Mercurial > hg > xemacs-beta
annotate src/alloc.c @ 3014:dbcb61f7b06a
[xemacs-hg @ 2005-10-23 18:08:35 by stephent]
Update for Ville and Adrian.
author | stephent |
---|---|
date | Sun, 23 Oct 2005 18:08:35 +0000 |
parents | ec5f23ea6d2e |
children | 1e7cc382eb16 |
rev | line source |
---|---|
428 | 1 /* Storage allocation and gc for XEmacs Lisp interpreter. |
2 Copyright (C) 1985-1998 Free Software Foundation, Inc. | |
3 Copyright (C) 1995 Sun Microsystems, Inc. | |
2994 | 4 Copyright (C) 1995, 1996, 2001, 2002, 2003, 2004, 2005 Ben Wing. |
428 | 5 |
6 This file is part of XEmacs. | |
7 | |
8 XEmacs is free software; you can redistribute it and/or modify it | |
9 under the terms of the GNU General Public License as published by the | |
10 Free Software Foundation; either version 2, or (at your option) any | |
11 later version. | |
12 | |
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
16 for more details. | |
17 | |
18 You should have received a copy of the GNU General Public License | |
19 along with XEmacs; see the file COPYING. If not, write to | |
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
21 Boston, MA 02111-1307, USA. */ | |
22 | |
23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from | |
24 FSF. */ | |
25 | |
26 /* Authorship: | |
27 | |
28 FSF: Original version; a long time ago. | |
29 Mly: Significantly rewritten to use new 3-bit tags and | |
30 nicely abstracted object definitions, for 19.8. | |
31 JWZ: Improved code to keep track of purespace usage and | |
32 issue nice purespace and GC stats. | |
33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking | |
34 and various changes for Mule, for 19.12. | |
35 Added bit vectors for 19.13. | |
36 Added lcrecord lists for 19.14. | |
37 slb: Lots of work on the purification and dump time code. | |
38 Synched Doug Lea malloc support from Emacs 20.2. | |
442 | 39 og: Killed the purespace. Portable dumper (moved to dumper.c) |
428 | 40 */ |
41 | |
42 #include <config.h> | |
43 #include "lisp.h" | |
44 | |
45 #include "backtrace.h" | |
46 #include "buffer.h" | |
47 #include "bytecode.h" | |
48 #include "chartab.h" | |
49 #include "device.h" | |
50 #include "elhash.h" | |
51 #include "events.h" | |
872 | 52 #include "extents-impl.h" |
1204 | 53 #include "file-coding.h" |
872 | 54 #include "frame-impl.h" |
428 | 55 #include "glyphs.h" |
56 #include "opaque.h" | |
1204 | 57 #include "lstream.h" |
872 | 58 #include "process.h" |
1292 | 59 #include "profile.h" |
428 | 60 #include "redisplay.h" |
61 #include "specifier.h" | |
62 #include "sysfile.h" | |
442 | 63 #include "sysdep.h" |
428 | 64 #include "window.h" |
65 #include "console-stream.h" | |
66 | |
67 #ifdef DOUG_LEA_MALLOC | |
68 #include <malloc.h> | |
69 #endif | |
70 | |
71 EXFUN (Fgarbage_collect, 0); | |
72 | |
814 | 73 static void recompute_need_to_garbage_collect (void); |
74 | |
428 | 75 #if 0 /* this is _way_ too slow to be part of the standard debug options */ |
76 #if defined(DEBUG_XEMACS) && defined(MULE) | |
77 #define VERIFY_STRING_CHARS_INTEGRITY | |
78 #endif | |
79 #endif | |
80 | |
81 /* Define this to use malloc/free with no freelist for all datatypes, | |
82 the hope being that some debugging tools may help detect | |
83 freed memory references */ | |
84 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */ | |
85 #include <dmalloc.h> | |
86 #define ALLOC_NO_POOLS | |
87 #endif | |
88 | |
89 #ifdef DEBUG_XEMACS | |
458 | 90 static Fixnum debug_allocation; |
91 static Fixnum debug_allocation_backtrace_length; | |
428 | 92 #endif |
93 | |
94 /* Number of bytes of consing done since the last gc */ | |
814 | 95 static EMACS_INT consing_since_gc; |
1292 | 96 EMACS_UINT total_consing; |
2994 | 97 EMACS_INT total_gc_usage; |
98 int total_gc_usage_set; | |
1292 | 99 |
814 | 100 int need_to_garbage_collect; |
851 | 101 int need_to_check_c_alloca; |
887 | 102 int need_to_signal_post_gc; |
851 | 103 int funcall_allocation_flag; |
104 Bytecount __temp_alloca_size__; | |
105 Bytecount funcall_alloca_count; | |
814 | 106 |
107 /* Determine now whether we need to garbage collect or not, to make | |
108 Ffuncall() faster */ | |
109 #define INCREMENT_CONS_COUNTER_1(size) \ | |
110 do \ | |
111 { \ | |
112 consing_since_gc += (size); \ | |
1292 | 113 total_consing += (size); \ |
114 if (profiling_active) \ | |
115 profile_record_consing (size); \ | |
814 | 116 recompute_need_to_garbage_collect (); \ |
117 } while (0) | |
428 | 118 |
119 #define debug_allocation_backtrace() \ | |
120 do { \ | |
121 if (debug_allocation_backtrace_length > 0) \ | |
122 debug_short_backtrace (debug_allocation_backtrace_length); \ | |
123 } while (0) | |
124 | |
125 #ifdef DEBUG_XEMACS | |
801 | 126 #define INCREMENT_CONS_COUNTER(foosize, type) \ |
127 do { \ | |
128 if (debug_allocation) \ | |
129 { \ | |
130 stderr_out ("allocating %s (size %ld)\n", type, \ | |
131 (long) foosize); \ | |
132 debug_allocation_backtrace (); \ | |
133 } \ | |
134 INCREMENT_CONS_COUNTER_1 (foosize); \ | |
428 | 135 } while (0) |
136 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \ | |
137 do { \ | |
138 if (debug_allocation > 1) \ | |
139 { \ | |
801 | 140 stderr_out ("allocating noseeum %s (size %ld)\n", type, \ |
141 (long) foosize); \ | |
428 | 142 debug_allocation_backtrace (); \ |
143 } \ | |
144 INCREMENT_CONS_COUNTER_1 (foosize); \ | |
145 } while (0) | |
146 #else | |
147 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size) | |
148 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \ | |
149 INCREMENT_CONS_COUNTER_1 (size) | |
150 #endif | |
151 | |
152 #define DECREMENT_CONS_COUNTER(size) do { \ | |
153 consing_since_gc -= (size); \ | |
1292 | 154 total_consing -= (size); \ |
155 if (profiling_active) \ | |
156 profile_record_unconsing (size); \ | |
428 | 157 if (consing_since_gc < 0) \ |
158 consing_since_gc = 0; \ | |
814 | 159 recompute_need_to_garbage_collect (); \ |
428 | 160 } while (0) |
161 | |
162 /* Number of bytes of consing since gc before another gc should be done. */ | |
801 | 163 static EMACS_INT gc_cons_threshold; |
164 | |
165 /* Percentage of consing of total data size before another GC. */ | |
166 static EMACS_INT gc_cons_percentage; | |
167 | |
168 #ifdef ERROR_CHECK_GC | |
853 | 169 int always_gc; /* Debugging hack; equivalent to |
170 (setq gc-cons-thresold -1) */ | |
801 | 171 #else |
172 #define always_gc 0 | |
173 #endif | |
428 | 174 |
175 /* Nonzero during gc */ | |
176 int gc_in_progress; | |
177 | |
1154 | 178 /* Nonzero means display messages at beginning and end of GC. */ |
179 | |
180 int garbage_collection_messages; | |
181 | |
428 | 182 /* Number of times GC has happened at this level or below. |
183 * Level 0 is most volatile, contrary to usual convention. | |
184 * (Of course, there's only one level at present) */ | |
185 EMACS_INT gc_generation_number[1]; | |
186 | |
187 /* This is just for use by the printer, to allow things to print uniquely */ | |
188 static int lrecord_uid_counter; | |
189 | |
190 /* Nonzero when calling certain hooks or doing other things where | |
191 a GC would be bad */ | |
1957 | 192 int gc_currently_forbidden; |
428 | 193 |
194 /* Hooks. */ | |
195 Lisp_Object Vpre_gc_hook, Qpre_gc_hook; | |
196 Lisp_Object Vpost_gc_hook, Qpost_gc_hook; | |
197 | |
198 /* "Garbage collecting" */ | |
199 Lisp_Object Vgc_message; | |
200 Lisp_Object Vgc_pointer_glyph; | |
2367 | 201 static const Ascbyte gc_default_message[] = "Garbage collecting"; |
428 | 202 Lisp_Object Qgarbage_collecting; |
203 | |
1292 | 204 static Lisp_Object QSin_garbage_collection; |
205 | |
428 | 206 /* Non-zero means we're in the process of doing the dump */ |
207 int purify_flag; | |
208 | |
1204 | 209 /* Non-zero means we're pdumping out or in */ |
210 #ifdef PDUMP | |
211 int in_pdump; | |
212 #endif | |
213 | |
800 | 214 #ifdef ERROR_CHECK_TYPES |
428 | 215 |
793 | 216 Error_Behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN, ERROR_ME_DEBUG_WARN; |
428 | 217 |
218 #endif | |
219 | |
801 | 220 /* Very cheesy ways of figuring out how much memory is being used for |
221 data. #### Need better (system-dependent) ways. */ | |
222 void *minimum_address_seen; | |
223 void *maximum_address_seen; | |
224 | |
2720 | 225 #ifndef MC_ALLOC |
428 | 226 int |
227 c_readonly (Lisp_Object obj) | |
228 { | |
229 return POINTER_TYPE_P (XTYPE (obj)) && C_READONLY (obj); | |
230 } | |
2720 | 231 #endif /* MC_ALLOC */ |
428 | 232 |
233 int | |
234 lisp_readonly (Lisp_Object obj) | |
235 { | |
236 return POINTER_TYPE_P (XTYPE (obj)) && LISP_READONLY (obj); | |
237 } | |
238 | |
239 | |
240 /* Maximum amount of C stack to save when a GC happens. */ | |
241 | |
242 #ifndef MAX_SAVE_STACK | |
243 #define MAX_SAVE_STACK 0 /* 16000 */ | |
244 #endif | |
245 | |
246 /* Non-zero means ignore malloc warnings. Set during initialization. */ | |
247 int ignore_malloc_warnings; | |
248 | |
249 | |
2720 | 250 #ifndef MC_ALLOC |
428 | 251 static void *breathing_space; |
252 | |
253 void | |
254 release_breathing_space (void) | |
255 { | |
256 if (breathing_space) | |
257 { | |
258 void *tmp = breathing_space; | |
259 breathing_space = 0; | |
1726 | 260 xfree (tmp, void *); |
428 | 261 } |
262 } | |
2720 | 263 #endif /* not MC_ALLOC */ |
428 | 264 |
265 /* malloc calls this if it finds we are near exhausting storage */ | |
266 void | |
442 | 267 malloc_warning (const char *str) |
428 | 268 { |
269 if (ignore_malloc_warnings) | |
270 return; | |
271 | |
272 warn_when_safe | |
793 | 273 (Qmemory, Qemergency, |
428 | 274 "%s\n" |
275 "Killing some buffers may delay running out of memory.\n" | |
276 "However, certainly by the time you receive the 95%% warning,\n" | |
277 "you should clean up, kill this Emacs, and start a new one.", | |
278 str); | |
279 } | |
280 | |
281 /* Called if malloc returns zero */ | |
282 DOESNT_RETURN | |
283 memory_full (void) | |
284 { | |
285 /* Force a GC next time eval is called. | |
286 It's better to loop garbage-collecting (we might reclaim enough | |
287 to win) than to loop beeping and barfing "Memory exhausted" | |
288 */ | |
289 consing_since_gc = gc_cons_threshold + 1; | |
814 | 290 recompute_need_to_garbage_collect (); |
2720 | 291 #ifndef MC_ALLOC |
428 | 292 release_breathing_space (); |
2720 | 293 #endif /* not MC_ALLOC */ |
428 | 294 |
295 /* Flush some histories which might conceivably contain garbalogical | |
296 inhibitors. */ | |
297 if (!NILP (Fboundp (Qvalues))) | |
298 Fset (Qvalues, Qnil); | |
299 Vcommand_history = Qnil; | |
300 | |
563 | 301 out_of_memory ("Memory exhausted", Qunbound); |
428 | 302 } |
303 | |
801 | 304 static void |
305 set_alloc_mins_and_maxes (void *val, Bytecount size) | |
306 { | |
307 if (!val) | |
308 return; | |
309 if ((char *) val + size > (char *) maximum_address_seen) | |
310 maximum_address_seen = (char *) val + size; | |
311 if (!minimum_address_seen) | |
312 minimum_address_seen = | |
313 #if SIZEOF_VOID_P == 8 | |
314 (void *) 0xFFFFFFFFFFFFFFFF; | |
315 #else | |
316 (void *) 0xFFFFFFFF; | |
317 #endif | |
318 if ((char *) val < (char *) minimum_address_seen) | |
319 minimum_address_seen = (char *) val; | |
320 } | |
321 | |
1315 | 322 #ifdef ERROR_CHECK_MALLOC |
1292 | 323 static int in_malloc; |
1333 | 324 extern int regex_malloc_disallowed; |
2367 | 325 |
326 #define MALLOC_BEGIN() \ | |
327 do \ | |
328 { \ | |
329 assert (!in_malloc); \ | |
330 assert (!regex_malloc_disallowed); \ | |
331 in_malloc = 1; \ | |
332 } \ | |
333 while (0) | |
334 | |
2720 | 335 #ifdef MC_ALLOC |
336 #define FREE_OR_REALLOC_BEGIN(block) \ | |
337 do \ | |
338 { \ | |
339 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an \ | |
340 error until much later on for many system mallocs, such as \ | |
341 the one that comes with Solaris 2.3. FMH!! */ \ | |
342 assert (block != (void *) 0xDEADBEEF); \ | |
343 MALLOC_BEGIN (); \ | |
344 } \ | |
345 while (0) | |
346 #else /* not MC_ALLOC */ | |
2367 | 347 #define FREE_OR_REALLOC_BEGIN(block) \ |
348 do \ | |
349 { \ | |
350 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an \ | |
351 error until much later on for many system mallocs, such as \ | |
352 the one that comes with Solaris 2.3. FMH!! */ \ | |
353 assert (block != (void *) 0xDEADBEEF); \ | |
354 /* You cannot free something within dumped space, because there is \ | |
355 no longer any sort of malloc structure associated with the block. \ | |
356 If you are tripping this, you may need to conditionalize on \ | |
357 DUMPEDP. */ \ | |
358 assert (!DUMPEDP (block)); \ | |
359 MALLOC_BEGIN (); \ | |
360 } \ | |
361 while (0) | |
2720 | 362 #endif /* not MC_ALLOC */ |
2367 | 363 |
364 #define MALLOC_END() \ | |
365 do \ | |
366 { \ | |
367 in_malloc = 0; \ | |
368 } \ | |
369 while (0) | |
370 | |
371 #else /* ERROR_CHECK_MALLOC */ | |
372 | |
2658 | 373 #define MALLOC_BEGIN() |
2367 | 374 #define FREE_OR_REALLOC_BEGIN(block) |
375 #define MALLOC_END() | |
376 | |
377 #endif /* ERROR_CHECK_MALLOC */ | |
378 | |
379 static void | |
380 malloc_after (void *val, Bytecount size) | |
381 { | |
382 if (!val && size != 0) | |
383 memory_full (); | |
384 set_alloc_mins_and_maxes (val, size); | |
385 } | |
386 | |
387 /* like malloc, calloc, realloc, free but: | |
388 | |
389 -- check for no memory left | |
390 -- set internal mins and maxes | |
391 -- with error-checking on, check for reentrancy, invalid freeing, etc. | |
392 */ | |
1292 | 393 |
428 | 394 #undef xmalloc |
395 void * | |
665 | 396 xmalloc (Bytecount size) |
428 | 397 { |
1292 | 398 void *val; |
2367 | 399 MALLOC_BEGIN (); |
1292 | 400 val = malloc (size); |
2367 | 401 MALLOC_END (); |
402 malloc_after (val, size); | |
428 | 403 return val; |
404 } | |
405 | |
406 #undef xcalloc | |
407 static void * | |
665 | 408 xcalloc (Elemcount nelem, Bytecount elsize) |
428 | 409 { |
1292 | 410 void *val; |
2367 | 411 MALLOC_BEGIN (); |
1292 | 412 val= calloc (nelem, elsize); |
2367 | 413 MALLOC_END (); |
414 malloc_after (val, nelem * elsize); | |
428 | 415 return val; |
416 } | |
417 | |
418 void * | |
665 | 419 xmalloc_and_zero (Bytecount size) |
428 | 420 { |
421 return xcalloc (size, sizeof (char)); | |
422 } | |
423 | |
424 #undef xrealloc | |
425 void * | |
665 | 426 xrealloc (void *block, Bytecount size) |
428 | 427 { |
2367 | 428 FREE_OR_REALLOC_BEGIN (block); |
551 | 429 block = realloc (block, size); |
2367 | 430 MALLOC_END (); |
431 malloc_after (block, size); | |
551 | 432 return block; |
428 | 433 } |
434 | |
435 void | |
436 xfree_1 (void *block) | |
437 { | |
438 #ifdef ERROR_CHECK_MALLOC | |
439 assert (block); | |
440 #endif /* ERROR_CHECK_MALLOC */ | |
2367 | 441 FREE_OR_REALLOC_BEGIN (block); |
428 | 442 free (block); |
2367 | 443 MALLOC_END (); |
428 | 444 } |
445 | |
446 #ifdef ERROR_CHECK_GC | |
447 | |
2720 | 448 #ifndef MC_ALLOC |
428 | 449 static void |
665 | 450 deadbeef_memory (void *ptr, Bytecount size) |
428 | 451 { |
826 | 452 UINT_32_BIT *ptr4 = (UINT_32_BIT *) ptr; |
665 | 453 Bytecount beefs = size >> 2; |
428 | 454 |
455 /* In practice, size will always be a multiple of four. */ | |
456 while (beefs--) | |
1204 | 457 (*ptr4++) = 0xDEADBEEF; /* -559038737 base 10 */ |
428 | 458 } |
2720 | 459 #endif /* not MC_ALLOC */ |
428 | 460 |
461 #else /* !ERROR_CHECK_GC */ | |
462 | |
463 | |
464 #define deadbeef_memory(ptr, size) | |
465 | |
466 #endif /* !ERROR_CHECK_GC */ | |
467 | |
468 #undef xstrdup | |
469 char * | |
442 | 470 xstrdup (const char *str) |
428 | 471 { |
472 int len = strlen (str) + 1; /* for stupid terminating 0 */ | |
473 void *val = xmalloc (len); | |
771 | 474 |
428 | 475 if (val == 0) return 0; |
476 return (char *) memcpy (val, str, len); | |
477 } | |
478 | |
479 #ifdef NEED_STRDUP | |
480 char * | |
442 | 481 strdup (const char *s) |
428 | 482 { |
483 return xstrdup (s); | |
484 } | |
485 #endif /* NEED_STRDUP */ | |
486 | |
487 | |
2720 | 488 #ifndef MC_ALLOC |
428 | 489 static void * |
665 | 490 allocate_lisp_storage (Bytecount size) |
428 | 491 { |
793 | 492 void *val = xmalloc (size); |
493 /* We don't increment the cons counter anymore. Calling functions do | |
494 that now because we have two different kinds of cons counters -- one | |
495 for normal objects, and one for no-see-um conses (and possibly others | |
496 similar) where the conses are used totally internally, never escape, | |
497 and are created and then freed and shouldn't logically increment the | |
498 cons counting. #### (Or perhaps, we should decrement it when an object | |
499 get freed?) */ | |
500 | |
501 /* But we do now (as of 3-27-02) go and zero out the memory. This is a | |
502 good thing, as it will guarantee we won't get any intermittent bugs | |
1204 | 503 coming from an uninitiated field. The speed loss is unnoticeable, |
504 esp. as the objects are not large -- large stuff like buffer text and | |
505 redisplay structures are allocated separately. */ | |
793 | 506 memset (val, 0, size); |
851 | 507 |
508 if (need_to_check_c_alloca) | |
509 xemacs_c_alloca (0); | |
510 | |
793 | 511 return val; |
428 | 512 } |
2720 | 513 #endif /* not MC_ALLOC */ |
514 | |
2994 | 515 #if defined (MC_ALLOC) && defined (ALLOC_TYPE_STATS) |
2720 | 516 static struct |
517 { | |
518 int instances_in_use; | |
519 int bytes_in_use; | |
520 int bytes_in_use_including_overhead; | |
521 } lrecord_stats [countof (lrecord_implementations_table) | |
522 + MODULE_DEFINABLE_TYPE_COUNT]; | |
523 | |
2775 | 524 int lrecord_string_data_instances_in_use; |
525 int lrecord_string_data_bytes_in_use; | |
526 int lrecord_string_data_bytes_in_use_including_overhead; | |
527 | |
2720 | 528 void |
529 init_lrecord_stats () | |
530 { | |
531 xzero (lrecord_stats); | |
2775 | 532 lrecord_string_data_instances_in_use = 0; |
533 lrecord_string_data_bytes_in_use = 0; | |
534 lrecord_string_data_bytes_in_use_including_overhead = 0; | |
535 } | |
536 | |
537 void | |
538 inc_lrecord_string_data_stats (Bytecount size) | |
539 { | |
540 lrecord_string_data_instances_in_use++; | |
541 lrecord_string_data_bytes_in_use += size; | |
542 lrecord_string_data_bytes_in_use_including_overhead += size; | |
543 } | |
544 | |
545 void | |
546 dec_lrecord_string_data_stats (Bytecount size) | |
547 { | |
548 lrecord_string_data_instances_in_use--; | |
549 lrecord_string_data_bytes_in_use -= size; | |
550 lrecord_string_data_bytes_in_use_including_overhead -= size; | |
2720 | 551 } |
552 | |
553 void | |
554 inc_lrecord_stats (Bytecount size, const struct lrecord_header *h) | |
555 { | |
556 int type_index = h->type; | |
557 if (!size) | |
558 size = detagged_lisp_object_size (h); | |
559 | |
560 lrecord_stats[type_index].instances_in_use++; | |
561 lrecord_stats[type_index].bytes_in_use += size; | |
562 lrecord_stats[type_index].bytes_in_use_including_overhead | |
563 #ifdef MEMORY_USAGE_STATS | |
564 += mc_alloced_storage_size (size, 0); | |
565 #else /* not MEMORY_USAGE_STATS */ | |
566 += size; | |
567 #endif /* not MEMORY_USAGE_STATS */ | |
568 } | |
569 | |
570 void | |
571 dec_lrecord_stats (Bytecount size_including_overhead, | |
572 const struct lrecord_header *h) | |
573 { | |
574 int type_index = h->type; | |
2775 | 575 int size = detagged_lisp_object_size (h); |
2720 | 576 |
577 lrecord_stats[type_index].instances_in_use--; | |
2775 | 578 lrecord_stats[type_index].bytes_in_use -= size; |
2720 | 579 lrecord_stats[type_index].bytes_in_use_including_overhead |
580 -= size_including_overhead; | |
581 | |
2775 | 582 DECREMENT_CONS_COUNTER (size); |
2720 | 583 } |
2994 | 584 #endif /* not (MC_ALLOC && ALLOC_TYPE_STATS) */ |
2720 | 585 |
586 #ifndef MC_ALLOC | |
442 | 587 /* lcrecords are chained together through their "next" field. |
588 After doing the mark phase, GC will walk this linked list | |
589 and free any lcrecord which hasn't been marked. */ | |
428 | 590 static struct lcrecord_header *all_lcrecords; |
2720 | 591 #endif /* not MC_ALLOC */ |
592 | |
593 #ifdef MC_ALLOC | |
594 /* The basic lrecord allocation functions. See lrecord.h for details. */ | |
595 void * | |
596 alloc_lrecord (Bytecount size, | |
597 const struct lrecord_implementation *implementation) | |
598 { | |
599 struct lrecord_header *lheader; | |
600 | |
601 type_checking_assert | |
602 ((implementation->static_size == 0 ? | |
603 implementation->size_in_bytes_method != NULL : | |
604 implementation->static_size == size)); | |
605 | |
606 lheader = (struct lrecord_header *) mc_alloc (size); | |
607 gc_checking_assert (LRECORD_FREE_P (lheader)); | |
608 set_lheader_implementation (lheader, implementation); | |
609 lheader->uid = lrecord_uid_counter++; | |
2994 | 610 #ifdef ALLOC_TYPE_STATS |
2720 | 611 inc_lrecord_stats (size, lheader); |
2994 | 612 #endif /* ALLOC_TYPE_STATS */ |
2720 | 613 INCREMENT_CONS_COUNTER (size, implementation->name); |
614 return lheader; | |
615 } | |
616 | |
617 void * | |
618 noseeum_alloc_lrecord (Bytecount size, | |
619 const struct lrecord_implementation *implementation) | |
620 { | |
621 struct lrecord_header *lheader; | |
622 | |
623 type_checking_assert | |
624 ((implementation->static_size == 0 ? | |
625 implementation->size_in_bytes_method != NULL : | |
626 implementation->static_size == size)); | |
627 | |
628 lheader = (struct lrecord_header *) mc_alloc (size); | |
629 gc_checking_assert (LRECORD_FREE_P (lheader)); | |
630 set_lheader_implementation (lheader, implementation); | |
631 lheader->uid = lrecord_uid_counter++; | |
2994 | 632 #ifdef ALLOC_TYPE_STATS |
2720 | 633 inc_lrecord_stats (size, lheader); |
2994 | 634 #endif /* ALLOC_TYPE_STATS */ |
2720 | 635 NOSEEUM_INCREMENT_CONS_COUNTER (size, implementation->name); |
636 return lheader; | |
637 } | |
638 | |
639 void | |
640 free_lrecord (Lisp_Object lrecord) | |
641 { | |
642 gc_checking_assert (!gc_in_progress); | |
643 gc_checking_assert (!LRECORD_FREE_P (XRECORD_LHEADER (lrecord))); | |
644 gc_checking_assert (!XRECORD_LHEADER (lrecord)->free); | |
645 | |
646 MC_ALLOC_CALL_FINALIZER (XPNTR (lrecord)); | |
647 mc_free (XPNTR (lrecord)); | |
648 } | |
649 #else /* not MC_ALLOC */ | |
428 | 650 |
1204 | 651 /* The most basic of the lcrecord allocation functions. Not usually called |
652 directly. Allocates an lrecord not managed by any lcrecord-list, of a | |
653 specified size. See lrecord.h. */ | |
654 | |
428 | 655 void * |
1204 | 656 basic_alloc_lcrecord (Bytecount size, |
657 const struct lrecord_implementation *implementation) | |
428 | 658 { |
659 struct lcrecord_header *lcheader; | |
660 | |
442 | 661 type_checking_assert |
662 ((implementation->static_size == 0 ? | |
663 implementation->size_in_bytes_method != NULL : | |
664 implementation->static_size == size) | |
665 && | |
666 (! implementation->basic_p) | |
667 && | |
668 (! (implementation->hash == NULL && implementation->equal != NULL))); | |
428 | 669 |
670 lcheader = (struct lcrecord_header *) allocate_lisp_storage (size); | |
442 | 671 set_lheader_implementation (&lcheader->lheader, implementation); |
428 | 672 lcheader->next = all_lcrecords; |
673 #if 1 /* mly prefers to see small ID numbers */ | |
674 lcheader->uid = lrecord_uid_counter++; | |
675 #else /* jwz prefers to see real addrs */ | |
676 lcheader->uid = (int) &lcheader; | |
677 #endif | |
678 lcheader->free = 0; | |
679 all_lcrecords = lcheader; | |
680 INCREMENT_CONS_COUNTER (size, implementation->name); | |
681 return lcheader; | |
682 } | |
683 | |
684 #if 0 /* Presently unused */ | |
685 /* Very, very poor man's EGC? | |
686 * This may be slow and thrash pages all over the place. | |
687 * Only call it if you really feel you must (and if the | |
688 * lrecord was fairly recently allocated). | |
689 * Otherwise, just let the GC do its job -- that's what it's there for | |
690 */ | |
691 void | |
771 | 692 very_old_free_lcrecord (struct lcrecord_header *lcrecord) |
428 | 693 { |
694 if (all_lcrecords == lcrecord) | |
695 { | |
696 all_lcrecords = lcrecord->next; | |
697 } | |
698 else | |
699 { | |
700 struct lrecord_header *header = all_lcrecords; | |
701 for (;;) | |
702 { | |
703 struct lrecord_header *next = header->next; | |
704 if (next == lcrecord) | |
705 { | |
706 header->next = lrecord->next; | |
707 break; | |
708 } | |
709 else if (next == 0) | |
2500 | 710 ABORT (); |
428 | 711 else |
712 header = next; | |
713 } | |
714 } | |
715 if (lrecord->implementation->finalizer) | |
716 lrecord->implementation->finalizer (lrecord, 0); | |
717 xfree (lrecord); | |
718 return; | |
719 } | |
720 #endif /* Unused */ | |
2720 | 721 #endif /* not MC_ALLOC */ |
428 | 722 |
723 | |
724 static void | |
725 disksave_object_finalization_1 (void) | |
726 { | |
2720 | 727 #ifdef MC_ALLOC |
728 mc_finalize_for_disksave (); | |
729 #else /* not MC_ALLOC */ | |
428 | 730 struct lcrecord_header *header; |
731 | |
732 for (header = all_lcrecords; header; header = header->next) | |
733 { | |
442 | 734 if (LHEADER_IMPLEMENTATION (&header->lheader)->finalizer && |
428 | 735 !header->free) |
442 | 736 LHEADER_IMPLEMENTATION (&header->lheader)->finalizer (header, 1); |
428 | 737 } |
2720 | 738 #endif /* not MC_ALLOC */ |
428 | 739 } |
740 | |
1204 | 741 /* Bitwise copy all parts of a Lisp object other than the header */ |
742 | |
743 void | |
744 copy_lisp_object (Lisp_Object dst, Lisp_Object src) | |
745 { | |
746 const struct lrecord_implementation *imp = | |
747 XRECORD_LHEADER_IMPLEMENTATION (src); | |
748 Bytecount size = lisp_object_size (src); | |
749 | |
750 assert (imp == XRECORD_LHEADER_IMPLEMENTATION (dst)); | |
751 assert (size == lisp_object_size (dst)); | |
752 | |
2720 | 753 #ifdef MC_ALLOC |
754 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lrecord_header), | |
755 (char *) XRECORD_LHEADER (src) + sizeof (struct lrecord_header), | |
756 size - sizeof (struct lrecord_header)); | |
757 #else /* not MC_ALLOC */ | |
1204 | 758 if (imp->basic_p) |
759 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lrecord_header), | |
760 (char *) XRECORD_LHEADER (src) + sizeof (struct lrecord_header), | |
761 size - sizeof (struct lrecord_header)); | |
762 else | |
763 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lcrecord_header), | |
764 (char *) XRECORD_LHEADER (src) + sizeof (struct lcrecord_header), | |
765 size - sizeof (struct lcrecord_header)); | |
2720 | 766 #endif /* not MC_ALLOC */ |
1204 | 767 } |
768 | |
428 | 769 |
770 /************************************************************************/ | |
771 /* Debugger support */ | |
772 /************************************************************************/ | |
773 /* Give gdb/dbx enough information to decode Lisp Objects. We make | |
774 sure certain symbols are always defined, so gdb doesn't complain | |
438 | 775 about expressions in src/.gdbinit. See src/.gdbinit or src/.dbxrc |
776 to see how this is used. */ | |
428 | 777 |
458 | 778 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS; |
779 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1; | |
428 | 780 |
781 #ifdef USE_UNION_TYPE | |
458 | 782 unsigned char dbg_USE_UNION_TYPE = 1; |
428 | 783 #else |
458 | 784 unsigned char dbg_USE_UNION_TYPE = 0; |
428 | 785 #endif |
786 | |
458 | 787 unsigned char dbg_valbits = VALBITS; |
788 unsigned char dbg_gctypebits = GCTYPEBITS; | |
789 | |
790 /* On some systems, the above definitions will be optimized away by | |
791 the compiler or linker unless they are referenced in some function. */ | |
792 long dbg_inhibit_dbg_symbol_deletion (void); | |
793 long | |
794 dbg_inhibit_dbg_symbol_deletion (void) | |
795 { | |
796 return | |
797 (dbg_valmask + | |
798 dbg_typemask + | |
799 dbg_USE_UNION_TYPE + | |
800 dbg_valbits + | |
801 dbg_gctypebits); | |
802 } | |
428 | 803 |
804 /* Macros turned into functions for ease of debugging. | |
805 Debuggers don't know about macros! */ | |
806 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2); | |
807 int | |
808 dbg_eq (Lisp_Object obj1, Lisp_Object obj2) | |
809 { | |
810 return EQ (obj1, obj2); | |
811 } | |
812 | |
813 | |
2720 | 814 #ifndef MC_ALLOC |
428 | 815 /************************************************************************/ |
816 /* Fixed-size type macros */ | |
817 /************************************************************************/ | |
818 | |
819 /* For fixed-size types that are commonly used, we malloc() large blocks | |
820 of memory at a time and subdivide them into chunks of the correct | |
821 size for an object of that type. This is more efficient than | |
822 malloc()ing each object separately because we save on malloc() time | |
823 and overhead due to the fewer number of malloc()ed blocks, and | |
824 also because we don't need any extra pointers within each object | |
825 to keep them threaded together for GC purposes. For less common | |
826 (and frequently large-size) types, we use lcrecords, which are | |
827 malloc()ed individually and chained together through a pointer | |
828 in the lcrecord header. lcrecords do not need to be fixed-size | |
829 (i.e. two objects of the same type need not have the same size; | |
830 however, the size of a particular object cannot vary dynamically). | |
831 It is also much easier to create a new lcrecord type because no | |
832 additional code needs to be added to alloc.c. Finally, lcrecords | |
833 may be more efficient when there are only a small number of them. | |
834 | |
835 The types that are stored in these large blocks (or "frob blocks") | |
1983 | 836 are cons, all number types except fixnum, compiled-function, symbol, |
837 marker, extent, event, and string. | |
428 | 838 |
839 Note that strings are special in that they are actually stored in | |
840 two parts: a structure containing information about the string, and | |
841 the actual data associated with the string. The former structure | |
842 (a struct Lisp_String) is a fixed-size structure and is managed the | |
843 same way as all the other such types. This structure contains a | |
844 pointer to the actual string data, which is stored in structures of | |
845 type struct string_chars_block. Each string_chars_block consists | |
846 of a pointer to a struct Lisp_String, followed by the data for that | |
440 | 847 string, followed by another pointer to a Lisp_String, followed by |
848 the data for that string, etc. At GC time, the data in these | |
849 blocks is compacted by searching sequentially through all the | |
428 | 850 blocks and compressing out any holes created by unmarked strings. |
851 Strings that are more than a certain size (bigger than the size of | |
852 a string_chars_block, although something like half as big might | |
853 make more sense) are malloc()ed separately and not stored in | |
854 string_chars_blocks. Furthermore, no one string stretches across | |
855 two string_chars_blocks. | |
856 | |
1204 | 857 Vectors are each malloc()ed separately as lcrecords. |
428 | 858 |
859 In the following discussion, we use conses, but it applies equally | |
860 well to the other fixed-size types. | |
861 | |
862 We store cons cells inside of cons_blocks, allocating a new | |
863 cons_block with malloc() whenever necessary. Cons cells reclaimed | |
864 by GC are put on a free list to be reallocated before allocating | |
865 any new cons cells from the latest cons_block. Each cons_block is | |
866 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least | |
867 the versions in malloc.c and gmalloc.c) really allocates in units | |
868 of powers of two and uses 4 bytes for its own overhead. | |
869 | |
870 What GC actually does is to search through all the cons_blocks, | |
871 from the most recently allocated to the oldest, and put all | |
872 cons cells that are not marked (whether or not they're already | |
873 free) on a cons_free_list. The cons_free_list is a stack, and | |
874 so the cons cells in the oldest-allocated cons_block end up | |
875 at the head of the stack and are the first to be reallocated. | |
876 If any cons_block is entirely free, it is freed with free() | |
877 and its cons cells removed from the cons_free_list. Because | |
878 the cons_free_list ends up basically in memory order, we have | |
879 a high locality of reference (assuming a reasonable turnover | |
880 of allocating and freeing) and have a reasonable probability | |
881 of entirely freeing up cons_blocks that have been more recently | |
882 allocated. This stage is called the "sweep stage" of GC, and | |
883 is executed after the "mark stage", which involves starting | |
884 from all places that are known to point to in-use Lisp objects | |
885 (e.g. the obarray, where are all symbols are stored; the | |
886 current catches and condition-cases; the backtrace list of | |
887 currently executing functions; the gcpro list; etc.) and | |
888 recursively marking all objects that are accessible. | |
889 | |
454 | 890 At the beginning of the sweep stage, the conses in the cons blocks |
891 are in one of three states: in use and marked, in use but not | |
892 marked, and not in use (already freed). Any conses that are marked | |
893 have been marked in the mark stage just executed, because as part | |
894 of the sweep stage we unmark any marked objects. The way we tell | |
895 whether or not a cons cell is in use is through the LRECORD_FREE_P | |
896 macro. This uses a special lrecord type `lrecord_type_free', | |
897 which is never associated with any valid object. | |
898 | |
899 Conses on the free_cons_list are threaded through a pointer stored | |
900 in the conses themselves. Because the cons is still in a | |
901 cons_block and needs to remain marked as not in use for the next | |
902 time that GC happens, we need room to store both the "free" | |
903 indicator and the chaining pointer. So this pointer is stored | |
904 after the lrecord header (actually where C places a pointer after | |
905 the lrecord header; they are not necessarily contiguous). This | |
906 implies that all fixed-size types must be big enough to contain at | |
907 least one pointer. This is true for all current fixed-size types, | |
908 with the possible exception of Lisp_Floats, for which we define the | |
909 meat of the struct using a union of a pointer and a double to | |
910 ensure adequate space for the free list chain pointer. | |
428 | 911 |
912 Some types of objects need additional "finalization" done | |
913 when an object is converted from in use to not in use; | |
914 this is the purpose of the ADDITIONAL_FREE_type macro. | |
915 For example, markers need to be removed from the chain | |
916 of markers that is kept in each buffer. This is because | |
917 markers in a buffer automatically disappear if the marker | |
918 is no longer referenced anywhere (the same does not | |
919 apply to extents, however). | |
920 | |
921 WARNING: Things are in an extremely bizarre state when | |
922 the ADDITIONAL_FREE_type macros are called, so beware! | |
923 | |
454 | 924 When ERROR_CHECK_GC is defined, we do things differently so as to |
925 maximize our chances of catching places where there is insufficient | |
926 GCPROing. The thing we want to avoid is having an object that | |
927 we're using but didn't GCPRO get freed by GC and then reallocated | |
928 while we're in the process of using it -- this will result in | |
929 something seemingly unrelated getting trashed, and is extremely | |
930 difficult to track down. If the object gets freed but not | |
931 reallocated, we can usually catch this because we set most of the | |
932 bytes of a freed object to 0xDEADBEEF. (The lisp object type is set | |
933 to the invalid type `lrecord_type_free', however, and a pointer | |
934 used to chain freed objects together is stored after the lrecord | |
935 header; we play some tricks with this pointer to make it more | |
428 | 936 bogus, so crashes are more likely to occur right away.) |
937 | |
938 We want freed objects to stay free as long as possible, | |
939 so instead of doing what we do above, we maintain the | |
940 free objects in a first-in first-out queue. We also | |
941 don't recompute the free list each GC, unlike above; | |
942 this ensures that the queue ordering is preserved. | |
943 [This means that we are likely to have worse locality | |
944 of reference, and that we can never free a frob block | |
945 once it's allocated. (Even if we know that all cells | |
946 in it are free, there's no easy way to remove all those | |
947 cells from the free list because the objects on the | |
948 free list are unlikely to be in memory order.)] | |
949 Furthermore, we never take objects off the free list | |
950 unless there's a large number (usually 1000, but | |
951 varies depending on type) of them already on the list. | |
952 This way, we ensure that an object that gets freed will | |
953 remain free for the next 1000 (or whatever) times that | |
440 | 954 an object of that type is allocated. */ |
428 | 955 |
956 #ifndef MALLOC_OVERHEAD | |
957 #ifdef GNU_MALLOC | |
958 #define MALLOC_OVERHEAD 0 | |
959 #elif defined (rcheck) | |
960 #define MALLOC_OVERHEAD 20 | |
961 #else | |
962 #define MALLOC_OVERHEAD 8 | |
963 #endif | |
964 #endif /* MALLOC_OVERHEAD */ | |
965 | |
966 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC) | |
967 /* If we released our reserve (due to running out of memory), | |
968 and we have a fair amount free once again, | |
969 try to set aside another reserve in case we run out once more. | |
970 | |
971 This is called when a relocatable block is freed in ralloc.c. */ | |
972 void refill_memory_reserve (void); | |
973 void | |
442 | 974 refill_memory_reserve (void) |
428 | 975 { |
976 if (breathing_space == 0) | |
977 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD); | |
978 } | |
979 #endif | |
980 | |
981 #ifdef ALLOC_NO_POOLS | |
982 # define TYPE_ALLOC_SIZE(type, structtype) 1 | |
983 #else | |
984 # define TYPE_ALLOC_SIZE(type, structtype) \ | |
985 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \ | |
986 / sizeof (structtype)) | |
987 #endif /* ALLOC_NO_POOLS */ | |
988 | |
989 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \ | |
990 \ | |
991 struct type##_block \ | |
992 { \ | |
993 struct type##_block *prev; \ | |
994 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \ | |
995 }; \ | |
996 \ | |
997 static struct type##_block *current_##type##_block; \ | |
998 static int current_##type##_block_index; \ | |
999 \ | |
454 | 1000 static Lisp_Free *type##_free_list; \ |
1001 static Lisp_Free *type##_free_list_tail; \ | |
428 | 1002 \ |
1003 static void \ | |
1004 init_##type##_alloc (void) \ | |
1005 { \ | |
1006 current_##type##_block = 0; \ | |
1007 current_##type##_block_index = \ | |
1008 countof (current_##type##_block->block); \ | |
1009 type##_free_list = 0; \ | |
1010 type##_free_list_tail = 0; \ | |
1011 } \ | |
1012 \ | |
1013 static int gc_count_num_##type##_in_use; \ | |
1014 static int gc_count_num_##type##_freelist | |
1015 | |
1016 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \ | |
1017 if (current_##type##_block_index \ | |
1018 == countof (current_##type##_block->block)) \ | |
1019 { \ | |
1020 struct type##_block *AFTFB_new = (struct type##_block *) \ | |
1021 allocate_lisp_storage (sizeof (struct type##_block)); \ | |
1022 AFTFB_new->prev = current_##type##_block; \ | |
1023 current_##type##_block = AFTFB_new; \ | |
1024 current_##type##_block_index = 0; \ | |
1025 } \ | |
1026 (result) = \ | |
1027 &(current_##type##_block->block[current_##type##_block_index++]); \ | |
1028 } while (0) | |
1029 | |
1030 /* Allocate an instance of a type that is stored in blocks. | |
1031 TYPE is the "name" of the type, STRUCTTYPE is the corresponding | |
1032 structure type. */ | |
1033 | |
1034 #ifdef ERROR_CHECK_GC | |
1035 | |
1036 /* Note: if you get crashes in this function, suspect incorrect calls | |
1037 to free_cons() and friends. This happened once because the cons | |
1038 cell was not GC-protected and was getting collected before | |
1039 free_cons() was called. */ | |
1040 | |
454 | 1041 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \ |
1042 if (gc_count_num_##type##_freelist > \ | |
1043 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \ | |
1044 { \ | |
1045 result = (structtype *) type##_free_list; \ | |
1204 | 1046 assert (LRECORD_FREE_P (result)); \ |
1047 /* Before actually using the chain pointer, we complement \ | |
1048 all its bits; see PUT_FIXED_TYPE_ON_FREE_LIST(). */ \ | |
454 | 1049 type##_free_list = (Lisp_Free *) \ |
1050 (~ (EMACS_UINT) (type##_free_list->chain)); \ | |
1051 gc_count_num_##type##_freelist--; \ | |
1052 } \ | |
1053 else \ | |
1054 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ | |
1055 MARK_LRECORD_AS_NOT_FREE (result); \ | |
428 | 1056 } while (0) |
1057 | |
1058 #else /* !ERROR_CHECK_GC */ | |
1059 | |
454 | 1060 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \ |
428 | 1061 if (type##_free_list) \ |
1062 { \ | |
454 | 1063 result = (structtype *) type##_free_list; \ |
1064 type##_free_list = type##_free_list->chain; \ | |
428 | 1065 } \ |
1066 else \ | |
1067 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ | |
454 | 1068 MARK_LRECORD_AS_NOT_FREE (result); \ |
428 | 1069 } while (0) |
1070 | |
1071 #endif /* !ERROR_CHECK_GC */ | |
1072 | |
454 | 1073 |
428 | 1074 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \ |
1075 do \ | |
1076 { \ | |
1077 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ | |
1078 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ | |
1079 } while (0) | |
1080 | |
1081 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \ | |
1082 do \ | |
1083 { \ | |
1084 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ | |
1085 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ | |
1086 } while (0) | |
1087 | |
454 | 1088 |
1089 /* Lisp_Free is the type to represent a free list member inside a frob | |
1090 block of any lisp object type. */ | |
1091 typedef struct Lisp_Free | |
1092 { | |
1093 struct lrecord_header lheader; | |
1094 struct Lisp_Free *chain; | |
1095 } Lisp_Free; | |
1096 | |
1097 #define LRECORD_FREE_P(ptr) \ | |
771 | 1098 (((struct lrecord_header *) ptr)->type == lrecord_type_free) |
454 | 1099 |
1100 #define MARK_LRECORD_AS_FREE(ptr) \ | |
771 | 1101 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_free)) |
454 | 1102 |
1103 #ifdef ERROR_CHECK_GC | |
1104 #define MARK_LRECORD_AS_NOT_FREE(ptr) \ | |
771 | 1105 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_undefined)) |
428 | 1106 #else |
454 | 1107 #define MARK_LRECORD_AS_NOT_FREE(ptr) DO_NOTHING |
428 | 1108 #endif |
1109 | |
1110 #ifdef ERROR_CHECK_GC | |
1111 | |
454 | 1112 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \ |
1113 if (type##_free_list_tail) \ | |
1114 { \ | |
1115 /* When we store the chain pointer, we complement all \ | |
1116 its bits; this should significantly increase its \ | |
1117 bogosity in case someone tries to use the value, and \ | |
1118 should make us crash faster if someone overwrites the \ | |
1119 pointer because when it gets un-complemented in \ | |
1120 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \ | |
1121 extremely bogus. */ \ | |
1122 type##_free_list_tail->chain = \ | |
1123 (Lisp_Free *) ~ (EMACS_UINT) (ptr); \ | |
1124 } \ | |
1125 else \ | |
1126 type##_free_list = (Lisp_Free *) (ptr); \ | |
1127 type##_free_list_tail = (Lisp_Free *) (ptr); \ | |
1128 } while (0) | |
428 | 1129 |
1130 #else /* !ERROR_CHECK_GC */ | |
1131 | |
454 | 1132 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \ |
1133 ((Lisp_Free *) (ptr))->chain = type##_free_list; \ | |
1134 type##_free_list = (Lisp_Free *) (ptr); \ | |
1135 } while (0) \ | |
428 | 1136 |
1137 #endif /* !ERROR_CHECK_GC */ | |
1138 | |
1139 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */ | |
1140 | |
1141 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \ | |
1142 structtype *FFT_ptr = (ptr); \ | |
1204 | 1143 gc_checking_assert (!LRECORD_FREE_P (FFT_ptr)); \ |
2367 | 1144 gc_checking_assert (!DUMPEDP (FFT_ptr)); \ |
428 | 1145 ADDITIONAL_FREE_##type (FFT_ptr); \ |
1146 deadbeef_memory (FFT_ptr, sizeof (structtype)); \ | |
1147 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \ | |
454 | 1148 MARK_LRECORD_AS_FREE (FFT_ptr); \ |
428 | 1149 } while (0) |
1150 | |
1151 /* Like FREE_FIXED_TYPE() but used when we are explicitly | |
1152 freeing a structure through free_cons(), free_marker(), etc. | |
1153 rather than through the normal process of sweeping. | |
1154 We attempt to undo the changes made to the allocation counters | |
1155 as a result of this structure being allocated. This is not | |
1156 completely necessary but helps keep things saner: e.g. this way, | |
1157 repeatedly allocating and freeing a cons will not result in | |
1158 the consing-since-gc counter advancing, which would cause a GC | |
1204 | 1159 and somewhat defeat the purpose of explicitly freeing. |
1160 | |
1161 We also disable this mechanism entirely when ALLOC_NO_POOLS is | |
1162 set, which is used for Purify and the like. */ | |
1163 | |
1164 #ifndef ALLOC_NO_POOLS | |
428 | 1165 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \ |
1166 do { FREE_FIXED_TYPE (type, structtype, ptr); \ | |
1167 DECREMENT_CONS_COUNTER (sizeof (structtype)); \ | |
1168 gc_count_num_##type##_freelist++; \ | |
1169 } while (0) | |
1204 | 1170 #else |
1171 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) | |
1172 #endif | |
2720 | 1173 #endif /* not MC_ALLOC */ |
428 | 1174 |
1175 | |
1176 | |
1177 /************************************************************************/ | |
1178 /* Cons allocation */ | |
1179 /************************************************************************/ | |
1180 | |
2720 | 1181 #ifndef MC_ALLOC |
440 | 1182 DECLARE_FIXED_TYPE_ALLOC (cons, Lisp_Cons); |
428 | 1183 /* conses are used and freed so often that we set this really high */ |
1184 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */ | |
1185 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000 | |
2720 | 1186 #endif /* not MC_ALLOC */ |
428 | 1187 |
1188 static Lisp_Object | |
1189 mark_cons (Lisp_Object obj) | |
1190 { | |
1191 if (NILP (XCDR (obj))) | |
1192 return XCAR (obj); | |
1193 | |
1194 mark_object (XCAR (obj)); | |
1195 return XCDR (obj); | |
1196 } | |
1197 | |
1198 static int | |
1199 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth) | |
1200 { | |
442 | 1201 depth++; |
1202 while (internal_equal (XCAR (ob1), XCAR (ob2), depth)) | |
428 | 1203 { |
1204 ob1 = XCDR (ob1); | |
1205 ob2 = XCDR (ob2); | |
1206 if (! CONSP (ob1) || ! CONSP (ob2)) | |
442 | 1207 return internal_equal (ob1, ob2, depth); |
428 | 1208 } |
1209 return 0; | |
1210 } | |
1211 | |
1204 | 1212 static const struct memory_description cons_description[] = { |
853 | 1213 { XD_LISP_OBJECT, offsetof (Lisp_Cons, car_) }, |
1214 { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr_) }, | |
428 | 1215 { XD_END } |
1216 }; | |
1217 | |
934 | 1218 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons, |
1219 1, /*dumpable-flag*/ | |
1220 mark_cons, print_cons, 0, | |
1221 cons_equal, | |
1222 /* | |
1223 * No `hash' method needed. | |
1224 * internal_hash knows how to | |
1225 * handle conses. | |
1226 */ | |
1227 0, | |
1228 cons_description, | |
1229 Lisp_Cons); | |
428 | 1230 |
1231 DEFUN ("cons", Fcons, 2, 2, 0, /* | |
1232 Create a new cons, give it CAR and CDR as components, and return it. | |
1233 */ | |
1234 (car, cdr)) | |
1235 { | |
1236 /* This cannot GC. */ | |
1237 Lisp_Object val; | |
440 | 1238 Lisp_Cons *c; |
1239 | |
2720 | 1240 #ifdef MC_ALLOC |
1241 c = alloc_lrecord_type (Lisp_Cons, &lrecord_cons); | |
1242 #else /* not MC_ALLOC */ | |
440 | 1243 ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c); |
442 | 1244 set_lheader_implementation (&c->lheader, &lrecord_cons); |
2720 | 1245 #endif /* not MC_ALLOC */ |
793 | 1246 val = wrap_cons (c); |
853 | 1247 XSETCAR (val, car); |
1248 XSETCDR (val, cdr); | |
428 | 1249 return val; |
1250 } | |
1251 | |
1252 /* This is identical to Fcons() but it used for conses that we're | |
1253 going to free later, and is useful when trying to track down | |
1254 "real" consing. */ | |
1255 Lisp_Object | |
1256 noseeum_cons (Lisp_Object car, Lisp_Object cdr) | |
1257 { | |
1258 Lisp_Object val; | |
440 | 1259 Lisp_Cons *c; |
1260 | |
2720 | 1261 #ifdef MC_ALLOC |
1262 c = noseeum_alloc_lrecord_type (Lisp_Cons, &lrecord_cons); | |
1263 #else /* not MC_ALLOC */ | |
440 | 1264 NOSEEUM_ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c); |
442 | 1265 set_lheader_implementation (&c->lheader, &lrecord_cons); |
2720 | 1266 #endif /* not MC_ALLOC */ |
793 | 1267 val = wrap_cons (c); |
428 | 1268 XCAR (val) = car; |
1269 XCDR (val) = cdr; | |
1270 return val; | |
1271 } | |
1272 | |
1273 DEFUN ("list", Flist, 0, MANY, 0, /* | |
1274 Return a newly created list with specified arguments as elements. | |
1275 Any number of arguments, even zero arguments, are allowed. | |
1276 */ | |
1277 (int nargs, Lisp_Object *args)) | |
1278 { | |
1279 Lisp_Object val = Qnil; | |
1280 Lisp_Object *argp = args + nargs; | |
1281 | |
1282 while (argp > args) | |
1283 val = Fcons (*--argp, val); | |
1284 return val; | |
1285 } | |
1286 | |
1287 Lisp_Object | |
1288 list1 (Lisp_Object obj0) | |
1289 { | |
1290 /* This cannot GC. */ | |
1291 return Fcons (obj0, Qnil); | |
1292 } | |
1293 | |
1294 Lisp_Object | |
1295 list2 (Lisp_Object obj0, Lisp_Object obj1) | |
1296 { | |
1297 /* This cannot GC. */ | |
1298 return Fcons (obj0, Fcons (obj1, Qnil)); | |
1299 } | |
1300 | |
1301 Lisp_Object | |
1302 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
1303 { | |
1304 /* This cannot GC. */ | |
1305 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil))); | |
1306 } | |
1307 | |
1308 Lisp_Object | |
1309 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
1310 { | |
1311 /* This cannot GC. */ | |
1312 return Fcons (obj0, Fcons (obj1, obj2)); | |
1313 } | |
1314 | |
1315 Lisp_Object | |
1316 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist) | |
1317 { | |
1318 return Fcons (Fcons (key, value), alist); | |
1319 } | |
1320 | |
1321 Lisp_Object | |
1322 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3) | |
1323 { | |
1324 /* This cannot GC. */ | |
1325 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil)))); | |
1326 } | |
1327 | |
1328 Lisp_Object | |
1329 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, | |
1330 Lisp_Object obj4) | |
1331 { | |
1332 /* This cannot GC. */ | |
1333 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil))))); | |
1334 } | |
1335 | |
1336 Lisp_Object | |
1337 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, | |
1338 Lisp_Object obj4, Lisp_Object obj5) | |
1339 { | |
1340 /* This cannot GC. */ | |
1341 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil)))))); | |
1342 } | |
1343 | |
1344 DEFUN ("make-list", Fmake_list, 2, 2, 0, /* | |
444 | 1345 Return a new list of length LENGTH, with each element being OBJECT. |
428 | 1346 */ |
444 | 1347 (length, object)) |
428 | 1348 { |
1349 CHECK_NATNUM (length); | |
1350 | |
1351 { | |
1352 Lisp_Object val = Qnil; | |
647 | 1353 EMACS_INT size = XINT (length); |
428 | 1354 |
1355 while (size--) | |
444 | 1356 val = Fcons (object, val); |
428 | 1357 return val; |
1358 } | |
1359 } | |
1360 | |
1361 | |
1362 /************************************************************************/ | |
1363 /* Float allocation */ | |
1364 /************************************************************************/ | |
1365 | |
1983 | 1366 /*** With enhanced number support, these are short floats */ |
1367 | |
2720 | 1368 #ifndef MC_ALLOC |
440 | 1369 DECLARE_FIXED_TYPE_ALLOC (float, Lisp_Float); |
428 | 1370 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000 |
2720 | 1371 #endif /* not MC_ALLOC */ |
428 | 1372 |
1373 Lisp_Object | |
1374 make_float (double float_value) | |
1375 { | |
440 | 1376 Lisp_Float *f; |
1377 | |
2720 | 1378 #ifdef MC_ALLOC |
1379 f = alloc_lrecord_type (Lisp_Float, &lrecord_float); | |
1380 #else /* not MC_ALLOC */ | |
440 | 1381 ALLOCATE_FIXED_TYPE (float, Lisp_Float, f); |
1382 | |
1383 /* Avoid dump-time `uninitialized memory read' purify warnings. */ | |
1384 if (sizeof (struct lrecord_header) + sizeof (double) != sizeof (*f)) | |
1385 xzero (*f); | |
2720 | 1386 #endif /* not MC_ALLOC */ |
440 | 1387 |
442 | 1388 set_lheader_implementation (&f->lheader, &lrecord_float); |
428 | 1389 float_data (f) = float_value; |
793 | 1390 return wrap_float (f); |
428 | 1391 } |
1392 | |
1393 | |
1394 /************************************************************************/ | |
1983 | 1395 /* Enhanced number allocation */ |
1396 /************************************************************************/ | |
1397 | |
1398 /*** Bignum ***/ | |
1399 #ifdef HAVE_BIGNUM | |
2720 | 1400 #ifndef MC_ALLOC |
1983 | 1401 DECLARE_FIXED_TYPE_ALLOC (bignum, Lisp_Bignum); |
1402 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_bignum 250 | |
2720 | 1403 #endif /* not MC_ALLOC */ |
1983 | 1404 |
1405 /* WARNING: This function returns a bignum even if its argument fits into a | |
1406 fixnum. See Fcanonicalize_number(). */ | |
1407 Lisp_Object | |
1408 make_bignum (long bignum_value) | |
1409 { | |
1410 Lisp_Bignum *b; | |
1411 | |
2720 | 1412 #ifdef MC_ALLOC |
1413 b = alloc_lrecord_type (Lisp_Bignum, &lrecord_bignum); | |
1414 #else /* not MC_ALLOC */ | |
1983 | 1415 ALLOCATE_FIXED_TYPE (bignum, Lisp_Bignum, b); |
1416 set_lheader_implementation (&b->lheader, &lrecord_bignum); | |
2720 | 1417 #endif /* not MC_ALLOC */ |
1983 | 1418 bignum_init (bignum_data (b)); |
1419 bignum_set_long (bignum_data (b), bignum_value); | |
1420 return wrap_bignum (b); | |
1421 } | |
1422 | |
1423 /* WARNING: This function returns a bignum even if its argument fits into a | |
1424 fixnum. See Fcanonicalize_number(). */ | |
1425 Lisp_Object | |
1426 make_bignum_bg (bignum bg) | |
1427 { | |
1428 Lisp_Bignum *b; | |
1429 | |
2720 | 1430 #ifdef MC_ALLOC |
1431 b = alloc_lrecord_type (Lisp_Bignum, &lrecord_bignum); | |
1432 #else /* not MC_ALLOC */ | |
1983 | 1433 ALLOCATE_FIXED_TYPE (bignum, Lisp_Bignum, b); |
1434 set_lheader_implementation (&b->lheader, &lrecord_bignum); | |
2720 | 1435 #endif /* not MC_ALLOC */ |
1983 | 1436 bignum_init (bignum_data (b)); |
1437 bignum_set (bignum_data (b), bg); | |
1438 return wrap_bignum (b); | |
1439 } | |
1440 #endif /* HAVE_BIGNUM */ | |
1441 | |
1442 /*** Ratio ***/ | |
1443 #ifdef HAVE_RATIO | |
2720 | 1444 #ifndef MC_ALLOC |
1983 | 1445 DECLARE_FIXED_TYPE_ALLOC (ratio, Lisp_Ratio); |
1446 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_ratio 250 | |
2720 | 1447 #endif /* not MC_ALLOC */ |
1983 | 1448 |
1449 Lisp_Object | |
1450 make_ratio (long numerator, unsigned long denominator) | |
1451 { | |
1452 Lisp_Ratio *r; | |
1453 | |
2720 | 1454 #ifdef MC_ALLOC |
1455 r = alloc_lrecord_type (Lisp_Ratio, &lrecord_ratio); | |
1456 #else /* not MC_ALLOC */ | |
1983 | 1457 ALLOCATE_FIXED_TYPE (ratio, Lisp_Ratio, r); |
1458 set_lheader_implementation (&r->lheader, &lrecord_ratio); | |
2720 | 1459 #endif /* not MC_ALLOC */ |
1983 | 1460 ratio_init (ratio_data (r)); |
1461 ratio_set_long_ulong (ratio_data (r), numerator, denominator); | |
1462 ratio_canonicalize (ratio_data (r)); | |
1463 return wrap_ratio (r); | |
1464 } | |
1465 | |
1466 Lisp_Object | |
1467 make_ratio_bg (bignum numerator, bignum denominator) | |
1468 { | |
1469 Lisp_Ratio *r; | |
1470 | |
2720 | 1471 #ifdef MC_ALLOC |
1472 r = alloc_lrecord_type (Lisp_Ratio, &lrecord_ratio); | |
1473 #else /* not MC_ALLOC */ | |
1983 | 1474 ALLOCATE_FIXED_TYPE (ratio, Lisp_Ratio, r); |
1475 set_lheader_implementation (&r->lheader, &lrecord_ratio); | |
2720 | 1476 #endif /* not MC_ALLOC */ |
1983 | 1477 ratio_init (ratio_data (r)); |
1478 ratio_set_bignum_bignum (ratio_data (r), numerator, denominator); | |
1479 ratio_canonicalize (ratio_data (r)); | |
1480 return wrap_ratio (r); | |
1481 } | |
1482 | |
1483 Lisp_Object | |
1484 make_ratio_rt (ratio rat) | |
1485 { | |
1486 Lisp_Ratio *r; | |
1487 | |
2720 | 1488 #ifdef MC_ALLOC |
1489 r = alloc_lrecord_type (Lisp_Ratio, &lrecord_ratio); | |
1490 #else /* not MC_ALLOC */ | |
1983 | 1491 ALLOCATE_FIXED_TYPE (ratio, Lisp_Ratio, r); |
1492 set_lheader_implementation (&r->lheader, &lrecord_ratio); | |
2720 | 1493 #endif /* not MC_ALLOC */ |
1983 | 1494 ratio_init (ratio_data (r)); |
1495 ratio_set (ratio_data (r), rat); | |
1496 return wrap_ratio (r); | |
1497 } | |
1498 #endif /* HAVE_RATIO */ | |
1499 | |
1500 /*** Bigfloat ***/ | |
1501 #ifdef HAVE_BIGFLOAT | |
2720 | 1502 #ifndef MC_ALLOC |
1983 | 1503 DECLARE_FIXED_TYPE_ALLOC (bigfloat, Lisp_Bigfloat); |
1504 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_bigfloat 250 | |
2720 | 1505 #endif /* not MC_ALLOC */ |
1983 | 1506 |
1507 /* This function creates a bigfloat with the default precision if the | |
1508 PRECISION argument is zero. */ | |
1509 Lisp_Object | |
1510 make_bigfloat (double float_value, unsigned long precision) | |
1511 { | |
1512 Lisp_Bigfloat *f; | |
1513 | |
2720 | 1514 #ifdef MC_ALLOC |
1515 f = alloc_lrecord_type (Lisp_Bigfloat, &lrecord_bigfloat); | |
1516 #else /* not MC_ALLOC */ | |
1983 | 1517 ALLOCATE_FIXED_TYPE (bigfloat, Lisp_Bigfloat, f); |
1518 set_lheader_implementation (&f->lheader, &lrecord_bigfloat); | |
2720 | 1519 #endif /* not MC_ALLOC */ |
1983 | 1520 if (precision == 0UL) |
1521 bigfloat_init (bigfloat_data (f)); | |
1522 else | |
1523 bigfloat_init_prec (bigfloat_data (f), precision); | |
1524 bigfloat_set_double (bigfloat_data (f), float_value); | |
1525 return wrap_bigfloat (f); | |
1526 } | |
1527 | |
1528 /* This function creates a bigfloat with the precision of its argument */ | |
1529 Lisp_Object | |
1530 make_bigfloat_bf (bigfloat float_value) | |
1531 { | |
1532 Lisp_Bigfloat *f; | |
1533 | |
2720 | 1534 #ifdef MC_ALLOC |
1535 f = alloc_lrecord_type (Lisp_Bigfloat, &lrecord_bigfloat); | |
1536 #else /* not MC_ALLOC */ | |
1983 | 1537 ALLOCATE_FIXED_TYPE (bigfloat, Lisp_Bigfloat, f); |
1538 set_lheader_implementation (&f->lheader, &lrecord_bigfloat); | |
2720 | 1539 #endif /* not MC_ALLOC */ |
1983 | 1540 bigfloat_init_prec (bigfloat_data (f), bigfloat_get_prec (float_value)); |
1541 bigfloat_set (bigfloat_data (f), float_value); | |
1542 return wrap_bigfloat (f); | |
1543 } | |
1544 #endif /* HAVE_BIGFLOAT */ | |
1545 | |
1546 /************************************************************************/ | |
428 | 1547 /* Vector allocation */ |
1548 /************************************************************************/ | |
1549 | |
1550 static Lisp_Object | |
1551 mark_vector (Lisp_Object obj) | |
1552 { | |
1553 Lisp_Vector *ptr = XVECTOR (obj); | |
1554 int len = vector_length (ptr); | |
1555 int i; | |
1556 | |
1557 for (i = 0; i < len - 1; i++) | |
1558 mark_object (ptr->contents[i]); | |
1559 return (len > 0) ? ptr->contents[len - 1] : Qnil; | |
1560 } | |
1561 | |
665 | 1562 static Bytecount |
442 | 1563 size_vector (const void *lheader) |
428 | 1564 { |
456 | 1565 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, contents, |
442 | 1566 ((Lisp_Vector *) lheader)->size); |
428 | 1567 } |
1568 | |
1569 static int | |
1570 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
1571 { | |
1572 int len = XVECTOR_LENGTH (obj1); | |
1573 if (len != XVECTOR_LENGTH (obj2)) | |
1574 return 0; | |
1575 | |
1576 { | |
1577 Lisp_Object *ptr1 = XVECTOR_DATA (obj1); | |
1578 Lisp_Object *ptr2 = XVECTOR_DATA (obj2); | |
1579 while (len--) | |
1580 if (!internal_equal (*ptr1++, *ptr2++, depth + 1)) | |
1581 return 0; | |
1582 } | |
1583 return 1; | |
1584 } | |
1585 | |
665 | 1586 static Hashcode |
442 | 1587 vector_hash (Lisp_Object obj, int depth) |
1588 { | |
1589 return HASH2 (XVECTOR_LENGTH (obj), | |
1590 internal_array_hash (XVECTOR_DATA (obj), | |
1591 XVECTOR_LENGTH (obj), | |
1592 depth + 1)); | |
1593 } | |
1594 | |
1204 | 1595 static const struct memory_description vector_description[] = { |
440 | 1596 { XD_LONG, offsetof (Lisp_Vector, size) }, |
1597 { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Vector, contents), XD_INDIRECT(0, 0) }, | |
428 | 1598 { XD_END } |
1599 }; | |
1600 | |
1204 | 1601 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION ("vector", vector, |
1602 1, /*dumpable-flag*/ | |
1603 mark_vector, print_vector, 0, | |
1604 vector_equal, | |
1605 vector_hash, | |
1606 vector_description, | |
1607 size_vector, Lisp_Vector); | |
428 | 1608 /* #### should allocate `small' vectors from a frob-block */ |
1609 static Lisp_Vector * | |
665 | 1610 make_vector_internal (Elemcount sizei) |
428 | 1611 { |
1204 | 1612 /* no `next' field; we use lcrecords */ |
665 | 1613 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, |
1204 | 1614 contents, sizei); |
1615 Lisp_Vector *p = | |
2720 | 1616 #ifdef MC_ALLOC |
1617 (Lisp_Vector *) alloc_lrecord (sizem, &lrecord_vector); | |
1618 #else /* not MC_ALLOC */ | |
1204 | 1619 (Lisp_Vector *) basic_alloc_lcrecord (sizem, &lrecord_vector); |
2720 | 1620 #endif /* not MC_ALLOC */ |
428 | 1621 |
1622 p->size = sizei; | |
1623 return p; | |
1624 } | |
1625 | |
1626 Lisp_Object | |
665 | 1627 make_vector (Elemcount length, Lisp_Object object) |
428 | 1628 { |
1629 Lisp_Vector *vecp = make_vector_internal (length); | |
1630 Lisp_Object *p = vector_data (vecp); | |
1631 | |
1632 while (length--) | |
444 | 1633 *p++ = object; |
428 | 1634 |
793 | 1635 return wrap_vector (vecp); |
428 | 1636 } |
1637 | |
1638 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /* | |
444 | 1639 Return a new vector of length LENGTH, with each element being OBJECT. |
428 | 1640 See also the function `vector'. |
1641 */ | |
444 | 1642 (length, object)) |
428 | 1643 { |
1644 CONCHECK_NATNUM (length); | |
444 | 1645 return make_vector (XINT (length), object); |
428 | 1646 } |
1647 | |
1648 DEFUN ("vector", Fvector, 0, MANY, 0, /* | |
1649 Return a newly created vector with specified arguments as elements. | |
1650 Any number of arguments, even zero arguments, are allowed. | |
1651 */ | |
1652 (int nargs, Lisp_Object *args)) | |
1653 { | |
1654 Lisp_Vector *vecp = make_vector_internal (nargs); | |
1655 Lisp_Object *p = vector_data (vecp); | |
1656 | |
1657 while (nargs--) | |
1658 *p++ = *args++; | |
1659 | |
793 | 1660 return wrap_vector (vecp); |
428 | 1661 } |
1662 | |
1663 Lisp_Object | |
1664 vector1 (Lisp_Object obj0) | |
1665 { | |
1666 return Fvector (1, &obj0); | |
1667 } | |
1668 | |
1669 Lisp_Object | |
1670 vector2 (Lisp_Object obj0, Lisp_Object obj1) | |
1671 { | |
1672 Lisp_Object args[2]; | |
1673 args[0] = obj0; | |
1674 args[1] = obj1; | |
1675 return Fvector (2, args); | |
1676 } | |
1677 | |
1678 Lisp_Object | |
1679 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
1680 { | |
1681 Lisp_Object args[3]; | |
1682 args[0] = obj0; | |
1683 args[1] = obj1; | |
1684 args[2] = obj2; | |
1685 return Fvector (3, args); | |
1686 } | |
1687 | |
1688 #if 0 /* currently unused */ | |
1689 | |
1690 Lisp_Object | |
1691 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1692 Lisp_Object obj3) | |
1693 { | |
1694 Lisp_Object args[4]; | |
1695 args[0] = obj0; | |
1696 args[1] = obj1; | |
1697 args[2] = obj2; | |
1698 args[3] = obj3; | |
1699 return Fvector (4, args); | |
1700 } | |
1701 | |
1702 Lisp_Object | |
1703 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1704 Lisp_Object obj3, Lisp_Object obj4) | |
1705 { | |
1706 Lisp_Object args[5]; | |
1707 args[0] = obj0; | |
1708 args[1] = obj1; | |
1709 args[2] = obj2; | |
1710 args[3] = obj3; | |
1711 args[4] = obj4; | |
1712 return Fvector (5, args); | |
1713 } | |
1714 | |
1715 Lisp_Object | |
1716 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1717 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5) | |
1718 { | |
1719 Lisp_Object args[6]; | |
1720 args[0] = obj0; | |
1721 args[1] = obj1; | |
1722 args[2] = obj2; | |
1723 args[3] = obj3; | |
1724 args[4] = obj4; | |
1725 args[5] = obj5; | |
1726 return Fvector (6, args); | |
1727 } | |
1728 | |
1729 Lisp_Object | |
1730 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1731 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, | |
1732 Lisp_Object obj6) | |
1733 { | |
1734 Lisp_Object args[7]; | |
1735 args[0] = obj0; | |
1736 args[1] = obj1; | |
1737 args[2] = obj2; | |
1738 args[3] = obj3; | |
1739 args[4] = obj4; | |
1740 args[5] = obj5; | |
1741 args[6] = obj6; | |
1742 return Fvector (7, args); | |
1743 } | |
1744 | |
1745 Lisp_Object | |
1746 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1747 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, | |
1748 Lisp_Object obj6, Lisp_Object obj7) | |
1749 { | |
1750 Lisp_Object args[8]; | |
1751 args[0] = obj0; | |
1752 args[1] = obj1; | |
1753 args[2] = obj2; | |
1754 args[3] = obj3; | |
1755 args[4] = obj4; | |
1756 args[5] = obj5; | |
1757 args[6] = obj6; | |
1758 args[7] = obj7; | |
1759 return Fvector (8, args); | |
1760 } | |
1761 #endif /* unused */ | |
1762 | |
1763 /************************************************************************/ | |
1764 /* Bit Vector allocation */ | |
1765 /************************************************************************/ | |
1766 | |
1767 /* #### should allocate `small' bit vectors from a frob-block */ | |
440 | 1768 static Lisp_Bit_Vector * |
665 | 1769 make_bit_vector_internal (Elemcount sizei) |
428 | 1770 { |
1204 | 1771 /* no `next' field; we use lcrecords */ |
665 | 1772 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (sizei); |
1773 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, | |
1204 | 1774 unsigned long, |
1775 bits, num_longs); | |
1776 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *) | |
2720 | 1777 #ifdef MC_ALLOC |
1778 alloc_lrecord (sizem, &lrecord_bit_vector); | |
1779 #else /* not MC_ALLOC */ | |
1204 | 1780 basic_alloc_lcrecord (sizem, &lrecord_bit_vector); |
2720 | 1781 #endif /* not MC_ALLOC */ |
428 | 1782 |
1783 bit_vector_length (p) = sizei; | |
1784 return p; | |
1785 } | |
1786 | |
1787 Lisp_Object | |
665 | 1788 make_bit_vector (Elemcount length, Lisp_Object bit) |
428 | 1789 { |
440 | 1790 Lisp_Bit_Vector *p = make_bit_vector_internal (length); |
665 | 1791 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (length); |
428 | 1792 |
444 | 1793 CHECK_BIT (bit); |
1794 | |
1795 if (ZEROP (bit)) | |
428 | 1796 memset (p->bits, 0, num_longs * sizeof (long)); |
1797 else | |
1798 { | |
665 | 1799 Elemcount bits_in_last = length & (LONGBITS_POWER_OF_2 - 1); |
428 | 1800 memset (p->bits, ~0, num_longs * sizeof (long)); |
1801 /* But we have to make sure that the unused bits in the | |
1802 last long are 0, so that equal/hash is easy. */ | |
1803 if (bits_in_last) | |
1804 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1; | |
1805 } | |
1806 | |
793 | 1807 return wrap_bit_vector (p); |
428 | 1808 } |
1809 | |
1810 Lisp_Object | |
665 | 1811 make_bit_vector_from_byte_vector (unsigned char *bytevec, Elemcount length) |
428 | 1812 { |
665 | 1813 Elemcount i; |
428 | 1814 Lisp_Bit_Vector *p = make_bit_vector_internal (length); |
1815 | |
1816 for (i = 0; i < length; i++) | |
1817 set_bit_vector_bit (p, i, bytevec[i]); | |
1818 | |
793 | 1819 return wrap_bit_vector (p); |
428 | 1820 } |
1821 | |
1822 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /* | |
444 | 1823 Return a new bit vector of length LENGTH. with each bit set to BIT. |
1824 BIT must be one of the integers 0 or 1. See also the function `bit-vector'. | |
428 | 1825 */ |
444 | 1826 (length, bit)) |
428 | 1827 { |
1828 CONCHECK_NATNUM (length); | |
1829 | |
444 | 1830 return make_bit_vector (XINT (length), bit); |
428 | 1831 } |
1832 | |
1833 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /* | |
1834 Return a newly created bit vector with specified arguments as elements. | |
1835 Any number of arguments, even zero arguments, are allowed. | |
444 | 1836 Each argument must be one of the integers 0 or 1. |
428 | 1837 */ |
1838 (int nargs, Lisp_Object *args)) | |
1839 { | |
1840 int i; | |
1841 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs); | |
1842 | |
1843 for (i = 0; i < nargs; i++) | |
1844 { | |
1845 CHECK_BIT (args[i]); | |
1846 set_bit_vector_bit (p, i, !ZEROP (args[i])); | |
1847 } | |
1848 | |
793 | 1849 return wrap_bit_vector (p); |
428 | 1850 } |
1851 | |
1852 | |
1853 /************************************************************************/ | |
1854 /* Compiled-function allocation */ | |
1855 /************************************************************************/ | |
1856 | |
2720 | 1857 #ifndef MC_ALLOC |
428 | 1858 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function); |
1859 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000 | |
2720 | 1860 #endif /* not MC_ALLOC */ |
428 | 1861 |
1862 static Lisp_Object | |
1863 make_compiled_function (void) | |
1864 { | |
1865 Lisp_Compiled_Function *f; | |
1866 | |
2720 | 1867 #ifdef MC_ALLOC |
1868 f = alloc_lrecord_type (Lisp_Compiled_Function, &lrecord_compiled_function); | |
1869 #else /* not MC_ALLOC */ | |
428 | 1870 ALLOCATE_FIXED_TYPE (compiled_function, Lisp_Compiled_Function, f); |
442 | 1871 set_lheader_implementation (&f->lheader, &lrecord_compiled_function); |
2720 | 1872 #endif /* not MC_ALLOC */ |
428 | 1873 |
1874 f->stack_depth = 0; | |
1875 f->specpdl_depth = 0; | |
1876 f->flags.documentationp = 0; | |
1877 f->flags.interactivep = 0; | |
1878 f->flags.domainp = 0; /* I18N3 */ | |
1879 f->instructions = Qzero; | |
1880 f->constants = Qzero; | |
1881 f->arglist = Qnil; | |
1739 | 1882 f->args = NULL; |
1883 f->max_args = f->min_args = f->args_in_array = 0; | |
428 | 1884 f->doc_and_interactive = Qnil; |
1885 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK | |
1886 f->annotated = Qnil; | |
1887 #endif | |
793 | 1888 return wrap_compiled_function (f); |
428 | 1889 } |
1890 | |
1891 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /* | |
1892 Return a new compiled-function object. | |
1893 Usage: (arglist instructions constants stack-depth | |
1894 &optional doc-string interactive) | |
1895 Note that, unlike all other emacs-lisp functions, calling this with five | |
1896 arguments is NOT the same as calling it with six arguments, the last of | |
1897 which is nil. If the INTERACTIVE arg is specified as nil, then that means | |
1898 that this function was defined with `(interactive)'. If the arg is not | |
1899 specified, then that means the function is not interactive. | |
1900 This is terrible behavior which is retained for compatibility with old | |
1901 `.elc' files which expect these semantics. | |
1902 */ | |
1903 (int nargs, Lisp_Object *args)) | |
1904 { | |
1905 /* In a non-insane world this function would have this arglist... | |
1906 (arglist instructions constants stack_depth &optional doc_string interactive) | |
1907 */ | |
1908 Lisp_Object fun = make_compiled_function (); | |
1909 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun); | |
1910 | |
1911 Lisp_Object arglist = args[0]; | |
1912 Lisp_Object instructions = args[1]; | |
1913 Lisp_Object constants = args[2]; | |
1914 Lisp_Object stack_depth = args[3]; | |
1915 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil; | |
1916 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound; | |
1917 | |
1918 if (nargs < 4 || nargs > 6) | |
1919 return Fsignal (Qwrong_number_of_arguments, | |
1920 list2 (intern ("make-byte-code"), make_int (nargs))); | |
1921 | |
1922 /* Check for valid formal parameter list now, to allow us to use | |
1923 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */ | |
1924 { | |
814 | 1925 EXTERNAL_LIST_LOOP_2 (symbol, arglist) |
428 | 1926 { |
1927 CHECK_SYMBOL (symbol); | |
1928 if (EQ (symbol, Qt) || | |
1929 EQ (symbol, Qnil) || | |
1930 SYMBOL_IS_KEYWORD (symbol)) | |
563 | 1931 invalid_constant_2 |
428 | 1932 ("Invalid constant symbol in formal parameter list", |
1933 symbol, arglist); | |
1934 } | |
1935 } | |
1936 f->arglist = arglist; | |
1937 | |
1938 /* `instructions' is a string or a cons (string . int) for a | |
1939 lazy-loaded function. */ | |
1940 if (CONSP (instructions)) | |
1941 { | |
1942 CHECK_STRING (XCAR (instructions)); | |
1943 CHECK_INT (XCDR (instructions)); | |
1944 } | |
1945 else | |
1946 { | |
1947 CHECK_STRING (instructions); | |
1948 } | |
1949 f->instructions = instructions; | |
1950 | |
1951 if (!NILP (constants)) | |
1952 CHECK_VECTOR (constants); | |
1953 f->constants = constants; | |
1954 | |
1955 CHECK_NATNUM (stack_depth); | |
442 | 1956 f->stack_depth = (unsigned short) XINT (stack_depth); |
428 | 1957 |
1958 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK | |
1959 if (!NILP (Vcurrent_compiled_function_annotation)) | |
1960 f->annotated = Fcopy (Vcurrent_compiled_function_annotation); | |
1961 else if (!NILP (Vload_file_name_internal_the_purecopy)) | |
1962 f->annotated = Vload_file_name_internal_the_purecopy; | |
1963 else if (!NILP (Vload_file_name_internal)) | |
1964 { | |
1965 struct gcpro gcpro1; | |
1966 GCPRO1 (fun); /* don't let fun get reaped */ | |
1967 Vload_file_name_internal_the_purecopy = | |
1968 Ffile_name_nondirectory (Vload_file_name_internal); | |
1969 f->annotated = Vload_file_name_internal_the_purecopy; | |
1970 UNGCPRO; | |
1971 } | |
1972 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */ | |
1973 | |
1974 /* doc_string may be nil, string, int, or a cons (string . int). | |
1975 interactive may be list or string (or unbound). */ | |
1976 f->doc_and_interactive = Qunbound; | |
1977 #ifdef I18N3 | |
1978 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0) | |
1979 f->doc_and_interactive = Vfile_domain; | |
1980 #endif | |
1981 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0) | |
1982 { | |
1983 f->doc_and_interactive | |
1984 = (UNBOUNDP (f->doc_and_interactive) ? interactive : | |
1985 Fcons (interactive, f->doc_and_interactive)); | |
1986 } | |
1987 if ((f->flags.documentationp = !NILP (doc_string)) != 0) | |
1988 { | |
1989 f->doc_and_interactive | |
1990 = (UNBOUNDP (f->doc_and_interactive) ? doc_string : | |
1991 Fcons (doc_string, f->doc_and_interactive)); | |
1992 } | |
1993 if (UNBOUNDP (f->doc_and_interactive)) | |
1994 f->doc_and_interactive = Qnil; | |
1995 | |
1996 return fun; | |
1997 } | |
1998 | |
1999 | |
2000 /************************************************************************/ | |
2001 /* Symbol allocation */ | |
2002 /************************************************************************/ | |
2003 | |
2720 | 2004 #ifndef MC_ALLOC |
440 | 2005 DECLARE_FIXED_TYPE_ALLOC (symbol, Lisp_Symbol); |
428 | 2006 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000 |
2720 | 2007 #endif /* not MC_ALLOC */ |
428 | 2008 |
2009 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /* | |
2010 Return a newly allocated uninterned symbol whose name is NAME. | |
2011 Its value and function definition are void, and its property list is nil. | |
2012 */ | |
2013 (name)) | |
2014 { | |
440 | 2015 Lisp_Symbol *p; |
428 | 2016 |
2017 CHECK_STRING (name); | |
2018 | |
2720 | 2019 #ifdef MC_ALLOC |
2020 p = alloc_lrecord_type (Lisp_Symbol, &lrecord_symbol); | |
2021 #else /* not MC_ALLOC */ | |
440 | 2022 ALLOCATE_FIXED_TYPE (symbol, Lisp_Symbol, p); |
442 | 2023 set_lheader_implementation (&p->lheader, &lrecord_symbol); |
2720 | 2024 #endif /* not MC_ALLOC */ |
793 | 2025 p->name = name; |
428 | 2026 p->plist = Qnil; |
2027 p->value = Qunbound; | |
2028 p->function = Qunbound; | |
2029 symbol_next (p) = 0; | |
793 | 2030 return wrap_symbol (p); |
428 | 2031 } |
2032 | |
2033 | |
2034 /************************************************************************/ | |
2035 /* Extent allocation */ | |
2036 /************************************************************************/ | |
2037 | |
2720 | 2038 #ifndef MC_ALLOC |
428 | 2039 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent); |
2040 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000 | |
2720 | 2041 #endif /* not MC_ALLOC */ |
428 | 2042 |
2043 struct extent * | |
2044 allocate_extent (void) | |
2045 { | |
2046 struct extent *e; | |
2047 | |
2720 | 2048 #ifdef MC_ALLOC |
2049 e = alloc_lrecord_type (struct extent, &lrecord_extent); | |
2050 #else /* not MC_ALLOC */ | |
428 | 2051 ALLOCATE_FIXED_TYPE (extent, struct extent, e); |
442 | 2052 set_lheader_implementation (&e->lheader, &lrecord_extent); |
2720 | 2053 #endif /* not MC_ALLOC */ |
428 | 2054 extent_object (e) = Qnil; |
2055 set_extent_start (e, -1); | |
2056 set_extent_end (e, -1); | |
2057 e->plist = Qnil; | |
2058 | |
2059 xzero (e->flags); | |
2060 | |
2061 extent_face (e) = Qnil; | |
2062 e->flags.end_open = 1; /* default is for endpoints to behave like markers */ | |
2063 e->flags.detachable = 1; | |
2064 | |
2065 return e; | |
2066 } | |
2067 | |
2068 | |
2069 /************************************************************************/ | |
2070 /* Event allocation */ | |
2071 /************************************************************************/ | |
2072 | |
2720 | 2073 #ifndef MC_ALLOC |
440 | 2074 DECLARE_FIXED_TYPE_ALLOC (event, Lisp_Event); |
428 | 2075 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000 |
2720 | 2076 #endif /* not MC_ALLOC */ |
428 | 2077 |
2078 Lisp_Object | |
2079 allocate_event (void) | |
2080 { | |
440 | 2081 Lisp_Event *e; |
2082 | |
2720 | 2083 #ifdef MC_ALLOC |
2084 e = alloc_lrecord_type (Lisp_Event, &lrecord_event); | |
2085 #else /* not MC_ALLOC */ | |
440 | 2086 ALLOCATE_FIXED_TYPE (event, Lisp_Event, e); |
442 | 2087 set_lheader_implementation (&e->lheader, &lrecord_event); |
2720 | 2088 #endif /* not MC_ALLOC */ |
428 | 2089 |
793 | 2090 return wrap_event (e); |
428 | 2091 } |
2092 | |
1204 | 2093 #ifdef EVENT_DATA_AS_OBJECTS |
2720 | 2094 #ifndef MC_ALLOC |
934 | 2095 DECLARE_FIXED_TYPE_ALLOC (key_data, Lisp_Key_Data); |
2096 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_key_data 1000 | |
2720 | 2097 #endif /* not MC_ALLOC */ |
934 | 2098 |
2099 Lisp_Object | |
1204 | 2100 make_key_data (void) |
934 | 2101 { |
2102 Lisp_Key_Data *d; | |
2103 | |
2720 | 2104 #ifdef MC_ALLOC |
2105 d = alloc_lrecord_type (Lisp_Key_Data, &lrecord_key_data); | |
2106 #else /* not MC_ALLOC */ | |
934 | 2107 ALLOCATE_FIXED_TYPE (key_data, Lisp_Key_Data, d); |
1204 | 2108 xzero (*d); |
934 | 2109 set_lheader_implementation (&d->lheader, &lrecord_key_data); |
2720 | 2110 #endif /* not MC_ALLOC */ |
1204 | 2111 d->keysym = Qnil; |
2112 | |
2113 return wrap_key_data (d); | |
934 | 2114 } |
2115 | |
2720 | 2116 #ifndef MC_ALLOC |
934 | 2117 DECLARE_FIXED_TYPE_ALLOC (button_data, Lisp_Button_Data); |
2118 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_button_data 1000 | |
2720 | 2119 #endif /* not MC_ALLOC */ |
934 | 2120 |
2121 Lisp_Object | |
1204 | 2122 make_button_data (void) |
934 | 2123 { |
2124 Lisp_Button_Data *d; | |
2125 | |
2720 | 2126 #ifdef MC_ALLOC |
2127 d = alloc_lrecord_type (Lisp_Button_Data, &lrecord_button_data); | |
2128 #else /* not MC_ALLOC */ | |
934 | 2129 ALLOCATE_FIXED_TYPE (button_data, Lisp_Button_Data, d); |
1204 | 2130 xzero (*d); |
934 | 2131 set_lheader_implementation (&d->lheader, &lrecord_button_data); |
2132 | |
2720 | 2133 #endif /* not MC_ALLOC */ |
1204 | 2134 return wrap_button_data (d); |
934 | 2135 } |
2136 | |
2720 | 2137 #ifndef MC_ALLOC |
934 | 2138 DECLARE_FIXED_TYPE_ALLOC (motion_data, Lisp_Motion_Data); |
2139 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_motion_data 1000 | |
2720 | 2140 #endif /* not MC_ALLOC */ |
934 | 2141 |
2142 Lisp_Object | |
1204 | 2143 make_motion_data (void) |
934 | 2144 { |
2145 Lisp_Motion_Data *d; | |
2146 | |
2720 | 2147 #ifdef MC_ALLOC |
2148 d = alloc_lrecord_type (Lisp_Motion_Data, &lrecord_motion_data); | |
2149 #else /* not MC_ALLOC */ | |
934 | 2150 ALLOCATE_FIXED_TYPE (motion_data, Lisp_Motion_Data, d); |
1204 | 2151 xzero (*d); |
934 | 2152 set_lheader_implementation (&d->lheader, &lrecord_motion_data); |
2720 | 2153 #endif /* not MC_ALLOC */ |
934 | 2154 |
1204 | 2155 return wrap_motion_data (d); |
934 | 2156 } |
2157 | |
2720 | 2158 #ifndef MC_ALLOC |
934 | 2159 DECLARE_FIXED_TYPE_ALLOC (process_data, Lisp_Process_Data); |
2160 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_process_data 1000 | |
2720 | 2161 #endif /* not MC_ALLOC */ |
934 | 2162 |
2163 Lisp_Object | |
1204 | 2164 make_process_data (void) |
934 | 2165 { |
2166 Lisp_Process_Data *d; | |
2167 | |
2720 | 2168 #ifdef MC_ALLOC |
2169 d = alloc_lrecord_type (Lisp_Process_Data, &lrecord_process_data); | |
2170 #else /* not MC_ALLOC */ | |
934 | 2171 ALLOCATE_FIXED_TYPE (process_data, Lisp_Process_Data, d); |
1204 | 2172 xzero (*d); |
934 | 2173 set_lheader_implementation (&d->lheader, &lrecord_process_data); |
1204 | 2174 d->process = Qnil; |
2720 | 2175 #endif /* not MC_ALLOC */ |
1204 | 2176 |
2177 return wrap_process_data (d); | |
934 | 2178 } |
2179 | |
2720 | 2180 #ifndef MC_ALLOC |
934 | 2181 DECLARE_FIXED_TYPE_ALLOC (timeout_data, Lisp_Timeout_Data); |
2182 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_timeout_data 1000 | |
2720 | 2183 #endif /* not MC_ALLOC */ |
934 | 2184 |
2185 Lisp_Object | |
1204 | 2186 make_timeout_data (void) |
934 | 2187 { |
2188 Lisp_Timeout_Data *d; | |
2189 | |
2720 | 2190 #ifdef MC_ALLOC |
2191 d = alloc_lrecord_type (Lisp_Timeout_Data, &lrecord_timeout_data); | |
2192 #else /* not MC_ALLOC */ | |
934 | 2193 ALLOCATE_FIXED_TYPE (timeout_data, Lisp_Timeout_Data, d); |
1204 | 2194 xzero (*d); |
934 | 2195 set_lheader_implementation (&d->lheader, &lrecord_timeout_data); |
1204 | 2196 d->function = Qnil; |
2197 d->object = Qnil; | |
2720 | 2198 #endif /* not MC_ALLOC */ |
1204 | 2199 |
2200 return wrap_timeout_data (d); | |
934 | 2201 } |
2202 | |
2720 | 2203 #ifndef MC_ALLOC |
934 | 2204 DECLARE_FIXED_TYPE_ALLOC (magic_data, Lisp_Magic_Data); |
2205 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_data 1000 | |
2720 | 2206 #endif /* not MC_ALLOC */ |
934 | 2207 |
2208 Lisp_Object | |
1204 | 2209 make_magic_data (void) |
934 | 2210 { |
2211 Lisp_Magic_Data *d; | |
2212 | |
2720 | 2213 #ifdef MC_ALLOC |
2214 d = alloc_lrecord_type (Lisp_Magic_Data, &lrecord_magic_data); | |
2215 #else /* not MC_ALLOC */ | |
934 | 2216 ALLOCATE_FIXED_TYPE (magic_data, Lisp_Magic_Data, d); |
1204 | 2217 xzero (*d); |
934 | 2218 set_lheader_implementation (&d->lheader, &lrecord_magic_data); |
2720 | 2219 #endif /* not MC_ALLOC */ |
934 | 2220 |
1204 | 2221 return wrap_magic_data (d); |
934 | 2222 } |
2223 | |
2720 | 2224 #ifndef MC_ALLOC |
934 | 2225 DECLARE_FIXED_TYPE_ALLOC (magic_eval_data, Lisp_Magic_Eval_Data); |
2226 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_eval_data 1000 | |
2720 | 2227 #endif /* not MC_ALLOC */ |
934 | 2228 |
2229 Lisp_Object | |
1204 | 2230 make_magic_eval_data (void) |
934 | 2231 { |
2232 Lisp_Magic_Eval_Data *d; | |
2233 | |
2720 | 2234 #ifdef MC_ALLOC |
2235 d = alloc_lrecord_type (Lisp_Magic_Eval_Data, &lrecord_magic_eval_data); | |
2236 #else /* not MC_ALLOC */ | |
934 | 2237 ALLOCATE_FIXED_TYPE (magic_eval_data, Lisp_Magic_Eval_Data, d); |
1204 | 2238 xzero (*d); |
934 | 2239 set_lheader_implementation (&d->lheader, &lrecord_magic_eval_data); |
1204 | 2240 d->object = Qnil; |
2720 | 2241 #endif /* not MC_ALLOC */ |
1204 | 2242 |
2243 return wrap_magic_eval_data (d); | |
934 | 2244 } |
2245 | |
2720 | 2246 #ifndef MC_ALLOC |
934 | 2247 DECLARE_FIXED_TYPE_ALLOC (eval_data, Lisp_Eval_Data); |
2248 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_eval_data 1000 | |
2720 | 2249 #endif /* not MC_ALLOC */ |
934 | 2250 |
2251 Lisp_Object | |
1204 | 2252 make_eval_data (void) |
934 | 2253 { |
2254 Lisp_Eval_Data *d; | |
2255 | |
2720 | 2256 #ifdef MC_ALLOC |
2257 d = alloc_lrecord_type (Lisp_Eval_Data, &lrecord_eval_data); | |
2258 #else /* not MC_ALLOC */ | |
934 | 2259 ALLOCATE_FIXED_TYPE (eval_data, Lisp_Eval_Data, d); |
1204 | 2260 xzero (*d); |
934 | 2261 set_lheader_implementation (&d->lheader, &lrecord_eval_data); |
1204 | 2262 d->function = Qnil; |
2263 d->object = Qnil; | |
2720 | 2264 #endif /* not MC_ALLOC */ |
1204 | 2265 |
2266 return wrap_eval_data (d); | |
934 | 2267 } |
2268 | |
2720 | 2269 #ifndef MC_ALLOC |
934 | 2270 DECLARE_FIXED_TYPE_ALLOC (misc_user_data, Lisp_Misc_User_Data); |
2271 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_misc_user_data 1000 | |
2720 | 2272 #endif /* not MC_ALLOC */ |
934 | 2273 |
2274 Lisp_Object | |
1204 | 2275 make_misc_user_data (void) |
934 | 2276 { |
2277 Lisp_Misc_User_Data *d; | |
2278 | |
2720 | 2279 #ifdef MC_ALLOC |
2280 d = alloc_lrecord_type (Lisp_Misc_User_Data, &lrecord_misc_user_data); | |
2281 #else /* not MC_ALLOC */ | |
934 | 2282 ALLOCATE_FIXED_TYPE (misc_user_data, Lisp_Misc_User_Data, d); |
1204 | 2283 xzero (*d); |
934 | 2284 set_lheader_implementation (&d->lheader, &lrecord_misc_user_data); |
1204 | 2285 d->function = Qnil; |
2286 d->object = Qnil; | |
2720 | 2287 #endif /* not MC_ALLOC */ |
1204 | 2288 |
2289 return wrap_misc_user_data (d); | |
934 | 2290 } |
1204 | 2291 |
2292 #endif /* EVENT_DATA_AS_OBJECTS */ | |
428 | 2293 |
2294 /************************************************************************/ | |
2295 /* Marker allocation */ | |
2296 /************************************************************************/ | |
2297 | |
2720 | 2298 #ifndef MC_ALLOC |
440 | 2299 DECLARE_FIXED_TYPE_ALLOC (marker, Lisp_Marker); |
428 | 2300 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000 |
2720 | 2301 #endif /* not MC_ALLOC */ |
428 | 2302 |
2303 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /* | |
2304 Return a new marker which does not point at any place. | |
2305 */ | |
2306 ()) | |
2307 { | |
440 | 2308 Lisp_Marker *p; |
2309 | |
2720 | 2310 #ifdef MC_ALLOC |
2311 p = alloc_lrecord_type (Lisp_Marker, &lrecord_marker); | |
2312 #else /* not MC_ALLOC */ | |
440 | 2313 ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p); |
442 | 2314 set_lheader_implementation (&p->lheader, &lrecord_marker); |
2720 | 2315 #endif /* not MC_ALLOC */ |
428 | 2316 p->buffer = 0; |
665 | 2317 p->membpos = 0; |
428 | 2318 marker_next (p) = 0; |
2319 marker_prev (p) = 0; | |
2320 p->insertion_type = 0; | |
793 | 2321 return wrap_marker (p); |
428 | 2322 } |
2323 | |
2324 Lisp_Object | |
2325 noseeum_make_marker (void) | |
2326 { | |
440 | 2327 Lisp_Marker *p; |
2328 | |
2720 | 2329 #ifdef MC_ALLOC |
2330 p = noseeum_alloc_lrecord_type (Lisp_Marker, &lrecord_marker); | |
2331 #else /* not MC_ALLOC */ | |
440 | 2332 NOSEEUM_ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p); |
442 | 2333 set_lheader_implementation (&p->lheader, &lrecord_marker); |
2720 | 2334 #endif /* not MC_ALLOC */ |
428 | 2335 p->buffer = 0; |
665 | 2336 p->membpos = 0; |
428 | 2337 marker_next (p) = 0; |
2338 marker_prev (p) = 0; | |
2339 p->insertion_type = 0; | |
793 | 2340 return wrap_marker (p); |
428 | 2341 } |
2342 | |
2343 | |
2344 /************************************************************************/ | |
2345 /* String allocation */ | |
2346 /************************************************************************/ | |
2347 | |
2348 /* The data for "short" strings generally resides inside of structs of type | |
2349 string_chars_block. The Lisp_String structure is allocated just like any | |
1204 | 2350 other basic lrecord, and these are freelisted when they get garbage |
2351 collected. The data for short strings get compacted, but the data for | |
2352 large strings do not. | |
428 | 2353 |
2354 Previously Lisp_String structures were relocated, but this caused a lot | |
2355 of bus-errors because the C code didn't include enough GCPRO's for | |
2356 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so | |
2357 that the reference would get relocated). | |
2358 | |
2359 This new method makes things somewhat bigger, but it is MUCH safer. */ | |
2360 | |
2720 | 2361 #ifndef MC_ALLOC |
438 | 2362 DECLARE_FIXED_TYPE_ALLOC (string, Lisp_String); |
428 | 2363 /* strings are used and freed quite often */ |
2364 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */ | |
2365 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000 | |
2720 | 2366 #endif /* not MC_ALLOC */ |
428 | 2367 |
2368 static Lisp_Object | |
2369 mark_string (Lisp_Object obj) | |
2370 { | |
793 | 2371 if (CONSP (XSTRING_PLIST (obj)) && EXTENT_INFOP (XCAR (XSTRING_PLIST (obj)))) |
2372 flush_cached_extent_info (XCAR (XSTRING_PLIST (obj))); | |
2373 return XSTRING_PLIST (obj); | |
428 | 2374 } |
2375 | |
2376 static int | |
2286 | 2377 string_equal (Lisp_Object obj1, Lisp_Object obj2, int UNUSED (depth)) |
428 | 2378 { |
2379 Bytecount len; | |
2380 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) && | |
2381 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len)); | |
2382 } | |
2383 | |
1204 | 2384 static const struct memory_description string_description[] = { |
793 | 2385 { XD_BYTECOUNT, offsetof (Lisp_String, size_) }, |
2386 { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data_), XD_INDIRECT(0, 1) }, | |
440 | 2387 { XD_LISP_OBJECT, offsetof (Lisp_String, plist) }, |
428 | 2388 { XD_END } |
2389 }; | |
2390 | |
442 | 2391 /* We store the string's extent info as the first element of the string's |
2392 property list; and the string's MODIFF as the first or second element | |
2393 of the string's property list (depending on whether the extent info | |
2394 is present), but only if the string has been modified. This is ugly | |
2395 but it reduces the memory allocated for the string in the vast | |
2396 majority of cases, where the string is never modified and has no | |
2397 extent info. | |
2398 | |
2399 #### This means you can't use an int as a key in a string's plist. */ | |
2400 | |
2401 static Lisp_Object * | |
2402 string_plist_ptr (Lisp_Object string) | |
2403 { | |
793 | 2404 Lisp_Object *ptr = &XSTRING_PLIST (string); |
442 | 2405 |
2406 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr))) | |
2407 ptr = &XCDR (*ptr); | |
2408 if (CONSP (*ptr) && INTP (XCAR (*ptr))) | |
2409 ptr = &XCDR (*ptr); | |
2410 return ptr; | |
2411 } | |
2412 | |
2413 static Lisp_Object | |
2414 string_getprop (Lisp_Object string, Lisp_Object property) | |
2415 { | |
2416 return external_plist_get (string_plist_ptr (string), property, 0, ERROR_ME); | |
2417 } | |
2418 | |
2419 static int | |
2420 string_putprop (Lisp_Object string, Lisp_Object property, Lisp_Object value) | |
2421 { | |
2422 external_plist_put (string_plist_ptr (string), property, value, 0, ERROR_ME); | |
2423 return 1; | |
2424 } | |
2425 | |
2426 static int | |
2427 string_remprop (Lisp_Object string, Lisp_Object property) | |
2428 { | |
2429 return external_remprop (string_plist_ptr (string), property, 0, ERROR_ME); | |
2430 } | |
2431 | |
2432 static Lisp_Object | |
2433 string_plist (Lisp_Object string) | |
2434 { | |
2435 return *string_plist_ptr (string); | |
2436 } | |
2437 | |
2720 | 2438 #ifndef MC_ALLOC |
442 | 2439 /* No `finalize', or `hash' methods. |
2440 internal_hash() already knows how to hash strings and finalization | |
2441 is done with the ADDITIONAL_FREE_string macro, which is the | |
2442 standard way to do finalization when using | |
2443 SWEEP_FIXED_TYPE_BLOCK(). */ | |
2720 | 2444 |
934 | 2445 DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS ("string", string, |
2446 1, /*dumpable-flag*/ | |
2447 mark_string, print_string, | |
2448 0, string_equal, 0, | |
2449 string_description, | |
2450 string_getprop, | |
2451 string_putprop, | |
2452 string_remprop, | |
2453 string_plist, | |
2454 Lisp_String); | |
2720 | 2455 #endif /* not MC_ALLOC */ |
2456 | |
428 | 2457 /* String blocks contain this many useful bytes. */ |
2458 #define STRING_CHARS_BLOCK_SIZE \ | |
814 | 2459 ((Bytecount) (8192 - MALLOC_OVERHEAD - \ |
2460 ((2 * sizeof (struct string_chars_block *)) \ | |
2461 + sizeof (EMACS_INT)))) | |
428 | 2462 /* Block header for small strings. */ |
2463 struct string_chars_block | |
2464 { | |
2465 EMACS_INT pos; | |
2466 struct string_chars_block *next; | |
2467 struct string_chars_block *prev; | |
2468 /* Contents of string_chars_block->string_chars are interleaved | |
2469 string_chars structures (see below) and the actual string data */ | |
2470 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE]; | |
2471 }; | |
2472 | |
2473 static struct string_chars_block *first_string_chars_block; | |
2474 static struct string_chars_block *current_string_chars_block; | |
2475 | |
2476 /* If SIZE is the length of a string, this returns how many bytes | |
2477 * the string occupies in string_chars_block->string_chars | |
2478 * (including alignment padding). | |
2479 */ | |
438 | 2480 #define STRING_FULLSIZE(size) \ |
826 | 2481 ALIGN_FOR_TYPE (((size) + 1 + sizeof (Lisp_String *)), Lisp_String *) |
428 | 2482 |
2483 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE) | |
2484 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size))) | |
2485 | |
454 | 2486 #define STRING_CHARS_FREE_P(ptr) ((ptr)->string == NULL) |
2487 #define MARK_STRING_CHARS_AS_FREE(ptr) ((void) ((ptr)->string = NULL)) | |
2488 | |
2720 | 2489 #ifdef MC_ALLOC |
2490 static void | |
2491 finalize_string (void *header, int for_disksave) | |
2492 { | |
2493 if (!for_disksave) | |
2494 { | |
2495 Lisp_String *s = (Lisp_String *) header; | |
2496 Bytecount size = s->size_; | |
2994 | 2497 #ifdef ALLOC_TYPE_STATS |
2775 | 2498 dec_lrecord_string_data_stats (size); |
2994 | 2499 #endif /* ALLOC_TYPE_STATS */ |
2720 | 2500 if (BIG_STRING_SIZE_P (size)) |
2501 xfree (s->data_, Ibyte *); | |
2502 } | |
2503 } | |
2504 | |
2505 DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS ("string", string, | |
2506 1, /*dumpable-flag*/ | |
2507 mark_string, print_string, | |
2508 finalize_string, | |
2509 string_equal, 0, | |
2510 string_description, | |
2511 string_getprop, | |
2512 string_putprop, | |
2513 string_remprop, | |
2514 string_plist, | |
2515 Lisp_String); | |
2516 | |
2517 #endif /* MC_ALLOC */ | |
2518 | |
428 | 2519 struct string_chars |
2520 { | |
438 | 2521 Lisp_String *string; |
428 | 2522 unsigned char chars[1]; |
2523 }; | |
2524 | |
2525 struct unused_string_chars | |
2526 { | |
438 | 2527 Lisp_String *string; |
428 | 2528 EMACS_INT fullsize; |
2529 }; | |
2530 | |
2531 static void | |
2532 init_string_chars_alloc (void) | |
2533 { | |
2534 first_string_chars_block = xnew (struct string_chars_block); | |
2535 first_string_chars_block->prev = 0; | |
2536 first_string_chars_block->next = 0; | |
2537 first_string_chars_block->pos = 0; | |
2538 current_string_chars_block = first_string_chars_block; | |
2539 } | |
2540 | |
1550 | 2541 static Ibyte * |
2542 allocate_big_string_chars (Bytecount length) | |
2543 { | |
2544 Ibyte *p = xnew_array (Ibyte, length); | |
2545 INCREMENT_CONS_COUNTER (length, "string chars"); | |
2546 return p; | |
2547 } | |
2548 | |
428 | 2549 static struct string_chars * |
793 | 2550 allocate_string_chars_struct (Lisp_Object string_it_goes_with, |
814 | 2551 Bytecount fullsize) |
428 | 2552 { |
2553 struct string_chars *s_chars; | |
2554 | |
438 | 2555 if (fullsize <= |
2556 (countof (current_string_chars_block->string_chars) | |
2557 - current_string_chars_block->pos)) | |
428 | 2558 { |
2559 /* This string can fit in the current string chars block */ | |
2560 s_chars = (struct string_chars *) | |
2561 (current_string_chars_block->string_chars | |
2562 + current_string_chars_block->pos); | |
2563 current_string_chars_block->pos += fullsize; | |
2564 } | |
2565 else | |
2566 { | |
2567 /* Make a new current string chars block */ | |
2568 struct string_chars_block *new_scb = xnew (struct string_chars_block); | |
2569 | |
2570 current_string_chars_block->next = new_scb; | |
2571 new_scb->prev = current_string_chars_block; | |
2572 new_scb->next = 0; | |
2573 current_string_chars_block = new_scb; | |
2574 new_scb->pos = fullsize; | |
2575 s_chars = (struct string_chars *) | |
2576 current_string_chars_block->string_chars; | |
2577 } | |
2578 | |
793 | 2579 s_chars->string = XSTRING (string_it_goes_with); |
428 | 2580 |
2581 INCREMENT_CONS_COUNTER (fullsize, "string chars"); | |
2582 | |
2583 return s_chars; | |
2584 } | |
2585 | |
771 | 2586 #ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN |
2587 void | |
2588 sledgehammer_check_ascii_begin (Lisp_Object str) | |
2589 { | |
2590 Bytecount i; | |
2591 | |
2592 for (i = 0; i < XSTRING_LENGTH (str); i++) | |
2593 { | |
826 | 2594 if (!byte_ascii_p (string_byte (str, i))) |
771 | 2595 break; |
2596 } | |
2597 | |
2598 assert (i == (Bytecount) XSTRING_ASCII_BEGIN (str) || | |
2599 (i > MAX_STRING_ASCII_BEGIN && | |
2600 (Bytecount) XSTRING_ASCII_BEGIN (str) == | |
2601 (Bytecount) MAX_STRING_ASCII_BEGIN)); | |
2602 } | |
2603 #endif | |
2604 | |
2605 /* You do NOT want to be calling this! (And if you do, you must call | |
851 | 2606 XSET_STRING_ASCII_BEGIN() after modifying the string.) Use ALLOCA () |
771 | 2607 instead and then call make_string() like the rest of the world. */ |
2608 | |
428 | 2609 Lisp_Object |
2610 make_uninit_string (Bytecount length) | |
2611 { | |
438 | 2612 Lisp_String *s; |
814 | 2613 Bytecount fullsize = STRING_FULLSIZE (length); |
428 | 2614 |
438 | 2615 assert (length >= 0 && fullsize > 0); |
428 | 2616 |
2720 | 2617 #ifdef MC_ALLOC |
2618 s = alloc_lrecord_type (Lisp_String, &lrecord_string); | |
2994 | 2619 #ifdef ALLOC_TYPE_STATS |
2775 | 2620 inc_lrecord_string_data_stats (length); |
2994 | 2621 #endif /* ALLOC_TYPE_STATS */ |
2720 | 2622 #else /* not MC_ALLOC */ |
428 | 2623 /* Allocate the string header */ |
438 | 2624 ALLOCATE_FIXED_TYPE (string, Lisp_String, s); |
793 | 2625 xzero (*s); |
771 | 2626 set_lheader_implementation (&s->u.lheader, &lrecord_string); |
2720 | 2627 #endif /* not MC_ALLOC */ |
2628 | |
826 | 2629 set_lispstringp_data (s, BIG_STRING_FULLSIZE_P (fullsize) |
2720 | 2630 ? allocate_big_string_chars (length + 1) |
2631 : allocate_string_chars_struct (wrap_string (s), | |
2632 fullsize)->chars); | |
438 | 2633 |
826 | 2634 set_lispstringp_length (s, length); |
428 | 2635 s->plist = Qnil; |
793 | 2636 set_string_byte (wrap_string (s), length, 0); |
2637 | |
2638 return wrap_string (s); | |
428 | 2639 } |
2640 | |
2641 #ifdef VERIFY_STRING_CHARS_INTEGRITY | |
2642 static void verify_string_chars_integrity (void); | |
2643 #endif | |
2644 | |
2645 /* Resize the string S so that DELTA bytes can be inserted starting | |
2646 at POS. If DELTA < 0, it means deletion starting at POS. If | |
2647 POS < 0, resize the string but don't copy any characters. Use | |
2648 this if you're planning on completely overwriting the string. | |
2649 */ | |
2650 | |
2651 void | |
793 | 2652 resize_string (Lisp_Object s, Bytecount pos, Bytecount delta) |
428 | 2653 { |
438 | 2654 Bytecount oldfullsize, newfullsize; |
428 | 2655 #ifdef VERIFY_STRING_CHARS_INTEGRITY |
2656 verify_string_chars_integrity (); | |
2657 #endif | |
800 | 2658 #ifdef ERROR_CHECK_TEXT |
428 | 2659 if (pos >= 0) |
2660 { | |
793 | 2661 assert (pos <= XSTRING_LENGTH (s)); |
428 | 2662 if (delta < 0) |
793 | 2663 assert (pos + (-delta) <= XSTRING_LENGTH (s)); |
428 | 2664 } |
2665 else | |
2666 { | |
2667 if (delta < 0) | |
793 | 2668 assert ((-delta) <= XSTRING_LENGTH (s)); |
428 | 2669 } |
800 | 2670 #endif /* ERROR_CHECK_TEXT */ |
428 | 2671 |
2672 if (delta == 0) | |
2673 /* simplest case: no size change. */ | |
2674 return; | |
438 | 2675 |
2676 if (pos >= 0 && delta < 0) | |
2677 /* If DELTA < 0, the functions below will delete the characters | |
2678 before POS. We want to delete characters *after* POS, however, | |
2679 so convert this to the appropriate form. */ | |
2680 pos += -delta; | |
2681 | |
793 | 2682 oldfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s)); |
2683 newfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s) + delta); | |
438 | 2684 |
2685 if (BIG_STRING_FULLSIZE_P (oldfullsize)) | |
428 | 2686 { |
438 | 2687 if (BIG_STRING_FULLSIZE_P (newfullsize)) |
428 | 2688 { |
440 | 2689 /* Both strings are big. We can just realloc(). |
2690 But careful! If the string is shrinking, we have to | |
2691 memmove() _before_ realloc(), and if growing, we have to | |
2692 memmove() _after_ realloc() - otherwise the access is | |
2693 illegal, and we might crash. */ | |
793 | 2694 Bytecount len = XSTRING_LENGTH (s) + 1 - pos; |
440 | 2695 |
2696 if (delta < 0 && pos >= 0) | |
793 | 2697 memmove (XSTRING_DATA (s) + pos + delta, |
2698 XSTRING_DATA (s) + pos, len); | |
2699 XSET_STRING_DATA | |
867 | 2700 (s, (Ibyte *) xrealloc (XSTRING_DATA (s), |
793 | 2701 XSTRING_LENGTH (s) + delta + 1)); |
440 | 2702 if (delta > 0 && pos >= 0) |
793 | 2703 memmove (XSTRING_DATA (s) + pos + delta, XSTRING_DATA (s) + pos, |
2704 len); | |
1550 | 2705 /* Bump the cons counter. |
2706 Conservative; Martin let the increment be delta. */ | |
2707 INCREMENT_CONS_COUNTER (newfullsize, "string chars"); | |
428 | 2708 } |
438 | 2709 else /* String has been demoted from BIG_STRING. */ |
428 | 2710 { |
867 | 2711 Ibyte *new_data = |
438 | 2712 allocate_string_chars_struct (s, newfullsize)->chars; |
867 | 2713 Ibyte *old_data = XSTRING_DATA (s); |
438 | 2714 |
2715 if (pos >= 0) | |
2716 { | |
2717 memcpy (new_data, old_data, pos); | |
2718 memcpy (new_data + pos + delta, old_data + pos, | |
793 | 2719 XSTRING_LENGTH (s) + 1 - pos); |
438 | 2720 } |
793 | 2721 XSET_STRING_DATA (s, new_data); |
1726 | 2722 xfree (old_data, Ibyte *); |
438 | 2723 } |
2724 } | |
2725 else /* old string is small */ | |
2726 { | |
2727 if (oldfullsize == newfullsize) | |
2728 { | |
2729 /* special case; size change but the necessary | |
2730 allocation size won't change (up or down; code | |
2731 somewhere depends on there not being any unused | |
2732 allocation space, modulo any alignment | |
2733 constraints). */ | |
428 | 2734 if (pos >= 0) |
2735 { | |
867 | 2736 Ibyte *addroff = pos + XSTRING_DATA (s); |
428 | 2737 |
2738 memmove (addroff + delta, addroff, | |
2739 /* +1 due to zero-termination. */ | |
793 | 2740 XSTRING_LENGTH (s) + 1 - pos); |
428 | 2741 } |
2742 } | |
2743 else | |
2744 { | |
867 | 2745 Ibyte *old_data = XSTRING_DATA (s); |
2746 Ibyte *new_data = | |
438 | 2747 BIG_STRING_FULLSIZE_P (newfullsize) |
1550 | 2748 ? allocate_big_string_chars (XSTRING_LENGTH (s) + delta + 1) |
438 | 2749 : allocate_string_chars_struct (s, newfullsize)->chars; |
2750 | |
428 | 2751 if (pos >= 0) |
2752 { | |
438 | 2753 memcpy (new_data, old_data, pos); |
2754 memcpy (new_data + pos + delta, old_data + pos, | |
793 | 2755 XSTRING_LENGTH (s) + 1 - pos); |
428 | 2756 } |
793 | 2757 XSET_STRING_DATA (s, new_data); |
438 | 2758 |
2759 { | |
2760 /* We need to mark this chunk of the string_chars_block | |
2761 as unused so that compact_string_chars() doesn't | |
2762 freak. */ | |
2763 struct string_chars *old_s_chars = (struct string_chars *) | |
2764 ((char *) old_data - offsetof (struct string_chars, chars)); | |
2765 /* Sanity check to make sure we aren't hosed by strange | |
2766 alignment/padding. */ | |
793 | 2767 assert (old_s_chars->string == XSTRING (s)); |
454 | 2768 MARK_STRING_CHARS_AS_FREE (old_s_chars); |
438 | 2769 ((struct unused_string_chars *) old_s_chars)->fullsize = |
2770 oldfullsize; | |
2771 } | |
428 | 2772 } |
438 | 2773 } |
2774 | |
793 | 2775 XSET_STRING_LENGTH (s, XSTRING_LENGTH (s) + delta); |
438 | 2776 /* If pos < 0, the string won't be zero-terminated. |
2777 Terminate now just to make sure. */ | |
793 | 2778 XSTRING_DATA (s)[XSTRING_LENGTH (s)] = '\0'; |
438 | 2779 |
2780 if (pos >= 0) | |
793 | 2781 /* We also have to adjust all of the extent indices after the |
2782 place we did the change. We say "pos - 1" because | |
2783 adjust_extents() is exclusive of the starting position | |
2784 passed to it. */ | |
2785 adjust_extents (s, pos - 1, XSTRING_LENGTH (s), delta); | |
428 | 2786 |
2787 #ifdef VERIFY_STRING_CHARS_INTEGRITY | |
2788 verify_string_chars_integrity (); | |
2789 #endif | |
2790 } | |
2791 | |
2792 #ifdef MULE | |
2793 | |
771 | 2794 /* WARNING: If you modify an existing string, you must call |
2795 CHECK_LISP_WRITEABLE() before and bump_string_modiff() afterwards. */ | |
428 | 2796 void |
867 | 2797 set_string_char (Lisp_Object s, Charcount i, Ichar c) |
428 | 2798 { |
867 | 2799 Ibyte newstr[MAX_ICHAR_LEN]; |
771 | 2800 Bytecount bytoff = string_index_char_to_byte (s, i); |
867 | 2801 Bytecount oldlen = itext_ichar_len (XSTRING_DATA (s) + bytoff); |
2802 Bytecount newlen = set_itext_ichar (newstr, c); | |
428 | 2803 |
793 | 2804 sledgehammer_check_ascii_begin (s); |
428 | 2805 if (oldlen != newlen) |
2806 resize_string (s, bytoff, newlen - oldlen); | |
793 | 2807 /* Remember, XSTRING_DATA (s) might have changed so we can't cache it. */ |
2808 memcpy (XSTRING_DATA (s) + bytoff, newstr, newlen); | |
771 | 2809 if (oldlen != newlen) |
2810 { | |
793 | 2811 if (newlen > 1 && i <= (Charcount) XSTRING_ASCII_BEGIN (s)) |
771 | 2812 /* Everything starting with the new char is no longer part of |
2813 ascii_begin */ | |
793 | 2814 XSET_STRING_ASCII_BEGIN (s, i); |
2815 else if (newlen == 1 && i == (Charcount) XSTRING_ASCII_BEGIN (s)) | |
771 | 2816 /* We've extended ascii_begin, and we have to figure out how much by */ |
2817 { | |
2818 Bytecount j; | |
814 | 2819 for (j = (Bytecount) i + 1; j < XSTRING_LENGTH (s); j++) |
771 | 2820 { |
826 | 2821 if (!byte_ascii_p (XSTRING_DATA (s)[j])) |
771 | 2822 break; |
2823 } | |
814 | 2824 XSET_STRING_ASCII_BEGIN (s, min (j, (Bytecount) MAX_STRING_ASCII_BEGIN)); |
771 | 2825 } |
2826 } | |
793 | 2827 sledgehammer_check_ascii_begin (s); |
428 | 2828 } |
2829 | |
2830 #endif /* MULE */ | |
2831 | |
2832 DEFUN ("make-string", Fmake_string, 2, 2, 0, /* | |
444 | 2833 Return a new string consisting of LENGTH copies of CHARACTER. |
2834 LENGTH must be a non-negative integer. | |
428 | 2835 */ |
444 | 2836 (length, character)) |
428 | 2837 { |
2838 CHECK_NATNUM (length); | |
444 | 2839 CHECK_CHAR_COERCE_INT (character); |
428 | 2840 { |
867 | 2841 Ibyte init_str[MAX_ICHAR_LEN]; |
2842 int len = set_itext_ichar (init_str, XCHAR (character)); | |
428 | 2843 Lisp_Object val = make_uninit_string (len * XINT (length)); |
2844 | |
2845 if (len == 1) | |
771 | 2846 { |
2847 /* Optimize the single-byte case */ | |
2848 memset (XSTRING_DATA (val), XCHAR (character), XSTRING_LENGTH (val)); | |
793 | 2849 XSET_STRING_ASCII_BEGIN (val, min (MAX_STRING_ASCII_BEGIN, |
2850 len * XINT (length))); | |
771 | 2851 } |
428 | 2852 else |
2853 { | |
647 | 2854 EMACS_INT i; |
867 | 2855 Ibyte *ptr = XSTRING_DATA (val); |
428 | 2856 |
2720 | 2857 #ifdef MC_ALLOC |
2858 /* Need this for the new allocator: strings are using the uid | |
2859 field for ascii_begin. The uid field is set for debugging, | |
2860 but the string code assumes here that ascii_begin is always | |
2861 zero, when not touched. This assumption is not true with | |
2862 the new allocator, so ascii_begin has to be set to zero | |
2863 here. */ | |
2864 XSET_STRING_ASCII_BEGIN (val, 0); | |
2865 #endif /* not MC_ALLOC */ | |
2866 | |
428 | 2867 for (i = XINT (length); i; i--) |
2868 { | |
867 | 2869 Ibyte *init_ptr = init_str; |
428 | 2870 switch (len) |
2871 { | |
2872 case 4: *ptr++ = *init_ptr++; | |
2873 case 3: *ptr++ = *init_ptr++; | |
2874 case 2: *ptr++ = *init_ptr++; | |
2875 case 1: *ptr++ = *init_ptr++; | |
2876 } | |
2877 } | |
2878 } | |
771 | 2879 sledgehammer_check_ascii_begin (val); |
428 | 2880 return val; |
2881 } | |
2882 } | |
2883 | |
2884 DEFUN ("string", Fstring, 0, MANY, 0, /* | |
2885 Concatenate all the argument characters and make the result a string. | |
2886 */ | |
2887 (int nargs, Lisp_Object *args)) | |
2888 { | |
2367 | 2889 Ibyte *storage = alloca_ibytes (nargs * MAX_ICHAR_LEN); |
867 | 2890 Ibyte *p = storage; |
428 | 2891 |
2892 for (; nargs; nargs--, args++) | |
2893 { | |
2894 Lisp_Object lisp_char = *args; | |
2895 CHECK_CHAR_COERCE_INT (lisp_char); | |
867 | 2896 p += set_itext_ichar (p, XCHAR (lisp_char)); |
428 | 2897 } |
2898 return make_string (storage, p - storage); | |
2899 } | |
2900 | |
771 | 2901 /* Initialize the ascii_begin member of a string to the correct value. */ |
2902 | |
2903 void | |
2904 init_string_ascii_begin (Lisp_Object string) | |
2905 { | |
2906 #ifdef MULE | |
2907 int i; | |
2908 Bytecount length = XSTRING_LENGTH (string); | |
867 | 2909 Ibyte *contents = XSTRING_DATA (string); |
771 | 2910 |
2911 for (i = 0; i < length; i++) | |
2912 { | |
826 | 2913 if (!byte_ascii_p (contents[i])) |
771 | 2914 break; |
2915 } | |
793 | 2916 XSET_STRING_ASCII_BEGIN (string, min (i, MAX_STRING_ASCII_BEGIN)); |
771 | 2917 #else |
793 | 2918 XSET_STRING_ASCII_BEGIN (string, min (XSTRING_LENGTH (string), |
2919 MAX_STRING_ASCII_BEGIN)); | |
771 | 2920 #endif |
2921 sledgehammer_check_ascii_begin (string); | |
2922 } | |
428 | 2923 |
2924 /* Take some raw memory, which MUST already be in internal format, | |
2925 and package it up into a Lisp string. */ | |
2926 Lisp_Object | |
867 | 2927 make_string (const Ibyte *contents, Bytecount length) |
428 | 2928 { |
2929 Lisp_Object val; | |
2930 | |
2931 /* Make sure we find out about bad make_string's when they happen */ | |
800 | 2932 #if defined (ERROR_CHECK_TEXT) && defined (MULE) |
428 | 2933 bytecount_to_charcount (contents, length); /* Just for the assertions */ |
2934 #endif | |
2935 | |
2936 val = make_uninit_string (length); | |
2937 memcpy (XSTRING_DATA (val), contents, length); | |
771 | 2938 init_string_ascii_begin (val); |
2939 sledgehammer_check_ascii_begin (val); | |
428 | 2940 return val; |
2941 } | |
2942 | |
2943 /* Take some raw memory, encoded in some external data format, | |
2944 and convert it into a Lisp string. */ | |
2945 Lisp_Object | |
442 | 2946 make_ext_string (const Extbyte *contents, EMACS_INT length, |
440 | 2947 Lisp_Object coding_system) |
428 | 2948 { |
440 | 2949 Lisp_Object string; |
2950 TO_INTERNAL_FORMAT (DATA, (contents, length), | |
2951 LISP_STRING, string, | |
2952 coding_system); | |
2953 return string; | |
428 | 2954 } |
2955 | |
2956 Lisp_Object | |
867 | 2957 build_intstring (const Ibyte *str) |
771 | 2958 { |
2959 /* Some strlen's crash and burn if passed null. */ | |
814 | 2960 return make_string (str, (str ? qxestrlen (str) : (Bytecount) 0)); |
771 | 2961 } |
2962 | |
2963 Lisp_Object | |
867 | 2964 build_string (const CIbyte *str) |
428 | 2965 { |
2966 /* Some strlen's crash and burn if passed null. */ | |
867 | 2967 return make_string ((const Ibyte *) str, (str ? strlen (str) : 0)); |
428 | 2968 } |
2969 | |
2970 Lisp_Object | |
593 | 2971 build_ext_string (const Extbyte *str, Lisp_Object coding_system) |
428 | 2972 { |
2973 /* Some strlen's crash and burn if passed null. */ | |
2367 | 2974 return make_ext_string ((const Extbyte *) str, |
2975 (str ? dfc_external_data_len (str, coding_system) : | |
2976 0), | |
440 | 2977 coding_system); |
428 | 2978 } |
2979 | |
2980 Lisp_Object | |
867 | 2981 build_msg_intstring (const Ibyte *str) |
428 | 2982 { |
771 | 2983 return build_intstring (GETTEXT (str)); |
2984 } | |
2985 | |
2986 Lisp_Object | |
867 | 2987 build_msg_string (const CIbyte *str) |
771 | 2988 { |
2989 return build_string (CGETTEXT (str)); | |
428 | 2990 } |
2991 | |
2992 Lisp_Object | |
867 | 2993 make_string_nocopy (const Ibyte *contents, Bytecount length) |
428 | 2994 { |
438 | 2995 Lisp_String *s; |
428 | 2996 Lisp_Object val; |
2997 | |
2998 /* Make sure we find out about bad make_string_nocopy's when they happen */ | |
800 | 2999 #if defined (ERROR_CHECK_TEXT) && defined (MULE) |
428 | 3000 bytecount_to_charcount (contents, length); /* Just for the assertions */ |
3001 #endif | |
3002 | |
2720 | 3003 #ifdef MC_ALLOC |
3004 s = alloc_lrecord_type (Lisp_String, &lrecord_string); | |
2994 | 3005 #ifdef ALLOC_TYPE_STATS |
2775 | 3006 inc_lrecord_string_data_stats (length); |
2994 | 3007 #endif /* ALLOC_TYPE_STATS */ |
2720 | 3008 mcpro (wrap_pointer_1 (s)); /* otherwise nocopy_strings get |
3009 collected and static data is tried to | |
3010 be freed. */ | |
3011 #else /* not MC_ALLOC */ | |
428 | 3012 /* Allocate the string header */ |
438 | 3013 ALLOCATE_FIXED_TYPE (string, Lisp_String, s); |
771 | 3014 set_lheader_implementation (&s->u.lheader, &lrecord_string); |
3015 SET_C_READONLY_RECORD_HEADER (&s->u.lheader); | |
2720 | 3016 #endif /* not MC_ALLOC */ |
428 | 3017 s->plist = Qnil; |
867 | 3018 set_lispstringp_data (s, (Ibyte *) contents); |
826 | 3019 set_lispstringp_length (s, length); |
793 | 3020 val = wrap_string (s); |
771 | 3021 init_string_ascii_begin (val); |
3022 sledgehammer_check_ascii_begin (val); | |
3023 | |
428 | 3024 return val; |
3025 } | |
3026 | |
3027 | |
2720 | 3028 #ifndef MC_ALLOC |
428 | 3029 /************************************************************************/ |
3030 /* lcrecord lists */ | |
3031 /************************************************************************/ | |
3032 | |
3033 /* Lcrecord lists are used to manage the allocation of particular | |
1204 | 3034 sorts of lcrecords, to avoid calling basic_alloc_lcrecord() (and thus |
428 | 3035 malloc() and garbage-collection junk) as much as possible. |
3036 It is similar to the Blocktype class. | |
3037 | |
1204 | 3038 See detailed comment in lcrecord.h. |
3039 */ | |
3040 | |
3041 const struct memory_description free_description[] = { | |
2551 | 3042 { XD_LISP_OBJECT, offsetof (struct free_lcrecord_header, chain), 0, { 0 }, |
1204 | 3043 XD_FLAG_FREE_LISP_OBJECT }, |
3044 { XD_END } | |
3045 }; | |
3046 | |
3047 DEFINE_LRECORD_IMPLEMENTATION ("free", free, | |
3048 0, /*dumpable-flag*/ | |
3049 0, internal_object_printer, | |
3050 0, 0, 0, free_description, | |
3051 struct free_lcrecord_header); | |
3052 | |
3053 const struct memory_description lcrecord_list_description[] = { | |
2551 | 3054 { XD_LISP_OBJECT, offsetof (struct lcrecord_list, free), 0, { 0 }, |
1204 | 3055 XD_FLAG_FREE_LISP_OBJECT }, |
3056 { XD_END } | |
3057 }; | |
428 | 3058 |
3059 static Lisp_Object | |
3060 mark_lcrecord_list (Lisp_Object obj) | |
3061 { | |
3062 struct lcrecord_list *list = XLCRECORD_LIST (obj); | |
3063 Lisp_Object chain = list->free; | |
3064 | |
3065 while (!NILP (chain)) | |
3066 { | |
3067 struct lrecord_header *lheader = XRECORD_LHEADER (chain); | |
3068 struct free_lcrecord_header *free_header = | |
3069 (struct free_lcrecord_header *) lheader; | |
3070 | |
442 | 3071 gc_checking_assert |
3072 (/* There should be no other pointers to the free list. */ | |
3073 ! MARKED_RECORD_HEADER_P (lheader) | |
3074 && | |
3075 /* Only lcrecords should be here. */ | |
1204 | 3076 ! list->implementation->basic_p |
442 | 3077 && |
3078 /* Only free lcrecords should be here. */ | |
3079 free_header->lcheader.free | |
3080 && | |
3081 /* The type of the lcrecord must be right. */ | |
1204 | 3082 lheader->type == lrecord_type_free |
442 | 3083 && |
3084 /* So must the size. */ | |
1204 | 3085 (list->implementation->static_size == 0 || |
3086 list->implementation->static_size == list->size) | |
442 | 3087 ); |
428 | 3088 |
3089 MARK_RECORD_HEADER (lheader); | |
3090 chain = free_header->chain; | |
3091 } | |
3092 | |
3093 return Qnil; | |
3094 } | |
3095 | |
934 | 3096 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list, |
3097 0, /*dumpable-flag*/ | |
3098 mark_lcrecord_list, internal_object_printer, | |
1204 | 3099 0, 0, 0, lcrecord_list_description, |
3100 struct lcrecord_list); | |
934 | 3101 |
428 | 3102 Lisp_Object |
665 | 3103 make_lcrecord_list (Elemcount size, |
442 | 3104 const struct lrecord_implementation *implementation) |
428 | 3105 { |
1204 | 3106 /* Don't use alloc_lcrecord_type() avoid infinite recursion |
3107 allocating this, */ | |
3108 struct lcrecord_list *p = (struct lcrecord_list *) | |
3109 basic_alloc_lcrecord (sizeof (struct lcrecord_list), | |
3110 &lrecord_lcrecord_list); | |
428 | 3111 |
3112 p->implementation = implementation; | |
3113 p->size = size; | |
3114 p->free = Qnil; | |
793 | 3115 return wrap_lcrecord_list (p); |
428 | 3116 } |
3117 | |
3118 Lisp_Object | |
1204 | 3119 alloc_managed_lcrecord (Lisp_Object lcrecord_list) |
428 | 3120 { |
3121 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); | |
3122 if (!NILP (list->free)) | |
3123 { | |
3124 Lisp_Object val = list->free; | |
3125 struct free_lcrecord_header *free_header = | |
3126 (struct free_lcrecord_header *) XPNTR (val); | |
1204 | 3127 struct lrecord_header *lheader = &free_header->lcheader.lheader; |
428 | 3128 |
3129 #ifdef ERROR_CHECK_GC | |
1204 | 3130 /* Major overkill here. */ |
428 | 3131 /* There should be no other pointers to the free list. */ |
442 | 3132 assert (! MARKED_RECORD_HEADER_P (lheader)); |
428 | 3133 /* Only free lcrecords should be here. */ |
3134 assert (free_header->lcheader.free); | |
1204 | 3135 assert (lheader->type == lrecord_type_free); |
3136 /* Only lcrecords should be here. */ | |
3137 assert (! (list->implementation->basic_p)); | |
3138 #if 0 /* Not used anymore, now that we set the type of the header to | |
3139 lrecord_type_free. */ | |
428 | 3140 /* The type of the lcrecord must be right. */ |
442 | 3141 assert (LHEADER_IMPLEMENTATION (lheader) == list->implementation); |
1204 | 3142 #endif /* 0 */ |
428 | 3143 /* So must the size. */ |
1204 | 3144 assert (list->implementation->static_size == 0 || |
3145 list->implementation->static_size == list->size); | |
428 | 3146 #endif /* ERROR_CHECK_GC */ |
442 | 3147 |
428 | 3148 list->free = free_header->chain; |
3149 free_header->lcheader.free = 0; | |
1204 | 3150 /* Put back the correct type, as we set it to lrecord_type_free. */ |
3151 lheader->type = list->implementation->lrecord_type_index; | |
3152 zero_sized_lcrecord (free_header, list->size); | |
428 | 3153 return val; |
3154 } | |
3155 else | |
1204 | 3156 return wrap_pointer_1 (basic_alloc_lcrecord (list->size, |
3157 list->implementation)); | |
428 | 3158 } |
3159 | |
771 | 3160 /* "Free" a Lisp object LCRECORD by placing it on its associated free list |
1204 | 3161 LCRECORD_LIST; next time alloc_managed_lcrecord() is called with the |
771 | 3162 same LCRECORD_LIST as its parameter, it will return an object from the |
3163 free list, which may be this one. Be VERY VERY SURE there are no | |
3164 pointers to this object hanging around anywhere where they might be | |
3165 used! | |
3166 | |
3167 The first thing this does before making any global state change is to | |
3168 call the finalize method of the object, if it exists. */ | |
3169 | |
428 | 3170 void |
3171 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord) | |
3172 { | |
3173 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); | |
3174 struct free_lcrecord_header *free_header = | |
3175 (struct free_lcrecord_header *) XPNTR (lcrecord); | |
442 | 3176 struct lrecord_header *lheader = &free_header->lcheader.lheader; |
3177 const struct lrecord_implementation *implementation | |
428 | 3178 = LHEADER_IMPLEMENTATION (lheader); |
3179 | |
771 | 3180 /* Finalizer methods may try to free objects within them, which typically |
3181 won't be marked and thus are scheduled for demolition. Putting them | |
3182 on the free list would be very bad, as we'd have xfree()d memory in | |
3183 the list. Even if for some reason the objects are still live | |
3184 (generally a logic error!), we still will have problems putting such | |
3185 an object on the free list right now (e.g. we'd have to avoid calling | |
3186 the finalizer twice, etc.). So basically, those finalizers should not | |
3187 be freeing any objects if during GC. Abort now to catch those | |
3188 problems. */ | |
3189 gc_checking_assert (!gc_in_progress); | |
3190 | |
428 | 3191 /* Make sure the size is correct. This will catch, for example, |
3192 putting a window configuration on the wrong free list. */ | |
1204 | 3193 gc_checking_assert (detagged_lisp_object_size (lheader) == list->size); |
771 | 3194 /* Make sure the object isn't already freed. */ |
3195 gc_checking_assert (!free_header->lcheader.free); | |
2367 | 3196 /* Freeing stuff in dumped memory is bad. If you trip this, you |
3197 may need to check for this before freeing. */ | |
3198 gc_checking_assert (!OBJECT_DUMPED_P (lcrecord)); | |
771 | 3199 |
428 | 3200 if (implementation->finalizer) |
3201 implementation->finalizer (lheader, 0); | |
1204 | 3202 /* Yes, there are two ways to indicate freeness -- the type is |
3203 lrecord_type_free or the ->free flag is set. We used to do only the | |
3204 latter; now we do the former as well for KKCC purposes. Probably | |
3205 safer in any case, as we will lose quicker this way than keeping | |
3206 around an lrecord of apparently correct type but bogus junk in it. */ | |
3207 MARK_LRECORD_AS_FREE (lheader); | |
428 | 3208 free_header->chain = list->free; |
3209 free_header->lcheader.free = 1; | |
3210 list->free = lcrecord; | |
3211 } | |
3212 | |
771 | 3213 static Lisp_Object all_lcrecord_lists[countof (lrecord_implementations_table)]; |
3214 | |
3215 void * | |
3216 alloc_automanaged_lcrecord (Bytecount size, | |
3217 const struct lrecord_implementation *imp) | |
3218 { | |
3219 if (EQ (all_lcrecord_lists[imp->lrecord_type_index], Qzero)) | |
3220 all_lcrecord_lists[imp->lrecord_type_index] = | |
3221 make_lcrecord_list (size, imp); | |
3222 | |
1204 | 3223 return XPNTR (alloc_managed_lcrecord |
771 | 3224 (all_lcrecord_lists[imp->lrecord_type_index])); |
3225 } | |
3226 | |
3227 void | |
3228 free_lcrecord (Lisp_Object rec) | |
3229 { | |
3230 int type = XRECORD_LHEADER (rec)->type; | |
3231 | |
3232 assert (!EQ (all_lcrecord_lists[type], Qzero)); | |
3233 | |
3234 free_managed_lcrecord (all_lcrecord_lists[type], rec); | |
3235 } | |
2720 | 3236 #endif /* not MC_ALLOC */ |
428 | 3237 |
3238 | |
3239 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /* | |
3240 Kept for compatibility, returns its argument. | |
3241 Old: | |
3242 Make a copy of OBJECT in pure storage. | |
3243 Recursively copies contents of vectors and cons cells. | |
3244 Does not copy symbols. | |
3245 */ | |
444 | 3246 (object)) |
428 | 3247 { |
444 | 3248 return object; |
428 | 3249 } |
3250 | |
3251 | |
3252 /************************************************************************/ | |
3253 /* Garbage Collection */ | |
3254 /************************************************************************/ | |
3255 | |
442 | 3256 /* All the built-in lisp object types are enumerated in `enum lrecord_type'. |
3257 Additional ones may be defined by a module (none yet). We leave some | |
3258 room in `lrecord_implementations_table' for such new lisp object types. */ | |
647 | 3259 const struct lrecord_implementation *lrecord_implementations_table[(int)lrecord_type_last_built_in_type + MODULE_DEFINABLE_TYPE_COUNT]; |
3260 int lrecord_type_count = lrecord_type_last_built_in_type; | |
1676 | 3261 #ifndef USE_KKCC |
442 | 3262 /* Object marker functions are in the lrecord_implementation structure. |
3263 But copying them to a parallel array is much more cache-friendly. | |
3264 This hack speeds up (garbage-collect) by about 5%. */ | |
3265 Lisp_Object (*lrecord_markers[countof (lrecord_implementations_table)]) (Lisp_Object); | |
1676 | 3266 #endif /* not USE_KKCC */ |
428 | 3267 |
3268 struct gcpro *gcprolist; | |
3269 | |
771 | 3270 /* We want the staticpro list relocated, but not the pointers found |
3271 therein, because they refer to locations in the global data segment, not | |
3272 in the heap; we only dump heap objects. Hence we use a trivial | |
3273 description, as for pointerless objects. (Note that the data segment | |
3274 objects, which are global variables like Qfoo or Vbar, themselves are | |
3275 pointers to heap objects. Each needs to be described to pdump as a | |
3276 "root pointer"; this happens in the call to staticpro(). */ | |
1204 | 3277 static const struct memory_description staticpro_description_1[] = { |
452 | 3278 { XD_END } |
3279 }; | |
3280 | |
1204 | 3281 static const struct sized_memory_description staticpro_description = { |
452 | 3282 sizeof (Lisp_Object *), |
3283 staticpro_description_1 | |
3284 }; | |
3285 | |
1204 | 3286 static const struct memory_description staticpros_description_1[] = { |
452 | 3287 XD_DYNARR_DESC (Lisp_Object_ptr_dynarr, &staticpro_description), |
3288 { XD_END } | |
3289 }; | |
3290 | |
1204 | 3291 static const struct sized_memory_description staticpros_description = { |
452 | 3292 sizeof (Lisp_Object_ptr_dynarr), |
3293 staticpros_description_1 | |
3294 }; | |
3295 | |
771 | 3296 #ifdef DEBUG_XEMACS |
3297 | |
1204 | 3298 static const struct memory_description staticpro_one_name_description_1[] = { |
2367 | 3299 { XD_ASCII_STRING, 0 }, |
771 | 3300 { XD_END } |
3301 }; | |
3302 | |
1204 | 3303 static const struct sized_memory_description staticpro_one_name_description = { |
771 | 3304 sizeof (char *), |
3305 staticpro_one_name_description_1 | |
3306 }; | |
3307 | |
1204 | 3308 static const struct memory_description staticpro_names_description_1[] = { |
771 | 3309 XD_DYNARR_DESC (char_ptr_dynarr, &staticpro_one_name_description), |
3310 { XD_END } | |
3311 }; | |
3312 | |
1204 | 3313 |
3314 extern const struct sized_memory_description staticpro_names_description; | |
3315 | |
3316 const struct sized_memory_description staticpro_names_description = { | |
771 | 3317 sizeof (char_ptr_dynarr), |
3318 staticpro_names_description_1 | |
3319 }; | |
3320 | |
3321 /* Help debug crashes gc-marking a staticpro'ed object. */ | |
3322 | |
3323 Lisp_Object_ptr_dynarr *staticpros; | |
3324 char_ptr_dynarr *staticpro_names; | |
3325 | |
3326 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
3327 garbage collection, and for dumping. */ | |
3328 void | |
3329 staticpro_1 (Lisp_Object *varaddress, char *varname) | |
3330 { | |
3331 Dynarr_add (staticpros, varaddress); | |
3332 Dynarr_add (staticpro_names, varname); | |
1204 | 3333 dump_add_root_lisp_object (varaddress); |
771 | 3334 } |
3335 | |
3336 | |
3337 Lisp_Object_ptr_dynarr *staticpros_nodump; | |
3338 char_ptr_dynarr *staticpro_nodump_names; | |
3339 | |
3340 /* Mark the Lisp_Object at heap VARADDRESS as a root object for | |
3341 garbage collection, but not for dumping. (See below.) */ | |
3342 void | |
3343 staticpro_nodump_1 (Lisp_Object *varaddress, char *varname) | |
3344 { | |
3345 Dynarr_add (staticpros_nodump, varaddress); | |
3346 Dynarr_add (staticpro_nodump_names, varname); | |
3347 } | |
3348 | |
996 | 3349 #ifdef HAVE_SHLIB |
3350 /* Stop treating the Lisp_Object at non-heap VARADDRESS as a root object | |
3351 for garbage collection, but not for dumping. */ | |
3352 void | |
3353 unstaticpro_nodump_1 (Lisp_Object *varaddress, char *varname) | |
3354 { | |
3355 Dynarr_delete_object (staticpros, varaddress); | |
3356 Dynarr_delete_object (staticpro_names, varname); | |
3357 } | |
3358 #endif | |
3359 | |
771 | 3360 #else /* not DEBUG_XEMACS */ |
3361 | |
452 | 3362 Lisp_Object_ptr_dynarr *staticpros; |
3363 | |
3364 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
3365 garbage collection, and for dumping. */ | |
428 | 3366 void |
3367 staticpro (Lisp_Object *varaddress) | |
3368 { | |
452 | 3369 Dynarr_add (staticpros, varaddress); |
1204 | 3370 dump_add_root_lisp_object (varaddress); |
428 | 3371 } |
3372 | |
442 | 3373 |
452 | 3374 Lisp_Object_ptr_dynarr *staticpros_nodump; |
3375 | |
771 | 3376 /* Mark the Lisp_Object at heap VARADDRESS as a root object for garbage |
3377 collection, but not for dumping. This is used for objects where the | |
3378 only sure pointer is in the heap (rather than in the global data | |
3379 segment, as must be the case for pdump root pointers), but not inside of | |
3380 another Lisp object (where it will be marked as a result of that Lisp | |
3381 object's mark method). The call to staticpro_nodump() must occur *BOTH* | |
3382 at initialization time and at "reinitialization" time (startup, after | |
3383 pdump load.) (For example, this is the case with the predicate symbols | |
3384 for specifier and coding system types. The pointer to this symbol is | |
3385 inside of a methods structure, which is allocated on the heap. The | |
3386 methods structure will be written out to the pdump data file, and may be | |
3387 reloaded at a different address.) | |
3388 | |
3389 #### The necessity for reinitialization is a bug in pdump. Pdump should | |
3390 automatically regenerate the staticpro()s for these symbols when it | |
3391 loads the data in. */ | |
3392 | |
428 | 3393 void |
3394 staticpro_nodump (Lisp_Object *varaddress) | |
3395 { | |
452 | 3396 Dynarr_add (staticpros_nodump, varaddress); |
428 | 3397 } |
3398 | |
996 | 3399 #ifdef HAVE_SHLIB |
3400 /* Unmark the Lisp_Object at non-heap VARADDRESS as a root object for | |
3401 garbage collection, but not for dumping. */ | |
3402 void | |
3403 unstaticpro_nodump (Lisp_Object *varaddress) | |
3404 { | |
3405 Dynarr_delete_object (staticpros, varaddress); | |
3406 } | |
3407 #endif | |
3408 | |
771 | 3409 #endif /* not DEBUG_XEMACS */ |
3410 | |
2720 | 3411 |
3412 | |
3413 | |
3414 | |
3415 #ifdef MC_ALLOC | |
3416 static const struct memory_description mcpro_description_1[] = { | |
3417 { XD_END } | |
3418 }; | |
3419 | |
3420 static const struct sized_memory_description mcpro_description = { | |
3421 sizeof (Lisp_Object *), | |
3422 mcpro_description_1 | |
3423 }; | |
3424 | |
3425 static const struct memory_description mcpros_description_1[] = { | |
3426 XD_DYNARR_DESC (Lisp_Object_dynarr, &mcpro_description), | |
3427 { XD_END } | |
3428 }; | |
3429 | |
3430 static const struct sized_memory_description mcpros_description = { | |
3431 sizeof (Lisp_Object_dynarr), | |
3432 mcpros_description_1 | |
3433 }; | |
3434 | |
3435 #ifdef DEBUG_XEMACS | |
3436 | |
3437 static const struct memory_description mcpro_one_name_description_1[] = { | |
3438 { XD_ASCII_STRING, 0 }, | |
3439 { XD_END } | |
3440 }; | |
3441 | |
3442 static const struct sized_memory_description mcpro_one_name_description = { | |
3443 sizeof (char *), | |
3444 mcpro_one_name_description_1 | |
3445 }; | |
3446 | |
3447 static const struct memory_description mcpro_names_description_1[] = { | |
3448 XD_DYNARR_DESC (char_ptr_dynarr, &mcpro_one_name_description), | |
3449 { XD_END } | |
3450 }; | |
3451 | |
3452 extern const struct sized_memory_description mcpro_names_description; | |
3453 | |
3454 const struct sized_memory_description mcpro_names_description = { | |
3455 sizeof (char_ptr_dynarr), | |
3456 mcpro_names_description_1 | |
3457 }; | |
3458 | |
3459 /* Help debug crashes gc-marking a mcpro'ed object. */ | |
3460 | |
3461 Lisp_Object_dynarr *mcpros; | |
3462 char_ptr_dynarr *mcpro_names; | |
3463 | |
3464 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
3465 garbage collection, and for dumping. */ | |
3466 void | |
3467 mcpro_1 (Lisp_Object varaddress, char *varname) | |
3468 { | |
3469 Dynarr_add (mcpros, varaddress); | |
3470 Dynarr_add (mcpro_names, varname); | |
3471 } | |
3472 | |
3473 #else /* not DEBUG_XEMACS */ | |
3474 | |
3475 Lisp_Object_dynarr *mcpros; | |
3476 | |
3477 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
3478 garbage collection, and for dumping. */ | |
3479 void | |
3480 mcpro (Lisp_Object varaddress) | |
3481 { | |
3482 Dynarr_add (mcpros, varaddress); | |
3483 } | |
3484 | |
3485 #endif /* not DEBUG_XEMACS */ | |
3486 #endif /* MC_ALLOC */ | |
3487 | |
442 | 3488 #ifdef ERROR_CHECK_GC |
2720 | 3489 #ifdef MC_ALLOC |
3490 #define GC_CHECK_LHEADER_INVARIANTS(lheader) do { \ | |
3491 struct lrecord_header * GCLI_lh = (lheader); \ | |
3492 assert (GCLI_lh != 0); \ | |
3493 assert (GCLI_lh->type < (unsigned int) lrecord_type_count); \ | |
3494 } while (0) | |
3495 #else /* not MC_ALLOC */ | |
442 | 3496 #define GC_CHECK_LHEADER_INVARIANTS(lheader) do { \ |
3497 struct lrecord_header * GCLI_lh = (lheader); \ | |
3498 assert (GCLI_lh != 0); \ | |
647 | 3499 assert (GCLI_lh->type < (unsigned int) lrecord_type_count); \ |
442 | 3500 assert (! C_READONLY_RECORD_HEADER_P (GCLI_lh) || \ |
3501 (MARKED_RECORD_HEADER_P (GCLI_lh) && \ | |
3502 LISP_READONLY_RECORD_HEADER_P (GCLI_lh))); \ | |
3503 } while (0) | |
2720 | 3504 #endif /* not MC_ALLOC */ |
442 | 3505 #else |
3506 #define GC_CHECK_LHEADER_INVARIANTS(lheader) | |
3507 #endif | |
3508 | |
934 | 3509 |
1204 | 3510 static const struct memory_description lisp_object_description_1[] = { |
3511 { XD_LISP_OBJECT, 0 }, | |
3512 { XD_END } | |
3513 }; | |
3514 | |
3515 const struct sized_memory_description lisp_object_description = { | |
3516 sizeof (Lisp_Object), | |
3517 lisp_object_description_1 | |
3518 }; | |
3519 | |
3520 #if defined (USE_KKCC) || defined (PDUMP) | |
934 | 3521 |
3522 /* This function extracts the value of a count variable described somewhere | |
3523 else in the description. It is converted corresponding to the type */ | |
1204 | 3524 EMACS_INT |
3525 lispdesc_indirect_count_1 (EMACS_INT code, | |
3526 const struct memory_description *idesc, | |
3527 const void *idata) | |
934 | 3528 { |
3529 EMACS_INT count; | |
3530 const void *irdata; | |
3531 | |
3532 int line = XD_INDIRECT_VAL (code); | |
3533 int delta = XD_INDIRECT_DELTA (code); | |
3534 | |
1204 | 3535 irdata = ((char *) idata) + |
3536 lispdesc_indirect_count (idesc[line].offset, idesc, idata); | |
934 | 3537 switch (idesc[line].type) |
3538 { | |
3539 case XD_BYTECOUNT: | |
1204 | 3540 count = * (Bytecount *) irdata; |
934 | 3541 break; |
3542 case XD_ELEMCOUNT: | |
1204 | 3543 count = * (Elemcount *) irdata; |
934 | 3544 break; |
3545 case XD_HASHCODE: | |
1204 | 3546 count = * (Hashcode *) irdata; |
934 | 3547 break; |
3548 case XD_INT: | |
1204 | 3549 count = * (int *) irdata; |
934 | 3550 break; |
3551 case XD_LONG: | |
1204 | 3552 count = * (long *) irdata; |
934 | 3553 break; |
3554 default: | |
3555 stderr_out ("Unsupported count type : %d (line = %d, code = %ld)\n", | |
1204 | 3556 idesc[line].type, line, (long) code); |
2666 | 3557 #if defined(USE_KKCC) && defined(DEBUG_XEMACS) |
2645 | 3558 if (gc_in_progress) |
3559 kkcc_backtrace (); | |
3560 #endif | |
1204 | 3561 #ifdef PDUMP |
3562 if (in_pdump) | |
3563 pdump_backtrace (); | |
3564 #endif | |
934 | 3565 count = 0; /* warning suppression */ |
2500 | 3566 ABORT (); |
934 | 3567 } |
3568 count += delta; | |
3569 return count; | |
3570 } | |
3571 | |
1204 | 3572 /* SDESC is a "description map" (basically, a list of offsets used for |
3573 successive indirections) and OBJ is the first object to indirect off of. | |
3574 Return the description ultimately found. */ | |
3575 | |
3576 const struct sized_memory_description * | |
3577 lispdesc_indirect_description_1 (const void *obj, | |
3578 const struct sized_memory_description *sdesc) | |
934 | 3579 { |
3580 int pos; | |
3581 | |
1204 | 3582 for (pos = 0; sdesc[pos].size >= 0; pos++) |
3583 obj = * (const void **) ((const char *) obj + sdesc[pos].size); | |
3584 | |
3585 return (const struct sized_memory_description *) obj; | |
3586 } | |
3587 | |
3588 /* Compute the size of the data at RDATA, described by a single entry | |
3589 DESC1 in a description array. OBJ and DESC are used for | |
3590 XD_INDIRECT references. */ | |
3591 | |
3592 static Bytecount | |
3593 lispdesc_one_description_line_size (void *rdata, | |
3594 const struct memory_description *desc1, | |
3595 const void *obj, | |
3596 const struct memory_description *desc) | |
3597 { | |
3598 union_switcheroo: | |
3599 switch (desc1->type) | |
934 | 3600 { |
1204 | 3601 case XD_LISP_OBJECT_ARRAY: |
3602 { | |
3603 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
3604 return (val * sizeof (Lisp_Object)); | |
3605 } | |
3606 case XD_LISP_OBJECT: | |
3607 case XD_LO_LINK: | |
3608 return sizeof (Lisp_Object); | |
3609 case XD_OPAQUE_PTR: | |
3610 return sizeof (void *); | |
2367 | 3611 case XD_BLOCK_PTR: |
1204 | 3612 { |
3613 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
3614 return val * sizeof (void *); | |
3615 } | |
2367 | 3616 case XD_BLOCK_ARRAY: |
1204 | 3617 { |
3618 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
3619 | |
3620 return (val * | |
2367 | 3621 lispdesc_block_size |
2551 | 3622 (rdata, |
3623 lispdesc_indirect_description (obj, desc1->data2.descr))); | |
1204 | 3624 } |
3625 case XD_OPAQUE_DATA_PTR: | |
3626 return sizeof (void *); | |
3627 case XD_UNION_DYNAMIC_SIZE: | |
3628 { | |
3629 /* If an explicit size was given in the first-level structure | |
3630 description, use it; else compute size based on current union | |
3631 constant. */ | |
3632 const struct sized_memory_description *sdesc = | |
2551 | 3633 lispdesc_indirect_description (obj, desc1->data2.descr); |
1204 | 3634 if (sdesc->size) |
3635 return sdesc->size; | |
3636 else | |
3637 { | |
3638 desc1 = lispdesc_process_xd_union (desc1, desc, obj); | |
3639 if (desc1) | |
3640 goto union_switcheroo; | |
934 | 3641 break; |
1204 | 3642 } |
3643 } | |
3644 case XD_UNION: | |
3645 { | |
3646 /* If an explicit size was given in the first-level structure | |
3647 description, use it; else compute size based on maximum of all | |
3648 possible structures. */ | |
3649 const struct sized_memory_description *sdesc = | |
2551 | 3650 lispdesc_indirect_description (obj, desc1->data2.descr); |
1204 | 3651 if (sdesc->size) |
3652 return sdesc->size; | |
3653 else | |
3654 { | |
3655 int count; | |
3656 Bytecount max_size = -1, size; | |
3657 | |
3658 desc1 = sdesc->description; | |
3659 | |
3660 for (count = 0; desc1[count].type != XD_END; count++) | |
3661 { | |
3662 size = lispdesc_one_description_line_size (rdata, | |
3663 &desc1[count], | |
3664 obj, desc); | |
3665 if (size > max_size) | |
3666 max_size = size; | |
3667 } | |
3668 return max_size; | |
3669 } | |
934 | 3670 } |
2367 | 3671 case XD_ASCII_STRING: |
1204 | 3672 return sizeof (void *); |
3673 case XD_DOC_STRING: | |
3674 return sizeof (void *); | |
3675 case XD_INT_RESET: | |
3676 return sizeof (int); | |
3677 case XD_BYTECOUNT: | |
3678 return sizeof (Bytecount); | |
3679 case XD_ELEMCOUNT: | |
3680 return sizeof (Elemcount); | |
3681 case XD_HASHCODE: | |
3682 return sizeof (Hashcode); | |
3683 case XD_INT: | |
3684 return sizeof (int); | |
3685 case XD_LONG: | |
3686 return sizeof (long); | |
3687 default: | |
3688 stderr_out ("Unsupported dump type : %d\n", desc1->type); | |
2500 | 3689 ABORT (); |
934 | 3690 } |
3691 | |
1204 | 3692 return 0; |
934 | 3693 } |
3694 | |
3695 | |
1204 | 3696 /* Return the size of the memory block (NOT necessarily a structure!) |
3697 described by SDESC and pointed to by OBJ. If SDESC records an | |
3698 explicit size (i.e. non-zero), it is simply returned; otherwise, | |
3699 the size is calculated by the maximum offset and the size of the | |
3700 object at that offset, rounded up to the maximum alignment. In | |
3701 this case, we may need the object, for example when retrieving an | |
3702 "indirect count" of an inlined array (the count is not constant, | |
3703 but is specified by one of the elements of the memory block). (It | |
3704 is generally not a problem if we return an overly large size -- we | |
3705 will simply end up reserving more space than necessary; but if the | |
3706 size is too small we could be in serious trouble, in particular | |
3707 with nested inlined structures, where there may be alignment | |
3708 padding in the middle of a block. #### In fact there is an (at | |
3709 least theoretical) problem with an overly large size -- we may | |
3710 trigger a protection fault when reading from invalid memory. We | |
3711 need to handle this -- perhaps in a stupid but dependable way, | |
3712 i.e. by trapping SIGSEGV and SIGBUS.) */ | |
3713 | |
3714 Bytecount | |
2367 | 3715 lispdesc_block_size_1 (const void *obj, Bytecount size, |
3716 const struct memory_description *desc) | |
934 | 3717 { |
1204 | 3718 EMACS_INT max_offset = -1; |
934 | 3719 int max_offset_pos = -1; |
3720 int pos; | |
2367 | 3721 |
3722 if (size) | |
3723 return size; | |
934 | 3724 |
3725 for (pos = 0; desc[pos].type != XD_END; pos++) | |
3726 { | |
1204 | 3727 EMACS_INT offset = lispdesc_indirect_count (desc[pos].offset, desc, obj); |
3728 if (offset == max_offset) | |
934 | 3729 { |
3730 stderr_out ("Two relocatable elements at same offset?\n"); | |
2500 | 3731 ABORT (); |
934 | 3732 } |
1204 | 3733 else if (offset > max_offset) |
934 | 3734 { |
1204 | 3735 max_offset = offset; |
934 | 3736 max_offset_pos = pos; |
3737 } | |
3738 } | |
3739 | |
3740 if (max_offset_pos < 0) | |
3741 return 0; | |
3742 | |
1204 | 3743 { |
3744 Bytecount size_at_max; | |
3745 size_at_max = | |
3746 lispdesc_one_description_line_size ((char *) obj + max_offset, | |
3747 &desc[max_offset_pos], obj, desc); | |
3748 | |
3749 /* We have no way of knowing the required alignment for this structure, | |
3750 so just make it maximally aligned. */ | |
3751 return MAX_ALIGN_SIZE (max_offset + size_at_max); | |
3752 } | |
3753 } | |
3754 | |
3755 #endif /* defined (USE_KKCC) || defined (PDUMP) */ | |
3756 | |
2720 | 3757 #ifdef MC_ALLOC |
3758 #define GC_CHECK_NOT_FREE(lheader) \ | |
3759 gc_checking_assert (! LRECORD_FREE_P (lheader)); | |
3760 #else /* MC_ALLOC */ | |
1276 | 3761 #define GC_CHECK_NOT_FREE(lheader) \ |
2720 | 3762 gc_checking_assert (! LRECORD_FREE_P (lheader)); \ |
1276 | 3763 gc_checking_assert (LHEADER_IMPLEMENTATION (lheader)->basic_p || \ |
3764 ! ((struct lcrecord_header *) lheader)->free) | |
2720 | 3765 #endif /* MC_ALLOC */ |
1276 | 3766 |
1204 | 3767 #ifdef USE_KKCC |
3768 /* The following functions implement the new mark algorithm. | |
3769 They mark objects according to their descriptions. They | |
3770 are modeled on the corresponding pdumper procedures. */ | |
3771 | |
2666 | 3772 #ifdef DEBUG_XEMACS |
3773 /* The backtrace for the KKCC mark functions. */ | |
3774 #define KKCC_INIT_BT_STACK_SIZE 4096 | |
1676 | 3775 |
3776 typedef struct | |
3777 { | |
2645 | 3778 void *obj; |
3779 const struct memory_description *desc; | |
3780 int pos; | |
2666 | 3781 } kkcc_bt_stack_entry; |
3782 | |
3783 static kkcc_bt_stack_entry *kkcc_bt; | |
3784 static int kkcc_bt_stack_size; | |
2645 | 3785 static int kkcc_bt_depth = 0; |
3786 | |
2666 | 3787 static void |
3788 kkcc_bt_init (void) | |
3789 { | |
3790 kkcc_bt_depth = 0; | |
3791 kkcc_bt_stack_size = KKCC_INIT_BT_STACK_SIZE; | |
3792 kkcc_bt = (kkcc_bt_stack_entry *) | |
3793 malloc (kkcc_bt_stack_size * sizeof (kkcc_bt_stack_entry)); | |
3794 if (!kkcc_bt) | |
3795 { | |
3796 stderr_out ("KKCC backtrace stack init failed for size %d\n", | |
3797 kkcc_bt_stack_size); | |
3798 ABORT (); | |
3799 } | |
3800 } | |
2645 | 3801 |
3802 void | |
3803 kkcc_backtrace (void) | |
3804 { | |
3805 int i; | |
3806 stderr_out ("KKCC mark stack backtrace :\n"); | |
3807 for (i = kkcc_bt_depth - 1; i >= 0; i--) | |
3808 { | |
2650 | 3809 Lisp_Object obj = wrap_pointer_1 (kkcc_bt[i].obj); |
2645 | 3810 stderr_out (" [%d]", i); |
2720 | 3811 #ifdef MC_ALLOC |
3812 if ((XRECORD_LHEADER (obj)->type >= lrecord_type_last_built_in_type) | |
3813 #else /* not MC_ALLOC */ | |
2650 | 3814 if ((XRECORD_LHEADER (obj)->type >= lrecord_type_free) |
2720 | 3815 #endif /* not MC_ALLOC */ |
2650 | 3816 || (!LRECORDP (obj)) |
3817 || (!XRECORD_LHEADER_IMPLEMENTATION (obj))) | |
2645 | 3818 { |
3819 stderr_out (" non Lisp Object"); | |
3820 } | |
3821 else | |
3822 { | |
3823 stderr_out (" %s", | |
2650 | 3824 XRECORD_LHEADER_IMPLEMENTATION (obj)->name); |
2645 | 3825 } |
3826 stderr_out (" (addr: 0x%x, desc: 0x%x, ", | |
3827 (int) kkcc_bt[i].obj, | |
3828 (int) kkcc_bt[i].desc); | |
3829 if (kkcc_bt[i].pos >= 0) | |
3830 stderr_out ("pos: %d)\n", kkcc_bt[i].pos); | |
3831 else | |
3832 stderr_out ("root set)\n"); | |
3833 } | |
3834 } | |
3835 | |
3836 static void | |
2666 | 3837 kkcc_bt_stack_realloc (void) |
3838 { | |
3839 kkcc_bt_stack_size *= 2; | |
3840 kkcc_bt = (kkcc_bt_stack_entry *) | |
3841 realloc (kkcc_bt, kkcc_bt_stack_size * sizeof (kkcc_bt_stack_entry)); | |
3842 if (!kkcc_bt) | |
3843 { | |
3844 stderr_out ("KKCC backtrace stack realloc failed for size %d\n", | |
3845 kkcc_bt_stack_size); | |
3846 ABORT (); | |
3847 } | |
3848 } | |
3849 | |
3850 static void | |
3851 kkcc_bt_free (void) | |
3852 { | |
3853 free (kkcc_bt); | |
3854 kkcc_bt = 0; | |
3855 kkcc_bt_stack_size = 0; | |
3856 } | |
3857 | |
3858 static void | |
2645 | 3859 kkcc_bt_push (void *obj, const struct memory_description *desc, |
3860 int level, int pos) | |
3861 { | |
3862 kkcc_bt_depth = level; | |
3863 kkcc_bt[kkcc_bt_depth].obj = obj; | |
3864 kkcc_bt[kkcc_bt_depth].desc = desc; | |
3865 kkcc_bt[kkcc_bt_depth].pos = pos; | |
3866 kkcc_bt_depth++; | |
2666 | 3867 if (kkcc_bt_depth >= kkcc_bt_stack_size) |
3868 kkcc_bt_stack_realloc (); | |
2645 | 3869 } |
3870 | |
3871 #else /* not DEBUG_XEMACS */ | |
2666 | 3872 #define kkcc_bt_init() |
2645 | 3873 #define kkcc_bt_push(obj, desc, level, pos) |
3874 #endif /* not DEBUG_XEMACS */ | |
3875 | |
2666 | 3876 /* Object memory descriptions are in the lrecord_implementation structure. |
3877 But copying them to a parallel array is much more cache-friendly. */ | |
3878 const struct memory_description *lrecord_memory_descriptions[countof (lrecord_implementations_table)]; | |
3879 | |
3880 /* the initial stack size in kkcc_gc_stack_entries */ | |
3881 #define KKCC_INIT_GC_STACK_SIZE 16384 | |
3882 | |
3883 typedef struct | |
3884 { | |
3885 void *data; | |
3886 const struct memory_description *desc; | |
3887 #ifdef DEBUG_XEMACS | |
3888 int level; | |
3889 int pos; | |
3890 #endif | |
3891 } kkcc_gc_stack_entry; | |
3892 | |
3893 static kkcc_gc_stack_entry *kkcc_gc_stack_ptr; | |
3894 static kkcc_gc_stack_entry *kkcc_gc_stack_top; | |
3895 static kkcc_gc_stack_entry *kkcc_gc_stack_last_entry; | |
3896 static int kkcc_gc_stack_size; | |
3897 | |
1676 | 3898 static void |
3899 kkcc_gc_stack_init (void) | |
3900 { | |
3901 kkcc_gc_stack_size = KKCC_INIT_GC_STACK_SIZE; | |
3902 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *) | |
3903 malloc (kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry)); | |
3904 if (!kkcc_gc_stack_ptr) | |
3905 { | |
3906 stderr_out ("stack init failed for size %d\n", kkcc_gc_stack_size); | |
2666 | 3907 ABORT (); |
1676 | 3908 } |
3909 kkcc_gc_stack_top = kkcc_gc_stack_ptr - 1; | |
3910 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1; | |
3911 } | |
3912 | |
3913 static void | |
3914 kkcc_gc_stack_free (void) | |
3915 { | |
3916 free (kkcc_gc_stack_ptr); | |
3917 kkcc_gc_stack_ptr = 0; | |
3918 kkcc_gc_stack_top = 0; | |
3919 kkcc_gc_stack_size = 0; | |
3920 } | |
3921 | |
3922 static void | |
3923 kkcc_gc_stack_realloc (void) | |
3924 { | |
3925 int current_offset = (int)(kkcc_gc_stack_top - kkcc_gc_stack_ptr); | |
3926 kkcc_gc_stack_size *= 2; | |
3927 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *) | |
3928 realloc (kkcc_gc_stack_ptr, | |
3929 kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry)); | |
3930 if (!kkcc_gc_stack_ptr) | |
3931 { | |
3932 stderr_out ("stack realloc failed for size %d\n", kkcc_gc_stack_size); | |
2666 | 3933 ABORT (); |
1676 | 3934 } |
3935 kkcc_gc_stack_top = kkcc_gc_stack_ptr + current_offset; | |
3936 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1; | |
3937 } | |
3938 | |
3939 #define KKCC_GC_STACK_FULL (kkcc_gc_stack_top >= kkcc_gc_stack_last_entry) | |
3940 #define KKCC_GC_STACK_EMPTY (kkcc_gc_stack_top < kkcc_gc_stack_ptr) | |
3941 | |
3942 static void | |
2645 | 3943 #ifdef DEBUG_XEMACS |
3944 kkcc_gc_stack_push_1 (void *data, const struct memory_description *desc, | |
3945 int level, int pos) | |
3946 #else | |
3947 kkcc_gc_stack_push_1 (void *data, const struct memory_description *desc) | |
3948 #endif | |
1676 | 3949 { |
3950 if (KKCC_GC_STACK_FULL) | |
3951 kkcc_gc_stack_realloc(); | |
3952 kkcc_gc_stack_top++; | |
3953 kkcc_gc_stack_top->data = data; | |
3954 kkcc_gc_stack_top->desc = desc; | |
2645 | 3955 #ifdef DEBUG_XEMACS |
3956 kkcc_gc_stack_top->level = level; | |
3957 kkcc_gc_stack_top->pos = pos; | |
3958 #endif | |
3959 } | |
3960 | |
3961 #ifdef DEBUG_XEMACS | |
3962 #define kkcc_gc_stack_push(data, desc, level, pos) \ | |
3963 kkcc_gc_stack_push_1 (data, desc, level, pos) | |
3964 #else | |
3965 #define kkcc_gc_stack_push(data, desc, level, pos) \ | |
3966 kkcc_gc_stack_push_1 (data, desc) | |
3967 #endif | |
1676 | 3968 |
3969 static kkcc_gc_stack_entry * | |
3970 kkcc_gc_stack_pop (void) | |
3971 { | |
3972 if (KKCC_GC_STACK_EMPTY) | |
3973 return 0; | |
3974 kkcc_gc_stack_top--; | |
3975 return kkcc_gc_stack_top + 1; | |
3976 } | |
3977 | |
3978 void | |
2645 | 3979 #ifdef DEBUG_XEMACS |
3980 kkcc_gc_stack_push_lisp_object_1 (Lisp_Object obj, int level, int pos) | |
3981 #else | |
3982 kkcc_gc_stack_push_lisp_object_1 (Lisp_Object obj) | |
3983 #endif | |
1676 | 3984 { |
3985 if (XTYPE (obj) == Lisp_Type_Record) | |
3986 { | |
3987 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
3988 const struct memory_description *desc; | |
3989 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
3990 desc = RECORD_DESCRIPTION (lheader); | |
3991 if (! MARKED_RECORD_HEADER_P (lheader)) | |
3992 { | |
3993 MARK_RECORD_HEADER (lheader); | |
2666 | 3994 kkcc_gc_stack_push ((void*) lheader, desc, level, pos); |
1676 | 3995 } |
3996 } | |
3997 } | |
3998 | |
2645 | 3999 #ifdef DEBUG_XEMACS |
4000 #define kkcc_gc_stack_push_lisp_object(obj, level, pos) \ | |
4001 kkcc_gc_stack_push_lisp_object_1 (obj, level, pos) | |
4002 #else | |
4003 #define kkcc_gc_stack_push_lisp_object(obj, level, pos) \ | |
4004 kkcc_gc_stack_push_lisp_object_1 (obj) | |
4005 #endif | |
4006 | |
1265 | 4007 #ifdef ERROR_CHECK_GC |
4008 #define KKCC_DO_CHECK_FREE(obj, allow_free) \ | |
4009 do \ | |
4010 { \ | |
4011 if (!allow_free && XTYPE (obj) == Lisp_Type_Record) \ | |
4012 { \ | |
4013 struct lrecord_header *lheader = XRECORD_LHEADER (obj); \ | |
4014 GC_CHECK_NOT_FREE (lheader); \ | |
4015 } \ | |
4016 } while (0) | |
4017 #else | |
4018 #define KKCC_DO_CHECK_FREE(obj, allow_free) | |
4019 #endif | |
1204 | 4020 |
4021 #ifdef ERROR_CHECK_GC | |
2645 | 4022 #ifdef DEBUG_XEMACS |
1598 | 4023 static void |
2645 | 4024 mark_object_maybe_checking_free_1 (Lisp_Object obj, int allow_free, |
4025 int level, int pos) | |
4026 #else | |
4027 static void | |
4028 mark_object_maybe_checking_free_1 (Lisp_Object obj, int allow_free) | |
4029 #endif | |
1204 | 4030 { |
1265 | 4031 KKCC_DO_CHECK_FREE (obj, allow_free); |
2645 | 4032 kkcc_gc_stack_push_lisp_object (obj, level, pos); |
4033 } | |
4034 | |
4035 #ifdef DEBUG_XEMACS | |
4036 #define mark_object_maybe_checking_free(obj, allow_free, level, pos) \ | |
4037 mark_object_maybe_checking_free_1 (obj, allow_free, level, pos) | |
1204 | 4038 #else |
2645 | 4039 #define mark_object_maybe_checking_free(obj, allow_free, level, pos) \ |
4040 mark_object_maybe_checking_free_1 (obj, allow_free) | |
4041 #endif | |
4042 #else /* not ERROR_CHECK_GC */ | |
4043 #define mark_object_maybe_checking_free(obj, allow_free, level, pos) \ | |
4044 kkcc_gc_stack_push_lisp_object (obj, level, pos) | |
4045 #endif /* not ERROR_CHECK_GC */ | |
1204 | 4046 |
934 | 4047 |
4048 /* This function loops all elements of a struct pointer and calls | |
4049 mark_with_description with each element. */ | |
4050 static void | |
2645 | 4051 #ifdef DEBUG_XEMACS |
4052 mark_struct_contents_1 (const void *data, | |
4053 const struct sized_memory_description *sdesc, | |
4054 int count, int level, int pos) | |
4055 #else | |
4056 mark_struct_contents_1 (const void *data, | |
1204 | 4057 const struct sized_memory_description *sdesc, |
4058 int count) | |
2645 | 4059 #endif |
934 | 4060 { |
4061 int i; | |
4062 Bytecount elsize; | |
2367 | 4063 elsize = lispdesc_block_size (data, sdesc); |
934 | 4064 |
4065 for (i = 0; i < count; i++) | |
4066 { | |
2645 | 4067 kkcc_gc_stack_push (((char *) data) + elsize * i, sdesc->description, |
4068 level, pos); | |
934 | 4069 } |
4070 } | |
4071 | |
2645 | 4072 #ifdef DEBUG_XEMACS |
4073 #define mark_struct_contents(data, sdesc, count, level, pos) \ | |
4074 mark_struct_contents_1 (data, sdesc, count, level, pos) | |
4075 #else | |
4076 #define mark_struct_contents(data, sdesc, count, level, pos) \ | |
4077 mark_struct_contents_1 (data, sdesc, count) | |
4078 #endif | |
1598 | 4079 |
4080 /* This function implements the KKCC mark algorithm. | |
4081 Instead of calling mark_object, all the alive Lisp_Objects are pushed | |
4082 on the kkcc_gc_stack. This function processes all elements on the stack | |
4083 according to their descriptions. */ | |
4084 static void | |
4085 kkcc_marking (void) | |
4086 { | |
4087 kkcc_gc_stack_entry *stack_entry = 0; | |
4088 void *data = 0; | |
4089 const struct memory_description *desc = 0; | |
4090 int pos; | |
2645 | 4091 #ifdef DEBUG_XEMACS |
4092 int level = 0; | |
2666 | 4093 kkcc_bt_init (); |
2645 | 4094 #endif |
1598 | 4095 |
4096 while ((stack_entry = kkcc_gc_stack_pop ()) != 0) | |
4097 { | |
4098 data = stack_entry->data; | |
4099 desc = stack_entry->desc; | |
2645 | 4100 #ifdef DEBUG_XEMACS |
4101 level = stack_entry->level + 1; | |
4102 #endif | |
4103 | |
4104 kkcc_bt_push (data, desc, stack_entry->level, stack_entry->pos); | |
1598 | 4105 |
2720 | 4106 gc_checking_assert (data); |
4107 gc_checking_assert (desc); | |
4108 | |
1598 | 4109 for (pos = 0; desc[pos].type != XD_END; pos++) |
4110 { | |
4111 const struct memory_description *desc1 = &desc[pos]; | |
4112 const void *rdata = | |
4113 (const char *) data + lispdesc_indirect_count (desc1->offset, | |
4114 desc, data); | |
4115 union_switcheroo: | |
4116 | |
4117 /* If the flag says don't mark, then don't mark. */ | |
4118 if ((desc1->flags) & XD_FLAG_NO_KKCC) | |
4119 continue; | |
4120 | |
4121 switch (desc1->type) | |
4122 { | |
4123 case XD_BYTECOUNT: | |
4124 case XD_ELEMCOUNT: | |
4125 case XD_HASHCODE: | |
4126 case XD_INT: | |
4127 case XD_LONG: | |
4128 case XD_INT_RESET: | |
4129 case XD_LO_LINK: | |
4130 case XD_OPAQUE_PTR: | |
4131 case XD_OPAQUE_DATA_PTR: | |
2367 | 4132 case XD_ASCII_STRING: |
1598 | 4133 case XD_DOC_STRING: |
4134 break; | |
4135 case XD_LISP_OBJECT: | |
4136 { | |
4137 const Lisp_Object *stored_obj = (const Lisp_Object *) rdata; | |
4138 | |
4139 /* Because of the way that tagged objects work (pointers and | |
4140 Lisp_Objects have the same representation), XD_LISP_OBJECT | |
4141 can be used for untagged pointers. They might be NULL, | |
4142 though. */ | |
4143 if (EQ (*stored_obj, Qnull_pointer)) | |
4144 break; | |
2720 | 4145 #ifdef MC_ALLOC |
4146 mark_object_maybe_checking_free (*stored_obj, 0, level, pos); | |
4147 #else /* not MC_ALLOC */ | |
1598 | 4148 mark_object_maybe_checking_free |
2645 | 4149 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT, |
4150 level, pos); | |
2775 | 4151 #endif /* not MC_ALLOC */ |
1598 | 4152 break; |
4153 } | |
4154 case XD_LISP_OBJECT_ARRAY: | |
4155 { | |
4156 int i; | |
4157 EMACS_INT count = | |
4158 lispdesc_indirect_count (desc1->data1, desc, data); | |
4159 | |
4160 for (i = 0; i < count; i++) | |
4161 { | |
4162 const Lisp_Object *stored_obj = | |
4163 (const Lisp_Object *) rdata + i; | |
4164 | |
4165 if (EQ (*stored_obj, Qnull_pointer)) | |
4166 break; | |
2720 | 4167 #ifdef MC_ALLOC |
4168 mark_object_maybe_checking_free (*stored_obj, 0, level, pos); | |
4169 #else /* not MC_ALLOC */ | |
1598 | 4170 mark_object_maybe_checking_free |
2645 | 4171 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT, |
4172 level, pos); | |
2720 | 4173 #endif /* not MC_ALLOC */ |
1598 | 4174 } |
4175 break; | |
4176 } | |
2367 | 4177 case XD_BLOCK_PTR: |
1598 | 4178 { |
4179 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
4180 data); | |
4181 const struct sized_memory_description *sdesc = | |
2551 | 4182 lispdesc_indirect_description (data, desc1->data2.descr); |
1598 | 4183 const char *dobj = * (const char **) rdata; |
4184 if (dobj) | |
2645 | 4185 mark_struct_contents (dobj, sdesc, count, level, pos); |
1598 | 4186 break; |
4187 } | |
2367 | 4188 case XD_BLOCK_ARRAY: |
1598 | 4189 { |
4190 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
4191 data); | |
4192 const struct sized_memory_description *sdesc = | |
2551 | 4193 lispdesc_indirect_description (data, desc1->data2.descr); |
1598 | 4194 |
2645 | 4195 mark_struct_contents (rdata, sdesc, count, level, pos); |
1598 | 4196 break; |
4197 } | |
4198 case XD_UNION: | |
4199 case XD_UNION_DYNAMIC_SIZE: | |
4200 desc1 = lispdesc_process_xd_union (desc1, desc, data); | |
4201 if (desc1) | |
4202 goto union_switcheroo; | |
4203 break; | |
4204 | |
4205 default: | |
4206 stderr_out ("Unsupported description type : %d\n", desc1->type); | |
2645 | 4207 kkcc_backtrace (); |
2500 | 4208 ABORT (); |
1598 | 4209 } |
4210 } | |
4211 } | |
2666 | 4212 #ifdef DEBUG_XEMACS |
4213 kkcc_bt_free (); | |
4214 #endif | |
1598 | 4215 } |
934 | 4216 #endif /* USE_KKCC */ |
4217 | |
428 | 4218 /* Mark reference to a Lisp_Object. If the object referred to has not been |
4219 seen yet, recursively mark all the references contained in it. */ | |
4220 | |
4221 void | |
2286 | 4222 mark_object ( |
4223 #ifdef USE_KKCC | |
4224 Lisp_Object UNUSED (obj) | |
4225 #else | |
4226 Lisp_Object obj | |
4227 #endif | |
4228 ) | |
428 | 4229 { |
1598 | 4230 #ifdef USE_KKCC |
4231 /* this code should never be reached when configured for KKCC */ | |
4232 stderr_out ("KKCC: Invalid mark_object call.\n"); | |
4233 stderr_out ("Replace mark_object with kkcc_gc_stack_push_lisp_object.\n"); | |
2500 | 4234 ABORT (); |
1676 | 4235 #else /* not USE_KKCC */ |
1598 | 4236 |
428 | 4237 tail_recurse: |
4238 | |
4239 /* Checks we used to perform */ | |
4240 /* if (EQ (obj, Qnull_pointer)) return; */ | |
4241 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */ | |
4242 /* if (PURIFIED (XPNTR (obj))) return; */ | |
4243 | |
4244 if (XTYPE (obj) == Lisp_Type_Record) | |
4245 { | |
4246 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
442 | 4247 |
4248 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
4249 | |
1204 | 4250 /* We handle this separately, above, so we can mark free objects */ |
1265 | 4251 GC_CHECK_NOT_FREE (lheader); |
1204 | 4252 |
442 | 4253 /* All c_readonly objects have their mark bit set, |
4254 so that we only need to check the mark bit here. */ | |
4255 if (! MARKED_RECORD_HEADER_P (lheader)) | |
428 | 4256 { |
4257 MARK_RECORD_HEADER (lheader); | |
442 | 4258 |
1598 | 4259 if (RECORD_MARKER (lheader)) |
4260 { | |
4261 obj = RECORD_MARKER (lheader) (obj); | |
4262 if (!NILP (obj)) goto tail_recurse; | |
4263 } | |
428 | 4264 } |
4265 } | |
1676 | 4266 #endif /* not KKCC */ |
428 | 4267 } |
4268 | |
4269 | |
2720 | 4270 #ifndef MC_ALLOC |
428 | 4271 static int gc_count_num_short_string_in_use; |
647 | 4272 static Bytecount gc_count_string_total_size; |
4273 static Bytecount gc_count_short_string_total_size; | |
428 | 4274 |
4275 /* static int gc_count_total_records_used, gc_count_records_total_size; */ | |
4276 | |
4277 | |
4278 /* stats on lcrecords in use - kinda kludgy */ | |
4279 | |
4280 static struct | |
4281 { | |
4282 int instances_in_use; | |
4283 int bytes_in_use; | |
4284 int instances_freed; | |
4285 int bytes_freed; | |
4286 int instances_on_free_list; | |
707 | 4287 } lcrecord_stats [countof (lrecord_implementations_table) |
4288 + MODULE_DEFINABLE_TYPE_COUNT]; | |
428 | 4289 |
4290 static void | |
442 | 4291 tick_lcrecord_stats (const struct lrecord_header *h, int free_p) |
428 | 4292 { |
647 | 4293 int type_index = h->type; |
428 | 4294 |
4295 if (((struct lcrecord_header *) h)->free) | |
4296 { | |
442 | 4297 gc_checking_assert (!free_p); |
428 | 4298 lcrecord_stats[type_index].instances_on_free_list++; |
4299 } | |
4300 else | |
4301 { | |
1204 | 4302 Bytecount sz = detagged_lisp_object_size (h); |
4303 | |
428 | 4304 if (free_p) |
4305 { | |
4306 lcrecord_stats[type_index].instances_freed++; | |
4307 lcrecord_stats[type_index].bytes_freed += sz; | |
4308 } | |
4309 else | |
4310 { | |
4311 lcrecord_stats[type_index].instances_in_use++; | |
4312 lcrecord_stats[type_index].bytes_in_use += sz; | |
4313 } | |
4314 } | |
4315 } | |
2720 | 4316 #endif /* not MC_ALLOC */ |
428 | 4317 |
4318 | |
2720 | 4319 #ifndef MC_ALLOC |
428 | 4320 /* Free all unmarked records */ |
4321 static void | |
4322 sweep_lcrecords_1 (struct lcrecord_header **prev, int *used) | |
4323 { | |
4324 struct lcrecord_header *header; | |
4325 int num_used = 0; | |
4326 /* int total_size = 0; */ | |
4327 | |
4328 xzero (lcrecord_stats); /* Reset all statistics to 0. */ | |
4329 | |
4330 /* First go through and call all the finalize methods. | |
4331 Then go through and free the objects. There used to | |
4332 be only one loop here, with the call to the finalizer | |
4333 occurring directly before the xfree() below. That | |
4334 is marginally faster but much less safe -- if the | |
4335 finalize method for an object needs to reference any | |
4336 other objects contained within it (and many do), | |
4337 we could easily be screwed by having already freed that | |
4338 other object. */ | |
4339 | |
4340 for (header = *prev; header; header = header->next) | |
4341 { | |
4342 struct lrecord_header *h = &(header->lheader); | |
442 | 4343 |
4344 GC_CHECK_LHEADER_INVARIANTS (h); | |
4345 | |
4346 if (! MARKED_RECORD_HEADER_P (h) && ! header->free) | |
428 | 4347 { |
4348 if (LHEADER_IMPLEMENTATION (h)->finalizer) | |
4349 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0); | |
4350 } | |
4351 } | |
4352 | |
4353 for (header = *prev; header; ) | |
4354 { | |
4355 struct lrecord_header *h = &(header->lheader); | |
442 | 4356 if (MARKED_RECORD_HEADER_P (h)) |
428 | 4357 { |
442 | 4358 if (! C_READONLY_RECORD_HEADER_P (h)) |
428 | 4359 UNMARK_RECORD_HEADER (h); |
4360 num_used++; | |
4361 /* total_size += n->implementation->size_in_bytes (h);*/ | |
440 | 4362 /* #### May modify header->next on a C_READONLY lcrecord */ |
428 | 4363 prev = &(header->next); |
4364 header = *prev; | |
4365 tick_lcrecord_stats (h, 0); | |
4366 } | |
4367 else | |
4368 { | |
4369 struct lcrecord_header *next = header->next; | |
4370 *prev = next; | |
4371 tick_lcrecord_stats (h, 1); | |
4372 /* used to call finalizer right here. */ | |
1726 | 4373 xfree (header, struct lcrecord_header *); |
428 | 4374 header = next; |
4375 } | |
4376 } | |
4377 *used = num_used; | |
4378 /* *total = total_size; */ | |
4379 } | |
4380 | |
4381 /* And the Lord said: Thou shalt use the `c-backslash-region' command | |
4382 to make macros prettier. */ | |
4383 | |
4384 #ifdef ERROR_CHECK_GC | |
4385 | |
771 | 4386 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \ |
428 | 4387 do { \ |
4388 struct typename##_block *SFTB_current; \ | |
4389 int SFTB_limit; \ | |
4390 int num_free = 0, num_used = 0; \ | |
4391 \ | |
444 | 4392 for (SFTB_current = current_##typename##_block, \ |
428 | 4393 SFTB_limit = current_##typename##_block_index; \ |
4394 SFTB_current; \ | |
4395 ) \ | |
4396 { \ | |
4397 int SFTB_iii; \ | |
4398 \ | |
4399 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ | |
4400 { \ | |
4401 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ | |
4402 \ | |
454 | 4403 if (LRECORD_FREE_P (SFTB_victim)) \ |
428 | 4404 { \ |
4405 num_free++; \ | |
4406 } \ | |
4407 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
4408 { \ | |
4409 num_used++; \ | |
4410 } \ | |
442 | 4411 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ |
428 | 4412 { \ |
4413 num_free++; \ | |
4414 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ | |
4415 } \ | |
4416 else \ | |
4417 { \ | |
4418 num_used++; \ | |
4419 UNMARK_##typename (SFTB_victim); \ | |
4420 } \ | |
4421 } \ | |
4422 SFTB_current = SFTB_current->prev; \ | |
4423 SFTB_limit = countof (current_##typename##_block->block); \ | |
4424 } \ | |
4425 \ | |
4426 gc_count_num_##typename##_in_use = num_used; \ | |
4427 gc_count_num_##typename##_freelist = num_free; \ | |
4428 } while (0) | |
4429 | |
4430 #else /* !ERROR_CHECK_GC */ | |
4431 | |
771 | 4432 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \ |
4433 do { \ | |
4434 struct typename##_block *SFTB_current; \ | |
4435 struct typename##_block **SFTB_prev; \ | |
4436 int SFTB_limit; \ | |
4437 int num_free = 0, num_used = 0; \ | |
4438 \ | |
4439 typename##_free_list = 0; \ | |
4440 \ | |
4441 for (SFTB_prev = ¤t_##typename##_block, \ | |
4442 SFTB_current = current_##typename##_block, \ | |
4443 SFTB_limit = current_##typename##_block_index; \ | |
4444 SFTB_current; \ | |
4445 ) \ | |
4446 { \ | |
4447 int SFTB_iii; \ | |
4448 int SFTB_empty = 1; \ | |
4449 Lisp_Free *SFTB_old_free_list = typename##_free_list; \ | |
4450 \ | |
4451 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ | |
4452 { \ | |
4453 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ | |
4454 \ | |
4455 if (LRECORD_FREE_P (SFTB_victim)) \ | |
4456 { \ | |
4457 num_free++; \ | |
4458 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \ | |
4459 } \ | |
4460 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
4461 { \ | |
4462 SFTB_empty = 0; \ | |
4463 num_used++; \ | |
4464 } \ | |
4465 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
4466 { \ | |
4467 num_free++; \ | |
4468 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ | |
4469 } \ | |
4470 else \ | |
4471 { \ | |
4472 SFTB_empty = 0; \ | |
4473 num_used++; \ | |
4474 UNMARK_##typename (SFTB_victim); \ | |
4475 } \ | |
4476 } \ | |
4477 if (!SFTB_empty) \ | |
4478 { \ | |
4479 SFTB_prev = &(SFTB_current->prev); \ | |
4480 SFTB_current = SFTB_current->prev; \ | |
4481 } \ | |
4482 else if (SFTB_current == current_##typename##_block \ | |
4483 && !SFTB_current->prev) \ | |
4484 { \ | |
4485 /* No real point in freeing sole allocation block */ \ | |
4486 break; \ | |
4487 } \ | |
4488 else \ | |
4489 { \ | |
4490 struct typename##_block *SFTB_victim_block = SFTB_current; \ | |
4491 if (SFTB_victim_block == current_##typename##_block) \ | |
4492 current_##typename##_block_index \ | |
4493 = countof (current_##typename##_block->block); \ | |
4494 SFTB_current = SFTB_current->prev; \ | |
4495 { \ | |
4496 *SFTB_prev = SFTB_current; \ | |
1726 | 4497 xfree (SFTB_victim_block, struct typename##_block *); \ |
771 | 4498 /* Restore free list to what it was before victim was swept */ \ |
4499 typename##_free_list = SFTB_old_free_list; \ | |
4500 num_free -= SFTB_limit; \ | |
4501 } \ | |
4502 } \ | |
4503 SFTB_limit = countof (current_##typename##_block->block); \ | |
4504 } \ | |
4505 \ | |
4506 gc_count_num_##typename##_in_use = num_used; \ | |
4507 gc_count_num_##typename##_freelist = num_free; \ | |
428 | 4508 } while (0) |
4509 | |
4510 #endif /* !ERROR_CHECK_GC */ | |
4511 | |
771 | 4512 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \ |
4513 SWEEP_FIXED_TYPE_BLOCK_1 (typename, obj_type, lheader) | |
4514 | |
2720 | 4515 #endif /* not MC_ALLOC */ |
4516 | |
428 | 4517 |
2720 | 4518 #ifndef MC_ALLOC |
428 | 4519 static void |
4520 sweep_conses (void) | |
4521 { | |
4522 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4523 #define ADDITIONAL_FREE_cons(ptr) | |
4524 | |
440 | 4525 SWEEP_FIXED_TYPE_BLOCK (cons, Lisp_Cons); |
428 | 4526 } |
2720 | 4527 #endif /* not MC_ALLOC */ |
428 | 4528 |
4529 /* Explicitly free a cons cell. */ | |
4530 void | |
853 | 4531 free_cons (Lisp_Object cons) |
428 | 4532 { |
2720 | 4533 #ifndef MC_ALLOC /* to avoid compiler warning */ |
853 | 4534 Lisp_Cons *ptr = XCONS (cons); |
2720 | 4535 #endif /* MC_ALLOC */ |
853 | 4536 |
428 | 4537 #ifdef ERROR_CHECK_GC |
2720 | 4538 #ifdef MC_ALLOC |
4539 Lisp_Cons *ptr = XCONS (cons); | |
4540 #endif /* MC_ALLOC */ | |
428 | 4541 /* If the CAR is not an int, then it will be a pointer, which will |
4542 always be four-byte aligned. If this cons cell has already been | |
4543 placed on the free list, however, its car will probably contain | |
4544 a chain pointer to the next cons on the list, which has cleverly | |
4545 had all its 0's and 1's inverted. This allows for a quick | |
1204 | 4546 check to make sure we're not freeing something already freed. |
4547 | |
4548 NOTE: This check may not be necessary. Freeing an object sets its | |
4549 type to lrecord_type_free, which will trip up the XCONS() above -- as | |
4550 well as a check in FREE_FIXED_TYPE(). */ | |
853 | 4551 if (POINTER_TYPE_P (XTYPE (cons_car (ptr)))) |
4552 ASSERT_VALID_POINTER (XPNTR (cons_car (ptr))); | |
428 | 4553 #endif /* ERROR_CHECK_GC */ |
4554 | |
2720 | 4555 #ifdef MC_ALLOC |
4556 free_lrecord (cons); | |
4557 #else /* not MC_ALLOC */ | |
440 | 4558 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, Lisp_Cons, ptr); |
2720 | 4559 #endif /* not MC_ALLOC */ |
428 | 4560 } |
4561 | |
4562 /* explicitly free a list. You **must make sure** that you have | |
4563 created all the cons cells that make up this list and that there | |
4564 are no pointers to any of these cons cells anywhere else. If there | |
4565 are, you will lose. */ | |
4566 | |
4567 void | |
4568 free_list (Lisp_Object list) | |
4569 { | |
4570 Lisp_Object rest, next; | |
4571 | |
4572 for (rest = list; !NILP (rest); rest = next) | |
4573 { | |
4574 next = XCDR (rest); | |
853 | 4575 free_cons (rest); |
428 | 4576 } |
4577 } | |
4578 | |
4579 /* explicitly free an alist. You **must make sure** that you have | |
4580 created all the cons cells that make up this alist and that there | |
4581 are no pointers to any of these cons cells anywhere else. If there | |
4582 are, you will lose. */ | |
4583 | |
4584 void | |
4585 free_alist (Lisp_Object alist) | |
4586 { | |
4587 Lisp_Object rest, next; | |
4588 | |
4589 for (rest = alist; !NILP (rest); rest = next) | |
4590 { | |
4591 next = XCDR (rest); | |
853 | 4592 free_cons (XCAR (rest)); |
4593 free_cons (rest); | |
428 | 4594 } |
4595 } | |
4596 | |
2720 | 4597 #ifndef MC_ALLOC |
428 | 4598 static void |
4599 sweep_compiled_functions (void) | |
4600 { | |
4601 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
945 | 4602 #define ADDITIONAL_FREE_compiled_function(ptr) \ |
1726 | 4603 if (ptr->args_in_array) xfree (ptr->args, Lisp_Object *) |
428 | 4604 |
4605 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function); | |
4606 } | |
4607 | |
4608 static void | |
4609 sweep_floats (void) | |
4610 { | |
4611 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4612 #define ADDITIONAL_FREE_float(ptr) | |
4613 | |
440 | 4614 SWEEP_FIXED_TYPE_BLOCK (float, Lisp_Float); |
428 | 4615 } |
4616 | |
1983 | 4617 #ifdef HAVE_BIGNUM |
4618 static void | |
4619 sweep_bignums (void) | |
4620 { | |
4621 #define UNMARK_bignum(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4622 #define ADDITIONAL_FREE_bignum(ptr) bignum_fini (ptr->data) | |
4623 | |
4624 SWEEP_FIXED_TYPE_BLOCK (bignum, Lisp_Bignum); | |
4625 } | |
4626 #endif /* HAVE_BIGNUM */ | |
4627 | |
4628 #ifdef HAVE_RATIO | |
4629 static void | |
4630 sweep_ratios (void) | |
4631 { | |
4632 #define UNMARK_ratio(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4633 #define ADDITIONAL_FREE_ratio(ptr) ratio_fini (ptr->data) | |
4634 | |
4635 SWEEP_FIXED_TYPE_BLOCK (ratio, Lisp_Ratio); | |
4636 } | |
4637 #endif /* HAVE_RATIO */ | |
4638 | |
4639 #ifdef HAVE_BIGFLOAT | |
4640 static void | |
4641 sweep_bigfloats (void) | |
4642 { | |
4643 #define UNMARK_bigfloat(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4644 #define ADDITIONAL_FREE_bigfloat(ptr) bigfloat_fini (ptr->bf) | |
4645 | |
4646 SWEEP_FIXED_TYPE_BLOCK (bigfloat, Lisp_Bigfloat); | |
4647 } | |
4648 #endif | |
4649 | |
428 | 4650 static void |
4651 sweep_symbols (void) | |
4652 { | |
4653 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4654 #define ADDITIONAL_FREE_symbol(ptr) | |
4655 | |
440 | 4656 SWEEP_FIXED_TYPE_BLOCK (symbol, Lisp_Symbol); |
428 | 4657 } |
4658 | |
4659 static void | |
4660 sweep_extents (void) | |
4661 { | |
4662 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4663 #define ADDITIONAL_FREE_extent(ptr) | |
4664 | |
4665 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent); | |
4666 } | |
4667 | |
4668 static void | |
4669 sweep_events (void) | |
4670 { | |
4671 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4672 #define ADDITIONAL_FREE_event(ptr) | |
4673 | |
440 | 4674 SWEEP_FIXED_TYPE_BLOCK (event, Lisp_Event); |
428 | 4675 } |
2720 | 4676 #endif /* not MC_ALLOC */ |
428 | 4677 |
1204 | 4678 #ifdef EVENT_DATA_AS_OBJECTS |
934 | 4679 |
2720 | 4680 #ifndef MC_ALLOC |
934 | 4681 static void |
4682 sweep_key_data (void) | |
4683 { | |
4684 #define UNMARK_key_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4685 #define ADDITIONAL_FREE_key_data(ptr) | |
4686 | |
4687 SWEEP_FIXED_TYPE_BLOCK (key_data, Lisp_Key_Data); | |
4688 } | |
2720 | 4689 #endif /* not MC_ALLOC */ |
934 | 4690 |
1204 | 4691 void |
4692 free_key_data (Lisp_Object ptr) | |
4693 { | |
2720 | 4694 #ifdef MC_ALLOC |
4695 free_lrecord (ptr); | |
4696 #else /* not MC_ALLOC */ | |
1204 | 4697 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (key_data, Lisp_Key_Data, XKEY_DATA (ptr)); |
2720 | 4698 #endif /* not MC_ALLOC */ |
4699 } | |
4700 | |
4701 #ifndef MC_ALLOC | |
934 | 4702 static void |
4703 sweep_button_data (void) | |
4704 { | |
4705 #define UNMARK_button_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4706 #define ADDITIONAL_FREE_button_data(ptr) | |
4707 | |
4708 SWEEP_FIXED_TYPE_BLOCK (button_data, Lisp_Button_Data); | |
4709 } | |
2720 | 4710 #endif /* not MC_ALLOC */ |
934 | 4711 |
1204 | 4712 void |
4713 free_button_data (Lisp_Object ptr) | |
4714 { | |
2720 | 4715 #ifdef MC_ALLOC |
4716 free_lrecord (ptr); | |
4717 #else /* not MC_ALLOC */ | |
1204 | 4718 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (button_data, Lisp_Button_Data, XBUTTON_DATA (ptr)); |
2720 | 4719 #endif /* not MC_ALLOC */ |
4720 } | |
4721 | |
4722 #ifndef MC_ALLOC | |
934 | 4723 static void |
4724 sweep_motion_data (void) | |
4725 { | |
4726 #define UNMARK_motion_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4727 #define ADDITIONAL_FREE_motion_data(ptr) | |
4728 | |
4729 SWEEP_FIXED_TYPE_BLOCK (motion_data, Lisp_Motion_Data); | |
4730 } | |
2720 | 4731 #endif /* not MC_ALLOC */ |
934 | 4732 |
1204 | 4733 void |
4734 free_motion_data (Lisp_Object ptr) | |
4735 { | |
2720 | 4736 #ifdef MC_ALLOC |
4737 free_lrecord (ptr); | |
4738 #else /* not MC_ALLOC */ | |
1204 | 4739 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (motion_data, Lisp_Motion_Data, XMOTION_DATA (ptr)); |
2720 | 4740 #endif /* not MC_ALLOC */ |
4741 } | |
4742 | |
4743 #ifndef MC_ALLOC | |
934 | 4744 static void |
4745 sweep_process_data (void) | |
4746 { | |
4747 #define UNMARK_process_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4748 #define ADDITIONAL_FREE_process_data(ptr) | |
4749 | |
4750 SWEEP_FIXED_TYPE_BLOCK (process_data, Lisp_Process_Data); | |
4751 } | |
2720 | 4752 #endif /* not MC_ALLOC */ |
934 | 4753 |
1204 | 4754 void |
4755 free_process_data (Lisp_Object ptr) | |
4756 { | |
2720 | 4757 #ifdef MC_ALLOC |
4758 free_lrecord (ptr); | |
4759 #else /* not MC_ALLOC */ | |
1204 | 4760 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (process_data, Lisp_Process_Data, XPROCESS_DATA (ptr)); |
2720 | 4761 #endif /* not MC_ALLOC */ |
4762 } | |
4763 | |
4764 #ifndef MC_ALLOC | |
934 | 4765 static void |
4766 sweep_timeout_data (void) | |
4767 { | |
4768 #define UNMARK_timeout_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4769 #define ADDITIONAL_FREE_timeout_data(ptr) | |
4770 | |
4771 SWEEP_FIXED_TYPE_BLOCK (timeout_data, Lisp_Timeout_Data); | |
4772 } | |
2720 | 4773 #endif /* not MC_ALLOC */ |
934 | 4774 |
1204 | 4775 void |
4776 free_timeout_data (Lisp_Object ptr) | |
4777 { | |
2720 | 4778 #ifdef MC_ALLOC |
4779 free_lrecord (ptr); | |
4780 #else /* not MC_ALLOC */ | |
1204 | 4781 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (timeout_data, Lisp_Timeout_Data, XTIMEOUT_DATA (ptr)); |
2720 | 4782 #endif /* not MC_ALLOC */ |
4783 } | |
4784 | |
4785 #ifndef MC_ALLOC | |
934 | 4786 static void |
4787 sweep_magic_data (void) | |
4788 { | |
4789 #define UNMARK_magic_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4790 #define ADDITIONAL_FREE_magic_data(ptr) | |
4791 | |
4792 SWEEP_FIXED_TYPE_BLOCK (magic_data, Lisp_Magic_Data); | |
4793 } | |
2720 | 4794 #endif /* not MC_ALLOC */ |
934 | 4795 |
1204 | 4796 void |
4797 free_magic_data (Lisp_Object ptr) | |
4798 { | |
2720 | 4799 #ifdef MC_ALLOC |
4800 free_lrecord (ptr); | |
4801 #else /* not MC_ALLOC */ | |
1204 | 4802 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_data, Lisp_Magic_Data, XMAGIC_DATA (ptr)); |
2720 | 4803 #endif /* not MC_ALLOC */ |
4804 } | |
4805 | |
4806 #ifndef MC_ALLOC | |
934 | 4807 static void |
4808 sweep_magic_eval_data (void) | |
4809 { | |
4810 #define UNMARK_magic_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4811 #define ADDITIONAL_FREE_magic_eval_data(ptr) | |
4812 | |
4813 SWEEP_FIXED_TYPE_BLOCK (magic_eval_data, Lisp_Magic_Eval_Data); | |
4814 } | |
2720 | 4815 #endif /* not MC_ALLOC */ |
934 | 4816 |
1204 | 4817 void |
4818 free_magic_eval_data (Lisp_Object ptr) | |
4819 { | |
2720 | 4820 #ifdef MC_ALLOC |
4821 free_lrecord (ptr); | |
4822 #else /* not MC_ALLOC */ | |
1204 | 4823 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_eval_data, Lisp_Magic_Eval_Data, XMAGIC_EVAL_DATA (ptr)); |
2720 | 4824 #endif /* not MC_ALLOC */ |
4825 } | |
4826 | |
4827 #ifndef MC_ALLOC | |
934 | 4828 static void |
4829 sweep_eval_data (void) | |
4830 { | |
4831 #define UNMARK_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4832 #define ADDITIONAL_FREE_eval_data(ptr) | |
4833 | |
4834 SWEEP_FIXED_TYPE_BLOCK (eval_data, Lisp_Eval_Data); | |
4835 } | |
2720 | 4836 #endif /* not MC_ALLOC */ |
934 | 4837 |
1204 | 4838 void |
4839 free_eval_data (Lisp_Object ptr) | |
4840 { | |
2720 | 4841 #ifdef MC_ALLOC |
4842 free_lrecord (ptr); | |
4843 #else /* not MC_ALLOC */ | |
1204 | 4844 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (eval_data, Lisp_Eval_Data, XEVAL_DATA (ptr)); |
2720 | 4845 #endif /* not MC_ALLOC */ |
4846 } | |
4847 | |
4848 #ifndef MC_ALLOC | |
934 | 4849 static void |
4850 sweep_misc_user_data (void) | |
4851 { | |
4852 #define UNMARK_misc_user_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4853 #define ADDITIONAL_FREE_misc_user_data(ptr) | |
4854 | |
4855 SWEEP_FIXED_TYPE_BLOCK (misc_user_data, Lisp_Misc_User_Data); | |
4856 } | |
2720 | 4857 #endif /* not MC_ALLOC */ |
934 | 4858 |
1204 | 4859 void |
4860 free_misc_user_data (Lisp_Object ptr) | |
4861 { | |
2720 | 4862 #ifdef MC_ALLOC |
4863 free_lrecord (ptr); | |
4864 #else /* not MC_ALLOC */ | |
1204 | 4865 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (misc_user_data, Lisp_Misc_User_Data, XMISC_USER_DATA (ptr)); |
2720 | 4866 #endif /* not MC_ALLOC */ |
1204 | 4867 } |
4868 | |
4869 #endif /* EVENT_DATA_AS_OBJECTS */ | |
934 | 4870 |
2720 | 4871 #ifndef MC_ALLOC |
428 | 4872 static void |
4873 sweep_markers (void) | |
4874 { | |
4875 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4876 #define ADDITIONAL_FREE_marker(ptr) \ | |
4877 do { Lisp_Object tem; \ | |
793 | 4878 tem = wrap_marker (ptr); \ |
428 | 4879 unchain_marker (tem); \ |
4880 } while (0) | |
4881 | |
440 | 4882 SWEEP_FIXED_TYPE_BLOCK (marker, Lisp_Marker); |
428 | 4883 } |
2720 | 4884 #endif /* not MC_ALLOC */ |
428 | 4885 |
4886 /* Explicitly free a marker. */ | |
4887 void | |
1204 | 4888 free_marker (Lisp_Object ptr) |
428 | 4889 { |
2720 | 4890 #ifdef MC_ALLOC |
4891 free_lrecord (ptr); | |
4892 #else /* not MC_ALLOC */ | |
1204 | 4893 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, Lisp_Marker, XMARKER (ptr)); |
2720 | 4894 #endif /* not MC_ALLOC */ |
428 | 4895 } |
4896 | |
4897 | |
4898 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) | |
4899 | |
4900 static void | |
4901 verify_string_chars_integrity (void) | |
4902 { | |
4903 struct string_chars_block *sb; | |
4904 | |
4905 /* Scan each existing string block sequentially, string by string. */ | |
4906 for (sb = first_string_chars_block; sb; sb = sb->next) | |
4907 { | |
4908 int pos = 0; | |
4909 /* POS is the index of the next string in the block. */ | |
4910 while (pos < sb->pos) | |
4911 { | |
4912 struct string_chars *s_chars = | |
4913 (struct string_chars *) &(sb->string_chars[pos]); | |
438 | 4914 Lisp_String *string; |
428 | 4915 int size; |
4916 int fullsize; | |
4917 | |
454 | 4918 /* If the string_chars struct is marked as free (i.e. the |
4919 STRING pointer is NULL) then this is an unused chunk of | |
4920 string storage. (See below.) */ | |
4921 | |
4922 if (STRING_CHARS_FREE_P (s_chars)) | |
428 | 4923 { |
4924 fullsize = ((struct unused_string_chars *) s_chars)->fullsize; | |
4925 pos += fullsize; | |
4926 continue; | |
4927 } | |
4928 | |
4929 string = s_chars->string; | |
4930 /* Must be 32-bit aligned. */ | |
4931 assert ((((int) string) & 3) == 0); | |
4932 | |
793 | 4933 size = string->size_; |
428 | 4934 fullsize = STRING_FULLSIZE (size); |
4935 | |
4936 assert (!BIG_STRING_FULLSIZE_P (fullsize)); | |
2720 | 4937 assert (XSTRING_DATA (string) == s_chars->chars); |
428 | 4938 pos += fullsize; |
4939 } | |
4940 assert (pos == sb->pos); | |
4941 } | |
4942 } | |
4943 | |
1204 | 4944 #endif /* defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) */ |
428 | 4945 |
4946 /* Compactify string chars, relocating the reference to each -- | |
4947 free any empty string_chars_block we see. */ | |
4948 static void | |
4949 compact_string_chars (void) | |
4950 { | |
4951 struct string_chars_block *to_sb = first_string_chars_block; | |
4952 int to_pos = 0; | |
4953 struct string_chars_block *from_sb; | |
4954 | |
4955 /* Scan each existing string block sequentially, string by string. */ | |
4956 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next) | |
4957 { | |
4958 int from_pos = 0; | |
4959 /* FROM_POS is the index of the next string in the block. */ | |
4960 while (from_pos < from_sb->pos) | |
4961 { | |
4962 struct string_chars *from_s_chars = | |
4963 (struct string_chars *) &(from_sb->string_chars[from_pos]); | |
4964 struct string_chars *to_s_chars; | |
438 | 4965 Lisp_String *string; |
428 | 4966 int size; |
4967 int fullsize; | |
4968 | |
454 | 4969 /* If the string_chars struct is marked as free (i.e. the |
4970 STRING pointer is NULL) then this is an unused chunk of | |
4971 string storage. This happens under Mule when a string's | |
4972 size changes in such a way that its fullsize changes. | |
4973 (Strings can change size because a different-length | |
4974 character can be substituted for another character.) | |
4975 In this case, after the bogus string pointer is the | |
4976 "fullsize" of this entry, i.e. how many bytes to skip. */ | |
4977 | |
4978 if (STRING_CHARS_FREE_P (from_s_chars)) | |
428 | 4979 { |
4980 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize; | |
4981 from_pos += fullsize; | |
4982 continue; | |
4983 } | |
4984 | |
4985 string = from_s_chars->string; | |
1204 | 4986 gc_checking_assert (!(LRECORD_FREE_P (string))); |
428 | 4987 |
793 | 4988 size = string->size_; |
428 | 4989 fullsize = STRING_FULLSIZE (size); |
4990 | |
442 | 4991 gc_checking_assert (! BIG_STRING_FULLSIZE_P (fullsize)); |
428 | 4992 |
4993 /* Just skip it if it isn't marked. */ | |
771 | 4994 if (! MARKED_RECORD_HEADER_P (&(string->u.lheader))) |
428 | 4995 { |
4996 from_pos += fullsize; | |
4997 continue; | |
4998 } | |
4999 | |
5000 /* If it won't fit in what's left of TO_SB, close TO_SB out | |
5001 and go on to the next string_chars_block. We know that TO_SB | |
5002 cannot advance past FROM_SB here since FROM_SB is large enough | |
5003 to currently contain this string. */ | |
5004 if ((to_pos + fullsize) > countof (to_sb->string_chars)) | |
5005 { | |
5006 to_sb->pos = to_pos; | |
5007 to_sb = to_sb->next; | |
5008 to_pos = 0; | |
5009 } | |
5010 | |
5011 /* Compute new address of this string | |
5012 and update TO_POS for the space being used. */ | |
5013 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]); | |
5014 | |
5015 /* Copy the string_chars to the new place. */ | |
5016 if (from_s_chars != to_s_chars) | |
5017 memmove (to_s_chars, from_s_chars, fullsize); | |
5018 | |
5019 /* Relocate FROM_S_CHARS's reference */ | |
826 | 5020 set_lispstringp_data (string, &(to_s_chars->chars[0])); |
428 | 5021 |
5022 from_pos += fullsize; | |
5023 to_pos += fullsize; | |
5024 } | |
5025 } | |
5026 | |
5027 /* Set current to the last string chars block still used and | |
5028 free any that follow. */ | |
5029 { | |
5030 struct string_chars_block *victim; | |
5031 | |
5032 for (victim = to_sb->next; victim; ) | |
5033 { | |
5034 struct string_chars_block *next = victim->next; | |
1726 | 5035 xfree (victim, struct string_chars_block *); |
428 | 5036 victim = next; |
5037 } | |
5038 | |
5039 current_string_chars_block = to_sb; | |
5040 current_string_chars_block->pos = to_pos; | |
5041 current_string_chars_block->next = 0; | |
5042 } | |
5043 } | |
5044 | |
2720 | 5045 #ifndef MC_ALLOC |
428 | 5046 #if 1 /* Hack to debug missing purecopy's */ |
5047 static int debug_string_purity; | |
5048 | |
5049 static void | |
793 | 5050 debug_string_purity_print (Lisp_Object p) |
428 | 5051 { |
5052 Charcount i; | |
826 | 5053 Charcount s = string_char_length (p); |
442 | 5054 stderr_out ("\""); |
428 | 5055 for (i = 0; i < s; i++) |
5056 { | |
867 | 5057 Ichar ch = string_ichar (p, i); |
428 | 5058 if (ch < 32 || ch >= 126) |
5059 stderr_out ("\\%03o", ch); | |
5060 else if (ch == '\\' || ch == '\"') | |
5061 stderr_out ("\\%c", ch); | |
5062 else | |
5063 stderr_out ("%c", ch); | |
5064 } | |
5065 stderr_out ("\"\n"); | |
5066 } | |
5067 #endif /* 1 */ | |
2720 | 5068 #endif /* not MC_ALLOC */ |
5069 | |
5070 #ifndef MC_ALLOC | |
428 | 5071 static void |
5072 sweep_strings (void) | |
5073 { | |
647 | 5074 int num_small_used = 0; |
5075 Bytecount num_small_bytes = 0, num_bytes = 0; | |
428 | 5076 int debug = debug_string_purity; |
5077 | |
793 | 5078 #define UNMARK_string(ptr) do { \ |
5079 Lisp_String *p = (ptr); \ | |
5080 Bytecount size = p->size_; \ | |
5081 UNMARK_RECORD_HEADER (&(p->u.lheader)); \ | |
5082 num_bytes += size; \ | |
5083 if (!BIG_STRING_SIZE_P (size)) \ | |
5084 { \ | |
5085 num_small_bytes += size; \ | |
5086 num_small_used++; \ | |
5087 } \ | |
5088 if (debug) \ | |
5089 debug_string_purity_print (wrap_string (p)); \ | |
438 | 5090 } while (0) |
5091 #define ADDITIONAL_FREE_string(ptr) do { \ | |
793 | 5092 Bytecount size = ptr->size_; \ |
438 | 5093 if (BIG_STRING_SIZE_P (size)) \ |
1726 | 5094 xfree (ptr->data_, Ibyte *); \ |
438 | 5095 } while (0) |
5096 | |
771 | 5097 SWEEP_FIXED_TYPE_BLOCK_1 (string, Lisp_String, u.lheader); |
428 | 5098 |
5099 gc_count_num_short_string_in_use = num_small_used; | |
5100 gc_count_string_total_size = num_bytes; | |
5101 gc_count_short_string_total_size = num_small_bytes; | |
5102 } | |
2720 | 5103 #endif /* not MC_ALLOC */ |
428 | 5104 |
5105 /* I hate duplicating all this crap! */ | |
5106 int | |
5107 marked_p (Lisp_Object obj) | |
5108 { | |
5109 /* Checks we used to perform. */ | |
5110 /* if (EQ (obj, Qnull_pointer)) return 1; */ | |
5111 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */ | |
5112 /* if (PURIFIED (XPNTR (obj))) return 1; */ | |
5113 | |
5114 if (XTYPE (obj) == Lisp_Type_Record) | |
5115 { | |
5116 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
442 | 5117 |
5118 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
5119 | |
5120 return MARKED_RECORD_HEADER_P (lheader); | |
428 | 5121 } |
5122 return 1; | |
5123 } | |
5124 | |
5125 static void | |
5126 gc_sweep (void) | |
5127 { | |
2720 | 5128 #ifdef MC_ALLOC |
5129 compact_string_chars (); | |
5130 mc_finalize (); | |
5131 mc_sweep (); | |
5132 #else /* not MC_ALLOC */ | |
428 | 5133 /* Free all unmarked records. Do this at the very beginning, |
5134 before anything else, so that the finalize methods can safely | |
5135 examine items in the objects. sweep_lcrecords_1() makes | |
5136 sure to call all the finalize methods *before* freeing anything, | |
5137 to complete the safety. */ | |
5138 { | |
5139 int ignored; | |
5140 sweep_lcrecords_1 (&all_lcrecords, &ignored); | |
5141 } | |
5142 | |
5143 compact_string_chars (); | |
5144 | |
5145 /* Finalize methods below (called through the ADDITIONAL_FREE_foo | |
5146 macros) must be *extremely* careful to make sure they're not | |
5147 referencing freed objects. The only two existing finalize | |
5148 methods (for strings and markers) pass muster -- the string | |
5149 finalizer doesn't look at anything but its own specially- | |
5150 created block, and the marker finalizer only looks at live | |
5151 buffers (which will never be freed) and at the markers before | |
5152 and after it in the chain (which, by induction, will never be | |
5153 freed because if so, they would have already removed themselves | |
5154 from the chain). */ | |
5155 | |
5156 /* Put all unmarked strings on free list, free'ing the string chars | |
5157 of large unmarked strings */ | |
5158 sweep_strings (); | |
5159 | |
5160 /* Put all unmarked conses on free list */ | |
5161 sweep_conses (); | |
5162 | |
5163 /* Free all unmarked compiled-function objects */ | |
5164 sweep_compiled_functions (); | |
5165 | |
5166 /* Put all unmarked floats on free list */ | |
5167 sweep_floats (); | |
5168 | |
1983 | 5169 #ifdef HAVE_BIGNUM |
5170 /* Put all unmarked bignums on free list */ | |
5171 sweep_bignums (); | |
5172 #endif | |
5173 | |
5174 #ifdef HAVE_RATIO | |
5175 /* Put all unmarked ratios on free list */ | |
5176 sweep_ratios (); | |
5177 #endif | |
5178 | |
5179 #ifdef HAVE_BIGFLOAT | |
5180 /* Put all unmarked bigfloats on free list */ | |
5181 sweep_bigfloats (); | |
5182 #endif | |
5183 | |
428 | 5184 /* Put all unmarked symbols on free list */ |
5185 sweep_symbols (); | |
5186 | |
5187 /* Put all unmarked extents on free list */ | |
5188 sweep_extents (); | |
5189 | |
5190 /* Put all unmarked markers on free list. | |
5191 Dechain each one first from the buffer into which it points. */ | |
5192 sweep_markers (); | |
5193 | |
5194 sweep_events (); | |
5195 | |
1204 | 5196 #ifdef EVENT_DATA_AS_OBJECTS |
934 | 5197 sweep_key_data (); |
5198 sweep_button_data (); | |
5199 sweep_motion_data (); | |
5200 sweep_process_data (); | |
5201 sweep_timeout_data (); | |
5202 sweep_magic_data (); | |
5203 sweep_magic_eval_data (); | |
5204 sweep_eval_data (); | |
5205 sweep_misc_user_data (); | |
1204 | 5206 #endif /* EVENT_DATA_AS_OBJECTS */ |
2720 | 5207 #endif /* not MC_ALLOC */ |
5208 | |
5209 #ifndef MC_ALLOC | |
428 | 5210 #ifdef PDUMP |
442 | 5211 pdump_objects_unmark (); |
428 | 5212 #endif |
2720 | 5213 #endif /* not MC_ALLOC */ |
428 | 5214 } |
5215 | |
5216 /* Clearing for disksave. */ | |
5217 | |
5218 void | |
5219 disksave_object_finalization (void) | |
5220 { | |
5221 /* It's important that certain information from the environment not get | |
5222 dumped with the executable (pathnames, environment variables, etc.). | |
5223 To make it easier to tell when this has happened with strings(1) we | |
5224 clear some known-to-be-garbage blocks of memory, so that leftover | |
5225 results of old evaluation don't look like potential problems. | |
5226 But first we set some notable variables to nil and do one more GC, | |
5227 to turn those strings into garbage. | |
440 | 5228 */ |
428 | 5229 |
5230 /* Yeah, this list is pretty ad-hoc... */ | |
5231 Vprocess_environment = Qnil; | |
771 | 5232 env_initted = 0; |
428 | 5233 Vexec_directory = Qnil; |
5234 Vdata_directory = Qnil; | |
5235 Vsite_directory = Qnil; | |
5236 Vdoc_directory = Qnil; | |
5237 Vexec_path = Qnil; | |
5238 Vload_path = Qnil; | |
5239 /* Vdump_load_path = Qnil; */ | |
5240 /* Release hash tables for locate_file */ | |
5241 Flocate_file_clear_hashing (Qt); | |
771 | 5242 uncache_home_directory (); |
776 | 5243 zero_out_command_line_status_vars (); |
872 | 5244 clear_default_devices (); |
428 | 5245 |
5246 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \ | |
5247 defined(LOADHIST_BUILTIN)) | |
5248 Vload_history = Qnil; | |
5249 #endif | |
5250 Vshell_file_name = Qnil; | |
5251 | |
5252 garbage_collect_1 (); | |
5253 | |
5254 /* Run the disksave finalization methods of all live objects. */ | |
5255 disksave_object_finalization_1 (); | |
5256 | |
5257 /* Zero out the uninitialized (really, unused) part of the containers | |
5258 for the live strings. */ | |
5259 { | |
5260 struct string_chars_block *scb; | |
5261 for (scb = first_string_chars_block; scb; scb = scb->next) | |
5262 { | |
5263 int count = sizeof (scb->string_chars) - scb->pos; | |
5264 | |
5265 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE); | |
440 | 5266 if (count != 0) |
5267 { | |
5268 /* from the block's fill ptr to the end */ | |
5269 memset ((scb->string_chars + scb->pos), 0, count); | |
5270 } | |
428 | 5271 } |
5272 } | |
5273 | |
5274 /* There, that ought to be enough... */ | |
5275 | |
5276 } | |
5277 | |
5278 | |
771 | 5279 int |
5280 begin_gc_forbidden (void) | |
5281 { | |
853 | 5282 return internal_bind_int (&gc_currently_forbidden, 1); |
771 | 5283 } |
5284 | |
5285 void | |
5286 end_gc_forbidden (int count) | |
5287 { | |
5288 unbind_to (count); | |
5289 } | |
5290 | |
428 | 5291 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */ |
5292 static int gc_hooks_inhibited; | |
5293 | |
611 | 5294 struct post_gc_action |
5295 { | |
5296 void (*fun) (void *); | |
5297 void *arg; | |
5298 }; | |
5299 | |
5300 typedef struct post_gc_action post_gc_action; | |
5301 | |
5302 typedef struct | |
5303 { | |
5304 Dynarr_declare (post_gc_action); | |
5305 } post_gc_action_dynarr; | |
5306 | |
5307 static post_gc_action_dynarr *post_gc_actions; | |
5308 | |
5309 /* Register an action to be called at the end of GC. | |
5310 gc_in_progress is 0 when this is called. | |
5311 This is used when it is discovered that an action needs to be taken, | |
5312 but it's during GC, so it's not safe. (e.g. in a finalize method.) | |
5313 | |
5314 As a general rule, do not use Lisp objects here. | |
5315 And NEVER signal an error. | |
5316 */ | |
5317 | |
5318 void | |
5319 register_post_gc_action (void (*fun) (void *), void *arg) | |
5320 { | |
5321 post_gc_action action; | |
5322 | |
5323 if (!post_gc_actions) | |
5324 post_gc_actions = Dynarr_new (post_gc_action); | |
5325 | |
5326 action.fun = fun; | |
5327 action.arg = arg; | |
5328 | |
5329 Dynarr_add (post_gc_actions, action); | |
5330 } | |
5331 | |
5332 static void | |
5333 run_post_gc_actions (void) | |
5334 { | |
5335 int i; | |
5336 | |
5337 if (post_gc_actions) | |
5338 { | |
5339 for (i = 0; i < Dynarr_length (post_gc_actions); i++) | |
5340 { | |
5341 post_gc_action action = Dynarr_at (post_gc_actions, i); | |
5342 (action.fun) (action.arg); | |
5343 } | |
5344 | |
5345 Dynarr_reset (post_gc_actions); | |
5346 } | |
5347 } | |
5348 | |
428 | 5349 |
5350 void | |
5351 garbage_collect_1 (void) | |
5352 { | |
5353 #if MAX_SAVE_STACK > 0 | |
5354 char stack_top_variable; | |
5355 extern char *stack_bottom; | |
5356 #endif | |
5357 struct frame *f; | |
5358 int speccount; | |
5359 int cursor_changed; | |
5360 Lisp_Object pre_gc_cursor; | |
5361 struct gcpro gcpro1; | |
1292 | 5362 PROFILE_DECLARE (); |
428 | 5363 |
1123 | 5364 assert (!in_display || gc_currently_forbidden); |
5365 | |
428 | 5366 if (gc_in_progress |
5367 || gc_currently_forbidden | |
5368 || in_display | |
5369 || preparing_for_armageddon) | |
5370 return; | |
5371 | |
1292 | 5372 PROFILE_RECORD_ENTERING_SECTION (QSin_garbage_collection); |
5373 | |
428 | 5374 /* We used to call selected_frame() here. |
5375 | |
5376 The following functions cannot be called inside GC | |
5377 so we move to after the above tests. */ | |
5378 { | |
5379 Lisp_Object frame; | |
5380 Lisp_Object device = Fselected_device (Qnil); | |
5381 if (NILP (device)) /* Could happen during startup, eg. if always_gc */ | |
5382 return; | |
872 | 5383 frame = Fselected_frame (device); |
428 | 5384 if (NILP (frame)) |
563 | 5385 invalid_state ("No frames exist on device", device); |
428 | 5386 f = XFRAME (frame); |
5387 } | |
5388 | |
5389 pre_gc_cursor = Qnil; | |
5390 cursor_changed = 0; | |
5391 | |
5392 GCPRO1 (pre_gc_cursor); | |
5393 | |
5394 /* Very important to prevent GC during any of the following | |
5395 stuff that might run Lisp code; otherwise, we'll likely | |
5396 have infinite GC recursion. */ | |
771 | 5397 speccount = begin_gc_forbidden (); |
428 | 5398 |
887 | 5399 need_to_signal_post_gc = 0; |
1318 | 5400 recompute_funcall_allocation_flag (); |
887 | 5401 |
428 | 5402 if (!gc_hooks_inhibited) |
853 | 5403 run_hook_trapping_problems |
1333 | 5404 (Qgarbage_collecting, Qpre_gc_hook, |
853 | 5405 INHIBIT_EXISTING_PERMANENT_DISPLAY_OBJECT_DELETION); |
428 | 5406 |
5407 /* Now show the GC cursor/message. */ | |
5408 if (!noninteractive) | |
5409 { | |
5410 if (FRAME_WIN_P (f)) | |
5411 { | |
771 | 5412 Lisp_Object frame = wrap_frame (f); |
428 | 5413 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph, |
5414 FRAME_SELECTED_WINDOW (f), | |
5415 ERROR_ME_NOT, 1); | |
5416 pre_gc_cursor = f->pointer; | |
5417 if (POINTER_IMAGE_INSTANCEP (cursor) | |
5418 /* don't change if we don't know how to change back. */ | |
5419 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor)) | |
5420 { | |
5421 cursor_changed = 1; | |
5422 Fset_frame_pointer (frame, cursor); | |
5423 } | |
5424 } | |
5425 | |
5426 /* Don't print messages to the stream device. */ | |
5427 if (!cursor_changed && !FRAME_STREAM_P (f)) | |
5428 { | |
1154 | 5429 if (garbage_collection_messages) |
5430 { | |
5431 Lisp_Object args[2], whole_msg; | |
5432 args[0] = (STRINGP (Vgc_message) ? Vgc_message : | |
5433 build_msg_string (gc_default_message)); | |
5434 args[1] = build_string ("..."); | |
5435 whole_msg = Fconcat (2, args); | |
5436 echo_area_message (f, (Ibyte *) 0, whole_msg, 0, -1, | |
5437 Qgarbage_collecting); | |
5438 } | |
428 | 5439 } |
5440 } | |
5441 | |
5442 /***** Now we actually start the garbage collection. */ | |
5443 | |
5444 gc_in_progress = 1; | |
2367 | 5445 inhibit_non_essential_conversion_operations = 1; |
428 | 5446 |
5447 gc_generation_number[0]++; | |
5448 | |
5449 #if MAX_SAVE_STACK > 0 | |
5450 | |
5451 /* Save a copy of the contents of the stack, for debugging. */ | |
5452 if (!purify_flag) | |
5453 { | |
5454 /* Static buffer in which we save a copy of the C stack at each GC. */ | |
5455 static char *stack_copy; | |
665 | 5456 static Bytecount stack_copy_size; |
428 | 5457 |
5458 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom; | |
665 | 5459 Bytecount stack_size = (stack_diff > 0 ? stack_diff : -stack_diff); |
428 | 5460 if (stack_size < MAX_SAVE_STACK) |
5461 { | |
5462 if (stack_copy_size < stack_size) | |
5463 { | |
5464 stack_copy = (char *) xrealloc (stack_copy, stack_size); | |
5465 stack_copy_size = stack_size; | |
5466 } | |
5467 | |
5468 memcpy (stack_copy, | |
5469 stack_diff > 0 ? stack_bottom : &stack_top_variable, | |
5470 stack_size); | |
5471 } | |
5472 } | |
5473 #endif /* MAX_SAVE_STACK > 0 */ | |
5474 | |
5475 /* Do some totally ad-hoc resource clearing. */ | |
5476 /* #### generalize this? */ | |
5477 clear_event_resource (); | |
5478 cleanup_specifiers (); | |
1204 | 5479 cleanup_buffer_undo_lists (); |
428 | 5480 |
5481 /* Mark all the special slots that serve as the roots of accessibility. */ | |
5482 | |
1598 | 5483 #ifdef USE_KKCC |
5484 /* initialize kkcc stack */ | |
5485 kkcc_gc_stack_init(); | |
2645 | 5486 #define mark_object(obj) kkcc_gc_stack_push_lisp_object (obj, 0, -1) |
1598 | 5487 #endif /* USE_KKCC */ |
5488 | |
428 | 5489 { /* staticpro() */ |
452 | 5490 Lisp_Object **p = Dynarr_begin (staticpros); |
665 | 5491 Elemcount count; |
452 | 5492 for (count = Dynarr_length (staticpros); count; count--) |
5493 mark_object (**p++); | |
5494 } | |
5495 | |
5496 { /* staticpro_nodump() */ | |
5497 Lisp_Object **p = Dynarr_begin (staticpros_nodump); | |
665 | 5498 Elemcount count; |
452 | 5499 for (count = Dynarr_length (staticpros_nodump); count; count--) |
5500 mark_object (**p++); | |
428 | 5501 } |
5502 | |
2720 | 5503 #ifdef MC_ALLOC |
5504 { /* mcpro () */ | |
5505 Lisp_Object *p = Dynarr_begin (mcpros); | |
5506 Elemcount count; | |
5507 for (count = Dynarr_length (mcpros); count; count--) | |
5508 mark_object (*p++); | |
5509 } | |
5510 #endif /* MC_ALLOC */ | |
5511 | |
428 | 5512 { /* GCPRO() */ |
5513 struct gcpro *tail; | |
5514 int i; | |
5515 for (tail = gcprolist; tail; tail = tail->next) | |
5516 for (i = 0; i < tail->nvars; i++) | |
5517 mark_object (tail->var[i]); | |
5518 } | |
5519 | |
5520 { /* specbind() */ | |
5521 struct specbinding *bind; | |
5522 for (bind = specpdl; bind != specpdl_ptr; bind++) | |
5523 { | |
5524 mark_object (bind->symbol); | |
5525 mark_object (bind->old_value); | |
5526 } | |
5527 } | |
5528 | |
5529 { | |
2994 | 5530 struct catchtag *c; |
5531 for (c = catchlist; c; c = c->next) | |
428 | 5532 { |
2994 | 5533 mark_object (c->tag); |
5534 mark_object (c->val); | |
5535 mark_object (c->actual_tag); | |
5536 mark_object (c->backtrace); | |
428 | 5537 } |
5538 } | |
5539 | |
5540 { | |
5541 struct backtrace *backlist; | |
5542 for (backlist = backtrace_list; backlist; backlist = backlist->next) | |
5543 { | |
5544 int nargs = backlist->nargs; | |
5545 int i; | |
5546 | |
5547 mark_object (*backlist->function); | |
1292 | 5548 if (nargs < 0 /* nargs == UNEVALLED || nargs == MANY */ |
5549 /* might be fake (internal profiling entry) */ | |
5550 && backlist->args) | |
428 | 5551 mark_object (backlist->args[0]); |
5552 else | |
5553 for (i = 0; i < nargs; i++) | |
5554 mark_object (backlist->args[i]); | |
5555 } | |
5556 } | |
5557 | |
5558 mark_profiling_info (); | |
5559 | |
5560 /* OK, now do the after-mark stuff. This is for things that | |
5561 are only marked when something else is marked (e.g. weak hash tables). | |
5562 There may be complex dependencies between such objects -- e.g. | |
5563 a weak hash table might be unmarked, but after processing a later | |
5564 weak hash table, the former one might get marked. So we have to | |
5565 iterate until nothing more gets marked. */ | |
1598 | 5566 #ifdef USE_KKCC |
5567 kkcc_marking (); | |
5568 #endif /* USE_KKCC */ | |
1590 | 5569 init_marking_ephemerons (); |
428 | 5570 while (finish_marking_weak_hash_tables () > 0 || |
887 | 5571 finish_marking_weak_lists () > 0 || |
1590 | 5572 continue_marking_ephemerons () > 0) |
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5573 #ifdef USE_KKCC |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5574 { |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5575 kkcc_marking (); |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5576 } |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5577 #else /* NOT USE_KKCC */ |
1590 | 5578 ; |
1598 | 5579 #endif /* USE_KKCC */ |
5580 | |
1590 | 5581 /* At this point, we know which objects need to be finalized: we |
5582 still need to resurrect them */ | |
5583 | |
5584 while (finish_marking_ephemerons () > 0 || | |
5585 finish_marking_weak_lists () > 0 || | |
5586 finish_marking_weak_hash_tables () > 0) | |
1643 | 5587 #ifdef USE_KKCC |
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5588 { |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5589 kkcc_marking (); |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5590 } |
1643 | 5591 kkcc_gc_stack_free (); |
1676 | 5592 #undef mark_object |
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5593 #else /* NOT USE_KKCC */ |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5594 ; |
1643 | 5595 #endif /* USE_KKCC */ |
5596 | |
428 | 5597 /* And prune (this needs to be called after everything else has been |
5598 marked and before we do any sweeping). */ | |
5599 /* #### this is somewhat ad-hoc and should probably be an object | |
5600 method */ | |
5601 prune_weak_hash_tables (); | |
5602 prune_weak_lists (); | |
5603 prune_specifiers (); | |
5604 prune_syntax_tables (); | |
5605 | |
887 | 5606 prune_ephemerons (); |
858 | 5607 prune_weak_boxes (); |
5608 | |
428 | 5609 gc_sweep (); |
5610 | |
5611 consing_since_gc = 0; | |
5612 #ifndef DEBUG_XEMACS | |
5613 /* Allow you to set it really fucking low if you really want ... */ | |
5614 if (gc_cons_threshold < 10000) | |
5615 gc_cons_threshold = 10000; | |
5616 #endif | |
814 | 5617 recompute_need_to_garbage_collect (); |
428 | 5618 |
2367 | 5619 inhibit_non_essential_conversion_operations = 0; |
428 | 5620 gc_in_progress = 0; |
5621 | |
611 | 5622 run_post_gc_actions (); |
5623 | |
428 | 5624 /******* End of garbage collection ********/ |
5625 | |
5626 /* Now remove the GC cursor/message */ | |
5627 if (!noninteractive) | |
5628 { | |
5629 if (cursor_changed) | |
771 | 5630 Fset_frame_pointer (wrap_frame (f), pre_gc_cursor); |
428 | 5631 else if (!FRAME_STREAM_P (f)) |
5632 { | |
5633 /* Show "...done" only if the echo area would otherwise be empty. */ | |
5634 if (NILP (clear_echo_area (selected_frame (), | |
5635 Qgarbage_collecting, 0))) | |
5636 { | |
1154 | 5637 if (garbage_collection_messages) |
5638 { | |
5639 Lisp_Object args[2], whole_msg; | |
5640 args[0] = (STRINGP (Vgc_message) ? Vgc_message : | |
5641 build_msg_string (gc_default_message)); | |
5642 args[1] = build_msg_string ("... done"); | |
5643 whole_msg = Fconcat (2, args); | |
5644 echo_area_message (selected_frame (), (Ibyte *) 0, | |
5645 whole_msg, 0, -1, | |
5646 Qgarbage_collecting); | |
5647 } | |
428 | 5648 } |
5649 } | |
5650 } | |
5651 | |
5652 /* now stop inhibiting GC */ | |
771 | 5653 unbind_to (speccount); |
428 | 5654 |
2720 | 5655 #ifndef MC_ALLOC |
428 | 5656 if (!breathing_space) |
5657 { | |
5658 breathing_space = malloc (4096 - MALLOC_OVERHEAD); | |
5659 } | |
2720 | 5660 #endif /* not MC_ALLOC */ |
428 | 5661 |
5662 UNGCPRO; | |
887 | 5663 |
5664 need_to_signal_post_gc = 1; | |
5665 funcall_allocation_flag = 1; | |
5666 | |
1292 | 5667 PROFILE_RECORD_EXITING_SECTION (QSin_garbage_collection); |
5668 | |
428 | 5669 return; |
5670 } | |
5671 | |
2994 | 5672 #ifdef ALLOC_TYPE_STATS |
5673 | |
2720 | 5674 static Lisp_Object |
2994 | 5675 gc_plist_hack (const Ascbyte *name, EMACS_INT value, Lisp_Object tail) |
2720 | 5676 { |
5677 /* C doesn't have local functions (or closures, or GC, or readable syntax, | |
5678 or portable numeric datatypes, or bit-vectors, or characters, or | |
5679 arrays, or exceptions, or ...) */ | |
5680 return cons3 (intern (name), make_int (value), tail); | |
5681 } | |
2775 | 5682 |
2994 | 5683 static Lisp_Object |
5684 object_memory_usage_stats (int set_total_gc_usage) | |
2720 | 5685 { |
5686 Lisp_Object pl = Qnil; | |
5687 int i; | |
2994 | 5688 EMACS_INT tgu_val = 0; |
5689 | |
5690 #ifdef MC_ALLOC | |
2775 | 5691 |
2720 | 5692 for (i = 0; i < (countof (lrecord_implementations_table) |
5693 + MODULE_DEFINABLE_TYPE_COUNT); i++) | |
5694 { | |
5695 if (lrecord_stats[i].instances_in_use != 0) | |
5696 { | |
5697 char buf [255]; | |
5698 const char *name = lrecord_implementations_table[i]->name; | |
5699 int len = strlen (name); | |
5700 | |
5701 if (lrecord_stats[i].bytes_in_use_including_overhead != | |
5702 lrecord_stats[i].bytes_in_use) | |
5703 { | |
5704 sprintf (buf, "%s-storage-including-overhead", name); | |
5705 pl = gc_plist_hack (buf, | |
5706 lrecord_stats[i] | |
5707 .bytes_in_use_including_overhead, | |
5708 pl); | |
5709 } | |
5710 | |
5711 sprintf (buf, "%s-storage", name); | |
5712 pl = gc_plist_hack (buf, | |
5713 lrecord_stats[i].bytes_in_use, | |
5714 pl); | |
2994 | 5715 tgu_val += lrecord_stats[i].bytes_in_use_including_overhead; |
2720 | 5716 |
5717 if (name[len-1] == 's') | |
5718 sprintf (buf, "%ses-used", name); | |
5719 else | |
5720 sprintf (buf, "%ss-used", name); | |
5721 pl = gc_plist_hack (buf, lrecord_stats[i].instances_in_use, pl); | |
5722 } | |
5723 } | |
2775 | 5724 pl = gc_plist_hack ("string-data-storage-including-overhead", |
5725 lrecord_string_data_bytes_in_use_including_overhead, pl); | |
5726 pl = gc_plist_hack ("string-data-storage-additional", | |
5727 lrecord_string_data_bytes_in_use, pl); | |
5728 pl = gc_plist_hack ("string-data-used", | |
5729 lrecord_string_data_instances_in_use, pl); | |
2994 | 5730 tgu_val += lrecord_string_data_bytes_in_use_including_overhead; |
5731 | |
2720 | 5732 #else /* not MC_ALLOC */ |
428 | 5733 |
5734 #define HACK_O_MATIC(type, name, pl) do { \ | |
2994 | 5735 EMACS_INT s = 0; \ |
428 | 5736 struct type##_block *x = current_##type##_block; \ |
5737 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \ | |
2994 | 5738 tgu_val += s; \ |
428 | 5739 (pl) = gc_plist_hack ((name), s, (pl)); \ |
5740 } while (0) | |
5741 | |
442 | 5742 for (i = 0; i < lrecord_type_count; i++) |
428 | 5743 { |
5744 if (lcrecord_stats[i].bytes_in_use != 0 | |
5745 || lcrecord_stats[i].bytes_freed != 0 | |
5746 || lcrecord_stats[i].instances_on_free_list != 0) | |
5747 { | |
5748 char buf [255]; | |
442 | 5749 const char *name = lrecord_implementations_table[i]->name; |
428 | 5750 int len = strlen (name); |
5751 | |
5752 sprintf (buf, "%s-storage", name); | |
5753 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl); | |
2994 | 5754 tgu_val += lcrecord_stats[i].bytes_in_use; |
428 | 5755 /* Okay, simple pluralization check for `symbol-value-varalias' */ |
5756 if (name[len-1] == 's') | |
5757 sprintf (buf, "%ses-freed", name); | |
5758 else | |
5759 sprintf (buf, "%ss-freed", name); | |
5760 if (lcrecord_stats[i].instances_freed != 0) | |
5761 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl); | |
5762 if (name[len-1] == 's') | |
5763 sprintf (buf, "%ses-on-free-list", name); | |
5764 else | |
5765 sprintf (buf, "%ss-on-free-list", name); | |
5766 if (lcrecord_stats[i].instances_on_free_list != 0) | |
5767 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list, | |
5768 pl); | |
5769 if (name[len-1] == 's') | |
5770 sprintf (buf, "%ses-used", name); | |
5771 else | |
5772 sprintf (buf, "%ss-used", name); | |
5773 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl); | |
5774 } | |
5775 } | |
5776 | |
5777 HACK_O_MATIC (extent, "extent-storage", pl); | |
5778 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl); | |
5779 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl); | |
5780 HACK_O_MATIC (event, "event-storage", pl); | |
5781 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl); | |
5782 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl); | |
5783 HACK_O_MATIC (marker, "marker-storage", pl); | |
5784 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl); | |
5785 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl); | |
5786 HACK_O_MATIC (float, "float-storage", pl); | |
5787 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl); | |
5788 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl); | |
1983 | 5789 #ifdef HAVE_BIGNUM |
5790 HACK_O_MATIC (bignum, "bignum-storage", pl); | |
5791 pl = gc_plist_hack ("bignums-free", gc_count_num_bignum_freelist, pl); | |
5792 pl = gc_plist_hack ("bignums-used", gc_count_num_bignum_in_use, pl); | |
5793 #endif /* HAVE_BIGNUM */ | |
5794 #ifdef HAVE_RATIO | |
5795 HACK_O_MATIC (ratio, "ratio-storage", pl); | |
5796 pl = gc_plist_hack ("ratios-free", gc_count_num_ratio_freelist, pl); | |
5797 pl = gc_plist_hack ("ratios-used", gc_count_num_ratio_in_use, pl); | |
5798 #endif /* HAVE_RATIO */ | |
5799 #ifdef HAVE_BIGFLOAT | |
5800 HACK_O_MATIC (bigfloat, "bigfloat-storage", pl); | |
5801 pl = gc_plist_hack ("bigfloats-free", gc_count_num_bigfloat_freelist, pl); | |
5802 pl = gc_plist_hack ("bigfloats-used", gc_count_num_bigfloat_in_use, pl); | |
5803 #endif /* HAVE_BIGFLOAT */ | |
428 | 5804 HACK_O_MATIC (string, "string-header-storage", pl); |
5805 pl = gc_plist_hack ("long-strings-total-length", | |
5806 gc_count_string_total_size | |
5807 - gc_count_short_string_total_size, pl); | |
5808 HACK_O_MATIC (string_chars, "short-string-storage", pl); | |
5809 pl = gc_plist_hack ("short-strings-total-length", | |
5810 gc_count_short_string_total_size, pl); | |
5811 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl); | |
5812 pl = gc_plist_hack ("long-strings-used", | |
5813 gc_count_num_string_in_use | |
5814 - gc_count_num_short_string_in_use, pl); | |
5815 pl = gc_plist_hack ("short-strings-used", | |
5816 gc_count_num_short_string_in_use, pl); | |
5817 | |
5818 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl); | |
5819 pl = gc_plist_hack ("compiled-functions-free", | |
5820 gc_count_num_compiled_function_freelist, pl); | |
5821 pl = gc_plist_hack ("compiled-functions-used", | |
5822 gc_count_num_compiled_function_in_use, pl); | |
5823 | |
5824 HACK_O_MATIC (symbol, "symbol-storage", pl); | |
5825 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl); | |
5826 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl); | |
5827 | |
5828 HACK_O_MATIC (cons, "cons-storage", pl); | |
5829 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl); | |
5830 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl); | |
5831 | |
2994 | 5832 #undef HACK_O_MATIC |
5833 | |
5834 #endif /* MC_ALLOC */ | |
5835 | |
5836 if (set_total_gc_usage) | |
5837 { | |
5838 total_gc_usage = tgu_val; | |
5839 total_gc_usage_set = 1; | |
5840 } | |
5841 | |
5842 return pl; | |
5843 } | |
5844 | |
5845 DEFUN("object-memory-usage-stats", Fobject_memory_usage_stats, 0, 0 ,"", /* | |
5846 Return statistics about memory usage of Lisp objects. | |
5847 */ | |
5848 ()) | |
5849 { | |
5850 return object_memory_usage_stats (0); | |
5851 } | |
5852 | |
5853 #endif /* ALLOC_TYPE_STATS */ | |
5854 | |
5855 /* Debugging aids. */ | |
5856 | |
5857 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /* | |
5858 Reclaim storage for Lisp objects no longer needed. | |
5859 Return info on amount of space in use: | |
5860 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS) | |
5861 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS | |
5862 PLIST) | |
5863 where `PLIST' is a list of alternating keyword/value pairs providing | |
5864 more detailed information. | |
5865 Garbage collection happens automatically if you cons more than | |
5866 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. | |
5867 */ | |
5868 ()) | |
5869 { | |
5870 /* Record total usage for purposes of determining next GC */ | |
5871 garbage_collect_1 (); | |
5872 | |
5873 /* This will get set to 1, and total_gc_usage computed, as part of the | |
5874 call to object_memory_usage_stats() -- if ALLOC_TYPE_STATS is enabled. */ | |
5875 total_gc_usage_set = 0; | |
5876 #ifdef ALLOC_TYPE_STATS | |
428 | 5877 /* The things we do for backwards-compatibility */ |
2994 | 5878 #ifdef MC_ALLOC |
5879 return | |
5880 list6 | |
5881 (Fcons (make_int (lrecord_stats[lrecord_type_cons].instances_in_use), | |
5882 make_int (lrecord_stats[lrecord_type_cons] | |
5883 .bytes_in_use_including_overhead)), | |
5884 Fcons (make_int (lrecord_stats[lrecord_type_symbol].instances_in_use), | |
5885 make_int (lrecord_stats[lrecord_type_symbol] | |
5886 .bytes_in_use_including_overhead)), | |
5887 Fcons (make_int (lrecord_stats[lrecord_type_marker].instances_in_use), | |
5888 make_int (lrecord_stats[lrecord_type_marker] | |
5889 .bytes_in_use_including_overhead)), | |
5890 make_int (lrecord_stats[lrecord_type_string] | |
5891 .bytes_in_use_including_overhead), | |
5892 make_int (lrecord_stats[lrecord_type_vector] | |
5893 .bytes_in_use_including_overhead), | |
5894 object_memory_usage_stats (1)); | |
5895 #else /* not MC_ALLOC */ | |
428 | 5896 return |
5897 list6 (Fcons (make_int (gc_count_num_cons_in_use), | |
5898 make_int (gc_count_num_cons_freelist)), | |
5899 Fcons (make_int (gc_count_num_symbol_in_use), | |
5900 make_int (gc_count_num_symbol_freelist)), | |
5901 Fcons (make_int (gc_count_num_marker_in_use), | |
5902 make_int (gc_count_num_marker_freelist)), | |
5903 make_int (gc_count_string_total_size), | |
2994 | 5904 make_int (lcrecord_stats[lrecord_type_vector].bytes_in_use + |
5905 lcrecord_stats[lrecord_type_vector].bytes_freed), | |
5906 object_memory_usage_stats (1)); | |
2720 | 5907 #endif /* not MC_ALLOC */ |
2994 | 5908 #else /* not ALLOC_TYPE_STATS */ |
5909 return Qnil; | |
5910 #endif /* ALLOC_TYPE_STATS */ | |
5911 } | |
428 | 5912 |
5913 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /* | |
5914 Return the number of bytes consed since the last garbage collection. | |
5915 \"Consed\" is a misnomer in that this actually counts allocation | |
5916 of all different kinds of objects, not just conses. | |
5917 | |
5918 If this value exceeds `gc-cons-threshold', a garbage collection happens. | |
5919 */ | |
5920 ()) | |
5921 { | |
5922 return make_int (consing_since_gc); | |
5923 } | |
5924 | |
440 | 5925 #if 0 |
444 | 5926 DEFUN ("memory-limit", Fmemory_limit, 0, 0, 0, /* |
801 | 5927 Return the address of the last byte XEmacs has allocated, divided by 1024. |
5928 This may be helpful in debugging XEmacs's memory usage. | |
428 | 5929 The value is divided by 1024 to make sure it will fit in a lisp integer. |
5930 */ | |
5931 ()) | |
5932 { | |
5933 return make_int ((EMACS_INT) sbrk (0) / 1024); | |
5934 } | |
440 | 5935 #endif |
428 | 5936 |
2994 | 5937 DEFUN ("total-memory-usage", Ftotal_memory_usage, 0, 0, 0, /* |
801 | 5938 Return the total number of bytes used by the data segment in XEmacs. |
5939 This may be helpful in debugging XEmacs's memory usage. | |
2994 | 5940 NOTE: This may or may not be accurate! It is hard to determine this |
5941 value in a system-independent fashion. On Windows, for example, the | |
5942 returned number tends to be much greater than reality. | |
801 | 5943 */ |
5944 ()) | |
5945 { | |
5946 return make_int (total_data_usage ()); | |
5947 } | |
5948 | |
2994 | 5949 #ifdef ALLOC_TYPE_STATS |
5950 DEFUN ("object-memory-usage", Fobject_memory_usage, 0, 0, 0, /* | |
5951 Return total number of bytes used for object storage in XEmacs. | |
5952 This may be helpful in debugging XEmacs's memory usage. | |
5953 See also `consing-since-gc' and `object-memory-usage-stats'. | |
5954 */ | |
5955 ()) | |
5956 { | |
5957 return make_int (total_gc_usage + consing_since_gc); | |
5958 } | |
5959 #endif /* ALLOC_TYPE_STATS */ | |
5960 | |
851 | 5961 void |
5962 recompute_funcall_allocation_flag (void) | |
5963 { | |
887 | 5964 funcall_allocation_flag = |
5965 need_to_garbage_collect || | |
5966 need_to_check_c_alloca || | |
5967 need_to_signal_post_gc; | |
851 | 5968 } |
5969 | |
801 | 5970 /* True if it's time to garbage collect now. */ |
814 | 5971 static void |
5972 recompute_need_to_garbage_collect (void) | |
801 | 5973 { |
5974 if (always_gc) | |
814 | 5975 need_to_garbage_collect = 1; |
5976 else | |
5977 need_to_garbage_collect = | |
5978 (consing_since_gc > gc_cons_threshold | |
2994 | 5979 && |
2971 | 5980 #if 0 /* #### implement this better */ |
814 | 5981 (100 * consing_since_gc) / total_data_usage () >= |
5982 gc_cons_percentage | |
2994 | 5983 #else |
5984 (!total_gc_usage_set || | |
5985 (100 * consing_since_gc) / total_gc_usage >= | |
5986 gc_cons_percentage) | |
5987 #endif | |
814 | 5988 ); |
851 | 5989 recompute_funcall_allocation_flag (); |
801 | 5990 } |
5991 | |
428 | 5992 |
5993 int | |
5994 object_dead_p (Lisp_Object obj) | |
5995 { | |
5996 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) || | |
5997 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) || | |
5998 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) || | |
5999 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) || | |
6000 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) || | |
6001 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) || | |
6002 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj)))); | |
6003 } | |
6004 | |
6005 #ifdef MEMORY_USAGE_STATS | |
6006 | |
6007 /* Attempt to determine the actual amount of space that is used for | |
6008 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE". | |
6009 | |
6010 It seems that the following holds: | |
6011 | |
6012 1. When using the old allocator (malloc.c): | |
6013 | |
6014 -- blocks are always allocated in chunks of powers of two. For | |
6015 each block, there is an overhead of 8 bytes if rcheck is not | |
6016 defined, 20 bytes if it is defined. In other words, a | |
6017 one-byte allocation needs 8 bytes of overhead for a total of | |
6018 9 bytes, and needs to have 16 bytes of memory chunked out for | |
6019 it. | |
6020 | |
6021 2. When using the new allocator (gmalloc.c): | |
6022 | |
6023 -- blocks are always allocated in chunks of powers of two up | |
6024 to 4096 bytes. Larger blocks are allocated in chunks of | |
6025 an integral multiple of 4096 bytes. The minimum block | |
6026 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG | |
6027 is defined. There is no per-block overhead, but there | |
6028 is an overhead of 3*sizeof (size_t) for each 4096 bytes | |
6029 allocated. | |
6030 | |
6031 3. When using the system malloc, anything goes, but they are | |
6032 generally slower and more space-efficient than the GNU | |
6033 allocators. One possibly reasonable assumption to make | |
6034 for want of better data is that sizeof (void *), or maybe | |
6035 2 * sizeof (void *), is required as overhead and that | |
6036 blocks are allocated in the minimum required size except | |
6037 that some minimum block size is imposed (e.g. 16 bytes). */ | |
6038 | |
665 | 6039 Bytecount |
2286 | 6040 malloced_storage_size (void *UNUSED (ptr), Bytecount claimed_size, |
428 | 6041 struct overhead_stats *stats) |
6042 { | |
665 | 6043 Bytecount orig_claimed_size = claimed_size; |
428 | 6044 |
6045 #ifdef GNU_MALLOC | |
665 | 6046 if (claimed_size < (Bytecount) (2 * sizeof (void *))) |
428 | 6047 claimed_size = 2 * sizeof (void *); |
6048 # ifdef SUNOS_LOCALTIME_BUG | |
6049 if (claimed_size < 16) | |
6050 claimed_size = 16; | |
6051 # endif | |
6052 if (claimed_size < 4096) | |
6053 { | |
2260 | 6054 /* fxg: rename log->log2 to supress gcc3 shadow warning */ |
6055 int log2 = 1; | |
428 | 6056 |
6057 /* compute the log base two, more or less, then use it to compute | |
6058 the block size needed. */ | |
6059 claimed_size--; | |
6060 /* It's big, it's heavy, it's wood! */ | |
6061 while ((claimed_size /= 2) != 0) | |
2260 | 6062 ++log2; |
428 | 6063 claimed_size = 1; |
6064 /* It's better than bad, it's good! */ | |
2260 | 6065 while (log2 > 0) |
428 | 6066 { |
6067 claimed_size *= 2; | |
2260 | 6068 log2--; |
428 | 6069 } |
6070 /* We have to come up with some average about the amount of | |
6071 blocks used. */ | |
665 | 6072 if ((Bytecount) (rand () & 4095) < claimed_size) |
428 | 6073 claimed_size += 3 * sizeof (void *); |
6074 } | |
6075 else | |
6076 { | |
6077 claimed_size += 4095; | |
6078 claimed_size &= ~4095; | |
6079 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t); | |
6080 } | |
6081 | |
6082 #elif defined (SYSTEM_MALLOC) | |
6083 | |
6084 if (claimed_size < 16) | |
6085 claimed_size = 16; | |
6086 claimed_size += 2 * sizeof (void *); | |
6087 | |
6088 #else /* old GNU allocator */ | |
6089 | |
6090 # ifdef rcheck /* #### may not be defined here */ | |
6091 claimed_size += 20; | |
6092 # else | |
6093 claimed_size += 8; | |
6094 # endif | |
6095 { | |
2260 | 6096 /* fxg: rename log->log2 to supress gcc3 shadow warning */ |
6097 int log2 = 1; | |
428 | 6098 |
6099 /* compute the log base two, more or less, then use it to compute | |
6100 the block size needed. */ | |
6101 claimed_size--; | |
6102 /* It's big, it's heavy, it's wood! */ | |
6103 while ((claimed_size /= 2) != 0) | |
2260 | 6104 ++log2; |
428 | 6105 claimed_size = 1; |
6106 /* It's better than bad, it's good! */ | |
2260 | 6107 while (log2 > 0) |
428 | 6108 { |
6109 claimed_size *= 2; | |
2260 | 6110 log2--; |
428 | 6111 } |
6112 } | |
6113 | |
6114 #endif /* old GNU allocator */ | |
6115 | |
6116 if (stats) | |
6117 { | |
6118 stats->was_requested += orig_claimed_size; | |
6119 stats->malloc_overhead += claimed_size - orig_claimed_size; | |
6120 } | |
6121 return claimed_size; | |
6122 } | |
6123 | |
2720 | 6124 #ifndef MC_ALLOC |
665 | 6125 Bytecount |
6126 fixed_type_block_overhead (Bytecount size) | |
428 | 6127 { |
665 | 6128 Bytecount per_block = TYPE_ALLOC_SIZE (cons, unsigned char); |
6129 Bytecount overhead = 0; | |
6130 Bytecount storage_size = malloced_storage_size (0, per_block, 0); | |
428 | 6131 while (size >= per_block) |
6132 { | |
6133 size -= per_block; | |
6134 overhead += sizeof (void *) + per_block - storage_size; | |
6135 } | |
6136 if (rand () % per_block < size) | |
6137 overhead += sizeof (void *) + per_block - storage_size; | |
6138 return overhead; | |
6139 } | |
2720 | 6140 #endif /* not MC_ALLOC */ |
428 | 6141 #endif /* MEMORY_USAGE_STATS */ |
6142 | |
6143 | |
6144 /* Initialization */ | |
771 | 6145 static void |
1204 | 6146 common_init_alloc_early (void) |
428 | 6147 { |
771 | 6148 #ifndef Qzero |
6149 Qzero = make_int (0); /* Only used if Lisp_Object is a union type */ | |
6150 #endif | |
6151 | |
6152 #ifndef Qnull_pointer | |
6153 /* C guarantees that Qnull_pointer will be initialized to all 0 bits, | |
6154 so the following is actually a no-op. */ | |
793 | 6155 Qnull_pointer = wrap_pointer_1 (0); |
771 | 6156 #endif |
6157 | |
428 | 6158 gc_generation_number[0] = 0; |
2720 | 6159 #ifndef MC_ALLOC |
428 | 6160 breathing_space = 0; |
2720 | 6161 #endif /* not MC_ALLOC */ |
771 | 6162 Vgc_message = Qzero; |
2720 | 6163 #ifndef MC_ALLOC |
428 | 6164 all_lcrecords = 0; |
2720 | 6165 #endif /* not MC_ALLOC */ |
428 | 6166 ignore_malloc_warnings = 1; |
6167 #ifdef DOUG_LEA_MALLOC | |
6168 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */ | |
6169 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */ | |
6170 #if 0 /* Moved to emacs.c */ | |
6171 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */ | |
6172 #endif | |
6173 #endif | |
2720 | 6174 init_string_chars_alloc (); |
6175 #ifndef MC_ALLOC | |
428 | 6176 init_string_alloc (); |
6177 init_string_chars_alloc (); | |
6178 init_cons_alloc (); | |
6179 init_symbol_alloc (); | |
6180 init_compiled_function_alloc (); | |
6181 init_float_alloc (); | |
1983 | 6182 #ifdef HAVE_BIGNUM |
6183 init_bignum_alloc (); | |
6184 #endif | |
6185 #ifdef HAVE_RATIO | |
6186 init_ratio_alloc (); | |
6187 #endif | |
6188 #ifdef HAVE_BIGFLOAT | |
6189 init_bigfloat_alloc (); | |
6190 #endif | |
428 | 6191 init_marker_alloc (); |
6192 init_extent_alloc (); | |
6193 init_event_alloc (); | |
1204 | 6194 #ifdef EVENT_DATA_AS_OBJECTS |
934 | 6195 init_key_data_alloc (); |
6196 init_button_data_alloc (); | |
6197 init_motion_data_alloc (); | |
6198 init_process_data_alloc (); | |
6199 init_timeout_data_alloc (); | |
6200 init_magic_data_alloc (); | |
6201 init_magic_eval_data_alloc (); | |
6202 init_eval_data_alloc (); | |
6203 init_misc_user_data_alloc (); | |
1204 | 6204 #endif /* EVENT_DATA_AS_OBJECTS */ |
2720 | 6205 #endif /* not MC_ALLOC */ |
428 | 6206 |
6207 ignore_malloc_warnings = 0; | |
6208 | |
452 | 6209 if (staticpros_nodump) |
6210 Dynarr_free (staticpros_nodump); | |
6211 staticpros_nodump = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); | |
6212 Dynarr_resize (staticpros_nodump, 100); /* merely a small optimization */ | |
771 | 6213 #ifdef DEBUG_XEMACS |
6214 if (staticpro_nodump_names) | |
6215 Dynarr_free (staticpro_nodump_names); | |
6216 staticpro_nodump_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
6217 Dynarr_resize (staticpro_nodump_names, 100); /* ditto */ | |
6218 #endif | |
428 | 6219 |
2720 | 6220 #ifdef MC_ALLOC |
6221 mcpros = Dynarr_new2 (Lisp_Object_dynarr, Lisp_Object); | |
6222 Dynarr_resize (mcpros, 1410); /* merely a small optimization */ | |
6223 dump_add_root_block_ptr (&mcpros, &mcpros_description); | |
6224 #ifdef DEBUG_XEMACS | |
6225 mcpro_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
6226 Dynarr_resize (mcpro_names, 1410); /* merely a small optimization */ | |
6227 dump_add_root_block_ptr (&mcpro_names, &mcpro_names_description); | |
6228 #endif | |
6229 #endif /* MC_ALLOC */ | |
6230 | |
428 | 6231 consing_since_gc = 0; |
814 | 6232 need_to_garbage_collect = always_gc; |
851 | 6233 need_to_check_c_alloca = 0; |
6234 funcall_allocation_flag = 0; | |
6235 funcall_alloca_count = 0; | |
814 | 6236 |
428 | 6237 #if 1 |
2994 | 6238 gc_cons_threshold = 2000000; /* XEmacs change */ |
428 | 6239 #else |
6240 gc_cons_threshold = 15000; /* debugging */ | |
6241 #endif | |
2994 | 6242 gc_cons_percentage = 40; /* #### what is optimal? */ |
6243 total_gc_usage_set = 0; | |
428 | 6244 lrecord_uid_counter = 259; |
2720 | 6245 #ifndef MC_ALLOC |
428 | 6246 debug_string_purity = 0; |
2720 | 6247 #endif /* not MC_ALLOC */ |
428 | 6248 |
6249 gc_currently_forbidden = 0; | |
6250 gc_hooks_inhibited = 0; | |
6251 | |
800 | 6252 #ifdef ERROR_CHECK_TYPES |
428 | 6253 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = |
6254 666; | |
6255 ERROR_ME_NOT. | |
6256 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42; | |
6257 ERROR_ME_WARN. | |
6258 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = | |
6259 3333632; | |
793 | 6260 ERROR_ME_DEBUG_WARN. |
6261 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = | |
6262 8675309; | |
800 | 6263 #endif /* ERROR_CHECK_TYPES */ |
428 | 6264 } |
6265 | |
2720 | 6266 #ifndef MC_ALLOC |
771 | 6267 static void |
6268 init_lcrecord_lists (void) | |
6269 { | |
6270 int i; | |
6271 | |
6272 for (i = 0; i < countof (lrecord_implementations_table); i++) | |
6273 { | |
6274 all_lcrecord_lists[i] = Qzero; /* Qnil not yet set */ | |
6275 staticpro_nodump (&all_lcrecord_lists[i]); | |
6276 } | |
6277 } | |
2720 | 6278 #endif /* not MC_ALLOC */ |
771 | 6279 |
6280 void | |
1204 | 6281 init_alloc_early (void) |
771 | 6282 { |
1204 | 6283 #if defined (__cplusplus) && defined (ERROR_CHECK_GC) |
6284 static struct gcpro initial_gcpro; | |
6285 | |
6286 initial_gcpro.next = 0; | |
6287 initial_gcpro.var = &Qnil; | |
6288 initial_gcpro.nvars = 1; | |
6289 gcprolist = &initial_gcpro; | |
6290 #else | |
6291 gcprolist = 0; | |
6292 #endif /* defined (__cplusplus) && defined (ERROR_CHECK_GC) */ | |
6293 } | |
6294 | |
6295 void | |
6296 reinit_alloc_early (void) | |
6297 { | |
6298 common_init_alloc_early (); | |
2720 | 6299 #ifndef MC_ALLOC |
771 | 6300 init_lcrecord_lists (); |
2720 | 6301 #endif /* not MC_ALLOC */ |
771 | 6302 } |
6303 | |
428 | 6304 void |
6305 init_alloc_once_early (void) | |
6306 { | |
1204 | 6307 common_init_alloc_early (); |
428 | 6308 |
442 | 6309 { |
6310 int i; | |
6311 for (i = 0; i < countof (lrecord_implementations_table); i++) | |
6312 lrecord_implementations_table[i] = 0; | |
6313 } | |
6314 | |
6315 INIT_LRECORD_IMPLEMENTATION (cons); | |
6316 INIT_LRECORD_IMPLEMENTATION (vector); | |
6317 INIT_LRECORD_IMPLEMENTATION (string); | |
2720 | 6318 #ifndef MC_ALLOC |
442 | 6319 INIT_LRECORD_IMPLEMENTATION (lcrecord_list); |
1204 | 6320 INIT_LRECORD_IMPLEMENTATION (free); |
2720 | 6321 #endif /* not MC_ALLOC */ |
428 | 6322 |
452 | 6323 staticpros = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); |
6324 Dynarr_resize (staticpros, 1410); /* merely a small optimization */ | |
2367 | 6325 dump_add_root_block_ptr (&staticpros, &staticpros_description); |
771 | 6326 #ifdef DEBUG_XEMACS |
6327 staticpro_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
6328 Dynarr_resize (staticpro_names, 1410); /* merely a small optimization */ | |
2367 | 6329 dump_add_root_block_ptr (&staticpro_names, &staticpro_names_description); |
771 | 6330 #endif |
6331 | |
2720 | 6332 #ifdef MC_ALLOC |
6333 mcpros = Dynarr_new2 (Lisp_Object_dynarr, Lisp_Object); | |
6334 Dynarr_resize (mcpros, 1410); /* merely a small optimization */ | |
6335 dump_add_root_block_ptr (&mcpros, &mcpros_description); | |
6336 #ifdef DEBUG_XEMACS | |
6337 mcpro_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
6338 Dynarr_resize (mcpro_names, 1410); /* merely a small optimization */ | |
6339 dump_add_root_block_ptr (&mcpro_names, &mcpro_names_description); | |
6340 #endif | |
6341 #endif /* MC_ALLOC */ | |
6342 | |
6343 #ifndef MC_ALLOC | |
771 | 6344 init_lcrecord_lists (); |
2720 | 6345 #endif /* not MC_ALLOC */ |
428 | 6346 } |
6347 | |
6348 void | |
6349 syms_of_alloc (void) | |
6350 { | |
442 | 6351 DEFSYMBOL (Qpre_gc_hook); |
6352 DEFSYMBOL (Qpost_gc_hook); | |
6353 DEFSYMBOL (Qgarbage_collecting); | |
428 | 6354 |
6355 DEFSUBR (Fcons); | |
6356 DEFSUBR (Flist); | |
6357 DEFSUBR (Fvector); | |
6358 DEFSUBR (Fbit_vector); | |
6359 DEFSUBR (Fmake_byte_code); | |
6360 DEFSUBR (Fmake_list); | |
6361 DEFSUBR (Fmake_vector); | |
6362 DEFSUBR (Fmake_bit_vector); | |
6363 DEFSUBR (Fmake_string); | |
6364 DEFSUBR (Fstring); | |
6365 DEFSUBR (Fmake_symbol); | |
6366 DEFSUBR (Fmake_marker); | |
6367 DEFSUBR (Fpurecopy); | |
2994 | 6368 #ifdef ALLOC_TYPE_STATS |
6369 DEFSUBR (Fobject_memory_usage_stats); | |
6370 DEFSUBR (Fobject_memory_usage); | |
6371 #endif /* ALLOC_TYPE_STATS */ | |
428 | 6372 DEFSUBR (Fgarbage_collect); |
440 | 6373 #if 0 |
428 | 6374 DEFSUBR (Fmemory_limit); |
440 | 6375 #endif |
2994 | 6376 DEFSUBR (Ftotal_memory_usage); |
428 | 6377 DEFSUBR (Fconsing_since_gc); |
6378 } | |
6379 | |
6380 void | |
6381 vars_of_alloc (void) | |
6382 { | |
1292 | 6383 QSin_garbage_collection = build_msg_string ("(in garbage collection)"); |
6384 staticpro (&QSin_garbage_collection); | |
6385 | |
428 | 6386 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /* |
6387 *Number of bytes of consing between garbage collections. | |
6388 \"Consing\" is a misnomer in that this actually counts allocation | |
6389 of all different kinds of objects, not just conses. | |
6390 Garbage collection can happen automatically once this many bytes have been | |
6391 allocated since the last garbage collection. All data types count. | |
6392 | |
6393 Garbage collection happens automatically when `eval' or `funcall' are | |
6394 called. (Note that `funcall' is called implicitly as part of evaluation.) | |
6395 By binding this temporarily to a large number, you can effectively | |
6396 prevent garbage collection during a part of the program. | |
6397 | |
853 | 6398 Normally, you cannot set this value less than 10,000 (if you do, it is |
6399 automatically reset during the next garbage collection). However, if | |
6400 XEmacs was compiled with DEBUG_XEMACS, this does not happen, allowing | |
6401 you to set this value very low to track down problems with insufficient | |
6402 GCPRO'ing. If you set this to a negative number, garbage collection will | |
6403 happen at *EVERY* call to `eval' or `funcall'. This is an extremely | |
6404 effective way to check GCPRO problems, but be warned that your XEmacs | |
6405 will be unusable! You almost certainly won't have the patience to wait | |
6406 long enough to be able to set it back. | |
6407 | |
2994 | 6408 See also `consing-since-gc' and `gc-cons-percentage'. |
428 | 6409 */ ); |
6410 | |
801 | 6411 DEFVAR_INT ("gc-cons-percentage", &gc_cons_percentage /* |
6412 *Percentage of memory allocated between garbage collections. | |
6413 | |
6414 Garbage collection will happen if this percentage of the total amount of | |
2994 | 6415 memory used for data (see `lisp-object-memory-usage') has been allocated |
6416 since the last garbage collection. However, it will not happen if less | |
6417 than `gc-cons-threshold' bytes have been allocated -- this sets an absolute | |
6418 minimum in case very little data has been allocated or the percentage is | |
6419 set very low. Set this to 0 to have garbage collection always happen after | |
6420 `gc-cons-threshold' bytes have been allocated, regardless of current memory | |
6421 usage. | |
6422 | |
6423 See also `consing-since-gc' and `gc-cons-threshold'. | |
801 | 6424 */ ); |
6425 | |
428 | 6426 #ifdef DEBUG_XEMACS |
6427 DEFVAR_INT ("debug-allocation", &debug_allocation /* | |
6428 If non-zero, print out information to stderr about all objects allocated. | |
6429 See also `debug-allocation-backtrace-length'. | |
6430 */ ); | |
6431 debug_allocation = 0; | |
6432 | |
6433 DEFVAR_INT ("debug-allocation-backtrace-length", | |
6434 &debug_allocation_backtrace_length /* | |
6435 Length (in stack frames) of short backtrace printed out by `debug-allocation'. | |
6436 */ ); | |
6437 debug_allocation_backtrace_length = 2; | |
6438 #endif | |
6439 | |
6440 DEFVAR_BOOL ("purify-flag", &purify_flag /* | |
6441 Non-nil means loading Lisp code in order to dump an executable. | |
6442 This means that certain objects should be allocated in readonly space. | |
6443 */ ); | |
6444 | |
1154 | 6445 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages /* |
6446 Non-nil means display messages at start and end of garbage collection. | |
6447 */ ); | |
6448 garbage_collection_messages = 0; | |
6449 | |
428 | 6450 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /* |
6451 Function or functions to be run just before each garbage collection. | |
6452 Interrupts, garbage collection, and errors are inhibited while this hook | |
6453 runs, so be extremely careful in what you add here. In particular, avoid | |
6454 consing, and do not interact with the user. | |
6455 */ ); | |
6456 Vpre_gc_hook = Qnil; | |
6457 | |
6458 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /* | |
6459 Function or functions to be run just after each garbage collection. | |
6460 Interrupts, garbage collection, and errors are inhibited while this hook | |
887 | 6461 runs. Each hook is called with one argument which is an alist with |
6462 finalization data. | |
428 | 6463 */ ); |
6464 Vpost_gc_hook = Qnil; | |
6465 | |
6466 DEFVAR_LISP ("gc-message", &Vgc_message /* | |
6467 String to print to indicate that a garbage collection is in progress. | |
6468 This is printed in the echo area. If the selected frame is on a | |
6469 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer | |
6470 image instance) in the domain of the selected frame, the mouse pointer | |
6471 will change instead of this message being printed. | |
6472 */ ); | |
6473 Vgc_message = build_string (gc_default_message); | |
6474 | |
6475 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /* | |
6476 Pointer glyph used to indicate that a garbage collection is in progress. | |
6477 If the selected window is on a window system and this glyph specifies a | |
6478 value (i.e. a pointer image instance) in the domain of the selected | |
6479 window, the pointer will be changed as specified during garbage collection. | |
6480 Otherwise, a message will be printed in the echo area, as controlled | |
6481 by `gc-message'. | |
6482 */ ); | |
6483 } | |
6484 | |
6485 void | |
6486 complex_vars_of_alloc (void) | |
6487 { | |
6488 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer); | |
6489 } |