0
|
1 /* Random utility Lisp functions.
|
|
2 Copyright (C) 1985, 86, 87, 93, 94, 95 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995, 1996 Ben Wing.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: Mule 2.0, FSF 19.30. */
|
|
23
|
|
24 /* This file has been Mule-ized. */
|
|
25
|
|
26 /* Note: FSF 19.30 has bool vectors. We have bit vectors. */
|
|
27
|
|
28 /* Hacked on for Mule by Ben Wing, December 1994, January 1995. */
|
|
29
|
|
30 #include <config.h>
|
|
31
|
|
32 /* Note on some machines this defines `vector' as a typedef,
|
|
33 so make sure we don't use that name in this file. */
|
|
34 #undef vector
|
|
35 #define vector *****
|
|
36
|
|
37 #include "lisp.h"
|
|
38
|
|
39 #include "buffer.h"
|
|
40 #include "bytecode.h"
|
|
41 #include "commands.h"
|
|
42 #include "device.h"
|
|
43 #include "events.h"
|
|
44 #include "extents.h"
|
|
45 #include "frame.h"
|
|
46 #include "systime.h"
|
|
47
|
|
48 Lisp_Object Qstring_lessp;
|
|
49 Lisp_Object Qidentity;
|
|
50
|
|
51 static Lisp_Object mark_bit_vector (Lisp_Object, void (*) (Lisp_Object));
|
|
52 static void print_bit_vector (Lisp_Object, Lisp_Object, int);
|
|
53 static int bit_vector_equal (Lisp_Object o1, Lisp_Object o2, int depth);
|
|
54 static unsigned long bit_vector_hash (Lisp_Object obj, int depth);
|
|
55 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("bit-vector", bit_vector,
|
|
56 mark_bit_vector, print_bit_vector, 0,
|
|
57 bit_vector_equal, bit_vector_hash,
|
|
58 struct Lisp_Bit_Vector);
|
|
59
|
|
60 static Lisp_Object
|
|
61 mark_bit_vector (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
|
62 {
|
|
63 return (Qnil);
|
|
64 }
|
|
65
|
|
66 static void
|
|
67 print_bit_vector (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
|
|
68 {
|
|
69 int i;
|
|
70 struct Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
|
|
71 int len = bit_vector_length (v);
|
|
72 int last = len;
|
|
73
|
|
74 if (INTP (Vprint_length))
|
|
75 last = min (len, XINT (Vprint_length));
|
|
76 write_c_string ("#*", printcharfun);
|
|
77 for (i = 0; i < last; i++)
|
|
78 {
|
|
79 if (bit_vector_bit (v, i))
|
|
80 write_c_string ("1", printcharfun);
|
|
81 else
|
|
82 write_c_string ("0", printcharfun);
|
|
83 }
|
|
84
|
|
85 if (last != len)
|
|
86 write_c_string ("...", printcharfun);
|
|
87 }
|
|
88
|
|
89 static int
|
|
90 bit_vector_equal (Lisp_Object o1, Lisp_Object o2, int depth)
|
|
91 {
|
|
92 struct Lisp_Bit_Vector *v1 = XBIT_VECTOR (o1);
|
|
93 struct Lisp_Bit_Vector *v2 = XBIT_VECTOR (o2);
|
|
94
|
|
95 if (bit_vector_length (v1) != bit_vector_length (v2))
|
|
96 return 0;
|
|
97
|
|
98 return !memcmp (v1->bits, v2->bits,
|
|
99 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v1)) *
|
|
100 sizeof (long));
|
|
101 }
|
|
102
|
|
103 static unsigned long
|
|
104 bit_vector_hash (Lisp_Object obj, int depth)
|
|
105 {
|
|
106 struct Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
|
|
107 return HASH2 (bit_vector_length (v),
|
|
108 memory_hash (v->bits,
|
|
109 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)) *
|
|
110 sizeof (long)));
|
|
111 }
|
|
112
|
|
113 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0 /*
|
|
114 Return the argument unchanged.
|
|
115 */ )
|
|
116 (arg)
|
|
117 Lisp_Object arg;
|
|
118 {
|
|
119 return arg;
|
|
120 }
|
|
121
|
|
122 extern long get_random (void);
|
|
123 extern void seed_random (long arg);
|
|
124
|
|
125 DEFUN ("random", Frandom, Srandom, 0, 1, 0 /*
|
|
126 Return a pseudo-random number.
|
|
127 All integers representable in Lisp are equally likely.\n\
|
|
128 On most systems, this is 28 bits' worth.\n\
|
|
129 With positive integer argument N, return random number in interval [0,N).\n\
|
|
130 With argument t, set the random number seed from the current time and pid.
|
|
131 */ )
|
|
132 (limit)
|
|
133 Lisp_Object limit;
|
|
134 {
|
|
135 EMACS_INT val;
|
|
136 Lisp_Object lispy_val;
|
|
137 unsigned long denominator;
|
|
138
|
|
139 if (EQ (limit, Qt))
|
|
140 seed_random (getpid () + time (NULL));
|
|
141 if (NATNUMP (limit) && !ZEROP (limit))
|
|
142 {
|
|
143 /* Try to take our random number from the higher bits of VAL,
|
|
144 not the lower, since (says Gentzel) the low bits of `random'
|
|
145 are less random than the higher ones. We do this by using the
|
|
146 quotient rather than the remainder. At the high end of the RNG
|
|
147 it's possible to get a quotient larger than limit; discarding
|
|
148 these values eliminates the bias that would otherwise appear
|
|
149 when using a large limit. */
|
|
150 denominator = ((unsigned long)1 << VALBITS) / XINT (limit);
|
|
151 do
|
|
152 val = get_random () / denominator;
|
|
153 while (val >= XINT (limit));
|
|
154 }
|
|
155 else
|
|
156 val = get_random ();
|
|
157 XSETINT (lispy_val, val);
|
|
158 return lispy_val;
|
|
159 }
|
|
160
|
|
161 /* Random data-structure functions */
|
|
162
|
|
163 #ifdef LOSING_BYTECODE
|
|
164
|
|
165 /* #### Delete this shit */
|
|
166
|
|
167 /* Charcount is a misnomer here as we might be dealing with the
|
|
168 length of a vector or list, but emphasizes that we're not dealing
|
|
169 with Bytecounts in strings */
|
|
170 static Charcount
|
|
171 length_with_bytecode_hack (Lisp_Object seq)
|
|
172 {
|
|
173 if (!COMPILED_FUNCTIONP (seq))
|
|
174 return (XINT (Flength (seq)));
|
|
175 else
|
|
176 {
|
|
177 struct Lisp_Compiled_Function *b = XCOMPILED_FUNCTION (seq);
|
|
178 int intp = b->flags.interactivep;
|
|
179 int domainp = b->flags.domainp;
|
|
180
|
|
181 if (intp)
|
|
182 return (COMPILED_INTERACTIVE + 1);
|
|
183 else if (domainp)
|
|
184 return (COMPILED_DOMAIN + 1);
|
|
185 else
|
|
186 return (COMPILED_DOC_STRING + 1);
|
|
187 }
|
|
188 }
|
|
189
|
|
190 #endif /* LOSING_BYTECODE */
|
|
191
|
|
192 void
|
|
193 check_losing_bytecode (CONST char *function, Lisp_Object seq)
|
|
194 {
|
|
195 if (COMPILED_FUNCTIONP (seq))
|
|
196 error_with_frob
|
|
197 (seq,
|
|
198 "As of 19.14, `%s' no longer works with compiled-function objects",
|
|
199 function);
|
|
200 }
|
|
201
|
|
202 DEFUN ("length", Flength, Slength, 1, 1, 0 /*
|
|
203 Return the length of vector, bit vector, list or string SEQUENCE.
|
|
204 */ )
|
|
205 (obj)
|
|
206 Lisp_Object obj;
|
|
207 {
|
|
208 Lisp_Object tail;
|
|
209 int i;
|
|
210
|
|
211 retry:
|
|
212 if (STRINGP (obj))
|
|
213 return (make_int (string_char_length (XSTRING (obj))));
|
|
214 else if (VECTORP (obj))
|
|
215 return (make_int (vector_length (XVECTOR (obj))));
|
|
216 else if (BIT_VECTORP (obj))
|
|
217 return (make_int (bit_vector_length (XBIT_VECTOR (obj))));
|
|
218 else if (CONSP (obj))
|
|
219 {
|
|
220 for (i = 0, tail = obj; !NILP (tail); i++)
|
|
221 {
|
|
222 QUIT;
|
|
223 tail = Fcdr (tail);
|
|
224 }
|
|
225
|
|
226 return (make_int (i));
|
|
227 }
|
|
228 else if (NILP (obj))
|
|
229 {
|
|
230 return (Qzero);
|
|
231 }
|
|
232 else
|
|
233 {
|
|
234 check_losing_bytecode ("length", obj);
|
|
235 obj = wrong_type_argument (Qsequencep, obj);
|
|
236 goto retry;
|
|
237 }
|
|
238 }
|
|
239
|
|
240 /* This does not check for quits. That is safe
|
|
241 since it must terminate. */
|
|
242
|
|
243 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0 /*
|
|
244 Return the length of a list, but avoid error or infinite loop.
|
|
245 This function never gets an error. If LIST is not really a list,
|
|
246 it returns 0. If LIST is circular, it returns a finite value
|
|
247 which is at least the number of distinct elements.
|
|
248 */ )
|
|
249 (list)
|
|
250 Lisp_Object list;
|
|
251 {
|
|
252 Lisp_Object tail, halftail, length;
|
|
253 int len = 0;
|
|
254
|
|
255 /* halftail is used to detect circular lists. */
|
|
256 halftail = list;
|
|
257 for (tail = list; CONSP (tail); tail = XCDR (tail))
|
|
258 {
|
|
259 if (EQ (tail, halftail) && len != 0)
|
|
260 break;
|
|
261 len++;
|
|
262 if ((len & 1) == 0)
|
|
263 halftail = XCDR (halftail);
|
|
264 }
|
|
265
|
|
266 XSETINT (length, len);
|
|
267 return length;
|
|
268 }
|
|
269
|
|
270 /*** string functions. ***/
|
|
271
|
|
272 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0 /*
|
|
273 T if two strings have identical contents.
|
|
274 Case is significant. Text properties are ignored.
|
|
275 (Under XEmacs, `equal' also ignores text properties and extents in
|
|
276 strings, but this is not the case under FSF Emacs.)
|
|
277 Symbols are also allowed; their print names are used instead.
|
|
278 */ )
|
|
279 (s1, s2)
|
|
280 Lisp_Object s1, s2;
|
|
281 {
|
|
282 int len;
|
|
283
|
|
284 if (SYMBOLP (s1))
|
|
285 XSETSTRING (s1, XSYMBOL (s1)->name);
|
|
286 if (SYMBOLP (s2))
|
|
287 XSETSTRING (s2, XSYMBOL (s2)->name);
|
|
288 CHECK_STRING (s1);
|
|
289 CHECK_STRING (s2);
|
|
290
|
14
|
291 len = XSTRING_LENGTH (s1);
|
|
292 if (len != XSTRING_LENGTH (s2) ||
|
|
293 memcmp (XSTRING_DATA (s1), XSTRING_DATA (s2), len))
|
0
|
294 return Qnil;
|
|
295 return Qt;
|
|
296 }
|
|
297
|
|
298
|
|
299 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0 /*
|
|
300 T if first arg string is less than second in lexicographic order.
|
|
301 If I18N2 support was compiled in, ordering is determined by the locale.
|
|
302 Case is significant for the default C locale.
|
|
303 Symbols are also allowed; their print names are used instead.
|
|
304 */ )
|
|
305 (s1, s2)
|
|
306 Lisp_Object s1, s2;
|
|
307 {
|
|
308 struct Lisp_String *p1, *p2;
|
|
309 Charcount end, len2;
|
|
310
|
|
311 if (SYMBOLP (s1))
|
|
312 XSETSTRING (s1, XSYMBOL (s1)->name);
|
|
313 if (SYMBOLP (s2))
|
|
314 XSETSTRING (s2, XSYMBOL (s2)->name);
|
|
315 CHECK_STRING (s1);
|
|
316 CHECK_STRING (s2);
|
|
317
|
|
318 p1 = XSTRING (s1);
|
|
319 p2 = XSTRING (s2);
|
|
320 end = string_char_length (XSTRING (s1));
|
|
321 len2 = string_char_length (XSTRING (s2));
|
|
322 if (end > len2)
|
|
323 end = len2;
|
|
324
|
|
325 {
|
|
326 int i;
|
|
327
|
|
328 #ifdef I18N2
|
|
329 Bytecount bcend = charcount_to_bytecount (string_data (p1), end);
|
|
330 /* Compare strings using collation order of locale. */
|
|
331 /* Need to be tricky to handle embedded nulls. */
|
|
332
|
|
333 for (i = 0; i < bcend; i += strlen((char *) string_data (p1) + i) + 1)
|
|
334 {
|
|
335 int val = strcoll ((char *) string_data (p1) + i,
|
|
336 (char *) string_data (p2) + i);
|
|
337 if (val < 0)
|
|
338 return Qt;
|
|
339 if (val > 0)
|
|
340 return Qnil;
|
|
341 }
|
|
342 #else /* not I18N2 */
|
|
343 for (i = 0; i < end; i++)
|
|
344 {
|
|
345 if (string_char (p1, i) != string_char (p2, i))
|
|
346 return string_char (p1, i) < string_char (p2, i) ? Qt : Qnil;
|
|
347 }
|
|
348 #endif /* not I18N2 */
|
|
349 /* Can't do i < len2 because then comparison between "foo" and "foo^@"
|
|
350 won't work right in I18N2 case */
|
|
351 return ((end < len2) ? Qt : Qnil);
|
|
352 }
|
|
353 }
|
|
354
|
|
355 DEFUN ("string-modified-tick", Fstring_modified_tick, Sstring_modified_tick,
|
|
356 1, 1, 0 /*
|
|
357 Return STRING's tick counter, incremented for each change to the string.
|
|
358 Each string has a tick counter which is incremented each time the contents
|
|
359 of the string are changed (e.g. with `aset'). It wraps around occasionally.
|
|
360 */ )
|
|
361 (string)
|
|
362 Lisp_Object string;
|
|
363 {
|
|
364 struct Lisp_String *s;
|
|
365
|
|
366 CHECK_STRING (string);
|
|
367 s = XSTRING (string);
|
|
368 if (CONSP (s->plist) && INTP (XCAR (s->plist)))
|
|
369 return XCAR (s->plist);
|
|
370 else
|
|
371 return Qzero;
|
|
372 }
|
|
373
|
|
374 void
|
|
375 bump_string_modiff (Lisp_Object str)
|
|
376 {
|
|
377 struct Lisp_String *s = XSTRING (str);
|
|
378 Lisp_Object *ptr = &s->plist;
|
|
379
|
|
380 #ifdef I18N3
|
|
381 /* #### remove the `string-translatable' property from the string,
|
|
382 if there is one. */
|
|
383 #endif
|
|
384 /* skip over extent info if it's there */
|
|
385 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
|
|
386 ptr = &XCDR (*ptr);
|
|
387 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
|
|
388 XSETINT (XCAR (*ptr), 1+XINT (XCAR (*ptr)));
|
|
389 else
|
|
390 *ptr = Fcons (make_int (1), *ptr);
|
|
391 }
|
|
392
|
|
393
|
|
394 enum concat_target_type { c_cons, c_string, c_vector, c_bit_vector };
|
|
395 static Lisp_Object concat (int nargs, Lisp_Object *args,
|
|
396 enum concat_target_type target_type,
|
|
397 int last_special);
|
|
398
|
|
399 Lisp_Object
|
|
400 concat2 (Lisp_Object s1, Lisp_Object s2)
|
|
401 {
|
|
402 Lisp_Object args[2];
|
|
403 args[0] = s1;
|
|
404 args[1] = s2;
|
|
405 return concat (2, args, c_string, 0);
|
|
406 }
|
|
407
|
|
408 Lisp_Object
|
|
409 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
|
|
410 {
|
|
411 Lisp_Object args[3];
|
|
412 args[0] = s1;
|
|
413 args[1] = s2;
|
|
414 args[2] = s3;
|
|
415 return concat (3, args, c_string, 0);
|
|
416 }
|
|
417
|
|
418 Lisp_Object
|
|
419 vconcat2 (Lisp_Object s1, Lisp_Object s2)
|
|
420 {
|
|
421 Lisp_Object args[2];
|
|
422 args[0] = s1;
|
|
423 args[1] = s2;
|
|
424 return concat (2, args, c_vector, 0);
|
|
425 }
|
|
426
|
|
427 Lisp_Object
|
|
428 vconcat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
|
|
429 {
|
|
430 Lisp_Object args[3];
|
|
431 args[0] = s1;
|
|
432 args[1] = s2;
|
|
433 args[2] = s3;
|
|
434 return concat (3, args, c_vector, 0);
|
|
435 }
|
|
436
|
|
437 DEFUN ("append", Fappend, Sappend, 0, MANY, 0 /*
|
|
438 Concatenate all the arguments and make the result a list.
|
|
439 The result is a list whose elements are the elements of all the arguments.
|
|
440 Each argument may be a list, vector, bit vector, or string.
|
|
441 The last argument is not copied, just used as the tail of the new list.
|
|
442 */ )
|
|
443 (nargs, args)
|
|
444 int nargs;
|
|
445 Lisp_Object *args;
|
|
446 {
|
|
447 return concat (nargs, args, c_cons, 1);
|
|
448 }
|
|
449
|
|
450 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0 /*
|
|
451 Concatenate all the arguments and make the result a string.
|
|
452 The result is a string whose elements are the elements of all the arguments.
|
|
453 Each argument may be a string or a list or vector of characters (integers).
|
|
454
|
|
455 Do not use individual integers as arguments!
|
|
456 The behavior of `concat' in that case will be changed later!
|
|
457 If your program passes an integer as an argument to `concat',
|
|
458 you should change it right away not to do so.
|
|
459 */ )
|
|
460 (nargs, args)
|
|
461 int nargs;
|
|
462 Lisp_Object *args;
|
|
463 {
|
|
464 return concat (nargs, args, c_string, 0);
|
|
465 }
|
|
466
|
|
467 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0 /*
|
|
468 Concatenate all the arguments and make the result a vector.
|
|
469 The result is a vector whose elements are the elements of all the arguments.
|
|
470 Each argument may be a list, vector, bit vector, or string.
|
|
471 */ )
|
|
472 (nargs, args)
|
|
473 int nargs;
|
|
474 Lisp_Object *args;
|
|
475 {
|
|
476 return concat (nargs, args, c_vector, 0);
|
|
477 }
|
|
478
|
|
479 DEFUN ("bvconcat", Fbvconcat, Sbvconcat, 0, MANY, 0 /*
|
|
480 Concatenate all the arguments and make the result a bit vector.
|
|
481 The result is a bit vector whose elements are the elements of all the
|
|
482 arguments. Each argument may be a list, vector, bit vector, or string.
|
|
483 */ )
|
|
484 (nargs, args)
|
|
485 int nargs;
|
|
486 Lisp_Object *args;
|
|
487 {
|
|
488 return concat (nargs, args, c_bit_vector, 0);
|
|
489 }
|
|
490
|
|
491 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0 /*
|
|
492 Return a copy of a list, vector, bit vector or string.
|
|
493 The elements of a list or vector are not copied; they are shared
|
|
494 with the original.
|
|
495 */ )
|
|
496 (arg)
|
|
497 Lisp_Object arg;
|
|
498 {
|
|
499 again:
|
|
500 if (NILP (arg)) return arg;
|
|
501 /* We handle conses separately because concat() is big and hairy and
|
|
502 doesn't handle (copy-sequence '(a b . c)) and it's easier to redo this
|
|
503 than to fix concat() without worrying about breaking other things.
|
|
504 */
|
|
505 if (CONSP (arg))
|
|
506 {
|
|
507 Lisp_Object rest = arg;
|
|
508 Lisp_Object head, tail;
|
|
509 tail = Qnil;
|
|
510 while (CONSP (rest))
|
|
511 {
|
|
512 Lisp_Object new = Fcons (XCAR (rest), XCDR (rest));
|
|
513 if (NILP (tail))
|
|
514 head = tail = new;
|
|
515 else
|
|
516 XCDR (tail) = new, tail = new;
|
|
517 rest = XCDR (rest);
|
|
518 QUIT;
|
|
519 }
|
|
520 if (!NILP (tail))
|
|
521 XCDR (tail) = rest;
|
|
522 return head;
|
|
523 }
|
|
524 else if (STRINGP (arg))
|
|
525 return concat (1, &arg, c_string, 0);
|
|
526 else if (VECTORP (arg))
|
|
527 return concat (1, &arg, c_vector, 0);
|
|
528 else if (BIT_VECTORP (arg))
|
|
529 return concat (1, &arg, c_bit_vector, 0);
|
|
530 else
|
|
531 {
|
|
532 check_losing_bytecode ("copy-sequence", arg);
|
|
533 arg = wrong_type_argument (Qsequencep, arg);
|
|
534 goto again;
|
|
535 }
|
|
536 }
|
|
537
|
|
538 struct merge_string_extents_struct
|
|
539 {
|
|
540 Lisp_Object string;
|
|
541 Bytecount entry_offset;
|
|
542 Bytecount entry_length;
|
|
543 };
|
|
544
|
|
545 static Lisp_Object
|
|
546 concat (int nargs, Lisp_Object *args,
|
|
547 enum concat_target_type target_type,
|
|
548 int last_special)
|
|
549 {
|
|
550 Lisp_Object val;
|
|
551 Lisp_Object tail = Qnil;
|
|
552 int toindex;
|
|
553 int argnum;
|
|
554 Lisp_Object last_tail;
|
|
555 Lisp_Object prev;
|
|
556 struct merge_string_extents_struct *args_mse = 0;
|
|
557 Bufbyte *string_result = 0;
|
|
558 Bufbyte *string_result_ptr = 0;
|
|
559 struct gcpro gcpro1;
|
|
560
|
|
561 /* The modus operandi in Emacs is "caller gc-protects args".
|
|
562 However, concat is called many times in Emacs on freshly
|
|
563 created stuff. So we help those callers out by protecting
|
|
564 the args ourselves to save them a lot of temporary-variable
|
|
565 grief. */
|
|
566
|
|
567 GCPRO1 (args[0]);
|
|
568 gcpro1.nvars = nargs;
|
|
569
|
|
570 #ifdef I18N3
|
|
571 /* #### if the result is a string and any of the strings have a string
|
|
572 for the `string-translatable' property, then concat should also
|
|
573 concat the args but use the `string-translatable' strings, and store
|
|
574 the result in the returned string's `string-translatable' property. */
|
|
575 #endif
|
|
576 if (target_type == c_string)
|
|
577 {
|
|
578 args_mse = ((struct merge_string_extents_struct *)
|
|
579 alloca (nargs *
|
|
580 sizeof (struct merge_string_extents_struct)));
|
|
581 }
|
|
582
|
|
583 /* In append, the last arg isn't treated like the others */
|
|
584 if (last_special && nargs > 0)
|
|
585 {
|
|
586 nargs--;
|
|
587 last_tail = args[nargs];
|
|
588 }
|
|
589 else
|
|
590 last_tail = Qnil;
|
|
591
|
|
592 /* Check and coerce the arguments. */
|
|
593 for (argnum = 0; argnum < nargs; argnum++)
|
|
594 {
|
|
595 Lisp_Object seq = args[argnum];
|
|
596 if (CONSP (seq) || NILP (seq))
|
|
597 ;
|
|
598 else if (VECTORP (seq) || STRINGP (seq) || BIT_VECTORP (seq))
|
|
599 ;
|
|
600 #ifdef LOSING_BYTECODE
|
|
601 else if (COMPILED_FUNCTIONP (seq))
|
|
602 /* Urk! We allow this, for "compatibility"... */
|
|
603 ;
|
|
604 #endif
|
|
605 else if (INTP (seq))
|
|
606 /* This is too revolting to think about but maintains
|
|
607 compatibility with FSF (and lots and lots of old code). */
|
|
608 args[argnum] = Fnumber_to_string (seq);
|
|
609 else
|
|
610 {
|
|
611 check_losing_bytecode ("concat", seq);
|
|
612 args[argnum] = wrong_type_argument (Qsequencep, seq);
|
|
613 }
|
|
614
|
|
615 if (args_mse)
|
|
616 {
|
|
617 if (STRINGP (seq))
|
|
618 args_mse[argnum].string = seq;
|
|
619 else
|
|
620 args_mse[argnum].string = Qnil;
|
|
621 }
|
|
622 }
|
|
623
|
|
624 {
|
|
625 /* Charcount is a misnomer here as we might be dealing with the
|
|
626 length of a vector or list, but emphasizes that we're not dealing
|
|
627 with Bytecounts in strings */
|
|
628 Charcount total_length;
|
|
629
|
|
630 for (argnum = 0, total_length = 0; argnum < nargs; argnum++)
|
|
631 {
|
|
632 #ifdef LOSING_BYTECODE
|
|
633 Charcount thislen = length_with_bytecode_hack (args[argnum]);
|
|
634 #else
|
|
635 Charcount thislen = XINT (Flength (args[argnum]));
|
|
636 #endif
|
|
637 total_length += thislen;
|
|
638 }
|
|
639
|
|
640 switch (target_type)
|
|
641 {
|
|
642 case c_cons:
|
|
643 if (total_length == 0)
|
|
644 /* In append, if all but last arg are nil, return last arg */
|
|
645 RETURN_UNGCPRO (last_tail);
|
|
646 val = Fmake_list (make_int (total_length), Qnil);
|
|
647 break;
|
|
648 case c_vector:
|
|
649 val = make_vector (total_length, Qnil);
|
|
650 break;
|
|
651 case c_bit_vector:
|
|
652 val = make_bit_vector (total_length, Qzero);
|
|
653 break;
|
|
654 case c_string:
|
|
655 /* We don't make the string yet because we don't know the
|
|
656 actual number of bytes. This loop was formerly written
|
|
657 to call Fmake_string() here and then call set_string_char()
|
|
658 for each char. This seems logical enough but is waaaaaaaay
|
|
659 slow -- set_string_char() has to scan the whole string up
|
|
660 to the place where the substitution is called for in order
|
|
661 to find the place to change, and may have to do some
|
|
662 realloc()ing in order to make the char fit properly.
|
|
663 O(N^2) yuckage. */
|
|
664 val = Qnil;
|
|
665 string_result = (Bufbyte *) alloca (total_length * MAX_EMCHAR_LEN);
|
|
666 string_result_ptr = string_result;
|
|
667 break;
|
|
668 default:
|
|
669 abort ();
|
|
670 }
|
|
671 }
|
|
672
|
|
673
|
|
674 if (CONSP (val))
|
|
675 tail = val, toindex = -1; /* -1 in toindex is flag we are
|
|
676 making a list */
|
|
677 else
|
|
678 toindex = 0;
|
|
679
|
|
680 prev = Qnil;
|
|
681
|
|
682 for (argnum = 0; argnum < nargs; argnum++)
|
|
683 {
|
|
684 Charcount thisleni = 0;
|
|
685 Charcount thisindex = 0;
|
|
686 Lisp_Object seq = args[argnum];
|
|
687 Bufbyte *string_source_ptr = 0;
|
|
688 Bufbyte *string_prev_result_ptr = string_result_ptr;
|
|
689
|
|
690 if (!CONSP (seq))
|
|
691 {
|
|
692 #ifdef LOSING_BYTECODE
|
|
693 thisleni = length_with_bytecode_hack (seq);
|
|
694 #else
|
|
695 thisleni = XINT (Flength (seq));
|
|
696 #endif
|
|
697 }
|
|
698 if (STRINGP (seq))
|
14
|
699 string_source_ptr = XSTRING_DATA (seq);
|
0
|
700
|
|
701 while (1)
|
|
702 {
|
|
703 Lisp_Object elt;
|
|
704
|
|
705 /* We've come to the end of this arg, so exit. */
|
|
706 if (NILP (seq))
|
|
707 break;
|
|
708
|
|
709 /* Fetch next element of `seq' arg into `elt' */
|
|
710 if (CONSP (seq))
|
|
711 {
|
|
712 elt = Fcar (seq);
|
|
713 seq = Fcdr (seq);
|
|
714 }
|
|
715 else
|
|
716 {
|
|
717 if (thisindex >= thisleni)
|
|
718 break;
|
|
719
|
|
720 if (STRINGP (seq))
|
|
721 {
|
|
722 elt = make_char (charptr_emchar (string_source_ptr));
|
|
723 INC_CHARPTR (string_source_ptr);
|
|
724 }
|
|
725 else if (VECTORP (seq))
|
|
726 elt = vector_data (XVECTOR (seq))[thisindex];
|
|
727 else if (BIT_VECTORP (seq))
|
|
728 elt = make_int (bit_vector_bit (XBIT_VECTOR (seq),
|
|
729 thisindex));
|
|
730 else
|
|
731 elt = Felt (seq, make_int (thisindex));
|
|
732 thisindex++;
|
|
733 }
|
|
734
|
|
735 /* Store into result */
|
|
736 if (toindex < 0)
|
|
737 {
|
|
738 /* toindex negative means we are making a list */
|
|
739 XCAR (tail) = elt;
|
|
740 prev = tail;
|
|
741 tail = XCDR (tail);
|
|
742 }
|
|
743 else if (VECTORP (val))
|
|
744 vector_data (XVECTOR (val))[toindex++] = elt;
|
|
745 else if (BIT_VECTORP (val))
|
|
746 {
|
|
747 CHECK_BIT (elt);
|
|
748 set_bit_vector_bit (XBIT_VECTOR (val), toindex++, XINT (elt));
|
|
749 }
|
|
750 else
|
|
751 {
|
|
752 CHECK_CHAR_COERCE_INT (elt);
|
|
753 string_result_ptr += set_charptr_emchar (string_result_ptr,
|
|
754 XCHAR (elt));
|
|
755 }
|
|
756 }
|
|
757 if (args_mse)
|
|
758 {
|
|
759 args_mse[argnum].entry_offset =
|
|
760 string_prev_result_ptr - string_result;
|
|
761 args_mse[argnum].entry_length =
|
|
762 string_result_ptr - string_prev_result_ptr;
|
|
763 }
|
|
764 }
|
|
765
|
|
766 /* Now we finally make the string. */
|
|
767 if (target_type == c_string)
|
|
768 {
|
|
769 val = make_string (string_result, string_result_ptr - string_result);
|
|
770 for (argnum = 0; argnum < nargs; argnum++)
|
|
771 {
|
|
772 if (STRINGP (args_mse[argnum].string))
|
|
773 copy_string_extents (val, args_mse[argnum].string,
|
|
774 args_mse[argnum].entry_offset, 0,
|
|
775 args_mse[argnum].entry_length);
|
|
776 }
|
|
777 }
|
|
778
|
|
779 if (!NILP (prev))
|
|
780 XCDR (prev) = last_tail;
|
|
781
|
|
782 RETURN_UNGCPRO (val);
|
|
783 }
|
|
784
|
|
785 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0 /*
|
|
786 Return a copy of ALIST.
|
|
787 This is an alist which represents the same mapping from objects to objects,
|
|
788 but does not share the alist structure with ALIST.
|
|
789 The objects mapped (cars and cdrs of elements of the alist)
|
|
790 are shared, however.
|
|
791 Elements of ALIST that are not conses are also shared.
|
|
792 */ )
|
|
793 (alist)
|
|
794 Lisp_Object alist;
|
|
795 {
|
|
796 Lisp_Object tem;
|
|
797
|
|
798 CHECK_LIST (alist);
|
|
799 if (NILP (alist))
|
|
800 return alist;
|
|
801 alist = concat (1, &alist, c_cons, 0);
|
|
802 for (tem = alist; CONSP (tem); tem = XCDR (tem))
|
|
803 {
|
|
804 Lisp_Object car;
|
|
805 car = XCAR (tem);
|
|
806
|
|
807 if (CONSP (car))
|
|
808 XCAR (tem) = Fcons (XCAR (car), XCDR (car));
|
|
809 }
|
|
810 return alist;
|
|
811 }
|
|
812
|
|
813 DEFUN ("copy-tree", Fcopy_tree, Scopy_tree, 1, 2, 0 /*
|
|
814 Return a copy of a list and substructures.
|
|
815 The argument is copied, and any lists contained within it are copied
|
|
816 recursively. Circularities and shared substructures are not preserved.
|
|
817 Second arg VECP causes vectors to be copied, too. Strings and bit vectors
|
|
818 are not copied.
|
|
819 */ )
|
|
820 (arg, vecp)
|
|
821 Lisp_Object arg, vecp;
|
|
822 {
|
|
823 if (CONSP (arg))
|
|
824 {
|
|
825 Lisp_Object rest;
|
|
826 rest = arg = Fcopy_sequence (arg);
|
|
827 while (CONSP (rest))
|
|
828 {
|
|
829 Lisp_Object elt = XCAR (rest);
|
|
830 QUIT;
|
|
831 if (CONSP (elt) || VECTORP (elt))
|
|
832 XCAR (rest) = Fcopy_tree (elt, vecp);
|
|
833 if (VECTORP (XCDR (rest))) /* hack for (a b . [c d]) */
|
|
834 XCDR (rest) = Fcopy_tree (XCDR (rest), vecp);
|
|
835 rest = XCDR (rest);
|
|
836 }
|
|
837 }
|
|
838 else if (VECTORP (arg) && ! NILP (vecp))
|
|
839 {
|
|
840 int i = vector_length (XVECTOR (arg));
|
|
841 int j;
|
|
842 arg = Fcopy_sequence (arg);
|
|
843 for (j = 0; j < i; j++)
|
|
844 {
|
|
845 Lisp_Object elt = vector_data (XVECTOR (arg)) [j];
|
|
846 QUIT;
|
|
847 if (CONSP (elt) || VECTORP (elt))
|
|
848 vector_data (XVECTOR (arg)) [j] = Fcopy_tree (elt, vecp);
|
|
849 }
|
|
850 }
|
|
851 return arg;
|
|
852 }
|
|
853
|
|
854 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0 /*
|
|
855 Return a substring of STRING, starting at index FROM and ending before TO.
|
|
856 TO may be nil or omitted; then the substring runs to the end of STRING.
|
|
857 If FROM or TO is negative, it counts from the end.
|
|
858 Relevant parts of the string-extent-data are copied in the new string.
|
|
859 */ )
|
|
860 (string, from, to)
|
|
861 Lisp_Object string;
|
|
862 Lisp_Object from, to;
|
|
863 {
|
|
864 Charcount ccfr, ccto;
|
|
865 Bytecount bfr, bto;
|
|
866 Lisp_Object val;
|
|
867
|
|
868 CHECK_STRING (string);
|
|
869 /* Historically, FROM could not be omitted. Whatever ... */
|
|
870 CHECK_INT (from);
|
|
871 get_string_range_char (string, from, to, &ccfr, &ccto,
|
|
872 GB_HISTORICAL_STRING_BEHAVIOR);
|
14
|
873 bfr = charcount_to_bytecount (XSTRING_DATA (string), ccfr);
|
|
874 bto = charcount_to_bytecount (XSTRING_DATA (string), ccto);
|
|
875 val = make_string (XSTRING_DATA (string) + bfr, bto - bfr);
|
0
|
876 /* Copy any applicable extent information into the new string: */
|
|
877 copy_string_extents (val, string, 0, bfr, bto - bfr);
|
|
878 return (val);
|
|
879 }
|
|
880
|
|
881 DEFUN ("subseq", Fsubseq, Ssubseq, 2, 3, 0 /*
|
|
882 Return a subsequence of SEQ, starting at index FROM and ending before TO.
|
|
883 TO may be nil or omitted; then the subsequence runs to the end of SEQ.
|
|
884 If FROM or TO is negative, it counts from the end.
|
|
885 The resulting subsequence is always the same type as the original
|
|
886 sequence.
|
|
887 If SEQ is a string, relevant parts of the string-extent-data are copied
|
|
888 in the new string.
|
|
889 */ )
|
|
890 (seq, from, to)
|
|
891 Lisp_Object seq;
|
|
892 Lisp_Object from, to;
|
|
893 {
|
|
894 int len, f, t;
|
|
895
|
|
896 if (STRINGP (seq))
|
|
897 return Fsubstring (seq, from, to);
|
|
898
|
|
899 if (CONSP (seq) || NILP (seq))
|
|
900 ;
|
|
901 else if (VECTORP (seq) || BIT_VECTORP (seq))
|
|
902 ;
|
|
903 else
|
|
904 {
|
|
905 check_losing_bytecode ("subseq", seq);
|
|
906 seq = wrong_type_argument (Qsequencep, seq);
|
|
907 }
|
|
908
|
|
909 len = XINT (Flength (seq));
|
|
910 CHECK_INT (from);
|
|
911 f = XINT (from);
|
|
912 if (f < 0)
|
|
913 f = len + f;
|
|
914 if (NILP (to))
|
|
915 t = len;
|
|
916 else
|
|
917 {
|
|
918 CHECK_INT (to);
|
|
919 t = XINT (to);
|
|
920 if (t < 0)
|
|
921 t = len + t;
|
|
922 }
|
|
923
|
|
924 if (!(0 <= f && f <= t && t <= len))
|
|
925 args_out_of_range_3 (seq, make_int (f), make_int (t));
|
|
926
|
|
927 if (VECTORP (seq))
|
|
928 {
|
|
929 Lisp_Object result = make_vector (t - f, Qnil);
|
|
930 int i;
|
|
931 Lisp_Object *in_elts = vector_data (XVECTOR (seq));
|
|
932 Lisp_Object *out_elts = vector_data (XVECTOR (result));
|
|
933
|
|
934 for (i = f; i < t; i++)
|
|
935 out_elts[i - f] = in_elts[i];
|
|
936 return result;
|
|
937 }
|
|
938
|
|
939 if (CONSP (seq))
|
|
940 {
|
|
941 Lisp_Object result = Qnil;
|
|
942 int i;
|
|
943
|
|
944 seq = Fnthcdr (make_int (f), seq);
|
|
945
|
|
946 for (i = f; i < t; i++)
|
|
947 {
|
|
948 result = Fcons (Fcar (seq), result);
|
|
949 seq = Fcdr (seq);
|
|
950 }
|
|
951
|
|
952 return Fnreverse (result);
|
|
953 }
|
|
954
|
|
955 /* bit vector */
|
|
956 {
|
|
957 Lisp_Object result = make_bit_vector (t - f, Qzero);
|
|
958 int i;
|
|
959
|
|
960 for (i = f; i < t; i++)
|
|
961 set_bit_vector_bit (XBIT_VECTOR (result), i - f,
|
|
962 bit_vector_bit (XBIT_VECTOR (seq), i));
|
|
963 return result;
|
|
964 }
|
|
965 }
|
|
966
|
|
967
|
|
968 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0 /*
|
|
969 Take cdr N times on LIST, returns the result.
|
|
970 */ )
|
|
971 (n, list)
|
|
972 Lisp_Object n;
|
|
973 Lisp_Object list;
|
|
974 {
|
|
975 REGISTER int i, num;
|
|
976 CHECK_INT (n);
|
|
977 num = XINT (n);
|
|
978 for (i = 0; i < num && !NILP (list); i++)
|
|
979 {
|
|
980 QUIT;
|
|
981 list = Fcdr (list);
|
|
982 }
|
|
983 return list;
|
|
984 }
|
|
985
|
|
986 DEFUN ("nth", Fnth, Snth, 2, 2, 0 /*
|
|
987 Return the Nth element of LIST.
|
|
988 N counts from zero. If LIST is not that long, nil is returned.
|
|
989 */ )
|
|
990 (n, list)
|
|
991 Lisp_Object n, list;
|
|
992 {
|
|
993 return Fcar (Fnthcdr (n, list));
|
|
994 }
|
|
995
|
|
996 DEFUN ("elt", Felt, Selt, 2, 2, 0 /*
|
|
997 Return element of SEQUENCE at index N.
|
|
998 */ )
|
|
999 (seq, n)
|
|
1000 Lisp_Object seq, n;
|
|
1001 {
|
|
1002 retry:
|
|
1003 CHECK_INT_COERCE_CHAR (n); /* yuck! */
|
|
1004 if (CONSP (seq) || NILP (seq))
|
|
1005 {
|
|
1006 Lisp_Object tem = Fnthcdr (n, seq);
|
|
1007 /* #### Utterly, completely, fucking disgusting.
|
|
1008 * #### The whole point of "elt" is that it operates on
|
|
1009 * #### sequences, and does error- (bounds-) checking.
|
|
1010 */
|
|
1011 if (CONSP (tem))
|
|
1012 return (XCAR (tem));
|
|
1013 else
|
|
1014 #if 1
|
|
1015 /* This is The Way It Has Always Been. */
|
|
1016 return Qnil;
|
|
1017 #else
|
|
1018 /* This is The Way Mly Says It Should Be. */
|
|
1019 args_out_of_range (seq, n);
|
|
1020 #endif
|
|
1021 }
|
|
1022 else if (STRINGP (seq)
|
|
1023 || VECTORP (seq)
|
|
1024 || BIT_VECTORP (seq))
|
|
1025 return (Faref (seq, n));
|
|
1026 #ifdef LOSING_BYTECODE
|
|
1027 else if (COMPILED_FUNCTIONP (seq))
|
|
1028 {
|
|
1029 int idx = XINT (n);
|
|
1030 if (idx < 0)
|
|
1031 {
|
|
1032 lose:
|
|
1033 args_out_of_range (seq, n);
|
|
1034 }
|
|
1035 /* Utter perversity */
|
|
1036 {
|
|
1037 struct Lisp_Compiled_Function *b = XCOMPILED_FUNCTION (seq);
|
|
1038 switch (idx)
|
|
1039 {
|
|
1040 case COMPILED_ARGLIST:
|
|
1041 return (b->arglist);
|
|
1042 case COMPILED_BYTECODE:
|
|
1043 return (b->bytecodes);
|
|
1044 case COMPILED_CONSTANTS:
|
|
1045 return (b->constants);
|
|
1046 case COMPILED_STACK_DEPTH:
|
|
1047 return (make_int (b->maxdepth));
|
|
1048 case COMPILED_DOC_STRING:
|
|
1049 return (compiled_function_documentation (b));
|
|
1050 case COMPILED_DOMAIN:
|
|
1051 return (compiled_function_domain (b));
|
|
1052 case COMPILED_INTERACTIVE:
|
|
1053 if (b->flags.interactivep)
|
|
1054 return (compiled_function_interactive (b));
|
|
1055 /* if we return nil, can't tell interactive with no args
|
|
1056 from noninteractive. */
|
|
1057 goto lose;
|
|
1058 default:
|
|
1059 goto lose;
|
|
1060 }
|
|
1061 }
|
|
1062 }
|
|
1063 #endif /* LOSING_BYTECODE */
|
|
1064 else
|
|
1065 {
|
|
1066 check_losing_bytecode ("elt", seq);
|
|
1067 seq = wrong_type_argument (Qsequencep, seq);
|
|
1068 goto retry;
|
|
1069 }
|
|
1070 }
|
|
1071
|
|
1072 DEFUN ("member", Fmember, Smember, 2, 2, 0 /*
|
|
1073 Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
|
|
1074 The value is actually the tail of LIST whose car is ELT.
|
|
1075 */ )
|
|
1076 (elt, list)
|
|
1077 Lisp_Object elt;
|
|
1078 Lisp_Object list;
|
|
1079 {
|
|
1080 REGISTER Lisp_Object tail, tem;
|
|
1081 for (tail = list; !NILP (tail); tail = Fcdr (tail))
|
|
1082 {
|
|
1083 tem = Fcar (tail);
|
|
1084 if (! NILP (Fequal (elt, tem)))
|
|
1085 return tail;
|
|
1086 QUIT;
|
|
1087 }
|
|
1088 return Qnil;
|
|
1089 }
|
|
1090
|
|
1091 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0 /*
|
|
1092 Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
|
|
1093 The value is actually the tail of LIST whose car is ELT.
|
|
1094 */ )
|
|
1095 (elt, list)
|
|
1096 Lisp_Object elt;
|
|
1097 Lisp_Object list;
|
|
1098 {
|
|
1099 REGISTER Lisp_Object tail, tem;
|
|
1100 for (tail = list; !NILP (tail); tail = Fcdr (tail))
|
|
1101 {
|
|
1102 tem = Fcar (tail);
|
|
1103 if (HACKEQ_UNSAFE (elt, tem)) return tail;
|
|
1104 QUIT;
|
|
1105 }
|
|
1106 return Qnil;
|
|
1107 }
|
|
1108
|
|
1109 Lisp_Object
|
|
1110 memq_no_quit (Lisp_Object elt, Lisp_Object list)
|
|
1111 {
|
|
1112 REGISTER Lisp_Object tail, tem;
|
|
1113 for (tail = list; CONSP (tail); tail = XCDR (tail))
|
|
1114 {
|
|
1115 tem = XCAR (tail);
|
|
1116 if (HACKEQ_UNSAFE (elt, tem)) return tail;
|
|
1117 }
|
|
1118 return Qnil;
|
|
1119 }
|
|
1120
|
|
1121 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0 /*
|
|
1122 Return non-nil if KEY is `equal' to the car of an element of LIST.
|
|
1123 The value is actually the element of LIST whose car equals KEY.
|
|
1124 */ )
|
|
1125 (key, list)
|
|
1126 Lisp_Object key;
|
|
1127 Lisp_Object list;
|
|
1128 {
|
|
1129 /* This function can GC. */
|
|
1130 REGISTER Lisp_Object tail, elt, tem;
|
|
1131 for (tail = list; !NILP (tail); tail = Fcdr (tail))
|
|
1132 {
|
|
1133 elt = Fcar (tail);
|
|
1134 if (!CONSP (elt)) continue;
|
|
1135 tem = Fequal (Fcar (elt), key);
|
|
1136 if (!NILP (tem)) return elt;
|
|
1137 QUIT;
|
|
1138 }
|
|
1139 return Qnil;
|
|
1140 }
|
|
1141
|
|
1142 Lisp_Object
|
|
1143 assoc_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1144 {
|
|
1145 int speccount = specpdl_depth ();
|
|
1146 specbind (Qinhibit_quit, Qt);
|
|
1147 return (unbind_to (speccount, Fassoc (key, list)));
|
|
1148 }
|
|
1149
|
|
1150 DEFUN ("assq", Fassq, Sassq, 2, 2, 0 /*
|
|
1151 Return non-nil if KEY is `eq' to the car of an element of LIST.
|
|
1152 The value is actually the element of LIST whose car is KEY.
|
|
1153 Elements of LIST that are not conses are ignored.
|
|
1154 */ )
|
|
1155 (key, list)
|
|
1156 Lisp_Object key;
|
|
1157 Lisp_Object list;
|
|
1158 {
|
|
1159 REGISTER Lisp_Object tail, elt, tem;
|
|
1160 for (tail = list; !NILP (tail); tail = Fcdr (tail))
|
|
1161 {
|
|
1162 elt = Fcar (tail);
|
|
1163 if (!CONSP (elt)) continue;
|
|
1164 tem = Fcar (elt);
|
|
1165 if (HACKEQ_UNSAFE (key, tem)) return elt;
|
|
1166 QUIT;
|
|
1167 }
|
|
1168 return Qnil;
|
|
1169 }
|
|
1170
|
|
1171 /* Like Fassq but never report an error and do not allow quits.
|
|
1172 Use only on lists known never to be circular. */
|
|
1173
|
|
1174 Lisp_Object
|
|
1175 assq_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1176 {
|
|
1177 /* This cannot GC. */
|
|
1178 REGISTER Lisp_Object tail, elt, tem;
|
|
1179 for (tail = list; CONSP (tail); tail = XCDR (tail))
|
|
1180 {
|
|
1181 elt = XCAR (tail);
|
|
1182 if (!CONSP (elt)) continue;
|
|
1183 tem = XCAR (elt);
|
|
1184 if (HACKEQ_UNSAFE (key, tem)) return elt;
|
|
1185 }
|
|
1186 return Qnil;
|
|
1187 }
|
|
1188
|
|
1189 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0 /*
|
|
1190 Return non-nil if KEY is `equal' to the cdr of an element of LIST.
|
|
1191 The value is actually the element of LIST whose cdr equals KEY.
|
|
1192 */ )
|
|
1193 (key, list)
|
|
1194 Lisp_Object key;
|
|
1195 Lisp_Object list;
|
|
1196 {
|
|
1197 REGISTER Lisp_Object tail;
|
|
1198 for (tail = list; !NILP (tail); tail = Fcdr (tail))
|
|
1199 {
|
|
1200 REGISTER Lisp_Object elt, tem;
|
|
1201 elt = Fcar (tail);
|
|
1202 if (!CONSP (elt)) continue;
|
|
1203 tem = Fequal (Fcdr (elt), key);
|
|
1204 if (!NILP (tem)) return elt;
|
|
1205 QUIT;
|
|
1206 }
|
|
1207 return Qnil;
|
|
1208 }
|
|
1209
|
|
1210 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0 /*
|
|
1211 Return non-nil if KEY is `eq' to the cdr of an element of LIST.
|
|
1212 The value is actually the element of LIST whose cdr is KEY.
|
|
1213 */ )
|
|
1214 (key, list)
|
|
1215 Lisp_Object key;
|
|
1216 Lisp_Object list;
|
|
1217 {
|
|
1218 REGISTER Lisp_Object tail, elt, tem;
|
|
1219 for (tail = list; !NILP (tail); tail = Fcdr (tail))
|
|
1220 {
|
|
1221 elt = Fcar (tail);
|
|
1222 if (!CONSP (elt)) continue;
|
|
1223 tem = Fcdr (elt);
|
|
1224 if (HACKEQ_UNSAFE (key, tem)) return elt;
|
|
1225 QUIT;
|
|
1226 }
|
|
1227 return Qnil;
|
|
1228 }
|
|
1229
|
|
1230 Lisp_Object
|
|
1231 rassq_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1232 {
|
|
1233 REGISTER Lisp_Object tail, elt, tem;
|
|
1234 for (tail = list; CONSP (tail); tail = XCDR (tail))
|
|
1235 {
|
|
1236 elt = XCAR (tail);
|
|
1237 if (!CONSP (elt)) continue;
|
|
1238 tem = XCDR (elt);
|
|
1239 if (HACKEQ_UNSAFE (key, tem)) return elt;
|
|
1240 }
|
|
1241 return Qnil;
|
|
1242 }
|
|
1243
|
|
1244
|
|
1245 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0 /*
|
|
1246 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1247 The modified LIST is returned. Comparison is done with `equal'.
|
|
1248 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1249 effect; therefore, write `(setq foo (delete element foo))' to be sure
|
|
1250 of changing the value of `foo'.
|
|
1251 */ )
|
|
1252 (elt, list)
|
|
1253 Lisp_Object elt;
|
|
1254 Lisp_Object list;
|
|
1255 {
|
|
1256 REGISTER Lisp_Object tail, prev;
|
|
1257
|
|
1258 tail = list;
|
|
1259 prev = Qnil;
|
|
1260 while (!NILP (tail))
|
|
1261 {
|
|
1262 if (!NILP (Fequal (elt, Fcar (tail))))
|
|
1263 {
|
|
1264 if (NILP (prev))
|
|
1265 list = Fcdr (tail);
|
|
1266 else
|
|
1267 Fsetcdr (prev, Fcdr (tail));
|
|
1268 }
|
|
1269 else
|
|
1270 prev = tail;
|
|
1271 tail = Fcdr (tail);
|
|
1272 QUIT;
|
|
1273 }
|
|
1274 return list;
|
|
1275 }
|
|
1276
|
|
1277 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0 /*
|
|
1278 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1279 The modified LIST is returned. Comparison is done with `eq'.
|
|
1280 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1281 effect; therefore, write `(setq foo (delq element foo))' to be sure of
|
|
1282 changing the value of `foo'.
|
|
1283 */ )
|
|
1284 (elt, list)
|
|
1285 Lisp_Object elt;
|
|
1286 Lisp_Object list;
|
|
1287 {
|
|
1288 REGISTER Lisp_Object tail, prev;
|
|
1289 REGISTER Lisp_Object tem;
|
|
1290
|
|
1291 tail = list;
|
|
1292 prev = Qnil;
|
|
1293 while (!NILP (tail))
|
|
1294 {
|
|
1295 tem = Fcar (tail);
|
|
1296 if (HACKEQ_UNSAFE (elt, tem))
|
|
1297 {
|
|
1298 if (NILP (prev))
|
|
1299 list = Fcdr (tail);
|
|
1300 else
|
|
1301 Fsetcdr (prev, Fcdr (tail));
|
|
1302 }
|
|
1303 else
|
|
1304 prev = tail;
|
|
1305 tail = Fcdr (tail);
|
|
1306 QUIT;
|
|
1307 }
|
|
1308 return list;
|
|
1309 }
|
|
1310
|
|
1311 /* no quit, no errors; be careful */
|
|
1312
|
|
1313 Lisp_Object
|
|
1314 delq_no_quit (Lisp_Object elt, Lisp_Object list)
|
|
1315 {
|
|
1316 REGISTER Lisp_Object tail, prev;
|
|
1317 REGISTER Lisp_Object tem;
|
|
1318
|
|
1319 tail = list;
|
|
1320 prev = Qnil;
|
|
1321 while (CONSP (tail))
|
|
1322 {
|
|
1323 tem = XCAR (tail);
|
|
1324 if (HACKEQ_UNSAFE (elt, tem))
|
|
1325 {
|
|
1326 if (NILP (prev))
|
|
1327 list = XCDR (tail);
|
|
1328 else
|
|
1329 XCDR (prev) = XCDR (tail);
|
|
1330 }
|
|
1331 else
|
|
1332 prev = tail;
|
|
1333 tail = XCDR (tail);
|
|
1334 }
|
|
1335 return list;
|
|
1336 }
|
|
1337
|
|
1338 /* Be VERY careful with this. This is like delq_no_quit() but
|
|
1339 also calls free_cons() on the removed conses. You must be SURE
|
|
1340 that no pointers to the freed conses remain around (e.g.
|
|
1341 someone else is pointing to part of the list). This function
|
|
1342 is useful on internal lists that are used frequently and where
|
|
1343 the actual list doesn't escape beyond known code bounds. */
|
|
1344
|
|
1345 Lisp_Object
|
|
1346 delq_no_quit_and_free_cons (Lisp_Object elt, Lisp_Object list)
|
|
1347 {
|
|
1348 REGISTER Lisp_Object tail, prev;
|
|
1349 REGISTER Lisp_Object tem;
|
|
1350
|
|
1351 tail = list;
|
|
1352 prev = Qnil;
|
|
1353 while (CONSP (tail))
|
|
1354 {
|
|
1355 Lisp_Object cons_to_free = Qnil;
|
|
1356 tem = XCAR (tail);
|
|
1357 if (HACKEQ_UNSAFE (elt, tem))
|
|
1358 {
|
|
1359 if (NILP (prev))
|
|
1360 list = XCDR (tail);
|
|
1361 else
|
|
1362 XCDR (prev) = XCDR (tail);
|
|
1363 cons_to_free = tail;
|
|
1364 }
|
|
1365 else
|
|
1366 prev = tail;
|
|
1367 tail = XCDR (tail);
|
|
1368 if (!NILP (cons_to_free))
|
|
1369 free_cons (XCONS (cons_to_free));
|
|
1370 }
|
|
1371 return list;
|
|
1372 }
|
|
1373
|
|
1374 DEFUN ("remassoc", Fremassoc, Sremassoc, 2, 2, 0 /*
|
|
1375 Delete by side effect any elements of LIST whose car is `equal' to KEY.
|
|
1376 The modified LIST is returned. If the first member of LIST has a car
|
|
1377 that is `equal' to KEY, there is no way to remove it by side effect;
|
|
1378 therefore, write `(setq foo (remassoc key foo))' to be sure of changing
|
|
1379 the value of `foo'.
|
|
1380 */ )
|
|
1381 (key, list)
|
|
1382 Lisp_Object key;
|
|
1383 Lisp_Object list;
|
|
1384 {
|
|
1385 REGISTER Lisp_Object tail, prev;
|
|
1386
|
|
1387 tail = list;
|
|
1388 prev = Qnil;
|
|
1389 while (!NILP (tail))
|
|
1390 {
|
|
1391 Lisp_Object elt = Fcar (tail);
|
|
1392 if (CONSP (elt) && ! NILP (Fequal (key, Fcar (elt))))
|
|
1393 {
|
|
1394 if (NILP (prev))
|
|
1395 list = Fcdr (tail);
|
|
1396 else
|
|
1397 Fsetcdr (prev, Fcdr (tail));
|
|
1398 }
|
|
1399 else
|
|
1400 prev = tail;
|
|
1401 tail = Fcdr (tail);
|
|
1402 QUIT;
|
|
1403 }
|
|
1404 return list;
|
|
1405 }
|
|
1406
|
|
1407 Lisp_Object
|
|
1408 remassoc_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1409 {
|
|
1410 int speccount = specpdl_depth ();
|
|
1411 specbind (Qinhibit_quit, Qt);
|
|
1412 return (unbind_to (speccount, Fremassoc (key, list)));
|
|
1413 }
|
|
1414
|
|
1415 DEFUN ("remassq", Fremassq, Sremassq, 2, 2, 0 /*
|
|
1416 Delete by side effect any elements of LIST whose car is `eq' to KEY.
|
|
1417 The modified LIST is returned. If the first member of LIST has a car
|
|
1418 that is `eq' to KEY, there is no way to remove it by side effect;
|
|
1419 therefore, write `(setq foo (remassq key foo))' to be sure of changing
|
|
1420 the value of `foo'.
|
|
1421 */ )
|
|
1422 (key, list)
|
|
1423 Lisp_Object key;
|
|
1424 Lisp_Object list;
|
|
1425 {
|
|
1426 REGISTER Lisp_Object tail, prev;
|
|
1427
|
|
1428 tail = list;
|
|
1429 prev = Qnil;
|
|
1430 while (!NILP (tail))
|
|
1431 {
|
|
1432 Lisp_Object elt = Fcar (tail);
|
|
1433 if (CONSP (elt) && HACKEQ_UNSAFE (key, Fcar (elt)))
|
|
1434 {
|
|
1435 if (NILP (prev))
|
|
1436 list = Fcdr (tail);
|
|
1437 else
|
|
1438 Fsetcdr (prev, Fcdr (tail));
|
|
1439 }
|
|
1440 else
|
|
1441 prev = tail;
|
|
1442 tail = Fcdr (tail);
|
|
1443 QUIT;
|
|
1444 }
|
|
1445 return list;
|
|
1446 }
|
|
1447
|
|
1448 /* no quit, no errors; be careful */
|
|
1449
|
|
1450 Lisp_Object
|
|
1451 remassq_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1452 {
|
|
1453 REGISTER Lisp_Object tail, prev;
|
|
1454 REGISTER Lisp_Object tem;
|
|
1455
|
|
1456 tail = list;
|
|
1457 prev = Qnil;
|
|
1458 while (CONSP (tail))
|
|
1459 {
|
|
1460 tem = XCAR (tail);
|
|
1461 if (CONSP (tem) && HACKEQ_UNSAFE (key, XCAR (tem)))
|
|
1462 {
|
|
1463 if (NILP (prev))
|
|
1464 list = XCDR (tail);
|
|
1465 else
|
|
1466 XCDR (prev) = XCDR (tail);
|
|
1467 }
|
|
1468 else
|
|
1469 prev = tail;
|
|
1470 tail = XCDR (tail);
|
|
1471 }
|
|
1472 return list;
|
|
1473 }
|
|
1474
|
|
1475 DEFUN ("remrassoc", Fremrassoc, Sremrassoc, 2, 2, 0 /*
|
|
1476 Delete by side effect any elements of LIST whose cdr is `equal' to VALUE.
|
|
1477 The modified LIST is returned. If the first member of LIST has a car
|
|
1478 that is `equal' to VALUE, there is no way to remove it by side effect;
|
|
1479 therefore, write `(setq foo (remrassoc value foo))' to be sure of changing
|
|
1480 the value of `foo'.
|
|
1481 */ )
|
|
1482 (value, list)
|
|
1483 Lisp_Object value;
|
|
1484 Lisp_Object list;
|
|
1485 {
|
|
1486 REGISTER Lisp_Object tail, prev;
|
|
1487
|
|
1488 tail = list;
|
|
1489 prev = Qnil;
|
|
1490 while (!NILP (tail))
|
|
1491 {
|
|
1492 Lisp_Object elt = Fcar (tail);
|
|
1493 if (CONSP (elt) && ! NILP (Fequal (value, Fcdr (elt))))
|
|
1494 {
|
|
1495 if (NILP (prev))
|
|
1496 list = Fcdr (tail);
|
|
1497 else
|
|
1498 Fsetcdr (prev, Fcdr (tail));
|
|
1499 }
|
|
1500 else
|
|
1501 prev = tail;
|
|
1502 tail = Fcdr (tail);
|
|
1503 QUIT;
|
|
1504 }
|
|
1505 return list;
|
|
1506 }
|
|
1507
|
|
1508 DEFUN ("remrassq", Fremrassq, Sremrassq, 2, 2, 0 /*
|
|
1509 Delete by side effect any elements of LIST whose cdr is `eq' to VALUE.
|
|
1510 The modified LIST is returned. If the first member of LIST has a car
|
|
1511 that is `eq' to VALUE, there is no way to remove it by side effect;
|
|
1512 therefore, write `(setq foo (remrassq value foo))' to be sure of changing
|
|
1513 the value of `foo'.
|
|
1514 */ )
|
|
1515 (value, list)
|
|
1516 Lisp_Object value;
|
|
1517 Lisp_Object list;
|
|
1518 {
|
|
1519 REGISTER Lisp_Object tail, prev;
|
|
1520
|
|
1521 tail = list;
|
|
1522 prev = Qnil;
|
|
1523 while (!NILP (tail))
|
|
1524 {
|
|
1525 Lisp_Object elt = Fcar (tail);
|
|
1526 if (CONSP (elt) && HACKEQ_UNSAFE (value, Fcdr (elt)))
|
|
1527 {
|
|
1528 if (NILP (prev))
|
|
1529 list = Fcdr (tail);
|
|
1530 else
|
|
1531 Fsetcdr (prev, Fcdr (tail));
|
|
1532 }
|
|
1533 else
|
|
1534 prev = tail;
|
|
1535 tail = Fcdr (tail);
|
|
1536 QUIT;
|
|
1537 }
|
|
1538 return list;
|
|
1539 }
|
|
1540
|
|
1541 /* no quit, no errors; be careful */
|
|
1542
|
|
1543 Lisp_Object
|
|
1544 remrassq_no_quit (Lisp_Object value, Lisp_Object list)
|
|
1545 {
|
|
1546 REGISTER Lisp_Object tail, prev;
|
|
1547 REGISTER Lisp_Object tem;
|
|
1548
|
|
1549 tail = list;
|
|
1550 prev = Qnil;
|
|
1551 while (CONSP (tail))
|
|
1552 {
|
|
1553 tem = XCAR (tail);
|
|
1554 if (CONSP (tem) && HACKEQ_UNSAFE (value, XCDR (tem)))
|
|
1555 {
|
|
1556 if (NILP (prev))
|
|
1557 list = XCDR (tail);
|
|
1558 else
|
|
1559 XCDR (prev) = XCDR (tail);
|
|
1560 }
|
|
1561 else
|
|
1562 prev = tail;
|
|
1563 tail = XCDR (tail);
|
|
1564 }
|
|
1565 return list;
|
|
1566 }
|
|
1567
|
|
1568 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0 /*
|
|
1569 Reverse LIST by modifying cdr pointers.
|
|
1570 Returns the beginning of the reversed list.
|
|
1571 */ )
|
|
1572 (list)
|
|
1573 Lisp_Object list;
|
|
1574 {
|
|
1575 Lisp_Object prev, tail, next;
|
|
1576 struct gcpro gcpro1, gcpro2;
|
|
1577
|
|
1578 /* We gcpro our args; see `nconc' */
|
|
1579 prev = Qnil;
|
|
1580 tail = list;
|
|
1581 GCPRO2 (prev, tail);
|
|
1582 while (!NILP (tail))
|
|
1583 {
|
|
1584 QUIT;
|
|
1585 next = Fcdr (tail);
|
|
1586 Fsetcdr (tail, prev);
|
|
1587 prev = tail;
|
|
1588 tail = next;
|
|
1589 }
|
|
1590 UNGCPRO;
|
|
1591 return prev;
|
|
1592 }
|
|
1593
|
|
1594 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0 /*
|
|
1595 Reverse LIST, copying. Returns the beginning of the reversed list.
|
|
1596 See also the function `nreverse', which is used more often.
|
|
1597 */ )
|
|
1598 (list)
|
|
1599 Lisp_Object list;
|
|
1600 {
|
|
1601 Lisp_Object length;
|
|
1602 Lisp_Object *vec;
|
|
1603 Lisp_Object tail;
|
|
1604 REGISTER int i;
|
|
1605
|
|
1606 length = Flength (list);
|
|
1607 vec = (Lisp_Object *) alloca (XINT (length) * sizeof (Lisp_Object));
|
|
1608 for (i = XINT (length) - 1, tail = list; i >= 0; i--, tail = Fcdr (tail))
|
|
1609 vec[i] = Fcar (tail);
|
|
1610
|
|
1611 return Flist (XINT (length), vec);
|
|
1612 }
|
|
1613
|
|
1614 static Lisp_Object list_merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
|
1615 Lisp_Object lisp_arg,
|
|
1616 int (*pred_fn) (Lisp_Object, Lisp_Object,
|
|
1617 Lisp_Object lisp_arg));
|
|
1618
|
|
1619 Lisp_Object
|
|
1620 list_sort (Lisp_Object list,
|
|
1621 Lisp_Object lisp_arg,
|
|
1622 int (*pred_fn) (Lisp_Object, Lisp_Object,
|
|
1623 Lisp_Object lisp_arg))
|
|
1624 {
|
|
1625 Lisp_Object front, back;
|
|
1626 Lisp_Object len, tem;
|
|
1627 struct gcpro gcpro1, gcpro2, gcpro3;
|
|
1628 int length;
|
|
1629
|
|
1630 front = list;
|
|
1631 len = Flength (list);
|
|
1632 length = XINT (len);
|
|
1633 if (length < 2)
|
|
1634 return list;
|
|
1635
|
|
1636 XSETINT (len, (length / 2) - 1);
|
|
1637 tem = Fnthcdr (len, list);
|
|
1638 back = Fcdr (tem);
|
|
1639 Fsetcdr (tem, Qnil);
|
|
1640
|
|
1641 GCPRO3 (front, back, lisp_arg);
|
|
1642 front = list_sort (front, lisp_arg, pred_fn);
|
|
1643 back = list_sort (back, lisp_arg, pred_fn);
|
|
1644 UNGCPRO;
|
|
1645 return list_merge (front, back, lisp_arg, pred_fn);
|
|
1646 }
|
|
1647
|
|
1648
|
|
1649 static int
|
|
1650 merge_pred_function (Lisp_Object obj1, Lisp_Object obj2,
|
|
1651 Lisp_Object pred)
|
|
1652 {
|
|
1653 Lisp_Object tmp;
|
|
1654
|
|
1655 /* prevents the GC from happening in call2 */
|
|
1656 int speccount = specpdl_depth ();
|
|
1657 /* Emacs' GC doesn't actually relocate pointers, so this probably
|
|
1658 isn't strictly necessary */
|
|
1659 record_unwind_protect (restore_gc_inhibit,
|
|
1660 make_int (gc_currently_forbidden));
|
|
1661 gc_currently_forbidden = 1;
|
|
1662 tmp = call2 (pred, obj1, obj2);
|
|
1663 unbind_to (speccount, Qnil);
|
|
1664
|
|
1665 if (NILP (tmp))
|
|
1666 return -1;
|
|
1667 else
|
|
1668 return 1;
|
|
1669 }
|
|
1670
|
|
1671 DEFUN ("sort", Fsort, Ssort, 2, 2, 0 /*
|
|
1672 Sort LIST, stably, comparing elements using PREDICATE.
|
|
1673 Returns the sorted list. LIST is modified by side effects.
|
|
1674 PREDICATE is called with two elements of LIST, and should return T
|
|
1675 if the first element is \"less\" than the second.
|
|
1676 */ )
|
|
1677 (list, pred)
|
|
1678 Lisp_Object list, pred;
|
|
1679 {
|
|
1680 return list_sort (list, pred, merge_pred_function);
|
|
1681 }
|
|
1682
|
|
1683 Lisp_Object
|
|
1684 merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
|
1685 Lisp_Object pred)
|
|
1686 {
|
|
1687 return list_merge (org_l1, org_l2, pred, merge_pred_function);
|
|
1688 }
|
|
1689
|
|
1690
|
|
1691 static Lisp_Object
|
|
1692 list_merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
|
1693 Lisp_Object lisp_arg,
|
|
1694 int (*pred_fn) (Lisp_Object, Lisp_Object, Lisp_Object lisp_arg))
|
|
1695 {
|
|
1696 Lisp_Object value;
|
|
1697 Lisp_Object tail;
|
|
1698 Lisp_Object tem;
|
|
1699 Lisp_Object l1, l2;
|
|
1700 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
|
1701
|
|
1702 l1 = org_l1;
|
|
1703 l2 = org_l2;
|
|
1704 tail = Qnil;
|
|
1705 value = Qnil;
|
|
1706
|
|
1707 /* It is sufficient to protect org_l1 and org_l2.
|
|
1708 When l1 and l2 are updated, we copy the new values
|
|
1709 back into the org_ vars. */
|
|
1710
|
|
1711 GCPRO4 (org_l1, org_l2, lisp_arg, value);
|
|
1712
|
|
1713 while (1)
|
|
1714 {
|
|
1715 if (NILP (l1))
|
|
1716 {
|
|
1717 UNGCPRO;
|
|
1718 if (NILP (tail))
|
|
1719 return l2;
|
|
1720 Fsetcdr (tail, l2);
|
|
1721 return value;
|
|
1722 }
|
|
1723 if (NILP (l2))
|
|
1724 {
|
|
1725 UNGCPRO;
|
|
1726 if (NILP (tail))
|
|
1727 return l1;
|
|
1728 Fsetcdr (tail, l1);
|
|
1729 return value;
|
|
1730 }
|
|
1731
|
|
1732 if (((*pred_fn) (Fcar (l2), Fcar (l1), lisp_arg)) < 0)
|
|
1733 {
|
|
1734 tem = l1;
|
|
1735 l1 = Fcdr (l1);
|
|
1736 org_l1 = l1;
|
|
1737 }
|
|
1738 else
|
|
1739 {
|
|
1740 tem = l2;
|
|
1741 l2 = Fcdr (l2);
|
|
1742 org_l2 = l2;
|
|
1743 }
|
|
1744 if (NILP (tail))
|
|
1745 value = tem;
|
|
1746 else
|
|
1747 Fsetcdr (tail, tem);
|
|
1748 tail = tem;
|
|
1749 }
|
|
1750 }
|
|
1751
|
|
1752
|
|
1753 /************************************************************************/
|
|
1754 /* property-list functions */
|
|
1755 /************************************************************************/
|
|
1756
|
|
1757 /* For properties of text, we need to do order-insensitive comparison of
|
|
1758 plists. That is, we need to compare two plists such that they are the
|
|
1759 same if they have the same set of keys, and equivalent values.
|
|
1760 So (a 1 b 2) would be equal to (b 2 a 1).
|
|
1761
|
|
1762 NIL_MEANS_NOT_PRESENT is as in `plists-eq' etc.
|
|
1763 LAXP means use `equal' for comparisons.
|
|
1764 */
|
|
1765 int
|
|
1766 plists_differ (Lisp_Object a, Lisp_Object b, int nil_means_not_present,
|
|
1767 int laxp, int depth)
|
|
1768 {
|
|
1769 int eqp = (depth == -1); /* -1 as depth means us eq, not equal. */
|
|
1770 int la, lb, m, i, fill;
|
|
1771 Lisp_Object *keys, *vals;
|
|
1772 char *flags;
|
|
1773 Lisp_Object rest;
|
|
1774
|
|
1775 if (NILP (a) && NILP (b))
|
|
1776 return 0;
|
|
1777
|
|
1778 Fcheck_valid_plist (a);
|
|
1779 Fcheck_valid_plist (b);
|
|
1780
|
|
1781 la = XINT (Flength (a));
|
|
1782 lb = XINT (Flength (b));
|
|
1783 m = (la > lb ? la : lb);
|
|
1784 fill = 0;
|
|
1785 keys = (Lisp_Object *) alloca (m * sizeof (Lisp_Object));
|
|
1786 vals = (Lisp_Object *) alloca (m * sizeof (Lisp_Object));
|
|
1787 flags = (char *) alloca (m * sizeof (char));
|
|
1788
|
|
1789 /* First extract the pairs from A. */
|
|
1790 for (rest = a; !NILP (rest); rest = XCDR (XCDR (rest)))
|
|
1791 {
|
|
1792 Lisp_Object k = XCAR (rest);
|
|
1793 Lisp_Object v = XCAR (XCDR (rest));
|
|
1794 /* Maybe be Ebolified. */
|
|
1795 if (nil_means_not_present && NILP (v)) continue;
|
|
1796 keys [fill] = k;
|
|
1797 vals [fill] = v;
|
|
1798 flags[fill] = 0;
|
|
1799 fill++;
|
|
1800 }
|
|
1801 /* Now iterate over B, and stop if we find something that's not in A,
|
|
1802 or that doesn't match. As we match, mark them. */
|
|
1803 for (rest = b; !NILP (rest); rest = XCDR (XCDR (rest)))
|
|
1804 {
|
|
1805 Lisp_Object k = XCAR (rest);
|
|
1806 Lisp_Object v = XCAR (XCDR (rest));
|
|
1807 /* Maybe be Ebolified. */
|
|
1808 if (nil_means_not_present && NILP (v)) continue;
|
|
1809 for (i = 0; i < fill; i++)
|
|
1810 {
|
|
1811 if (!laxp ? EQ (k, keys [i]) : internal_equal (k, keys [i], depth))
|
|
1812 {
|
|
1813 if ((eqp
|
|
1814 /* Ebolified here too, sigh ... */
|
|
1815 ? !HACKEQ_UNSAFE (v, vals [i])
|
|
1816 : !internal_equal (v, vals [i], depth)))
|
|
1817 /* a property in B has a different value than in A */
|
|
1818 goto MISMATCH;
|
|
1819 flags [i] = 1;
|
|
1820 break;
|
|
1821 }
|
|
1822 }
|
|
1823 if (i == fill)
|
|
1824 /* there are some properties in B that are not in A */
|
|
1825 goto MISMATCH;
|
|
1826 }
|
|
1827 /* Now check to see that all the properties in A were also in B */
|
|
1828 for (i = 0; i < fill; i++)
|
|
1829 if (flags [i] == 0)
|
|
1830 goto MISMATCH;
|
|
1831
|
|
1832 /* Ok. */
|
|
1833 return 0;
|
|
1834
|
|
1835 MISMATCH:
|
|
1836 return 1;
|
|
1837 }
|
|
1838
|
|
1839 DEFUN ("plists-eq", Fplists_eq, Splists_eq, 2, 3, 0 /*
|
|
1840 Return non-nil if property lists A and B are `eq'.
|
|
1841 A property list is an alternating list of keywords and values.
|
|
1842 This function does order-insensitive comparisons of the property lists:
|
|
1843 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1844 Comparison between values is done using `eq'. See also `plists-equal'.
|
|
1845 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1846 a nil value is ignored. This feature is a virus that has infected
|
|
1847 old Lisp implementations (and thus E-Lisp, due to RMS's enamorment with
|
|
1848 old Lisps), but should not be used except for backward compatibility.
|
|
1849 */ )
|
|
1850 (a, b, nil_means_not_present)
|
|
1851 Lisp_Object a, b, nil_means_not_present;
|
|
1852 {
|
|
1853 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, -1)
|
|
1854 ? Qnil : Qt);
|
|
1855 }
|
|
1856
|
|
1857 DEFUN ("plists-equal", Fplists_equal, Splists_equal, 2, 3, 0 /*
|
|
1858 Return non-nil if property lists A and B are `equal'.
|
|
1859 A property list is an alternating list of keywords and values. This
|
|
1860 function does order-insensitive comparisons of the property lists: For
|
|
1861 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1862 Comparison between values is done using `equal'. See also `plists-eq'.
|
|
1863 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1864 a nil value is ignored. This feature is a virus that has infected
|
|
1865 old Lisp implementations (and thus E-Lisp, due to RMS's enamorment with
|
|
1866 old Lisps), but should not be used except for backward compatibility.
|
|
1867 */ )
|
|
1868 (a, b, nil_means_not_present)
|
|
1869 Lisp_Object a, b, nil_means_not_present;
|
|
1870 {
|
|
1871 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, 1)
|
|
1872 ? Qnil : Qt);
|
|
1873 }
|
|
1874
|
|
1875
|
|
1876 DEFUN ("lax-plists-eq", Flax_plists_eq, Slax_plists_eq, 2, 3, 0 /*
|
|
1877 Return non-nil if lax property lists A and B are `eq'.
|
|
1878 A property list is an alternating list of keywords and values.
|
|
1879 This function does order-insensitive comparisons of the property lists:
|
|
1880 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1881 Comparison between values is done using `eq'. See also `plists-equal'.
|
|
1882 A lax property list is like a regular one except that comparisons between
|
|
1883 keywords is done using `equal' instead of `eq'.
|
|
1884 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1885 a nil value is ignored. This feature is a virus that has infected
|
|
1886 old Lisp implementations (and thus E-Lisp, due to RMS's enamorment with
|
|
1887 old Lisps), but should not be used except for backward compatibility.
|
|
1888 */ )
|
|
1889 (a, b, nil_means_not_present)
|
|
1890 Lisp_Object a, b, nil_means_not_present;
|
|
1891 {
|
|
1892 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, -1)
|
|
1893 ? Qnil : Qt);
|
|
1894 }
|
|
1895
|
|
1896 DEFUN ("lax-plists-equal", Flax_plists_equal, Slax_plists_equal, 2, 3, 0 /*
|
|
1897 Return non-nil if lax property lists A and B are `equal'.
|
|
1898 A property list is an alternating list of keywords and values. This
|
|
1899 function does order-insensitive comparisons of the property lists: For
|
|
1900 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1901 Comparison between values is done using `equal'. See also `plists-eq'.
|
|
1902 A lax property list is like a regular one except that comparisons between
|
|
1903 keywords is done using `equal' instead of `eq'.
|
|
1904 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1905 a nil value is ignored. This feature is a virus that has infected
|
|
1906 old Lisp implementations (and thus E-Lisp, due to RMS's enamorment with
|
|
1907 old Lisps), but should not be used except for backward compatibility.
|
|
1908 */ )
|
|
1909 (a, b, nil_means_not_present)
|
|
1910 Lisp_Object a, b, nil_means_not_present;
|
|
1911 {
|
|
1912 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, 1)
|
|
1913 ? Qnil : Qt);
|
|
1914 }
|
|
1915
|
|
1916 /* Return the value associated with key PROPERTY in property list PLIST.
|
|
1917 Return nil if key not found. This function is used for internal
|
|
1918 property lists that cannot be directly manipulated by the user.
|
|
1919 */
|
|
1920
|
|
1921 Lisp_Object
|
|
1922 internal_plist_get (Lisp_Object plist, Lisp_Object property)
|
|
1923 {
|
|
1924 Lisp_Object tail = plist;
|
|
1925
|
|
1926 for (; !NILP (tail); tail = XCDR (XCDR (tail)))
|
|
1927 {
|
|
1928 struct Lisp_Cons *c = XCONS (tail);
|
|
1929 if (EQ (c->car, property))
|
|
1930 return XCAR (c->cdr);
|
|
1931 }
|
|
1932
|
|
1933 return Qunbound;
|
|
1934 }
|
|
1935
|
|
1936 /* Set PLIST's value for PROPERTY to VALUE. Analogous to
|
|
1937 internal_plist_get(). */
|
|
1938
|
|
1939 void
|
|
1940 internal_plist_put (Lisp_Object *plist, Lisp_Object property,
|
|
1941 Lisp_Object value)
|
|
1942 {
|
|
1943 Lisp_Object tail = *plist;
|
|
1944
|
|
1945 for (; !NILP (tail); tail = XCDR (XCDR (tail)))
|
|
1946 {
|
|
1947 struct Lisp_Cons *c = XCONS (tail);
|
|
1948 if (EQ (c->car, property))
|
|
1949 {
|
|
1950 XCAR (c->cdr) = value;
|
|
1951 return;
|
|
1952 }
|
|
1953 }
|
|
1954
|
|
1955 *plist = Fcons (property, Fcons (value, *plist));
|
|
1956 }
|
|
1957
|
|
1958 int
|
|
1959 internal_remprop (Lisp_Object *plist, Lisp_Object property)
|
|
1960 {
|
|
1961 Lisp_Object tail = *plist;
|
|
1962
|
|
1963 if (NILP (tail))
|
|
1964 return 0;
|
|
1965
|
|
1966 if (EQ (XCAR (tail), property))
|
|
1967 {
|
|
1968 *plist = XCDR (XCDR (tail));
|
|
1969 return 1;
|
|
1970 }
|
|
1971
|
|
1972 for (tail = XCDR (tail); !NILP (XCDR (tail));
|
|
1973 tail = XCDR (XCDR (tail)))
|
|
1974 {
|
|
1975 struct Lisp_Cons *c = XCONS (tail);
|
|
1976 if (EQ (XCAR (c->cdr), property))
|
|
1977 {
|
|
1978 c->cdr = XCDR (XCDR (c->cdr));
|
|
1979 return 1;
|
|
1980 }
|
|
1981 }
|
|
1982
|
|
1983 return 0;
|
|
1984 }
|
|
1985
|
|
1986 /* Called on a malformed property list. BADPLACE should be some
|
|
1987 place where truncating will form a good list -- i.e. we shouldn't
|
|
1988 result in a list with an odd length. */
|
|
1989
|
|
1990 static Lisp_Object
|
|
1991 bad_bad_bunny (Lisp_Object *plist, Lisp_Object *badplace, Error_behavior errb)
|
|
1992 {
|
|
1993 if (ERRB_EQ (errb, ERROR_ME))
|
|
1994 return Fsignal (Qmalformed_property_list, list2 (*plist, *badplace));
|
|
1995 else
|
|
1996 {
|
|
1997 if (ERRB_EQ (errb, ERROR_ME_WARN))
|
|
1998 {
|
|
1999 warn_when_safe_lispobj
|
|
2000 (Qlist, Qwarning,
|
|
2001 list2 (build_string
|
|
2002 ("Malformed property list -- list has been truncated"),
|
|
2003 *plist));
|
|
2004 *badplace = Qnil;
|
|
2005 }
|
|
2006 return Qunbound;
|
|
2007 }
|
|
2008 }
|
|
2009
|
|
2010 /* Called on a circular property list. BADPLACE should be some place
|
|
2011 where truncating will result in an even-length list, as above.
|
|
2012 If doesn't particularly matter where we truncate -- anywhere we
|
|
2013 truncate along the entire list will break the circularity, because
|
|
2014 it will create a terminus and the list currently doesn't have one.
|
|
2015 */
|
|
2016
|
|
2017 static Lisp_Object
|
|
2018 bad_bad_turtle (Lisp_Object *plist, Lisp_Object *badplace, Error_behavior errb)
|
|
2019 {
|
|
2020 if (ERRB_EQ (errb, ERROR_ME))
|
|
2021 /* #### Eek, this will probably result in another error
|
|
2022 when PLIST is printed out */
|
|
2023 return Fsignal (Qcircular_property_list, list1 (*plist));
|
|
2024 else
|
|
2025 {
|
|
2026 if (ERRB_EQ (errb, ERROR_ME_WARN))
|
|
2027 {
|
|
2028 warn_when_safe_lispobj
|
|
2029 (Qlist, Qwarning,
|
|
2030 list2 (build_string
|
|
2031 ("Circular property list -- list has been truncated"),
|
|
2032 *plist));
|
|
2033 *badplace = Qnil;
|
|
2034 }
|
|
2035 return Qunbound;
|
|
2036 }
|
|
2037 }
|
|
2038
|
|
2039 /* Advance the tortoise pointer by two (one iteration of a property-list
|
|
2040 loop) and the hare pointer by four and verify that no malformations
|
|
2041 or circularities exist. If so, return zero and store a value into
|
|
2042 RETVAL that should be returned by the calling function. Otherwise,
|
|
2043 return 1. See external_plist_get().
|
|
2044 */
|
|
2045
|
|
2046 static int
|
|
2047 advance_plist_pointers (Lisp_Object *plist,
|
|
2048 Lisp_Object **tortoise, Lisp_Object **hare,
|
|
2049 Error_behavior errb, Lisp_Object *retval)
|
|
2050 {
|
|
2051 int i;
|
|
2052 Lisp_Object *tortsave = *tortoise;
|
|
2053
|
|
2054 /* Note that our "fixing" may be more brutal than necessary,
|
|
2055 but it's the user's own problem, not ours. if they went in and
|
|
2056 manually fucked up a plist. */
|
|
2057
|
|
2058 for (i = 0; i < 2; i++)
|
|
2059 {
|
|
2060 /* This is a standard iteration of a defensive-loop-checking
|
|
2061 loop. We just do it twice because we want to advance past
|
|
2062 both the property and its value.
|
|
2063
|
|
2064 If the pointer indirection is confusing you, remember that
|
|
2065 one level of indirection on the hare and tortoise pointers
|
|
2066 is only due to pass-by-reference for this function. The other
|
|
2067 level is so that the plist can be fixed in place. */
|
|
2068
|
|
2069 /* When we reach the end of a well-formed plist, **HARE is
|
|
2070 nil. In that case, we don't do anything at all except
|
|
2071 advance TORTOISE by one. Otherwise, we advance HARE
|
|
2072 by two (making sure it's OK to do so), then advance
|
|
2073 TORTOISE by one (it will always be OK to do so because
|
|
2074 the HARE is always ahead of the TORTOISE and will have
|
|
2075 already verified the path), then make sure TORTOISE and
|
|
2076 HARE don't contain the same non-nil object -- if the
|
|
2077 TORTOISE and the HARE ever meet, then obviously we're
|
|
2078 in a circularity, and if we're in a circularity, then
|
|
2079 the TORTOISE and the HARE can't cross paths without
|
|
2080 meeting, since the HARE only gains one step over the
|
|
2081 TORTOISE per iteration. */
|
|
2082
|
|
2083 if (!NILP (**hare))
|
|
2084 {
|
|
2085 Lisp_Object *haresave = *hare;
|
|
2086 if (!CONSP (**hare))
|
|
2087 {
|
|
2088 *retval = bad_bad_bunny (plist, haresave, errb);
|
|
2089 return 0;
|
|
2090 }
|
|
2091 *hare = &XCDR (**hare);
|
|
2092 /* In a non-plist, we'd check here for a nil value for
|
|
2093 **HARE, which is OK (it just means the list has an
|
|
2094 odd number of elements). In a plist, it's not OK
|
|
2095 for the list to have an odd number of elements. */
|
|
2096 if (!CONSP (**hare))
|
|
2097 {
|
|
2098 *retval = bad_bad_bunny (plist, haresave, errb);
|
|
2099 return 0;
|
|
2100 }
|
|
2101 *hare = &XCDR (**hare);
|
|
2102 }
|
|
2103
|
|
2104 *tortoise = &XCDR (**tortoise);
|
|
2105 if (!NILP (**hare) && EQ (**tortoise, **hare))
|
|
2106 {
|
|
2107 *retval = bad_bad_turtle (plist, tortsave, errb);
|
|
2108 return 0;
|
|
2109 }
|
|
2110 }
|
|
2111
|
|
2112 return 1;
|
|
2113 }
|
|
2114
|
|
2115 /* Return the value of PROPERTY from PLIST, or Qunbound if
|
|
2116 property is not on the list.
|
|
2117
|
|
2118 PLIST is a Lisp-accessible property list, meaning that it
|
|
2119 has to be checked for malformations and circularities.
|
|
2120
|
|
2121 If ERRB is ERROR_ME, an error will be signalled. Otherwise, the
|
|
2122 function will never signal an error; and if ERRB is ERROR_ME_WARN,
|
|
2123 on finding a malformation or a circularity, it issues a warning and
|
|
2124 attempts to silently fix the problem.
|
|
2125
|
|
2126 A pointer to PLIST is passed in so that PLIST can be successfully
|
|
2127 "fixed" even if the error is at the beginning of the plist. */
|
|
2128
|
|
2129 Lisp_Object
|
|
2130 external_plist_get (Lisp_Object *plist, Lisp_Object property,
|
|
2131 int laxp, Error_behavior errb)
|
|
2132 {
|
|
2133 Lisp_Object *tortoise = plist;
|
|
2134 Lisp_Object *hare = plist;
|
|
2135
|
|
2136 while (!NILP (*tortoise))
|
|
2137 {
|
|
2138 Lisp_Object *tortsave = tortoise;
|
|
2139 Lisp_Object retval;
|
|
2140
|
|
2141 /* We do the standard tortoise/hare march. We isolate the
|
|
2142 grungy stuff to do this in advance_plist_pointers(), though.
|
|
2143 To us, all this function does is advance the tortoise
|
|
2144 pointer by two and the hare pointer by four and make sure
|
|
2145 everything's OK. We first advance the pointers and then
|
|
2146 check if a property matched; this ensures that our
|
|
2147 check for a matching property is safe. */
|
|
2148
|
|
2149 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2150 return retval;
|
|
2151
|
|
2152 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2153 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2154 return XCAR (XCDR (*tortsave));
|
|
2155 }
|
|
2156
|
|
2157 return Qunbound;
|
|
2158 }
|
|
2159
|
|
2160 /* Set PLIST's value for PROPERTY to VALUE, given a possibly
|
|
2161 malformed or circular plist. Analogous to external_plist_get(). */
|
|
2162
|
|
2163 void
|
|
2164 external_plist_put (Lisp_Object *plist, Lisp_Object property,
|
|
2165 Lisp_Object value, int laxp, Error_behavior errb)
|
|
2166 {
|
|
2167 Lisp_Object *tortoise = plist;
|
|
2168 Lisp_Object *hare = plist;
|
|
2169
|
|
2170 while (!NILP (*tortoise))
|
|
2171 {
|
|
2172 Lisp_Object *tortsave = tortoise;
|
|
2173 Lisp_Object retval;
|
|
2174
|
|
2175 /* See above */
|
|
2176 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2177 return;
|
|
2178
|
|
2179 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2180 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2181 {
|
|
2182 XCAR (XCDR (*tortsave)) = value;
|
|
2183 return;
|
|
2184 }
|
|
2185 }
|
|
2186
|
|
2187 *plist = Fcons (property, Fcons (value, *plist));
|
|
2188 }
|
|
2189
|
|
2190 int
|
|
2191 external_remprop (Lisp_Object *plist, Lisp_Object property,
|
|
2192 int laxp, Error_behavior errb)
|
|
2193 {
|
|
2194 Lisp_Object *tortoise = plist;
|
|
2195 Lisp_Object *hare = plist;
|
|
2196
|
|
2197 while (!NILP (*tortoise))
|
|
2198 {
|
|
2199 Lisp_Object *tortsave = tortoise;
|
|
2200 Lisp_Object retval;
|
|
2201
|
|
2202 /* See above */
|
|
2203 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2204 return 0;
|
|
2205
|
|
2206 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2207 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2208 {
|
|
2209 /* Now you see why it's so convenient to have that level
|
|
2210 of indirection. */
|
|
2211 *tortsave = XCDR (XCDR (*tortsave));
|
|
2212 return 1;
|
|
2213 }
|
|
2214 }
|
|
2215
|
|
2216 return 0;
|
|
2217 }
|
|
2218
|
|
2219 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 3, 0 /*
|
|
2220 Extract a value from a property list.
|
|
2221 PLIST is a property list, which is a list of the form
|
|
2222 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
|
|
2223 corresponding to the given PROP, or DEFAULT if PROP is not
|
|
2224 one of the properties on the list.
|
|
2225 */ )
|
|
2226 (plist, prop, defalt) /* Cant spel in C */
|
|
2227 Lisp_Object plist, prop, defalt;
|
|
2228 {
|
|
2229 Lisp_Object val = external_plist_get (&plist, prop, 0, ERROR_ME);
|
|
2230 if (UNBOUNDP (val))
|
|
2231 return defalt;
|
|
2232 return val;
|
|
2233 }
|
|
2234
|
|
2235 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0 /*
|
|
2236 Change value in PLIST of PROP to VAL.
|
|
2237 PLIST is a property list, which is a list of the form \(PROP1 VALUE1
|
|
2238 PROP2 VALUE2 ...). PROP is usually a symbol and VAL is any object.
|
|
2239 If PROP is already a property on the list, its value is set to VAL,
|
|
2240 otherwise the new PROP VAL pair is added. The new plist is returned;
|
|
2241 use `(setq x (plist-put x prop val))' to be sure to use the new value.
|
|
2242 The PLIST is modified by side effects.
|
|
2243 */ )
|
|
2244 (plist, prop, val)
|
|
2245 Lisp_Object plist, prop, val;
|
|
2246 {
|
|
2247 external_plist_put (&plist, prop, val, 0, ERROR_ME);
|
|
2248 return plist;
|
|
2249 }
|
|
2250
|
|
2251 DEFUN ("plist-remprop", Fplist_remprop, Splist_remprop, 2, 2, 0 /*
|
|
2252 Remove from PLIST the property PROP and its value.
|
|
2253 PLIST is a property list, which is a list of the form \(PROP1 VALUE1
|
|
2254 PROP2 VALUE2 ...). PROP is usually a symbol. The new plist is
|
|
2255 returned; use `(setq x (plist-remprop x prop val))' to be sure to use
|
|
2256 the new value. The PLIST is modified by side effects.
|
|
2257 */ )
|
|
2258 (plist, prop)
|
|
2259 Lisp_Object plist, prop;
|
|
2260 {
|
|
2261 external_remprop (&plist, prop, 0, ERROR_ME);
|
|
2262 return plist;
|
|
2263 }
|
|
2264
|
|
2265 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0 /*
|
|
2266 Return t if PROP has a value specified in PLIST.
|
|
2267 */ )
|
|
2268 (plist, prop)
|
|
2269 Lisp_Object plist, prop;
|
|
2270 {
|
|
2271 return UNBOUNDP (Fplist_get (plist, prop, Qunbound)) ? Qnil : Qt;
|
|
2272 }
|
|
2273
|
|
2274 DEFUN ("check-valid-plist", Fcheck_valid_plist, Scheck_valid_plist,
|
|
2275 1, 1, 0 /*
|
|
2276 Given a plist, signal an error if there is anything wrong with it.
|
|
2277 This means that it's a malformed or circular plist.
|
|
2278 */ )
|
|
2279 (plist)
|
|
2280 Lisp_Object plist;
|
|
2281 {
|
|
2282 Lisp_Object *tortoise;
|
|
2283 Lisp_Object *hare;
|
|
2284
|
|
2285 start_over:
|
|
2286 tortoise = &plist;
|
|
2287 hare = &plist;
|
|
2288 while (!NILP (*tortoise))
|
|
2289 {
|
|
2290 Lisp_Object retval;
|
|
2291
|
|
2292 /* See above */
|
|
2293 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME,
|
|
2294 &retval))
|
|
2295 goto start_over;
|
|
2296 }
|
|
2297
|
|
2298 return Qnil;
|
|
2299 }
|
|
2300
|
|
2301 DEFUN ("valid-plist-p", Fvalid_plist_p, Svalid_plist_p,
|
|
2302 1, 1, 0 /*
|
|
2303 Given a plist, return non-nil if its format is correct.
|
|
2304 If it returns nil, `check-valid-plist' will signal an error when given
|
|
2305 the plist; that means it's a malformed or circular plist or has non-symbols
|
|
2306 as keywords.
|
|
2307 */ )
|
|
2308 (plist)
|
|
2309 Lisp_Object plist;
|
|
2310 {
|
|
2311 Lisp_Object *tortoise;
|
|
2312 Lisp_Object *hare;
|
|
2313
|
|
2314 tortoise = &plist;
|
|
2315 hare = &plist;
|
|
2316 while (!NILP (*tortoise))
|
|
2317 {
|
|
2318 Lisp_Object retval;
|
|
2319
|
|
2320 /* See above */
|
|
2321 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME_NOT,
|
|
2322 &retval))
|
|
2323 return Qnil;
|
|
2324 }
|
|
2325
|
|
2326 return Qt;
|
|
2327 }
|
|
2328
|
|
2329 DEFUN ("canonicalize-plist", Fcanonicalize_plist, Scanonicalize_plist,
|
|
2330 1, 2, 0 /*
|
|
2331 Destructively remove any duplicate entries from a plist.
|
|
2332 In such cases, the first entry applies.
|
|
2333
|
|
2334 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2335 a nil value is removed. This feature is a virus that has infected
|
|
2336 old Lisp implementations (and thus E-Lisp, due to RMS's enamorment with
|
|
2337 old Lisps), but should not be used except for backward compatibility.
|
|
2338
|
|
2339 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the
|
|
2340 return value may not be EQ to the passed-in value, so make sure to
|
|
2341 `setq' the value back into where it came from.
|
|
2342 */ )
|
|
2343 (plist, nil_means_not_present)
|
|
2344 Lisp_Object plist, nil_means_not_present;
|
|
2345 {
|
|
2346 Lisp_Object head = plist;
|
|
2347
|
|
2348 Fcheck_valid_plist (plist);
|
|
2349
|
|
2350 while (!NILP (plist))
|
|
2351 {
|
|
2352 Lisp_Object prop = Fcar (plist);
|
|
2353 Lisp_Object next = Fcdr (plist);
|
|
2354
|
|
2355 CHECK_CONS (next); /* just make doubly sure we catch any errors */
|
|
2356 if (!NILP (nil_means_not_present) && NILP (Fcar (next)))
|
|
2357 {
|
|
2358 if (EQ (head, plist))
|
|
2359 head = Fcdr (next);
|
|
2360 plist = Fcdr (next);
|
|
2361 continue;
|
|
2362 }
|
|
2363 /* external_remprop returns 1 if it removed any property.
|
|
2364 We have to loop till it didn't remove anything, in case
|
|
2365 the property occurs many times. */
|
|
2366 while (external_remprop (&XCDR (next), prop, 0, ERROR_ME));
|
|
2367 plist = Fcdr (next);
|
|
2368 }
|
|
2369
|
|
2370 return head;
|
|
2371 }
|
|
2372
|
|
2373 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 3, 0 /*
|
|
2374 Extract a value from a lax property list.
|
|
2375
|
|
2376 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
|
2377 VALUE1 PROP2 VALUE2...), where comparions between properties is done
|
|
2378 using `equal' instead of `eq'. This function returns the value
|
|
2379 corresponding to the given PROP, or DEFAULT if PROP is not one of the
|
|
2380 properties on the list.
|
|
2381 */ )
|
|
2382 (lax_plist, prop, defalt) /* Cant spel in C */
|
|
2383 Lisp_Object lax_plist, prop, defalt;
|
|
2384 {
|
|
2385 Lisp_Object val = external_plist_get (&lax_plist, prop, 1, ERROR_ME);
|
|
2386 if (UNBOUNDP (val))
|
|
2387 return defalt;
|
|
2388 return val;
|
|
2389 }
|
|
2390
|
|
2391 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0 /*
|
|
2392 Change value in LAX-PLIST of PROP to VAL.
|
|
2393 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
|
2394 VALUE1 PROP2 VALUE2...), where comparions between properties is done
|
|
2395 using `equal' instead of `eq'. PROP is usually a symbol and VAL is
|
|
2396 any object. If PROP is already a property on the list, its value is
|
|
2397 set to VAL, otherwise the new PROP VAL pair is added. The new plist
|
|
2398 is returned; use `(setq x (lax-plist-put x prop val))' to be sure to
|
|
2399 use the new value. The LAX-PLIST is modified by side effects.
|
|
2400 */ )
|
|
2401 (lax_plist, prop, val)
|
|
2402 Lisp_Object lax_plist, prop, val;
|
|
2403 {
|
|
2404 external_plist_put (&lax_plist, prop, val, 1, ERROR_ME);
|
|
2405 return lax_plist;
|
|
2406 }
|
|
2407
|
|
2408 DEFUN ("lax-plist-remprop", Flax_plist_remprop, Slax_plist_remprop, 2, 2, 0 /*
|
|
2409 Remove from LAX-PLIST the property PROP and its value.
|
|
2410 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
|
2411 VALUE1 PROP2 VALUE2...), where comparions between properties is done
|
|
2412 using `equal' instead of `eq'. PROP is usually a symbol. The new
|
|
2413 plist is returned; use `(setq x (lax-plist-remprop x prop val))' to be
|
|
2414 sure to use the new value. The LAX-PLIST is modified by side effects.
|
|
2415 */ )
|
|
2416 (lax_plist, prop)
|
|
2417 Lisp_Object lax_plist, prop;
|
|
2418 {
|
|
2419 external_remprop (&lax_plist, prop, 1, ERROR_ME);
|
|
2420 return lax_plist;
|
|
2421 }
|
|
2422
|
|
2423 DEFUN ("lax-plist-member", Flax_plist_member, Slax_plist_member, 2, 2, 0 /*
|
|
2424 Return t if PROP has a value specified in LAX-PLIST.
|
|
2425 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
|
2426 VALUE1 PROP2 VALUE2...), where comparions between properties is done
|
|
2427 using `equal' instead of `eq'.
|
|
2428 */ )
|
|
2429 (lax_plist, prop)
|
|
2430 Lisp_Object lax_plist, prop;
|
|
2431 {
|
|
2432 return UNBOUNDP (Flax_plist_get (lax_plist, prop, Qunbound)) ? Qnil : Qt;
|
|
2433 }
|
|
2434
|
|
2435 DEFUN ("canonicalize-lax-plist", Fcanonicalize_lax_plist,
|
|
2436 Scanonicalize_lax_plist, 1, 2, 0 /*
|
|
2437 Destructively remove any duplicate entries from a lax plist.
|
|
2438 In such cases, the first entry applies.
|
|
2439
|
|
2440 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2441 a nil value is removed. This feature is a virus that has infected
|
|
2442 old Lisp implementations (and thus E-Lisp, due to RMS's enamorment with
|
|
2443 old Lisps), but should not be used except for backward compatibility.
|
|
2444
|
|
2445 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the
|
|
2446 return value may not be EQ to the passed-in value, so make sure to
|
|
2447 `setq' the value back into where it came from.
|
|
2448 */ )
|
|
2449 (lax_plist, nil_means_not_present)
|
|
2450 Lisp_Object lax_plist, nil_means_not_present;
|
|
2451 {
|
|
2452 Lisp_Object head = lax_plist;
|
|
2453
|
|
2454 Fcheck_valid_plist (lax_plist);
|
|
2455
|
|
2456 while (!NILP (lax_plist))
|
|
2457 {
|
|
2458 Lisp_Object prop = Fcar (lax_plist);
|
|
2459 Lisp_Object next = Fcdr (lax_plist);
|
|
2460
|
|
2461 CHECK_CONS (next); /* just make doubly sure we catch any errors */
|
|
2462 if (!NILP (nil_means_not_present) && NILP (Fcar (next)))
|
|
2463 {
|
|
2464 if (EQ (head, lax_plist))
|
|
2465 head = Fcdr (next);
|
|
2466 lax_plist = Fcdr (next);
|
|
2467 continue;
|
|
2468 }
|
|
2469 /* external_remprop returns 1 if it removed any property.
|
|
2470 We have to loop till it didn't remove anything, in case
|
|
2471 the property occurs many times. */
|
|
2472 while (external_remprop (&XCDR (next), prop, 1, ERROR_ME));
|
|
2473 lax_plist = Fcdr (next);
|
|
2474 }
|
|
2475
|
|
2476 return head;
|
|
2477 }
|
|
2478
|
|
2479 /* In C because the frame props stuff uses it */
|
|
2480
|
|
2481 DEFUN ("destructive-alist-to-plist", Fdestructive_alist_to_plist,
|
|
2482 Sdestructive_alist_to_plist, 1, 1, 0 /*
|
|
2483 Convert association list ALIST into the equivalent property-list form.
|
|
2484 The plist is returned. This converts from
|
|
2485
|
|
2486 \((a . 1) (b . 2) (c . 3))
|
|
2487
|
|
2488 into
|
|
2489
|
|
2490 \(a 1 b 2 c 3)
|
|
2491
|
|
2492 The original alist is destroyed in the process of constructing the plist.
|
|
2493 See also `alist-to-plist'.
|
|
2494 */ )
|
|
2495 (alist)
|
|
2496 Lisp_Object alist;
|
|
2497 {
|
|
2498 Lisp_Object head = alist;
|
|
2499 while (!NILP (alist))
|
|
2500 {
|
|
2501 /* remember the alist element. */
|
|
2502 Lisp_Object el = Fcar (alist);
|
|
2503
|
|
2504 Fsetcar (alist, Fcar (el));
|
|
2505 Fsetcar (el, Fcdr (el));
|
|
2506 Fsetcdr (el, Fcdr (alist));
|
|
2507 Fsetcdr (alist, el);
|
|
2508 alist = Fcdr (Fcdr (alist));
|
|
2509 }
|
|
2510
|
|
2511 return head;
|
|
2512 }
|
|
2513
|
|
2514 /* Symbol plists are directly accessible, so we need to protect against
|
|
2515 invalid property list structure */
|
|
2516
|
|
2517 static Lisp_Object
|
|
2518 symbol_getprop (Lisp_Object sym, Lisp_Object propname, Lisp_Object defalt)
|
|
2519 {
|
|
2520 Lisp_Object val = external_plist_get (&XSYMBOL (sym)->plist, propname,
|
|
2521 0, ERROR_ME);
|
|
2522 if (UNBOUNDP (val))
|
|
2523 return defalt;
|
|
2524 return val;
|
|
2525 }
|
|
2526
|
|
2527 static void
|
|
2528 symbol_putprop (Lisp_Object sym, Lisp_Object propname, Lisp_Object value)
|
|
2529 {
|
|
2530 external_plist_put (&XSYMBOL (sym)->plist, propname, value, 0, ERROR_ME);
|
|
2531 }
|
|
2532
|
|
2533 static int
|
|
2534 symbol_remprop (Lisp_Object symbol, Lisp_Object propname)
|
|
2535 {
|
|
2536 return external_remprop (&XSYMBOL (symbol)->plist, propname, 0, ERROR_ME);
|
|
2537 }
|
|
2538
|
|
2539 /* We store the string's extent info as the first element of the string's
|
|
2540 property list; and the string's MODIFF as the first or second element
|
|
2541 of the string's property list (depending on whether the extent info
|
|
2542 is present), but only if the string has been modified. This is ugly
|
|
2543 but it reduces the memory allocated for the string in the vast
|
|
2544 majority of cases, where the string is never modified and has no
|
|
2545 extent info. */
|
|
2546
|
|
2547
|
|
2548 static Lisp_Object *
|
|
2549 string_plist_ptr (struct Lisp_String *s)
|
|
2550 {
|
|
2551 Lisp_Object *ptr = &s->plist;
|
|
2552
|
|
2553 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
|
|
2554 ptr = &XCDR (*ptr);
|
|
2555 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
|
|
2556 ptr = &XCDR (*ptr);
|
|
2557 return ptr;
|
|
2558 }
|
|
2559
|
|
2560 Lisp_Object
|
|
2561 string_getprop (struct Lisp_String *s, Lisp_Object property,
|
|
2562 Lisp_Object defalt)
|
|
2563 {
|
|
2564 Lisp_Object val = external_plist_get (string_plist_ptr (s), property, 0,
|
|
2565 ERROR_ME);
|
|
2566 if (UNBOUNDP (val))
|
|
2567 return defalt;
|
|
2568 return val;
|
|
2569 }
|
|
2570
|
|
2571 void
|
|
2572 string_putprop (struct Lisp_String *s, Lisp_Object property,
|
|
2573 Lisp_Object value)
|
|
2574 {
|
|
2575 external_plist_put (string_plist_ptr (s), property, value, 0, ERROR_ME);
|
|
2576 }
|
|
2577
|
|
2578 static int
|
|
2579 string_remprop (struct Lisp_String *s, Lisp_Object property)
|
|
2580 {
|
|
2581 return external_remprop (string_plist_ptr (s), property, 0, ERROR_ME);
|
|
2582 }
|
|
2583
|
|
2584 static Lisp_Object
|
|
2585 string_plist (struct Lisp_String *s)
|
|
2586 {
|
|
2587 return *string_plist_ptr (s);
|
|
2588 }
|
|
2589
|
|
2590 DEFUN ("get", Fget, Sget, 2, 3, 0 /*
|
|
2591 Return the value of OBJECT's PROPNAME property.
|
|
2592 This is the last VALUE stored with `(put OBJECT PROPNAME VALUE)'.
|
|
2593 If there is no such property, return optional third arg DEFAULT
|
|
2594 (which defaults to `nil'). OBJECT can be a symbol, face, extent,
|
|
2595 or string. See also `put', `remprop', and `object-plist'.
|
|
2596 */ )
|
|
2597 (object, propname, defalt) /* Cant spel in C */
|
|
2598 Lisp_Object object, propname, defalt;
|
|
2599 {
|
|
2600 Lisp_Object val;
|
|
2601
|
|
2602 /* Various places in emacs call Fget() and expect it not to quit,
|
|
2603 so don't quit. */
|
|
2604
|
|
2605 /* It's easiest to treat symbols specially because they may not
|
|
2606 be an lrecord */
|
|
2607 if (SYMBOLP (object))
|
|
2608 val = symbol_getprop (object, propname, defalt);
|
|
2609 else if (STRINGP (object))
|
|
2610 val = string_getprop (XSTRING (object), propname, defalt);
|
|
2611 else if (LRECORDP (object))
|
|
2612 {
|
|
2613 CONST struct lrecord_implementation
|
|
2614 *imp = XRECORD_LHEADER (object)->implementation;
|
|
2615 if (imp->getprop)
|
|
2616 {
|
|
2617 val = (imp->getprop) (object, propname);
|
|
2618 if (UNBOUNDP (val))
|
|
2619 val = defalt;
|
|
2620 }
|
|
2621 else
|
|
2622 goto noprops;
|
|
2623 }
|
|
2624 else
|
|
2625 {
|
|
2626 noprops:
|
|
2627 signal_simple_error ("Object type has no properties", object);
|
|
2628 }
|
|
2629
|
|
2630 return val;
|
|
2631 }
|
|
2632
|
|
2633 DEFUN ("put", Fput, Sput, 3, 3, 0 /*
|
|
2634 Store OBJECT's PROPNAME property with value VALUE.
|
|
2635 It can be retrieved with `(get OBJECT PROPNAME)'. OBJECT can be a
|
|
2636 symbol, face, extent, or string.
|
|
2637
|
|
2638 For a string, no properties currently have predefined meanings.
|
|
2639 For the predefined properties for extents, see `set-extent-property'.
|
|
2640 For the predefined properties for faces, see `set-face-property'.
|
|
2641
|
|
2642 See also `get', `remprop', and `object-plist'.
|
|
2643 */ )
|
|
2644 (object, propname, value)
|
|
2645 Lisp_Object object;
|
|
2646 Lisp_Object propname;
|
|
2647 Lisp_Object value;
|
|
2648 {
|
|
2649 CHECK_SYMBOL (propname);
|
|
2650 CHECK_IMPURE (object);
|
|
2651
|
|
2652 if (SYMBOLP (object))
|
|
2653 symbol_putprop (object, propname, value);
|
|
2654 else if (STRINGP (object))
|
|
2655 string_putprop (XSTRING (object), propname, value);
|
|
2656 else if (LRECORDP (object))
|
|
2657 {
|
|
2658 CONST struct lrecord_implementation
|
|
2659 *imp = XRECORD_LHEADER (object)->implementation;
|
|
2660 if (imp->putprop)
|
|
2661 {
|
|
2662 if (! (imp->putprop) (object, propname, value))
|
|
2663 signal_simple_error ("Can't set property on object", propname);
|
|
2664 }
|
|
2665 else
|
|
2666 goto noprops;
|
|
2667 }
|
|
2668 else
|
|
2669 {
|
|
2670 noprops:
|
|
2671 signal_simple_error ("Object type has no settable properties", object);
|
|
2672 }
|
|
2673
|
|
2674 return value;
|
|
2675 }
|
|
2676
|
|
2677 void
|
|
2678 pure_put (Lisp_Object sym, Lisp_Object prop, Lisp_Object val)
|
|
2679 {
|
|
2680 Fput (sym, prop, Fpurecopy (val));
|
|
2681 }
|
|
2682
|
|
2683 DEFUN ("remprop", Fremprop, Sremprop, 2, 2, 0 /*
|
|
2684 Remove from OBJECT's property list the property PROPNAME and its
|
|
2685 value. OBJECT can be a symbol, face, extent, or string. Returns
|
|
2686 non-nil if the property list was actually changed (i.e. if PROPNAME
|
|
2687 was present in the property list). See also `get', `put', and
|
|
2688 `object-plist'.
|
|
2689 */ )
|
|
2690 (object, propname)
|
|
2691 Lisp_Object object, propname;
|
|
2692 {
|
|
2693 int retval = 0;
|
|
2694
|
|
2695 CHECK_SYMBOL (propname);
|
|
2696 CHECK_IMPURE (object);
|
|
2697
|
|
2698 if (SYMBOLP (object))
|
|
2699 retval = symbol_remprop (object, propname);
|
|
2700 else if (STRINGP (object))
|
|
2701 retval = string_remprop (XSTRING (object), propname);
|
|
2702 else if (LRECORDP (object))
|
|
2703 {
|
|
2704 CONST struct lrecord_implementation
|
|
2705 *imp = XRECORD_LHEADER (object)->implementation;
|
|
2706 if (imp->remprop)
|
|
2707 {
|
|
2708 retval = (imp->remprop) (object, propname);
|
|
2709 if (retval == -1)
|
|
2710 signal_simple_error ("Can't remove property from object",
|
|
2711 propname);
|
|
2712 }
|
|
2713 else
|
|
2714 goto noprops;
|
|
2715 }
|
|
2716 else
|
|
2717 {
|
|
2718 noprops:
|
|
2719 signal_simple_error ("Object type has no removable properties", object);
|
|
2720 }
|
|
2721
|
|
2722 return retval ? Qt : Qnil;
|
|
2723 }
|
|
2724
|
|
2725 DEFUN ("object-plist", Fobject_plist, Sobject_plist, 1, 1, 0 /*
|
|
2726 Return a property list of OBJECT's props.
|
|
2727 For a symbol this is equivalent to `symbol-plist'.
|
|
2728 Do not modify the property list directly; this may or may not have
|
|
2729 the desired effects. (In particular, for a property with a special
|
|
2730 interpretation, this will probably have no effect at all.)
|
|
2731 */ )
|
|
2732 (object)
|
|
2733 Lisp_Object object;
|
|
2734 {
|
|
2735 if (SYMBOLP (object))
|
|
2736 return Fsymbol_plist (object);
|
|
2737 else if (STRINGP (object))
|
|
2738 return string_plist (XSTRING (object));
|
|
2739 else if (LRECORDP (object))
|
|
2740 {
|
|
2741 CONST struct lrecord_implementation
|
|
2742 *imp = XRECORD_LHEADER (object)->implementation;
|
|
2743 if (imp->plist)
|
|
2744 return (imp->plist) (object);
|
|
2745 else
|
|
2746 signal_simple_error ("Object type has no properties", object);
|
|
2747 }
|
|
2748 else
|
|
2749 signal_simple_error ("Object type has no properties", object);
|
|
2750
|
|
2751 return Qnil;
|
|
2752 }
|
|
2753
|
|
2754
|
|
2755 int
|
|
2756 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth)
|
|
2757 {
|
|
2758 if (depth > 200)
|
|
2759 error ("Stack overflow in equal");
|
|
2760 do_cdr:
|
|
2761 QUIT;
|
|
2762 if (HACKEQ_UNSAFE (o1, o2))
|
|
2763 return (1);
|
|
2764 /* Note that (equal 20 20.0) should be nil */
|
|
2765 else if (XTYPE (o1) != XTYPE (o2))
|
|
2766 return (0);
|
|
2767 else if (CONSP (o1))
|
|
2768 {
|
|
2769 if (!internal_equal (Fcar (o1), Fcar (o2), depth + 1))
|
|
2770 return (0);
|
|
2771 o1 = Fcdr (o1);
|
|
2772 o2 = Fcdr (o2);
|
|
2773 goto do_cdr;
|
|
2774 }
|
|
2775
|
|
2776 #ifndef LRECORD_VECTOR
|
|
2777 else if (VECTORP (o1))
|
|
2778 {
|
|
2779 int indecks;
|
|
2780 int len = vector_length (XVECTOR (o1));
|
|
2781 if (len != vector_length (XVECTOR (o2)))
|
|
2782 return (0);
|
|
2783 for (indecks = 0; indecks < len; indecks++)
|
|
2784 {
|
|
2785 Lisp_Object v1, v2;
|
|
2786 v1 = vector_data (XVECTOR (o1)) [indecks];
|
|
2787 v2 = vector_data (XVECTOR (o2)) [indecks];
|
|
2788 if (!internal_equal (v1, v2, depth + 1))
|
|
2789 return (0);
|
|
2790 }
|
|
2791 return (1);
|
|
2792 }
|
|
2793 #endif /* !LRECORD_VECTOR */
|
|
2794 else if (STRINGP (o1))
|
|
2795 {
|
14
|
2796 Bytecount len = XSTRING_LENGTH (o1);
|
|
2797 if (len != XSTRING_LENGTH (o2))
|
0
|
2798 return (0);
|
14
|
2799 if (memcmp (XSTRING_DATA (o1), XSTRING_DATA (o2), len))
|
0
|
2800 return (0);
|
|
2801 return (1);
|
|
2802 }
|
|
2803 else if (LRECORDP (o1))
|
|
2804 {
|
|
2805 CONST struct lrecord_implementation
|
|
2806 *imp1 = XRECORD_LHEADER (o1)->implementation,
|
|
2807 *imp2 = XRECORD_LHEADER (o2)->implementation;
|
|
2808 if (imp1 != imp2)
|
|
2809 return (0);
|
|
2810 else if (imp1->equal == 0)
|
|
2811 /* EQ-ness of the objects was noticed above */
|
|
2812 return (0);
|
|
2813 else
|
|
2814 return ((imp1->equal) (o1, o2, depth));
|
|
2815 }
|
|
2816
|
|
2817 return (0);
|
|
2818 }
|
|
2819
|
|
2820 DEFUN ("equal", Fequal, Sequal, 2, 2, 0 /*
|
|
2821 T if two Lisp objects have similar structure and contents.
|
|
2822 They must have the same data type.
|
|
2823 Conses are compared by comparing the cars and the cdrs.
|
|
2824 Vectors and strings are compared element by element.
|
|
2825 Numbers are compared by value. Symbols must match exactly.
|
|
2826 */ )
|
|
2827 (o1, o2)
|
|
2828 Lisp_Object o1, o2;
|
|
2829 {
|
|
2830 return ((internal_equal (o1, o2, 0)) ? Qt : Qnil);
|
|
2831 }
|
|
2832
|
|
2833
|
|
2834 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0 /*
|
|
2835 Store each element of ARRAY with ITEM.
|
|
2836 ARRAY is a vector, bit vector, or string.
|
|
2837 */ )
|
|
2838 (array, item)
|
|
2839 Lisp_Object array, item;
|
|
2840 {
|
|
2841 retry:
|
10
|
2842 if (STRINGP (array))
|
|
2843 {
|
|
2844 Charcount size;
|
|
2845 Charcount i;
|
|
2846 Emchar charval;
|
|
2847 struct Lisp_String *s;
|
|
2848 CHECK_CHAR_COERCE_INT (item);
|
|
2849 CHECK_IMPURE (array);
|
|
2850 charval = XCHAR (item);
|
|
2851 s = XSTRING (array);
|
|
2852 size = string_char_length (s);
|
|
2853 for (i = 0; i < size; i++)
|
|
2854 set_string_char (s, i, charval);
|
|
2855 bump_string_modiff (array);
|
|
2856 }
|
|
2857 else if (VECTORP (array))
|
0
|
2858 {
|
|
2859 Lisp_Object *p;
|
|
2860 int size;
|
10
|
2861 int i;
|
0
|
2862 CHECK_IMPURE (array);
|
|
2863 size = vector_length (XVECTOR (array));
|
|
2864 p = vector_data (XVECTOR (array));
|
10
|
2865 for (i = 0; i < size; i++)
|
|
2866 p[i] = item;
|
0
|
2867 }
|
10
|
2868 else if (BIT_VECTORP (array))
|
0
|
2869 {
|
|
2870 struct Lisp_Bit_Vector *v;
|
|
2871 int size;
|
10
|
2872 int i;
|
0
|
2873 CHECK_BIT (item);
|
|
2874 CHECK_IMPURE (array);
|
|
2875 v = XBIT_VECTOR (array);
|
|
2876 size = bit_vector_length (v);
|
10
|
2877 for (i = 0; i < size; i++)
|
|
2878 set_bit_vector_bit (v, i, XINT (item));
|
0
|
2879 }
|
|
2880 else
|
|
2881 {
|
|
2882 array = wrong_type_argument (Qarrayp, array);
|
|
2883 goto retry;
|
|
2884 }
|
|
2885 return array;
|
|
2886 }
|
|
2887
|
|
2888 Lisp_Object
|
|
2889 nconc2 (Lisp_Object s1, Lisp_Object s2)
|
|
2890 {
|
|
2891 Lisp_Object args[2];
|
|
2892 args[0] = s1;
|
|
2893 args[1] = s2;
|
|
2894 return Fnconc (2, args);
|
|
2895 }
|
|
2896
|
|
2897 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0 /*
|
|
2898 Concatenate any number of lists by altering them.
|
|
2899 Only the last argument is not altered, and need not be a list.
|
|
2900 */ )
|
|
2901 (nargs, args)
|
|
2902 int nargs;
|
|
2903 Lisp_Object *args;
|
|
2904 {
|
|
2905 int argnum;
|
|
2906 Lisp_Object tail, tem, val;
|
|
2907 struct gcpro gcpro1;
|
|
2908
|
|
2909 /* The modus operandi in Emacs is "caller gc-protects args".
|
|
2910 However, nconc (particularly nconc2 ()) is called many times
|
|
2911 in Emacs on freshly created stuff (e.g. you see the idiom
|
|
2912 nconc2 (Fcopy_sequence (foo), bar) a lot). So we help those
|
|
2913 callers out by protecting the args ourselves to save them
|
|
2914 a lot of temporary-variable grief. */
|
|
2915
|
|
2916 GCPRO1 (args[0]);
|
|
2917 gcpro1.nvars = nargs;
|
|
2918
|
|
2919 val = Qnil;
|
|
2920
|
|
2921 for (argnum = 0; argnum < nargs; argnum++)
|
|
2922 {
|
|
2923 tem = args[argnum];
|
|
2924 if (NILP (tem)) continue;
|
|
2925
|
|
2926 if (NILP (val))
|
|
2927 val = tem;
|
|
2928
|
|
2929 if (argnum + 1 == nargs) break;
|
|
2930
|
|
2931 if (!CONSP (tem))
|
|
2932 tem = wrong_type_argument (Qlistp, tem);
|
|
2933
|
|
2934 while (CONSP (tem))
|
|
2935 {
|
|
2936 tail = tem;
|
|
2937 tem = Fcdr (tail);
|
|
2938 QUIT;
|
|
2939 }
|
|
2940
|
|
2941 tem = args[argnum + 1];
|
|
2942 Fsetcdr (tail, tem);
|
|
2943 if (NILP (tem))
|
|
2944 args[argnum + 1] = tail;
|
|
2945 }
|
|
2946
|
|
2947 RETURN_UNGCPRO (val);
|
|
2948 }
|
|
2949
|
|
2950
|
|
2951 /* This is the guts of all mapping functions.
|
|
2952 Apply fn to each element of seq, one by one,
|
|
2953 storing the results into elements of vals, a C vector of Lisp_Objects.
|
|
2954 leni is the length of vals, which should also be the length of seq.
|
|
2955
|
|
2956 If VALS is a null pointer, do not accumulate the results. */
|
|
2957
|
|
2958 static void
|
|
2959 mapcar1 (int leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
|
|
2960 {
|
|
2961 Lisp_Object tail;
|
|
2962 Lisp_Object dummy = Qnil;
|
|
2963 int i;
|
|
2964 struct gcpro gcpro1, gcpro2, gcpro3;
|
|
2965 Lisp_Object result;
|
|
2966
|
|
2967 GCPRO3 (dummy, fn, seq);
|
|
2968
|
|
2969 if (vals)
|
|
2970 {
|
|
2971 /* Don't let vals contain any garbage when GC happens. */
|
|
2972 for (i = 0; i < leni; i++)
|
|
2973 vals[i] = Qnil;
|
|
2974 gcpro1.var = vals;
|
|
2975 gcpro1.nvars = leni;
|
|
2976 }
|
|
2977
|
|
2978 /* We need not explicitly protect `tail' because it is used only on
|
|
2979 lists, and 1) lists are not relocated and 2) the list is marked
|
|
2980 via `seq' so will not be freed */
|
|
2981
|
|
2982 if (VECTORP (seq))
|
|
2983 {
|
|
2984 for (i = 0; i < leni; i++)
|
|
2985 {
|
|
2986 dummy = vector_data (XVECTOR (seq))[i];
|
|
2987 result = call1 (fn, dummy);
|
|
2988 if (vals)
|
|
2989 vals[i] = result;
|
|
2990 }
|
|
2991 }
|
|
2992 else if (BIT_VECTORP (seq))
|
|
2993 {
|
|
2994 struct Lisp_Bit_Vector *v = XBIT_VECTOR (seq);
|
|
2995 for (i = 0; i < leni; i++)
|
|
2996 {
|
|
2997 XSETINT (dummy, bit_vector_bit (v, i));
|
|
2998 result = call1 (fn, dummy);
|
|
2999 if (vals)
|
|
3000 vals[i] = result;
|
|
3001 }
|
|
3002 }
|
|
3003 else if (STRINGP (seq))
|
|
3004 {
|
|
3005 for (i = 0; i < leni; i++)
|
|
3006 {
|
|
3007 result = call1 (fn, make_char (string_char (XSTRING (seq), i)));
|
|
3008 if (vals)
|
|
3009 vals[i] = result;
|
|
3010 }
|
|
3011 }
|
|
3012 else /* Must be a list, since Flength did not get an error */
|
|
3013 {
|
|
3014 tail = seq;
|
|
3015 for (i = 0; i < leni; i++)
|
|
3016 {
|
|
3017 result = call1 (fn, Fcar (tail));
|
|
3018 if (vals)
|
|
3019 vals[i] = result;
|
|
3020 tail = Fcdr (tail);
|
|
3021 }
|
|
3022 }
|
|
3023
|
|
3024 UNGCPRO;
|
|
3025 }
|
|
3026
|
|
3027 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0 /*
|
|
3028 Apply FN to each element of SEQ, and concat the results as strings.
|
|
3029 In between each pair of results, stick in SEP.
|
|
3030 Thus, \" \" as SEP results in spaces between the values returned by FN.
|
|
3031 */ )
|
|
3032 (fn, seq, sep)
|
|
3033 Lisp_Object fn, seq, sep;
|
|
3034 {
|
|
3035 Lisp_Object len;
|
|
3036 int leni;
|
|
3037 int nargs;
|
|
3038 Lisp_Object *args;
|
|
3039 int i;
|
|
3040 struct gcpro gcpro1;
|
|
3041
|
|
3042 len = Flength (seq);
|
|
3043 leni = XINT (len);
|
|
3044 nargs = leni + leni - 1;
|
|
3045 if (nargs < 0) return build_string ("");
|
|
3046
|
|
3047 args = (Lisp_Object *) alloca (nargs * sizeof (Lisp_Object));
|
|
3048
|
|
3049 GCPRO1 (sep);
|
|
3050 mapcar1 (leni, args, fn, seq);
|
|
3051 UNGCPRO;
|
|
3052
|
|
3053 for (i = leni - 1; i >= 0; i--)
|
|
3054 args[i + i] = args[i];
|
|
3055
|
|
3056 for (i = 1; i < nargs; i += 2)
|
|
3057 args[i] = sep;
|
|
3058
|
|
3059 return Fconcat (nargs, args);
|
|
3060 }
|
|
3061
|
|
3062 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0 /*
|
|
3063 Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
|
|
3064 The result is a list just as long as SEQUENCE.
|
|
3065 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
|
3066 */ )
|
|
3067 (fn, seq)
|
|
3068 Lisp_Object fn, seq;
|
|
3069 {
|
|
3070 Lisp_Object len;
|
|
3071 int leni;
|
|
3072 Lisp_Object *args;
|
|
3073
|
|
3074 len = Flength (seq);
|
|
3075 leni = XINT (len);
|
|
3076 args = (Lisp_Object *) alloca (leni * sizeof (Lisp_Object));
|
|
3077
|
|
3078 mapcar1 (leni, args, fn, seq);
|
|
3079
|
|
3080 return Flist (leni, args);
|
|
3081 }
|
|
3082
|
|
3083 DEFUN ("mapc-internal", Fmapc_internal, Smapc_internal, 2, 2, 0 /*
|
|
3084 Apply FUNCTION to each element of SEQUENCE.
|
|
3085 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
|
3086 This function is like `mapcar' but does not accumulate the results,
|
|
3087 which is more efficient if you do not use the results.
|
|
3088 */ )
|
|
3089 (fn, seq)
|
|
3090 Lisp_Object fn, seq;
|
|
3091 {
|
|
3092 Lisp_Object len;
|
|
3093 int leni;
|
|
3094
|
|
3095 len = Flength (seq);
|
|
3096 leni = XINT (len);
|
|
3097
|
|
3098 mapcar1 (leni, 0, fn, seq);
|
|
3099
|
|
3100 return Qnil;
|
|
3101 }
|
|
3102
|
|
3103
|
|
3104 /* #### this function doesn't belong in this file! */
|
|
3105
|
|
3106 DEFUN ("load-average", Fload_average, Sload_average, 0, 0, 0 /*
|
|
3107 Return list of 1 minute, 5 minute and 15 minute load averages.
|
|
3108 Each of the three load averages is multiplied by 100,
|
|
3109 then converted to integer.
|
|
3110
|
|
3111 If the 5-minute or 15-minute load averages are not available, return a
|
|
3112 shortened list, containing only those averages which are available.
|
|
3113
|
|
3114 On most systems, this won't work unless the emacs executable is installed
|
|
3115 as setgid kmem (assuming that /dev/kmem is in the group kmem).
|
|
3116 */ )
|
|
3117 ()
|
|
3118 {
|
|
3119 double load_ave[10]; /* hey, just in case */
|
|
3120 int loads = getloadavg (load_ave, 3);
|
|
3121 Lisp_Object ret;
|
|
3122
|
|
3123 if (loads == -2)
|
|
3124 error ("load-average not implemented for this operating system.");
|
|
3125 else if (loads < 0)
|
|
3126 error ("could not get load-average; check permissions.");
|
|
3127
|
|
3128 ret = Qnil;
|
|
3129 while (loads > 0)
|
|
3130 ret = Fcons (make_int ((int) (load_ave[--loads] * 100.0)), ret);
|
|
3131
|
|
3132 return ret;
|
|
3133 }
|
|
3134
|
|
3135
|
|
3136 Lisp_Object Vfeatures;
|
|
3137
|
|
3138 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 1, 0 /*
|
|
3139 Return t if FEATURE is present in this Emacs.
|
2
|
3140 Use this to conditionalize execution of lisp code based on the
|
|
3141 presence or absence of emacs or environment extensions.
|
0
|
3142 Use `provide' to declare that a feature is available.
|
|
3143 This function looks at the value of the variable `features'.
|
|
3144 */ )
|
|
3145 (feature)
|
|
3146 Lisp_Object feature;
|
|
3147 {
|
|
3148 Lisp_Object tem;
|
|
3149 CHECK_SYMBOL (feature);
|
|
3150 tem = Fmemq (feature, Vfeatures);
|
|
3151 return (NILP (tem)) ? Qnil : Qt;
|
|
3152 }
|
|
3153
|
|
3154 DEFUN ("provide", Fprovide, Sprovide, 1, 1, 0 /*
|
|
3155 Announce that FEATURE is a feature of the current Emacs.
|
2
|
3156 This function updates the value of the variable `features'.
|
0
|
3157 */ )
|
|
3158 (feature)
|
|
3159 Lisp_Object feature;
|
|
3160 {
|
|
3161 Lisp_Object tem;
|
|
3162 CHECK_SYMBOL (feature);
|
|
3163 if (!NILP (Vautoload_queue))
|
|
3164 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
|
|
3165 tem = Fmemq (feature, Vfeatures);
|
|
3166 if (NILP (tem))
|
|
3167 Vfeatures = Fcons (feature, Vfeatures);
|
|
3168 LOADHIST_ATTACH (Fcons (Qprovide, feature));
|
|
3169 return feature;
|
|
3170 }
|
|
3171
|
|
3172 DEFUN ("require", Frequire, Srequire, 1, 2, 0 /*
|
|
3173 If feature FEATURE is not loaded, load it from FILENAME.
|
|
3174 If FEATURE is not a member of the list `features', then the feature
|
|
3175 is not loaded; so load the file FILENAME.
|
|
3176 If FILENAME is omitted, the printname of FEATURE is used as the file name.
|
|
3177 */ )
|
|
3178 (feature, file_name)
|
|
3179 Lisp_Object feature, file_name;
|
|
3180 {
|
|
3181 Lisp_Object tem;
|
|
3182 CHECK_SYMBOL (feature);
|
|
3183 tem = Fmemq (feature, Vfeatures);
|
|
3184 LOADHIST_ATTACH (Fcons (Qrequire, feature));
|
|
3185 if (!NILP (tem))
|
|
3186 return (feature);
|
|
3187 else
|
|
3188 {
|
|
3189 int speccount = specpdl_depth ();
|
|
3190
|
|
3191 /* Value saved here is to be restored into Vautoload_queue */
|
|
3192 record_unwind_protect (un_autoload, Vautoload_queue);
|
|
3193 Vautoload_queue = Qt;
|
|
3194
|
|
3195 call4 (Qload, NILP (file_name) ? Fsymbol_name (feature) : file_name,
|
|
3196 Qnil, Qt, Qnil);
|
|
3197
|
|
3198 tem = Fmemq (feature, Vfeatures);
|
|
3199 if (NILP (tem))
|
|
3200 error ("Required feature %s was not provided",
|
|
3201 string_data (XSYMBOL (feature)->name));
|
|
3202
|
|
3203 /* Once loading finishes, don't undo it. */
|
|
3204 Vautoload_queue = Qt;
|
|
3205 return (unbind_to (speccount, feature));
|
|
3206 }
|
|
3207 }
|
|
3208
|
|
3209
|
|
3210 Lisp_Object Qyes_or_no_p;
|
|
3211
|
|
3212 void
|
|
3213 syms_of_fns (void)
|
|
3214 {
|
|
3215 defsymbol (&Qstring_lessp, "string-lessp");
|
|
3216 defsymbol (&Qidentity, "identity");
|
|
3217 defsymbol (&Qyes_or_no_p, "yes-or-no-p");
|
|
3218
|
|
3219 defsubr (&Sidentity);
|
|
3220 defsubr (&Srandom);
|
|
3221 defsubr (&Slength);
|
|
3222 defsubr (&Ssafe_length);
|
|
3223 defsubr (&Sstring_equal);
|
|
3224 defsubr (&Sstring_lessp);
|
|
3225 defsubr (&Sstring_modified_tick);
|
|
3226 defsubr (&Sappend);
|
|
3227 defsubr (&Sconcat);
|
|
3228 defsubr (&Svconcat);
|
|
3229 defsubr (&Sbvconcat);
|
|
3230 defsubr (&Scopy_sequence);
|
|
3231 defsubr (&Scopy_alist);
|
|
3232 defsubr (&Scopy_tree);
|
|
3233 defsubr (&Ssubstring);
|
|
3234 defsubr (&Ssubseq);
|
|
3235 defsubr (&Snthcdr);
|
|
3236 defsubr (&Snth);
|
|
3237 defsubr (&Selt);
|
|
3238 defsubr (&Smember);
|
|
3239 defsubr (&Smemq);
|
|
3240 defsubr (&Sassoc);
|
|
3241 defsubr (&Sassq);
|
|
3242 defsubr (&Srassoc);
|
|
3243 defsubr (&Srassq);
|
|
3244 defsubr (&Sdelete);
|
|
3245 defsubr (&Sdelq);
|
|
3246 defsubr (&Sremassoc);
|
|
3247 defsubr (&Sremassq);
|
|
3248 defsubr (&Sremrassoc);
|
|
3249 defsubr (&Sremrassq);
|
|
3250 defsubr (&Snreverse);
|
|
3251 defsubr (&Sreverse);
|
|
3252 defsubr (&Ssort);
|
|
3253 defsubr (&Splists_eq);
|
|
3254 defsubr (&Splists_equal);
|
|
3255 defsubr (&Slax_plists_eq);
|
|
3256 defsubr (&Slax_plists_equal);
|
|
3257 defsubr (&Splist_get);
|
|
3258 defsubr (&Splist_put);
|
|
3259 defsubr (&Splist_remprop);
|
|
3260 defsubr (&Splist_member);
|
|
3261 defsubr (&Scheck_valid_plist);
|
|
3262 defsubr (&Svalid_plist_p);
|
|
3263 defsubr (&Scanonicalize_plist);
|
|
3264 defsubr (&Slax_plist_get);
|
|
3265 defsubr (&Slax_plist_put);
|
|
3266 defsubr (&Slax_plist_remprop);
|
|
3267 defsubr (&Slax_plist_member);
|
|
3268 defsubr (&Scanonicalize_lax_plist);
|
|
3269 defsubr (&Sdestructive_alist_to_plist);
|
|
3270 defsubr (&Sget);
|
|
3271 defsubr (&Sput);
|
|
3272 defsubr (&Sremprop);
|
|
3273 defsubr (&Sobject_plist);
|
|
3274 defsubr (&Sequal);
|
|
3275 defsubr (&Sfillarray);
|
|
3276 defsubr (&Snconc);
|
|
3277 defsubr (&Smapcar);
|
|
3278 defsubr (&Smapc_internal);
|
|
3279 defsubr (&Smapconcat);
|
|
3280 defsubr (&Sload_average);
|
|
3281 defsubr (&Sfeaturep);
|
|
3282 defsubr (&Srequire);
|
|
3283 defsubr (&Sprovide);
|
|
3284 }
|
|
3285
|
|
3286 void
|
|
3287 init_provide_once (void)
|
|
3288 {
|
|
3289 DEFVAR_LISP ("features", &Vfeatures /*
|
|
3290 A list of symbols which are the features of the executing emacs.
|
|
3291 Used by `featurep' and `require', and altered by `provide'.
|
|
3292 */ );
|
|
3293 Vfeatures = Qnil;
|
|
3294 }
|