member of LIST has a car
|
|
1622 that is `equal' to VALUE, there is no way to remove it by side effect;
|
|
1623 therefore, write `(setq foo (remrassoc value foo))' to be sure of changing
|
|
1624 the value of `foo'.
|
20
|
1625 */
|
|
1626 (value, list))
|
0
|
1627 {
|
380
|
1628 Lisp_Object elt;
|
|
1629 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list,
|
|
1630 (CONSP (elt) &&
|
|
1631 internal_equal (value, XCDR (elt), 0)));
|
0
|
1632 return list;
|
|
1633 }
|
|
1634
|
20
|
1635 DEFUN ("remrassq", Fremrassq, 2, 2, 0, /*
|
0
|
1636 Delete by side effect any elements of LIST whose cdr is `eq' to VALUE.
|
|
1637 The modified LIST is returned. If the first member of LIST has a car
|
|
1638 that is `eq' to VALUE, there is no way to remove it by side effect;
|
|
1639 therefore, write `(setq foo (remrassq value foo))' to be sure of changing
|
|
1640 the value of `foo'.
|
20
|
1641 */
|
|
1642 (value, list))
|
0
|
1643 {
|
380
|
1644 Lisp_Object elt;
|
|
1645 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list,
|
|
1646 (CONSP (elt) &&
|
|
1647 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt))));
|
0
|
1648 return list;
|
|
1649 }
|
|
1650
|
380
|
1651 /* Like Fremrassq, fast and unsafe; be careful */
|
0
|
1652 Lisp_Object
|
|
1653 remrassq_no_quit (Lisp_Object value, Lisp_Object list)
|
|
1654 {
|
380
|
1655 Lisp_Object elt;
|
|
1656 LIST_LOOP_DELETE_IF (elt, list,
|
|
1657 (CONSP (elt) &&
|
|
1658 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt))));
|
0
|
1659 return list;
|
|
1660 }
|
|
1661
|
20
|
1662 DEFUN ("nreverse", Fnreverse, 1, 1, 0, /*
|
272
|
1663 Reverse LIST by destructively modifying cdr pointers.
|
|
1664 Return the beginning of the reversed list.
|
201
|
1665 Also see: `reverse'.
|
20
|
1666 */
|
|
1667 (list))
|
0
|
1668 {
|
|
1669 struct gcpro gcpro1, gcpro2;
|
272
|
1670 REGISTER Lisp_Object prev = Qnil;
|
|
1671 REGISTER Lisp_Object tail = list;
|
0
|
1672
|
|
1673 /* We gcpro our args; see `nconc' */
|
|
1674 GCPRO2 (prev, tail);
|
|
1675 while (!NILP (tail))
|
|
1676 {
|
272
|
1677 REGISTER Lisp_Object next;
|
|
1678 CONCHECK_CONS (tail);
|
165
|
1679 next = XCDR (tail);
|
|
1680 XCDR (tail) = prev;
|
0
|
1681 prev = tail;
|
|
1682 tail = next;
|
|
1683 }
|
|
1684 UNGCPRO;
|
|
1685 return prev;
|
|
1686 }
|
|
1687
|
20
|
1688 DEFUN ("reverse", Freverse, 1, 1, 0, /*
|
272
|
1689 Reverse LIST, copying. Return the beginning of the reversed list.
|
0
|
1690 See also the function `nreverse', which is used more often.
|
20
|
1691 */
|
|
1692 (list))
|
0
|
1693 {
|
380
|
1694 Lisp_Object reversed_list = Qnil;
|
|
1695 Lisp_Object elt;
|
|
1696 EXTERNAL_LIST_LOOP_2 (elt, list)
|
272
|
1697 {
|
380
|
1698 reversed_list = Fcons (elt, reversed_list);
|
272
|
1699 }
|
380
|
1700 return reversed_list;
|
0
|
1701 }
|
|
1702
|
173
|
1703 static Lisp_Object list_merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
|
1704 Lisp_Object lisp_arg,
|
0
|
1705 int (*pred_fn) (Lisp_Object, Lisp_Object,
|
|
1706 Lisp_Object lisp_arg));
|
|
1707
|
|
1708 Lisp_Object
|
|
1709 list_sort (Lisp_Object list,
|
173
|
1710 Lisp_Object lisp_arg,
|
0
|
1711 int (*pred_fn) (Lisp_Object, Lisp_Object,
|
|
1712 Lisp_Object lisp_arg))
|
|
1713 {
|
|
1714 struct gcpro gcpro1, gcpro2, gcpro3;
|
272
|
1715 Lisp_Object back, tem;
|
|
1716 Lisp_Object front = list;
|
|
1717 Lisp_Object len = Flength (list);
|
|
1718 int length = XINT (len);
|
|
1719
|
0
|
1720 if (length < 2)
|
|
1721 return list;
|
|
1722
|
|
1723 XSETINT (len, (length / 2) - 1);
|
|
1724 tem = Fnthcdr (len, list);
|
|
1725 back = Fcdr (tem);
|
|
1726 Fsetcdr (tem, Qnil);
|
|
1727
|
|
1728 GCPRO3 (front, back, lisp_arg);
|
|
1729 front = list_sort (front, lisp_arg, pred_fn);
|
|
1730 back = list_sort (back, lisp_arg, pred_fn);
|
|
1731 UNGCPRO;
|
|
1732 return list_merge (front, back, lisp_arg, pred_fn);
|
|
1733 }
|
|
1734
|
|
1735
|
|
1736 static int
|
173
|
1737 merge_pred_function (Lisp_Object obj1, Lisp_Object obj2,
|
0
|
1738 Lisp_Object pred)
|
|
1739 {
|
|
1740 Lisp_Object tmp;
|
|
1741
|
|
1742 /* prevents the GC from happening in call2 */
|
|
1743 int speccount = specpdl_depth ();
|
|
1744 /* Emacs' GC doesn't actually relocate pointers, so this probably
|
|
1745 isn't strictly necessary */
|
|
1746 record_unwind_protect (restore_gc_inhibit,
|
|
1747 make_int (gc_currently_forbidden));
|
|
1748 gc_currently_forbidden = 1;
|
|
1749 tmp = call2 (pred, obj1, obj2);
|
|
1750 unbind_to (speccount, Qnil);
|
|
1751
|
173
|
1752 if (NILP (tmp))
|
0
|
1753 return -1;
|
|
1754 else
|
|
1755 return 1;
|
|
1756 }
|
|
1757
|
20
|
1758 DEFUN ("sort", Fsort, 2, 2, 0, /*
|
0
|
1759 Sort LIST, stably, comparing elements using PREDICATE.
|
|
1760 Returns the sorted list. LIST is modified by side effects.
|
|
1761 PREDICATE is called with two elements of LIST, and should return T
|
185
|
1762 if the first element is "less" than the second.
|
20
|
1763 */
|
|
1764 (list, pred))
|
0
|
1765 {
|
|
1766 return list_sort (list, pred, merge_pred_function);
|
|
1767 }
|
|
1768
|
|
1769 Lisp_Object
|
173
|
1770 merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
0
|
1771 Lisp_Object pred)
|
|
1772 {
|
|
1773 return list_merge (org_l1, org_l2, pred, merge_pred_function);
|
|
1774 }
|
|
1775
|
|
1776
|
|
1777 static Lisp_Object
|
173
|
1778 list_merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
|
1779 Lisp_Object lisp_arg,
|
0
|
1780 int (*pred_fn) (Lisp_Object, Lisp_Object, Lisp_Object lisp_arg))
|
|
1781 {
|
|
1782 Lisp_Object value;
|
|
1783 Lisp_Object tail;
|
|
1784 Lisp_Object tem;
|
|
1785 Lisp_Object l1, l2;
|
|
1786 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
|
1787
|
|
1788 l1 = org_l1;
|
|
1789 l2 = org_l2;
|
|
1790 tail = Qnil;
|
|
1791 value = Qnil;
|
|
1792
|
|
1793 /* It is sufficient to protect org_l1 and org_l2.
|
|
1794 When l1 and l2 are updated, we copy the new values
|
|
1795 back into the org_ vars. */
|
173
|
1796
|
0
|
1797 GCPRO4 (org_l1, org_l2, lisp_arg, value);
|
|
1798
|
|
1799 while (1)
|
|
1800 {
|
|
1801 if (NILP (l1))
|
|
1802 {
|
|
1803 UNGCPRO;
|
|
1804 if (NILP (tail))
|
|
1805 return l2;
|
|
1806 Fsetcdr (tail, l2);
|
|
1807 return value;
|
|
1808 }
|
|
1809 if (NILP (l2))
|
|
1810 {
|
|
1811 UNGCPRO;
|
|
1812 if (NILP (tail))
|
|
1813 return l1;
|
|
1814 Fsetcdr (tail, l1);
|
|
1815 return value;
|
|
1816 }
|
|
1817
|
|
1818 if (((*pred_fn) (Fcar (l2), Fcar (l1), lisp_arg)) < 0)
|
|
1819 {
|
|
1820 tem = l1;
|
|
1821 l1 = Fcdr (l1);
|
|
1822 org_l1 = l1;
|
|
1823 }
|
|
1824 else
|
|
1825 {
|
|
1826 tem = l2;
|
|
1827 l2 = Fcdr (l2);
|
|
1828 org_l2 = l2;
|
|
1829 }
|
|
1830 if (NILP (tail))
|
|
1831 value = tem;
|
|
1832 else
|
|
1833 Fsetcdr (tail, tem);
|
|
1834 tail = tem;
|
|
1835 }
|
|
1836 }
|
|
1837
|
|
1838
|
|
1839 /************************************************************************/
|
|
1840 /* property-list functions */
|
|
1841 /************************************************************************/
|
|
1842
|
|
1843 /* For properties of text, we need to do order-insensitive comparison of
|
|
1844 plists. That is, we need to compare two plists such that they are the
|
|
1845 same if they have the same set of keys, and equivalent values.
|
|
1846 So (a 1 b 2) would be equal to (b 2 a 1).
|
|
1847
|
|
1848 NIL_MEANS_NOT_PRESENT is as in `plists-eq' etc.
|
|
1849 LAXP means use `equal' for comparisons.
|
|
1850 */
|
173
|
1851 int
|
0
|
1852 plists_differ (Lisp_Object a, Lisp_Object b, int nil_means_not_present,
|
|
1853 int laxp, int depth)
|
|
1854 {
|
398
|
1855 int eqp = (depth == -1); /* -1 as depth means use eq, not equal. */
|
0
|
1856 int la, lb, m, i, fill;
|
|
1857 Lisp_Object *keys, *vals;
|
|
1858 char *flags;
|
|
1859 Lisp_Object rest;
|
|
1860
|
|
1861 if (NILP (a) && NILP (b))
|
|
1862 return 0;
|
|
1863
|
|
1864 Fcheck_valid_plist (a);
|
|
1865 Fcheck_valid_plist (b);
|
|
1866
|
|
1867 la = XINT (Flength (a));
|
|
1868 lb = XINT (Flength (b));
|
|
1869 m = (la > lb ? la : lb);
|
|
1870 fill = 0;
|
185
|
1871 keys = alloca_array (Lisp_Object, m);
|
|
1872 vals = alloca_array (Lisp_Object, m);
|
|
1873 flags = alloca_array (char, m);
|
0
|
1874
|
|
1875 /* First extract the pairs from A. */
|
|
1876 for (rest = a; !NILP (rest); rest = XCDR (XCDR (rest)))
|
|
1877 {
|
|
1878 Lisp_Object k = XCAR (rest);
|
|
1879 Lisp_Object v = XCAR (XCDR (rest));
|
|
1880 /* Maybe be Ebolified. */
|
|
1881 if (nil_means_not_present && NILP (v)) continue;
|
|
1882 keys [fill] = k;
|
|
1883 vals [fill] = v;
|
|
1884 flags[fill] = 0;
|
|
1885 fill++;
|
|
1886 }
|
|
1887 /* Now iterate over B, and stop if we find something that's not in A,
|
|
1888 or that doesn't match. As we match, mark them. */
|
|
1889 for (rest = b; !NILP (rest); rest = XCDR (XCDR (rest)))
|
|
1890 {
|
|
1891 Lisp_Object k = XCAR (rest);
|
|
1892 Lisp_Object v = XCAR (XCDR (rest));
|
|
1893 /* Maybe be Ebolified. */
|
|
1894 if (nil_means_not_present && NILP (v)) continue;
|
|
1895 for (i = 0; i < fill; i++)
|
|
1896 {
|
|
1897 if (!laxp ? EQ (k, keys [i]) : internal_equal (k, keys [i], depth))
|
|
1898 {
|
398
|
1899 if (eqp
|
|
1900 /* We narrowly escaped being Ebolified here. */
|
|
1901 ? !EQ_WITH_EBOLA_NOTICE (v, vals [i])
|
|
1902 : !internal_equal (v, vals [i], depth))
|
0
|
1903 /* a property in B has a different value than in A */
|
|
1904 goto MISMATCH;
|
|
1905 flags [i] = 1;
|
|
1906 break;
|
|
1907 }
|
|
1908 }
|
|
1909 if (i == fill)
|
|
1910 /* there are some properties in B that are not in A */
|
|
1911 goto MISMATCH;
|
|
1912 }
|
|
1913 /* Now check to see that all the properties in A were also in B */
|
|
1914 for (i = 0; i < fill; i++)
|
|
1915 if (flags [i] == 0)
|
|
1916 goto MISMATCH;
|
|
1917
|
|
1918 /* Ok. */
|
|
1919 return 0;
|
|
1920
|
|
1921 MISMATCH:
|
|
1922 return 1;
|
|
1923 }
|
|
1924
|
20
|
1925 DEFUN ("plists-eq", Fplists_eq, 2, 3, 0, /*
|
0
|
1926 Return non-nil if property lists A and B are `eq'.
|
|
1927 A property list is an alternating list of keywords and values.
|
|
1928 This function does order-insensitive comparisons of the property lists:
|
|
1929 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1930 Comparison between values is done using `eq'. See also `plists-equal'.
|
|
1931 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1932 a nil value is ignored. This feature is a virus that has infected
|
16
|
1933 old Lisp implementations, but should not be used except for backward
|
|
1934 compatibility.
|
20
|
1935 */
|
|
1936 (a, b, nil_means_not_present))
|
0
|
1937 {
|
|
1938 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, -1)
|
|
1939 ? Qnil : Qt);
|
|
1940 }
|
|
1941
|
20
|
1942 DEFUN ("plists-equal", Fplists_equal, 2, 3, 0, /*
|
0
|
1943 Return non-nil if property lists A and B are `equal'.
|
|
1944 A property list is an alternating list of keywords and values. This
|
|
1945 function does order-insensitive comparisons of the property lists: For
|
|
1946 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1947 Comparison between values is done using `equal'. See also `plists-eq'.
|
|
1948 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1949 a nil value is ignored. This feature is a virus that has infected
|
16
|
1950 old Lisp implementations, but should not be used except for backward
|
|
1951 compatibility.
|
20
|
1952 */
|
|
1953 (a, b, nil_means_not_present))
|
0
|
1954 {
|
|
1955 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, 1)
|
|
1956 ? Qnil : Qt);
|
|
1957 }
|
|
1958
|
|
1959
|
20
|
1960 DEFUN ("lax-plists-eq", Flax_plists_eq, 2, 3, 0, /*
|
0
|
1961 Return non-nil if lax property lists A and B are `eq'.
|
|
1962 A property list is an alternating list of keywords and values.
|
|
1963 This function does order-insensitive comparisons of the property lists:
|
|
1964 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1965 Comparison between values is done using `eq'. See also `plists-equal'.
|
|
1966 A lax property list is like a regular one except that comparisons between
|
|
1967 keywords is done using `equal' instead of `eq'.
|
|
1968 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1969 a nil value is ignored. This feature is a virus that has infected
|
16
|
1970 old Lisp implementations, but should not be used except for backward
|
|
1971 compatibility.
|
20
|
1972 */
|
|
1973 (a, b, nil_means_not_present))
|
0
|
1974 {
|
|
1975 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, -1)
|
|
1976 ? Qnil : Qt);
|
|
1977 }
|
|
1978
|
20
|
1979 DEFUN ("lax-plists-equal", Flax_plists_equal, 2, 3, 0, /*
|
0
|
1980 Return non-nil if lax property lists A and B are `equal'.
|
|
1981 A property list is an alternating list of keywords and values. This
|
|
1982 function does order-insensitive comparisons of the property lists: For
|
|
1983 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1984 Comparison between values is done using `equal'. See also `plists-eq'.
|
|
1985 A lax property list is like a regular one except that comparisons between
|
|
1986 keywords is done using `equal' instead of `eq'.
|
|
1987 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1988 a nil value is ignored. This feature is a virus that has infected
|
16
|
1989 old Lisp implementations, but should not be used except for backward
|
|
1990 compatibility.
|
20
|
1991 */
|
|
1992 (a, b, nil_means_not_present))
|
0
|
1993 {
|
|
1994 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, 1)
|
|
1995 ? Qnil : Qt);
|
|
1996 }
|
|
1997
|
|
1998 /* Return the value associated with key PROPERTY in property list PLIST.
|
|
1999 Return nil if key not found. This function is used for internal
|
|
2000 property lists that cannot be directly manipulated by the user.
|
|
2001 */
|
|
2002
|
|
2003 Lisp_Object
|
|
2004 internal_plist_get (Lisp_Object plist, Lisp_Object property)
|
|
2005 {
|
380
|
2006 Lisp_Object tail;
|
|
2007
|
|
2008 for (tail = plist; !NILP (tail); tail = XCDR (XCDR (tail)))
|
0
|
2009 {
|
380
|
2010 if (EQ (XCAR (tail), property))
|
|
2011 return XCAR (XCDR (tail));
|
0
|
2012 }
|
|
2013
|
|
2014 return Qunbound;
|
|
2015 }
|
|
2016
|
|
2017 /* Set PLIST's value for PROPERTY to VALUE. Analogous to
|
|
2018 internal_plist_get(). */
|
|
2019
|
|
2020 void
|
|
2021 internal_plist_put (Lisp_Object *plist, Lisp_Object property,
|
|
2022 Lisp_Object value)
|
|
2023 {
|
272
|
2024 Lisp_Object tail;
|
|
2025
|
|
2026 for (tail = *plist; !NILP (tail); tail = XCDR (XCDR (tail)))
|
0
|
2027 {
|
272
|
2028 if (EQ (XCAR (tail), property))
|
0
|
2029 {
|
272
|
2030 XCAR (XCDR (tail)) = value;
|
0
|
2031 return;
|
|
2032 }
|
|
2033 }
|
|
2034
|
|
2035 *plist = Fcons (property, Fcons (value, *plist));
|
|
2036 }
|
|
2037
|
|
2038 int
|
|
2039 internal_remprop (Lisp_Object *plist, Lisp_Object property)
|
|
2040 {
|
380
|
2041 Lisp_Object tail, prev;
|
|
2042
|
|
2043 for (tail = *plist, prev = Qnil;
|
|
2044 !NILP (tail);
|
0
|
2045 tail = XCDR (XCDR (tail)))
|
|
2046 {
|
380
|
2047 if (EQ (XCAR (tail), property))
|
0
|
2048 {
|
380
|
2049 if (NILP (prev))
|
|
2050 *plist = XCDR (XCDR (tail));
|
|
2051 else
|
|
2052 XCDR (XCDR (prev)) = XCDR (XCDR (tail));
|
0
|
2053 return 1;
|
|
2054 }
|
380
|
2055 else
|
|
2056 prev = tail;
|
0
|
2057 }
|
|
2058
|
|
2059 return 0;
|
|
2060 }
|
|
2061
|
|
2062 /* Called on a malformed property list. BADPLACE should be some
|
|
2063 place where truncating will form a good list -- i.e. we shouldn't
|
|
2064 result in a list with an odd length. */
|
|
2065
|
|
2066 static Lisp_Object
|
|
2067 bad_bad_bunny (Lisp_Object *plist, Lisp_Object *badplace, Error_behavior errb)
|
|
2068 {
|
|
2069 if (ERRB_EQ (errb, ERROR_ME))
|
|
2070 return Fsignal (Qmalformed_property_list, list2 (*plist, *badplace));
|
|
2071 else
|
|
2072 {
|
|
2073 if (ERRB_EQ (errb, ERROR_ME_WARN))
|
|
2074 {
|
|
2075 warn_when_safe_lispobj
|
|
2076 (Qlist, Qwarning,
|
|
2077 list2 (build_string
|
|
2078 ("Malformed property list -- list has been truncated"),
|
|
2079 *plist));
|
|
2080 *badplace = Qnil;
|
|
2081 }
|
|
2082 return Qunbound;
|
|
2083 }
|
|
2084 }
|
|
2085
|
|
2086 /* Called on a circular property list. BADPLACE should be some place
|
|
2087 where truncating will result in an even-length list, as above.
|
|
2088 If doesn't particularly matter where we truncate -- anywhere we
|
|
2089 truncate along the entire list will break the circularity, because
|
|
2090 it will create a terminus and the list currently doesn't have one.
|
|
2091 */
|
|
2092
|
|
2093 static Lisp_Object
|
|
2094 bad_bad_turtle (Lisp_Object *plist, Lisp_Object *badplace, Error_behavior errb)
|
|
2095 {
|
|
2096 if (ERRB_EQ (errb, ERROR_ME))
|
|
2097 /* #### Eek, this will probably result in another error
|
|
2098 when PLIST is printed out */
|
|
2099 return Fsignal (Qcircular_property_list, list1 (*plist));
|
|
2100 else
|
|
2101 {
|
|
2102 if (ERRB_EQ (errb, ERROR_ME_WARN))
|
|
2103 {
|
|
2104 warn_when_safe_lispobj
|
|
2105 (Qlist, Qwarning,
|
|
2106 list2 (build_string
|
|
2107 ("Circular property list -- list has been truncated"),
|
|
2108 *plist));
|
|
2109 *badplace = Qnil;
|
|
2110 }
|
|
2111 return Qunbound;
|
|
2112 }
|
|
2113 }
|
|
2114
|
|
2115 /* Advance the tortoise pointer by two (one iteration of a property-list
|
|
2116 loop) and the hare pointer by four and verify that no malformations
|
|
2117 or circularities exist. If so, return zero and store a value into
|
|
2118 RETVAL that should be returned by the calling function. Otherwise,
|
|
2119 return 1. See external_plist_get().
|
|
2120 */
|
|
2121
|
|
2122 static int
|
|
2123 advance_plist_pointers (Lisp_Object *plist,
|
|
2124 Lisp_Object **tortoise, Lisp_Object **hare,
|
|
2125 Error_behavior errb, Lisp_Object *retval)
|
|
2126 {
|
|
2127 int i;
|
|
2128 Lisp_Object *tortsave = *tortoise;
|
|
2129
|
|
2130 /* Note that our "fixing" may be more brutal than necessary,
|
380
|
2131 but it's the user's own problem, not ours, if they went in and
|
0
|
2132 manually fucked up a plist. */
|
173
|
2133
|
0
|
2134 for (i = 0; i < 2; i++)
|
|
2135 {
|
|
2136 /* This is a standard iteration of a defensive-loop-checking
|
|
2137 loop. We just do it twice because we want to advance past
|
|
2138 both the property and its value.
|
|
2139
|
|
2140 If the pointer indirection is confusing you, remember that
|
|
2141 one level of indirection on the hare and tortoise pointers
|
|
2142 is only due to pass-by-reference for this function. The other
|
|
2143 level is so that the plist can be fixed in place. */
|
|
2144
|
|
2145 /* When we reach the end of a well-formed plist, **HARE is
|
|
2146 nil. In that case, we don't do anything at all except
|
|
2147 advance TORTOISE by one. Otherwise, we advance HARE
|
|
2148 by two (making sure it's OK to do so), then advance
|
|
2149 TORTOISE by one (it will always be OK to do so because
|
|
2150 the HARE is always ahead of the TORTOISE and will have
|
|
2151 already verified the path), then make sure TORTOISE and
|
|
2152 HARE don't contain the same non-nil object -- if the
|
|
2153 TORTOISE and the HARE ever meet, then obviously we're
|
|
2154 in a circularity, and if we're in a circularity, then
|
|
2155 the TORTOISE and the HARE can't cross paths without
|
|
2156 meeting, since the HARE only gains one step over the
|
|
2157 TORTOISE per iteration. */
|
|
2158
|
|
2159 if (!NILP (**hare))
|
|
2160 {
|
|
2161 Lisp_Object *haresave = *hare;
|
|
2162 if (!CONSP (**hare))
|
|
2163 {
|
|
2164 *retval = bad_bad_bunny (plist, haresave, errb);
|
|
2165 return 0;
|
|
2166 }
|
|
2167 *hare = &XCDR (**hare);
|
|
2168 /* In a non-plist, we'd check here for a nil value for
|
|
2169 **HARE, which is OK (it just means the list has an
|
|
2170 odd number of elements). In a plist, it's not OK
|
|
2171 for the list to have an odd number of elements. */
|
|
2172 if (!CONSP (**hare))
|
|
2173 {
|
|
2174 *retval = bad_bad_bunny (plist, haresave, errb);
|
|
2175 return 0;
|
|
2176 }
|
|
2177 *hare = &XCDR (**hare);
|
|
2178 }
|
|
2179
|
|
2180 *tortoise = &XCDR (**tortoise);
|
|
2181 if (!NILP (**hare) && EQ (**tortoise, **hare))
|
|
2182 {
|
|
2183 *retval = bad_bad_turtle (plist, tortsave, errb);
|
|
2184 return 0;
|
|
2185 }
|
|
2186 }
|
|
2187
|
|
2188 return 1;
|
|
2189 }
|
|
2190
|
|
2191 /* Return the value of PROPERTY from PLIST, or Qunbound if
|
|
2192 property is not on the list.
|
|
2193
|
|
2194 PLIST is a Lisp-accessible property list, meaning that it
|
|
2195 has to be checked for malformations and circularities.
|
|
2196
|
|
2197 If ERRB is ERROR_ME, an error will be signalled. Otherwise, the
|
|
2198 function will never signal an error; and if ERRB is ERROR_ME_WARN,
|
|
2199 on finding a malformation or a circularity, it issues a warning and
|
|
2200 attempts to silently fix the problem.
|
|
2201
|
|
2202 A pointer to PLIST is passed in so that PLIST can be successfully
|
|
2203 "fixed" even if the error is at the beginning of the plist. */
|
|
2204
|
|
2205 Lisp_Object
|
|
2206 external_plist_get (Lisp_Object *plist, Lisp_Object property,
|
|
2207 int laxp, Error_behavior errb)
|
|
2208 {
|
|
2209 Lisp_Object *tortoise = plist;
|
|
2210 Lisp_Object *hare = plist;
|
|
2211
|
|
2212 while (!NILP (*tortoise))
|
|
2213 {
|
|
2214 Lisp_Object *tortsave = tortoise;
|
|
2215 Lisp_Object retval;
|
|
2216
|
|
2217 /* We do the standard tortoise/hare march. We isolate the
|
|
2218 grungy stuff to do this in advance_plist_pointers(), though.
|
|
2219 To us, all this function does is advance the tortoise
|
|
2220 pointer by two and the hare pointer by four and make sure
|
|
2221 everything's OK. We first advance the pointers and then
|
|
2222 check if a property matched; this ensures that our
|
|
2223 check for a matching property is safe. */
|
|
2224
|
|
2225 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2226 return retval;
|
|
2227
|
|
2228 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2229 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2230 return XCAR (XCDR (*tortsave));
|
|
2231 }
|
|
2232
|
|
2233 return Qunbound;
|
|
2234 }
|
|
2235
|
|
2236 /* Set PLIST's value for PROPERTY to VALUE, given a possibly
|
|
2237 malformed or circular plist. Analogous to external_plist_get(). */
|
|
2238
|
|
2239 void
|
|
2240 external_plist_put (Lisp_Object *plist, Lisp_Object property,
|
|
2241 Lisp_Object value, int laxp, Error_behavior errb)
|
|
2242 {
|
|
2243 Lisp_Object *tortoise = plist;
|
|
2244 Lisp_Object *hare = plist;
|
|
2245
|
|
2246 while (!NILP (*tortoise))
|
|
2247 {
|
|
2248 Lisp_Object *tortsave = tortoise;
|
|
2249 Lisp_Object retval;
|
|
2250
|
|
2251 /* See above */
|
|
2252 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2253 return;
|
|
2254
|
|
2255 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2256 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2257 {
|
|
2258 XCAR (XCDR (*tortsave)) = value;
|
|
2259 return;
|
|
2260 }
|
|
2261 }
|
|
2262
|
|
2263 *plist = Fcons (property, Fcons (value, *plist));
|
|
2264 }
|
|
2265
|
|
2266 int
|
|
2267 external_remprop (Lisp_Object *plist, Lisp_Object property,
|
|
2268 int laxp, Error_behavior errb)
|
|
2269 {
|
|
2270 Lisp_Object *tortoise = plist;
|
|
2271 Lisp_Object *hare = plist;
|
|
2272
|
|
2273 while (!NILP (*tortoise))
|
|
2274 {
|
|
2275 Lisp_Object *tortsave = tortoise;
|
|
2276 Lisp_Object retval;
|
|
2277
|
|
2278 /* See above */
|
|
2279 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2280 return 0;
|
|
2281
|
|
2282 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2283 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2284 {
|
|
2285 /* Now you see why it's so convenient to have that level
|
|
2286 of indirection. */
|
|
2287 *tortsave = XCDR (XCDR (*tortsave));
|
|
2288 return 1;
|
|
2289 }
|
|
2290 }
|
|
2291
|
|
2292 return 0;
|
|
2293 }
|
|
2294
|
20
|
2295 DEFUN ("plist-get", Fplist_get, 2, 3, 0, /*
|
0
|
2296 Extract a value from a property list.
|
|
2297 PLIST is a property list, which is a list of the form
|
|
2298 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
|
|
2299 corresponding to the given PROP, or DEFAULT if PROP is not
|
|
2300 one of the properties on the list.
|
20
|
2301 */
|
173
|
2302 (plist, prop, default_))
|
0
|
2303 {
|
|
2304 Lisp_Object val = external_plist_get (&plist, prop, 0, ERROR_ME);
|
380
|
2305 return UNBOUNDP (val) ? default_ : val;
|
0
|
2306 }
|
|
2307
|
20
|
2308 DEFUN ("plist-put", Fplist_put, 3, 3, 0, /*
|
0
|
2309 Change value in PLIST of PROP to VAL.
|
|
2310 PLIST is a property list, which is a list of the form \(PROP1 VALUE1
|
|
2311 PROP2 VALUE2 ...). PROP is usually a symbol and VAL is any object.
|
|
2312 If PROP is already a property on the list, its value is set to VAL,
|
|
2313 otherwise the new PROP VAL pair is added. The new plist is returned;
|
|
2314 use `(setq x (plist-put x prop val))' to be sure to use the new value.
|
|
2315 The PLIST is modified by side effects.
|
20
|
2316 */
|
|
2317 (plist, prop, val))
|
0
|
2318 {
|
|
2319 external_plist_put (&plist, prop, val, 0, ERROR_ME);
|
|
2320 return plist;
|
|
2321 }
|
|
2322
|
20
|
2323 DEFUN ("plist-remprop", Fplist_remprop, 2, 2, 0, /*
|
0
|
2324 Remove from PLIST the property PROP and its value.
|
|
2325 PLIST is a property list, which is a list of the form \(PROP1 VALUE1
|
|
2326 PROP2 VALUE2 ...). PROP is usually a symbol. The new plist is
|
|
2327 returned; use `(setq x (plist-remprop x prop val))' to be sure to use
|
|
2328 the new value. The PLIST is modified by side effects.
|
20
|
2329 */
|
|
2330 (plist, prop))
|
0
|
2331 {
|
|
2332 external_remprop (&plist, prop, 0, ERROR_ME);
|
|
2333 return plist;
|
|
2334 }
|
|
2335
|
20
|
2336 DEFUN ("plist-member", Fplist_member, 2, 2, 0, /*
|
0
|
2337 Return t if PROP has a value specified in PLIST.
|
20
|
2338 */
|
|
2339 (plist, prop))
|
0
|
2340 {
|
380
|
2341 Lisp_Object val = Fplist_get (plist, prop, Qunbound);
|
|
2342 return UNBOUNDP (val) ? Qnil : Qt;
|
0
|
2343 }
|
|
2344
|
20
|
2345 DEFUN ("check-valid-plist", Fcheck_valid_plist, 1, 1, 0, /*
|
0
|
2346 Given a plist, signal an error if there is anything wrong with it.
|
|
2347 This means that it's a malformed or circular plist.
|
20
|
2348 */
|
|
2349 (plist))
|
0
|
2350 {
|
|
2351 Lisp_Object *tortoise;
|
|
2352 Lisp_Object *hare;
|
|
2353
|
|
2354 start_over:
|
|
2355 tortoise = &plist;
|
|
2356 hare = &plist;
|
|
2357 while (!NILP (*tortoise))
|
|
2358 {
|
|
2359 Lisp_Object retval;
|
|
2360
|
|
2361 /* See above */
|
|
2362 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME,
|
|
2363 &retval))
|
|
2364 goto start_over;
|
|
2365 }
|
|
2366
|
|
2367 return Qnil;
|
|
2368 }
|
173
|
2369
|
20
|
2370 DEFUN ("valid-plist-p", Fvalid_plist_p, 1, 1, 0, /*
|
0
|
2371 Given a plist, return non-nil if its format is correct.
|
|
2372 If it returns nil, `check-valid-plist' will signal an error when given
|
398
|
2373 the plist; that means it's a malformed or circular plist.
|
20
|
2374 */
|
|
2375 (plist))
|
0
|
2376 {
|
|
2377 Lisp_Object *tortoise;
|
|
2378 Lisp_Object *hare;
|
|
2379
|
|
2380 tortoise = &plist;
|
|
2381 hare = &plist;
|
|
2382 while (!NILP (*tortoise))
|
|
2383 {
|
|
2384 Lisp_Object retval;
|
|
2385
|
|
2386 /* See above */
|
|
2387 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME_NOT,
|
|
2388 &retval))
|
|
2389 return Qnil;
|
|
2390 }
|
|
2391
|
|
2392 return Qt;
|
|
2393 }
|
|
2394
|
20
|
2395 DEFUN ("canonicalize-plist", Fcanonicalize_plist, 1, 2, 0, /*
|
0
|
2396 Destructively remove any duplicate entries from a plist.
|
|
2397 In such cases, the first entry applies.
|
|
2398
|
|
2399 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2400 a nil value is removed. This feature is a virus that has infected
|
16
|
2401 old Lisp implementations, but should not be used except for backward
|
|
2402 compatibility.
|
0
|
2403
|
|
2404 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the
|
|
2405 return value may not be EQ to the passed-in value, so make sure to
|
|
2406 `setq' the value back into where it came from.
|
20
|
2407 */
|
|
2408 (plist, nil_means_not_present))
|
0
|
2409 {
|
|
2410 Lisp_Object head = plist;
|
|
2411
|
|
2412 Fcheck_valid_plist (plist);
|
|
2413
|
|
2414 while (!NILP (plist))
|
|
2415 {
|
|
2416 Lisp_Object prop = Fcar (plist);
|
|
2417 Lisp_Object next = Fcdr (plist);
|
|
2418
|
|
2419 CHECK_CONS (next); /* just make doubly sure we catch any errors */
|
|
2420 if (!NILP (nil_means_not_present) && NILP (Fcar (next)))
|
|
2421 {
|
|
2422 if (EQ (head, plist))
|
|
2423 head = Fcdr (next);
|
|
2424 plist = Fcdr (next);
|
|
2425 continue;
|
|
2426 }
|
|
2427 /* external_remprop returns 1 if it removed any property.
|
|
2428 We have to loop till it didn't remove anything, in case
|
|
2429 the property occurs many times. */
|
380
|
2430 while (external_remprop (&XCDR (next), prop, 0, ERROR_ME))
|
|
2431 DO_NOTHING;
|
0
|
2432 plist = Fcdr (next);
|
|
2433 }
|
|
2434
|
|
2435 return head;
|
|
2436 }
|
|
2437
|
20
|
2438 DEFUN ("lax-plist-get", Flax_plist_get, 2, 3, 0, /*
|
0
|
2439 Extract a value from a lax property list.
|
|
2440
|
|
2441 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
380
|
2442 VALUE1 PROP2 VALUE2...), where comparisons between properties is done
|
0
|
2443 using `equal' instead of `eq'. This function returns the value
|
|
2444 corresponding to the given PROP, or DEFAULT if PROP is not one of the
|
|
2445 properties on the list.
|
20
|
2446 */
|
173
|
2447 (lax_plist, prop, default_))
|
0
|
2448 {
|
|
2449 Lisp_Object val = external_plist_get (&lax_plist, prop, 1, ERROR_ME);
|
398
|
2450 return UNBOUNDP (val) ? default_ : val;
|
0
|
2451 }
|
|
2452
|
20
|
2453 DEFUN ("lax-plist-put", Flax_plist_put, 3, 3, 0, /*
|
0
|
2454 Change value in LAX-PLIST of PROP to VAL.
|
|
2455 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
380
|
2456 VALUE1 PROP2 VALUE2...), where comparisons between properties is done
|
0
|
2457 using `equal' instead of `eq'. PROP is usually a symbol and VAL is
|
|
2458 any object. If PROP is already a property on the list, its value is
|
|
2459 set to VAL, otherwise the new PROP VAL pair is added. The new plist
|
|
2460 is returned; use `(setq x (lax-plist-put x prop val))' to be sure to
|
|
2461 use the new value. The LAX-PLIST is modified by side effects.
|
20
|
2462 */
|
|
2463 (lax_plist, prop, val))
|
0
|
2464 {
|
|
2465 external_plist_put (&lax_plist, prop, val, 1, ERROR_ME);
|
|
2466 return lax_plist;
|
|
2467 }
|
|
2468
|
20
|
2469 DEFUN ("lax-plist-remprop", Flax_plist_remprop, 2, 2, 0, /*
|
0
|
2470 Remove from LAX-PLIST the property PROP and its value.
|
|
2471 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
380
|
2472 VALUE1 PROP2 VALUE2...), where comparisons between properties is done
|
0
|
2473 using `equal' instead of `eq'. PROP is usually a symbol. The new
|
|
2474 plist is returned; use `(setq x (lax-plist-remprop x prop val))' to be
|
|
2475 sure to use the new value. The LAX-PLIST is modified by side effects.
|
20
|
2476 */
|
|
2477 (lax_plist, prop))
|
0
|
2478 {
|
|
2479 external_remprop (&lax_plist, prop, 1, ERROR_ME);
|
|
2480 return lax_plist;
|
|
2481 }
|
|
2482
|
20
|
2483 DEFUN ("lax-plist-member", Flax_plist_member, 2, 2, 0, /*
|
0
|
2484 Return t if PROP has a value specified in LAX-PLIST.
|
|
2485 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
380
|
2486 VALUE1 PROP2 VALUE2...), where comparisons between properties is done
|
0
|
2487 using `equal' instead of `eq'.
|
20
|
2488 */
|
|
2489 (lax_plist, prop))
|
0
|
2490 {
|
|
2491 return UNBOUNDP (Flax_plist_get (lax_plist, prop, Qunbound)) ? Qnil : Qt;
|
|
2492 }
|
|
2493
|
20
|
2494 DEFUN ("canonicalize-lax-plist", Fcanonicalize_lax_plist, 1, 2, 0, /*
|
0
|
2495 Destructively remove any duplicate entries from a lax plist.
|
|
2496 In such cases, the first entry applies.
|
|
2497
|
|
2498 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2499 a nil value is removed. This feature is a virus that has infected
|
16
|
2500 old Lisp implementations, but should not be used except for backward
|
|
2501 compatibility.
|
0
|
2502
|
|
2503 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the
|
|
2504 return value may not be EQ to the passed-in value, so make sure to
|
|
2505 `setq' the value back into where it came from.
|
20
|
2506 */
|
|
2507 (lax_plist, nil_means_not_present))
|
0
|
2508 {
|
|
2509 Lisp_Object head = lax_plist;
|
|
2510
|
|
2511 Fcheck_valid_plist (lax_plist);
|
|
2512
|
|
2513 while (!NILP (lax_plist))
|
|
2514 {
|
|
2515 Lisp_Object prop = Fcar (lax_plist);
|
|
2516 Lisp_Object next = Fcdr (lax_plist);
|
|
2517
|
|
2518 CHECK_CONS (next); /* just make doubly sure we catch any errors */
|
|
2519 if (!NILP (nil_means_not_present) && NILP (Fcar (next)))
|
|
2520 {
|
|
2521 if (EQ (head, lax_plist))
|
|
2522 head = Fcdr (next);
|
|
2523 lax_plist = Fcdr (next);
|
|
2524 continue;
|
|
2525 }
|
|
2526 /* external_remprop returns 1 if it removed any property.
|
|
2527 We have to loop till it didn't remove anything, in case
|
|
2528 the property occurs many times. */
|
380
|
2529 while (external_remprop (&XCDR (next), prop, 1, ERROR_ME))
|
|
2530 DO_NOTHING;
|
0
|
2531 lax_plist = Fcdr (next);
|
|
2532 }
|
|
2533
|
|
2534 return head;
|
|
2535 }
|
|
2536
|
|
2537 /* In C because the frame props stuff uses it */
|
|
2538
|
20
|
2539 DEFUN ("destructive-alist-to-plist", Fdestructive_alist_to_plist, 1, 1, 0, /*
|
0
|
2540 Convert association list ALIST into the equivalent property-list form.
|
|
2541 The plist is returned. This converts from
|
|
2542
|
|
2543 \((a . 1) (b . 2) (c . 3))
|
|
2544
|
|
2545 into
|
|
2546
|
|
2547 \(a 1 b 2 c 3)
|
|
2548
|
|
2549 The original alist is destroyed in the process of constructing the plist.
|
|
2550 See also `alist-to-plist'.
|
20
|
2551 */
|
|
2552 (alist))
|
0
|
2553 {
|
|
2554 Lisp_Object head = alist;
|
|
2555 while (!NILP (alist))
|
|
2556 {
|
|
2557 /* remember the alist element. */
|
|
2558 Lisp_Object el = Fcar (alist);
|
|
2559
|
|
2560 Fsetcar (alist, Fcar (el));
|
|
2561 Fsetcar (el, Fcdr (el));
|
|
2562 Fsetcdr (el, Fcdr (alist));
|
|
2563 Fsetcdr (alist, el);
|
|
2564 alist = Fcdr (Fcdr (alist));
|
|
2565 }
|
|
2566
|
|
2567 return head;
|
|
2568 }
|
|
2569
|
20
|
2570 DEFUN ("get", Fget, 2, 3, 0, /*
|
398
|
2571 Return the value of OBJECT's PROPERTY property.
|
|
2572 This is the last VALUE stored with `(put OBJECT PROPERTY VALUE)'.
|
0
|
2573 If there is no such property, return optional third arg DEFAULT
|
398
|
2574 \(which defaults to `nil'). OBJECT can be a symbol, string, extent,
|
|
2575 face, or glyph. See also `put', `remprop', and `object-plist'.
|
20
|
2576 */
|
398
|
2577 (object, property, default_))
|
0
|
2578 {
|
|
2579 /* Various places in emacs call Fget() and expect it not to quit,
|
|
2580 so don't quit. */
|
398
|
2581 Lisp_Object val;
|
|
2582
|
|
2583 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->getprop)
|
|
2584 val = XRECORD_LHEADER_IMPLEMENTATION (object)->getprop (object, property);
|
0
|
2585 else
|
398
|
2586 signal_simple_error ("Object type has no properties", object);
|
|
2587
|
|
2588 return UNBOUNDP (val) ? default_ : val;
|
0
|
2589 }
|
|
2590
|
20
|
2591 DEFUN ("put", Fput, 3, 3, 0, /*
|
398
|
2592 Set OBJECT's PROPERTY to VALUE.
|
|
2593 It can be subsequently retrieved with `(get OBJECT PROPERTY)'.
|
|
2594 OBJECT can be a symbol, face, extent, or string.
|
0
|
2595 For a string, no properties currently have predefined meanings.
|
|
2596 For the predefined properties for extents, see `set-extent-property'.
|
|
2597 For the predefined properties for faces, see `set-face-property'.
|
|
2598 See also `get', `remprop', and `object-plist'.
|
20
|
2599 */
|
398
|
2600 (object, property, value))
|
0
|
2601 {
|
398
|
2602 CHECK_LISP_WRITEABLE (object);
|
|
2603
|
|
2604 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->putprop)
|
0
|
2605 {
|
398
|
2606 if (! XRECORD_LHEADER_IMPLEMENTATION (object)->putprop
|
|
2607 (object, property, value))
|
|
2608 signal_simple_error ("Can't set property on object", property);
|
0
|
2609 }
|
|
2610 else
|
398
|
2611 signal_simple_error ("Object type has no settable properties", object);
|
0
|
2612
|
|
2613 return value;
|
|
2614 }
|
|
2615
|
20
|
2616 DEFUN ("remprop", Fremprop, 2, 2, 0, /*
|
398
|
2617 Remove, from OBJECT's property list, PROPERTY and its corresponding value.
|
|
2618 OBJECT can be a symbol, string, extent, face, or glyph. Return non-nil
|
|
2619 if the property list was actually modified (i.e. if PROPERTY was present
|
|
2620 in the property list). See also `get', `put', and `object-plist'.
|
20
|
2621 */
|
398
|
2622 (object, property))
|
0
|
2623 {
|
398
|
2624 int ret = 0;
|
|
2625
|
|
2626 CHECK_LISP_WRITEABLE (object);
|
|
2627
|
|
2628 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->remprop)
|
0
|
2629 {
|
398
|
2630 ret = XRECORD_LHEADER_IMPLEMENTATION (object)->remprop (object, property);
|
|
2631 if (ret == -1)
|
|
2632 signal_simple_error ("Can't remove property from object", property);
|
0
|
2633 }
|
|
2634 else
|
398
|
2635 signal_simple_error ("Object type has no removable properties", object);
|
|
2636
|
|
2637 return ret ? Qt : Qnil;
|
0
|
2638 }
|
|
2639
|
20
|
2640 DEFUN ("object-plist", Fobject_plist, 1, 1, 0, /*
|
398
|
2641 Return a property list of OBJECT's properties.
|
|
2642 For a symbol, this is equivalent to `symbol-plist'.
|
|
2643 OBJECT can be a symbol, string, extent, face, or glyph.
|
|
2644 Do not modify the returned property list directly;
|
|
2645 this may or may not have the desired effects. Use `put' instead.
|
20
|
2646 */
|
|
2647 (object))
|
0
|
2648 {
|
398
|
2649 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->plist)
|
|
2650 return XRECORD_LHEADER_IMPLEMENTATION (object)->plist (object);
|
0
|
2651 else
|
|
2652 signal_simple_error ("Object type has no properties", object);
|
|
2653
|
|
2654 return Qnil;
|
|
2655 }
|
|
2656
|
|
2657
|
|
2658 int
|
380
|
2659 internal_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
0
|
2660 {
|
|
2661 if (depth > 200)
|
|
2662 error ("Stack overflow in equal");
|
|
2663 QUIT;
|
380
|
2664 if (EQ_WITH_EBOLA_NOTICE (obj1, obj2))
|
149
|
2665 return 1;
|
0
|
2666 /* Note that (equal 20 20.0) should be nil */
|
380
|
2667 if (XTYPE (obj1) != XTYPE (obj2))
|
149
|
2668 return 0;
|
380
|
2669 if (LRECORDP (obj1))
|
0
|
2670 {
|
398
|
2671 const struct lrecord_implementation
|
380
|
2672 *imp1 = XRECORD_LHEADER_IMPLEMENTATION (obj1),
|
|
2673 *imp2 = XRECORD_LHEADER_IMPLEMENTATION (obj2);
|
|
2674
|
|
2675 return (imp1 == imp2) &&
|
0
|
2676 /* EQ-ness of the objects was noticed above */
|
380
|
2677 (imp1->equal && (imp1->equal) (obj1, obj2, depth));
|
0
|
2678 }
|
|
2679
|
149
|
2680 return 0;
|
0
|
2681 }
|
|
2682
|
70
|
2683 /* Note that we may be calling sub-objects that will use
|
|
2684 internal_equal() (instead of internal_old_equal()). Oh well.
|
|
2685 We will get an Ebola note if there's any possibility of confusion,
|
|
2686 but that seems unlikely. */
|
|
2687
|
|
2688 static int
|
380
|
2689 internal_old_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
70
|
2690 {
|
|
2691 if (depth > 200)
|
|
2692 error ("Stack overflow in equal");
|
|
2693 QUIT;
|
380
|
2694 if (HACKEQ_UNSAFE (obj1, obj2))
|
149
|
2695 return 1;
|
70
|
2696 /* Note that (equal 20 20.0) should be nil */
|
380
|
2697 if (XTYPE (obj1) != XTYPE (obj2))
|
149
|
2698 return 0;
|
380
|
2699
|
|
2700 return internal_equal (obj1, obj2, depth);
|
70
|
2701 }
|
|
2702
|
20
|
2703 DEFUN ("equal", Fequal, 2, 2, 0, /*
|
272
|
2704 Return t if two Lisp objects have similar structure and contents.
|
0
|
2705 They must have the same data type.
|
|
2706 Conses are compared by comparing the cars and the cdrs.
|
|
2707 Vectors and strings are compared element by element.
|
|
2708 Numbers are compared by value. Symbols must match exactly.
|
20
|
2709 */
|
380
|
2710 (obj1, obj2))
|
0
|
2711 {
|
380
|
2712 return internal_equal (obj1, obj2, 0) ? Qt : Qnil;
|
0
|
2713 }
|
|
2714
|
70
|
2715 DEFUN ("old-equal", Fold_equal, 2, 2, 0, /*
|
272
|
2716 Return t if two Lisp objects have similar structure and contents.
|
70
|
2717 They must have the same data type.
|
|
2718 \(Note, however, that an exception is made for characters and integers;
|
185
|
2719 this is known as the "char-int confoundance disease." See `eq' and
|
70
|
2720 `old-eq'.)
|
|
2721 This function is provided only for byte-code compatibility with v19.
|
|
2722 Do not use it.
|
|
2723 */
|
380
|
2724 (obj1, obj2))
|
70
|
2725 {
|
380
|
2726 return internal_old_equal (obj1, obj2, 0) ? Qt : Qnil;
|
70
|
2727 }
|
|
2728
|
0
|
2729
|
20
|
2730 DEFUN ("fillarray", Ffillarray, 2, 2, 0, /*
|
398
|
2731 Destructively modify ARRAY by replacing each element with ITEM.
|
0
|
2732 ARRAY is a vector, bit vector, or string.
|
20
|
2733 */
|
|
2734 (array, item))
|
0
|
2735 {
|
|
2736 retry:
|
76
|
2737 if (STRINGP (array))
|
|
2738 {
|
398
|
2739 Lisp_String *s = XSTRING (array);
|
|
2740 Bytecount old_bytecount = string_length (s);
|
|
2741 Bytecount new_bytecount;
|
|
2742 Bytecount item_bytecount;
|
|
2743 Bufbyte item_buf[MAX_EMCHAR_LEN];
|
|
2744 Bufbyte *p;
|
|
2745 Bufbyte *end;
|
|
2746
|
76
|
2747 CHECK_CHAR_COERCE_INT (item);
|
398
|
2748 CHECK_LISP_WRITEABLE (array);
|
|
2749
|
|
2750 item_bytecount = set_charptr_emchar (item_buf, XCHAR (item));
|
|
2751 new_bytecount = item_bytecount * string_char_length (s);
|
|
2752
|
|
2753 resize_string (s, -1, new_bytecount - old_bytecount);
|
|
2754
|
|
2755 for (p = string_data (s), end = p + new_bytecount;
|
|
2756 p < end;
|
|
2757 p += item_bytecount)
|
|
2758 memcpy (p, item_buf, item_bytecount);
|
|
2759 *p = '\0';
|
|
2760
|
76
|
2761 bump_string_modiff (array);
|
|
2762 }
|
|
2763 else if (VECTORP (array))
|
10
|
2764 {
|
272
|
2765 Lisp_Object *p = XVECTOR_DATA (array);
|
|
2766 int len = XVECTOR_LENGTH (array);
|
398
|
2767 CHECK_LISP_WRITEABLE (array);
|
272
|
2768 while (len--)
|
|
2769 *p++ = item;
|
10
|
2770 }
|
76
|
2771 else if (BIT_VECTORP (array))
|
0
|
2772 {
|
398
|
2773 Lisp_Bit_Vector *v = XBIT_VECTOR (array);
|
272
|
2774 int len = bit_vector_length (v);
|
|
2775 int bit;
|
0
|
2776 CHECK_BIT (item);
|
398
|
2777 CHECK_LISP_WRITEABLE (array);
|
272
|
2778 bit = XINT (item);
|
|
2779 while (len--)
|
|
2780 set_bit_vector_bit (v, len, bit);
|
0
|
2781 }
|
|
2782 else
|
|
2783 {
|
|
2784 array = wrong_type_argument (Qarrayp, array);
|
|
2785 goto retry;
|
|
2786 }
|
|
2787 return array;
|
|
2788 }
|
|
2789
|
|
2790 Lisp_Object
|
380
|
2791 nconc2 (Lisp_Object arg1, Lisp_Object arg2)
|
0
|
2792 {
|
|
2793 Lisp_Object args[2];
|
380
|
2794 struct gcpro gcpro1;
|
|
2795 args[0] = arg1;
|
|
2796 args[1] = arg2;
|
|
2797
|
|
2798 GCPRO1 (args[0]);
|
|
2799 gcpro1.nvars = 2;
|
|
2800
|
|
2801 RETURN_UNGCPRO (bytecode_nconc2 (args));
|
|
2802 }
|
|
2803
|
|
2804 Lisp_Object
|
|
2805 bytecode_nconc2 (Lisp_Object *args)
|
|
2806 {
|
|
2807 retry:
|
|
2808
|
|
2809 if (CONSP (args[0]))
|
|
2810 {
|
|
2811 /* (setcdr (last args[0]) args[1]) */
|
|
2812 Lisp_Object tortoise, hare;
|
|
2813 int count;
|
|
2814
|
|
2815 for (hare = tortoise = args[0], count = 0;
|
|
2816 CONSP (XCDR (hare));
|
|
2817 hare = XCDR (hare), count++)
|
|
2818 {
|
|
2819 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue;
|
|
2820
|
|
2821 if (count & 1)
|
|
2822 tortoise = XCDR (tortoise);
|
|
2823 if (EQ (hare, tortoise))
|
|
2824 signal_circular_list_error (args[0]);
|
|
2825 }
|
|
2826 XCDR (hare) = args[1];
|
|
2827 return args[0];
|
|
2828 }
|
|
2829 else if (NILP (args[0]))
|
|
2830 {
|
|
2831 return args[1];
|
|
2832 }
|
|
2833 else
|
|
2834 {
|
|
2835 args[0] = wrong_type_argument (args[0], Qlistp);
|
|
2836 goto retry;
|
|
2837 }
|
0
|
2838 }
|
|
2839
|
20
|
2840 DEFUN ("nconc", Fnconc, 0, MANY, 0, /*
|
0
|
2841 Concatenate any number of lists by altering them.
|
|
2842 Only the last argument is not altered, and need not be a list.
|
201
|
2843 Also see: `append'.
|
272
|
2844 If the first argument is nil, there is no way to modify it by side
|
|
2845 effect; therefore, write `(setq foo (nconc foo list))' to be sure of
|
|
2846 changing the value of `foo'.
|
20
|
2847 */
|
|
2848 (int nargs, Lisp_Object *args))
|
0
|
2849 {
|
272
|
2850 int argnum = 0;
|
0
|
2851 struct gcpro gcpro1;
|
|
2852
|
|
2853 /* The modus operandi in Emacs is "caller gc-protects args".
|
|
2854 However, nconc (particularly nconc2 ()) is called many times
|
|
2855 in Emacs on freshly created stuff (e.g. you see the idiom
|
|
2856 nconc2 (Fcopy_sequence (foo), bar) a lot). So we help those
|
|
2857 callers out by protecting the args ourselves to save them
|
|
2858 a lot of temporary-variable grief. */
|
|
2859
|
|
2860 GCPRO1 (args[0]);
|
|
2861 gcpro1.nvars = nargs;
|
173
|
2862
|
272
|
2863 while (argnum < nargs)
|
0
|
2864 {
|
384
|
2865 Lisp_Object val;
|
|
2866 retry:
|
|
2867 val = args[argnum];
|
272
|
2868 if (CONSP (val))
|
173
|
2869 {
|
380
|
2870 /* `val' is the first cons, which will be our return value. */
|
|
2871 /* `last_cons' will be the cons cell to mutate. */
|
|
2872 Lisp_Object last_cons = val;
|
|
2873 Lisp_Object tortoise = val;
|
276
|
2874
|
272
|
2875 for (argnum++; argnum < nargs; argnum++)
|
|
2876 {
|
|
2877 Lisp_Object next = args[argnum];
|
384
|
2878 retry_next:
|
272
|
2879 if (CONSP (next) || argnum == nargs -1)
|
|
2880 {
|
|
2881 /* (setcdr (last val) next) */
|
380
|
2882 int count;
|
|
2883
|
|
2884 for (count = 0;
|
|
2885 CONSP (XCDR (last_cons));
|
|
2886 last_cons = XCDR (last_cons), count++)
|
272
|
2887 {
|
380
|
2888 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue;
|
|
2889
|
|
2890 if (count & 1)
|
|
2891 tortoise = XCDR (tortoise);
|
|
2892 if (EQ (last_cons, tortoise))
|
|
2893 signal_circular_list_error (args[argnum-1]);
|
272
|
2894 }
|
380
|
2895 XCDR (last_cons) = next;
|
272
|
2896 }
|
|
2897 else if (NILP (next))
|
|
2898 {
|
|
2899 continue;
|
|
2900 }
|
|
2901 else
|
|
2902 {
|
384
|
2903 next = wrong_type_argument (Qlistp, next);
|
|
2904 goto retry_next;
|
272
|
2905 }
|
|
2906 }
|
|
2907 RETURN_UNGCPRO (val);
|
|
2908 }
|
|
2909 else if (NILP (val))
|
|
2910 argnum++;
|
|
2911 else if (argnum == nargs - 1) /* last arg? */
|
|
2912 RETURN_UNGCPRO (val);
|
|
2913 else
|
384
|
2914 {
|
|
2915 args[argnum] = wrong_type_argument (Qlistp, val);
|
|
2916 goto retry;
|
|
2917 }
|
0
|
2918 }
|
272
|
2919 RETURN_UNGCPRO (Qnil); /* No non-nil args provided. */
|
0
|
2920 }
|
|
2921
|
|
2922
|
398
|
2923 /* This is the guts of several mapping functions.
|
|
2924 Apply FUNCTION to each element of SEQUENCE, one by one,
|
|
2925 storing the results into elements of VALS, a C vector of Lisp_Objects.
|
|
2926 LENI is the length of VALS, which should also be the length of SEQUENCE.
|
384
|
2927
|
|
2928 If VALS is a null pointer, do not accumulate the results. */
|
0
|
2929
|
|
2930 static void
|
398
|
2931 mapcar1 (size_t leni, Lisp_Object *vals,
|
|
2932 Lisp_Object function, Lisp_Object sequence)
|
0
|
2933 {
|
384
|
2934 Lisp_Object result;
|
|
2935 Lisp_Object args[2];
|
0
|
2936 int i;
|
384
|
2937 struct gcpro gcpro1;
|
0
|
2938
|
|
2939 if (vals)
|
|
2940 {
|
384
|
2941 GCPRO1 (vals[0]);
|
|
2942 gcpro1.nvars = 0;
|
0
|
2943 }
|
|
2944
|
398
|
2945 args[0] = function;
|
|
2946
|
|
2947 if (LISTP (sequence))
|
0
|
2948 {
|
398
|
2949 /* A devious `function' could either:
|
|
2950 - insert garbage into the list in front of us, causing XCDR to crash
|
|
2951 - amputate the list behind us using (setcdr), causing the remaining
|
|
2952 elts to lose their GCPRO status.
|
|
2953
|
|
2954 if (vals != 0) we avoid this by copying the elts into the
|
|
2955 `vals' array. By a stroke of luck, `vals' is exactly large
|
|
2956 enough to hold the elts left to be traversed as well as the
|
|
2957 results computed so far.
|
|
2958
|
|
2959 if (vals == 0) we don't have any free space available and
|
|
2960 don't want to eat up any more stack with alloca().
|
|
2961 So we use EXTERNAL_LIST_LOOP_3 and GCPRO the tail. */
|
|
2962
|
|
2963 if (vals)
|
0
|
2964 {
|
398
|
2965 Lisp_Object *val = vals;
|
|
2966 Lisp_Object elt;
|
|
2967
|
|
2968 LIST_LOOP_2 (elt, sequence)
|
|
2969 *val++ = elt;
|
|
2970
|
|
2971 gcpro1.nvars = leni;
|
|
2972
|
|
2973 for (i = 0; i < leni; i++)
|
|
2974 {
|
|
2975 args[1] = vals[i];
|
|
2976 vals[i] = Ffuncall (2, args);
|
|
2977 }
|
|
2978 }
|
|
2979 else
|
|
2980 {
|
|
2981 Lisp_Object elt, tail;
|
|
2982 struct gcpro ngcpro1;
|
|
2983
|
|
2984 NGCPRO1 (tail);
|
|
2985
|
|
2986 {
|
|
2987 EXTERNAL_LIST_LOOP_3 (elt, sequence, tail)
|
|
2988 {
|
|
2989 args[1] = elt;
|
|
2990 Ffuncall (2, args);
|
|
2991 }
|
|
2992 }
|
|
2993
|
|
2994 NUNGCPRO;
|
384
|
2995 }
|
|
2996 }
|
398
|
2997 else if (VECTORP (sequence))
|
384
|
2998 {
|
398
|
2999 Lisp_Object *objs = XVECTOR_DATA (sequence);
|
384
|
3000 for (i = 0; i < leni; i++)
|
|
3001 {
|
|
3002 args[1] = *objs++;
|
|
3003 result = Ffuncall (2, args);
|
|
3004 if (vals) vals[gcpro1.nvars++] = result;
|
|
3005 }
|
|
3006 }
|
398
|
3007 else if (STRINGP (sequence))
|
384
|
3008 {
|
398
|
3009 /* The string data of `sequence' might be relocated during GC. */
|
|
3010 Bytecount slen = XSTRING_LENGTH (sequence);
|
|
3011 Bufbyte *p = alloca_array (Bufbyte, slen);
|
|
3012 Bufbyte *end = p + slen;
|
|
3013
|
|
3014 memcpy (p, XSTRING_DATA (sequence), slen);
|
|
3015
|
|
3016 while (p < end)
|
384
|
3017 {
|
|
3018 args[1] = make_char (charptr_emchar (p));
|
|
3019 INC_CHARPTR (p);
|
|
3020 result = Ffuncall (2, args);
|
|
3021 if (vals) vals[gcpro1.nvars++] = result;
|
0
|
3022 }
|
|
3023 }
|
398
|
3024 else if (BIT_VECTORP (sequence))
|
0
|
3025 {
|
398
|
3026 Lisp_Bit_Vector *v = XBIT_VECTOR (sequence);
|
0
|
3027 for (i = 0; i < leni; i++)
|
|
3028 {
|
384
|
3029 args[1] = make_int (bit_vector_bit (v, i));
|
|
3030 result = Ffuncall (2, args);
|
|
3031 if (vals) vals[gcpro1.nvars++] = result;
|
0
|
3032 }
|
|
3033 }
|
384
|
3034 else
|
398
|
3035 abort (); /* unreachable, since Flength (sequence) did not get an error */
|
384
|
3036
|
|
3037 if (vals)
|
|
3038 UNGCPRO;
|
0
|
3039 }
|
|
3040
|
20
|
3041 DEFUN ("mapconcat", Fmapconcat, 3, 3, 0, /*
|
398
|
3042 Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
|
|
3043 In between each pair of results, insert SEPARATOR. Thus, using " " as
|
|
3044 SEPARATOR results in spaces between the values returned by FUNCTION.
|
|
3045 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
20
|
3046 */
|
398
|
3047 (function, sequence, separator))
|
0
|
3048 {
|
398
|
3049 size_t len = XINT (Flength (sequence));
|
0
|
3050 Lisp_Object *args;
|
|
3051 int i;
|
272
|
3052 int nargs = len + len - 1;
|
|
3053
|
398
|
3054 if (len == 0) return build_string ("");
|
0
|
3055
|
185
|
3056 args = alloca_array (Lisp_Object, nargs);
|
0
|
3057
|
398
|
3058 mapcar1 (len, args, function, sequence);
|
0
|
3059
|
16
|
3060 for (i = len - 1; i >= 0; i--)
|
0
|
3061 args[i + i] = args[i];
|
173
|
3062
|
0
|
3063 for (i = 1; i < nargs; i += 2)
|
398
|
3064 args[i] = separator;
|
0
|
3065
|
|
3066 return Fconcat (nargs, args);
|
|
3067 }
|
|
3068
|
20
|
3069 DEFUN ("mapcar", Fmapcar, 2, 2, 0, /*
|
398
|
3070 Apply FUNCTION to each element of SEQUENCE; return a list of the results.
|
|
3071 The result is a list of the same length as SEQUENCE.
|
0
|
3072 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
20
|
3073 */
|
398
|
3074 (function, sequence))
|
0
|
3075 {
|
398
|
3076 size_t len = XINT (Flength (sequence));
|
185
|
3077 Lisp_Object *args = alloca_array (Lisp_Object, len);
|
16
|
3078
|
398
|
3079 mapcar1 (len, args, function, sequence);
|
16
|
3080
|
|
3081 return Flist (len, args);
|
0
|
3082 }
|
|
3083
|
163
|
3084 DEFUN ("mapvector", Fmapvector, 2, 2, 0, /*
|
398
|
3085 Apply FUNCTION to each element of SEQUENCE; return a vector of the results.
|
163
|
3086 The result is a vector of the same length as SEQUENCE.
|
398
|
3087 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
163
|
3088 */
|
398
|
3089 (function, sequence))
|
163
|
3090 {
|
398
|
3091 size_t len = XINT (Flength (sequence));
|
219
|
3092 Lisp_Object result = make_vector (len, Qnil);
|
|
3093 struct gcpro gcpro1;
|
|
3094
|
|
3095 GCPRO1 (result);
|
398
|
3096 mapcar1 (len, XVECTOR_DATA (result), function, sequence);
|
219
|
3097 UNGCPRO;
|
|
3098
|
|
3099 return result;
|
163
|
3100 }
|
|
3101
|
398
|
3102 DEFUN ("mapc-internal", Fmapc_internal, 2, 2, 0, /*
|
0
|
3103 Apply FUNCTION to each element of SEQUENCE.
|
|
3104 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
|
3105 This function is like `mapcar' but does not accumulate the results,
|
|
3106 which is more efficient if you do not use the results.
|
398
|
3107
|
|
3108 The difference between this and `mapc' is that `mapc' supports all
|
|
3109 the spiffy Common Lisp arguments. You should normally use `mapc'.
|
20
|
3110 */
|
398
|
3111 (function, sequence))
|
0
|
3112 {
|
398
|
3113 mapcar1 (XINT (Flength (sequence)), 0, function, sequence);
|
|
3114
|
|
3115 return sequence;
|
0
|
3116 }
|
|
3117
|
|
3118
|
406
|
3119
|
|
3120
|
|
3121 DEFUN ("replace-list", Freplace_list, 2, 2, 0, /*
|
|
3122 Destructively replace the list OLD with NEW.
|
|
3123 This is like (copy-sequence NEW) except that it reuses the
|
|
3124 conses in OLD as much as possible. If OLD and NEW are the same
|
|
3125 length, no consing will take place.
|
|
3126 */
|
|
3127 (old, new))
|
|
3128 {
|
|
3129 Lisp_Object tail, oldtail = old, prevoldtail = Qnil;
|
|
3130
|
|
3131 EXTERNAL_LIST_LOOP (tail, new)
|
|
3132 {
|
|
3133 if (!NILP (oldtail))
|
|
3134 {
|
|
3135 CHECK_CONS (oldtail);
|
|
3136 XCAR (oldtail) = XCAR (tail);
|
|
3137 }
|
|
3138 else if (!NILP (prevoldtail))
|
|
3139 {
|
|
3140 XCDR (prevoldtail) = Fcons (XCAR (tail), Qnil);
|
|
3141 prevoldtail = XCDR (prevoldtail);
|
|
3142 }
|
|
3143 else
|
|
3144 old = oldtail = Fcons (XCAR (tail), Qnil);
|
|
3145
|
|
3146 if (!NILP (oldtail))
|
|
3147 {
|
|
3148 prevoldtail = oldtail;
|
|
3149 oldtail = XCDR (oldtail);
|
|
3150 }
|
|
3151 }
|
|
3152
|
|
3153 if (!NILP (prevoldtail))
|
|
3154 XCDR (prevoldtail) = Qnil;
|
|
3155 else
|
|
3156 old = Qnil;
|
|
3157
|
|
3158 return old;
|
|
3159 }
|
|
3160
|
|
3161
|
0
|
3162 /* #### this function doesn't belong in this file! */
|
|
3163
|
278
|
3164 DEFUN ("load-average", Fload_average, 0, 1, 0, /*
|
0
|
3165 Return list of 1 minute, 5 minute and 15 minute load averages.
|
|
3166 Each of the three load averages is multiplied by 100,
|
|
3167 then converted to integer.
|
|
3168
|
278
|
3169 When USE-FLOATS is non-nil, floats will be used instead of integers.
|
|
3170 These floats are not multiplied by 100.
|
|
3171
|
0
|
3172 If the 5-minute or 15-minute load averages are not available, return a
|
|
3173 shortened list, containing only those averages which are available.
|
|
3174
|
272
|
3175 On some systems, this won't work due to permissions on /dev/kmem,
|
|
3176 in which case you can't use this.
|
20
|
3177 */
|
278
|
3178 (use_floats))
|
0
|
3179 {
|
272
|
3180 double load_ave[3];
|
|
3181 int loads = getloadavg (load_ave, countof (load_ave));
|
278
|
3182 Lisp_Object ret = Qnil;
|
0
|
3183
|
|
3184 if (loads == -2)
|
278
|
3185 error ("load-average not implemented for this operating system");
|
0
|
3186 else if (loads < 0)
|
278
|
3187 signal_simple_error ("Could not get load-average",
|
|
3188 lisp_strerror (errno));
|
|
3189
|
|
3190 while (loads-- > 0)
|
|
3191 {
|
|
3192 Lisp_Object load = (NILP (use_floats) ?
|
|
3193 make_int ((int) (100.0 * load_ave[loads]))
|
|
3194 : make_float (load_ave[loads]));
|
|
3195 ret = Fcons (load, ret);
|
|
3196 }
|
|
3197 return ret;
|
0
|
3198 }
|
|
3199
|
|
3200
|
|
3201 Lisp_Object Vfeatures;
|
|
3202
|
20
|
3203 DEFUN ("featurep", Ffeaturep, 1, 1, 0, /*
|
207
|
3204 Return non-nil if feature FEXP is present in this Emacs.
|
70
|
3205 Use this to conditionalize execution of lisp code based on the
|
207
|
3206 presence or absence of emacs or environment extensions.
|
|
3207 FEXP can be a symbol, a number, or a list.
|
209
|
3208 If it is a symbol, that symbol is looked up in the `features' variable,
|
|
3209 and non-nil will be returned if found.
|
|
3210 If it is a number, the function will return non-nil if this Emacs
|
207
|
3211 has an equal or greater version number than FEXP.
|
209
|
3212 If it is a list whose car is the symbol `and', it will return
|
207
|
3213 non-nil if all the features in its cdr are non-nil.
|
209
|
3214 If it is a list whose car is the symbol `or', it will return non-nil
|
207
|
3215 if any of the features in its cdr are non-nil.
|
209
|
3216 If it is a list whose car is the symbol `not', it will return
|
207
|
3217 non-nil if the feature is not present.
|
209
|
3218
|
|
3219 Examples:
|
|
3220
|
|
3221 (featurep 'xemacs)
|
|
3222 => ; Non-nil on XEmacs.
|
|
3223
|
|
3224 (featurep '(and xemacs gnus))
|
|
3225 => ; Non-nil on XEmacs with Gnus loaded.
|
|
3226
|
|
3227 (featurep '(or tty-frames (and emacs 19.30)))
|
|
3228 => ; Non-nil if this Emacs supports TTY frames.
|
|
3229
|
|
3230 (featurep '(or (and xemacs 19.15) (and emacs 19.34)))
|
|
3231 => ; Non-nil on XEmacs 19.15 and later, or FSF Emacs 19.34 and later.
|
|
3232
|
408
|
3233 (featurep '(and xemacs 21.02))
|
|
3234 => ; Non-nil on XEmacs 21.2 and later.
|
|
3235
|
209
|
3236 NOTE: The advanced arguments of this function (anything other than a
|
|
3237 symbol) are not yet supported by FSF Emacs. If you feel they are useful
|
|
3238 for supporting multiple Emacs variants, lobby Richard Stallman at
|
408
|
3239 <bug-gnu-emacs@gnu.org>.
|
163
|
3240 */
|
|
3241 (fexp))
|
|
3242 {
|
207
|
3243 #ifndef FEATUREP_SYNTAX
|
|
3244 CHECK_SYMBOL (fexp);
|
|
3245 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt;
|
|
3246 #else /* FEATUREP_SYNTAX */
|
163
|
3247 static double featurep_emacs_version;
|
|
3248
|
|
3249 /* Brute force translation from Erik Naggum's lisp function. */
|
272
|
3250 if (SYMBOLP (fexp))
|
163
|
3251 {
|
|
3252 /* Original definition */
|
|
3253 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt;
|
|
3254 }
|
272
|
3255 else if (INTP (fexp) || FLOATP (fexp))
|
163
|
3256 {
|
272
|
3257 double d = extract_float (fexp);
|
163
|
3258
|
|
3259 if (featurep_emacs_version == 0.0)
|
|
3260 {
|
167
|
3261 featurep_emacs_version = XINT (Vemacs_major_version) +
|
|
3262 (XINT (Vemacs_minor_version) / 100.0);
|
163
|
3263 }
|
173
|
3264 return featurep_emacs_version >= d ? Qt : Qnil;
|
163
|
3265 }
|
272
|
3266 else if (CONSP (fexp))
|
163
|
3267 {
|
272
|
3268 Lisp_Object tem = XCAR (fexp);
|
|
3269 if (EQ (tem, Qnot))
|
163
|
3270 {
|
207
|
3271 Lisp_Object negate;
|
|
3272
|
|
3273 tem = XCDR (fexp);
|
|
3274 negate = Fcar (tem);
|
|
3275 if (!NILP (tem))
|
209
|
3276 return NILP (call1 (Qfeaturep, negate)) ? Qt : Qnil;
|
163
|
3277 else
|
207
|
3278 return Fsignal (Qinvalid_read_syntax, list1 (tem));
|
163
|
3279 }
|
272
|
3280 else if (EQ (tem, Qand))
|
163
|
3281 {
|
272
|
3282 tem = XCDR (fexp);
|
207
|
3283 /* Use Fcar/Fcdr for error-checking. */
|
209
|
3284 while (!NILP (tem) && !NILP (call1 (Qfeaturep, Fcar (tem))))
|
163
|
3285 {
|
207
|
3286 tem = Fcdr (tem);
|
163
|
3287 }
|
272
|
3288 return NILP (tem) ? Qt : Qnil;
|
163
|
3289 }
|
272
|
3290 else if (EQ (tem, Qor))
|
163
|
3291 {
|
207
|
3292 tem = XCDR (fexp);
|
|
3293 /* Use Fcar/Fcdr for error-checking. */
|
209
|
3294 while (!NILP (tem) && NILP (call1 (Qfeaturep, Fcar (tem))))
|
163
|
3295 {
|
207
|
3296 tem = Fcdr (tem);
|
163
|
3297 }
|
272
|
3298 return NILP (tem) ? Qnil : Qt;
|
163
|
3299 }
|
|
3300 else
|
|
3301 {
|
272
|
3302 return Fsignal (Qinvalid_read_syntax, list1 (XCDR (fexp)));
|
163
|
3303 }
|
|
3304 }
|
|
3305 else
|
|
3306 {
|
272
|
3307 return Fsignal (Qinvalid_read_syntax, list1 (fexp));
|
163
|
3308 }
|
|
3309 }
|
167
|
3310 #endif /* FEATUREP_SYNTAX */
|
0
|
3311
|
20
|
3312 DEFUN ("provide", Fprovide, 1, 1, 0, /*
|
0
|
3313 Announce that FEATURE is a feature of the current Emacs.
|
2
|
3314 This function updates the value of the variable `features'.
|
20
|
3315 */
|
|
3316 (feature))
|
0
|
3317 {
|
|
3318 Lisp_Object tem;
|
|
3319 CHECK_SYMBOL (feature);
|
|
3320 if (!NILP (Vautoload_queue))
|
|
3321 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
|
|
3322 tem = Fmemq (feature, Vfeatures);
|
|
3323 if (NILP (tem))
|
|
3324 Vfeatures = Fcons (feature, Vfeatures);
|
|
3325 LOADHIST_ATTACH (Fcons (Qprovide, feature));
|
|
3326 return feature;
|
|
3327 }
|
|
3328
|
20
|
3329 DEFUN ("require", Frequire, 1, 2, 0, /*
|
0
|
3330 If feature FEATURE is not loaded, load it from FILENAME.
|
|
3331 If FEATURE is not a member of the list `features', then the feature
|
|
3332 is not loaded; so load the file FILENAME.
|
|
3333 If FILENAME is omitted, the printname of FEATURE is used as the file name.
|
20
|
3334 */
|
|
3335 (feature, file_name))
|
0
|
3336 {
|
|
3337 Lisp_Object tem;
|
|
3338 CHECK_SYMBOL (feature);
|
|
3339 tem = Fmemq (feature, Vfeatures);
|
|
3340 LOADHIST_ATTACH (Fcons (Qrequire, feature));
|
|
3341 if (!NILP (tem))
|
149
|
3342 return feature;
|
0
|
3343 else
|
|
3344 {
|
|
3345 int speccount = specpdl_depth ();
|
|
3346
|
|
3347 /* Value saved here is to be restored into Vautoload_queue */
|
|
3348 record_unwind_protect (un_autoload, Vautoload_queue);
|
|
3349 Vautoload_queue = Qt;
|
|
3350
|
|
3351 call4 (Qload, NILP (file_name) ? Fsymbol_name (feature) : file_name,
|
177
|
3352 Qnil, Qt, Qnil);
|
0
|
3353
|
|
3354 tem = Fmemq (feature, Vfeatures);
|
|
3355 if (NILP (tem))
|
|
3356 error ("Required feature %s was not provided",
|
|
3357 string_data (XSYMBOL (feature)->name));
|
|
3358
|
|
3359 /* Once loading finishes, don't undo it. */
|
|
3360 Vautoload_queue = Qt;
|
149
|
3361 return unbind_to (speccount, feature);
|
0
|
3362 }
|
|
3363 }
|
377
|
3364
|
|
3365 /* base64 encode/decode functions.
|
398
|
3366
|
|
3367 Originally based on code from GNU recode. Ported to FSF Emacs by
|
|
3368 Lars Magne Ingebrigtsen and Karl Heuer. Ported to XEmacs and
|
|
3369 subsequently heavily hacked by Hrvoje Niksic. */
|
|
3370
|
|
3371 #define MIME_LINE_LENGTH 72
|
377
|
3372
|
|
3373 #define IS_ASCII(Character) \
|
|
3374 ((Character) < 128)
|
|
3375 #define IS_BASE64(Character) \
|
|
3376 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
|
|
3377
|
|
3378 /* Table of characters coding the 64 values. */
|
|
3379 static char base64_value_to_char[64] =
|
|
3380 {
|
|
3381 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
|
|
3382 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
|
|
3383 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
|
|
3384 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
|
|
3385 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
|
|
3386 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
|
|
3387 '8', '9', '+', '/' /* 60-63 */
|
|
3388 };
|
|
3389
|
|
3390 /* Table of base64 values for first 128 characters. */
|
|
3391 static short base64_char_to_value[128] =
|
|
3392 {
|
|
3393 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
|
|
3394 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
|
|
3395 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
|
|
3396 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
|
|
3397 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
|
|
3398 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
|
|
3399 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
|
|
3400 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
|
|
3401 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
|
|
3402 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
|
|
3403 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
|
|
3404 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
|
|
3405 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
|
|
3406 };
|
|
3407
|
|
3408 /* The following diagram shows the logical steps by which three octets
|
|
3409 get transformed into four base64 characters.
|
|
3410
|
|
3411 .--------. .--------. .--------.
|
|
3412 |aaaaaabb| |bbbbcccc| |ccdddddd|
|
|
3413 `--------' `--------' `--------'
|
|
3414 6 2 4 4 2 6
|
|
3415 .--------+--------+--------+--------.
|
|
3416 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
|
|
3417 `--------+--------+--------+--------'
|
|
3418
|
|
3419 .--------+--------+--------+--------.
|
|
3420 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
|
|
3421 `--------+--------+--------+--------'
|
|
3422
|
|
3423 The octets are divided into 6 bit chunks, which are then encoded into
|
|
3424 base64 characters. */
|
|
3425
|
|
3426 #define ADVANCE_INPUT(c, stream) \
|
398
|
3427 ((ec = Lstream_get_emchar (stream)) == -1 ? 0 : \
|
377
|
3428 ((ec > 255) ? \
|
398
|
3429 (signal_simple_error ("Non-ascii character in base64 input", \
|
|
3430 make_char (ec)), 0) \
|
|
3431 : (c = (Bufbyte)ec), 1))
|
377
|
3432
|
|
3433 static Bytind
|
|
3434 base64_encode_1 (Lstream *istream, Bufbyte *to, int line_break)
|
|
3435 {
|
|
3436 EMACS_INT counter = 0;
|
|
3437 Bufbyte *e = to;
|
|
3438 Emchar ec;
|
|
3439 unsigned int value;
|
|
3440
|
|
3441 while (1)
|
|
3442 {
|
|
3443 Bufbyte c;
|
|
3444 if (!ADVANCE_INPUT (c, istream))
|
|
3445 break;
|
|
3446
|
|
3447 /* Wrap line every 76 characters. */
|
|
3448 if (line_break)
|
|
3449 {
|
|
3450 if (counter < MIME_LINE_LENGTH / 4)
|
|
3451 counter++;
|
|
3452 else
|
|
3453 {
|
|
3454 *e++ = '\n';
|
|
3455 counter = 1;
|
|
3456 }
|
|
3457 }
|
|
3458
|
|
3459 /* Process first byte of a triplet. */
|
|
3460 *e++ = base64_value_to_char[0x3f & c >> 2];
|
|
3461 value = (0x03 & c) << 4;
|
|
3462
|
|
3463 /* Process second byte of a triplet. */
|
|
3464 if (!ADVANCE_INPUT (c, istream))
|
|
3465 {
|
|
3466 *e++ = base64_value_to_char[value];
|
|
3467 *e++ = '=';
|
|
3468 *e++ = '=';
|
|
3469 break;
|
|
3470 }
|
|
3471
|
|
3472 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
|
|
3473 value = (0x0f & c) << 2;
|
|
3474
|
|
3475 /* Process third byte of a triplet. */
|
|
3476 if (!ADVANCE_INPUT (c, istream))
|
|
3477 {
|
|
3478 *e++ = base64_value_to_char[value];
|
|
3479 *e++ = '=';
|
|
3480 break;
|
|
3481 }
|
|
3482
|
|
3483 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
|
|
3484 *e++ = base64_value_to_char[0x3f & c];
|
|
3485 }
|
|
3486
|
|
3487 return e - to;
|
|
3488 }
|
|
3489 #undef ADVANCE_INPUT
|
|
3490
|
398
|
3491 /* Get next character from the stream, except that non-base64
|
|
3492 characters are ignored. This is in accordance with rfc2045. EC
|
|
3493 should be an Emchar, so that it can hold -1 as the value for EOF. */
|
|
3494 #define ADVANCE_INPUT_IGNORE_NONBASE64(ec, stream, streampos) do { \
|
|
3495 ec = Lstream_get_emchar (stream); \
|
|
3496 ++streampos; \
|
|
3497 /* IS_BASE64 may not be called with negative arguments so check for \
|
|
3498 EOF first. */ \
|
|
3499 if (ec < 0 || IS_BASE64 (ec) || ec == '=') \
|
|
3500 break; \
|
|
3501 } while (1)
|
|
3502
|
|
3503 #define STORE_BYTE(pos, val, ccnt) do { \
|
377
|
3504 pos += set_charptr_emchar (pos, (Emchar)((unsigned char)(val))); \
|
398
|
3505 ++ccnt; \
|
377
|
3506 } while (0)
|
|
3507
|
|
3508 static Bytind
|
|
3509 base64_decode_1 (Lstream *istream, Bufbyte *to, Charcount *ccptr)
|
|
3510 {
|
398
|
3511 Charcount ccnt = 0;
|
377
|
3512 Bufbyte *e = to;
|
398
|
3513 EMACS_INT streampos = 0;
|
|
3514
|
377
|
3515 while (1)
|
|
3516 {
|
398
|
3517 Emchar ec;
|
|
3518 unsigned long value;
|
377
|
3519
|
|
3520 /* Process first byte of a quadruplet. */
|
398
|
3521 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
|
|
3522 if (ec < 0)
|
|
3523 break;
|
|
3524 if (ec == '=')
|
|
3525 signal_simple_error ("Illegal `=' character while decoding base64",
|
|
3526 make_int (streampos));
|
|
3527 value = base64_char_to_value[ec] << 18;
|
377
|
3528
|
|
3529 /* Process second byte of a quadruplet. */
|
398
|
3530 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
|
|
3531 if (ec < 0)
|
|
3532 error ("Premature EOF while decoding base64");
|
|
3533 if (ec == '=')
|
|
3534 signal_simple_error ("Illegal `=' character while decoding base64",
|
|
3535 make_int (streampos));
|
|
3536 value |= base64_char_to_value[ec] << 12;
|
|
3537 STORE_BYTE (e, value >> 16, ccnt);
|
377
|
3538
|
|
3539 /* Process third byte of a quadruplet. */
|
398
|
3540 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
|
|
3541 if (ec < 0)
|
|
3542 error ("Premature EOF while decoding base64");
|
|
3543
|
|
3544 if (ec == '=')
|
377
|
3545 {
|
398
|
3546 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
|
|
3547 if (ec < 0)
|
|
3548 error ("Premature EOF while decoding base64");
|
|
3549 if (ec != '=')
|
|
3550 signal_simple_error ("Padding `=' expected but not found while decoding base64",
|
|
3551 make_int (streampos));
|
377
|
3552 continue;
|
|
3553 }
|
|
3554
|
398
|
3555 value |= base64_char_to_value[ec] << 6;
|
|
3556 STORE_BYTE (e, 0xff & value >> 8, ccnt);
|
377
|
3557
|
|
3558 /* Process fourth byte of a quadruplet. */
|
398
|
3559 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
|
|
3560 if (ec < 0)
|
|
3561 error ("Premature EOF while decoding base64");
|
|
3562 if (ec == '=')
|
377
|
3563 continue;
|
|
3564
|
398
|
3565 value |= base64_char_to_value[ec];
|
|
3566 STORE_BYTE (e, 0xff & value, ccnt);
|
377
|
3567 }
|
|
3568
|
398
|
3569 *ccptr = ccnt;
|
377
|
3570 return e - to;
|
|
3571 }
|
|
3572 #undef ADVANCE_INPUT
|
398
|
3573 #undef ADVANCE_INPUT_IGNORE_NONBASE64
|
|
3574 #undef STORE_BYTE
|
377
|
3575
|
|
3576 static Lisp_Object
|
|
3577 free_malloced_ptr (Lisp_Object unwind_obj)
|
|
3578 {
|
|
3579 void *ptr = (void *)get_opaque_ptr (unwind_obj);
|
|
3580 xfree (ptr);
|
|
3581 free_opaque_ptr (unwind_obj);
|
|
3582 return Qnil;
|
|
3583 }
|
|
3584
|
|
3585 /* Don't use alloca for regions larger than this, lest we overflow
|
|
3586 the stack. */
|
|
3587 #define MAX_ALLOCA 65536
|
|
3588
|
|
3589 /* We need to setup proper unwinding, because there is a number of
|
|
3590 ways these functions can blow up, and we don't want to have memory
|
|
3591 leaks in those cases. */
|
|
3592 #define XMALLOC_OR_ALLOCA(ptr, len, type) do { \
|
380
|
3593 size_t XOA_len = (len); \
|
|
3594 if (XOA_len > MAX_ALLOCA) \
|
377
|
3595 { \
|
380
|
3596 ptr = xnew_array (type, XOA_len); \
|
377
|
3597 record_unwind_protect (free_malloced_ptr, \
|
|
3598 make_opaque_ptr ((void *)ptr)); \
|
|
3599 } \
|
|
3600 else \
|
380
|
3601 ptr = alloca_array (type, XOA_len); \
|
377
|
3602 } while (0)
|
|
3603
|
380
|
3604 #define XMALLOC_UNBIND(ptr, len, speccount) do { \
|
|
3605 if ((len) > MAX_ALLOCA) \
|
|
3606 unbind_to (speccount, Qnil); \
|
377
|
3607 } while (0)
|
|
3608
|
|
3609 DEFUN ("base64-encode-region", Fbase64_encode_region, 2, 3, "r", /*
|
|
3610 Base64-encode the region between BEG and END.
|
|
3611 Return the length of the encoded text.
|
|
3612 Optional third argument NO-LINE-BREAK means do not break long lines
|
|
3613 into shorter lines.
|
|
3614 */
|
|
3615 (beg, end, no_line_break))
|
|
3616 {
|
|
3617 Bufbyte *encoded;
|
|
3618 Bytind encoded_length;
|
|
3619 Charcount allength, length;
|
|
3620 struct buffer *buf = current_buffer;
|
|
3621 Bufpos begv, zv, old_pt = BUF_PT (buf);
|
|
3622 Lisp_Object input;
|
380
|
3623 int speccount = specpdl_depth();
|
377
|
3624
|
|
3625 get_buffer_range_char (buf, beg, end, &begv, &zv, 0);
|
380
|
3626 barf_if_buffer_read_only (buf, begv, zv);
|
377
|
3627
|
|
3628 /* We need to allocate enough room for encoding the text.
|
|
3629 We need 33 1/3% more space, plus a newline every 76
|
|
3630 characters, and then we round up. */
|
|
3631 length = zv - begv;
|
|
3632 allength = length + length/3 + 1;
|
|
3633 allength += allength / MIME_LINE_LENGTH + 1 + 6;
|
|
3634
|
|
3635 input = make_lisp_buffer_input_stream (buf, begv, zv, 0);
|
|
3636 /* We needn't multiply allength with MAX_EMCHAR_LEN because all the
|
|
3637 base64 characters will be single-byte. */
|
|
3638 XMALLOC_OR_ALLOCA (encoded, allength, Bufbyte);
|
|
3639 encoded_length = base64_encode_1 (XLSTREAM (input), encoded,
|
|
3640 NILP (no_line_break));
|
|
3641 if (encoded_length > allength)
|
|
3642 abort ();
|
|
3643 Lstream_delete (XLSTREAM (input));
|
|
3644
|
|
3645 /* Now we have encoded the region, so we insert the new contents
|
|
3646 and delete the old. (Insert first in order to preserve markers.) */
|
|
3647 buffer_insert_raw_string_1 (buf, begv, encoded, encoded_length, 0);
|
380
|
3648 XMALLOC_UNBIND (encoded, allength, speccount);
|
377
|
3649 buffer_delete_range (buf, begv + encoded_length, zv + encoded_length, 0);
|
|
3650
|
398
|
3651 /* Simulate FSF Emacs implementation of this function: if point was
|
|
3652 in the region, place it at the beginning. */
|
377
|
3653 if (old_pt >= begv && old_pt < zv)
|
|
3654 BUF_SET_PT (buf, begv);
|
|
3655
|
|
3656 /* We return the length of the encoded text. */
|
|
3657 return make_int (encoded_length);
|
|
3658 }
|
|
3659
|
396
|
3660 DEFUN ("base64-encode-string", Fbase64_encode_string, 1, 2, 0, /*
|
377
|
3661 Base64 encode STRING and return the result.
|
|
3662 */
|
396
|
3663 (string, no_line_break))
|
377
|
3664 {
|
|
3665 Charcount allength, length;
|
|
3666 Bytind encoded_length;
|
|
3667 Bufbyte *encoded;
|
|
3668 Lisp_Object input, result;
|
380
|
3669 int speccount = specpdl_depth();
|
377
|
3670
|
|
3671 CHECK_STRING (string);
|
|
3672
|
|
3673 length = XSTRING_CHAR_LENGTH (string);
|
396
|
3674 allength = length + length/3 + 1;
|
|
3675 allength += allength / MIME_LINE_LENGTH + 1 + 6;
|
377
|
3676
|
|
3677 input = make_lisp_string_input_stream (string, 0, -1);
|
|
3678 XMALLOC_OR_ALLOCA (encoded, allength, Bufbyte);
|
396
|
3679 encoded_length = base64_encode_1 (XLSTREAM (input), encoded,
|
|
3680 NILP (no_line_break));
|
377
|
3681 if (encoded_length > allength)
|
|
3682 abort ();
|
|
3683 Lstream_delete (XLSTREAM (input));
|
|
3684 result = make_string (encoded, encoded_length);
|
380
|
3685 XMALLOC_UNBIND (encoded, allength, speccount);
|
377
|
3686 return result;
|
|
3687 }
|
|
3688
|
|
3689 DEFUN ("base64-decode-region", Fbase64_decode_region, 2, 2, "r", /*
|
|
3690 Base64-decode the region between BEG and END.
|
|
3691 Return the length of the decoded text.
|
|
3692 If the region can't be decoded, return nil and don't modify the buffer.
|
398
|
3693 Characters out of the base64 alphabet are ignored.
|
377
|
3694 */
|
|
3695 (beg, end))
|
|
3696 {
|
|
3697 struct buffer *buf = current_buffer;
|
|
3698 Bufpos begv, zv, old_pt = BUF_PT (buf);
|
|
3699 Bufbyte *decoded;
|
|
3700 Bytind decoded_length;
|
|
3701 Charcount length, cc_decoded_length;
|
|
3702 Lisp_Object input;
|
380
|
3703 int speccount = specpdl_depth();
|
377
|
3704
|
|
3705 get_buffer_range_char (buf, beg, end, &begv, &zv, 0);
|
380
|
3706 barf_if_buffer_read_only (buf, begv, zv);
|
|
3707
|
377
|
3708 length = zv - begv;
|
|
3709
|
|
3710 input = make_lisp_buffer_input_stream (buf, begv, zv, 0);
|
|
3711 /* We need to allocate enough room for decoding the text. */
|
|
3712 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Bufbyte);
|
|
3713 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, &cc_decoded_length);
|
|
3714 if (decoded_length > length * MAX_EMCHAR_LEN)
|
|
3715 abort ();
|
|
3716 Lstream_delete (XLSTREAM (input));
|
|
3717
|
|
3718 /* Now we have decoded the region, so we insert the new contents
|
|
3719 and delete the old. (Insert first in order to preserve markers.) */
|
|
3720 BUF_SET_PT (buf, begv);
|
|
3721 buffer_insert_raw_string_1 (buf, begv, decoded, decoded_length, 0);
|
380
|
3722 XMALLOC_UNBIND (decoded, length * MAX_EMCHAR_LEN, speccount);
|
377
|
3723 buffer_delete_range (buf, begv + cc_decoded_length,
|
|
3724 zv + cc_decoded_length, 0);
|
|
3725
|
398
|
3726 /* Simulate FSF Emacs implementation of this function: if point was
|
|
3727 in the region, place it at the beginning. */
|
377
|
3728 if (old_pt >= begv && old_pt < zv)
|
|
3729 BUF_SET_PT (buf, begv);
|
|
3730
|
|
3731 return make_int (cc_decoded_length);
|
|
3732 }
|
|
3733
|
|
3734 DEFUN ("base64-decode-string", Fbase64_decode_string, 1, 1, 0, /*
|
|
3735 Base64-decode STRING and return the result.
|
398
|
3736 Characters out of the base64 alphabet are ignored.
|
377
|
3737 */
|
|
3738 (string))
|
|
3739 {
|
|
3740 Bufbyte *decoded;
|
|
3741 Bytind decoded_length;
|
|
3742 Charcount length, cc_decoded_length;
|
|
3743 Lisp_Object input, result;
|
380
|
3744 int speccount = specpdl_depth();
|
377
|
3745
|
|
3746 CHECK_STRING (string);
|
|
3747
|
|
3748 length = XSTRING_CHAR_LENGTH (string);
|
|
3749 /* We need to allocate enough room for decoding the text. */
|
|
3750 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Bufbyte);
|
|
3751
|
|
3752 input = make_lisp_string_input_stream (string, 0, -1);
|
|
3753 decoded_length = base64_decode_1 (XLSTREAM (input), decoded,
|
|
3754 &cc_decoded_length);
|
|
3755 if (decoded_length > length * MAX_EMCHAR_LEN)
|
|
3756 abort ();
|
|
3757 Lstream_delete (XLSTREAM (input));
|
|
3758
|
|
3759 result = make_string (decoded, decoded_length);
|
380
|
3760 XMALLOC_UNBIND (decoded, length * MAX_EMCHAR_LEN, speccount);
|
377
|
3761 return result;
|
|
3762 }
|
0
|
3763
|
|
3764 Lisp_Object Qyes_or_no_p;
|
|
3765
|
|
3766 void
|
|
3767 syms_of_fns (void)
|
|
3768 {
|
400
|
3769 INIT_LRECORD_IMPLEMENTATION (bit_vector);
|
|
3770
|
0
|
3771 defsymbol (&Qstring_lessp, "string-lessp");
|
|
3772 defsymbol (&Qidentity, "identity");
|
|
3773 defsymbol (&Qyes_or_no_p, "yes-or-no-p");
|
|
3774
|
20
|
3775 DEFSUBR (Fidentity);
|
|
3776 DEFSUBR (Frandom);
|
|
3777 DEFSUBR (Flength);
|
|
3778 DEFSUBR (Fsafe_length);
|
|
3779 DEFSUBR (Fstring_equal);
|
|
3780 DEFSUBR (Fstring_lessp);
|
|
3781 DEFSUBR (Fstring_modified_tick);
|
|
3782 DEFSUBR (Fappend);
|
|
3783 DEFSUBR (Fconcat);
|
|
3784 DEFSUBR (Fvconcat);
|
|
3785 DEFSUBR (Fbvconcat);
|
380
|
3786 DEFSUBR (Fcopy_list);
|
20
|
3787 DEFSUBR (Fcopy_sequence);
|
|
3788 DEFSUBR (Fcopy_alist);
|
|
3789 DEFSUBR (Fcopy_tree);
|
|
3790 DEFSUBR (Fsubstring);
|
|
3791 DEFSUBR (Fsubseq);
|
|
3792 DEFSUBR (Fnthcdr);
|
|
3793 DEFSUBR (Fnth);
|
|
3794 DEFSUBR (Felt);
|
380
|
3795 DEFSUBR (Flast);
|
|
3796 DEFSUBR (Fbutlast);
|
|
3797 DEFSUBR (Fnbutlast);
|
20
|
3798 DEFSUBR (Fmember);
|
70
|
3799 DEFSUBR (Fold_member);
|
20
|
3800 DEFSUBR (Fmemq);
|
70
|
3801 DEFSUBR (Fold_memq);
|
20
|
3802 DEFSUBR (Fassoc);
|
70
|
3803 DEFSUBR (Fold_assoc);
|
20
|
3804 DEFSUBR (Fassq);
|
70
|
3805 DEFSUBR (Fold_assq);
|
20
|
3806 DEFSUBR (Frassoc);
|
70
|
3807 DEFSUBR (Fold_rassoc);
|
20
|
3808 DEFSUBR (Frassq);
|
70
|
3809 DEFSUBR (Fold_rassq);
|
20
|
3810 DEFSUBR (Fdelete);
|
70
|
3811 DEFSUBR (Fold_delete);
|
20
|
3812 DEFSUBR (Fdelq);
|
70
|
3813 DEFSUBR (Fold_delq);
|
20
|
3814 DEFSUBR (Fremassoc);
|
|
3815 DEFSUBR (Fremassq);
|
|
3816 DEFSUBR (Fremrassoc);
|
|
3817 DEFSUBR (Fremrassq);
|
|
3818 DEFSUBR (Fnreverse);
|
|
3819 DEFSUBR (Freverse);
|
|
3820 DEFSUBR (Fsort);
|
|
3821 DEFSUBR (Fplists_eq);
|
|
3822 DEFSUBR (Fplists_equal);
|
|
3823 DEFSUBR (Flax_plists_eq);
|
|
3824 DEFSUBR (Flax_plists_equal);
|
|
3825 DEFSUBR (Fplist_get);
|
|
3826 DEFSUBR (Fplist_put);
|
|
3827 DEFSUBR (Fplist_remprop);
|
|
3828 DEFSUBR (Fplist_member);
|
|
3829 DEFSUBR (Fcheck_valid_plist);
|
|
3830 DEFSUBR (Fvalid_plist_p);
|
|
3831 DEFSUBR (Fcanonicalize_plist);
|
|
3832 DEFSUBR (Flax_plist_get);
|
|
3833 DEFSUBR (Flax_plist_put);
|
|
3834 DEFSUBR (Flax_plist_remprop);
|
|
3835 DEFSUBR (Flax_plist_member);
|
|
3836 DEFSUBR (Fcanonicalize_lax_plist);
|
|
3837 DEFSUBR (Fdestructive_alist_to_plist);
|
|
3838 DEFSUBR (Fget);
|
|
3839 DEFSUBR (Fput);
|
|
3840 DEFSUBR (Fremprop);
|
|
3841 DEFSUBR (Fobject_plist);
|
|
3842 DEFSUBR (Fequal);
|
70
|
3843 DEFSUBR (Fold_equal);
|
20
|
3844 DEFSUBR (Ffillarray);
|
|
3845 DEFSUBR (Fnconc);
|
|
3846 DEFSUBR (Fmapcar);
|
163
|
3847 DEFSUBR (Fmapvector);
|
398
|
3848 DEFSUBR (Fmapc_internal);
|
20
|
3849 DEFSUBR (Fmapconcat);
|
406
|
3850 DEFSUBR (Freplace_list);
|
20
|
3851 DEFSUBR (Fload_average);
|
|
3852 DEFSUBR (Ffeaturep);
|
|
3853 DEFSUBR (Frequire);
|
|
3854 DEFSUBR (Fprovide);
|
377
|
3855 DEFSUBR (Fbase64_encode_region);
|
|
3856 DEFSUBR (Fbase64_encode_string);
|
|
3857 DEFSUBR (Fbase64_decode_region);
|
|
3858 DEFSUBR (Fbase64_decode_string);
|
0
|
3859 }
|
|
3860
|
|
3861 void
|
|
3862 init_provide_once (void)
|
|
3863 {
|
|
3864 DEFVAR_LISP ("features", &Vfeatures /*
|
|
3865 A list of symbols which are the features of the executing emacs.
|
|
3866 Used by `featurep' and `require', and altered by `provide'.
|
|
3867 */ );
|
|
3868 Vfeatures = Qnil;
|
398
|
3869
|
|
3870 Fprovide (intern ("base64"));
|
0
|
3871 }
|