Mercurial > hg > xemacs-beta
annotate src/text.c @ 4525:d64f1060cd65
Fix off-by-one error in ccl_driver. <87iqr7v7p0.fsf@uwakimon.sk.tsukuba.ac.jp>
author | Stephen J. Turnbull <stephen@xemacs.org> |
---|---|
date | Sat, 01 Nov 2008 23:32:53 +0900 |
parents | c098c0d9125f |
children | 38493c0fb952 |
rev | line source |
---|---|
2367 | 1 /* Text manipulation primitives for XEmacs. |
771 | 2 Copyright (C) 1995 Sun Microsystems, Inc. |
2367 | 3 Copyright (C) 1995, 1996, 2000, 2001, 2002, 2003, 2004 Ben Wing. |
771 | 4 Copyright (C) 1999 Martin Buchholz. |
5 | |
6 This file is part of XEmacs. | |
7 | |
8 XEmacs is free software; you can redistribute it and/or modify it | |
9 under the terms of the GNU General Public License as published by the | |
10 Free Software Foundation; either version 2, or (at your option) any | |
11 later version. | |
12 | |
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
16 for more details. | |
17 | |
18 You should have received a copy of the GNU General Public License | |
19 along with XEmacs; see the file COPYING. If not, write to | |
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
21 Boston, MA 02111-1307, USA. */ | |
22 | |
23 /* Synched up with: Not in FSF. */ | |
24 | |
25 /* Authorship: | |
26 */ | |
27 | |
28 #include <config.h> | |
29 #include "lisp.h" | |
30 | |
31 #include "buffer.h" | |
32 #include "charset.h" | |
33 #include "file-coding.h" | |
34 #include "lstream.h" | |
1292 | 35 #include "profile.h" |
771 | 36 |
37 | |
38 /************************************************************************/ | |
39 /* long comments */ | |
40 /************************************************************************/ | |
41 | |
2367 | 42 /* NB: Everything below was written by Ben Wing except as otherwise noted. */ |
43 | |
44 /************************************************************************/ | |
45 /* */ | |
46 /* */ | |
47 /* Part A: More carefully-written documentation */ | |
48 /* */ | |
49 /* */ | |
50 /************************************************************************/ | |
51 | |
52 /* Authorship: Ben Wing | |
53 | |
771 | 54 |
826 | 55 ========================================================================== |
2367 | 56 7. Handling non-default formats |
826 | 57 ========================================================================== |
771 | 58 |
2367 | 59 We support, at least to some extent, formats other than the default |
60 variable-width format, for speed; all of these alternative formats are | |
61 fixed-width. Currently we only handle these non-default formats in | |
62 buffers, because access to their text is strictly controlled and thus | |
63 the details of the format mostly compartmentalized. The only really | |
64 tricky part is the search code -- the regex, Boyer-Moore, and | |
65 simple-search algorithms in search.c and regex.c. All other code that | |
66 knows directly about the buffer representation is the basic code to | |
67 modify or retrieve the buffer text. | |
68 | |
69 Supporting fixed-width formats in Lisp strings is harder, but possible | |
70 -- FSF currently does this, for example. In this case, however, | |
71 probably only 8-bit-fixed is reasonable for Lisp strings -- getting | |
72 non-ASCII-compatible fixed-width formats to work is much, much harder | |
73 because a lot of code assumes that strings are ASCII-compatible | |
74 (i.e. ASCII + other characters represented exclusively using high-bit | |
75 bytes) and a lot of code mixes Lisp strings and non-Lisp strings freely. | |
76 | |
77 The different possible fixed-width formats are 8-bit fixed, 16-bit | |
78 fixed, and 32-bit fixed. The latter can represent all possible | |
79 characters, but at a substantial memory penalty. The other two can | |
80 represent only a subset of the possible characters. How these subsets | |
81 are defined can be simple or very tricky. | |
82 | |
83 Currently we support only the default format and the 8-bit fixed format, | |
84 and in the latter, we only allow these to be the first 256 characters in | |
85 an Ichar (ASCII and Latin 1). | |
86 | |
87 One reasonable approach for 8-bit fixed is to allow the upper half to | |
88 represent any 1-byte charset, which is specified on a per-buffer basis. | |
89 This should work fairly well in practice since most documents are in | |
90 only one foreign language (possibly with some English mixed in). I | |
91 think FSF does something like this; or at least, they have something | |
92 called nonascii-translation-table and use it when converting from | |
93 8-bit-fixed text ("unibyte text") to default text ("multibyte text"). | |
94 With 16-bit fixed, you could do something like assign chunks of the 64K | |
95 worth of characters to charsets as they're encountered in documents. | |
96 This should work well with most Asian documents. | |
97 | |
98 If/when we switch to using Unicode internally, we might have formats more | |
99 like this: | |
100 | |
101 -- UTF-8 or some extension as the default format. Perl uses an | |
102 extension that handles 64-bit chars and requires as much as 13 bytes per | |
103 char, vs. the standard of 31-bit chars and 6 bytes max. UTF-8 has the | |
104 same basic properties as our own variable-width format (see text.c, | |
105 Internal String Encoding) and so most code would not need to be changed. | |
106 | |
107 -- UTF-16 as a "pseudo-fixed" format (i.e. 16-bit fixed plus surrogates | |
108 for representing characters not in the BMP, aka >= 65536). The vast | |
109 majority of documents will have no surrogates in them so byte/char | |
110 conversion will be very fast. | |
111 | |
112 -- an 8-bit fixed format, like currently. | |
113 | |
114 -- possibly, UCS-4 as a 32-bit fixed format. | |
115 | |
116 The fixed-width formats essentially treat the buffer as an array of | |
117 8-bit, 16-bit or 32-bit integers. This means that how they are stored | |
118 in memory (in particular, big-endian or little-endian) depends on the | |
119 native format of the machine's processor. It also means we have to | |
120 worry a bit about alignment (basically, we just need to keep the gap an | |
121 integral size of the character size, and get things aligned properly | |
122 when converting the buffer between formats). | |
826 | 123 |
124 ========================================================================== | |
2367 | 125 8. Using UTF-16 as the default text format |
826 | 126 ========================================================================== |
127 | |
2367 | 128 NOTE: The Eistring API is (or should be) Mule-correct even without |
129 an ASCII-compatible internal representation. | |
130 | |
131 #### Currently, the assumption that text units are one byte in size is | |
132 embedded throughout XEmacs, and `Ibyte *' is used where `Itext *' should | |
133 be. The way to fix this is to (among other things) | |
134 | |
135 (a) review all places referencing `Ibyte' and `Ibyte *', change them to | |
136 use Itext, and fix up the code. | |
137 (b) change XSTRING_DATA to be of type Itext * | |
138 (c) review all uses of XSTRING_DATA | |
139 (d) eliminate XSTRING_LENGTH, splitting it into XSTRING_BYTE_LENGTH and | |
140 XSTRING_TEXT_LENGTH and reviewing all places referencing this | |
141 (e) make similar changes to other API's that refer to the "length" of | |
142 something, such as qxestrlen() and eilen() | |
143 (f) review all use of `CIbyte *'. Currently this is usually a way of | |
144 passing literal ASCII text strings in places that want internal text. | |
145 Either create separate _ascii() and _itext() versions of the | |
146 functions taking CIbyte *, or make use of something like the | |
147 WEXTTEXT() macro, which will generate wide strings as appropriate. | |
148 (g) review all uses of Bytecount and see which ones should be Textcount. | |
149 (h) put in error-checking code that will be tripped as often as possible | |
150 when doing anything with internal text, and check to see that ASCII | |
151 text has not mistakenly filtered in. This should be fairly easy as | |
152 ASCII text will generally be entirely spaces and letters whereas every | |
153 second byte of Unicode text will generally be a null byte. Either we | |
154 abort if the second bytes are entirely letters and numbers, or, | |
155 perhaps better, do the equivalent of a non-MULE build, where we should | |
156 be dealing entirely with 8-bit characters, and assert that the high | |
157 bytes of each pair are null. | |
158 (i) review places where xmalloc() is called. If we convert each use of | |
159 xmalloc() to instead be xnew_array() or some other typed routine, | |
160 then we will find every place that allocates space for Itext and | |
161 assumes it is based on one-byte units. | |
162 (j) encourage the use of ITEXT_ZTERM_SIZE instead of '+ 1' whenever we | |
163 are adding space for a zero-terminator, to emphasize what we are | |
164 doing and make sure the calculations are correct. Similarly for | |
165 EXTTEXT_ZTERM_SIZE. | |
166 (k) Note that the qxestr*() functions, among other things, will need to | |
167 be rewritten. | |
168 | |
169 Note that this is a lot of work, and is not high on the list of priorities | |
170 currently. | |
826 | 171 |
172 ========================================================================== | |
2367 | 173 9. Miscellaneous |
826 | 174 ========================================================================== |
175 | |
176 A. Unicode Support | |
771 | 177 |
1292 | 178 Unicode support is very desirable. Currrently we know how to handle |
179 externally-encoded Unicode data in various encodings -- UTF-16, UTF-8, | |
180 etc. However, we really need to represent Unicode characters internally | |
181 as-is, rather than converting to some language-specific character set. | |
182 For efficiency, we should represent Unicode characters using 3 bytes | |
183 rather than 4. This means we need to find leading bytes for Unicode. | |
184 Given that there are 65,536 characters in Unicode and we can attach | |
185 96x96 = 9,216 characters per leading byte, we need eight leading bytes | |
186 for Unicode. We currently have four free (0x9A - 0x9D), and with a | |
187 little bit of rearranging we can get five: ASCII doesn't really need to | |
188 take up a leading byte. (We could just as well use 0x7F, with a little | |
189 change to the functions that assume that 0x80 is the lowest leading | |
190 byte.) This means we still need to dump three leading bytes and move | |
191 them into private space. The CNS charsets are good candidates since | |
192 they are rarely used, and JAPANESE_JISX0208_1978 is becoming less and | |
193 less used and could also be dumped. | |
826 | 194 |
195 B. Composite Characters | |
196 | |
197 Composite characters are characters constructed by overstriking two | |
771 | 198 or more regular characters. |
199 | |
200 1) The old Mule implementation involves storing composite characters | |
201 in a buffer as a tag followed by all of the actual characters | |
202 used to make up the composite character. I think this is a bad | |
203 idea; it greatly complicates code that wants to handle strings | |
204 one character at a time because it has to deal with the possibility | |
205 of great big ungainly characters. It's much more reasonable to | |
206 simply store an index into a table of composite characters. | |
207 | |
208 2) The current implementation only allows for 16,384 separate | |
209 composite characters over the lifetime of the XEmacs process. | |
210 This could become a potential problem if the user | |
211 edited lots of different files that use composite characters. | |
212 Due to FSF bogosity, increasing the number of allowable | |
213 composite characters under Mule would decrease the number | |
214 of possible faces that can exist. Mule already has shrunk | |
215 this to 2048, and further shrinkage would become uncomfortable. | |
216 No such problems exist in XEmacs. | |
217 | |
3498 | 218 Composite characters could be represented as 0x8D C1 C2 C3, where each |
219 C[1-3] is in the range 0xA0 - 0xFF. This allows for slightly under | |
220 2^20 (one million) composite characters over the XEmacs process | |
221 lifetime. Or you could use 0x8D C1 C2 C3 C4, allowing for about 85 | |
222 million (slightly over 2^26) composite characters. | |
826 | 223 |
2367 | 224 ========================================================================== |
225 10. Internal API's | |
226 ========================================================================== | |
227 | |
228 All of these are documented in more detail in text.h. | |
229 | |
230 @enumerate | |
231 @item | |
232 Basic internal-format API's | |
233 | |
234 These are simple functions and macros to convert between text | |
235 representation and characters, move forward and back in text, etc. | |
236 | |
237 @item | |
238 The DFC API | |
239 | |
240 This is for conversion between internal and external text. Note that | |
241 there is also the "new DFC" API, which *returns* a pointer to the | |
242 converted text (in alloca space), rather than storing it into a | |
243 variable. | |
244 | |
245 @item | |
246 The Eistring API | |
247 | |
4073 | 248 \(This API is currently under-used) When doing simple things with |
2367 | 249 internal text, the basic internal-format API's are enough. But to do |
250 things like delete or replace a substring, concatenate various strings, | |
251 etc. is difficult to do cleanly because of the allocation issues. | |
252 The Eistring API is designed to deal with this, and provides a clean | |
253 way of modifying and building up internal text. (Note that the former | |
254 lack of this API has meant that some code uses Lisp strings to do | |
255 similar manipulations, resulting in excess garbage and increased | |
256 garbage collection.) | |
257 | |
258 NOTE: The Eistring API is (or should be) Mule-correct even without | |
259 an ASCII-compatible internal representation. | |
260 @end enumerate | |
261 | |
262 ========================================================================== | |
263 11. Other Sources of Documentation | |
264 ========================================================================== | |
265 | |
266 man/lispref/mule.texi | |
267 @enumerate | |
268 @item | |
269 another intro to characters, encodings, etc; #### Merge with the | |
270 above info | |
271 @item | |
272 documentation of ISO-2022 | |
273 @item | |
274 The charset and coding-system Lisp API's | |
275 @item | |
276 The CCL conversion language for writing encoding conversions | |
277 @item | |
278 The Latin-Unity package for unifying Latin charsets | |
279 @end enumerate | |
280 | |
281 man/internals/internals.texi (the Internals manual) | |
282 @enumerate | |
283 @item | |
284 "Coding for Mule" -- how to write Mule-aware code | |
285 @item | |
286 "Modules for Internationalization" | |
287 @item | |
288 "The Text in a Buffer" -- more about the different ways of | |
289 viewing buffer positions; #### Merge with the above info | |
290 @item | |
291 "MULE Character Sets and Encodings" -- yet another intro | |
292 to characters, encodings, etc; #### Merge with the | |
293 above info; also some documentation of Japanese EUC and JIS7, | |
294 and CCL internals | |
295 @end enumerate | |
296 | |
297 text.h -- info about specific XEmacs-C API's for handling internal and | |
298 external text | |
299 | |
300 intl-win32.c -- Windows-specific I18N information | |
301 | |
302 lisp.h -- some info appears alongside the definitions of the basic | |
303 character-related types | |
304 | |
305 unicode.c -- documentation about Unicode translation tables | |
826 | 306 */ |
771 | 307 |
2367 | 308 |
309 /************************************************************************/ | |
310 /* */ | |
311 /* */ | |
312 /* Part B: Random proposals for work to be done */ | |
313 /* */ | |
314 /* */ | |
315 /************************************************************************/ | |
316 | |
317 | |
318 /* | |
319 | |
320 | |
321 ========================================================================== | |
322 - Mule design issues (ben) | |
323 ========================================================================== | |
324 | |
325 circa 1999 | |
326 | |
327 Here is a more detailed list of Mule-related projects that we will be | |
328 working on. They are more or less ordered according to how we will | |
329 proceed, but it's not exact. In particular, there will probably be | |
330 time overlap among adjacent projects. | |
331 | |
332 @enumerate | |
333 @item | |
334 Modify the internal/external conversion macros to allow for | |
335 MS Windows support. | |
336 | |
337 @item | |
338 Modify the buffer macros to allow for more than one internal | |
339 representation, e.g. fixed width and variable width. | |
340 | |
341 @item | |
342 Review the existing Mule code, especially the lisp code, for code | |
343 quality issues and improve the cleanliness of it. Also work on | |
344 creating a specification for the Mule API. | |
345 | |
346 @item | |
347 Write some more automated mule tests. | |
348 | |
349 @item | |
350 Integrate Tomohiko's UTF-2000 code, fixing it up so that nothing is | |
351 broken when the UTF-2000 configure option is not enabled. | |
352 | |
353 @item | |
354 Fix up the MS Windows code to be Mule-correct, so that you can | |
355 compile with Mule support under MS windows and have a working | |
356 XEmacs, at least just with Latin-1. | |
357 | |
358 @item | |
359 Implement a scheme to guarantee no corruption of files, even with | |
360 an incorrect coding system - in particular, guarantee no corruption | |
361 of binary files. | |
362 | |
363 @item | |
364 Make the text property support in XEmacs robust with respect to | |
365 string and text operations, so that the `no corruption' support in | |
366 the previous entry works properly, even if a lot of cutting and | |
367 pasting is done. | |
368 | |
369 @item | |
370 Improve the handling of auto-detection so that, when there is any | |
371 possibility at all of mistake, the user is informed of the detected | |
372 encoding and given the choice of choosing other possibilities. | |
373 | |
374 @item | |
375 Improve the support for different language environments in XEmacs, | |
376 for example, the priority of coding systems used in auto-detection | |
377 should properly reflect the language environment. This probably | |
378 necessitates rethinking the current `coding system priority' | |
379 scheme. | |
380 | |
381 @item | |
382 Do quality work to improve the existing UTF-2000 implementation. | |
383 | |
384 @item | |
385 Implement preliminary support for 8-bit fixed width | |
386 representation. First, we will only implement 7-bit support, and | |
387 will fall back to variable width as soon as any non-ASCII | |
388 character is encountered. Then we will improve the support to | |
389 handle an arbitrary character set in the upper half of the 8-bit space. | |
390 | |
391 @item | |
392 Investigate any remaining hurdles to making --with-mule be the | |
393 default configure option. | |
394 @end enumerate | |
395 | |
396 ========================================================================== | |
397 - Mule design issues (stephen) | |
398 ========================================================================== | |
399 | |
400 What I see as Mule priorities (in rough benefit order, I am not taking | |
401 account of difficulty, nor the fact that some - eg 8 & 10 - will | |
402 probably come as packages): | |
403 | |
404 @enumerate | |
405 @item | |
406 Fix the autodetect problem (by making the coding priority list | |
407 user-configurable, as short as he likes, even null, with "binary" | |
408 as the default). | |
409 @item | |
410 Document the language environments and other Mule "APIs" as | |
411 implemented (since there is no real design spec). Check to see | |
412 how and where they are broken. | |
413 @item | |
414 Make the Mule menu useful to non-ISO-2022-literate folks. | |
415 @item | |
416 Redo the lstreams stuff to make it easy and robust to "pipeline", | |
417 eg, libz | gnupg | jis2mule. | |
418 @item | |
419 Make Custom Mule-aware. (This probably depends on a sensible | |
420 fonts model.) | |
421 @item | |
422 Implement the "literal byte stream" memory feature. | |
423 @item | |
424 Study the FSF implementation of Mule for background for 7 & 8. | |
425 @item | |
426 Identify desirable Mule features (eg, i18n-ized messages as above, | |
427 collating tables by language environment, etc). (New features | |
428 might have priority as high as 9.) | |
429 @item | |
430 Specify Mule UIs, APIs, etc, and design and (re)implement them. | |
431 @item | |
432 Implement the 8-bit-wide buffer optimization. | |
433 @item | |
434 Move the internal encoding to UTF-32 (subject to Olivier's caveats | |
435 regarding compose characters), with the variable-width char | |
436 buffers using UTF-8. | |
437 @item | |
438 Implement the 16- and 32-bit-wide buffer optimizations. | |
439 @end enumerate | |
440 | |
441 ========================================================================== | |
442 - Mule design issues "short term" (ben) | |
443 ========================================================================== | |
444 | |
445 @enumerate | |
446 @item | |
447 Finish changes in fixup/directory, get in CVS. | |
448 | |
449 (Test with and without "quick-build", to see if really faster) | |
450 (need autoconf) | |
451 | |
452 @item | |
453 Finish up Windows/Mule changes. Outline of this elsewhere; Do | |
454 *minimal* effort. | |
455 | |
456 @item | |
457 Continue work on Windows stability, e.g. go through existing notes | |
458 on Windows Mule-ization + extract all info. | |
459 | |
460 @item | |
461 Get Unicode translation tables integrated. | |
462 | |
463 Finish UCS2/UTF16 coding system. | |
464 | |
465 @item | |
466 Make sure coding system priority list is language-environment specific. | |
467 | |
468 @item | |
469 Consider moving language selection Menu up to be parallel with Mule menu. | |
470 | |
471 @item | |
472 Check to make sure we grok the default locale at startup under | |
473 Windows and understand the Windows locales. Finish implementation | |
474 of mswindows-multibyte and make sure it groks all the locales. | |
475 | |
476 @item | |
477 Do the above as best as we can without using Unicode tables. | |
478 | |
479 @item | |
480 Start tagging all text with a language text property, | |
481 indicating the current language environment when the text was input. | |
482 | |
483 @item | |
484 Make sure we correctly accept input of non-ASCII chars | |
485 (probably already do!) | |
486 | |
487 @item | |
488 Implement active language/keyboard switching under Windows. | |
489 | |
490 @item | |
491 Look into implementing support for "MS IME" protocol (Microsoft | |
492 fancy built-in Asian input methods). | |
493 | |
494 @item | |
495 Redo implementation of mswindows-multibyte and internal display to | |
496 entirely use translation to/from Unicode for increased accuracy. | |
497 | |
498 @item | |
499 Implement buf<->char improvements from FSF. Also implement | |
500 my string byte<->char optimization structure. | |
501 | |
502 @item | |
503 Integrate all Mule DOCS from 20.6 or 21.0. Try to add sections | |
504 for what we've added. | |
505 | |
506 @item | |
507 Implement 8-bit fixed width optimizations. Then work on 16-bit. | |
508 @end enumerate | |
509 | |
510 ========================================================================== | |
511 - Mule design issues (more) (ben) | |
512 ========================================================================== | |
513 | |
514 Get minimal Mule for Windows working using Ikeyama's patches. At | |
515 first, rely on his conversion of internal -> external | |
516 locale-specific but very soon (as soon as we get translation | |
517 tables) can switch to using Unicode versions of display funs, which | |
518 will allow many more charsets to be handled and in a more | |
519 consistent fashion. | |
520 | |
521 i.e. to convert an internal string to an external format, at first | |
522 we use our own knowledge of the Microsoft locale file formats but | |
523 an alternative is to convert to Unicode and use Microsoft's | |
524 convert-Unicode-to-locale encoding functions. This gains us a | |
525 great deal of generality, since in practice all charset caching | |
526 points can be wrapped into Unicode caching points. | |
527 | |
528 This requires adding UCS2 support, which I'm doing. This support | |
529 would let us convert internal -> Unicode, which is exactly what we | |
530 want. | |
531 | |
532 At first, though, I would do the UCS2 support, but leave the | |
533 existing way of doing things in redisplay. Meanwhile, I'd go | |
534 through and fix up the places in the code that assume we are | |
535 dealing with unibytes. | |
536 | |
537 After this, the font problems will be fixed , we should have a | |
538 pretty well working XEmacs + MULE under Windows. The only real | |
539 other work is the clipboard code, which should be straightforward. | |
540 | |
541 ========================================================================== | |
542 - Mule design discussion | |
543 ========================================================================== | |
544 | |
545 -------------------------------------------------------------------------- | |
546 | |
547 Ben | |
548 | |
549 April 11, 2000 | |
550 | |
551 Well yes, this was the whole point of my "no lossage" proposal of being | |
552 able to undo any coding-system transformation on a buffer. The idea was | |
553 to figure out which transformations were definitely reversable, and for | |
554 all the others, cache the original text in a text property. This way, you | |
555 could probably still do a fairly good job at constructing a good reversal | |
556 even after you've gone into the text and added, deleted, and rearranged | |
557 some things. | |
558 | |
559 But you could implement it much more simply and usefully by just | |
560 determining, for any text being decoded into mule-internal, can we go back | |
561 and read the source again? If not, remember the entire file (GNUS | |
562 message, etc) in text properties. Then, implement the UI interface (like | |
563 Netscape's) on top of that. This way, you have something that at least | |
564 works, but it might be inefficient. All we would need to do is work on | |
565 making the | |
566 underlying implementation more efficient. | |
567 | |
568 Are you interested in doing this? It would be a huge win for users. | |
569 Hrvoje Niksic wrote: | |
570 | |
571 > Ben Wing <ben@666.com> writes: | |
572 > | |
573 > > let me know exactly what "rethink" functionality you want and i'll | |
574 > > come up with an interface. perhaps you just want something like | |
575 > > netscape's encoding menu, where if you switch encodings, it reloads | |
576 > > and reencodes? | |
577 > | |
578 > It might be a bit more complex than that. In many cases, it's hard or | |
579 > impossible to meaningfully "reload" -- for instance, this | |
580 > functionality should be available while editing a Gnus message, as | |
581 > well as while visiting a file. | |
582 > | |
583 > For the special case of Latin-N <-> Latin-M conversion, things could | |
584 > be done easily -- to convert from N to M, you only need to convert | |
585 > internal representation back to N, and then convert it forth to M. | |
586 | |
587 -------------------------------------------------------------------------- | |
588 April 11, 2000 | |
589 | |
590 Well yes, this was the whole point of my "no lossage" proposal of being | |
591 able to undo any coding-system transformation on a buffer. The idea was | |
592 to figure out which transformations were definitely reversable, and for | |
593 all the others, cache the original text in a text property. This way, you | |
594 could probably still do a fairly good job at constructing a good reversal | |
595 even after you've gone into the text and added, deleted, and rearranged | |
596 some things. | |
597 | |
598 But you could implement it much more simply and usefully by just | |
599 determining, for any text being decoded into mule-internal, can we go back | |
600 and read the source again? If not, remember the entire file (GNUS | |
601 message, etc) in text properties. Then, implement the UI interface (like | |
602 Netscape's) on top of that. This way, you have something that at least | |
603 works, but it might be inefficient. All we would need to do is work on | |
604 making the | |
605 underlying implementation more efficient. | |
606 | |
607 Are you interested in doing this? It would be a huge win for users. | |
608 Hrvoje Niksic wrote: | |
609 | |
610 > Ben Wing <ben@666.com> writes: | |
611 > | |
612 > > let me know exactly what "rethink" functionality you want and i'll | |
613 > > come up with an interface. perhaps you just want something like | |
614 > > netscape's encoding menu, where if you switch encodings, it reloads | |
615 > > and reencodes? | |
616 > | |
617 > It might be a bit more complex than that. In many cases, it's hard or | |
618 > impossible to meaningfully "reload" -- for instance, this | |
619 > functionality should be available while editing a Gnus message, as | |
620 > well as while visiting a file. | |
621 > | |
622 > For the special case of Latin-N <-> Latin-M conversion, things could | |
623 > be done easily -- to convert from N to M, you only need to convert | |
624 > internal representation back to N, and then convert it forth to M. | |
625 | |
626 | |
627 ------------------------------------------------------------------------ | |
628 | |
629 ========================================================================== | |
630 - Redoing translation macros [old] | |
631 ========================================================================== | |
632 | |
633 Currently the translation macros (the macros with names such as | |
634 GET_C_STRING_CTEXT_DATA_ALLOCA) have names that are difficult to parse | |
635 or remember, and are not all that general. In the process of | |
636 reviewing the Windows code so that it could be muleized, I discovered | |
637 that these macros need to be extended in various ways to allow for | |
638 the Windows code to be easily muleized. | |
639 | |
640 Since the macros needed to be changed anyways, I figured it would be a | |
641 good time to redo them properly. I propose new macros which have | |
642 names like this: | |
643 | |
644 @itemize @bullet | |
645 @item | |
646 <A>_TO_EXTERNAL_FORMAT_<B> | |
647 @item | |
648 <A>_TO_EXTERNAL_FORMAT_<B>_1 | |
649 @item | |
650 <C>_TO_INTERNAL_FORMAT_<D> | |
651 @item | |
652 <C>_TO_INTERNAL_FORMAT_<D>_1 | |
653 @end itemize | |
654 | |
655 A and C represent the source of the data, and B and D represent the | |
656 sink of the data. | |
657 | |
658 All of these macros call either the functions | |
659 convert_to_external_format or convert_to_internal_format internally, | |
660 with some massaging of the arguments. | |
661 | |
662 All of these macros take the following arguments: | |
663 | |
664 @itemize @bullet | |
665 @item | |
666 First, one or two arguments indicating the source of the data. | |
667 @item | |
668 Second, an argument indicating the coding system. (In order to avoid | |
669 an excessive number of macros, we no longer provide separate macros | |
670 for specific coding systems.) | |
671 @item | |
672 Third, one or two arguments indicating the sink of the data. | |
673 @item | |
674 Fourth, optionally, arguments indicating the error behavior and the | |
675 warning class (these arguments are only present in the _1 versions | |
676 of the macros). The other, shorter named macros are trivial | |
677 interfaces onto these macros with the error behavior being | |
678 ERROR_ME_WARN, with the warning class being Vstandard_warning_class. | |
679 @end itemize | |
680 | |
681 <A> can be one of the following: | |
682 @itemize @bullet | |
683 @item | |
684 LISP (which means a Lisp string) Takes one argument, a Lisp Object. | |
685 @item | |
686 LSTREAM (which indicates an lstream) Takes one argument, an | |
687 lstream. The data is read from the lstream until EOF is reached. | |
688 @item | |
689 DATA (which indicates a raw memory area) Takes two arguments, a | |
690 pointer and a length in bytes. | |
691 (You must never use this if the source of the data is a Lisp string, | |
692 because of the possibility of relocation during garbage collection.) | |
693 @end itemize | |
694 | |
695 <B> can be one of the following: | |
696 @itemize @bullet | |
697 @item | |
698 ALLOCA (which means that the resulting data is stored in alloca()ed | |
699 memory. Two arguments should be specified, a pointer and a length, | |
700 which should be lvalues.) | |
701 @item | |
702 MALLOC (which means that the resulting data is stored in malloc()ed | |
703 memory. Two arguments should be specified, a pointer and a | |
704 length. The memory must be free()d by the caller. | |
705 @item | |
706 OPAQUE (which means the resulting data is stored in an opaque Lisp | |
707 Object. This takes one argument, a lvalue Lisp Object. | |
708 @item | |
709 LSTREAM. The data is written to an lstream. | |
710 @end itemize | |
711 | |
712 <C> can be one of the : | |
713 @itemize @bullet | |
714 @item | |
715 DATA | |
716 @item | |
717 LSTREAM | |
718 @end itemize | |
719 (just like <A> above) | |
720 | |
721 <D> can be one of | |
722 @itemize @bullet | |
723 @item | |
724 ALLOCA | |
725 @item | |
726 MALLOC | |
727 @item | |
728 LISP This means a Lisp String. | |
729 @item | |
730 BUFFER The resulting data is inserted into a buffer at the buffer's | |
731 value of point. | |
732 @item | |
733 LSTREAM The data is written to the lstream. | |
734 @end itemize | |
735 | |
736 | |
737 Note that I have eliminated the FORMAT argument of previous macros, | |
738 and replaced it with a coding system. This was made possible by | |
739 coding system aliases. In place of old `format's, we use a `virtual | |
740 coding system', which is aliased to the actual coding system. | |
741 | |
742 The value of the coding system argument can be anything that is legal | |
743 input to get_coding_system, i.e. a symbol or a coding system object. | |
744 | |
745 ========================================================================== | |
746 - creation of generic macros for accessing internally formatted data [old] | |
747 ========================================================================== | |
748 | |
749 I have a design; it's all written down (I did it in Tsukuba), and I just have | |
750 to have it transcribed. It's higher level than the macros, though; it's Lisp | |
751 primitives that I'm designing. | |
752 | |
753 As for the design of the macros, don't worry so much about all files having to | |
754 get included (which is inevitable with macros), but about how the files are | |
755 separated. Your design might go like this: | |
756 | |
757 @enumerate | |
758 @item | |
759 you have generic macro interfaces, which specify a particular | |
760 behavior but not an implementation. these generic macros have | |
761 complementary versions for buffers and for strings (and the buffer | |
762 or string is an argument to all of the macros), and do such things | |
763 as convert between byte and char indices, retrieve the character at | |
764 a particular byte or char index, increment or decrement a byte | |
765 index to the beginning of the next or previous character, indicate | |
766 the number of bytes occupied by the character at a particular byte | |
767 or character index, etc. These are similar to what's already out | |
768 there except that they confound buffers and strings and that they | |
769 can also work with actual char *'s, which I think is a really bad | |
770 idea because it encourages code to "assume" that the representation | |
771 is ASCII compatible, which is might not be (e.g. 16-bit fixed | |
772 width). In fact, one thing I'm planning on doing is redefining | |
773 Bufbyte as a struct, for debugging purposes, to catch all places | |
774 that cavalierly compare them with ASCII char's. Note also that I | |
775 really want to rename Bufpos and Bytind, which are confusing and | |
776 wrong in that they also apply to strings. They should be Bytepos | |
777 and Charpos, or something like that, to go along with Bytecount and | |
778 Charcount. Similarly, Bufbyte is similarly a misnomer and should be | |
779 Intbyte -- a byte in the internal string representation (any of the | |
780 internal representations) of a string or buffer. Corresponding to | |
781 this is Extbyte (which we already have), a byte in any external | |
782 string representation. We also have Extcount, which makes sense, | |
783 and we might possibly want Extcharcount, the number of characters | |
784 in an external string representation; but that gets sticky in modal | |
785 encodings, and it's not clear how useful it would be. | |
786 | |
787 @item | |
788 for all generic macro interfaces, there are specific versions of | |
789 each of them for each possible representation (pure ASCII in the | |
790 non-Mule world, Mule standard, UTF-8, 8-bit fixed, 16-bit fixed, | |
791 32-bit fixed, etc.; there may well be more than one possible 16-bit | |
792 fixed version, as well). Each representation has a corresponding | |
793 prefix, e.g. MULE_ or FIXED16_ or whatever, which is prefixed onto | |
794 the generic macro names. The resulting macros perform the | |
795 operation defined for the macro, but assume, and only work | |
796 correctly with, text in the corresponding representation. | |
797 | |
798 @item | |
799 The definition of the generic versions merely conditionalizes on | |
800 the appropriate things (i.e. bit flags in the buffer or string | |
801 object) and calls the appropriate representation-specific version. | |
802 There may be more than one definition (protected by ifdefs, of | |
803 course), or one definition that amalgamated out of many ifdef'ed | |
804 sections. | |
805 | |
806 @item | |
807 You should probably put each different representation in its own | |
808 header file, e.g. charset-mule.h or charset-fixed16.h or | |
809 charset-ascii.h or whatever. Then put the main macros into | |
810 charset.h, and conditionalize in this file appropriately to include | |
811 the other ones. That way, code that actually needs to play around | |
812 with internal-format text at this level can include "charset.h" | |
813 (certainly a much better place than buffer.h), and everyone else | |
814 uses higher-level routines. The representation-specific macros | |
815 should not normally be used *directly* at all; they are invoked | |
816 automatically from the generic macros. However, code that needs to | |
817 be highly, highly optimized might choose to take a loop and write | |
818 two versions of it, one for each representation, to avoid the | |
819 per-loop-iteration cost of a comparison. Until the macro interface | |
820 is rock stable and solid, we should strongly discourage such | |
821 nanosecond optimizations. | |
822 @end enumerate | |
823 | |
824 ========================================================================== | |
825 - UTF-16 compatible representation | |
826 ========================================================================== | |
827 | |
828 NOTE: One possible default internal representation that was compatible | |
829 with UTF16 but allowed all possible chars in UCS4 would be to take a | |
830 more-or-less unused range of 2048 chars (not from the private area | |
831 because Microsoft actually uses up most or all of it with EUDC chars). | |
832 Let's say we picked A400 - ABFF. Then, we'd have: | |
833 | |
834 0000 - FFFF Simple chars | |
835 | |
836 D[8-B]xx D[C-F]xx Surrogate char, represents 1M chars | |
837 | |
838 A[4-B]xx D[C-F]xx D[C-F]xx Surrogate char, represents 2G chars | |
839 | |
840 This is exactly the same number of chars as UCS-4 handles, and it follows the | |
841 same property as UTF8 and Mule-internal: | |
842 | |
843 @enumerate | |
844 @item | |
845 There are two disjoint groupings of units, one representing leading units | |
846 and one representing non-leading units. | |
847 @item | |
848 Given a leading unit, you immediately know how many units follow to make | |
849 up a valid char, irrespective of any other context. | |
850 @end enumerate | |
851 | |
852 Note that A4xx is actually currently assigned to Yi. Since this is an | |
853 internal representation, we could just move these elsewhere. | |
854 | |
855 An alternative is to pick two disjoint ranges, e.g. 2D00 - 2DFF and | |
856 A500 - ABFF. | |
857 | |
858 ========================================================================== | |
859 New API for char->font mapping | |
860 ========================================================================== | |
861 - ; supersedes charset-registry and CCL; | |
862 supports all windows systems; powerful enough for Unicode; etc. | |
863 | |
864 (charset-font-mapping charset) | |
865 | |
866 font-mapping-specifier string | |
867 | |
868 char-font-mapping-table | |
869 | |
870 char-table, specifier; elements of char table are either strings (which | |
871 specify a registry or comparable font property, or vectors of a string | |
872 (same) followed by keyword-value pairs (optional). The only allowable | |
873 keyword currently is :ccl-program, which specifies a CCL program to map | |
874 the characters into font indices. Other keywords may be added | |
875 e.g. allowing Elisp fragments instead of CCL programs, also allowed is | |
876 [inherit], which inherits from the next less-specific char-table in the | |
877 specifier. | |
878 | |
879 The preferred interface onto this mapping (which should be portable | |
880 across Emacsen) is | |
881 | |
882 (set-char-font-mapping key value &optional locale tag-set how-to-add) | |
883 | |
884 where key is a char, range or charset (as for put-char-table), value is | |
885 as above, and the other arguments are standard for specifiers. This | |
886 automatically creates a char table in the locale, as necessary (all | |
887 elements default to [inherit]). On GNU Emacs, some specifiers arguments | |
888 may be unimplemented. | |
889 | |
890 (char-font-mapping key value &optional locale) | |
891 works vaguely like get-specifier? But does inheritance processing. | |
892 locale should clearly default here to current-buffer | |
893 | |
894 #### should get-specifier as well? Would make it work most like | |
895 #### buffer-local variables. | |
896 | |
897 NB. set-charset-registry and set-charset-ccl-program are obsoleted. | |
898 | |
899 ========================================================================== | |
900 Implementing fixed-width 8,16,32 bit buffer optimizations | |
901 ========================================================================== | |
902 | |
903 Add set-buffer-optimization (buffer &rest keywords) for | |
904 controlling these things. | |
905 | |
906 Also, put in hack so that correct arglist can be retrieved by | |
907 Lisp code. | |
908 | |
909 Look at the way keyword primitives are currently handled; make | |
910 sure it works and is documented, etc. | |
911 | |
912 Implement 8-bit fixed width optimization. Take the things that | |
913 know about the actual implementation and put them in a single | |
914 file, in essence creating an abstraction layer to allow | |
915 pluggable internal representations. Implement a fairly general | |
916 scheme for mapping between character codes in the 8 bits or 16 | |
917 bits representation and on actual charset characters. As part of | |
918 set-buffer-optimization, you can specify a list of character sets | |
919 to be used in the 8 bit to 16 bit, etc. world. You can also | |
920 request that the buffer be in 8, 16, etc. if possible. | |
921 | |
922 -> set defaults wrt this. | |
923 -> perhaps this should be just buffer properties. | |
924 -> this brings up the idea of default properties on an object. | |
925 -> Implement default-put, default-get, etc. | |
926 | |
927 What happens when a character not assigned in the range gets | |
928 added? Then, must convert to variable width of some sort. | |
929 | |
930 Note: at first, possibly we just convert whole hog to get things | |
931 right. Then we'd have to poy alternative to characters that got | |
932 added + deleted that were unassigned in the fixed width. When | |
933 this goes to zero and there's been enough time (heuristics), we | |
934 go back to fixed. | |
935 | |
936 Side note: We could dynamically build up the set of assigned | |
937 chars as they go. Conceivably this could even go down to the | |
938 single char level: Just keep a big array of mapping from 16 bit | |
939 values to chars, and add empty time, a char has been encountered | |
940 that wasn't there before. Problem need inverse mapping. | |
941 | |
942 -> Possibility; chars are actual objects, not just numbers. | |
943 Then you could keep track of such info in the chars itself. | |
944 *Think about this.* | |
945 | |
946 Eventually, we might consider allowing mixed fixed-width, | |
947 variable-width buffer encodings. Then, we use range tables to | |
948 indicate which sections are fixed and which variable and INC_CHAR does | |
949 something like this: binary search to find the current range, which | |
950 indicates whether it's fixed or variable, and tells us what the | |
951 increment is. We can cache this info and use it next time to speed | |
952 up. | |
953 | |
954 -> We will then have two partially shared range tables - one for | |
955 overall fixed width vs. variable width, and possibly one containing | |
956 this same info, but partitioning the variable width in one. Maybe | |
957 need fancier nested range table model. | |
958 | |
959 ========================================================================== | |
960 Expansion of display table and case mapping table support for all | |
961 chars, not just ASCII/Latin1. | |
962 ========================================================================== | |
963 | |
964 ========================================================================== | |
965 Improved flexibility for display tables, and evaluation of its | |
966 features to make sure it meshes with and complements the char<->font | |
967 mapping API mentioned earlier | |
968 ========================================================================== | |
969 | |
970 ========================================================================== | |
971 String access speedup: | |
972 ========================================================================== | |
973 | |
974 For strings larger than some size in bytes (10?), keep extra fields of | |
975 info: length in chars, and a (char, byte) pair in the middle to speed | |
976 up sequential access. | |
977 | |
978 (Better idea: do this for any size string, but only if it contains | |
979 non-ASCII chars. Then if info is missing, we know string is | |
980 ASCII-only.) | |
981 | |
982 Use a string-extra-info object, replacing string property slot and | |
983 containing fields for string mod tick, string extents, string props, | |
984 and string char length, and cached (char,byte) pair. | |
985 string-extra-info (or string-auxiliary?) objects could be in frob | |
986 blocks, esp. if creating frob blocks is easy + worth it. | |
987 | |
988 - Caching of char<->byte conversions in strings - should make nearly | |
989 all operations on strings O(N) | |
990 | |
991 ========================================================================== | |
992 Improvements in buffer char<->byte mapping | |
993 ========================================================================== | |
994 | |
995 - Range table implementation - especially when there are few runs of | |
996 different widths, e.g. recently converted from fixed-width | |
997 optimization to variable width | |
998 | |
999 Range Tables to speed up Bufpos <-> Bytind caching | |
1000 ================================================== | |
1001 | |
1002 This describes an alternative implementation using ranges. We | |
1003 maintain a range table of all spans of characters of a fixed width. | |
1004 Updating this table could take time if there are a large number of | |
1005 spans; but constant factors of operations should be quick. This method really wins | |
1006 when you have 8-bit buffers just converted to variable width, where | |
1007 there will be few spans. More specifically, lookup in this range | |
1008 table is O(log N) and can be done with simple binary search, which is | |
1009 very fast. If we maintain the ranges using a gap array, updating this | |
1010 table will be fast for local operations, which is most of the time. | |
1011 | |
1012 We will also provide (at first, at least) a Lisp function to set the | |
1013 caching mechanism explicitly - either range tables or the existing | |
1014 implementation. Eventually, we want to improve things, to the point | |
1015 where we automatically pick the right caching for the situation and | |
1016 have more caching schemes implemented. | |
1017 | |
1018 ========================================================================== | |
1019 - Robustify Text Properties | |
1020 ========================================================================== | |
1021 | |
1022 ========================================================================== | |
1023 Support for unified internal representation, e.g. Unicode | |
1024 ========================================================================== | |
1025 | |
1026 Start tagging all text with a language text property, | |
1027 indicating the current language environment when the text was input. | |
1028 (needs "Robustify Text Properties") | |
1029 | |
1030 ========================================================================== | |
1031 - Generalized Coding Systems | |
1032 ========================================================================== | |
1033 | |
1034 - Lisp API for Defining Coding Systems | |
1035 | |
1036 User-defined coding systems. | |
1037 | |
1038 (define-coding-system-type 'type | |
1039 :encode-function fun | |
1040 :decode-function fun | |
1041 :detect-function fun | |
1042 :buffering (number = at least this many chars | |
1043 line = buffer up to end of line | |
1044 regexp = buffer until this regexp is found in match | |
1045 source data. match data will be appropriate when fun is | |
1046 called | |
1047 | |
1048 encode fun is called as | |
1049 | |
1050 (encode instream outstream) | |
1051 | |
1052 should read data from instream and write converted result onto | |
1053 outstream. Can leave some data stuff in stream, it will reappear | |
1054 next time. Generally, there is a finite amount of data in instream | |
1055 and further attempts to read lead to would-block errors or retvals. | |
1056 Can use instream properties to record state. May use read-stream | |
1057 functionality to read everything into a vector or string. | |
1058 | |
1059 ->Need vectors + string exposed to resizing of Lisp implementation | |
1060 where necessary. | |
1061 | |
1062 ========================================================================== | |
1063 Support Windows Active Kbd Switching, Far East IME API (done already?) | |
1064 ========================================================================== | |
1065 | |
1066 ========================================================================== | |
1067 - UI/design changes for Coding System Pipelining | |
1068 ========================================================================== | |
1069 | |
1070 ------------------------------------------------------------------ | |
1071 CODING-SYSTEM CHAINS | |
1072 ------------------------------------------------------------------ | |
1073 | |
1074 sjt sez: | |
1075 | |
1076 There should be no elementary coding systems in the Lisp API, only | |
1077 chains. Chains should be declared, not computed, as a sequence of coding | |
1078 formats. (Probably the internal representation can be a vector for | |
1079 efficiency but programmers would probably rather work with lists.) A | |
1080 stream has a token type. Most streams are octet streams. Text is a | |
1081 stream of characters (in _internal_ format; a file on disk is not text!) | |
1082 An octet-stream has no implicit semantics, so its format must always be | |
1083 specified. The only type currently having semantics is characters. This | |
1084 means that the chain [euc-jp -> internal -> shift_jis) may be specified | |
1085 (euc-jp, shift_jis), and if no euc-jp -> shift_jis converter is | |
1086 available, then the chain is automatically constructed. (N.B. I f we | |
1087 have fixed width buffers in the future, then we could have ASCII -> 8-bit | |
1088 char -> 16-bit char -> ISO-2022-JP (with escape sequences). | |
1089 | |
1090 EOL handling is a char <-> char coding. It should not be part of another | |
1091 coding system except as a convenience for users. For text coding, | |
1092 automatically insert EOL handlers between char <-> octet boundaries. | |
1093 | |
1094 ------------------------------------------------------------------ | |
1095 ABOUT DETECTION | |
1096 ------------------------------------------------------------------ | |
1097 | |
1098 | |
1099 ------------------------------------------------------------------ | |
1100 EFFICIENCY OF CODING CONVERSION WITH MULTIPLE COPIES/CHAINS | |
1101 ------------------------------------------------------------------ | |
1102 | |
1103 A comment in encode_decode_coding_region(): | |
1104 | |
1105 The chain of streams looks like this: | |
1106 | |
1107 [BUFFER] <----- (( read from/send to loop )) | |
1108 ------> [CHAR->BYTE i.e. ENCODE AS BINARY if source is | |
1109 in bytes] | |
1110 ------> [ENCODE/DECODE AS SPECIFIED] | |
1111 ------> [BYTE->CHAR i.e. DECODE AS BINARY | |
1112 if sink is in bytes] | |
1113 ------> [AUTODETECT EOL if | |
1114 we're decoding and | |
1115 coding system calls | |
1116 for this] | |
1117 ------> [BUFFER] | |
1118 | |
1119 sjt (?) responds: | |
1120 | |
1121 Of course, this is just horrible. BYTE<->CHAR should only be available | |
1122 to I/O routines. It should not be visible to Mule proper. | |
1123 | |
1124 A comment on the implementation. Hrvoje and Kyle worry about the | |
1125 inefficiency of repeated copying among buffers that chained coding | |
1126 systems entail. But this may not be as time inefficient as it appears | |
1127 in the Mule ("house rules") context. The issue is how do you do chain | |
1128 coding systems without copying? In theory you could have | |
1129 | |
1130 IChar external_to_raw (ExtChar *cp, State *s); | |
1131 IChar decode_utf16 (IChar c, State *s); | |
1132 IChar decode_crlf (ExtChar *cp, State *s); | |
1133 | |
1134 typedef Ichar (*Converter[]) (Ichar, State*); | |
1135 | |
1136 Converter utf16[2] = { &decode_utf16, &decode_crlf }; | |
1137 | |
1138 void convert (ExtChar *inbuf, IChar *outbuf, Converter cvtr) | |
1139 { | |
1140 int i; | |
1141 ExtChar c; | |
1142 State s; | |
1143 | |
1144 while (c = external_to_raw (*inbuf++, &s)) | |
1145 { | |
1146 for (i = 0; i < sizeof(cvtr)/sizeof(Converter); ++i) | |
1147 if (s.ready) | |
1148 c = (*cvtr[i]) (c, &s); | |
1149 } | |
1150 if (s.ready) | |
1151 *outbuf++ = c; | |
1152 } | |
1153 | |
1154 But this is a lot of function calls; what Ben is doing is basically | |
1155 reducing this to one call per buffer-full. The only way to avoid this | |
1156 is to hardcode all the "interesting" coding systems, maybe using | |
1157 inline or macros to give structure. But this is still a huge amount | |
1158 of work, and code. | |
1159 | |
1160 One advantage to the call-per-char approach is that we might be able | |
1161 to do something about the marker/extent destruction that coding | |
1162 normally entails. | |
1163 | |
1164 ben sez: | |
1165 | |
1166 it should be possible to preserve the markers/extents without | |
1167 switching completely to one-call-per-char -- we could at least do one | |
1168 call per "run", where a run is more or less the maximal stretch of | |
1169 text not overlapping any markers or extent boundaries. (It's a bit | |
1170 more complicated if we want to properly support the different extent | |
1171 begins/ends; in some cases we might have to pump a single character | |
1172 adjacent to where two extents meet.) The "stateless" way that I wrote | |
1173 all of the conversion routines may be a real hassle but it allows | |
1174 something like this to work without too much problem -- pump in one | |
1175 run at a time into one end of the chain, do a flush after each | |
1176 iteration, and stick what comes out the other end in its place. | |
1177 | |
1178 ------------------------------------------------------------------ | |
1179 ABOUT FORMATS | |
1180 ------------------------------------------------------------------ | |
1181 | |
1182 when calling make-coding-system, the name can be a cons of (format1 . | |
1183 format2), specifying that it decodes format1->format2 and encodes the other | |
1184 way. if only one name is given, that is assumed to be format1, and the | |
1185 other is either `external' or `internal' depending on the end type. | |
1186 normally the user when decoding gives the decoding order in formats, but | |
1187 can leave off the last one, `internal', which is assumed. a multichain | |
1188 might look like gzip|multibyte|unicode, using the coding systems named | |
1189 `gzip', `(unicode . multibyte)' and `unicode'. the way this actually works | |
1190 is by searching for gzip->multibyte; if not found, look for gzip->external | |
1191 or gzip->internal. (In general we automatically do conversion between | |
1192 internal and external as necessary: thus gzip|crlf does the expected, and | |
1193 maps to gzip->external, external->internal, crlf->internal, which when | |
1194 fully specified would be gzip|external:external|internal:crlf|internal -- | |
1195 see below.) To forcibly fit together two converters that have explicitly | |
1196 specified and incompatible names (say you have unicode->multibyte and | |
1197 iso8859-1->ebcdic and you know that the multibyte and iso8859-1 in this | |
1198 case are compatible), you can force-cast using :, like this: | |
1199 ebcdic|iso8859-1:multibyte|unicode. (again, if you force-cast between | |
1200 internal and external formats, the conversion happens automatically.) | |
1201 | |
1202 -------------------------------------------------------------------------- | |
1203 ABOUT PDUMP, UNICODE, AND RUNNING XEMACS FROM A DIRECTORY WITH WEIRD CHARS | |
1204 -------------------------------------------------------------------------- | |
1205 | |
1206 -- there's the problem that XEmacs can't be run in a directory with | |
1207 non-ASCII/Latin-1 chars in it, since it will be doing Unicode | |
1208 processing before we've had a chance to load the tables. In fact, | |
1209 even finding the tables in such a situation is problematic using | |
1210 the normal commands. my idea is to eventually load the stuff | |
1211 extremely extremely early, at the same time as the pdump data gets | |
1212 loaded. in fact, the unicode table data (stored in an efficient | |
1213 binary format) can even be stuck into the pdump file (which would | |
1214 mean as a resource to the executable, for windows). we'd need to | |
1215 extend pdump a bit: to allow for attaching extra data to the pdump | |
1216 file. (something like pdump_attach_extra_data (addr, length) | |
1217 returns a number of some sort, an index into the file, which you | |
1218 can then retrieve with pdump_load_extra_data(), which returns an | |
1219 addr (mmap()ed or loaded), and later you pdump_unload_extra_data() | |
1220 when finished. we'd probably also need | |
1221 pdump_attach_extra_data_append(), which appends data to the data | |
1222 just written out with pdump_attach_extra_data(). this way, | |
1223 multiple tables in memory can be written out into one contiguous | |
1224 table. (we'd use the tar-like trick of allowing new blocks to be | |
1225 written without going back to change the old blocks -- we just rely | |
1226 on the end of file/end of memory.) this same mechanism could be | |
1227 extracted out of pdump and used to handle the non-pdump situation | |
1228 (or alternatively, we could just dump either the memory image of | |
1229 the tables themselves or the compressed binary version). in the | |
1230 case of extra unicode tables not known about at compile time that | |
1231 get loaded before dumping, we either just dump them into the image | |
1232 (pdump and all) or extract them into the compressed binary format, | |
1233 free the original tables, and treat them like all other tables. | |
1234 | |
1235 | |
1236 ========================================================================== | |
1237 - Generalized language appropriate word wrapping (requires | |
1238 layout-exposing API defined in BIDI section) | |
1239 ========================================================================== | |
1240 | |
1241 ========================================================================== | |
1242 - Make Custom Mule-aware | |
1243 ========================================================================== | |
1244 | |
1245 ========================================================================== | |
1246 - Composite character support | |
1247 ========================================================================== | |
1248 | |
1249 ========================================================================== | |
1250 - Language appropriate sorting and searching | |
1251 ========================================================================== | |
1252 | |
1253 ========================================================================== | |
1254 - Glyph shaping for Arabic and Devanagari | |
1255 ========================================================================== | |
1256 | |
1257 - (needs to be handled mostly | |
1258 at C level, as part of layout; luckily it's entirely local in its | |
1259 changes, as this is not hard) | |
1260 | |
1261 | |
1262 ========================================================================== | |
1263 Consider moving language selection Menu up to be parallel with Mule menu | |
1264 ========================================================================== | |
1265 | |
1266 */ | |
1267 | |
1268 | |
771 | 1269 |
1270 /************************************************************************/ | |
1271 /* declarations */ | |
1272 /************************************************************************/ | |
1273 | |
1274 Eistring the_eistring_zero_init, the_eistring_malloc_zero_init; | |
1275 | |
1276 #define MAX_CHARBPOS_GAP_SIZE_3 (65535/3) | |
1277 #define MAX_BYTEBPOS_GAP_SIZE_3 (3 * MAX_CHARBPOS_GAP_SIZE_3) | |
1278 | |
1279 short three_to_one_table[1 + MAX_BYTEBPOS_GAP_SIZE_3]; | |
1280 | |
1281 #ifdef MULE | |
1282 | |
1283 /* Table of number of bytes in the string representation of a character | |
1284 indexed by the first byte of that representation. | |
1285 | |
1286 rep_bytes_by_first_byte(c) is more efficient than the equivalent | |
1287 canonical computation: | |
1288 | |
826 | 1289 XCHARSET_REP_BYTES (charset_by_leading_byte (c)) */ |
771 | 1290 |
1291 const Bytecount rep_bytes_by_first_byte[0xA0] = | |
1292 { /* 0x00 - 0x7f are for straight ASCII */ | |
1293 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1294 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1295 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1296 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1297 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1298 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1299 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1300 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1301 /* 0x80 - 0x8f are for Dimension-1 official charsets */ | |
1302 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
1303 /* 0x90 - 0x9d are for Dimension-2 official charsets */ | |
1304 /* 0x9e is for Dimension-1 private charsets */ | |
1305 /* 0x9f is for Dimension-2 private charsets */ | |
1306 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4 | |
1307 }; | |
1308 | |
1309 #ifdef ENABLE_COMPOSITE_CHARS | |
1310 | |
1311 /* Hash tables for composite chars. One maps string representing | |
1312 composed chars to their equivalent chars; one goes the | |
1313 other way. */ | |
1314 Lisp_Object Vcomposite_char_char2string_hash_table; | |
1315 Lisp_Object Vcomposite_char_string2char_hash_table; | |
1316 | |
1317 static int composite_char_row_next; | |
1318 static int composite_char_col_next; | |
1319 | |
1320 #endif /* ENABLE_COMPOSITE_CHARS */ | |
1321 | |
1322 #endif /* MULE */ | |
1323 | |
1292 | 1324 Lisp_Object QSin_char_byte_conversion; |
1325 Lisp_Object QSin_internal_external_conversion; | |
1326 | |
771 | 1327 |
1328 /************************************************************************/ | |
1329 /* qxestr***() functions */ | |
1330 /************************************************************************/ | |
1331 | |
1332 /* Most are inline functions in lisp.h */ | |
1333 | |
1334 int | |
867 | 1335 qxesprintf (Ibyte *buffer, const CIbyte *format, ...) |
771 | 1336 { |
1337 va_list args; | |
1338 int retval; | |
1339 | |
1340 va_start (args, format); | |
2367 | 1341 retval = vsprintf ((Chbyte *) buffer, format, args); |
771 | 1342 va_end (args); |
1343 | |
1344 return retval; | |
1345 } | |
1346 | |
1347 /* strcasecmp() implementation from BSD */ | |
867 | 1348 static Ibyte strcasecmp_charmap[] = { |
1429 | 1349 0000, 0001, 0002, 0003, 0004, 0005, 0006, 0007, |
1350 0010, 0011, 0012, 0013, 0014, 0015, 0016, 0017, | |
1351 0020, 0021, 0022, 0023, 0024, 0025, 0026, 0027, | |
1352 0030, 0031, 0032, 0033, 0034, 0035, 0036, 0037, | |
1353 0040, 0041, 0042, 0043, 0044, 0045, 0046, 0047, | |
1354 0050, 0051, 0052, 0053, 0054, 0055, 0056, 0057, | |
1355 0060, 0061, 0062, 0063, 0064, 0065, 0066, 0067, | |
1356 0070, 0071, 0072, 0073, 0074, 0075, 0076, 0077, | |
1357 0100, 0141, 0142, 0143, 0144, 0145, 0146, 0147, | |
1358 0150, 0151, 0152, 0153, 0154, 0155, 0156, 0157, | |
1359 0160, 0161, 0162, 0163, 0164, 0165, 0166, 0167, | |
1360 0170, 0171, 0172, 0133, 0134, 0135, 0136, 0137, | |
1361 0140, 0141, 0142, 0143, 0144, 0145, 0146, 0147, | |
1362 0150, 0151, 0152, 0153, 0154, 0155, 0156, 0157, | |
1363 0160, 0161, 0162, 0163, 0164, 0165, 0166, 0167, | |
1364 0170, 0171, 0172, 0173, 0174, 0175, 0176, 0177, | |
1365 0200, 0201, 0202, 0203, 0204, 0205, 0206, 0207, | |
1366 0210, 0211, 0212, 0213, 0214, 0215, 0216, 0217, | |
1367 0220, 0221, 0222, 0223, 0224, 0225, 0226, 0227, | |
1368 0230, 0231, 0232, 0233, 0234, 0235, 0236, 0237, | |
1369 0240, 0241, 0242, 0243, 0244, 0245, 0246, 0247, | |
1370 0250, 0251, 0252, 0253, 0254, 0255, 0256, 0257, | |
1371 0260, 0261, 0262, 0263, 0264, 0265, 0266, 0267, | |
1372 0270, 0271, 0272, 0273, 0274, 0275, 0276, 0277, | |
1373 0300, 0301, 0302, 0303, 0304, 0305, 0306, 0307, | |
1374 0310, 0311, 0312, 0313, 0314, 0315, 0316, 0317, | |
1375 0320, 0321, 0322, 0323, 0324, 0325, 0326, 0327, | |
1376 0330, 0331, 0332, 0333, 0334, 0335, 0336, 0337, | |
1377 0340, 0341, 0342, 0343, 0344, 0345, 0346, 0347, | |
1378 0350, 0351, 0352, 0353, 0354, 0355, 0356, 0357, | |
1379 0360, 0361, 0362, 0363, 0364, 0365, 0366, 0367, | |
1380 0370, 0371, 0372, 0373, 0374, 0375, 0376, 0377 | |
771 | 1381 }; |
1382 | |
1383 /* A version that works like generic strcasecmp() -- only collapsing | |
1384 case in ASCII A-Z/a-z. This is safe on Mule strings due to the | |
1385 current representation. | |
1386 | |
1387 This version was written by some Berkeley coder, favoring | |
1388 nanosecond improvements over clarity. In all other versions below, | |
1389 we use symmetrical algorithms that may sacrifice a few machine | |
1390 cycles but are MUCH MUCH clearer, which counts a lot more. | |
1391 */ | |
1392 | |
1393 int | |
867 | 1394 qxestrcasecmp (const Ibyte *s1, const Ibyte *s2) |
771 | 1395 { |
867 | 1396 Ibyte *cm = strcasecmp_charmap; |
771 | 1397 |
1398 while (cm[*s1] == cm[*s2++]) | |
1399 if (*s1++ == '\0') | |
1400 return (0); | |
1401 | |
1402 return (cm[*s1] - cm[*--s2]); | |
1403 } | |
1404 | |
1405 int | |
2367 | 1406 ascii_strcasecmp (const Ascbyte *s1, const Ascbyte *s2) |
771 | 1407 { |
867 | 1408 return qxestrcasecmp ((const Ibyte *) s1, (const Ibyte *) s2); |
771 | 1409 } |
1410 | |
1411 int | |
2367 | 1412 qxestrcasecmp_ascii (const Ibyte *s1, const Ascbyte *s2) |
771 | 1413 { |
867 | 1414 return qxestrcasecmp (s1, (const Ibyte *) s2); |
771 | 1415 } |
1416 | |
1417 /* An internationalized version that collapses case in a general fashion. | |
1418 */ | |
1419 | |
1420 int | |
867 | 1421 qxestrcasecmp_i18n (const Ibyte *s1, const Ibyte *s2) |
771 | 1422 { |
1423 while (*s1 && *s2) | |
1424 { | |
867 | 1425 if (DOWNCASE (0, itext_ichar (s1)) != |
1426 DOWNCASE (0, itext_ichar (s2))) | |
771 | 1427 break; |
867 | 1428 INC_IBYTEPTR (s1); |
1429 INC_IBYTEPTR (s2); | |
771 | 1430 } |
1431 | |
867 | 1432 return (DOWNCASE (0, itext_ichar (s1)) - |
1433 DOWNCASE (0, itext_ichar (s2))); | |
771 | 1434 } |
1435 | |
1436 /* The only difference between these next two and | |
1437 qxememcasecmp()/qxememcasecmp_i18n() is that these two will stop if | |
1438 both strings are equal and less than LEN in length, while | |
1439 the mem...() versions would would run off the end. */ | |
1440 | |
1441 int | |
867 | 1442 qxestrncasecmp (const Ibyte *s1, const Ibyte *s2, Bytecount len) |
771 | 1443 { |
867 | 1444 Ibyte *cm = strcasecmp_charmap; |
771 | 1445 |
1446 while (len--) | |
1447 { | |
1448 int diff = cm[*s1] - cm[*s2]; | |
1449 if (diff != 0) | |
1450 return diff; | |
1451 if (!*s1) | |
1452 return 0; | |
1453 s1++, s2++; | |
1454 } | |
1455 | |
1456 return 0; | |
1457 } | |
1458 | |
1459 int | |
2367 | 1460 ascii_strncasecmp (const Ascbyte *s1, const Ascbyte *s2, Bytecount len) |
771 | 1461 { |
867 | 1462 return qxestrncasecmp ((const Ibyte *) s1, (const Ibyte *) s2, len); |
771 | 1463 } |
1464 | |
1465 int | |
2367 | 1466 qxestrncasecmp_ascii (const Ibyte *s1, const Ascbyte *s2, Bytecount len) |
771 | 1467 { |
867 | 1468 return qxestrncasecmp (s1, (const Ibyte *) s2, len); |
771 | 1469 } |
1470 | |
801 | 1471 /* Compare LEN_FROM_S1 worth of characters from S1 with the same number of |
1472 characters from S2, case insensitive. NOTE: Downcasing can convert | |
1473 characters from one length in bytes to another, so reversing S1 and S2 | |
1474 is *NOT* a symmetric operations! You must choose a length that agrees | |
1475 with S1. */ | |
1476 | |
771 | 1477 int |
867 | 1478 qxestrncasecmp_i18n (const Ibyte *s1, const Ibyte *s2, |
801 | 1479 Bytecount len_from_s1) |
771 | 1480 { |
801 | 1481 while (len_from_s1 > 0) |
771 | 1482 { |
867 | 1483 const Ibyte *old_s1 = s1; |
1484 int diff = (DOWNCASE (0, itext_ichar (s1)) - | |
1485 DOWNCASE (0, itext_ichar (s2))); | |
771 | 1486 if (diff != 0) |
1487 return diff; | |
1488 if (!*s1) | |
1489 return 0; | |
867 | 1490 INC_IBYTEPTR (s1); |
1491 INC_IBYTEPTR (s2); | |
801 | 1492 len_from_s1 -= s1 - old_s1; |
771 | 1493 } |
1494 | |
1495 return 0; | |
1496 } | |
1497 | |
1498 int | |
867 | 1499 qxememcmp (const Ibyte *s1, const Ibyte *s2, Bytecount len) |
771 | 1500 { |
1501 return memcmp (s1, s2, len); | |
1502 } | |
1503 | |
1504 int | |
867 | 1505 qxememcmp4 (const Ibyte *s1, Bytecount len1, |
1506 const Ibyte *s2, Bytecount len2) | |
801 | 1507 { |
1508 int retval = qxememcmp (s1, s2, min (len1, len2)); | |
1509 if (retval) | |
1510 return retval; | |
1511 return len1 - len2; | |
1512 } | |
1513 | |
1514 int | |
867 | 1515 qxememcasecmp (const Ibyte *s1, const Ibyte *s2, Bytecount len) |
771 | 1516 { |
867 | 1517 Ibyte *cm = strcasecmp_charmap; |
771 | 1518 |
1519 while (len--) | |
1520 { | |
1521 int diff = cm[*s1] - cm[*s2]; | |
1522 if (diff != 0) | |
1523 return diff; | |
1524 s1++, s2++; | |
1525 } | |
1526 | |
1527 return 0; | |
1528 } | |
1529 | |
1530 int | |
867 | 1531 qxememcasecmp4 (const Ibyte *s1, Bytecount len1, |
1532 const Ibyte *s2, Bytecount len2) | |
771 | 1533 { |
801 | 1534 int retval = qxememcasecmp (s1, s2, min (len1, len2)); |
1535 if (retval) | |
1536 return retval; | |
1537 return len1 - len2; | |
1538 } | |
1539 | |
1540 /* Do a character-by-character comparison, returning "which is greater" by | |
867 | 1541 comparing the Ichar values. (#### Should have option to compare Unicode |
801 | 1542 points) */ |
1543 | |
1544 int | |
867 | 1545 qxetextcmp (const Ibyte *s1, Bytecount len1, |
1546 const Ibyte *s2, Bytecount len2) | |
801 | 1547 { |
1548 while (len1 > 0 && len2 > 0) | |
771 | 1549 { |
867 | 1550 const Ibyte *old_s1 = s1; |
1551 const Ibyte *old_s2 = s2; | |
1552 int diff = itext_ichar (s1) - itext_ichar (s2); | |
801 | 1553 if (diff != 0) |
1554 return diff; | |
867 | 1555 INC_IBYTEPTR (s1); |
1556 INC_IBYTEPTR (s2); | |
801 | 1557 len1 -= s1 - old_s1; |
1558 len2 -= s2 - old_s2; | |
1559 } | |
1560 | |
1561 assert (len1 >= 0 && len2 >= 0); | |
1562 return len1 - len2; | |
1563 } | |
1564 | |
1565 int | |
867 | 1566 qxetextcmp_matching (const Ibyte *s1, Bytecount len1, |
1567 const Ibyte *s2, Bytecount len2, | |
801 | 1568 Charcount *matching) |
1569 { | |
1570 *matching = 0; | |
1571 while (len1 > 0 && len2 > 0) | |
1572 { | |
867 | 1573 const Ibyte *old_s1 = s1; |
1574 const Ibyte *old_s2 = s2; | |
1575 int diff = itext_ichar (s1) - itext_ichar (s2); | |
801 | 1576 if (diff != 0) |
1577 return diff; | |
867 | 1578 INC_IBYTEPTR (s1); |
1579 INC_IBYTEPTR (s2); | |
801 | 1580 len1 -= s1 - old_s1; |
1581 len2 -= s2 - old_s2; | |
1582 (*matching)++; | |
1583 } | |
1584 | |
1585 assert (len1 >= 0 && len2 >= 0); | |
1586 return len1 - len2; | |
1587 } | |
1588 | |
1589 /* Do a character-by-character comparison, returning "which is greater" by | |
867 | 1590 comparing the Ichar values, case insensitively (by downcasing both |
801 | 1591 first). (#### Should have option to compare Unicode points) |
1592 | |
1593 In this case, both lengths must be specified becaused downcasing can | |
1594 convert characters from one length in bytes to another; therefore, two | |
1595 blocks of text of different length might be equal. If both compare | |
1596 equal up to the limit in length of one but not the other, the longer one | |
1597 is "greater". */ | |
1598 | |
1599 int | |
867 | 1600 qxetextcasecmp (const Ibyte *s1, Bytecount len1, |
1601 const Ibyte *s2, Bytecount len2) | |
801 | 1602 { |
1603 while (len1 > 0 && len2 > 0) | |
1604 { | |
867 | 1605 const Ibyte *old_s1 = s1; |
1606 const Ibyte *old_s2 = s2; | |
1607 int diff = (DOWNCASE (0, itext_ichar (s1)) - | |
1608 DOWNCASE (0, itext_ichar (s2))); | |
771 | 1609 if (diff != 0) |
1610 return diff; | |
867 | 1611 INC_IBYTEPTR (s1); |
1612 INC_IBYTEPTR (s2); | |
801 | 1613 len1 -= s1 - old_s1; |
1614 len2 -= s2 - old_s2; | |
771 | 1615 } |
1616 | |
801 | 1617 assert (len1 >= 0 && len2 >= 0); |
1618 return len1 - len2; | |
1619 } | |
1620 | |
1621 /* Like qxetextcasecmp() but also return number of characters at | |
1622 beginning that match. */ | |
1623 | |
1624 int | |
867 | 1625 qxetextcasecmp_matching (const Ibyte *s1, Bytecount len1, |
1626 const Ibyte *s2, Bytecount len2, | |
801 | 1627 Charcount *matching) |
1628 { | |
1629 *matching = 0; | |
1630 while (len1 > 0 && len2 > 0) | |
1631 { | |
867 | 1632 const Ibyte *old_s1 = s1; |
1633 const Ibyte *old_s2 = s2; | |
1634 int diff = (DOWNCASE (0, itext_ichar (s1)) - | |
1635 DOWNCASE (0, itext_ichar (s2))); | |
801 | 1636 if (diff != 0) |
1637 return diff; | |
867 | 1638 INC_IBYTEPTR (s1); |
1639 INC_IBYTEPTR (s2); | |
801 | 1640 len1 -= s1 - old_s1; |
1641 len2 -= s2 - old_s2; | |
1642 (*matching)++; | |
1643 } | |
1644 | |
1645 assert (len1 >= 0 && len2 >= 0); | |
1646 return len1 - len2; | |
771 | 1647 } |
1648 | |
1649 int | |
1650 lisp_strcasecmp (Lisp_Object s1, Lisp_Object s2) | |
1651 { | |
867 | 1652 Ibyte *cm = strcasecmp_charmap; |
1653 Ibyte *p1 = XSTRING_DATA (s1); | |
1654 Ibyte *p2 = XSTRING_DATA (s2); | |
1655 Ibyte *e1 = p1 + XSTRING_LENGTH (s1); | |
1656 Ibyte *e2 = p2 + XSTRING_LENGTH (s2); | |
771 | 1657 |
1658 /* again, we use a symmetric algorithm and favor clarity over | |
1659 nanosecond improvements. */ | |
1660 while (1) | |
1661 { | |
1662 /* if we reached the end of either string, compare lengths. | |
1663 do NOT compare the final null byte against anything, in case | |
1664 the other string also has a null byte at that position. */ | |
1665 if (p1 == e1 || p2 == e2) | |
1666 return e1 - e2; | |
1667 if (cm[*p1] != cm[*p2]) | |
1668 return cm[*p1] - cm[*p2]; | |
1669 p1++, p2++; | |
1670 } | |
1671 } | |
1672 | |
1673 int | |
1674 lisp_strcasecmp_i18n (Lisp_Object s1, Lisp_Object s2) | |
1675 { | |
801 | 1676 return qxetextcasecmp (XSTRING_DATA (s1), XSTRING_LENGTH (s1), |
1677 XSTRING_DATA (s2), XSTRING_LENGTH (s2)); | |
771 | 1678 } |
1679 | |
2367 | 1680 /* Compare a wide string with an ASCII string */ |
1681 | |
1682 int | |
1683 wcscmp_ascii (const wchar_t *s1, const Ascbyte *s2) | |
1684 { | |
1685 while (*s1 && *s2) | |
1686 { | |
2956 | 1687 if (*s1 != (wchar_t) *s2) |
2367 | 1688 break; |
1689 s1++, s2++; | |
1690 } | |
1691 | |
1692 return *s1 - *s2; | |
1693 } | |
1694 | |
1695 int | |
1696 wcsncmp_ascii (const wchar_t *s1, const Ascbyte *s2, Charcount len) | |
1697 { | |
1698 while (len--) | |
1699 { | |
1700 int diff = *s1 - *s2; | |
1701 if (diff != 0) | |
1702 return diff; | |
1703 if (!*s1) | |
1704 return 0; | |
1705 s1++, s2++; | |
1706 } | |
1707 | |
1708 return 0; | |
1709 } | |
1710 | |
771 | 1711 |
1712 /************************************************************************/ | |
1713 /* conversion between textual representations */ | |
1714 /************************************************************************/ | |
1715 | |
1716 /* NOTE: Does not reset the Dynarr. */ | |
1717 | |
1718 void | |
867 | 1719 convert_ibyte_string_into_ichar_dynarr (const Ibyte *str, Bytecount len, |
2367 | 1720 Ichar_dynarr *dyn) |
771 | 1721 { |
867 | 1722 const Ibyte *strend = str + len; |
771 | 1723 |
1724 while (str < strend) | |
1725 { | |
867 | 1726 Ichar ch = itext_ichar (str); |
771 | 1727 Dynarr_add (dyn, ch); |
867 | 1728 INC_IBYTEPTR (str); |
771 | 1729 } |
1730 } | |
1731 | |
1732 Charcount | |
867 | 1733 convert_ibyte_string_into_ichar_string (const Ibyte *str, Bytecount len, |
2367 | 1734 Ichar *arr) |
771 | 1735 { |
867 | 1736 const Ibyte *strend = str + len; |
771 | 1737 Charcount newlen = 0; |
1738 while (str < strend) | |
1739 { | |
867 | 1740 Ichar ch = itext_ichar (str); |
771 | 1741 arr[newlen++] = ch; |
867 | 1742 INC_IBYTEPTR (str); |
771 | 1743 } |
1744 return newlen; | |
1745 } | |
1746 | |
867 | 1747 /* Convert an array of Ichars into the equivalent string representation. |
1748 Store into the given Ibyte dynarr. Does not reset the dynarr. | |
771 | 1749 Does not add a terminating zero. */ |
1750 | |
1751 void | |
867 | 1752 convert_ichar_string_into_ibyte_dynarr (Ichar *arr, int nels, |
1753 Ibyte_dynarr *dyn) | |
771 | 1754 { |
867 | 1755 Ibyte str[MAX_ICHAR_LEN]; |
771 | 1756 int i; |
1757 | |
1758 for (i = 0; i < nels; i++) | |
1759 { | |
867 | 1760 Bytecount len = set_itext_ichar (str, arr[i]); |
771 | 1761 Dynarr_add_many (dyn, str, len); |
1762 } | |
1763 } | |
1764 | |
867 | 1765 /* Convert an array of Ichars into the equivalent string representation. |
771 | 1766 Malloc the space needed for this and return it. If LEN_OUT is not a |
867 | 1767 NULL pointer, store into LEN_OUT the number of Ibytes in the |
1768 malloc()ed string. Note that the actual number of Ibytes allocated | |
771 | 1769 is one more than this: the returned string is zero-terminated. */ |
1770 | |
867 | 1771 Ibyte * |
1772 convert_ichar_string_into_malloced_string (Ichar *arr, int nels, | |
826 | 1773 Bytecount *len_out) |
771 | 1774 { |
1775 /* Damn zero-termination. */ | |
2367 | 1776 Ibyte *str = alloca_ibytes (nels * MAX_ICHAR_LEN + 1); |
867 | 1777 Ibyte *strorig = str; |
771 | 1778 Bytecount len; |
1779 | |
1780 int i; | |
1781 | |
1782 for (i = 0; i < nels; i++) | |
867 | 1783 str += set_itext_ichar (str, arr[i]); |
771 | 1784 *str = '\0'; |
1785 len = str - strorig; | |
2367 | 1786 str = xnew_ibytes (1 + len); |
771 | 1787 memcpy (str, strorig, 1 + len); |
1788 if (len_out) | |
1789 *len_out = len; | |
1790 return str; | |
1791 } | |
1792 | |
826 | 1793 #define COPY_TEXT_BETWEEN_FORMATS(srcfmt, dstfmt) \ |
1794 do \ | |
1795 { \ | |
1796 if (dst) \ | |
1797 { \ | |
867 | 1798 Ibyte *dstend = dst + dstlen; \ |
1799 Ibyte *dstp = dst; \ | |
1800 const Ibyte *srcend = src + srclen; \ | |
1801 const Ibyte *srcp = src; \ | |
826 | 1802 \ |
1803 while (srcp < srcend) \ | |
1804 { \ | |
867 | 1805 Ichar ch = itext_ichar_fmt (srcp, srcfmt, srcobj); \ |
1806 Bytecount len = ichar_len_fmt (ch, dstfmt); \ | |
826 | 1807 \ |
1808 if (dstp + len <= dstend) \ | |
1809 { \ | |
2956 | 1810 (void) set_itext_ichar_fmt (dstp, ch, dstfmt, dstobj); \ |
826 | 1811 dstp += len; \ |
1812 } \ | |
1813 else \ | |
1814 break; \ | |
867 | 1815 INC_IBYTEPTR_FMT (srcp, srcfmt); \ |
826 | 1816 } \ |
1817 text_checking_assert (srcp <= srcend); \ | |
1818 if (src_used) \ | |
1819 *src_used = srcp - src; \ | |
1820 return dstp - dst; \ | |
1821 } \ | |
1822 else \ | |
1823 { \ | |
867 | 1824 const Ibyte *srcend = src + srclen; \ |
1825 const Ibyte *srcp = src; \ | |
826 | 1826 Bytecount total = 0; \ |
1827 \ | |
1828 while (srcp < srcend) \ | |
1829 { \ | |
867 | 1830 total += ichar_len_fmt (itext_ichar_fmt (srcp, srcfmt, \ |
826 | 1831 srcobj), dstfmt); \ |
867 | 1832 INC_IBYTEPTR_FMT (srcp, srcfmt); \ |
826 | 1833 } \ |
1834 text_checking_assert (srcp == srcend); \ | |
1835 if (src_used) \ | |
1836 *src_used = srcp - src; \ | |
1837 return total; \ | |
1838 } \ | |
1839 } \ | |
1840 while (0) | |
1841 | |
1842 /* Copy as much text from SRC/SRCLEN to DST/DSTLEN as will fit, converting | |
1843 from SRCFMT/SRCOBJ to DSTFMT/DSTOBJ. Return number of bytes stored into | |
1844 DST as return value, and number of bytes copied from SRC through | |
1845 SRC_USED (if not NULL). If DST is NULL, don't actually store anything | |
1846 and just return the size needed to store all the text. Will not copy | |
1847 partial characters into DST. */ | |
1848 | |
1849 Bytecount | |
867 | 1850 copy_text_between_formats (const Ibyte *src, Bytecount srclen, |
826 | 1851 Internal_Format srcfmt, |
2333 | 1852 Lisp_Object USED_IF_MULE (srcobj), |
867 | 1853 Ibyte *dst, Bytecount dstlen, |
826 | 1854 Internal_Format dstfmt, |
2333 | 1855 Lisp_Object USED_IF_MULE (dstobj), |
826 | 1856 Bytecount *src_used) |
1857 { | |
1858 if (srcfmt == dstfmt && | |
1859 objects_have_same_internal_representation (srcobj, dstobj)) | |
1860 { | |
1861 if (dst) | |
1862 { | |
1863 srclen = min (srclen, dstlen); | |
867 | 1864 srclen = validate_ibyte_string_backward (src, srclen); |
826 | 1865 memcpy (dst, src, srclen); |
1866 if (src_used) | |
1867 *src_used = srclen; | |
1868 return srclen; | |
1869 } | |
1870 else | |
1871 return srclen; | |
1872 } | |
1873 /* Everything before the final else statement is an optimization. | |
1874 The inner loops inside COPY_TEXT_BETWEEN_FORMATS() have a number | |
1875 of calls to *_fmt(), each of which has a switch statement in it. | |
1876 By using constants as the FMT argument, these switch statements | |
1877 will be optimized out of existence. */ | |
1878 #define ELSE_FORMATS(fmt1, fmt2) \ | |
1879 else if (srcfmt == fmt1 && dstfmt == fmt2) \ | |
1880 COPY_TEXT_BETWEEN_FORMATS (fmt1, fmt2) | |
1881 ELSE_FORMATS (FORMAT_DEFAULT, FORMAT_8_BIT_FIXED); | |
1882 ELSE_FORMATS (FORMAT_8_BIT_FIXED, FORMAT_DEFAULT); | |
1883 ELSE_FORMATS (FORMAT_DEFAULT, FORMAT_32_BIT_FIXED); | |
1884 ELSE_FORMATS (FORMAT_32_BIT_FIXED, FORMAT_DEFAULT); | |
1885 else | |
1886 COPY_TEXT_BETWEEN_FORMATS (srcfmt, dstfmt); | |
1887 #undef ELSE_FORMATS | |
1888 } | |
1889 | |
1890 /* Copy as much buffer text in BUF, starting at POS, of length LEN, as will | |
1891 fit into DST/DSTLEN, converting to DSTFMT. Return number of bytes | |
1892 stored into DST as return value, and number of bytes copied from BUF | |
1893 through SRC_USED (if not NULL). If DST is NULL, don't actually store | |
1894 anything and just return the size needed to store all the text. */ | |
1895 | |
1896 Bytecount | |
1897 copy_buffer_text_out (struct buffer *buf, Bytebpos pos, | |
867 | 1898 Bytecount len, Ibyte *dst, Bytecount dstlen, |
826 | 1899 Internal_Format dstfmt, Lisp_Object dstobj, |
1900 Bytecount *src_used) | |
1901 { | |
1902 Bytecount dst_used = 0; | |
1903 if (src_used) | |
1904 *src_used = 0; | |
1905 | |
1906 { | |
1907 BUFFER_TEXT_LOOP (buf, pos, len, runptr, runlen) | |
1908 { | |
1909 Bytecount the_src_used, the_dst_used; | |
1910 | |
1911 the_dst_used = copy_text_between_formats (runptr, runlen, | |
1912 BUF_FORMAT (buf), | |
1913 wrap_buffer (buf), | |
1914 dst, dstlen, dstfmt, | |
1915 dstobj, &the_src_used); | |
1916 dst_used += the_dst_used; | |
1917 if (src_used) | |
1918 *src_used += the_src_used; | |
1919 if (dst) | |
1920 { | |
1921 dst += the_dst_used; | |
1922 dstlen -= the_dst_used; | |
841 | 1923 /* Stop if we didn't use all of the source text. Also stop |
1924 if the destination is full. We need the first test because | |
1925 there might be a couple bytes left in the destination, but | |
1926 not enough to fit a full character. The first test will in | |
1927 fact catch the vast majority of cases where the destination | |
1928 is empty, too -- but in case the destination holds *exactly* | |
1929 the run length, we put in the second check. (It shouldn't | |
1930 really matter though -- next time through we'll just get a | |
1931 0.) */ | |
1932 if (the_src_used < runlen || !dstlen) | |
826 | 1933 break; |
1934 } | |
1935 } | |
1936 } | |
1937 | |
1938 return dst_used; | |
1939 } | |
1940 | |
771 | 1941 |
1942 /************************************************************************/ | |
1943 /* charset properties of strings */ | |
1944 /************************************************************************/ | |
1945 | |
1946 void | |
2333 | 1947 find_charsets_in_ibyte_string (unsigned char *charsets, |
1948 const Ibyte *USED_IF_MULE (str), | |
1949 Bytecount USED_IF_MULE (len)) | |
771 | 1950 { |
1951 #ifndef MULE | |
1952 /* Telescope this. */ | |
1953 charsets[0] = 1; | |
1954 #else | |
867 | 1955 const Ibyte *strend = str + len; |
771 | 1956 memset (charsets, 0, NUM_LEADING_BYTES); |
1957 | |
1958 /* #### SJT doesn't like this. */ | |
1959 if (len == 0) | |
1960 { | |
1961 charsets[XCHARSET_LEADING_BYTE (Vcharset_ascii) - MIN_LEADING_BYTE] = 1; | |
1962 return; | |
1963 } | |
1964 | |
1965 while (str < strend) | |
1966 { | |
867 | 1967 charsets[ichar_leading_byte (itext_ichar (str)) - MIN_LEADING_BYTE] = |
771 | 1968 1; |
867 | 1969 INC_IBYTEPTR (str); |
771 | 1970 } |
1971 #endif | |
1972 } | |
1973 | |
1974 void | |
2333 | 1975 find_charsets_in_ichar_string (unsigned char *charsets, |
1976 const Ichar *USED_IF_MULE (str), | |
1977 Charcount USED_IF_MULE (len)) | |
771 | 1978 { |
1979 #ifndef MULE | |
1980 /* Telescope this. */ | |
1981 charsets[0] = 1; | |
1982 #else | |
1983 int i; | |
1984 | |
1985 memset (charsets, 0, NUM_LEADING_BYTES); | |
1986 | |
1987 /* #### SJT doesn't like this. */ | |
1988 if (len == 0) | |
1989 { | |
1990 charsets[XCHARSET_LEADING_BYTE (Vcharset_ascii) - MIN_LEADING_BYTE] = 1; | |
1991 return; | |
1992 } | |
1993 | |
1994 for (i = 0; i < len; i++) | |
1995 { | |
867 | 1996 charsets[ichar_leading_byte (str[i]) - MIN_LEADING_BYTE] = 1; |
771 | 1997 } |
1998 #endif | |
1999 } | |
2000 | |
3571 | 2001 /* A couple of these functions should only be called on a non-Mule build. */ |
2002 #ifdef MULE | |
2003 #define ASSERT_BUILT_WITH_MULE() assert(1) | |
2004 #else /* MULE */ | |
2005 #define ASSERT_BUILT_WITH_MULE() assert(0) | |
2006 #endif /* MULE */ | |
2007 | |
771 | 2008 int |
867 | 2009 ibyte_string_displayed_columns (const Ibyte *str, Bytecount len) |
771 | 2010 { |
2011 int cols = 0; | |
867 | 2012 const Ibyte *end = str + len; |
3571 | 2013 Ichar ch; |
2014 | |
2015 ASSERT_BUILT_WITH_MULE(); | |
771 | 2016 |
2017 while (str < end) | |
2018 { | |
3571 | 2019 ch = itext_ichar (str); |
867 | 2020 cols += XCHARSET_COLUMNS (ichar_charset (ch)); |
2021 INC_IBYTEPTR (str); | |
771 | 2022 } |
2023 | |
2024 return cols; | |
2025 } | |
2026 | |
2027 int | |
3571 | 2028 ichar_string_displayed_columns (const Ichar * USED_IF_MULE(str), Charcount len) |
771 | 2029 { |
2030 int cols = 0; | |
2031 int i; | |
2032 | |
3571 | 2033 ASSERT_BUILT_WITH_MULE(); |
2034 | |
771 | 2035 for (i = 0; i < len; i++) |
867 | 2036 cols += XCHARSET_COLUMNS (ichar_charset (str[i])); |
771 | 2037 |
2038 return cols; | |
2039 } | |
2040 | |
2041 Charcount | |
2333 | 2042 ibyte_string_nonascii_chars (const Ibyte *USED_IF_MULE (str), |
2043 Bytecount USED_IF_MULE (len)) | |
771 | 2044 { |
2045 #ifdef MULE | |
867 | 2046 const Ibyte *end = str + len; |
771 | 2047 Charcount retval = 0; |
2048 | |
2049 while (str < end) | |
2050 { | |
826 | 2051 if (!byte_ascii_p (*str)) |
771 | 2052 retval++; |
867 | 2053 INC_IBYTEPTR (str); |
771 | 2054 } |
2055 | |
2056 return retval; | |
2057 #else | |
2058 return 0; | |
2059 #endif | |
2060 } | |
2061 | |
2062 | |
2063 /***************************************************************************/ | |
2064 /* Eistring helper functions */ | |
2065 /***************************************************************************/ | |
2066 | |
2067 int | |
867 | 2068 eistr_casefiddle_1 (Ibyte *olddata, Bytecount len, Ibyte *newdata, |
771 | 2069 int downp) |
2070 { | |
867 | 2071 Ibyte *endp = olddata + len; |
2072 Ibyte *newp = newdata; | |
771 | 2073 int changedp = 0; |
2074 | |
2075 while (olddata < endp) | |
2076 { | |
867 | 2077 Ichar c = itext_ichar (olddata); |
2078 Ichar newc; | |
771 | 2079 |
2080 if (downp) | |
2081 newc = DOWNCASE (0, c); | |
2082 else | |
2083 newc = UPCASE (0, c); | |
2084 | |
2085 if (c != newc) | |
2086 changedp = 1; | |
2087 | |
867 | 2088 newp += set_itext_ichar (newp, newc); |
2089 INC_IBYTEPTR (olddata); | |
771 | 2090 } |
2091 | |
2092 *newp = '\0'; | |
2093 | |
2094 return changedp ? newp - newdata : 0; | |
2095 } | |
2096 | |
2097 int | |
2098 eifind_large_enough_buffer (int oldbufsize, int needed_size) | |
2099 { | |
2100 while (oldbufsize < needed_size) | |
2101 { | |
2102 oldbufsize = oldbufsize * 3 / 2; | |
2103 oldbufsize = max (oldbufsize, 32); | |
2104 } | |
2105 | |
2106 return oldbufsize; | |
2107 } | |
2108 | |
2109 void | |
2110 eito_malloc_1 (Eistring *ei) | |
2111 { | |
2112 if (ei->mallocp_) | |
2113 return; | |
2114 ei->mallocp_ = 1; | |
2115 if (ei->data_) | |
2116 { | |
867 | 2117 Ibyte *newdata; |
771 | 2118 |
2119 ei->max_size_allocated_ = | |
2120 eifind_large_enough_buffer (0, ei->bytelen_ + 1); | |
2367 | 2121 newdata = xnew_ibytes (ei->max_size_allocated_); |
771 | 2122 memcpy (newdata, ei->data_, ei->bytelen_ + 1); |
2123 ei->data_ = newdata; | |
2124 } | |
2125 | |
2126 if (ei->extdata_) | |
2127 { | |
2367 | 2128 Extbyte *newdata = xnew_extbytes (ei->extlen_ + 2); |
771 | 2129 |
2130 memcpy (newdata, ei->extdata_, ei->extlen_); | |
2131 /* Double null-terminate in case of Unicode data */ | |
2132 newdata[ei->extlen_] = '\0'; | |
2133 newdata[ei->extlen_ + 1] = '\0'; | |
2134 ei->extdata_ = newdata; | |
2135 } | |
2136 } | |
2137 | |
2138 int | |
2139 eicmp_1 (Eistring *ei, Bytecount off, Charcount charoff, | |
867 | 2140 Bytecount len, Charcount charlen, const Ibyte *data, |
2421 | 2141 const Eistring *ei2, int is_ascii, int fold_case) |
771 | 2142 { |
3462 | 2143 assert ((data == 0) != (ei == 0)); |
2144 assert ((is_ascii != 0) == (data != 0)); | |
2145 assert (fold_case >= 0 && fold_case <= 2); | |
771 | 2146 assert ((off < 0) != (charoff < 0)); |
3462 | 2147 |
771 | 2148 if (off < 0) |
2149 { | |
2150 off = charcount_to_bytecount (ei->data_, charoff); | |
2151 if (charlen < 0) | |
2152 len = -1; | |
2153 else | |
2154 len = charcount_to_bytecount (ei->data_ + off, charlen); | |
2155 } | |
2156 if (len < 0) | |
2157 len = ei->bytelen_ - off; | |
2158 | |
2159 assert (off >= 0 && off <= ei->bytelen_); | |
2160 assert (len >= 0 && off + len <= ei->bytelen_); | |
2161 | |
2162 { | |
2163 Bytecount dstlen; | |
867 | 2164 const Ibyte *src = ei->data_, *dst; |
771 | 2165 |
2166 if (data) | |
2167 { | |
2168 dst = data; | |
2169 dstlen = qxestrlen (data); | |
2170 } | |
2171 else | |
2172 { | |
2173 dst = ei2->data_; | |
2174 dstlen = ei2->bytelen_; | |
2175 } | |
2176 | |
2421 | 2177 if (is_ascii) |
2367 | 2178 ASSERT_ASCTEXT_ASCII_LEN ((Ascbyte *) dst, dstlen); |
771 | 2179 |
801 | 2180 return (fold_case == 0 ? qxememcmp4 (src, len, dst, dstlen) : |
2181 fold_case == 1 ? qxememcasecmp4 (src, len, dst, dstlen) : | |
2182 qxetextcasecmp (src, len, dst, dstlen)); | |
771 | 2183 } |
2184 } | |
2185 | |
867 | 2186 Ibyte * |
826 | 2187 eicpyout_malloc_fmt (Eistring *eistr, Bytecount *len_out, Internal_Format fmt, |
2286 | 2188 Lisp_Object UNUSED (object)) |
771 | 2189 { |
867 | 2190 Ibyte *ptr; |
771 | 2191 |
2192 assert (fmt == FORMAT_DEFAULT); | |
867 | 2193 ptr = xnew_array (Ibyte, eistr->bytelen_ + 1); |
771 | 2194 if (len_out) |
2195 *len_out = eistr->bytelen_; | |
2196 memcpy (ptr, eistr->data_, eistr->bytelen_ + 1); | |
2197 return ptr; | |
2198 } | |
2199 | |
2200 | |
2201 /************************************************************************/ | |
2202 /* Charcount/Bytecount conversion */ | |
2203 /************************************************************************/ | |
2204 | |
2205 /* Optimization. Do it. Live it. Love it. */ | |
2206 | |
2207 #ifdef MULE | |
2208 | |
826 | 2209 #ifdef EFFICIENT_INT_128_BIT |
2210 # define STRIDE_TYPE INT_128_BIT | |
2211 # define HIGH_BIT_MASK \ | |
2212 MAKE_128_BIT_UNSIGNED_CONSTANT (0x80808080808080808080808080808080) | |
2213 #elif defined (EFFICIENT_INT_64_BIT) | |
2214 # define STRIDE_TYPE INT_64_BIT | |
2215 # define HIGH_BIT_MASK MAKE_64_BIT_UNSIGNED_CONSTANT (0x8080808080808080) | |
771 | 2216 #else |
826 | 2217 # define STRIDE_TYPE INT_32_BIT |
2218 # define HIGH_BIT_MASK MAKE_32_BIT_UNSIGNED_CONSTANT (0x80808080) | |
771 | 2219 #endif |
2220 | |
2221 #define ALIGN_BITS ((EMACS_UINT) (ALIGNOF (STRIDE_TYPE) - 1)) | |
2222 #define ALIGN_MASK (~ ALIGN_BITS) | |
2223 #define ALIGNED(ptr) ((((EMACS_UINT) ptr) & ALIGN_BITS) == 0) | |
2224 #define STRIDE sizeof (STRIDE_TYPE) | |
2225 | |
2367 | 2226 /* Skip as many ASCII bytes as possible in the memory block [PTR, END). |
2227 Return pointer to the first non-ASCII byte. optimized for long | |
2228 stretches of ASCII. */ | |
2229 inline static const Ibyte * | |
2230 skip_ascii (const Ibyte *ptr, const Ibyte *end) | |
2231 { | |
826 | 2232 const unsigned STRIDE_TYPE *ascii_end; |
2233 | |
2234 /* Need to do in 3 sections -- before alignment start, aligned chunk, | |
2235 after alignment end. */ | |
2236 while (!ALIGNED (ptr)) | |
771 | 2237 { |
826 | 2238 if (ptr == end || !byte_ascii_p (*ptr)) |
2239 return ptr; | |
2240 ptr++; | |
2241 } | |
2242 ascii_end = (const unsigned STRIDE_TYPE *) ptr; | |
2243 /* This loop screams, because we can detect ASCII | |
2244 characters 4 or 8 at a time. */ | |
867 | 2245 while ((const Ibyte *) ascii_end + STRIDE <= end |
826 | 2246 && !(*ascii_end & HIGH_BIT_MASK)) |
2247 ascii_end++; | |
867 | 2248 ptr = (Ibyte *) ascii_end; |
826 | 2249 while (ptr < end && byte_ascii_p (*ptr)) |
2250 ptr++; | |
2251 return ptr; | |
2252 } | |
2253 | |
2367 | 2254 /* Skip as many ASCII bytes as possible in the memory block [END, PTR), |
2255 going downwards. Return pointer to the location above the first | |
2256 non-ASCII byte. Optimized for long stretches of ASCII. */ | |
2257 inline static const Ibyte * | |
2258 skip_ascii_down (const Ibyte *ptr, const Ibyte *end) | |
2259 { | |
2260 const unsigned STRIDE_TYPE *ascii_end; | |
2261 | |
2262 /* Need to do in 3 sections -- before alignment start, aligned chunk, | |
2263 after alignment end. */ | |
2264 while (!ALIGNED (ptr)) | |
2265 { | |
2266 if (ptr == end || !byte_ascii_p (*(ptr - 1))) | |
2267 return ptr; | |
2268 ptr--; | |
2269 } | |
2270 ascii_end = (const unsigned STRIDE_TYPE *) ptr - 1; | |
2271 /* This loop screams, because we can detect ASCII | |
2272 characters 4 or 8 at a time. */ | |
2273 while ((const Ibyte *) ascii_end >= end | |
2274 && !(*ascii_end & HIGH_BIT_MASK)) | |
2275 ascii_end--; | |
2276 ptr = (Ibyte *) (ascii_end + 1); | |
2277 while (ptr > end && byte_ascii_p (*(ptr - 1))) | |
2278 ptr--; | |
2279 return ptr; | |
2280 } | |
2281 | |
826 | 2282 /* Function equivalents of bytecount_to_charcount/charcount_to_bytecount. |
2283 These work on strings of all sizes but are more efficient than a simple | |
2284 loop on large strings and probably less efficient on sufficiently small | |
2285 strings. */ | |
2286 | |
2287 Charcount | |
867 | 2288 bytecount_to_charcount_fun (const Ibyte *ptr, Bytecount len) |
826 | 2289 { |
2290 Charcount count = 0; | |
867 | 2291 const Ibyte *end = ptr + len; |
826 | 2292 while (1) |
2293 { | |
867 | 2294 const Ibyte *newptr = skip_ascii (ptr, end); |
826 | 2295 count += newptr - ptr; |
2296 ptr = newptr; | |
2297 if (ptr == end) | |
2298 break; | |
2299 { | |
2300 /* Optimize for successive characters from the same charset */ | |
867 | 2301 Ibyte leading_byte = *ptr; |
826 | 2302 int bytes = rep_bytes_by_first_byte (leading_byte); |
2303 while (ptr < end && *ptr == leading_byte) | |
2304 ptr += bytes, count++; | |
2305 } | |
771 | 2306 } |
2307 | |
2308 /* Bomb out if the specified substring ends in the middle | |
2309 of a character. Note that we might have already gotten | |
2310 a core dump above from an invalid reference, but at least | |
2311 we will get no farther than here. | |
2312 | |
2313 This also catches len < 0. */ | |
800 | 2314 text_checking_assert (ptr == end); |
771 | 2315 |
2316 return count; | |
2317 } | |
2318 | |
2319 Bytecount | |
867 | 2320 charcount_to_bytecount_fun (const Ibyte *ptr, Charcount len) |
771 | 2321 { |
867 | 2322 const Ibyte *newptr = ptr; |
826 | 2323 while (1) |
771 | 2324 { |
867 | 2325 const Ibyte *newnewptr = skip_ascii (newptr, newptr + len); |
826 | 2326 len -= newnewptr - newptr; |
2327 newptr = newnewptr; | |
2328 if (!len) | |
2329 break; | |
2330 { | |
2331 /* Optimize for successive characters from the same charset */ | |
867 | 2332 Ibyte leading_byte = *newptr; |
826 | 2333 int bytes = rep_bytes_by_first_byte (leading_byte); |
2334 while (len > 0 && *newptr == leading_byte) | |
2335 newptr += bytes, len--; | |
2336 } | |
771 | 2337 } |
2338 return newptr - ptr; | |
2339 } | |
2340 | |
2367 | 2341 /* Function equivalent of charcount_to_bytecount_down. This works on strings |
2342 of all sizes but is more efficient than a simple loop on large strings | |
2343 and probably less efficient on sufficiently small strings. */ | |
2344 | |
2345 Bytecount | |
2346 charcount_to_bytecount_down_fun (const Ibyte *ptr, Charcount len) | |
2347 { | |
2348 const Ibyte *newptr = ptr; | |
2349 while (1) | |
2350 { | |
2351 const Ibyte *newnewptr = skip_ascii_down (newptr, newptr - len); | |
2352 len -= newptr - newnewptr; | |
2353 newptr = newnewptr; | |
2354 /* Skip over all non-ASCII chars, counting the length and | |
2355 stopping if it's zero */ | |
2356 while (len && !byte_ascii_p (*(newptr - 1))) | |
2357 if (ibyte_first_byte_p (*--newptr)) | |
2358 len--; | |
2359 if (!len) | |
2360 break; | |
2361 } | |
2362 text_checking_assert (ptr - newptr >= 0); | |
2363 return ptr - newptr; | |
2364 } | |
2365 | |
771 | 2366 /* The next two functions are the actual meat behind the |
2367 charbpos-to-bytebpos and bytebpos-to-charbpos conversions. Currently | |
2368 the method they use is fairly unsophisticated; see buffer.h. | |
2369 | |
2370 Note that charbpos_to_bytebpos_func() is probably the most-called | |
2371 function in all of XEmacs. Therefore, it must be FAST FAST FAST. | |
2372 This is the reason why so much of the code is duplicated. | |
2373 | |
2374 Similar considerations apply to bytebpos_to_charbpos_func(), although | |
2375 less so because the function is not called so often. | |
2367 | 2376 */ |
2377 | |
2378 /* | |
2379 | |
2380 Info on Byte-Char conversion: | |
2381 | |
2382 (Info-goto-node "(internals)Byte-Char Position Conversion") | |
2383 */ | |
2384 | |
2385 #ifdef OLD_BYTE_CHAR | |
771 | 2386 static int not_very_random_number; |
2367 | 2387 #endif /* OLD_BYTE_CHAR */ |
2388 | |
2389 #define OLD_LOOP | |
2390 | |
2391 /* If we are this many characters away from any known position, cache the | |
2392 new position in the buffer's char-byte cache. */ | |
2393 #define FAR_AWAY_DISTANCE 5000 | |
2394 | |
2395 /* Converting between character positions and byte positions. */ | |
2396 | |
2397 /* There are several places in the buffer where we know | |
2398 the correspondence: BEG, BEGV, PT, GPT, ZV and Z, | |
2399 and everywhere there is a marker. So we find the one of these places | |
2400 that is closest to the specified position, and scan from there. */ | |
2401 | |
2402 /* This macro is a subroutine of charbpos_to_bytebpos_func. | |
2403 Note that it is desirable that BYTEPOS is not evaluated | |
2404 except when we really want its value. */ | |
2405 | |
2406 #define CONSIDER(CHARPOS, BYTEPOS) \ | |
2407 do \ | |
2408 { \ | |
2409 Charbpos this_charpos = (CHARPOS); \ | |
2410 int changed = 0; \ | |
2411 \ | |
2412 if (this_charpos == x) \ | |
2413 { \ | |
2414 retval = (BYTEPOS); \ | |
2415 goto done; \ | |
2416 } \ | |
2417 else if (this_charpos > x) \ | |
2418 { \ | |
2419 if (this_charpos < best_above) \ | |
2420 { \ | |
2421 best_above = this_charpos; \ | |
2422 best_above_byte = (BYTEPOS); \ | |
2423 changed = 1; \ | |
2424 } \ | |
2425 } \ | |
2426 else if (this_charpos > best_below) \ | |
2427 { \ | |
2428 best_below = this_charpos; \ | |
2429 best_below_byte = (BYTEPOS); \ | |
2430 changed = 1; \ | |
2431 } \ | |
2432 \ | |
2433 if (changed) \ | |
2434 { \ | |
2435 if (best_above - best_below == best_above_byte - best_below_byte) \ | |
2436 { \ | |
2437 retval = best_below_byte + (x - best_below); \ | |
2438 goto done; \ | |
2439 } \ | |
2440 } \ | |
2441 } \ | |
2442 while (0) | |
2443 | |
771 | 2444 |
2445 Bytebpos | |
2446 charbpos_to_bytebpos_func (struct buffer *buf, Charbpos x) | |
2447 { | |
2367 | 2448 #ifdef OLD_BYTE_CHAR |
771 | 2449 Charbpos bufmin; |
2450 Charbpos bufmax; | |
2451 Bytebpos bytmin; | |
2452 Bytebpos bytmax; | |
2453 int size; | |
2454 int forward_p; | |
2455 int diff_so_far; | |
2456 int add_to_cache = 0; | |
2367 | 2457 #endif /* OLD_BYTE_CHAR */ |
2458 | |
2459 Charbpos best_above, best_below; | |
2460 Bytebpos best_above_byte, best_below_byte; | |
2461 int i; | |
2462 struct buffer_text *t; | |
2463 Bytebpos retval; | |
2464 | |
1292 | 2465 PROFILE_DECLARE (); |
771 | 2466 |
1292 | 2467 PROFILE_RECORD_ENTERING_SECTION (QSin_char_byte_conversion); |
2468 | |
2367 | 2469 best_above = BUF_Z (buf); |
2470 best_above_byte = BYTE_BUF_Z (buf); | |
2471 | |
2472 /* In this case, we simply have all one-byte characters. But this should | |
2473 have been intercepted before, in charbpos_to_bytebpos(). */ | |
2474 text_checking_assert (best_above != best_above_byte); | |
2475 | |
2476 best_below = BUF_BEG (buf); | |
2477 best_below_byte = BYTE_BUF_BEG (buf); | |
2478 | |
2479 /* We find in best_above and best_above_byte | |
2480 the closest known point above CHARPOS, | |
2481 and in best_below and best_below_byte | |
2482 the closest known point below CHARPOS, | |
2483 | |
2484 If at any point we can tell that the space between those | |
2485 two best approximations is all single-byte, | |
2486 we interpolate the result immediately. */ | |
2487 | |
2488 CONSIDER (BUF_PT (buf), BYTE_BUF_PT (buf)); | |
2489 CONSIDER (BUF_GPT (buf), BYTE_BUF_GPT (buf)); | |
2490 CONSIDER (BUF_BEGV (buf), BYTE_BUF_BEGV (buf)); | |
2491 CONSIDER (BUF_ZV (buf), BYTE_BUF_ZV (buf)); | |
2492 | |
2493 t = buf->text; | |
2494 CONSIDER (t->cached_charpos, t->cached_bytepos); | |
2495 | |
2496 /* Check the most recently entered positions first */ | |
2497 | |
2498 for (i = t->next_cache_pos - 1; i >= 0; i--) | |
2499 { | |
2500 CONSIDER (t->mule_charbpos_cache[i], t->mule_bytebpos_cache[i]); | |
2501 | |
2502 /* If we are down to a range of 50 chars, | |
2503 don't bother checking any other markers; | |
2504 scan the intervening chars directly now. */ | |
2505 if (best_above - best_below < 50) | |
2506 break; | |
2507 } | |
2508 | |
2509 /* We get here if we did not exactly hit one of the known places. | |
2510 We have one known above and one known below. | |
2511 Scan, counting characters, from whichever one is closer. */ | |
2512 | |
2513 if (x - best_below < best_above - x) | |
2514 { | |
2515 int record = x - best_below > FAR_AWAY_DISTANCE; | |
2516 | |
2517 #ifdef OLD_LOOP /* old code */ | |
2518 while (best_below != x) | |
2519 { | |
2520 best_below++; | |
2521 INC_BYTEBPOS (buf, best_below_byte); | |
2522 } | |
2523 #else | |
2524 text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT); | |
2525 /* The gap should not occur between best_below and x, or we will be | |
2526 screwed in using charcount_to_bytecount(). It should not be exactly | |
2527 at x either, because we already should have caught that. */ | |
2528 text_checking_assert | |
2529 (BUF_CEILING_OF_IGNORE_ACCESSIBLE (buf, best_below) > x); | |
2530 | |
2531 /* Using charcount_to_bytecount() is potentially a lot faster than a | |
2532 simple loop using INC_BYTEBPOS() because (a) the checks for gap | |
2533 and buffer format are factored out instead of getting checked | |
2534 every time; (b) the checking goes 4 or 8 bytes at a time in ASCII | |
2535 text. | |
2536 */ | |
2537 best_below_byte += | |
2538 charcount_to_bytecount | |
2539 (BYTE_BUF_BYTE_ADDRESS (buf, best_below_byte), x - best_below); | |
2540 best_below = x; | |
2541 #endif /* 0 */ | |
2542 | |
2543 /* If this position is quite far from the nearest known position, | |
2544 cache the correspondence. | |
2545 | |
2546 NB FSF does this: "... by creating a marker here. | |
2547 It will last until the next GC." | |
2548 */ | |
2549 | |
2550 if (record) | |
2551 { | |
2552 /* If we have run out of positions to record, discard some of the | |
2553 old ones. I used to use a circular buffer, which avoids the | |
2554 need to block-move any memory. But it makes it more difficult | |
2555 to keep track of which positions haven't been used -- commonly | |
2556 we haven't yet filled out anywhere near the whole set of | |
2557 positions and don't want to check them all. We should not be | |
2558 recording that often, and block-moving is extremely fast in | |
2559 any case. --ben */ | |
2560 if (t->next_cache_pos == NUM_CACHED_POSITIONS) | |
2561 { | |
2562 memmove (t->mule_charbpos_cache, | |
2563 t->mule_charbpos_cache + NUM_MOVED_POSITIONS, | |
2564 sizeof (Charbpos) * | |
2565 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
2566 memmove (t->mule_bytebpos_cache, | |
2567 t->mule_bytebpos_cache + NUM_MOVED_POSITIONS, | |
2568 sizeof (Bytebpos) * | |
2569 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
2570 t->next_cache_pos -= NUM_MOVED_POSITIONS; | |
2571 } | |
2572 t->mule_charbpos_cache[t->next_cache_pos] = best_below; | |
2573 t->mule_bytebpos_cache[t->next_cache_pos] = best_below_byte; | |
2574 t->next_cache_pos++; | |
2575 } | |
2576 | |
2577 t->cached_charpos = best_below; | |
2578 t->cached_bytepos = best_below_byte; | |
2579 | |
2580 retval = best_below_byte; | |
2581 text_checking_assert (best_below_byte >= best_below); | |
2582 goto done; | |
2583 } | |
2584 else | |
2585 { | |
2586 int record = best_above - x > FAR_AWAY_DISTANCE; | |
2587 | |
2588 #ifdef OLD_LOOP | |
2589 while (best_above != x) | |
2590 { | |
2591 best_above--; | |
2592 DEC_BYTEBPOS (buf, best_above_byte); | |
2593 } | |
2594 #else | |
2595 text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT); | |
2596 /* The gap should not occur between best_above and x, or we will be | |
2597 screwed in using charcount_to_bytecount_down(). It should not be | |
2598 exactly at x either, because we already should have caught | |
2599 that. */ | |
2600 text_checking_assert | |
2601 (BUF_FLOOR_OF_IGNORE_ACCESSIBLE (buf, best_above) < x); | |
2602 | |
2603 /* Using charcount_to_bytecount_down() is potentially a lot faster | |
2604 than a simple loop using DEC_BYTEBPOS(); see above. */ | |
2605 best_above_byte -= | |
2606 charcount_to_bytecount_down | |
2607 /* BYTE_BUF_BYTE_ADDRESS will return a value on the high side of the | |
2608 gap if we are at the gap, which is the wrong side. So do the | |
2609 following trick instead. */ | |
2610 (BYTE_BUF_BYTE_ADDRESS_BEFORE (buf, best_above_byte) + 1, | |
2611 best_above - x); | |
2612 best_above = x; | |
2613 #endif /* SLEDGEHAMMER_CHECK_TEXT */ | |
2614 | |
2615 | |
2616 /* If this position is quite far from the nearest known position, | |
2617 cache the correspondence. | |
2618 | |
2619 NB FSF does this: "... by creating a marker here. | |
2620 It will last until the next GC." | |
2621 */ | |
2622 if (record) | |
2623 { | |
2624 if (t->next_cache_pos == NUM_CACHED_POSITIONS) | |
2625 { | |
2626 memmove (t->mule_charbpos_cache, | |
2627 t->mule_charbpos_cache + NUM_MOVED_POSITIONS, | |
2628 sizeof (Charbpos) * | |
2629 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
2630 memmove (t->mule_bytebpos_cache, | |
2631 t->mule_bytebpos_cache + NUM_MOVED_POSITIONS, | |
2632 sizeof (Bytebpos) * | |
2633 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
2634 t->next_cache_pos -= NUM_MOVED_POSITIONS; | |
2635 } | |
2636 t->mule_charbpos_cache[t->next_cache_pos] = best_above; | |
2637 t->mule_bytebpos_cache[t->next_cache_pos] = best_above_byte; | |
2638 t->next_cache_pos++; | |
2639 } | |
2640 | |
2641 t->cached_charpos = best_above; | |
2642 t->cached_bytepos = best_above_byte; | |
2643 | |
2644 retval = best_above_byte; | |
2645 text_checking_assert (best_above_byte >= best_above); | |
2646 goto done; | |
2647 } | |
2648 | |
2649 #ifdef OLD_BYTE_CHAR | |
2650 | |
771 | 2651 bufmin = buf->text->mule_bufmin; |
2652 bufmax = buf->text->mule_bufmax; | |
2653 bytmin = buf->text->mule_bytmin; | |
2654 bytmax = buf->text->mule_bytmax; | |
2655 size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p; | |
2656 | |
2657 /* The basic idea here is that we shift the "known region" up or down | |
2658 until it overlaps the specified position. We do this by moving | |
2659 the upper bound of the known region up one character at a time, | |
2660 and moving the lower bound of the known region up as necessary | |
2661 when the size of the character just seen changes. | |
2662 | |
2663 We optimize this, however, by first shifting the known region to | |
2664 one of the cached points if it's close by. (We don't check BEG or | |
2665 Z, even though they're cached; most of the time these will be the | |
2666 same as BEGV and ZV, and when they're not, they're not likely | |
2667 to be used.) */ | |
2668 | |
2669 if (x > bufmax) | |
2670 { | |
2671 Charbpos diffmax = x - bufmax; | |
2672 Charbpos diffpt = x - BUF_PT (buf); | |
2673 Charbpos diffzv = BUF_ZV (buf) - x; | |
2674 /* #### This value could stand some more exploration. */ | |
2675 Charcount heuristic_hack = (bufmax - bufmin) >> 2; | |
2676 | |
2677 /* Check if the position is closer to PT or ZV than to the | |
2678 end of the known region. */ | |
2679 | |
2680 if (diffpt < 0) | |
2681 diffpt = -diffpt; | |
2682 if (diffzv < 0) | |
2683 diffzv = -diffzv; | |
2684 | |
2685 /* But also implement a heuristic that favors the known region | |
2686 over PT or ZV. The reason for this is that switching to | |
2687 PT or ZV will wipe out the knowledge in the known region, | |
2688 which might be annoying if the known region is large and | |
2689 PT or ZV is not that much closer than the end of the known | |
2690 region. */ | |
2691 | |
2692 diffzv += heuristic_hack; | |
2693 diffpt += heuristic_hack; | |
2694 if (diffpt < diffmax && diffpt <= diffzv) | |
2695 { | |
2696 bufmax = bufmin = BUF_PT (buf); | |
826 | 2697 bytmax = bytmin = BYTE_BUF_PT (buf); |
771 | 2698 /* We set the size to 1 even though it doesn't really |
2699 matter because the new known region contains no | |
2700 characters. We do this because this is the most | |
2701 likely size of the characters around the new known | |
2702 region, and we avoid potential yuckiness that is | |
2703 done when size == 3. */ | |
2704 size = 1; | |
2705 } | |
2706 if (diffzv < diffmax) | |
2707 { | |
2708 bufmax = bufmin = BUF_ZV (buf); | |
826 | 2709 bytmax = bytmin = BYTE_BUF_ZV (buf); |
771 | 2710 size = 1; |
2711 } | |
2712 } | |
800 | 2713 #ifdef ERROR_CHECK_TEXT |
771 | 2714 else if (x >= bufmin) |
2500 | 2715 ABORT (); |
771 | 2716 #endif |
2717 else | |
2718 { | |
2719 Charbpos diffmin = bufmin - x; | |
2720 Charbpos diffpt = BUF_PT (buf) - x; | |
2721 Charbpos diffbegv = x - BUF_BEGV (buf); | |
2722 /* #### This value could stand some more exploration. */ | |
2723 Charcount heuristic_hack = (bufmax - bufmin) >> 2; | |
2724 | |
2725 if (diffpt < 0) | |
2726 diffpt = -diffpt; | |
2727 if (diffbegv < 0) | |
2728 diffbegv = -diffbegv; | |
2729 | |
2730 /* But also implement a heuristic that favors the known region -- | |
2731 see above. */ | |
2732 | |
2733 diffbegv += heuristic_hack; | |
2734 diffpt += heuristic_hack; | |
2735 | |
2736 if (diffpt < diffmin && diffpt <= diffbegv) | |
2737 { | |
2738 bufmax = bufmin = BUF_PT (buf); | |
826 | 2739 bytmax = bytmin = BYTE_BUF_PT (buf); |
771 | 2740 /* We set the size to 1 even though it doesn't really |
2741 matter because the new known region contains no | |
2742 characters. We do this because this is the most | |
2743 likely size of the characters around the new known | |
2744 region, and we avoid potential yuckiness that is | |
2745 done when size == 3. */ | |
2746 size = 1; | |
2747 } | |
2748 if (diffbegv < diffmin) | |
2749 { | |
2750 bufmax = bufmin = BUF_BEGV (buf); | |
826 | 2751 bytmax = bytmin = BYTE_BUF_BEGV (buf); |
771 | 2752 size = 1; |
2753 } | |
2754 } | |
2755 | |
2756 diff_so_far = x > bufmax ? x - bufmax : bufmin - x; | |
2757 if (diff_so_far > 50) | |
2758 { | |
2759 /* If we have to move more than a certain amount, then look | |
2760 into our cache. */ | |
2761 int minval = INT_MAX; | |
2762 int found = 0; | |
2763 int i; | |
2764 | |
2765 add_to_cache = 1; | |
2766 /* I considered keeping the positions ordered. This would speed | |
2767 up this loop, but updating the cache would take longer, so | |
2768 it doesn't seem like it would really matter. */ | |
2367 | 2769 for (i = 0; i < NUM_CACHED_POSITIONS; i++) |
771 | 2770 { |
2771 int diff = buf->text->mule_charbpos_cache[i] - x; | |
2772 | |
2773 if (diff < 0) | |
2774 diff = -diff; | |
2775 if (diff < minval) | |
2776 { | |
2777 minval = diff; | |
2778 found = i; | |
2779 } | |
2780 } | |
2781 | |
2782 if (minval < diff_so_far) | |
2783 { | |
2784 bufmax = bufmin = buf->text->mule_charbpos_cache[found]; | |
2785 bytmax = bytmin = buf->text->mule_bytebpos_cache[found]; | |
2786 size = 1; | |
2787 } | |
2788 } | |
2789 | |
2790 /* It's conceivable that the caching above could lead to X being | |
2791 the same as one of the range edges. */ | |
2792 if (x >= bufmax) | |
2793 { | |
2794 Bytebpos newmax; | |
2795 Bytecount newsize; | |
2796 | |
2797 forward_p = 1; | |
2798 while (x > bufmax) | |
2799 { | |
2800 newmax = bytmax; | |
2801 | |
2802 INC_BYTEBPOS (buf, newmax); | |
2803 newsize = newmax - bytmax; | |
2804 if (newsize != size) | |
2805 { | |
2806 bufmin = bufmax; | |
2807 bytmin = bytmax; | |
2808 size = newsize; | |
2809 } | |
2810 bytmax = newmax; | |
2811 bufmax++; | |
2812 } | |
2813 retval = bytmax; | |
2814 | |
2815 /* #### Should go past the found location to reduce the number | |
2816 of times that this function is called */ | |
2817 } | |
2818 else /* x < bufmin */ | |
2819 { | |
2820 Bytebpos newmin; | |
2821 Bytecount newsize; | |
2822 | |
2823 forward_p = 0; | |
2824 while (x < bufmin) | |
2825 { | |
2826 newmin = bytmin; | |
2827 | |
2828 DEC_BYTEBPOS (buf, newmin); | |
2829 newsize = bytmin - newmin; | |
2830 if (newsize != size) | |
2831 { | |
2832 bufmax = bufmin; | |
2833 bytmax = bytmin; | |
2834 size = newsize; | |
2835 } | |
2836 bytmin = newmin; | |
2837 bufmin--; | |
2838 } | |
2839 retval = bytmin; | |
2840 | |
2841 /* #### Should go past the found location to reduce the number | |
2842 of times that this function is called | |
2843 */ | |
2844 } | |
2845 | |
2846 /* If size is three, than we have to max sure that the range we | |
2847 discovered isn't too large, because we use a fixed-length | |
2848 table to divide by 3. */ | |
2849 | |
2850 if (size == 3) | |
2851 { | |
2852 int gap = bytmax - bytmin; | |
2853 buf->text->mule_three_p = 1; | |
2854 buf->text->mule_shifter = 1; | |
2855 | |
2856 if (gap > MAX_BYTEBPOS_GAP_SIZE_3) | |
2857 { | |
2858 if (forward_p) | |
2859 { | |
2860 bytmin = bytmax - MAX_BYTEBPOS_GAP_SIZE_3; | |
2861 bufmin = bufmax - MAX_CHARBPOS_GAP_SIZE_3; | |
2862 } | |
2863 else | |
2864 { | |
2865 bytmax = bytmin + MAX_BYTEBPOS_GAP_SIZE_3; | |
2866 bufmax = bufmin + MAX_CHARBPOS_GAP_SIZE_3; | |
2867 } | |
2868 } | |
2869 } | |
2870 else | |
2871 { | |
2872 buf->text->mule_three_p = 0; | |
2873 if (size == 4) | |
2874 buf->text->mule_shifter = 2; | |
2875 else | |
2876 buf->text->mule_shifter = size - 1; | |
2877 } | |
2878 | |
2879 buf->text->mule_bufmin = bufmin; | |
2880 buf->text->mule_bufmax = bufmax; | |
2881 buf->text->mule_bytmin = bytmin; | |
2882 buf->text->mule_bytmax = bytmax; | |
2883 | |
2884 if (add_to_cache) | |
2885 { | |
2886 int replace_loc; | |
2887 | |
2888 /* We throw away a "random" cached value and replace it with | |
2889 the new value. It doesn't actually have to be very random | |
2890 at all, just evenly distributed. | |
2891 | |
2892 #### It would be better to use a least-recently-used algorithm | |
2893 or something that tries to space things out, but I'm not sure | |
2894 it's worth it to go to the trouble of maintaining that. */ | |
2895 not_very_random_number += 621; | |
2896 replace_loc = not_very_random_number & 15; | |
2897 buf->text->mule_charbpos_cache[replace_loc] = x; | |
2898 buf->text->mule_bytebpos_cache[replace_loc] = retval; | |
2899 } | |
2900 | |
2367 | 2901 #endif /* OLD_BYTE_CHAR */ |
2902 | |
2903 done: | |
1292 | 2904 PROFILE_RECORD_EXITING_SECTION (QSin_char_byte_conversion); |
2905 | |
771 | 2906 return retval; |
2907 } | |
2908 | |
2367 | 2909 #undef CONSIDER |
2910 | |
2911 /* bytepos_to_charpos returns the char position corresponding to BYTEPOS. */ | |
2912 | |
2913 /* This macro is a subroutine of bytebpos_to_charbpos_func. | |
2914 It is used when BYTEPOS is actually the byte position. */ | |
2915 | |
2916 #define CONSIDER(BYTEPOS, CHARPOS) \ | |
2917 do \ | |
2918 { \ | |
2919 Bytebpos this_bytepos = (BYTEPOS); \ | |
2920 int changed = 0; \ | |
2921 \ | |
2922 if (this_bytepos == x) \ | |
2923 { \ | |
2924 retval = (CHARPOS); \ | |
2925 goto done; \ | |
2926 } \ | |
2927 else if (this_bytepos > x) \ | |
2928 { \ | |
2929 if (this_bytepos < best_above_byte) \ | |
2930 { \ | |
2931 best_above = (CHARPOS); \ | |
2932 best_above_byte = this_bytepos; \ | |
2933 changed = 1; \ | |
2934 } \ | |
2935 } \ | |
2936 else if (this_bytepos > best_below_byte) \ | |
2937 { \ | |
2938 best_below = (CHARPOS); \ | |
2939 best_below_byte = this_bytepos; \ | |
2940 changed = 1; \ | |
2941 } \ | |
2942 \ | |
2943 if (changed) \ | |
2944 { \ | |
2945 if (best_above - best_below == best_above_byte - best_below_byte) \ | |
2946 { \ | |
2947 retval = best_below + (x - best_below_byte); \ | |
2948 goto done; \ | |
2949 } \ | |
2950 } \ | |
2951 } \ | |
2952 while (0) | |
2953 | |
771 | 2954 /* The logic in this function is almost identical to the logic in |
2955 the previous function. */ | |
2956 | |
2957 Charbpos | |
2958 bytebpos_to_charbpos_func (struct buffer *buf, Bytebpos x) | |
2959 { | |
2367 | 2960 #ifdef OLD_BYTE_CHAR |
771 | 2961 Charbpos bufmin; |
2962 Charbpos bufmax; | |
2963 Bytebpos bytmin; | |
2964 Bytebpos bytmax; | |
2965 int size; | |
2966 int forward_p; | |
2967 int diff_so_far; | |
2968 int add_to_cache = 0; | |
2367 | 2969 #endif /* OLD_BYTE_CHAR */ |
2970 | |
2971 Charbpos best_above, best_above_byte; | |
2972 Bytebpos best_below, best_below_byte; | |
2973 int i; | |
2974 struct buffer_text *t; | |
2975 Charbpos retval; | |
2976 | |
1292 | 2977 PROFILE_DECLARE (); |
771 | 2978 |
1292 | 2979 PROFILE_RECORD_ENTERING_SECTION (QSin_char_byte_conversion); |
2980 | |
2367 | 2981 best_above = BUF_Z (buf); |
2982 best_above_byte = BYTE_BUF_Z (buf); | |
2983 | |
2984 /* In this case, we simply have all one-byte characters. But this should | |
2985 have been intercepted before, in bytebpos_to_charbpos(). */ | |
2986 text_checking_assert (best_above != best_above_byte); | |
2987 | |
2988 best_below = BUF_BEG (buf); | |
2989 best_below_byte = BYTE_BUF_BEG (buf); | |
2990 | |
2991 CONSIDER (BYTE_BUF_PT (buf), BUF_PT (buf)); | |
2992 CONSIDER (BYTE_BUF_GPT (buf), BUF_GPT (buf)); | |
2993 CONSIDER (BYTE_BUF_BEGV (buf), BUF_BEGV (buf)); | |
2994 CONSIDER (BYTE_BUF_ZV (buf), BUF_ZV (buf)); | |
2995 | |
2996 t = buf->text; | |
2997 CONSIDER (t->cached_bytepos, t->cached_charpos); | |
2998 | |
2999 /* Check the most recently entered positions first */ | |
3000 | |
3001 for (i = t->next_cache_pos - 1; i >= 0; i--) | |
3002 { | |
3003 CONSIDER (t->mule_bytebpos_cache[i], t->mule_charbpos_cache[i]); | |
3004 | |
3005 /* If we are down to a range of 50 chars, | |
3006 don't bother checking any other markers; | |
3007 scan the intervening chars directly now. */ | |
3008 if (best_above - best_below < 50) | |
3009 break; | |
3010 } | |
3011 | |
3012 /* We get here if we did not exactly hit one of the known places. | |
3013 We have one known above and one known below. | |
3014 Scan, counting characters, from whichever one is closer. */ | |
3015 | |
3016 if (x - best_below_byte < best_above_byte - x) | |
3017 { | |
3018 int record = x - best_below_byte > 5000; | |
3019 | |
3020 #ifdef OLD_LOOP /* old code */ | |
4525
d64f1060cd65
Fix off-by-one error in ccl_driver. <87iqr7v7p0.fsf@uwakimon.sk.tsukuba.ac.jp>
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4073
diff
changeset
|
3021 (best_below_byte < x) |
2367 | 3022 { |
3023 best_below++; | |
3024 INC_BYTEBPOS (buf, best_below_byte); | |
3025 } | |
3026 #else | |
3027 text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT); | |
3028 /* The gap should not occur between best_below and x, or we will be | |
3029 screwed in using charcount_to_bytecount(). It should not be exactly | |
3030 at x either, because we already should have caught that. */ | |
3031 text_checking_assert | |
3032 (BYTE_BUF_CEILING_OF_IGNORE_ACCESSIBLE (buf, best_below_byte) > x); | |
3033 | |
3034 /* Using bytecount_to_charcount() is potentially a lot faster than | |
3035 a simple loop above using INC_BYTEBPOS(); see above. | |
3036 */ | |
3037 best_below += | |
3038 bytecount_to_charcount | |
3039 (BYTE_BUF_BYTE_ADDRESS (buf, best_below_byte), x - best_below_byte); | |
3040 best_below_byte = x; | |
3041 #endif | |
3042 | |
3043 /* If this position is quite far from the nearest known position, | |
3044 cache the correspondence. | |
3045 | |
3046 NB FSF does this: "... by creating a marker here. | |
3047 It will last until the next GC." | |
3048 */ | |
3049 | |
3050 if (record) | |
3051 { | |
3052 if (t->next_cache_pos == NUM_CACHED_POSITIONS) | |
3053 { | |
3054 memmove (t->mule_charbpos_cache, | |
3055 t->mule_charbpos_cache + NUM_MOVED_POSITIONS, | |
3056 sizeof (Charbpos) * | |
3057 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
3058 memmove (t->mule_bytebpos_cache, | |
3059 t->mule_bytebpos_cache + NUM_MOVED_POSITIONS, | |
3060 sizeof (Bytebpos) * | |
3061 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
3062 t->next_cache_pos -= NUM_MOVED_POSITIONS; | |
3063 } | |
3064 t->mule_charbpos_cache[t->next_cache_pos] = best_below; | |
3065 t->mule_bytebpos_cache[t->next_cache_pos] = best_below_byte; | |
3066 t->next_cache_pos++; | |
3067 } | |
3068 | |
3069 | |
3070 t->cached_charpos = best_below; | |
3071 t->cached_bytepos = best_below_byte; | |
3072 | |
3073 retval = best_below; | |
3074 text_checking_assert (best_below_byte >= best_below); | |
3075 goto done; | |
3076 } | |
3077 else | |
3078 { | |
3079 int record = best_above_byte - x > 5000; | |
3080 | |
3081 #ifdef OLD_LOOP /* old code */ | |
3082 while (best_above_byte > x) | |
3083 { | |
3084 best_above--; | |
3085 DEC_BYTEBPOS (buf, best_above_byte); | |
3086 } | |
3087 #else | |
3088 text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT); | |
3089 /* The gap should not occur between best_above and x, or we will be | |
3090 screwed in using bytecount_to_charcount_down(). It should not be | |
3091 exactly at x either, because we already should have caught | |
3092 that. */ | |
3093 text_checking_assert | |
3094 (BYTE_BUF_FLOOR_OF_IGNORE_ACCESSIBLE (buf, best_above_byte) < x); | |
3095 | |
3096 /* Using bytecount_to_charcount_down() is potentially a lot faster | |
3097 than a simple loop using INC_BYTEBPOS(); see above. */ | |
3098 best_above -= | |
3099 bytecount_to_charcount_down | |
3100 /* BYTE_BUF_BYTE_ADDRESS will return a value on the high side of the | |
3101 gap if we are at the gap, which is the wrong side. So do the | |
3102 following trick instead. */ | |
3103 (BYTE_BUF_BYTE_ADDRESS_BEFORE (buf, best_above_byte) + 1, | |
3104 best_above_byte - x); | |
3105 best_above_byte = x; | |
3106 #endif | |
3107 | |
3108 | |
3109 /* If this position is quite far from the nearest known position, | |
3110 cache the correspondence. | |
3111 | |
3112 NB FSF does this: "... by creating a marker here. | |
3113 It will last until the next GC." | |
3114 */ | |
3115 if (record) | |
3116 { | |
3117 if (t->next_cache_pos == NUM_CACHED_POSITIONS) | |
3118 { | |
3119 memmove (t->mule_charbpos_cache, | |
3120 t->mule_charbpos_cache + NUM_MOVED_POSITIONS, | |
3121 sizeof (Charbpos) * | |
3122 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
3123 memmove (t->mule_bytebpos_cache, | |
3124 t->mule_bytebpos_cache + NUM_MOVED_POSITIONS, | |
3125 sizeof (Bytebpos) * | |
3126 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
3127 t->next_cache_pos -= NUM_MOVED_POSITIONS; | |
3128 } | |
3129 t->mule_charbpos_cache[t->next_cache_pos] = best_above; | |
3130 t->mule_bytebpos_cache[t->next_cache_pos] = best_above_byte; | |
3131 t->next_cache_pos++; | |
3132 } | |
3133 | |
3134 t->cached_charpos = best_above; | |
3135 t->cached_bytepos = best_above_byte; | |
3136 | |
3137 retval = best_above; | |
3138 text_checking_assert (best_above_byte >= best_above); | |
3139 goto done; | |
3140 } | |
3141 | |
3142 #ifdef OLD_BYTE_CHAR | |
3143 | |
771 | 3144 bufmin = buf->text->mule_bufmin; |
3145 bufmax = buf->text->mule_bufmax; | |
3146 bytmin = buf->text->mule_bytmin; | |
3147 bytmax = buf->text->mule_bytmax; | |
3148 size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p; | |
3149 | |
3150 /* The basic idea here is that we shift the "known region" up or down | |
3151 until it overlaps the specified position. We do this by moving | |
3152 the upper bound of the known region up one character at a time, | |
3153 and moving the lower bound of the known region up as necessary | |
3154 when the size of the character just seen changes. | |
3155 | |
3156 We optimize this, however, by first shifting the known region to | |
826 | 3157 one of the cached points if it's close by. (We don't check BYTE_BEG or |
3158 BYTE_Z, even though they're cached; most of the time these will be the | |
3159 same as BYTE_BEGV and BYTE_ZV, and when they're not, they're not likely | |
771 | 3160 to be used.) */ |
3161 | |
3162 if (x > bytmax) | |
3163 { | |
3164 Bytebpos diffmax = x - bytmax; | |
826 | 3165 Bytebpos diffpt = x - BYTE_BUF_PT (buf); |
3166 Bytebpos diffzv = BYTE_BUF_ZV (buf) - x; | |
771 | 3167 /* #### This value could stand some more exploration. */ |
3168 Bytecount heuristic_hack = (bytmax - bytmin) >> 2; | |
3169 | |
3170 /* Check if the position is closer to PT or ZV than to the | |
3171 end of the known region. */ | |
3172 | |
3173 if (diffpt < 0) | |
3174 diffpt = -diffpt; | |
3175 if (diffzv < 0) | |
3176 diffzv = -diffzv; | |
3177 | |
3178 /* But also implement a heuristic that favors the known region | |
826 | 3179 over BYTE_PT or BYTE_ZV. The reason for this is that switching to |
3180 BYTE_PT or BYTE_ZV will wipe out the knowledge in the known region, | |
771 | 3181 which might be annoying if the known region is large and |
826 | 3182 BYTE_PT or BYTE_ZV is not that much closer than the end of the known |
771 | 3183 region. */ |
3184 | |
3185 diffzv += heuristic_hack; | |
3186 diffpt += heuristic_hack; | |
3187 if (diffpt < diffmax && diffpt <= diffzv) | |
3188 { | |
3189 bufmax = bufmin = BUF_PT (buf); | |
826 | 3190 bytmax = bytmin = BYTE_BUF_PT (buf); |
771 | 3191 /* We set the size to 1 even though it doesn't really |
3192 matter because the new known region contains no | |
3193 characters. We do this because this is the most | |
3194 likely size of the characters around the new known | |
3195 region, and we avoid potential yuckiness that is | |
3196 done when size == 3. */ | |
3197 size = 1; | |
3198 } | |
3199 if (diffzv < diffmax) | |
3200 { | |
3201 bufmax = bufmin = BUF_ZV (buf); | |
826 | 3202 bytmax = bytmin = BYTE_BUF_ZV (buf); |
771 | 3203 size = 1; |
3204 } | |
3205 } | |
800 | 3206 #ifdef ERROR_CHECK_TEXT |
771 | 3207 else if (x >= bytmin) |
2500 | 3208 ABORT (); |
771 | 3209 #endif |
3210 else | |
3211 { | |
3212 Bytebpos diffmin = bytmin - x; | |
826 | 3213 Bytebpos diffpt = BYTE_BUF_PT (buf) - x; |
3214 Bytebpos diffbegv = x - BYTE_BUF_BEGV (buf); | |
771 | 3215 /* #### This value could stand some more exploration. */ |
3216 Bytecount heuristic_hack = (bytmax - bytmin) >> 2; | |
3217 | |
3218 if (diffpt < 0) | |
3219 diffpt = -diffpt; | |
3220 if (diffbegv < 0) | |
3221 diffbegv = -diffbegv; | |
3222 | |
3223 /* But also implement a heuristic that favors the known region -- | |
3224 see above. */ | |
3225 | |
3226 diffbegv += heuristic_hack; | |
3227 diffpt += heuristic_hack; | |
3228 | |
3229 if (diffpt < diffmin && diffpt <= diffbegv) | |
3230 { | |
3231 bufmax = bufmin = BUF_PT (buf); | |
826 | 3232 bytmax = bytmin = BYTE_BUF_PT (buf); |
771 | 3233 /* We set the size to 1 even though it doesn't really |
3234 matter because the new known region contains no | |
3235 characters. We do this because this is the most | |
3236 likely size of the characters around the new known | |
3237 region, and we avoid potential yuckiness that is | |
3238 done when size == 3. */ | |
3239 size = 1; | |
3240 } | |
3241 if (diffbegv < diffmin) | |
3242 { | |
3243 bufmax = bufmin = BUF_BEGV (buf); | |
826 | 3244 bytmax = bytmin = BYTE_BUF_BEGV (buf); |
771 | 3245 size = 1; |
3246 } | |
3247 } | |
3248 | |
3249 diff_so_far = x > bytmax ? x - bytmax : bytmin - x; | |
3250 if (diff_so_far > 50) | |
3251 { | |
3252 /* If we have to move more than a certain amount, then look | |
3253 into our cache. */ | |
3254 int minval = INT_MAX; | |
3255 int found = 0; | |
3256 int i; | |
3257 | |
3258 add_to_cache = 1; | |
3259 /* I considered keeping the positions ordered. This would speed | |
3260 up this loop, but updating the cache would take longer, so | |
3261 it doesn't seem like it would really matter. */ | |
2367 | 3262 for (i = 0; i < NUM_CACHED_POSITIONS; i++) |
771 | 3263 { |
3264 int diff = buf->text->mule_bytebpos_cache[i] - x; | |
3265 | |
3266 if (diff < 0) | |
3267 diff = -diff; | |
3268 if (diff < minval) | |
3269 { | |
3270 minval = diff; | |
3271 found = i; | |
3272 } | |
3273 } | |
3274 | |
3275 if (minval < diff_so_far) | |
3276 { | |
3277 bufmax = bufmin = buf->text->mule_charbpos_cache[found]; | |
3278 bytmax = bytmin = buf->text->mule_bytebpos_cache[found]; | |
3279 size = 1; | |
3280 } | |
3281 } | |
3282 | |
3283 /* It's conceivable that the caching above could lead to X being | |
3284 the same as one of the range edges. */ | |
3285 if (x >= bytmax) | |
3286 { | |
3287 Bytebpos newmax; | |
3288 Bytecount newsize; | |
3289 | |
3290 forward_p = 1; | |
3291 while (x > bytmax) | |
3292 { | |
3293 newmax = bytmax; | |
3294 | |
3295 INC_BYTEBPOS (buf, newmax); | |
3296 newsize = newmax - bytmax; | |
3297 if (newsize != size) | |
3298 { | |
3299 bufmin = bufmax; | |
3300 bytmin = bytmax; | |
3301 size = newsize; | |
3302 } | |
3303 bytmax = newmax; | |
3304 bufmax++; | |
3305 } | |
3306 retval = bufmax; | |
3307 | |
3308 /* #### Should go past the found location to reduce the number | |
3309 of times that this function is called */ | |
3310 } | |
3311 else /* x <= bytmin */ | |
3312 { | |
3313 Bytebpos newmin; | |
3314 Bytecount newsize; | |
3315 | |
3316 forward_p = 0; | |
3317 while (x < bytmin) | |
3318 { | |
3319 newmin = bytmin; | |
3320 | |
3321 DEC_BYTEBPOS (buf, newmin); | |
3322 newsize = bytmin - newmin; | |
3323 if (newsize != size) | |
3324 { | |
3325 bufmax = bufmin; | |
3326 bytmax = bytmin; | |
3327 size = newsize; | |
3328 } | |
3329 bytmin = newmin; | |
3330 bufmin--; | |
3331 } | |
3332 retval = bufmin; | |
3333 | |
3334 /* #### Should go past the found location to reduce the number | |
3335 of times that this function is called | |
3336 */ | |
3337 } | |
3338 | |
3339 /* If size is three, than we have to max sure that the range we | |
3340 discovered isn't too large, because we use a fixed-length | |
3341 table to divide by 3. */ | |
3342 | |
3343 if (size == 3) | |
3344 { | |
3345 int gap = bytmax - bytmin; | |
3346 buf->text->mule_three_p = 1; | |
3347 buf->text->mule_shifter = 1; | |
3348 | |
3349 if (gap > MAX_BYTEBPOS_GAP_SIZE_3) | |
3350 { | |
3351 if (forward_p) | |
3352 { | |
3353 bytmin = bytmax - MAX_BYTEBPOS_GAP_SIZE_3; | |
3354 bufmin = bufmax - MAX_CHARBPOS_GAP_SIZE_3; | |
3355 } | |
3356 else | |
3357 { | |
3358 bytmax = bytmin + MAX_BYTEBPOS_GAP_SIZE_3; | |
3359 bufmax = bufmin + MAX_CHARBPOS_GAP_SIZE_3; | |
3360 } | |
3361 } | |
3362 } | |
3363 else | |
3364 { | |
3365 buf->text->mule_three_p = 0; | |
3366 if (size == 4) | |
3367 buf->text->mule_shifter = 2; | |
3368 else | |
3369 buf->text->mule_shifter = size - 1; | |
3370 } | |
3371 | |
3372 buf->text->mule_bufmin = bufmin; | |
3373 buf->text->mule_bufmax = bufmax; | |
3374 buf->text->mule_bytmin = bytmin; | |
3375 buf->text->mule_bytmax = bytmax; | |
3376 | |
3377 if (add_to_cache) | |
3378 { | |
3379 int replace_loc; | |
3380 | |
3381 /* We throw away a "random" cached value and replace it with | |
3382 the new value. It doesn't actually have to be very random | |
3383 at all, just evenly distributed. | |
3384 | |
3385 #### It would be better to use a least-recently-used algorithm | |
3386 or something that tries to space things out, but I'm not sure | |
3387 it's worth it to go to the trouble of maintaining that. */ | |
3388 not_very_random_number += 621; | |
3389 replace_loc = not_very_random_number & 15; | |
3390 buf->text->mule_charbpos_cache[replace_loc] = retval; | |
3391 buf->text->mule_bytebpos_cache[replace_loc] = x; | |
3392 } | |
2367 | 3393 #endif /* OLD_BYTE_CHAR */ |
3394 | |
3395 done: | |
1292 | 3396 PROFILE_RECORD_EXITING_SECTION (QSin_char_byte_conversion); |
3397 | |
771 | 3398 return retval; |
3399 } | |
3400 | |
3401 /* Text of length BYTELENGTH and CHARLENGTH (in different units) | |
3402 was inserted at charbpos START. */ | |
3403 | |
3404 void | |
3405 buffer_mule_signal_inserted_region (struct buffer *buf, Charbpos start, | |
3406 Bytecount bytelength, | |
3407 Charcount charlength) | |
3408 { | |
2367 | 3409 #ifdef OLD_BYTE_CHAR |
771 | 3410 int size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p; |
2367 | 3411 #endif /* OLD_BYTE_CHAR */ |
771 | 3412 int i; |
3413 | |
3414 /* Adjust the cache of known positions. */ | |
2367 | 3415 for (i = 0; i < buf->text->next_cache_pos; i++) |
771 | 3416 { |
3417 | |
3418 if (buf->text->mule_charbpos_cache[i] > start) | |
3419 { | |
3420 buf->text->mule_charbpos_cache[i] += charlength; | |
3421 buf->text->mule_bytebpos_cache[i] += bytelength; | |
3422 } | |
3423 } | |
3424 | |
2367 | 3425 /* Adjust the special cached position. */ |
3426 | |
3427 if (buf->text->cached_charpos > start) | |
3428 { | |
3429 buf->text->cached_charpos += charlength; | |
3430 buf->text->cached_bytepos += bytelength; | |
3431 } | |
3432 | |
3433 #ifdef OLD_BYTE_CHAR | |
771 | 3434 if (start >= buf->text->mule_bufmax) |
826 | 3435 return; |
771 | 3436 |
3437 /* The insertion is either before the known region, in which case | |
3438 it shoves it forward; or within the known region, in which case | |
3439 it shoves the end forward. (But it may make the known region | |
3440 inconsistent, so we may have to shorten it.) */ | |
3441 | |
3442 if (start <= buf->text->mule_bufmin) | |
3443 { | |
3444 buf->text->mule_bufmin += charlength; | |
3445 buf->text->mule_bufmax += charlength; | |
3446 buf->text->mule_bytmin += bytelength; | |
3447 buf->text->mule_bytmax += bytelength; | |
3448 } | |
3449 else | |
3450 { | |
3451 Charbpos end = start + charlength; | |
3452 /* the insertion point divides the known region in two. | |
3453 Keep the longer half, at least, and expand into the | |
3454 inserted chunk as much as possible. */ | |
3455 | |
3456 if (start - buf->text->mule_bufmin > buf->text->mule_bufmax - start) | |
3457 { | |
3458 Bytebpos bytestart = (buf->text->mule_bytmin | |
3459 + size * (start - buf->text->mule_bufmin)); | |
3460 Bytebpos bytenew; | |
3461 | |
3462 while (start < end) | |
3463 { | |
3464 bytenew = bytestart; | |
3465 INC_BYTEBPOS (buf, bytenew); | |
3466 if (bytenew - bytestart != size) | |
3467 break; | |
3468 start++; | |
3469 bytestart = bytenew; | |
3470 } | |
3471 if (start != end) | |
3472 { | |
3473 buf->text->mule_bufmax = start; | |
3474 buf->text->mule_bytmax = bytestart; | |
3475 } | |
3476 else | |
3477 { | |
3478 buf->text->mule_bufmax += charlength; | |
3479 buf->text->mule_bytmax += bytelength; | |
3480 } | |
3481 } | |
3482 else | |
3483 { | |
3484 Bytebpos byteend = (buf->text->mule_bytmin | |
3485 + size * (start - buf->text->mule_bufmin) | |
3486 + bytelength); | |
3487 Bytebpos bytenew; | |
3488 | |
3489 buf->text->mule_bufmax += charlength; | |
3490 buf->text->mule_bytmax += bytelength; | |
3491 | |
3492 while (end > start) | |
3493 { | |
3494 bytenew = byteend; | |
3495 DEC_BYTEBPOS (buf, bytenew); | |
3496 if (byteend - bytenew != size) | |
3497 break; | |
3498 end--; | |
3499 byteend = bytenew; | |
3500 } | |
3501 if (start != end) | |
3502 { | |
3503 buf->text->mule_bufmin = end; | |
3504 buf->text->mule_bytmin = byteend; | |
3505 } | |
3506 } | |
3507 } | |
2367 | 3508 #endif /* OLD_BYTE_CHAR */ |
771 | 3509 } |
3510 | |
826 | 3511 /* Text from START to END (equivalent in Bytebpos's: from BYTE_START to |
3512 BYTE_END) was deleted. */ | |
771 | 3513 |
3514 void | |
3515 buffer_mule_signal_deleted_region (struct buffer *buf, Charbpos start, | |
826 | 3516 Charbpos end, Bytebpos byte_start, |
3517 Bytebpos byte_end) | |
771 | 3518 { |
3519 int i; | |
3520 | |
3521 /* Adjust the cache of known positions. */ | |
2367 | 3522 for (i = 0; i < buf->text->next_cache_pos; i++) |
771 | 3523 { |
3524 /* After the end; gets shoved backward */ | |
3525 if (buf->text->mule_charbpos_cache[i] > end) | |
3526 { | |
3527 buf->text->mule_charbpos_cache[i] -= end - start; | |
826 | 3528 buf->text->mule_bytebpos_cache[i] -= byte_end - byte_start; |
771 | 3529 } |
3530 /* In the range; moves to start of range */ | |
3531 else if (buf->text->mule_charbpos_cache[i] > start) | |
3532 { | |
3533 buf->text->mule_charbpos_cache[i] = start; | |
826 | 3534 buf->text->mule_bytebpos_cache[i] = byte_start; |
771 | 3535 } |
3536 } | |
3537 | |
2367 | 3538 /* Adjust the special cached position. */ |
3539 | |
3540 /* After the end; gets shoved backward */ | |
3541 if (buf->text->cached_charpos > end) | |
3542 { | |
3543 buf->text->cached_charpos -= end - start; | |
3544 buf->text->cached_bytepos -= byte_end - byte_start; | |
3545 } | |
3546 /* In the range; moves to start of range */ | |
3547 else if (buf->text->cached_charpos > start) | |
3548 { | |
3549 buf->text->cached_charpos = start; | |
3550 buf->text->cached_bytepos = byte_start; | |
3551 } | |
3552 | |
3553 #ifdef OLD_BYTE_CHAR | |
771 | 3554 /* We don't care about any text after the end of the known region. */ |
3555 | |
3556 end = min (end, buf->text->mule_bufmax); | |
826 | 3557 byte_end = min (byte_end, buf->text->mule_bytmax); |
771 | 3558 if (start >= end) |
826 | 3559 return; |
771 | 3560 |
3561 /* The end of the known region offsets by the total amount of deletion, | |
3562 since it's all before it. */ | |
3563 | |
3564 buf->text->mule_bufmax -= end - start; | |
826 | 3565 buf->text->mule_bytmax -= byte_end - byte_start; |
771 | 3566 |
3567 /* Now we don't care about any text after the start of the known region. */ | |
3568 | |
3569 end = min (end, buf->text->mule_bufmin); | |
826 | 3570 byte_end = min (byte_end, buf->text->mule_bytmin); |
771 | 3571 if (start < end) |
3572 { | |
3573 buf->text->mule_bufmin -= end - start; | |
826 | 3574 buf->text->mule_bytmin -= byte_end - byte_start; |
771 | 3575 } |
2367 | 3576 #endif /* OLD_BYTE_CHAR */ |
771 | 3577 } |
3578 | |
3579 #endif /* MULE */ | |
3580 | |
3581 | |
3582 /************************************************************************/ | |
3583 /* verifying buffer and string positions */ | |
3584 /************************************************************************/ | |
3585 | |
3586 /* Functions below are tagged with either _byte or _char indicating | |
3587 whether they return byte or character positions. For a buffer, | |
3588 a character position is a "Charbpos" and a byte position is a "Bytebpos". | |
3589 For strings, these are sometimes typed using "Charcount" and | |
3590 "Bytecount". */ | |
3591 | |
3592 /* Flags for the functions below are: | |
3593 | |
3594 GB_ALLOW_PAST_ACCESSIBLE | |
3595 | |
3596 Allow positions to range over the entire buffer (BUF_BEG to BUF_Z), | |
3597 rather than just the accessible portion (BUF_BEGV to BUF_ZV). | |
3598 For strings, this flag has no effect. | |
3599 | |
3600 GB_COERCE_RANGE | |
3601 | |
3602 If the position is outside the allowable range, return the lower | |
3603 or upper bound of the range, whichever is closer to the specified | |
3604 position. | |
3605 | |
3606 GB_NO_ERROR_IF_BAD | |
3607 | |
3608 If the position is outside the allowable range, return -1. | |
3609 | |
3610 GB_NEGATIVE_FROM_END | |
3611 | |
3612 If a value is negative, treat it as an offset from the end. | |
3613 Only applies to strings. | |
3614 | |
3615 The following additional flags apply only to the functions | |
3616 that return ranges: | |
3617 | |
3618 GB_ALLOW_NIL | |
3619 | |
3620 Either or both positions can be nil. If FROM is nil, | |
3621 FROM_OUT will contain the lower bound of the allowed range. | |
3622 If TO is nil, TO_OUT will contain the upper bound of the | |
3623 allowed range. | |
3624 | |
3625 GB_CHECK_ORDER | |
3626 | |
3627 FROM must contain the lower bound and TO the upper bound | |
3628 of the range. If the positions are reversed, an error is | |
3629 signalled. | |
3630 | |
3631 The following is a combination flag: | |
3632 | |
3633 GB_HISTORICAL_STRING_BEHAVIOR | |
3634 | |
3635 Equivalent to (GB_NEGATIVE_FROM_END | GB_ALLOW_NIL). | |
3636 */ | |
3637 | |
3638 /* Return a buffer position stored in a Lisp_Object. Full | |
3639 error-checking is done on the position. Flags can be specified to | |
3640 control the behavior of out-of-range values. The default behavior | |
3641 is to require that the position is within the accessible part of | |
3642 the buffer (BEGV and ZV), and to signal an error if the position is | |
3643 out of range. | |
3644 | |
3645 */ | |
3646 | |
3647 Charbpos | |
3648 get_buffer_pos_char (struct buffer *b, Lisp_Object pos, unsigned int flags) | |
3649 { | |
3650 /* Does not GC */ | |
3651 Charbpos ind; | |
3652 Charbpos min_allowed, max_allowed; | |
3653 | |
3654 CHECK_INT_COERCE_MARKER (pos); | |
3655 ind = XINT (pos); | |
3656 min_allowed = flags & GB_ALLOW_PAST_ACCESSIBLE ? BUF_BEG (b) : BUF_BEGV (b); | |
3657 max_allowed = flags & GB_ALLOW_PAST_ACCESSIBLE ? BUF_Z (b) : BUF_ZV (b); | |
3658 | |
3659 if (ind < min_allowed || ind > max_allowed) | |
3660 { | |
3661 if (flags & GB_COERCE_RANGE) | |
3662 ind = ind < min_allowed ? min_allowed : max_allowed; | |
3663 else if (flags & GB_NO_ERROR_IF_BAD) | |
3664 ind = -1; | |
3665 else | |
3666 { | |
793 | 3667 Lisp_Object buffer = wrap_buffer (b); |
3668 | |
771 | 3669 args_out_of_range (buffer, pos); |
3670 } | |
3671 } | |
3672 | |
3673 return ind; | |
3674 } | |
3675 | |
3676 Bytebpos | |
3677 get_buffer_pos_byte (struct buffer *b, Lisp_Object pos, unsigned int flags) | |
3678 { | |
3679 Charbpos bpos = get_buffer_pos_char (b, pos, flags); | |
3680 if (bpos < 0) /* could happen with GB_NO_ERROR_IF_BAD */ | |
3681 return -1; | |
3682 return charbpos_to_bytebpos (b, bpos); | |
3683 } | |
3684 | |
3685 /* Return a pair of buffer positions representing a range of text, | |
3686 taken from a pair of Lisp_Objects. Full error-checking is | |
3687 done on the positions. Flags can be specified to control the | |
3688 behavior of out-of-range values. The default behavior is to | |
3689 allow the range bounds to be specified in either order | |
3690 (however, FROM_OUT will always be the lower bound of the range | |
3691 and TO_OUT the upper bound),to require that the positions | |
3692 are within the accessible part of the buffer (BEGV and ZV), | |
3693 and to signal an error if the positions are out of range. | |
3694 */ | |
3695 | |
3696 void | |
3697 get_buffer_range_char (struct buffer *b, Lisp_Object from, Lisp_Object to, | |
826 | 3698 Charbpos *from_out, Charbpos *to_out, |
3699 unsigned int flags) | |
771 | 3700 { |
3701 /* Does not GC */ | |
3702 Charbpos min_allowed, max_allowed; | |
3703 | |
3704 min_allowed = (flags & GB_ALLOW_PAST_ACCESSIBLE) ? | |
3705 BUF_BEG (b) : BUF_BEGV (b); | |
3706 max_allowed = (flags & GB_ALLOW_PAST_ACCESSIBLE) ? | |
3707 BUF_Z (b) : BUF_ZV (b); | |
3708 | |
3709 if (NILP (from) && (flags & GB_ALLOW_NIL)) | |
3710 *from_out = min_allowed; | |
3711 else | |
3712 *from_out = get_buffer_pos_char (b, from, flags | GB_NO_ERROR_IF_BAD); | |
3713 | |
3714 if (NILP (to) && (flags & GB_ALLOW_NIL)) | |
3715 *to_out = max_allowed; | |
3716 else | |
3717 *to_out = get_buffer_pos_char (b, to, flags | GB_NO_ERROR_IF_BAD); | |
3718 | |
3719 if ((*from_out < 0 || *to_out < 0) && !(flags & GB_NO_ERROR_IF_BAD)) | |
3720 { | |
793 | 3721 Lisp_Object buffer = wrap_buffer (b); |
3722 | |
771 | 3723 args_out_of_range_3 (buffer, from, to); |
3724 } | |
3725 | |
3726 if (*from_out >= 0 && *to_out >= 0 && *from_out > *to_out) | |
3727 { | |
3728 if (flags & GB_CHECK_ORDER) | |
3729 invalid_argument_2 ("start greater than end", from, to); | |
3730 else | |
3731 { | |
3732 Charbpos temp = *from_out; | |
3733 *from_out = *to_out; | |
3734 *to_out = temp; | |
3735 } | |
3736 } | |
3737 } | |
3738 | |
3739 void | |
3740 get_buffer_range_byte (struct buffer *b, Lisp_Object from, Lisp_Object to, | |
826 | 3741 Bytebpos *from_out, Bytebpos *to_out, |
3742 unsigned int flags) | |
771 | 3743 { |
3744 Charbpos s, e; | |
3745 | |
3746 get_buffer_range_char (b, from, to, &s, &e, flags); | |
3747 if (s >= 0) | |
3748 *from_out = charbpos_to_bytebpos (b, s); | |
3749 else /* could happen with GB_NO_ERROR_IF_BAD */ | |
3750 *from_out = -1; | |
3751 if (e >= 0) | |
3752 *to_out = charbpos_to_bytebpos (b, e); | |
3753 else | |
3754 *to_out = -1; | |
3755 } | |
3756 | |
3757 static Charcount | |
3758 get_string_pos_char_1 (Lisp_Object string, Lisp_Object pos, unsigned int flags, | |
3759 Charcount known_length) | |
3760 { | |
3761 Charcount ccpos; | |
3762 Charcount min_allowed = 0; | |
3763 Charcount max_allowed = known_length; | |
3764 | |
3765 /* Computation of KNOWN_LENGTH is potentially expensive so we pass | |
3766 it in. */ | |
3767 CHECK_INT (pos); | |
3768 ccpos = XINT (pos); | |
3769 if (ccpos < 0 && flags & GB_NEGATIVE_FROM_END) | |
3770 ccpos += max_allowed; | |
3771 | |
3772 if (ccpos < min_allowed || ccpos > max_allowed) | |
3773 { | |
3774 if (flags & GB_COERCE_RANGE) | |
3775 ccpos = ccpos < min_allowed ? min_allowed : max_allowed; | |
3776 else if (flags & GB_NO_ERROR_IF_BAD) | |
3777 ccpos = -1; | |
3778 else | |
3779 args_out_of_range (string, pos); | |
3780 } | |
3781 | |
3782 return ccpos; | |
3783 } | |
3784 | |
3785 Charcount | |
3786 get_string_pos_char (Lisp_Object string, Lisp_Object pos, unsigned int flags) | |
3787 { | |
3788 return get_string_pos_char_1 (string, pos, flags, | |
826 | 3789 string_char_length (string)); |
771 | 3790 } |
3791 | |
3792 Bytecount | |
3793 get_string_pos_byte (Lisp_Object string, Lisp_Object pos, unsigned int flags) | |
3794 { | |
3795 Charcount ccpos = get_string_pos_char (string, pos, flags); | |
3796 if (ccpos < 0) /* could happen with GB_NO_ERROR_IF_BAD */ | |
3797 return -1; | |
793 | 3798 return string_index_char_to_byte (string, ccpos); |
771 | 3799 } |
3800 | |
3801 void | |
3802 get_string_range_char (Lisp_Object string, Lisp_Object from, Lisp_Object to, | |
3803 Charcount *from_out, Charcount *to_out, | |
3804 unsigned int flags) | |
3805 { | |
3806 Charcount min_allowed = 0; | |
826 | 3807 Charcount max_allowed = string_char_length (string); |
771 | 3808 |
3809 if (NILP (from) && (flags & GB_ALLOW_NIL)) | |
3810 *from_out = min_allowed; | |
3811 else | |
3812 *from_out = get_string_pos_char_1 (string, from, | |
3813 flags | GB_NO_ERROR_IF_BAD, | |
3814 max_allowed); | |
3815 | |
3816 if (NILP (to) && (flags & GB_ALLOW_NIL)) | |
3817 *to_out = max_allowed; | |
3818 else | |
3819 *to_out = get_string_pos_char_1 (string, to, | |
3820 flags | GB_NO_ERROR_IF_BAD, | |
3821 max_allowed); | |
3822 | |
3823 if ((*from_out < 0 || *to_out < 0) && !(flags & GB_NO_ERROR_IF_BAD)) | |
3824 args_out_of_range_3 (string, from, to); | |
3825 | |
3826 if (*from_out >= 0 && *to_out >= 0 && *from_out > *to_out) | |
3827 { | |
3828 if (flags & GB_CHECK_ORDER) | |
3829 invalid_argument_2 ("start greater than end", from, to); | |
3830 else | |
3831 { | |
3832 Charbpos temp = *from_out; | |
3833 *from_out = *to_out; | |
3834 *to_out = temp; | |
3835 } | |
3836 } | |
3837 } | |
3838 | |
3839 void | |
3840 get_string_range_byte (Lisp_Object string, Lisp_Object from, Lisp_Object to, | |
3841 Bytecount *from_out, Bytecount *to_out, | |
3842 unsigned int flags) | |
3843 { | |
3844 Charcount s, e; | |
3845 | |
3846 get_string_range_char (string, from, to, &s, &e, flags); | |
3847 if (s >= 0) | |
793 | 3848 *from_out = string_index_char_to_byte (string, s); |
771 | 3849 else /* could happen with GB_NO_ERROR_IF_BAD */ |
3850 *from_out = -1; | |
3851 if (e >= 0) | |
793 | 3852 *to_out = string_index_char_to_byte (string, e); |
771 | 3853 else |
3854 *to_out = -1; | |
3855 | |
3856 } | |
3857 | |
826 | 3858 Charxpos |
771 | 3859 get_buffer_or_string_pos_char (Lisp_Object object, Lisp_Object pos, |
3860 unsigned int flags) | |
3861 { | |
3862 return STRINGP (object) ? | |
3863 get_string_pos_char (object, pos, flags) : | |
3864 get_buffer_pos_char (XBUFFER (object), pos, flags); | |
3865 } | |
3866 | |
826 | 3867 Bytexpos |
771 | 3868 get_buffer_or_string_pos_byte (Lisp_Object object, Lisp_Object pos, |
3869 unsigned int flags) | |
3870 { | |
3871 return STRINGP (object) ? | |
3872 get_string_pos_byte (object, pos, flags) : | |
3873 get_buffer_pos_byte (XBUFFER (object), pos, flags); | |
3874 } | |
3875 | |
3876 void | |
3877 get_buffer_or_string_range_char (Lisp_Object object, Lisp_Object from, | |
826 | 3878 Lisp_Object to, Charxpos *from_out, |
3879 Charxpos *to_out, unsigned int flags) | |
771 | 3880 { |
3881 if (STRINGP (object)) | |
3882 get_string_range_char (object, from, to, from_out, to_out, flags); | |
3883 else | |
826 | 3884 get_buffer_range_char (XBUFFER (object), from, to, from_out, to_out, |
3885 flags); | |
771 | 3886 } |
3887 | |
3888 void | |
3889 get_buffer_or_string_range_byte (Lisp_Object object, Lisp_Object from, | |
826 | 3890 Lisp_Object to, Bytexpos *from_out, |
3891 Bytexpos *to_out, unsigned int flags) | |
771 | 3892 { |
3893 if (STRINGP (object)) | |
3894 get_string_range_byte (object, from, to, from_out, to_out, flags); | |
3895 else | |
826 | 3896 get_buffer_range_byte (XBUFFER (object), from, to, from_out, to_out, |
3897 flags); | |
771 | 3898 } |
3899 | |
826 | 3900 Charxpos |
771 | 3901 buffer_or_string_accessible_begin_char (Lisp_Object object) |
3902 { | |
3903 return STRINGP (object) ? 0 : BUF_BEGV (XBUFFER (object)); | |
3904 } | |
3905 | |
826 | 3906 Charxpos |
771 | 3907 buffer_or_string_accessible_end_char (Lisp_Object object) |
3908 { | |
3909 return STRINGP (object) ? | |
826 | 3910 string_char_length (object) : BUF_ZV (XBUFFER (object)); |
771 | 3911 } |
3912 | |
826 | 3913 Bytexpos |
771 | 3914 buffer_or_string_accessible_begin_byte (Lisp_Object object) |
3915 { | |
826 | 3916 return STRINGP (object) ? 0 : BYTE_BUF_BEGV (XBUFFER (object)); |
771 | 3917 } |
3918 | |
826 | 3919 Bytexpos |
771 | 3920 buffer_or_string_accessible_end_byte (Lisp_Object object) |
3921 { | |
3922 return STRINGP (object) ? | |
826 | 3923 XSTRING_LENGTH (object) : BYTE_BUF_ZV (XBUFFER (object)); |
771 | 3924 } |
3925 | |
826 | 3926 Charxpos |
771 | 3927 buffer_or_string_absolute_begin_char (Lisp_Object object) |
3928 { | |
3929 return STRINGP (object) ? 0 : BUF_BEG (XBUFFER (object)); | |
3930 } | |
3931 | |
826 | 3932 Charxpos |
771 | 3933 buffer_or_string_absolute_end_char (Lisp_Object object) |
3934 { | |
3935 return STRINGP (object) ? | |
826 | 3936 string_char_length (object) : BUF_Z (XBUFFER (object)); |
3937 } | |
3938 | |
3939 Bytexpos | |
3940 buffer_or_string_absolute_begin_byte (Lisp_Object object) | |
3941 { | |
3942 return STRINGP (object) ? 0 : BYTE_BUF_BEG (XBUFFER (object)); | |
3943 } | |
3944 | |
3945 Bytexpos | |
3946 buffer_or_string_absolute_end_byte (Lisp_Object object) | |
3947 { | |
3948 return STRINGP (object) ? | |
3949 XSTRING_LENGTH (object) : BYTE_BUF_Z (XBUFFER (object)); | |
3950 } | |
3951 | |
3952 Charbpos | |
3953 charbpos_clip_to_bounds (Charbpos lower, Charbpos num, Charbpos upper) | |
3954 { | |
3955 return (num < lower ? lower : | |
3956 num > upper ? upper : | |
3957 num); | |
771 | 3958 } |
3959 | |
3960 Bytebpos | |
826 | 3961 bytebpos_clip_to_bounds (Bytebpos lower, Bytebpos num, Bytebpos upper) |
3962 { | |
3963 return (num < lower ? lower : | |
3964 num > upper ? upper : | |
3965 num); | |
3966 } | |
3967 | |
3968 Charxpos | |
3969 charxpos_clip_to_bounds (Charxpos lower, Charxpos num, Charxpos upper) | |
771 | 3970 { |
826 | 3971 return (num < lower ? lower : |
3972 num > upper ? upper : | |
3973 num); | |
3974 } | |
3975 | |
3976 Bytexpos | |
3977 bytexpos_clip_to_bounds (Bytexpos lower, Bytexpos num, Bytexpos upper) | |
3978 { | |
3979 return (num < lower ? lower : | |
3980 num > upper ? upper : | |
3981 num); | |
771 | 3982 } |
3983 | |
826 | 3984 /* These could be implemented in terms of the get_buffer_or_string() |
3985 functions above, but those are complicated and handle lots of weird | |
3986 cases stemming from uncertain external input. */ | |
3987 | |
3988 Charxpos | |
3989 buffer_or_string_clip_to_accessible_char (Lisp_Object object, Charxpos pos) | |
3990 { | |
3991 return (charxpos_clip_to_bounds | |
3992 (pos, buffer_or_string_accessible_begin_char (object), | |
3993 buffer_or_string_accessible_end_char (object))); | |
3994 } | |
3995 | |
3996 Bytexpos | |
3997 buffer_or_string_clip_to_accessible_byte (Lisp_Object object, Bytexpos pos) | |
771 | 3998 { |
826 | 3999 return (bytexpos_clip_to_bounds |
4000 (pos, buffer_or_string_accessible_begin_byte (object), | |
4001 buffer_or_string_accessible_end_byte (object))); | |
4002 } | |
4003 | |
4004 Charxpos | |
4005 buffer_or_string_clip_to_absolute_char (Lisp_Object object, Charxpos pos) | |
4006 { | |
4007 return (charxpos_clip_to_bounds | |
4008 (pos, buffer_or_string_absolute_begin_char (object), | |
4009 buffer_or_string_absolute_end_char (object))); | |
4010 } | |
4011 | |
4012 Bytexpos | |
4013 buffer_or_string_clip_to_absolute_byte (Lisp_Object object, Bytexpos pos) | |
4014 { | |
4015 return (bytexpos_clip_to_bounds | |
4016 (pos, buffer_or_string_absolute_begin_byte (object), | |
4017 buffer_or_string_absolute_end_byte (object))); | |
771 | 4018 } |
4019 | |
4020 | |
4021 /************************************************************************/ | |
4022 /* Implement TO_EXTERNAL_FORMAT, TO_INTERNAL_FORMAT */ | |
4023 /************************************************************************/ | |
4024 | |
4025 typedef struct | |
4026 { | |
867 | 4027 Dynarr_declare (Ibyte_dynarr *); |
4028 } Ibyte_dynarr_dynarr; | |
771 | 4029 |
4030 typedef struct | |
4031 { | |
4032 Dynarr_declare (Extbyte_dynarr *); | |
4033 } Extbyte_dynarr_dynarr; | |
4034 | |
4035 static Extbyte_dynarr_dynarr *conversion_out_dynarr_list; | |
867 | 4036 static Ibyte_dynarr_dynarr *conversion_in_dynarr_list; |
771 | 4037 |
4038 static int dfc_convert_to_external_format_in_use; | |
4039 static int dfc_convert_to_internal_format_in_use; | |
4040 | |
4041 void | |
4042 dfc_convert_to_external_format (dfc_conversion_type source_type, | |
4043 dfc_conversion_data *source, | |
4044 Lisp_Object coding_system, | |
4045 dfc_conversion_type sink_type, | |
4046 dfc_conversion_data *sink) | |
4047 { | |
4048 /* It's guaranteed that many callers are not prepared for GC here, | |
4049 esp. given that this code conversion occurs in many very hidden | |
4050 places. */ | |
1292 | 4051 int count; |
771 | 4052 Extbyte_dynarr *conversion_out_dynarr; |
1292 | 4053 PROFILE_DECLARE (); |
4054 | |
2367 | 4055 assert (!inhibit_non_essential_conversion_operations); |
1292 | 4056 PROFILE_RECORD_ENTERING_SECTION (QSin_internal_external_conversion); |
4057 | |
4058 count = begin_gc_forbidden (); | |
771 | 4059 |
4060 type_checking_assert | |
4061 (((source_type == DFC_TYPE_DATA) || | |
4062 (source_type == DFC_TYPE_LISP_LSTREAM && LSTREAMP (source->lisp_object)) || | |
4063 (source_type == DFC_TYPE_LISP_STRING && STRINGP (source->lisp_object))) | |
4064 && | |
4065 ((sink_type == DFC_TYPE_DATA) || | |
4066 (sink_type == DFC_TYPE_LISP_LSTREAM && LSTREAMP (source->lisp_object)))); | |
4067 | |
4068 if (Dynarr_length (conversion_out_dynarr_list) <= | |
4069 dfc_convert_to_external_format_in_use) | |
4070 Dynarr_add (conversion_out_dynarr_list, Dynarr_new (Extbyte)); | |
4071 conversion_out_dynarr = Dynarr_at (conversion_out_dynarr_list, | |
4072 dfc_convert_to_external_format_in_use); | |
4073 Dynarr_reset (conversion_out_dynarr); | |
4074 | |
853 | 4075 internal_bind_int (&dfc_convert_to_external_format_in_use, |
4076 dfc_convert_to_external_format_in_use + 1); | |
4077 | |
771 | 4078 coding_system = get_coding_system_for_text_file (coding_system, 0); |
4079 | |
4080 /* Here we optimize in the case where the coding system does no | |
4081 conversion. However, we don't want to optimize in case the source | |
4082 or sink is an lstream, since writing to an lstream can cause a | |
4083 garbage collection, and this could be problematic if the source | |
4084 is a lisp string. */ | |
4085 if (source_type != DFC_TYPE_LISP_LSTREAM && | |
4086 sink_type != DFC_TYPE_LISP_LSTREAM && | |
4087 coding_system_is_binary (coding_system)) | |
4088 { | |
867 | 4089 const Ibyte *ptr; |
771 | 4090 Bytecount len; |
4091 | |
4092 if (source_type == DFC_TYPE_LISP_STRING) | |
4093 { | |
4094 ptr = XSTRING_DATA (source->lisp_object); | |
4095 len = XSTRING_LENGTH (source->lisp_object); | |
4096 } | |
4097 else | |
4098 { | |
867 | 4099 ptr = (Ibyte *) source->data.ptr; |
771 | 4100 len = source->data.len; |
4101 } | |
4102 | |
4103 #ifdef MULE | |
4104 { | |
867 | 4105 const Ibyte *end; |
771 | 4106 for (end = ptr + len; ptr < end;) |
4107 { | |
867 | 4108 Ibyte c = |
826 | 4109 (byte_ascii_p (*ptr)) ? *ptr : |
771 | 4110 (*ptr == LEADING_BYTE_CONTROL_1) ? (*(ptr+1) - 0x20) : |
4111 (*ptr == LEADING_BYTE_LATIN_ISO8859_1) ? (*(ptr+1)) : | |
4112 '~'; | |
4113 | |
4114 Dynarr_add (conversion_out_dynarr, (Extbyte) c); | |
867 | 4115 INC_IBYTEPTR (ptr); |
771 | 4116 } |
800 | 4117 text_checking_assert (ptr == end); |
771 | 4118 } |
4119 #else | |
4120 Dynarr_add_many (conversion_out_dynarr, ptr, len); | |
4121 #endif | |
4122 | |
4123 } | |
1315 | 4124 #ifdef WIN32_ANY |
771 | 4125 /* Optimize the common case involving Unicode where only ASCII is involved */ |
4126 else if (source_type != DFC_TYPE_LISP_LSTREAM && | |
4127 sink_type != DFC_TYPE_LISP_LSTREAM && | |
4128 dfc_coding_system_is_unicode (coding_system)) | |
4129 { | |
867 | 4130 const Ibyte *ptr, *p; |
771 | 4131 Bytecount len; |
867 | 4132 const Ibyte *end; |
771 | 4133 |
4134 if (source_type == DFC_TYPE_LISP_STRING) | |
4135 { | |
4136 ptr = XSTRING_DATA (source->lisp_object); | |
4137 len = XSTRING_LENGTH (source->lisp_object); | |
4138 } | |
4139 else | |
4140 { | |
867 | 4141 ptr = (Ibyte *) source->data.ptr; |
771 | 4142 len = source->data.len; |
4143 } | |
4144 end = ptr + len; | |
4145 | |
4146 for (p = ptr; p < end; p++) | |
4147 { | |
826 | 4148 if (!byte_ascii_p (*p)) |
771 | 4149 goto the_hard_way; |
4150 } | |
4151 | |
4152 for (p = ptr; p < end; p++) | |
4153 { | |
4154 Dynarr_add (conversion_out_dynarr, (Extbyte) (*p)); | |
4155 Dynarr_add (conversion_out_dynarr, (Extbyte) '\0'); | |
4156 } | |
4157 } | |
1315 | 4158 #endif /* WIN32_ANY */ |
771 | 4159 else |
4160 { | |
4161 Lisp_Object streams_to_delete[3]; | |
4162 int delete_count; | |
4163 Lisp_Object instream, outstream; | |
4164 Lstream *reader, *writer; | |
4165 | |
1315 | 4166 #ifdef WIN32_ANY |
771 | 4167 the_hard_way: |
1315 | 4168 #endif /* WIN32_ANY */ |
771 | 4169 delete_count = 0; |
4170 if (source_type == DFC_TYPE_LISP_LSTREAM) | |
4171 instream = source->lisp_object; | |
4172 else if (source_type == DFC_TYPE_DATA) | |
4173 streams_to_delete[delete_count++] = instream = | |
4174 make_fixed_buffer_input_stream (source->data.ptr, source->data.len); | |
4175 else | |
4176 { | |
4177 type_checking_assert (source_type == DFC_TYPE_LISP_STRING); | |
4178 streams_to_delete[delete_count++] = instream = | |
4179 /* This will GCPRO the Lisp string */ | |
4180 make_lisp_string_input_stream (source->lisp_object, 0, -1); | |
4181 } | |
4182 | |
4183 if (sink_type == DFC_TYPE_LISP_LSTREAM) | |
4184 outstream = sink->lisp_object; | |
4185 else | |
4186 { | |
4187 type_checking_assert (sink_type == DFC_TYPE_DATA); | |
4188 streams_to_delete[delete_count++] = outstream = | |
4189 make_dynarr_output_stream | |
4190 ((unsigned_char_dynarr *) conversion_out_dynarr); | |
4191 } | |
4192 | |
4193 streams_to_delete[delete_count++] = outstream = | |
800 | 4194 make_coding_output_stream (XLSTREAM (outstream), coding_system, |
4195 CODING_ENCODE, 0); | |
771 | 4196 |
4197 reader = XLSTREAM (instream); | |
4198 writer = XLSTREAM (outstream); | |
4199 /* decoding_stream will gc-protect outstream */ | |
1204 | 4200 { |
4201 struct gcpro gcpro1, gcpro2; | |
4202 GCPRO2 (instream, outstream); | |
4203 | |
4204 while (1) | |
4205 { | |
4206 Bytecount size_in_bytes; | |
4207 char tempbuf[1024]; /* some random amount */ | |
4208 | |
4209 size_in_bytes = Lstream_read (reader, tempbuf, sizeof (tempbuf)); | |
4210 | |
4211 if (size_in_bytes == 0) | |
4212 break; | |
4213 else if (size_in_bytes < 0) | |
4214 signal_error (Qtext_conversion_error, | |
4215 "Error converting to external format", Qunbound); | |
4216 | |
4217 if (Lstream_write (writer, tempbuf, size_in_bytes) < 0) | |
4218 signal_error (Qtext_conversion_error, | |
4219 "Error converting to external format", Qunbound); | |
4220 } | |
4221 | |
4222 /* Closing writer will close any stream at the other end of writer. */ | |
4223 Lstream_close (writer); | |
4224 Lstream_close (reader); | |
4225 UNGCPRO; | |
4226 } | |
771 | 4227 |
4228 /* The idea is that this function will create no garbage. */ | |
4229 while (delete_count) | |
4230 Lstream_delete (XLSTREAM (streams_to_delete [--delete_count])); | |
4231 } | |
4232 | |
4233 unbind_to (count); | |
4234 | |
4235 if (sink_type != DFC_TYPE_LISP_LSTREAM) | |
4236 { | |
4237 sink->data.len = Dynarr_length (conversion_out_dynarr); | |
4238 /* double zero-extend because we may be dealing with Unicode data */ | |
4239 Dynarr_add (conversion_out_dynarr, '\0'); | |
4240 Dynarr_add (conversion_out_dynarr, '\0'); | |
4241 sink->data.ptr = Dynarr_atp (conversion_out_dynarr, 0); | |
4242 } | |
1292 | 4243 |
4244 PROFILE_RECORD_EXITING_SECTION (QSin_internal_external_conversion); | |
771 | 4245 } |
4246 | |
4247 void | |
4248 dfc_convert_to_internal_format (dfc_conversion_type source_type, | |
4249 dfc_conversion_data *source, | |
4250 Lisp_Object coding_system, | |
4251 dfc_conversion_type sink_type, | |
4252 dfc_conversion_data *sink) | |
4253 { | |
4254 /* It's guaranteed that many callers are not prepared for GC here, | |
4255 esp. given that this code conversion occurs in many very hidden | |
4256 places. */ | |
1292 | 4257 int count; |
867 | 4258 Ibyte_dynarr *conversion_in_dynarr; |
2421 | 4259 Lisp_Object underlying_cs; |
1292 | 4260 PROFILE_DECLARE (); |
4261 | |
2367 | 4262 assert (!inhibit_non_essential_conversion_operations); |
1292 | 4263 PROFILE_RECORD_ENTERING_SECTION (QSin_internal_external_conversion); |
4264 | |
4265 count = begin_gc_forbidden (); | |
771 | 4266 |
4267 type_checking_assert | |
4268 ((source_type == DFC_TYPE_DATA || | |
4269 source_type == DFC_TYPE_LISP_LSTREAM) | |
4270 && | |
4271 (sink_type == DFC_TYPE_DATA || | |
4272 sink_type == DFC_TYPE_LISP_LSTREAM)); | |
4273 | |
4274 if (Dynarr_length (conversion_in_dynarr_list) <= | |
4275 dfc_convert_to_internal_format_in_use) | |
867 | 4276 Dynarr_add (conversion_in_dynarr_list, Dynarr_new (Ibyte)); |
771 | 4277 conversion_in_dynarr = Dynarr_at (conversion_in_dynarr_list, |
4278 dfc_convert_to_internal_format_in_use); | |
4279 Dynarr_reset (conversion_in_dynarr); | |
4280 | |
853 | 4281 internal_bind_int (&dfc_convert_to_internal_format_in_use, |
4282 dfc_convert_to_internal_format_in_use + 1); | |
4283 | |
2421 | 4284 /* The second call does the equivalent of both calls, but we need |
4285 the result after the first call (which wraps just a to-text | |
4286 converter) as well as the result after the second call (which | |
4287 also wraps an EOL-detection converter). */ | |
4288 underlying_cs = get_coding_system_for_text_file (coding_system, 0); | |
4289 coding_system = get_coding_system_for_text_file (underlying_cs, 1); | |
771 | 4290 |
4291 if (source_type != DFC_TYPE_LISP_LSTREAM && | |
4292 sink_type != DFC_TYPE_LISP_LSTREAM && | |
2421 | 4293 coding_system_is_binary (underlying_cs)) |
771 | 4294 { |
4295 #ifdef MULE | |
2421 | 4296 const Ibyte *ptr; |
771 | 4297 Bytecount len = source->data.len; |
2421 | 4298 const Ibyte *end; |
4299 | |
4300 /* Make sure no EOL conversion is needed. With a little work we | |
4301 could handle EOL conversion as well but it may not be needed as an | |
4302 optimization. */ | |
4303 if (!EQ (coding_system, underlying_cs)) | |
4304 { | |
4305 for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len; | |
4306 ptr < end; ptr++) | |
4307 { | |
4308 if (*ptr == '\r' || *ptr == '\n') | |
4309 goto the_hard_way; | |
4310 } | |
4311 } | |
4312 | |
4313 for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len; | |
4314 ptr < end; ptr++) | |
771 | 4315 { |
867 | 4316 Ibyte c = *ptr; |
771 | 4317 |
826 | 4318 if (byte_ascii_p (c)) |
771 | 4319 Dynarr_add (conversion_in_dynarr, c); |
826 | 4320 else if (byte_c1_p (c)) |
771 | 4321 { |
4322 Dynarr_add (conversion_in_dynarr, LEADING_BYTE_CONTROL_1); | |
4323 Dynarr_add (conversion_in_dynarr, c + 0x20); | |
4324 } | |
4325 else | |
4326 { | |
4327 Dynarr_add (conversion_in_dynarr, LEADING_BYTE_LATIN_ISO8859_1); | |
4328 Dynarr_add (conversion_in_dynarr, c); | |
4329 } | |
4330 } | |
4331 #else | |
4332 Dynarr_add_many (conversion_in_dynarr, source->data.ptr, source->data.len); | |
4333 #endif | |
4334 } | |
1315 | 4335 #ifdef WIN32_ANY |
1292 | 4336 /* Optimize the common case involving Unicode where only ASCII/Latin-1 is |
4337 involved */ | |
771 | 4338 else if (source_type != DFC_TYPE_LISP_LSTREAM && |
4339 sink_type != DFC_TYPE_LISP_LSTREAM && | |
2421 | 4340 dfc_coding_system_is_unicode (underlying_cs)) |
771 | 4341 { |
2421 | 4342 const Ibyte *ptr; |
771 | 4343 Bytecount len = source->data.len; |
2421 | 4344 const Ibyte *end; |
771 | 4345 |
4346 if (len & 1) | |
4347 goto the_hard_way; | |
4348 | |
2421 | 4349 /* Make sure only ASCII/Latin-1 is involved */ |
4350 for (ptr = (const Ibyte *) source->data.ptr + 1, end = ptr + len; | |
4351 ptr < end; ptr += 2) | |
771 | 4352 { |
4353 if (*ptr) | |
4354 goto the_hard_way; | |
4355 } | |
4356 | |
2421 | 4357 /* Make sure no EOL conversion is needed. With a little work we |
4358 could handle EOL conversion as well but it may not be needed as an | |
4359 optimization. */ | |
4360 if (!EQ (coding_system, underlying_cs)) | |
4361 { | |
4362 for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len; | |
4363 ptr < end; ptr += 2) | |
4364 { | |
4365 if (*ptr == '\r' || *ptr == '\n') | |
4366 goto the_hard_way; | |
4367 } | |
4368 } | |
4369 | |
4370 for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len; | |
4371 ptr < end; ptr += 2) | |
771 | 4372 { |
867 | 4373 Ibyte c = *ptr; |
771 | 4374 |
826 | 4375 if (byte_ascii_p (c)) |
771 | 4376 Dynarr_add (conversion_in_dynarr, c); |
4377 #ifdef MULE | |
826 | 4378 else if (byte_c1_p (c)) |
771 | 4379 { |
4380 Dynarr_add (conversion_in_dynarr, LEADING_BYTE_CONTROL_1); | |
4381 Dynarr_add (conversion_in_dynarr, c + 0x20); | |
4382 } | |
4383 else | |
4384 { | |
4385 Dynarr_add (conversion_in_dynarr, LEADING_BYTE_LATIN_ISO8859_1); | |
4386 Dynarr_add (conversion_in_dynarr, c); | |
4387 } | |
4388 #endif /* MULE */ | |
4389 } | |
4390 } | |
1315 | 4391 #endif /* WIN32_ANY */ |
771 | 4392 else |
4393 { | |
4394 Lisp_Object streams_to_delete[3]; | |
4395 int delete_count; | |
4396 Lisp_Object instream, outstream; | |
4397 Lstream *reader, *writer; | |
4398 | |
2421 | 4399 #if defined (WIN32_ANY) || defined (MULE) |
771 | 4400 the_hard_way: |
2421 | 4401 #endif |
771 | 4402 delete_count = 0; |
4403 if (source_type == DFC_TYPE_LISP_LSTREAM) | |
4404 instream = source->lisp_object; | |
4405 else | |
4406 { | |
4407 type_checking_assert (source_type == DFC_TYPE_DATA); | |
4408 streams_to_delete[delete_count++] = instream = | |
4409 make_fixed_buffer_input_stream (source->data.ptr, source->data.len); | |
4410 } | |
4411 | |
4412 if (sink_type == DFC_TYPE_LISP_LSTREAM) | |
4413 outstream = sink->lisp_object; | |
4414 else | |
4415 { | |
4416 type_checking_assert (sink_type == DFC_TYPE_DATA); | |
4417 streams_to_delete[delete_count++] = outstream = | |
4418 make_dynarr_output_stream | |
4419 ((unsigned_char_dynarr *) conversion_in_dynarr); | |
4420 } | |
4421 | |
4422 streams_to_delete[delete_count++] = outstream = | |
800 | 4423 make_coding_output_stream (XLSTREAM (outstream), coding_system, |
4424 CODING_DECODE, 0); | |
771 | 4425 |
4426 reader = XLSTREAM (instream); | |
4427 writer = XLSTREAM (outstream); | |
1204 | 4428 { |
4429 struct gcpro gcpro1, gcpro2; | |
4430 /* outstream will gc-protect its sink stream, if necessary */ | |
4431 GCPRO2 (instream, outstream); | |
4432 | |
4433 while (1) | |
4434 { | |
4435 Bytecount size_in_bytes; | |
4436 char tempbuf[1024]; /* some random amount */ | |
4437 | |
4438 size_in_bytes = Lstream_read (reader, tempbuf, sizeof (tempbuf)); | |
4439 | |
4440 if (size_in_bytes == 0) | |
4441 break; | |
4442 else if (size_in_bytes < 0) | |
4443 signal_error (Qtext_conversion_error, | |
4444 "Error converting to internal format", Qunbound); | |
4445 | |
4446 if (Lstream_write (writer, tempbuf, size_in_bytes) < 0) | |
4447 signal_error (Qtext_conversion_error, | |
4448 "Error converting to internal format", Qunbound); | |
4449 } | |
4450 | |
4451 /* Closing writer will close any stream at the other end of writer. */ | |
4452 Lstream_close (writer); | |
4453 Lstream_close (reader); | |
4454 UNGCPRO; | |
4455 } | |
771 | 4456 |
4457 /* The idea is that this function will create no garbage. */ | |
4458 while (delete_count) | |
4459 Lstream_delete (XLSTREAM (streams_to_delete [--delete_count])); | |
4460 } | |
4461 | |
4462 unbind_to (count); | |
4463 | |
4464 if (sink_type != DFC_TYPE_LISP_LSTREAM) | |
4465 { | |
4466 sink->data.len = Dynarr_length (conversion_in_dynarr); | |
4467 Dynarr_add (conversion_in_dynarr, '\0'); /* remember to NUL-terminate! */ | |
4468 /* The macros don't currently distinguish between internal and | |
4469 external sinks, and allocate and copy two extra bytes in both | |
4470 cases. So we add a second zero, just like for external data | |
4471 (in that case, because we may be converting to Unicode). */ | |
4472 Dynarr_add (conversion_in_dynarr, '\0'); | |
4473 sink->data.ptr = Dynarr_atp (conversion_in_dynarr, 0); | |
4474 } | |
1292 | 4475 |
4476 PROFILE_RECORD_EXITING_SECTION (QSin_internal_external_conversion); | |
771 | 4477 } |
4478 | |
1318 | 4479 /* ----------------------------------------------------------------------- */ |
2367 | 4480 /* Alloca-conversion helpers */ |
4481 /* ----------------------------------------------------------------------- */ | |
4482 | |
4483 /* For alloca(), things are trickier because the calling function needs to | |
4484 allocate. This means that the caller needs to do the following: | |
4485 | |
4486 (a) invoke us to do the conversion, remember the data and return the size. | |
4487 (b) alloca() the proper size. | |
4488 (c) invoke us again to copy the data. | |
4489 | |
4490 We need to handle the possibility of two or more invocations of the | |
4491 converter in the same expression. In such cases it's conceivable that | |
4492 the evaluation of the sub-expressions will be overlapping (e.g. one size | |
4493 function called, then the other one called, then the copy functions | |
4494 called). To handle this, we keep a list of active data, indexed by the | |
4495 src expression. (We use the stringize operator to avoid evaluating the | |
4496 expression multiple times.) If the caller uses the exact same src | |
4497 expression twice in two converter calls in the same subexpression, we | |
2500 | 4498 will lose, but at least we can check for this and ABORT(). We could |
2367 | 4499 conceivably try to index on other parameters as well, but there is not |
4500 really any point. */ | |
4501 | |
4502 alloca_convert_vals_dynarr *active_alloca_convert; | |
4503 | |
4504 int | |
4505 find_pos_of_existing_active_alloca_convert (const char *srctext) | |
4506 { | |
4507 alloca_convert_vals *vals = NULL; | |
4508 int i; | |
4509 | |
4510 if (!active_alloca_convert) | |
4511 active_alloca_convert = Dynarr_new (alloca_convert_vals); | |
4512 | |
4513 for (i = 0; i < Dynarr_length (active_alloca_convert); i++) | |
4514 { | |
4515 vals = Dynarr_atp (active_alloca_convert, i); | |
2385 | 4516 /* On my system, two different occurrences of the same stringized |
4517 argument always point to the same string. However, on someone | |
4518 else's system, that wasn't the case. We check for equality | |
4519 first, since it seems systems work my way more than the other | |
4520 way. */ | |
4521 if (vals->srctext == srctext || !strcmp (vals->srctext, srctext)) | |
2367 | 4522 return i; |
4523 } | |
4524 | |
4525 return -1; | |
4526 } | |
4527 | |
4528 /* ----------------------------------------------------------------------- */ | |
1318 | 4529 /* New-style DFC converters (data is returned rather than stored into var) */ |
4530 /* ----------------------------------------------------------------------- */ | |
4531 | |
4532 /* We handle here the cases where SRC is a Lisp_Object, internal data | |
4533 (sized or unsized), or external data (sized or unsized), and return type | |
4534 is unsized alloca() or malloc() data. If the return type is a | |
4535 Lisp_Object, use build_ext_string() for unsized external data, | |
4536 make_ext_string() for sized external data. If the return type needs to | |
4537 be sized data, use the *_TO_SIZED_*() macros, and for other more | |
4538 complicated cases, use the original TO_*_FORMAT() macros. */ | |
4539 | |
4540 static void | |
4541 new_dfc_convert_now_damn_it (const void *src, Bytecount src_size, | |
4542 enum new_dfc_src_type type, | |
4543 void **dst, Bytecount *dst_size, | |
4544 Lisp_Object codesys) | |
4545 { | |
4546 /* #### In the case of alloca(), it would be a bit more efficient, for | |
4547 small strings, to use static Dynarr's like are used internally in | |
4548 TO_*_FORMAT(), or some other way of avoiding malloc() followed by | |
4549 free(). I doubt it really matters, though. */ | |
4550 | |
4551 switch (type) | |
4552 { | |
4553 case DFC_EXTERNAL: | |
4554 TO_INTERNAL_FORMAT (C_STRING, src, | |
4555 MALLOC, (*dst, *dst_size), codesys); | |
4556 break; | |
4557 | |
4558 case DFC_SIZED_EXTERNAL: | |
4559 TO_INTERNAL_FORMAT (DATA, (src, src_size), | |
4560 MALLOC, (*dst, *dst_size), codesys); | |
4561 break; | |
4562 | |
4563 case DFC_INTERNAL: | |
4564 TO_EXTERNAL_FORMAT (C_STRING, src, | |
4565 MALLOC, (*dst, *dst_size), codesys); | |
4566 break; | |
4567 | |
4568 case DFC_SIZED_INTERNAL: | |
4569 TO_EXTERNAL_FORMAT (DATA, (src, src_size), | |
4570 MALLOC, (*dst, *dst_size), codesys); | |
4571 break; | |
4572 | |
4573 case DFC_LISP_STRING: | |
4574 TO_EXTERNAL_FORMAT (LISP_STRING, VOID_TO_LISP (src), | |
4575 MALLOC, (*dst, *dst_size), codesys); | |
4576 break; | |
4577 | |
4578 default: | |
2500 | 4579 ABORT (); |
1318 | 4580 } |
2367 | 4581 |
4582 /* The size is always + 2 because we have double zero-termination at the | |
4583 end of all data (for Unicode-correctness). */ | |
4584 *dst_size += 2; | |
4585 } | |
4586 | |
4587 Bytecount | |
4588 new_dfc_convert_size (const char *srctext, const void *src, | |
4589 Bytecount src_size, enum new_dfc_src_type type, | |
4590 Lisp_Object codesys) | |
4591 { | |
4592 alloca_convert_vals vals; | |
4593 | |
2721 | 4594 int i = find_pos_of_existing_active_alloca_convert (srctext); |
4595 assert (i < 0); | |
2367 | 4596 |
4597 vals.srctext = srctext; | |
4598 | |
4599 new_dfc_convert_now_damn_it (src, src_size, type, &vals.dst, &vals.dst_size, | |
4600 codesys); | |
4601 | |
4602 Dynarr_add (active_alloca_convert, vals); | |
4603 return vals.dst_size; | |
4604 } | |
4605 | |
4606 void * | |
4607 new_dfc_convert_copy_data (const char *srctext, void *alloca_data) | |
4608 { | |
4609 alloca_convert_vals *vals; | |
4610 int i = find_pos_of_existing_active_alloca_convert (srctext); | |
4611 | |
4612 assert (i >= 0); | |
4613 vals = Dynarr_atp (active_alloca_convert, i); | |
4614 assert (alloca_data); | |
4615 memcpy (alloca_data, vals->dst, vals->dst_size); | |
4616 xfree (vals->dst, void *); | |
4617 Dynarr_delete (active_alloca_convert, i); | |
4618 return alloca_data; | |
1318 | 4619 } |
4620 | |
4621 void * | |
4622 new_dfc_convert_malloc (const void *src, Bytecount src_size, | |
4623 enum new_dfc_src_type type, Lisp_Object codesys) | |
4624 { | |
4625 void *dst; | |
4626 Bytecount dst_size; | |
4627 | |
4628 new_dfc_convert_now_damn_it (src, src_size, type, &dst, &dst_size, codesys); | |
4629 return dst; | |
4630 } | |
4631 | |
771 | 4632 |
4633 /************************************************************************/ | |
867 | 4634 /* Basic Ichar functions */ |
771 | 4635 /************************************************************************/ |
4636 | |
4637 #ifdef MULE | |
4638 | |
4639 /* Convert a non-ASCII Mule character C into a one-character Mule-encoded | |
4640 string in STR. Returns the number of bytes stored. | |
867 | 4641 Do not call this directly. Use the macro set_itext_ichar() instead. |
771 | 4642 */ |
4643 | |
4644 Bytecount | |
867 | 4645 non_ascii_set_itext_ichar (Ibyte *str, Ichar c) |
771 | 4646 { |
867 | 4647 Ibyte *p; |
4648 Ibyte lb; | |
771 | 4649 int c1, c2; |
4650 Lisp_Object charset; | |
4651 | |
4652 p = str; | |
867 | 4653 BREAKUP_ICHAR (c, charset, c1, c2); |
4654 lb = ichar_leading_byte (c); | |
826 | 4655 if (leading_byte_private_p (lb)) |
4656 *p++ = private_leading_byte_prefix (lb); | |
771 | 4657 *p++ = lb; |
4658 if (EQ (charset, Vcharset_control_1)) | |
4659 c1 += 0x20; | |
4660 *p++ = c1 | 0x80; | |
4661 if (c2) | |
4662 *p++ = c2 | 0x80; | |
4663 | |
4664 return (p - str); | |
4665 } | |
4666 | |
4667 /* Return the first character from a Mule-encoded string in STR, | |
4668 assuming it's non-ASCII. Do not call this directly. | |
867 | 4669 Use the macro itext_ichar() instead. */ |
4670 | |
4671 Ichar | |
4672 non_ascii_itext_ichar (const Ibyte *str) | |
771 | 4673 { |
867 | 4674 Ibyte i0 = *str, i1, i2 = 0; |
771 | 4675 Lisp_Object charset; |
4676 | |
4677 if (i0 == LEADING_BYTE_CONTROL_1) | |
867 | 4678 return (Ichar) (*++str - 0x20); |
771 | 4679 |
826 | 4680 if (leading_byte_prefix_p (i0)) |
771 | 4681 i0 = *++str; |
4682 | |
4683 i1 = *++str & 0x7F; | |
4684 | |
826 | 4685 charset = charset_by_leading_byte (i0); |
771 | 4686 if (XCHARSET_DIMENSION (charset) == 2) |
4687 i2 = *++str & 0x7F; | |
4688 | |
867 | 4689 return make_ichar (charset, i1, i2); |
771 | 4690 } |
4691 | |
867 | 4692 /* Return whether CH is a valid Ichar, assuming it's non-ASCII. |
4693 Do not call this directly. Use the macro valid_ichar_p() instead. */ | |
771 | 4694 |
4695 int | |
867 | 4696 non_ascii_valid_ichar_p (Ichar ch) |
771 | 4697 { |
4698 int f1, f2, f3; | |
4699 | |
3498 | 4700 /* Must have only lowest 21 bits set */ |
4701 if (ch & ~0x1FFFFF) | |
771 | 4702 return 0; |
4703 | |
867 | 4704 f1 = ichar_field1 (ch); |
4705 f2 = ichar_field2 (ch); | |
4706 f3 = ichar_field3 (ch); | |
771 | 4707 |
4708 if (f1 == 0) | |
4709 { | |
4710 /* dimension-1 char */ | |
4711 Lisp_Object charset; | |
4712 | |
4713 /* leading byte must be correct */ | |
867 | 4714 if (f2 < MIN_ICHAR_FIELD2_OFFICIAL || |
4715 (f2 > MAX_ICHAR_FIELD2_OFFICIAL && f2 < MIN_ICHAR_FIELD2_PRIVATE) || | |
4716 f2 > MAX_ICHAR_FIELD2_PRIVATE) | |
771 | 4717 return 0; |
4718 /* octet not out of range */ | |
4719 if (f3 < 0x20) | |
4720 return 0; | |
4721 /* charset exists */ | |
4722 /* | |
4723 NOTE: This takes advantage of the fact that | |
4724 FIELD2_TO_OFFICIAL_LEADING_BYTE and | |
4725 FIELD2_TO_PRIVATE_LEADING_BYTE are the same. | |
4726 */ | |
826 | 4727 charset = charset_by_leading_byte (f2 + FIELD2_TO_OFFICIAL_LEADING_BYTE); |
771 | 4728 if (EQ (charset, Qnil)) |
4729 return 0; | |
4730 /* check range as per size (94 or 96) of charset */ | |
4731 return ((f3 > 0x20 && f3 < 0x7f) || XCHARSET_CHARS (charset) == 96); | |
4732 } | |
4733 else | |
4734 { | |
4735 /* dimension-2 char */ | |
4736 Lisp_Object charset; | |
4737 | |
4738 /* leading byte must be correct */ | |
867 | 4739 if (f1 < MIN_ICHAR_FIELD1_OFFICIAL || |
4740 (f1 > MAX_ICHAR_FIELD1_OFFICIAL && f1 < MIN_ICHAR_FIELD1_PRIVATE) || | |
4741 f1 > MAX_ICHAR_FIELD1_PRIVATE) | |
771 | 4742 return 0; |
4743 /* octets not out of range */ | |
4744 if (f2 < 0x20 || f3 < 0x20) | |
4745 return 0; | |
4746 | |
4747 #ifdef ENABLE_COMPOSITE_CHARS | |
4748 if (f1 + FIELD1_TO_OFFICIAL_LEADING_BYTE == LEADING_BYTE_COMPOSITE) | |
4749 { | |
4750 if (UNBOUNDP (Fgethash (make_int (ch), | |
4751 Vcomposite_char_char2string_hash_table, | |
4752 Qunbound))) | |
4753 return 0; | |
4754 return 1; | |
4755 } | |
4756 #endif /* ENABLE_COMPOSITE_CHARS */ | |
4757 | |
4758 /* charset exists */ | |
867 | 4759 if (f1 <= MAX_ICHAR_FIELD1_OFFICIAL) |
771 | 4760 charset = |
826 | 4761 charset_by_leading_byte (f1 + FIELD1_TO_OFFICIAL_LEADING_BYTE); |
771 | 4762 else |
4763 charset = | |
826 | 4764 charset_by_leading_byte (f1 + FIELD1_TO_PRIVATE_LEADING_BYTE); |
771 | 4765 |
4766 if (EQ (charset, Qnil)) | |
4767 return 0; | |
4768 /* check range as per size (94x94 or 96x96) of charset */ | |
4769 return ((f2 != 0x20 && f2 != 0x7F && f3 != 0x20 && f3 != 0x7F) || | |
4770 XCHARSET_CHARS (charset) == 96); | |
4771 } | |
4772 } | |
4773 | |
4774 /* Copy the character pointed to by SRC into DST. Do not call this | |
867 | 4775 directly. Use the macro itext_copy_ichar() instead. |
771 | 4776 Return the number of bytes copied. */ |
4777 | |
4778 Bytecount | |
867 | 4779 non_ascii_itext_copy_ichar (const Ibyte *src, Ibyte *dst) |
771 | 4780 { |
826 | 4781 Bytecount bytes = rep_bytes_by_first_byte (*src); |
771 | 4782 Bytecount i; |
4783 for (i = bytes; i; i--, dst++, src++) | |
4784 *dst = *src; | |
4785 return bytes; | |
4786 } | |
4787 | |
4788 #endif /* MULE */ | |
4789 | |
4790 | |
4791 /************************************************************************/ | |
867 | 4792 /* streams of Ichars */ |
771 | 4793 /************************************************************************/ |
4794 | |
4795 #ifdef MULE | |
4796 | |
867 | 4797 /* Treat a stream as a stream of Ichar's rather than a stream of bytes. |
771 | 4798 The functions below are not meant to be called directly; use |
4799 the macros in insdel.h. */ | |
4800 | |
867 | 4801 Ichar |
4802 Lstream_get_ichar_1 (Lstream *stream, int ch) | |
771 | 4803 { |
867 | 4804 Ibyte str[MAX_ICHAR_LEN]; |
4805 Ibyte *strptr = str; | |
771 | 4806 Bytecount bytes; |
4807 | |
867 | 4808 str[0] = (Ibyte) ch; |
771 | 4809 |
826 | 4810 for (bytes = rep_bytes_by_first_byte (ch) - 1; bytes; bytes--) |
771 | 4811 { |
4812 int c = Lstream_getc (stream); | |
800 | 4813 text_checking_assert (c >= 0); |
867 | 4814 *++strptr = (Ibyte) c; |
771 | 4815 } |
867 | 4816 return itext_ichar (str); |
771 | 4817 } |
4818 | |
4819 int | |
867 | 4820 Lstream_fput_ichar (Lstream *stream, Ichar ch) |
771 | 4821 { |
867 | 4822 Ibyte str[MAX_ICHAR_LEN]; |
4823 Bytecount len = set_itext_ichar (str, ch); | |
771 | 4824 return Lstream_write (stream, str, len); |
4825 } | |
4826 | |
4827 void | |
867 | 4828 Lstream_funget_ichar (Lstream *stream, Ichar ch) |
771 | 4829 { |
867 | 4830 Ibyte str[MAX_ICHAR_LEN]; |
4831 Bytecount len = set_itext_ichar (str, ch); | |
771 | 4832 Lstream_unread (stream, str, len); |
4833 } | |
4834 | |
4835 #endif /* MULE */ | |
4836 | |
4837 | |
4838 /************************************************************************/ | |
4839 /* Lisp primitives for working with characters */ | |
4840 /************************************************************************/ | |
4841 | |
4842 DEFUN ("make-char", Fmake_char, 2, 3, 0, /* | |
4843 Make a character from CHARSET and octets ARG1 and ARG2. | |
4844 ARG2 is required only for characters from two-dimensional charsets. | |
4845 | |
4846 Each octet should be in the range 32 through 127 for a 96 or 96x96 | |
4847 charset and 33 through 126 for a 94 or 94x94 charset. (Most charsets | |
4848 are either 96 or 94x94.) Note that this is 32 more than the values | |
4849 typically given for 94x94 charsets. When two octets are required, the | |
4850 order is "standard" -- the same as appears in ISO-2022 encodings, | |
4851 reference tables, etc. | |
4852 | |
4853 \(Note the following non-obvious result: Computerized translation | |
4854 tables often encode the two octets as the high and low bytes, | |
4855 respectively, of a hex short, while when there's only one octet, it | |
4856 goes in the low byte. When decoding such a value, you need to treat | |
4857 the two cases differently when calling make-char: One is (make-char | |
4858 CHARSET HIGH LOW), the other is (make-char CHARSET LOW).) | |
4859 | |
4860 For example, (make-char 'latin-iso8859-2 185) or (make-char | |
4861 'latin-iso8859-2 57) will return the Latin 2 character s with caron. | |
4862 | |
4863 As another example, the Japanese character for "kawa" (stream), which | |
4864 looks something like this: | |
4865 | |
4866 | | | |
4867 | | | | |
4868 | | | | |
4869 | | | | |
4870 / | | |
4871 | |
4872 appears in the Unicode Standard (version 2.0) on page 7-287 with the | |
4873 following values (see also page 7-4): | |
4874 | |
4875 U 5DDD (Unicode) | |
4876 G 0-2008 (GB 2312-80) | |
4877 J 0-3278 (JIS X 0208-1990) | |
4878 K 0-8425 (KS C 5601-1987) | |
4879 B A474 (Big Five) | |
4880 C 1-4455 (CNS 11643-1986 (1st plane)) | |
4881 A 213C34 (ANSI Z39.64-1989) | |
4882 | |
4883 These are equivalent to: | |
4884 | |
4885 \(make-char 'chinese-gb2312 52 40) | |
4886 \(make-char 'japanese-jisx0208 64 110) | |
4887 \(make-char 'korean-ksc5601 116 57) | |
4888 \(make-char 'chinese-cns11643-1 76 87) | |
4889 \(decode-big5-char '(164 . 116)) | |
4890 | |
4891 \(All codes above are two decimal numbers except for Big Five and ANSI | |
4892 Z39.64, which we don't support. We add 32 to each of the decimal | |
4893 numbers. Big Five is split in a rather hackish fashion into two | |
4894 charsets, `big5-1' and `big5-2', due to its excessive size -- 94x157, | |
4895 with the first codepoint in the range 0xA1 to 0xFE and the second in | |
4896 the range 0x40 to 0x7E or 0xA1 to 0xFE. `decode-big5-char' is used to | |
4897 generate the char from its codes, and `encode-big5-char' extracts the | |
4898 codes.) | |
4899 | |
4900 When compiled without MULE, this function does not do much, but it's | |
4901 provided for compatibility. In this case, the following CHARSET symbols | |
4902 are allowed: | |
4903 | |
4904 `ascii' -- ARG1 should be in the range 0 through 127. | |
4905 `control-1' -- ARG1 should be in the range 128 through 159. | |
4906 else -- ARG1 is coerced to be between 0 and 255, and then the high | |
4907 bit is set. | |
4908 | |
4909 `int-to-char of the resulting ARG1' is returned, and ARG2 is always ignored. | |
4910 */ | |
2333 | 4911 (charset, arg1, USED_IF_MULE (arg2))) |
771 | 4912 { |
4913 #ifdef MULE | |
4914 Lisp_Charset *cs; | |
4915 int a1, a2; | |
4916 int lowlim, highlim; | |
4917 | |
4918 charset = Fget_charset (charset); | |
4919 cs = XCHARSET (charset); | |
4920 | |
788 | 4921 get_charset_limits (charset, &lowlim, &highlim); |
771 | 4922 |
4923 CHECK_INT (arg1); | |
4924 /* It is useful (and safe, according to Olivier Galibert) to strip | |
4925 the 8th bit off ARG1 and ARG2 because it allows programmers to | |
4926 write (make-char 'latin-iso8859-2 CODE) where code is the actual | |
4927 Latin 2 code of the character. */ | |
4928 a1 = XINT (arg1) & 0x7f; | |
4929 if (a1 < lowlim || a1 > highlim) | |
4930 args_out_of_range_3 (arg1, make_int (lowlim), make_int (highlim)); | |
4931 | |
4932 if (CHARSET_DIMENSION (cs) == 1) | |
4933 { | |
4934 if (!NILP (arg2)) | |
4935 invalid_argument | |
4936 ("Charset is of dimension one; second octet must be nil", arg2); | |
867 | 4937 return make_char (make_ichar (charset, a1, 0)); |
771 | 4938 } |
4939 | |
4940 CHECK_INT (arg2); | |
4941 a2 = XINT (arg2) & 0x7f; | |
4942 if (a2 < lowlim || a2 > highlim) | |
4943 args_out_of_range_3 (arg2, make_int (lowlim), make_int (highlim)); | |
4944 | |
867 | 4945 return make_char (make_ichar (charset, a1, a2)); |
771 | 4946 #else |
4947 int a1; | |
4948 int lowlim, highlim; | |
4949 | |
4950 if (EQ (charset, Qascii)) lowlim = 0, highlim = 127; | |
4951 else if (EQ (charset, Qcontrol_1)) lowlim = 0, highlim = 31; | |
4952 else lowlim = 0, highlim = 127; | |
4953 | |
4954 CHECK_INT (arg1); | |
4955 /* It is useful (and safe, according to Olivier Galibert) to strip | |
4956 the 8th bit off ARG1 and ARG2 because it allows programmers to | |
4957 write (make-char 'latin-iso8859-2 CODE) where code is the actual | |
4958 Latin 2 code of the character. */ | |
4959 a1 = XINT (arg1) & 0x7f; | |
4960 if (a1 < lowlim || a1 > highlim) | |
4961 args_out_of_range_3 (arg1, make_int (lowlim), make_int (highlim)); | |
4962 | |
4963 if (EQ (charset, Qascii)) | |
4964 return make_char (a1); | |
4965 return make_char (a1 + 128); | |
4966 #endif /* MULE */ | |
4967 } | |
4968 | |
4969 #ifdef MULE | |
4970 | |
4971 DEFUN ("char-charset", Fchar_charset, 1, 1, 0, /* | |
4972 Return the character set of char CH. | |
4973 */ | |
4974 (ch)) | |
4975 { | |
4976 CHECK_CHAR_COERCE_INT (ch); | |
4977 | |
826 | 4978 return XCHARSET_NAME (charset_by_leading_byte |
867 | 4979 (ichar_leading_byte (XCHAR (ch)))); |
771 | 4980 } |
4981 | |
4982 DEFUN ("char-octet", Fchar_octet, 1, 2, 0, /* | |
4983 Return the octet numbered N (should be 0 or 1) of char CH. | |
4984 N defaults to 0 if omitted. | |
4985 */ | |
4986 (ch, n)) | |
4987 { | |
4988 Lisp_Object charset; | |
4989 int octet0, octet1; | |
4990 | |
4991 CHECK_CHAR_COERCE_INT (ch); | |
4992 | |
867 | 4993 BREAKUP_ICHAR (XCHAR (ch), charset, octet0, octet1); |
771 | 4994 |
4995 if (NILP (n) || EQ (n, Qzero)) | |
4996 return make_int (octet0); | |
4997 else if (EQ (n, make_int (1))) | |
4998 return make_int (octet1); | |
4999 else | |
5000 invalid_constant ("Octet number must be 0 or 1", n); | |
5001 } | |
5002 | |
3724 | 5003 #endif /* MULE */ |
5004 | |
771 | 5005 DEFUN ("split-char", Fsplit_char, 1, 1, 0, /* |
5006 Return list of charset and one or two position-codes of CHAR. | |
5007 */ | |
5008 (character)) | |
5009 { | |
5010 /* This function can GC */ | |
5011 struct gcpro gcpro1, gcpro2; | |
5012 Lisp_Object charset = Qnil; | |
5013 Lisp_Object rc = Qnil; | |
5014 int c1, c2; | |
5015 | |
5016 GCPRO2 (charset, rc); | |
5017 CHECK_CHAR_COERCE_INT (character); | |
5018 | |
867 | 5019 BREAKUP_ICHAR (XCHAR (character), charset, c1, c2); |
771 | 5020 |
3724 | 5021 if (XCHARSET_DIMENSION (charset) == 2) |
771 | 5022 { |
5023 rc = list3 (XCHARSET_NAME (charset), make_int (c1), make_int (c2)); | |
5024 } | |
5025 else | |
5026 { | |
5027 rc = list2 (XCHARSET_NAME (charset), make_int (c1)); | |
5028 } | |
5029 UNGCPRO; | |
5030 | |
5031 return rc; | |
5032 } | |
5033 | |
5034 | |
5035 /************************************************************************/ | |
5036 /* composite character functions */ | |
5037 /************************************************************************/ | |
5038 | |
5039 #ifdef ENABLE_COMPOSITE_CHARS | |
5040 | |
867 | 5041 Ichar |
5042 lookup_composite_char (Ibyte *str, int len) | |
771 | 5043 { |
5044 Lisp_Object lispstr = make_string (str, len); | |
5045 Lisp_Object ch = Fgethash (lispstr, | |
5046 Vcomposite_char_string2char_hash_table, | |
5047 Qunbound); | |
867 | 5048 Ichar emch; |
771 | 5049 |
5050 if (UNBOUNDP (ch)) | |
5051 { | |
5052 if (composite_char_row_next >= 128) | |
5053 invalid_operation ("No more composite chars available", lispstr); | |
867 | 5054 emch = make_ichar (Vcharset_composite, composite_char_row_next, |
771 | 5055 composite_char_col_next); |
5056 Fputhash (make_char (emch), lispstr, | |
5057 Vcomposite_char_char2string_hash_table); | |
5058 Fputhash (lispstr, make_char (emch), | |
5059 Vcomposite_char_string2char_hash_table); | |
5060 composite_char_col_next++; | |
5061 if (composite_char_col_next >= 128) | |
5062 { | |
5063 composite_char_col_next = 32; | |
5064 composite_char_row_next++; | |
5065 } | |
5066 } | |
5067 else | |
5068 emch = XCHAR (ch); | |
5069 return emch; | |
5070 } | |
5071 | |
5072 Lisp_Object | |
867 | 5073 composite_char_string (Ichar ch) |
771 | 5074 { |
5075 Lisp_Object str = Fgethash (make_char (ch), | |
5076 Vcomposite_char_char2string_hash_table, | |
5077 Qunbound); | |
5078 assert (!UNBOUNDP (str)); | |
5079 return str; | |
5080 } | |
5081 | |
826 | 5082 DEFUN ("make-composite-char", Fmake_composite_char, 1, 1, 0, /* |
771 | 5083 Convert a string into a single composite character. |
5084 The character is the result of overstriking all the characters in | |
5085 the string. | |
5086 */ | |
5087 (string)) | |
5088 { | |
5089 CHECK_STRING (string); | |
5090 return make_char (lookup_composite_char (XSTRING_DATA (string), | |
5091 XSTRING_LENGTH (string))); | |
5092 } | |
5093 | |
826 | 5094 DEFUN ("composite-char-string", Fcomposite_char_string, 1, 1, 0, /* |
771 | 5095 Return a string of the characters comprising a composite character. |
5096 */ | |
5097 (ch)) | |
5098 { | |
867 | 5099 Ichar emch; |
771 | 5100 |
5101 CHECK_CHAR (ch); | |
5102 emch = XCHAR (ch); | |
867 | 5103 if (ichar_leading_byte (emch) != LEADING_BYTE_COMPOSITE) |
771 | 5104 invalid_argument ("Must be composite char", ch); |
5105 return composite_char_string (emch); | |
5106 } | |
5107 #endif /* ENABLE_COMPOSITE_CHARS */ | |
5108 | |
5109 | |
5110 /************************************************************************/ | |
5111 /* initialization */ | |
5112 /************************************************************************/ | |
5113 | |
5114 void | |
1204 | 5115 reinit_eistring_early (void) |
771 | 5116 { |
5117 the_eistring_malloc_zero_init = the_eistring_zero_init; | |
5118 the_eistring_malloc_zero_init.mallocp_ = 1; | |
5119 } | |
5120 | |
5121 void | |
814 | 5122 init_eistring_once_early (void) |
5123 { | |
1204 | 5124 reinit_eistring_early (); |
814 | 5125 } |
5126 | |
5127 void | |
771 | 5128 syms_of_text (void) |
5129 { | |
5130 DEFSUBR (Fmake_char); | |
3724 | 5131 DEFSUBR (Fsplit_char); |
771 | 5132 |
5133 #ifdef MULE | |
5134 DEFSUBR (Fchar_charset); | |
5135 DEFSUBR (Fchar_octet); | |
5136 | |
5137 #ifdef ENABLE_COMPOSITE_CHARS | |
5138 DEFSUBR (Fmake_composite_char); | |
5139 DEFSUBR (Fcomposite_char_string); | |
5140 #endif | |
5141 #endif /* MULE */ | |
5142 } | |
5143 | |
5144 void | |
5145 reinit_vars_of_text (void) | |
5146 { | |
5147 int i; | |
5148 | |
867 | 5149 conversion_in_dynarr_list = Dynarr_new2 (Ibyte_dynarr_dynarr, |
5150 Ibyte_dynarr *); | |
771 | 5151 conversion_out_dynarr_list = Dynarr_new2 (Extbyte_dynarr_dynarr, |
5152 Extbyte_dynarr *); | |
5153 | |
5154 for (i = 0; i <= MAX_BYTEBPOS_GAP_SIZE_3; i++) | |
5155 three_to_one_table[i] = i / 3; | |
5156 } | |
5157 | |
5158 void | |
5159 vars_of_text (void) | |
5160 { | |
1292 | 5161 QSin_char_byte_conversion = build_msg_string ("(in char-byte conversion)"); |
5162 staticpro (&QSin_char_byte_conversion); | |
5163 QSin_internal_external_conversion = | |
5164 build_msg_string ("(in internal-external conversion)"); | |
5165 staticpro (&QSin_internal_external_conversion); | |
5166 | |
771 | 5167 #ifdef ENABLE_COMPOSITE_CHARS |
5168 /* #### not dumped properly */ | |
5169 composite_char_row_next = 32; | |
5170 composite_char_col_next = 32; | |
5171 | |
5172 Vcomposite_char_string2char_hash_table = | |
5173 make_lisp_hash_table (500, HASH_TABLE_NON_WEAK, HASH_TABLE_EQUAL); | |
5174 Vcomposite_char_char2string_hash_table = | |
5175 make_lisp_hash_table (500, HASH_TABLE_NON_WEAK, HASH_TABLE_EQ); | |
5176 staticpro (&Vcomposite_char_string2char_hash_table); | |
5177 staticpro (&Vcomposite_char_char2string_hash_table); | |
5178 #endif /* ENABLE_COMPOSITE_CHARS */ | |
5179 } |