Mercurial > hg > xemacs-beta
diff src/text.c @ 826:6728e641994e
[xemacs-hg @ 2002-05-05 11:30:15 by ben]
syntax cache, 8-bit-format, lots of code cleanup
README.packages: Update info about --package-path.
i.c: Create an inheritable event and pass it on to XEmacs, so that ^C
can be handled properly. Intercept ^C and signal the event.
"Stop Build" in VC++ now works.
bytecomp-runtime.el: Doc string changes.
compat.el: Some attempts to redo this to
make it truly useful and fix the "multiple versions interacting
with each other" problem. Not yet done. Currently doesn't work.
files.el: Use with-obsolete-variable to avoid warnings in new revert-buffer code.
xemacs.mak: Split up CFLAGS into a version without flags specifying the C
library. The problem seems to be that minitar depends on zlib,
which depends specifically on libc.lib, not on any of the other C
libraries. Unless you compile with libc.lib, you get errors --
specifically, no _errno in the other libraries, which must make it
something other than an int. (#### But this doesn't seem to obtain
in XEmacs, which also uses zlib, and can be linked with any of the
C libraries. Maybe zlib is used differently and doesn't need
errno, or maybe XEmacs provides an int errno; ... I don't
understand.
Makefile.in.in: Fix so that packages are around when testing.
abbrev.c, alloc.c, buffer.c, buffer.h, bytecode.c, callint.c, casefiddle.c, casetab.c, casetab.h, charset.h, chartab.c, chartab.h, cmds.c, console-msw.h, console-stream.c, console-x.c, console.c, console.h, data.c, device-msw.c, device.c, device.h, dialog-msw.c, dialog-x.c, dired-msw.c, dired.c, doc.c, doprnt.c, dumper.c, editfns.c, elhash.c, emacs.c, eval.c, event-Xt.c, event-gtk.c, event-msw.c, event-stream.c, events.c, events.h, extents.c, extents.h, faces.c, file-coding.c, file-coding.h, fileio.c, fns.c, font-lock.c, frame-gtk.c, frame-msw.c, frame-x.c, frame.c, frame.h, glade.c, glyphs-gtk.c, glyphs-msw.c, glyphs-msw.h, glyphs-x.c, glyphs.c, glyphs.h, gui-msw.c, gui-x.c, gui.h, gutter.h, hash.h, indent.c, insdel.c, intl-win32.c, intl.c, keymap.c, lisp-disunion.h, lisp-union.h, lisp.h, lread.c, lrecord.h, lstream.c, lstream.h, marker.c, menubar-gtk.c, menubar-msw.c, menubar-x.c, menubar.c, minibuf.c, mule-ccl.c, mule-charset.c, mule-coding.c, mule-wnnfns.c, nas.c, objects-msw.c, objects-x.c, opaque.c, postgresql.c, print.c, process-nt.c, process-unix.c, process.c, process.h, profile.c, rangetab.c, redisplay-gtk.c, redisplay-msw.c, redisplay-output.c, redisplay-x.c, redisplay.c, redisplay.h, regex.c, regex.h, scrollbar-msw.c, search.c, select-x.c, specifier.c, specifier.h, symbols.c, symsinit.h, syntax.c, syntax.h, syswindows.h, tests.c, text.c, text.h, tooltalk.c, ui-byhand.c, ui-gtk.c, unicode.c, win32.c, window.c: Another big Ben patch.
-- FUNCTIONALITY CHANGES:
add partial support for 8-bit-fixed, 16-bit-fixed, and
32-bit-fixed formats. not quite done yet. (in particular, needs
functions to actually convert the buffer.) NOTE: lots of changes
to regex.c here. also, many new *_fmt() inline funs that take an
Internal_Format argument.
redo syntax cache code. make the cache per-buffer; keep the cache
valid across calls to functions that use it. also keep it valid
across insertions/deletions and extent changes, as much as is
possible. eliminate the junky regex-reentrancy code by passing in
the relevant lisp info to the regex routines as local vars.
add general mechanism in extents code for signalling extent changes.
fix numerous problems with the case-table implementation; yoshiki
never properly transferred many algorithms from old-style to
new-style case tables.
redo char tables to support a default argument, so that mapping
only occurs over changed args. change many chartab functions to
accept Lisp_Object instead of Lisp_Char_Table *.
comment out the code in font-lock.c by default, because
font-lock.el no longer uses it. we should consider eliminating it
entirely.
Don't output bell as ^G in console-stream when not a TTY.
add -mswindows-termination-handle to interface with i.c, so we can
properly kill a build.
add more error-checking to buffer/string macros.
add some additional buffer_or_string_() funs.
-- INTERFACE CHANGES AFFECTING MORE CODE:
switch the arguments of write_c_string and friends to be
consistent with write_fmt_string, which must have printcharfun
first.
change BI_* macros to BYTE_* for increased clarity; similarly for
bi_* local vars.
change VOID_TO_LISP to be a one-argument function. eliminate
no-longer-needed CVOID_TO_LISP.
-- char/string macro changes:
rename MAKE_CHAR() to make_emchar() for slightly less confusion
with make_char(). (The former generates an Emchar, the latter a
Lisp object. Conceivably we should rename make_char() -> wrap_char()
and similarly for make_int(), make_float().)
Similar changes for other *CHAR* macros -- we now consistently use
names with `emchar' whenever we are working with Emchars. Any
remaining name with just `char' always refers to a Lisp object.
rename macros with XSTRING_* to string_* except for those that
reference actual fields in the Lisp_String object, following
conventions used elsewhere.
rename set_string_{data,length} macros (the only ones to work with
a Lisp_String_* instead of a Lisp_Object) to set_lispstringp_*
to make the difference clear.
try to be consistent about caps vs. lowercase in macro/inline-fun
names for chars and such, which wasn't the case before. we now
reserve caps either for XFOO_ macros that reference object fields
(e.g. XSTRING_DATA) or for things that have non-function semantics,
e.g. directly modifying an arg (BREAKUP_EMCHAR) or evaluating an
arg (any arg) more than once. otherwise, use lowercase.
here is a summary of most of the macros/inline funs changed by all
of the above changes:
BYTE_*_P -> byte_*_p
XSTRING_BYTE -> string_byte
set_string_data/length -> set_lispstringp_data/length
XSTRING_CHAR_LENGTH -> string_char_length
XSTRING_CHAR -> string_emchar
INTBYTE_FIRST_BYTE_P -> intbyte_first_byte_p
INTBYTE_LEADING_BYTE_P -> intbyte_leading_byte_p
charptr_copy_char -> charptr_copy_emchar
LEADING_BYTE_* -> leading_byte_*
CHAR_* -> EMCHAR_*
*_CHAR_* -> *_EMCHAR_*
*_CHAR -> *_EMCHAR
CHARSET_BY_ -> charset_by_*
BYTE_SHIFT_JIS* -> byte_shift_jis*
BYTE_BIG5* -> byte_big5*
REP_BYTES_BY_FIRST_BYTE -> rep_bytes_by_first_byte
char_to_unicode -> emchar_to_unicode
valid_char_p -> valid_emchar_p
Change intbyte_strcmp -> qxestrcmp_c (duplicated functionality).
-- INTERFACE CHANGES AFFECTING LESS CODE:
use DECLARE_INLINE_HEADER in various places.
remove '#ifdef emacs' from XEmacs-only files.
eliminate CHAR_TABLE_VALUE(), which duplicated the functionality
of get_char_table().
add BUFFER_TEXT_LOOP to simplify iterations over buffer text.
define typedefs for signed and unsigned types of fixed sizes
(INT_32_BIT, UINT_32_BIT, etc.).
create ALIGN_FOR_TYPE as a higher-level interface onto ALIGN_SIZE;
fix code to use it.
add charptr_emchar_len to return the text length of the character
pointed to by a ptr; use it in place of
charcount_to_bytecount(..., 1). add emchar_len to return the text
length of a given character.
add types Bytexpos and Charxpos to generalize Bytebpos/Bytecount
and Charbpos/Charcount, in code (particularly, the extents code
and redisplay code) that works with either kind of index. rename
redisplay struct params with names such as `charbpos' to
e.g. `charpos' when they are e.g. a Charxpos, not a Charbpos.
eliminate xxDEFUN in place of DEFUN; no longer necessary with
changes awhile back to doc.c.
split up big ugly combined list of EXFUNs in lisp.h on a
file-by-file basis, since other prototypes are similarly split.
rewrite some "*_UNSAFE" macros as inline funs and eliminate the
_UNSAFE suffix.
move most string code from lisp.h to text.h; the string code and
text.h code is now intertwined in such a fashion that they need
to be in the same place and partially interleaved. (you can't
create forward references for inline funs)
automated/lisp-tests.el, automated/symbol-tests.el, automated/test-harness.el: Fix test harness to output FAIL messages to stderr when in
batch mode.
Fix up some problems in lisp-tests/symbol-tests that were
causing spurious failures.
author | ben |
---|---|
date | Sun, 05 May 2002 11:33:57 +0000 |
parents | a634e3b7acc8 |
children | 44478bd99873 |
line wrap: on
line diff
--- a/src/text.c Thu May 02 14:35:32 2002 +0000 +++ b/src/text.c Sun May 05 11:33:57 2002 +0000 @@ -39,188 +39,20 @@ /************************************************************************/ /* - There are three possible ways to specify positions in a buffer. All - of these are one-based: the beginning of the buffer is position or - index 1, and 0 is not a valid position. - - As a "buffer position" (typedef Charbpos): - - This is an index specifying an offset in characters from the - beginning of the buffer. Note that buffer positions are - logically *between* characters, not on a character. The - difference between two buffer positions specifies the number of - characters between those positions. Buffer positions are the - only kind of position externally visible to the user. - - As a "byte index" (typedef Bytebpos): - - This is an index over the bytes used to represent the characters - in the buffer. If there is no Mule support, this is identical - to a buffer position, because each character is represented - using one byte. However, with Mule support, many characters - require two or more bytes for their representation, and so a - byte index may be greater than the corresponding buffer - position. - - As a "memory index" (typedef Membpos): - - This is the byte index adjusted for the gap. For positions - before the gap, this is identical to the byte index. For - positions after the gap, this is the byte index plus the gap - size. There are two possible memory indices for the gap - position; the memory index at the beginning of the gap should - always be used, except in code that deals with manipulating the - gap, where both indices may be seen. The address of the - character "at" (i.e. following) a particular position can be - obtained from the formula - - buffer_start_address + memory_index(position) - 1 - - except in the case of characters at the gap position. - - Other typedefs: - =============== - - Emchar: - ------- - This typedef represents a single Emacs character, which can be - ASCII, ISO-8859, or some extended character, as would typically - be used for Kanji. Note that the representation of a character - as an Emchar is *not* the same as the representation of that - same character in a string; thus, you cannot do the standard - C trick of passing a pointer to a character to a function that - expects a string. - - An Emchar takes up 19 bits of representation and (for code - compatibility and such) is compatible with an int. This - representation is visible on the Lisp level. The important - characteristics of the Emchar representation are - - -- values 0x00 - 0x7f represent ASCII. - -- values 0x80 - 0xff represent the right half of ISO-8859-1. - -- values 0x100 and up represent all other characters. - - This means that Emchar values are upwardly compatible with - the standard 8-bit representation of ASCII/ISO-8859-1. - - Intbyte: - -------- - The data in a buffer or string is logically made up of Intbyte - objects, where a Intbyte takes up the same amount of space as a - char. (It is declared differently, though, to catch invalid - usages.) Strings stored using Intbytes are said to be in - "internal format". The important characteristics of internal - format are - - -- ASCII characters are represented as a single Intbyte, - in the range 0 - 0x7f. - -- All other characters are represented as a Intbyte in - the range 0x80 - 0x9f followed by one or more Intbytes - in the range 0xa0 to 0xff. - - This leads to a number of desirable properties: - - -- Given the position of the beginning of a character, - you can find the beginning of the next or previous - character in constant time. - -- When searching for a substring or an ASCII character - within the string, you need merely use standard - searching routines. - - array of char: - -------------- - Strings that go in or out of Emacs are in "external format", - typedef'ed as an array of char or a char *. There is more - than one external format (JIS, EUC, etc.) but they all - have similar properties. They are modal encodings, - which is to say that the meaning of particular bytes is - not fixed but depends on what "mode" the string is currently - in (e.g. bytes in the range 0 - 0x7f might be - interpreted as ASCII, or as Hiragana, or as 2-byte Kanji, - depending on the current mode). The mode starts out in - ASCII/ISO-8859-1 and is switched using escape sequences -- - for example, in the JIS encoding, 'ESC $ B' switches to a - mode where pairs of bytes in the range 0 - 0x7f - are interpreted as Kanji characters. - - External-formatted data is generally desirable for passing - data between programs because it is upwardly compatible - with standard ASCII/ISO-8859-1 strings and may require - less space than internal encodings such as the one - described above. In addition, some encodings (e.g. JIS) - keep all characters (except the ESC used to switch modes) - in the printing ASCII range 0x20 - 0x7e, which results in - a much higher probability that the data will avoid being - garbled in transmission. Externally-formatted data is - generally not very convenient to work with, however, and - for this reason is usually converted to internal format - before any work is done on the string. - - NOTE: filenames need to be in external format so that - ISO-8859-1 characters come out correctly. - - Charcount: - ---------- - This typedef represents a count of characters, such as - a character offset into a string or the number of - characters between two positions in a buffer. The - difference between two Charbpos's is a Charcount, and - character positions in a string are represented using - a Charcount. - - Bytecount: - ---------- - Similar to a Charcount but represents a count of bytes. - The difference between two Bytebpos's is a Bytecount. - - - Usage of the various representations: - ===================================== - - Memory indices are used in low-level functions in insdel.c and for - extent endpoints and marker positions. The reason for this is that - this way, the extents and markers don't need to be updated for most - insertions, which merely shrink the gap and don't move any - characters around in memory. - - (The beginning-of-gap memory index simplifies insertions w.r.t. - markers, because text usually gets inserted after markers. For - extents, it is merely for consistency, because text can get - inserted either before or after an extent's endpoint depending on - the open/closedness of the endpoint.) - - Byte indices are used in other code that needs to be fast, - such as the searching, redisplay, and extent-manipulation code. - - Buffer positions are used in all other code. This is because this - representation is easiest to work with (especially since Lisp - code always uses buffer positions), necessitates the fewest - changes to existing code, and is the safest (e.g. if the text gets - shifted underneath a buffer position, it will still point to a - character; if text is shifted under a byte index, it might point - to the middle of a character, which would be bad). - - Similarly, Charcounts are used in all code that deals with strings - except for code that needs to be fast, which used Bytecounts. - - Strings are always passed around internally using internal format. - Conversions between external format are performed at the time - that the data goes in or out of Emacs. - - Working with the various representations: - ========================================= */ - -/* We write things this way because it's very important the - MAX_BYTEBPOS_GAP_SIZE_3 is a multiple of 3. (As it happens, - 65535 is a multiple of 3, but this may not always be the - case.) */ - - -/* - 1. Character Sets - ================= + ========================================================================== + 1. Character Sets + ========================================================================== A character set (or "charset") is an ordered set of characters. + + A character (which is, BTW, a surprisingly complex concept) is, in a + written representation of text, the most basic written unit that has a + meaning of its own. It's comparable to a phoneme when analyzing words + in spoken speech. Just like with a phoneme (which is an abstract + concept, and is represented in actual spoken speech by one or more + allophones, ...&&#### finish this., a character is actually an abstract + concept + A particular character in a charset is indexed using one or more "position codes", which are non-negative integers. The number of position codes needed to identify a particular @@ -298,8 +130,9 @@ This is a bit ad-hoc but gets the job done. - 2. Encodings - ============ + ========================================================================== + 2. Encodings + ========================================================================== An "encoding" is a way of numerically representing characters from one or more character sets. If an encoding @@ -378,8 +211,9 @@ Initially, Printing-ASCII is invoked. - 3. Internal Mule Encodings - ========================== + ========================================================================== + 3. Internal Mule Encodings + ========================================================================== In XEmacs/Mule, each character set is assigned a unique number, called a "leading byte". This is used in the encodings of a @@ -489,10 +323,202 @@ Note that character codes 0 - 255 are the same as the "binary encoding" described above. -*/ - -/* - About Unicode support: + + Most of the code in XEmacs knows nothing of the representation of a + character other than that values 0 - 255 represent ASCII, Control 1, + and Latin 1. + + WARNING WARNING WARNING: The Boyer-Moore code in search.c, and the + code in search_buffer() that determines whether that code can be used, + knows that "field 3" in a character always corresponds to the last + byte in the textual representation of the character. (This is important + because the Boyer-Moore algorithm works by looking at the last byte + of the search string and &&#### finish this. + + ========================================================================== + 4. Buffer Positions and Other Typedefs + ========================================================================== + + A. Buffer Positions + + There are three possible ways to specify positions in a buffer. All + of these are one-based: the beginning of the buffer is position or + index 1, and 0 is not a valid position. + + As a "buffer position" (typedef Charbpos): + + This is an index specifying an offset in characters from the + beginning of the buffer. Note that buffer positions are + logically *between* characters, not on a character. The + difference between two buffer positions specifies the number of + characters between those positions. Buffer positions are the + only kind of position externally visible to the user. + + As a "byte index" (typedef Bytebpos): + + This is an index over the bytes used to represent the characters + in the buffer. If there is no Mule support, this is identical + to a buffer position, because each character is represented + using one byte. However, with Mule support, many characters + require two or more bytes for their representation, and so a + byte index may be greater than the corresponding buffer + position. + + As a "memory index" (typedef Membpos): + + This is the byte index adjusted for the gap. For positions + before the gap, this is identical to the byte index. For + positions after the gap, this is the byte index plus the gap + size. There are two possible memory indices for the gap + position; the memory index at the beginning of the gap should + always be used, except in code that deals with manipulating the + gap, where both indices may be seen. The address of the + character "at" (i.e. following) a particular position can be + obtained from the formula + + buffer_start_address + memory_index(position) - 1 + + except in the case of characters at the gap position. + + B. Other Typedefs + + Emchar: + ------- + This typedef represents a single Emacs character, which can be + ASCII, ISO-8859, or some extended character, as would typically + be used for Kanji. Note that the representation of a character + as an Emchar is *not* the same as the representation of that + same character in a string; thus, you cannot do the standard + C trick of passing a pointer to a character to a function that + expects a string. + + An Emchar takes up 19 bits of representation and (for code + compatibility and such) is compatible with an int. This + representation is visible on the Lisp level. The important + characteristics of the Emchar representation are + + -- values 0x00 - 0x7f represent ASCII. + -- values 0x80 - 0xff represent the right half of ISO-8859-1. + -- values 0x100 and up represent all other characters. + + This means that Emchar values are upwardly compatible with + the standard 8-bit representation of ASCII/ISO-8859-1. + + Intbyte: + -------- + The data in a buffer or string is logically made up of Intbyte + objects, where a Intbyte takes up the same amount of space as a + char. (It is declared differently, though, to catch invalid + usages.) Strings stored using Intbytes are said to be in + "internal format". The important characteristics of internal + format are + + -- ASCII characters are represented as a single Intbyte, + in the range 0 - 0x7f. + -- All other characters are represented as a Intbyte in + the range 0x80 - 0x9f followed by one or more Intbytes + in the range 0xa0 to 0xff. + + This leads to a number of desirable properties: + + -- Given the position of the beginning of a character, + you can find the beginning of the next or previous + character in constant time. + -- When searching for a substring or an ASCII character + within the string, you need merely use standard + searching routines. + + array of char: + -------------- + Strings that go in or out of Emacs are in "external format", + typedef'ed as an array of char or a char *. There is more + than one external format (JIS, EUC, etc.) but they all + have similar properties. They are modal encodings, + which is to say that the meaning of particular bytes is + not fixed but depends on what "mode" the string is currently + in (e.g. bytes in the range 0 - 0x7f might be + interpreted as ASCII, or as Hiragana, or as 2-byte Kanji, + depending on the current mode). The mode starts out in + ASCII/ISO-8859-1 and is switched using escape sequences -- + for example, in the JIS encoding, 'ESC $ B' switches to a + mode where pairs of bytes in the range 0 - 0x7f + are interpreted as Kanji characters. + + External-formatted data is generally desirable for passing + data between programs because it is upwardly compatible + with standard ASCII/ISO-8859-1 strings and may require + less space than internal encodings such as the one + described above. In addition, some encodings (e.g. JIS) + keep all characters (except the ESC used to switch modes) + in the printing ASCII range 0x20 - 0x7e, which results in + a much higher probability that the data will avoid being + garbled in transmission. Externally-formatted data is + generally not very convenient to work with, however, and + for this reason is usually converted to internal format + before any work is done on the string. + + NOTE: filenames need to be in external format so that + ISO-8859-1 characters come out correctly. + + Charcount: + ---------- + This typedef represents a count of characters, such as + a character offset into a string or the number of + characters between two positions in a buffer. The + difference between two Charbpos's is a Charcount, and + character positions in a string are represented using + a Charcount. + + Bytecount: + ---------- + Similar to a Charcount but represents a count of bytes. + The difference between two Bytebpos's is a Bytecount. + + + C. Usage of the Various Representations + + Memory indices are used in low-level functions in insdel.c and for + extent endpoints and marker positions. The reason for this is that + this way, the extents and markers don't need to be updated for most + insertions, which merely shrink the gap and don't move any + characters around in memory. + + (The beginning-of-gap memory index simplifies insertions w.r.t. + markers, because text usually gets inserted after markers. For + extents, it is merely for consistency, because text can get + inserted either before or after an extent's endpoint depending on + the open/closedness of the endpoint.) + + Byte indices are used in other code that needs to be fast, + such as the searching, redisplay, and extent-manipulation code. + + Buffer positions are used in all other code. This is because this + representation is easiest to work with (especially since Lisp + code always uses buffer positions), necessitates the fewest + changes to existing code, and is the safest (e.g. if the text gets + shifted underneath a buffer position, it will still point to a + character; if text is shifted under a byte index, it might point + to the middle of a character, which would be bad). + + Similarly, Charcounts are used in all code that deals with strings + except for code that needs to be fast, which used Bytecounts. + + Strings are always passed around internally using internal format. + Conversions between external format are performed at the time + that the data goes in or out of Emacs. + + D. Working With the Various Representations + + We write things this way because it's very important the + MAX_BYTEBPOS_GAP_SIZE_3 is a multiple of 3. (As it happens, + 65535 is a multiple of 3, but this may not always be the + case. #### unfinished + + ========================================================================== + 5. Miscellaneous + ========================================================================== + + A. Unicode Support Adding Unicode support is very desirable. Unicode will likely be a very common representation in the future, and thus we should @@ -508,10 +534,11 @@ leading bytes and move them into private space. The CNS charsets are good candidates since they are rarely used, and JAPANESE_JISX0208_1978 is becoming less and less used and could - also be dumped. */ - - -/* Composite characters are characters constructed by overstriking two + also be dumped. + + B. Composite Characters + + Composite characters are characters constructed by overstriking two or more regular characters. 1) The old Mule implementation involves storing composite characters @@ -538,7 +565,9 @@ over the XEmacs process lifetime, and you only need to increase the size of a Mule character from 19 to 21 bits. Or you could use 0x8D C1 C2 C3 C4, allowing for about - 85 million (slightly over 2^26) composite characters. */ + 85 million (slightly over 2^26) composite characters. + +*/ /************************************************************************/ @@ -560,7 +589,7 @@ rep_bytes_by_first_byte(c) is more efficient than the equivalent canonical computation: - XCHARSET_REP_BYTES (CHARSET_BY_LEADING_BYTE (c)) */ + XCHARSET_REP_BYTES (charset_by_leading_byte (c)) */ const Bytecount rep_bytes_by_first_byte[0xA0] = { /* 0x00 - 0x7f are for straight ASCII */ @@ -1010,7 +1039,7 @@ Intbyte * convert_emchar_string_into_malloced_string (Emchar *arr, int nels, - Bytecount *len_out) + Bytecount *len_out) { /* Damn zero-termination. */ Intbyte *str = (Intbyte *) alloca (nels * MAX_EMCHAR_LEN + 1); @@ -1030,6 +1059,145 @@ return str; } +#define COPY_TEXT_BETWEEN_FORMATS(srcfmt, dstfmt) \ +do \ +{ \ + if (dst) \ + { \ + Intbyte *dstend = dst + dstlen; \ + Intbyte *dstp = dst; \ + const Intbyte *srcend = src + srclen; \ + const Intbyte *srcp = src; \ + \ + while (srcp < srcend) \ + { \ + Emchar ch = charptr_emchar_fmt (srcp, srcfmt, srcobj); \ + Bytecount len = emchar_len_fmt (ch, dstfmt); \ + \ + if (dstp + len <= dstend) \ + { \ + set_charptr_emchar_fmt (dstp, ch, dstfmt, dstobj); \ + dstp += len; \ + } \ + else \ + break; \ + INC_CHARPTR_FMT (srcp, srcfmt); \ + } \ + text_checking_assert (srcp <= srcend); \ + if (src_used) \ + *src_used = srcp - src; \ + return dstp - dst; \ + } \ + else \ + { \ + const Intbyte *srcend = src + srclen; \ + const Intbyte *srcp = src; \ + Bytecount total = 0; \ + \ + while (srcp < srcend) \ + { \ + total += emchar_len_fmt (charptr_emchar_fmt (srcp, srcfmt, \ + srcobj), dstfmt); \ + INC_CHARPTR_FMT (srcp, srcfmt); \ + } \ + text_checking_assert (srcp == srcend); \ + if (src_used) \ + *src_used = srcp - src; \ + return total; \ + } \ +} \ +while (0) + +/* Copy as much text from SRC/SRCLEN to DST/DSTLEN as will fit, converting + from SRCFMT/SRCOBJ to DSTFMT/DSTOBJ. Return number of bytes stored into + DST as return value, and number of bytes copied from SRC through + SRC_USED (if not NULL). If DST is NULL, don't actually store anything + and just return the size needed to store all the text. Will not copy + partial characters into DST. */ + +Bytecount +copy_text_between_formats (const Intbyte *src, Bytecount srclen, + Internal_Format srcfmt, + Lisp_Object srcobj, + Intbyte *dst, Bytecount dstlen, + Internal_Format dstfmt, + Lisp_Object dstobj, + Bytecount *src_used) +{ + if (srcfmt == dstfmt && + objects_have_same_internal_representation (srcobj, dstobj)) + { + if (dst) + { + srclen = min (srclen, dstlen); + srclen = validate_intbyte_string_backward (src, srclen); + memcpy (dst, src, srclen); + if (src_used) + *src_used = srclen; + return srclen; + } + else + return srclen; + } + /* Everything before the final else statement is an optimization. + The inner loops inside COPY_TEXT_BETWEEN_FORMATS() have a number + of calls to *_fmt(), each of which has a switch statement in it. + By using constants as the FMT argument, these switch statements + will be optimized out of existence. */ +#define ELSE_FORMATS(fmt1, fmt2) \ + else if (srcfmt == fmt1 && dstfmt == fmt2) \ + COPY_TEXT_BETWEEN_FORMATS (fmt1, fmt2) + ELSE_FORMATS (FORMAT_DEFAULT, FORMAT_8_BIT_FIXED); + ELSE_FORMATS (FORMAT_8_BIT_FIXED, FORMAT_DEFAULT); + ELSE_FORMATS (FORMAT_DEFAULT, FORMAT_32_BIT_FIXED); + ELSE_FORMATS (FORMAT_32_BIT_FIXED, FORMAT_DEFAULT); + else + COPY_TEXT_BETWEEN_FORMATS (srcfmt, dstfmt); +#undef ELSE_FORMATS +} + +/* Copy as much buffer text in BUF, starting at POS, of length LEN, as will + fit into DST/DSTLEN, converting to DSTFMT. Return number of bytes + stored into DST as return value, and number of bytes copied from BUF + through SRC_USED (if not NULL). If DST is NULL, don't actually store + anything and just return the size needed to store all the text. */ + +Bytecount +copy_buffer_text_out (struct buffer *buf, Bytebpos pos, + Bytecount len, Intbyte *dst, Bytecount dstlen, + Internal_Format dstfmt, Lisp_Object dstobj, + Bytecount *src_used) +{ + Bytecount dst_used = 0; + if (src_used) + *src_used = 0; + + { + BUFFER_TEXT_LOOP (buf, pos, len, runptr, runlen) + { + Bytecount the_src_used, the_dst_used; + + the_dst_used = copy_text_between_formats (runptr, runlen, + BUF_FORMAT (buf), + wrap_buffer (buf), + dst, dstlen, dstfmt, + dstobj, &the_src_used); + dst_used += the_dst_used; + if (src_used) + *src_used += the_src_used; + if (dst) + { + dst += the_dst_used; + dstlen -= the_dst_used; + if (!dstlen) + break; + } + } + } + + return dst_used; +} + /************************************************************************/ /* charset properties of strings */ @@ -1055,7 +1223,7 @@ while (str < strend) { - charsets[CHAR_LEADING_BYTE (charptr_emchar (str)) - MIN_LEADING_BYTE] = + charsets[emchar_leading_byte (charptr_emchar (str)) - MIN_LEADING_BYTE] = 1; INC_CHARPTR (str); } @@ -1083,7 +1251,7 @@ for (i = 0; i < len; i++) { - charsets[CHAR_LEADING_BYTE (str[i]) - MIN_LEADING_BYTE] = 1; + charsets[emchar_leading_byte (str[i]) - MIN_LEADING_BYTE] = 1; } #endif } @@ -1098,7 +1266,7 @@ { #ifdef MULE Emchar ch = charptr_emchar (str); - cols += XCHARSET_COLUMNS (CHAR_CHARSET (ch)); + cols += XCHARSET_COLUMNS (emchar_charset (ch)); #else cols++; #endif @@ -1116,7 +1284,7 @@ int i; for (i = 0; i < len; i++) - cols += XCHARSET_COLUMNS (CHAR_CHARSET (str[i])); + cols += XCHARSET_COLUMNS (emchar_charset (str[i])); return cols; #else /* not MULE */ @@ -1133,7 +1301,7 @@ while (str < end) { - if (!BYTE_ASCII_P (*str)) + if (!byte_ascii_p (*str)) retval++; INC_CHARPTR (str); } @@ -1268,7 +1436,8 @@ } Intbyte * -eicpyout_malloc_fmt (Eistring *eistr, Bytecount *len_out, Internal_Format fmt) +eicpyout_malloc_fmt (Eistring *eistr, Bytecount *len_out, Internal_Format fmt, + Lisp_Object object) { Intbyte *ptr; @@ -1289,32 +1458,22 @@ #ifdef MULE -/* We include the basic functions here that require no specific - knowledge of how data is Mule-encoded into a buffer other - than the basic (00 - 7F), (80 - 9F), (A0 - FF) scheme. - Anything that requires more specific knowledge goes into - mule-charset.c. */ - -/* Given a pointer to a text string and a length in bytes, return - the equivalent length in characters. */ - -Charcount -bytecount_to_charcount (const Intbyte *ptr, Bytecount len) +/* Skip as many ASCII bytes as possible in the memory block [PTR, END). + Return pointer to the first non-ASCII byte. optimized for long + stretches of ASCII. */ +inline static const Intbyte * +skip_ascii (const Intbyte *ptr, const Intbyte *end) { - Charcount count = 0; - const Intbyte *end = ptr + len; - -#if SIZEOF_LONG == 8 -# define STRIDE_TYPE long -# define HIGH_BIT_MASK 0x8080808080808080UL -#elif SIZEOF_LONG_LONG == 8 && !(defined (i386) || defined (__i386__)) -# define STRIDE_TYPE long long -# define HIGH_BIT_MASK 0x8080808080808080ULL -#elif SIZEOF_LONG == 4 -# define STRIDE_TYPE long -# define HIGH_BIT_MASK 0x80808080UL +#ifdef EFFICIENT_INT_128_BIT +# define STRIDE_TYPE INT_128_BIT +# define HIGH_BIT_MASK \ + MAKE_128_BIT_UNSIGNED_CONSTANT (0x80808080808080808080808080808080) +#elif defined (EFFICIENT_INT_64_BIT) +# define STRIDE_TYPE INT_64_BIT +# define HIGH_BIT_MASK MAKE_64_BIT_UNSIGNED_CONSTANT (0x8080808080808080) #else -# error Add support for 128-bit systems here +# define STRIDE_TYPE INT_32_BIT +# define HIGH_BIT_MASK MAKE_32_BIT_UNSIGNED_CONSTANT (0x80808080) #endif #define ALIGN_BITS ((EMACS_UINT) (ALIGNOF (STRIDE_TYPE) - 1)) @@ -1322,39 +1481,52 @@ #define ALIGNED(ptr) ((((EMACS_UINT) ptr) & ALIGN_BITS) == 0) #define STRIDE sizeof (STRIDE_TYPE) - while (ptr < end) + const unsigned STRIDE_TYPE *ascii_end; + + /* Need to do in 3 sections -- before alignment start, aligned chunk, + after alignment end. */ + while (!ALIGNED (ptr)) { - if (BYTE_ASCII_P (*ptr)) - { - /* optimize for long stretches of ASCII */ - if (! ALIGNED (ptr)) - ptr++, count++; - else - { - const unsigned STRIDE_TYPE *ascii_end = - (const unsigned STRIDE_TYPE *) ptr; - /* This loop screams, because we can detect ASCII - characters 4 or 8 at a time. */ - while ((const Intbyte *) ascii_end + STRIDE <= end - && !(*ascii_end & HIGH_BIT_MASK)) - ascii_end++; - if ((Intbyte *) ascii_end == ptr) - ptr++, count++; - else - { - count += (Intbyte *) ascii_end - ptr; - ptr = (Intbyte *) ascii_end; - } - } - } - else - { - /* optimize for successive characters from the same charset */ - Intbyte leading_byte = *ptr; - int bytes = REP_BYTES_BY_FIRST_BYTE (leading_byte); - while ((ptr < end) && (*ptr == leading_byte)) - ptr += bytes, count++; - } + if (ptr == end || !byte_ascii_p (*ptr)) + return ptr; + ptr++; + } + ascii_end = (const unsigned STRIDE_TYPE *) ptr; + /* This loop screams, because we can detect ASCII + characters 4 or 8 at a time. */ + while ((const Intbyte *) ascii_end + STRIDE <= end + && !(*ascii_end & HIGH_BIT_MASK)) + ascii_end++; + ptr = (Intbyte *) ascii_end; + while (ptr < end && byte_ascii_p (*ptr)) + ptr++; + return ptr; +} + +/* Function equivalents of bytecount_to_charcount/charcount_to_bytecount. + These work on strings of all sizes but are more efficient than a simple + loop on large strings and probably less efficient on sufficiently small + strings. */ + +Charcount +bytecount_to_charcount_fun (const Intbyte *ptr, Bytecount len) +{ + Charcount count = 0; + const Intbyte *end = ptr + len; + while (1) + { + const Intbyte *newptr = skip_ascii (ptr, end); + count += newptr - ptr; + ptr = newptr; + if (ptr == end) + break; + { + /* Optimize for successive characters from the same charset */ + Intbyte leading_byte = *ptr; + int bytes = rep_bytes_by_first_byte (leading_byte); + while (ptr < end && *ptr == leading_byte) + ptr += bytes, count++; + } } /* Bomb out if the specified substring ends in the middle @@ -1368,29 +1540,28 @@ return count; } -/* Given a pointer to a text string and a length in characters, return - the equivalent length in bytes. */ - Bytecount -charcount_to_bytecount (const Intbyte *ptr, Charcount len) +charcount_to_bytecount_fun (const Intbyte *ptr, Charcount len) { const Intbyte *newptr = ptr; - - text_checking_assert (len >= 0); - while (len > 0) + while (1) { - INC_CHARPTR (newptr); - len--; + const Intbyte *newnewptr = skip_ascii (newptr, newptr + len); + len -= newnewptr - newptr; + newptr = newnewptr; + if (!len) + break; + { + /* Optimize for successive characters from the same charset */ + Intbyte leading_byte = *newptr; + int bytes = rep_bytes_by_first_byte (leading_byte); + while (len > 0 && *newptr == leading_byte) + newptr += bytes, len--; + } } return newptr - ptr; } -inline static void -update_entirely_ascii_p_flag (struct buffer *buf) -{ - buf->text->entirely_ascii_p = buf->text->z == buf->text->bufz; -} - /* The next two functions are the actual meat behind the charbpos-to-bytebpos and bytebpos-to-charbpos conversions. Currently the method they use is fairly unsophisticated; see buffer.h. @@ -1422,11 +1593,11 @@ /* Check for some cached positions, for speed. */ if (x == BUF_PT (buf)) - return BI_BUF_PT (buf); + return BYTE_BUF_PT (buf); if (x == BUF_ZV (buf)) - return BI_BUF_ZV (buf); + return BYTE_BUF_ZV (buf); if (x == BUF_BEGV (buf)) - return BI_BUF_BEGV (buf); + return BYTE_BUF_BEGV (buf); bufmin = buf->text->mule_bufmin; bufmax = buf->text->mule_bufmax; @@ -1474,7 +1645,7 @@ if (diffpt < diffmax && diffpt <= diffzv) { bufmax = bufmin = BUF_PT (buf); - bytmax = bytmin = BI_BUF_PT (buf); + bytmax = bytmin = BYTE_BUF_PT (buf); /* We set the size to 1 even though it doesn't really matter because the new known region contains no characters. We do this because this is the most @@ -1486,7 +1657,7 @@ if (diffzv < diffmax) { bufmax = bufmin = BUF_ZV (buf); - bytmax = bytmin = BI_BUF_ZV (buf); + bytmax = bytmin = BYTE_BUF_ZV (buf); size = 1; } } @@ -1516,7 +1687,7 @@ if (diffpt < diffmin && diffpt <= diffbegv) { bufmax = bufmin = BUF_PT (buf); - bytmax = bytmin = BI_BUF_PT (buf); + bytmax = bytmin = BYTE_BUF_PT (buf); /* We set the size to 1 even though it doesn't really matter because the new known region contains no characters. We do this because this is the most @@ -1528,7 +1699,7 @@ if (diffbegv < diffmin) { bufmax = bufmin = BUF_BEGV (buf); - bytmax = bytmin = BI_BUF_BEGV (buf); + bytmax = bytmin = BYTE_BUF_BEGV (buf); size = 1; } } @@ -1698,11 +1869,11 @@ int add_to_cache = 0; /* Check for some cached positions, for speed. */ - if (x == BI_BUF_PT (buf)) + if (x == BYTE_BUF_PT (buf)) return BUF_PT (buf); - if (x == BI_BUF_ZV (buf)) + if (x == BYTE_BUF_ZV (buf)) return BUF_ZV (buf); - if (x == BI_BUF_BEGV (buf)) + if (x == BYTE_BUF_BEGV (buf)) return BUF_BEGV (buf); bufmin = buf->text->mule_bufmin; @@ -1718,16 +1889,16 @@ when the size of the character just seen changes. We optimize this, however, by first shifting the known region to - one of the cached points if it's close by. (We don't check BI_BEG or - BI_Z, even though they're cached; most of the time these will be the - same as BI_BEGV and BI_ZV, and when they're not, they're not likely + one of the cached points if it's close by. (We don't check BYTE_BEG or + BYTE_Z, even though they're cached; most of the time these will be the + same as BYTE_BEGV and BYTE_ZV, and when they're not, they're not likely to be used.) */ if (x > bytmax) { Bytebpos diffmax = x - bytmax; - Bytebpos diffpt = x - BI_BUF_PT (buf); - Bytebpos diffzv = BI_BUF_ZV (buf) - x; + Bytebpos diffpt = x - BYTE_BUF_PT (buf); + Bytebpos diffzv = BYTE_BUF_ZV (buf) - x; /* #### This value could stand some more exploration. */ Bytecount heuristic_hack = (bytmax - bytmin) >> 2; @@ -1740,10 +1911,10 @@ diffzv = -diffzv; /* But also implement a heuristic that favors the known region - over BI_PT or BI_ZV. The reason for this is that switching to - BI_PT or BI_ZV will wipe out the knowledge in the known region, + over BYTE_PT or BYTE_ZV. The reason for this is that switching to + BYTE_PT or BYTE_ZV will wipe out the knowledge in the known region, which might be annoying if the known region is large and - BI_PT or BI_ZV is not that much closer than the end of the known + BYTE_PT or BYTE_ZV is not that much closer than the end of the known region. */ diffzv += heuristic_hack; @@ -1751,7 +1922,7 @@ if (diffpt < diffmax && diffpt <= diffzv) { bufmax = bufmin = BUF_PT (buf); - bytmax = bytmin = BI_BUF_PT (buf); + bytmax = bytmin = BYTE_BUF_PT (buf); /* We set the size to 1 even though it doesn't really matter because the new known region contains no characters. We do this because this is the most @@ -1763,7 +1934,7 @@ if (diffzv < diffmax) { bufmax = bufmin = BUF_ZV (buf); - bytmax = bytmin = BI_BUF_ZV (buf); + bytmax = bytmin = BYTE_BUF_ZV (buf); size = 1; } } @@ -1774,8 +1945,8 @@ else { Bytebpos diffmin = bytmin - x; - Bytebpos diffpt = BI_BUF_PT (buf) - x; - Bytebpos diffbegv = x - BI_BUF_BEGV (buf); + Bytebpos diffpt = BYTE_BUF_PT (buf) - x; + Bytebpos diffbegv = x - BYTE_BUF_BEGV (buf); /* #### This value could stand some more exploration. */ Bytecount heuristic_hack = (bytmax - bytmin) >> 2; @@ -1793,7 +1964,7 @@ if (diffpt < diffmin && diffpt <= diffbegv) { bufmax = bufmin = BUF_PT (buf); - bytmax = bytmin = BI_BUF_PT (buf); + bytmax = bytmin = BYTE_BUF_PT (buf); /* We set the size to 1 even though it doesn't really matter because the new known region contains no characters. We do this because this is the most @@ -1805,7 +1976,7 @@ if (diffbegv < diffmin) { bufmax = bufmin = BUF_BEGV (buf); - bytmax = bytmin = BI_BUF_BEGV (buf); + bytmax = bytmin = BYTE_BUF_BEGV (buf); size = 1; } } @@ -1981,7 +2152,7 @@ } if (start >= buf->text->mule_bufmax) - goto done; + return; /* The insertion is either before the known region, in which case it shoves it forward; or within the known region, in which case @@ -2054,17 +2225,15 @@ } } } - done: - update_entirely_ascii_p_flag (buf); } -/* Text from START to END (equivalent in Bytebposs: from BI_START to - BI_END) was deleted. */ +/* Text from START to END (equivalent in Bytebpos's: from BYTE_START to + BYTE_END) was deleted. */ void buffer_mule_signal_deleted_region (struct buffer *buf, Charbpos start, - Charbpos end, Bytebpos bi_start, - Bytebpos bi_end) + Charbpos end, Bytebpos byte_start, + Bytebpos byte_end) { int i; @@ -2075,64 +2244,42 @@ if (buf->text->mule_charbpos_cache[i] > end) { buf->text->mule_charbpos_cache[i] -= end - start; - buf->text->mule_bytebpos_cache[i] -= bi_end - bi_start; + buf->text->mule_bytebpos_cache[i] -= byte_end - byte_start; } /* In the range; moves to start of range */ else if (buf->text->mule_charbpos_cache[i] > start) { buf->text->mule_charbpos_cache[i] = start; - buf->text->mule_bytebpos_cache[i] = bi_start; + buf->text->mule_bytebpos_cache[i] = byte_start; } } /* We don't care about any text after the end of the known region. */ end = min (end, buf->text->mule_bufmax); - bi_end = min (bi_end, buf->text->mule_bytmax); + byte_end = min (byte_end, buf->text->mule_bytmax); if (start >= end) - goto done; + return; /* The end of the known region offsets by the total amount of deletion, since it's all before it. */ buf->text->mule_bufmax -= end - start; - buf->text->mule_bytmax -= bi_end - bi_start; + buf->text->mule_bytmax -= byte_end - byte_start; /* Now we don't care about any text after the start of the known region. */ end = min (end, buf->text->mule_bufmin); - bi_end = min (bi_end, buf->text->mule_bytmin); + byte_end = min (byte_end, buf->text->mule_bytmin); if (start < end) { buf->text->mule_bufmin -= end - start; - buf->text->mule_bytmin -= bi_end - bi_start; + buf->text->mule_bytmin -= byte_end - byte_start; } - - done: - update_entirely_ascii_p_flag (buf); } #endif /* MULE */ -#ifdef ERROR_CHECK_TEXT - -Bytebpos -charbpos_to_bytebpos (struct buffer *buf, Charbpos x) -{ - Bytebpos retval = real_charbpos_to_bytebpos (buf, x); - ASSERT_VALID_BYTEBPOS_UNSAFE (buf, retval); - return retval; -} - -Charbpos -bytebpos_to_charbpos (struct buffer *buf, Bytebpos x) -{ - ASSERT_VALID_BYTEBPOS_UNSAFE (buf, x); - return real_bytebpos_to_charbpos (buf, x); -} - -#endif /* ERROR_CHECK_TEXT */ - /************************************************************************/ /* verifying buffer and string positions */ @@ -2250,7 +2397,8 @@ void get_buffer_range_char (struct buffer *b, Lisp_Object from, Lisp_Object to, - Charbpos *from_out, Charbpos *to_out, unsigned int flags) + Charbpos *from_out, Charbpos *to_out, + unsigned int flags) { /* Does not GC */ Charbpos min_allowed, max_allowed; @@ -2292,7 +2440,8 @@ void get_buffer_range_byte (struct buffer *b, Lisp_Object from, Lisp_Object to, - Bytebpos *from_out, Bytebpos *to_out, unsigned int flags) + Bytebpos *from_out, Bytebpos *to_out, + unsigned int flags) { Charbpos s, e; @@ -2339,7 +2488,7 @@ get_string_pos_char (Lisp_Object string, Lisp_Object pos, unsigned int flags) { return get_string_pos_char_1 (string, pos, flags, - XSTRING_CHAR_LENGTH (string)); + string_char_length (string)); } Bytecount @@ -2357,7 +2506,7 @@ unsigned int flags) { Charcount min_allowed = 0; - Charcount max_allowed = XSTRING_CHAR_LENGTH (string); + Charcount max_allowed = string_char_length (string); if (NILP (from) && (flags & GB_ALLOW_NIL)) *from_out = min_allowed; @@ -2408,7 +2557,7 @@ } -Charbpos +Charxpos get_buffer_or_string_pos_char (Lisp_Object object, Lisp_Object pos, unsigned int flags) { @@ -2417,7 +2566,7 @@ get_buffer_pos_char (XBUFFER (object), pos, flags); } -Bytebpos +Bytexpos get_buffer_or_string_pos_byte (Lisp_Object object, Lisp_Object pos, unsigned int flags) { @@ -2428,76 +2577,146 @@ void get_buffer_or_string_range_char (Lisp_Object object, Lisp_Object from, - Lisp_Object to, Charbpos *from_out, - Charbpos *to_out, unsigned int flags) + Lisp_Object to, Charxpos *from_out, + Charxpos *to_out, unsigned int flags) { if (STRINGP (object)) get_string_range_char (object, from, to, from_out, to_out, flags); else - get_buffer_range_char (XBUFFER (object), from, to, from_out, to_out, flags); + get_buffer_range_char (XBUFFER (object), from, to, from_out, to_out, + flags); } void get_buffer_or_string_range_byte (Lisp_Object object, Lisp_Object from, - Lisp_Object to, Bytebpos *from_out, - Bytebpos *to_out, unsigned int flags) + Lisp_Object to, Bytexpos *from_out, + Bytexpos *to_out, unsigned int flags) { if (STRINGP (object)) get_string_range_byte (object, from, to, from_out, to_out, flags); else - get_buffer_range_byte (XBUFFER (object), from, to, from_out, to_out, flags); + get_buffer_range_byte (XBUFFER (object), from, to, from_out, to_out, + flags); } -Charbpos +Charxpos buffer_or_string_accessible_begin_char (Lisp_Object object) { return STRINGP (object) ? 0 : BUF_BEGV (XBUFFER (object)); } -Charbpos +Charxpos buffer_or_string_accessible_end_char (Lisp_Object object) { return STRINGP (object) ? - XSTRING_CHAR_LENGTH (object) : BUF_ZV (XBUFFER (object)); + string_char_length (object) : BUF_ZV (XBUFFER (object)); } -Bytebpos +Bytexpos buffer_or_string_accessible_begin_byte (Lisp_Object object) { - return STRINGP (object) ? 0 : BI_BUF_BEGV (XBUFFER (object)); + return STRINGP (object) ? 0 : BYTE_BUF_BEGV (XBUFFER (object)); } -Bytebpos +Bytexpos buffer_or_string_accessible_end_byte (Lisp_Object object) { return STRINGP (object) ? - XSTRING_LENGTH (object) : BI_BUF_ZV (XBUFFER (object)); + XSTRING_LENGTH (object) : BYTE_BUF_ZV (XBUFFER (object)); } -Charbpos +Charxpos buffer_or_string_absolute_begin_char (Lisp_Object object) { return STRINGP (object) ? 0 : BUF_BEG (XBUFFER (object)); } -Charbpos +Charxpos buffer_or_string_absolute_end_char (Lisp_Object object) { return STRINGP (object) ? - XSTRING_CHAR_LENGTH (object) : BUF_Z (XBUFFER (object)); + string_char_length (object) : BUF_Z (XBUFFER (object)); +} + +Bytexpos +buffer_or_string_absolute_begin_byte (Lisp_Object object) +{ + return STRINGP (object) ? 0 : BYTE_BUF_BEG (XBUFFER (object)); +} + +Bytexpos +buffer_or_string_absolute_end_byte (Lisp_Object object) +{ + return STRINGP (object) ? + XSTRING_LENGTH (object) : BYTE_BUF_Z (XBUFFER (object)); +} + +Charbpos +charbpos_clip_to_bounds (Charbpos lower, Charbpos num, Charbpos upper) +{ + return (num < lower ? lower : + num > upper ? upper : + num); } Bytebpos -buffer_or_string_absolute_begin_byte (Lisp_Object object) +bytebpos_clip_to_bounds (Bytebpos lower, Bytebpos num, Bytebpos upper) +{ + return (num < lower ? lower : + num > upper ? upper : + num); +} + +Charxpos +charxpos_clip_to_bounds (Charxpos lower, Charxpos num, Charxpos upper) { - return STRINGP (object) ? 0 : BI_BUF_BEG (XBUFFER (object)); + return (num < lower ? lower : + num > upper ? upper : + num); +} + +Bytexpos +bytexpos_clip_to_bounds (Bytexpos lower, Bytexpos num, Bytexpos upper) +{ + return (num < lower ? lower : + num > upper ? upper : + num); } -Bytebpos -buffer_or_string_absolute_end_byte (Lisp_Object object) +/* These could be implemented in terms of the get_buffer_or_string() + functions above, but those are complicated and handle lots of weird + cases stemming from uncertain external input. */ + +Charxpos +buffer_or_string_clip_to_accessible_char (Lisp_Object object, Charxpos pos) +{ + return (charxpos_clip_to_bounds + (pos, buffer_or_string_accessible_begin_char (object), + buffer_or_string_accessible_end_char (object))); +} + +Bytexpos +buffer_or_string_clip_to_accessible_byte (Lisp_Object object, Bytexpos pos) { - return STRINGP (object) ? - XSTRING_LENGTH (object) : BI_BUF_Z (XBUFFER (object)); + return (bytexpos_clip_to_bounds + (pos, buffer_or_string_accessible_begin_byte (object), + buffer_or_string_accessible_end_byte (object))); +} + +Charxpos +buffer_or_string_clip_to_absolute_char (Lisp_Object object, Charxpos pos) +{ + return (charxpos_clip_to_bounds + (pos, buffer_or_string_absolute_begin_char (object), + buffer_or_string_absolute_end_char (object))); +} + +Bytexpos +buffer_or_string_clip_to_absolute_byte (Lisp_Object object, Bytexpos pos) +{ + return (bytexpos_clip_to_bounds + (pos, buffer_or_string_absolute_begin_byte (object), + buffer_or_string_absolute_end_byte (object))); } @@ -2597,7 +2816,7 @@ for (end = ptr + len; ptr < end;) { Intbyte c = - (BYTE_ASCII_P (*ptr)) ? *ptr : + (byte_ascii_p (*ptr)) ? *ptr : (*ptr == LEADING_BYTE_CONTROL_1) ? (*(ptr+1) - 0x20) : (*ptr == LEADING_BYTE_LATIN_ISO8859_1) ? (*(ptr+1)) : '~'; @@ -2636,7 +2855,7 @@ for (p = ptr; p < end; p++) { - if (!BYTE_ASCII_P (*p)) + if (!byte_ascii_p (*p)) goto the_hard_way; } @@ -2776,9 +2995,9 @@ { Intbyte c = *ptr; - if (BYTE_ASCII_P (c)) + if (byte_ascii_p (c)) Dynarr_add (conversion_in_dynarr, c); - else if (BYTE_C1_P (c)) + else if (byte_c1_p (c)) { Dynarr_add (conversion_in_dynarr, LEADING_BYTE_CONTROL_1); Dynarr_add (conversion_in_dynarr, c + 0x20); @@ -2819,10 +3038,10 @@ { Intbyte c = *ptr; - if (BYTE_ASCII_P (c)) + if (byte_ascii_p (c)) Dynarr_add (conversion_in_dynarr, c); #ifdef MULE - else if (BYTE_C1_P (c)) + else if (byte_c1_p (c)) { Dynarr_add (conversion_in_dynarr, LEADING_BYTE_CONTROL_1); Dynarr_add (conversion_in_dynarr, c + 0x20); @@ -2940,10 +3159,10 @@ Lisp_Object charset; p = str; - BREAKUP_CHAR (c, charset, c1, c2); - lb = CHAR_LEADING_BYTE (c); - if (LEADING_BYTE_PRIVATE_P (lb)) - *p++ = PRIVATE_LEADING_BYTE_PREFIX (lb); + BREAKUP_EMCHAR (c, charset, c1, c2); + lb = emchar_leading_byte (c); + if (leading_byte_private_p (lb)) + *p++ = private_leading_byte_prefix (lb); *p++ = lb; if (EQ (charset, Vcharset_control_1)) c1 += 0x20; @@ -2967,23 +3186,23 @@ if (i0 == LEADING_BYTE_CONTROL_1) return (Emchar) (*++str - 0x20); - if (LEADING_BYTE_PREFIX_P (i0)) + if (leading_byte_prefix_p (i0)) i0 = *++str; i1 = *++str & 0x7F; - charset = CHARSET_BY_LEADING_BYTE (i0); + charset = charset_by_leading_byte (i0); if (XCHARSET_DIMENSION (charset) == 2) i2 = *++str & 0x7F; - return MAKE_CHAR (charset, i1, i2); + return make_emchar (charset, i1, i2); } /* Return whether CH is a valid Emchar, assuming it's non-ASCII. - Do not call this directly. Use the macro valid_char_p() instead. */ + Do not call this directly. Use the macro valid_emchar_p() instead. */ int -non_ascii_valid_char_p (Emchar ch) +non_ascii_valid_emchar_p (Emchar ch) { int f1, f2, f3; @@ -2991,9 +3210,9 @@ if (ch & ~0x7FFFF) return 0; - f1 = CHAR_FIELD1 (ch); - f2 = CHAR_FIELD2 (ch); - f3 = CHAR_FIELD3 (ch); + f1 = emchar_field1 (ch); + f2 = emchar_field2 (ch); + f3 = emchar_field3 (ch); if (f1 == 0) { @@ -3001,9 +3220,9 @@ Lisp_Object charset; /* leading byte must be correct */ - if (f2 < MIN_CHAR_FIELD2_OFFICIAL || - (f2 > MAX_CHAR_FIELD2_OFFICIAL && f2 < MIN_CHAR_FIELD2_PRIVATE) || - f2 > MAX_CHAR_FIELD2_PRIVATE) + if (f2 < MIN_EMCHAR_FIELD2_OFFICIAL || + (f2 > MAX_EMCHAR_FIELD2_OFFICIAL && f2 < MIN_EMCHAR_FIELD2_PRIVATE) || + f2 > MAX_EMCHAR_FIELD2_PRIVATE) return 0; /* octet not out of range */ if (f3 < 0x20) @@ -3014,7 +3233,7 @@ FIELD2_TO_OFFICIAL_LEADING_BYTE and FIELD2_TO_PRIVATE_LEADING_BYTE are the same. */ - charset = CHARSET_BY_LEADING_BYTE (f2 + FIELD2_TO_OFFICIAL_LEADING_BYTE); + charset = charset_by_leading_byte (f2 + FIELD2_TO_OFFICIAL_LEADING_BYTE); if (EQ (charset, Qnil)) return 0; /* check range as per size (94 or 96) of charset */ @@ -3026,9 +3245,9 @@ Lisp_Object charset; /* leading byte must be correct */ - if (f1 < MIN_CHAR_FIELD1_OFFICIAL || - (f1 > MAX_CHAR_FIELD1_OFFICIAL && f1 < MIN_CHAR_FIELD1_PRIVATE) || - f1 > MAX_CHAR_FIELD1_PRIVATE) + if (f1 < MIN_EMCHAR_FIELD1_OFFICIAL || + (f1 > MAX_EMCHAR_FIELD1_OFFICIAL && f1 < MIN_EMCHAR_FIELD1_PRIVATE) || + f1 > MAX_EMCHAR_FIELD1_PRIVATE) return 0; /* octets not out of range */ if (f2 < 0x20 || f3 < 0x20) @@ -3046,12 +3265,12 @@ #endif /* ENABLE_COMPOSITE_CHARS */ /* charset exists */ - if (f1 <= MAX_CHAR_FIELD1_OFFICIAL) + if (f1 <= MAX_EMCHAR_FIELD1_OFFICIAL) charset = - CHARSET_BY_LEADING_BYTE (f1 + FIELD1_TO_OFFICIAL_LEADING_BYTE); + charset_by_leading_byte (f1 + FIELD1_TO_OFFICIAL_LEADING_BYTE); else charset = - CHARSET_BY_LEADING_BYTE (f1 + FIELD1_TO_PRIVATE_LEADING_BYTE); + charset_by_leading_byte (f1 + FIELD1_TO_PRIVATE_LEADING_BYTE); if (EQ (charset, Qnil)) return 0; @@ -3062,13 +3281,13 @@ } /* Copy the character pointed to by SRC into DST. Do not call this - directly. Use the macro charptr_copy_char() instead. + directly. Use the macro charptr_copy_emchar() instead. Return the number of bytes copied. */ Bytecount -non_ascii_charptr_copy_char (const Intbyte *src, Intbyte *dst) +non_ascii_charptr_copy_emchar (const Intbyte *src, Intbyte *dst) { - Bytecount bytes = REP_BYTES_BY_FIRST_BYTE (*src); + Bytecount bytes = rep_bytes_by_first_byte (*src); Bytecount i; for (i = bytes; i; i--, dst++, src++) *dst = *src; @@ -3097,7 +3316,7 @@ str[0] = (Intbyte) ch; - for (bytes = REP_BYTES_BY_FIRST_BYTE (ch) - 1; bytes; bytes--) + for (bytes = rep_bytes_by_first_byte (ch) - 1; bytes; bytes--) { int c = Lstream_getc (stream); text_checking_assert (c >= 0); @@ -3224,7 +3443,7 @@ if (!NILP (arg2)) invalid_argument ("Charset is of dimension one; second octet must be nil", arg2); - return make_char (MAKE_CHAR (charset, a1, 0)); + return make_char (make_emchar (charset, a1, 0)); } CHECK_INT (arg2); @@ -3232,7 +3451,7 @@ if (a2 < lowlim || a2 > highlim) args_out_of_range_3 (arg2, make_int (lowlim), make_int (highlim)); - return make_char (MAKE_CHAR (charset, a1, a2)); + return make_char (make_emchar (charset, a1, a2)); #else int a1; int lowlim, highlim; @@ -3265,8 +3484,8 @@ { CHECK_CHAR_COERCE_INT (ch); - return XCHARSET_NAME (CHARSET_BY_LEADING_BYTE - (CHAR_LEADING_BYTE (XCHAR (ch)))); + return XCHARSET_NAME (charset_by_leading_byte + (emchar_leading_byte (XCHAR (ch)))); } DEFUN ("char-octet", Fchar_octet, 1, 2, 0, /* @@ -3280,7 +3499,7 @@ CHECK_CHAR_COERCE_INT (ch); - BREAKUP_CHAR (XCHAR (ch), charset, octet0, octet1); + BREAKUP_EMCHAR (XCHAR (ch), charset, octet0, octet1); if (NILP (n) || EQ (n, Qzero)) return make_int (octet0); @@ -3304,7 +3523,7 @@ GCPRO2 (charset, rc); CHECK_CHAR_COERCE_INT (character); - BREAKUP_CHAR (XCHAR (character), charset, c1, c2); + BREAKUP_EMCHAR (XCHAR (character), charset, c1, c2); if (XCHARSET_DIMENSION (Fget_charset (charset)) == 2) { @@ -3341,7 +3560,7 @@ { if (composite_char_row_next >= 128) invalid_operation ("No more composite chars available", lispstr); - emch = MAKE_CHAR (Vcharset_composite, composite_char_row_next, + emch = make_emchar (Vcharset_composite, composite_char_row_next, composite_char_col_next); Fputhash (make_char (emch), lispstr, Vcomposite_char_char2string_hash_table); @@ -3369,7 +3588,7 @@ return str; } -xxDEFUN ("make-composite-char", Fmake_composite_char, 1, 1, 0, /* +DEFUN ("make-composite-char", Fmake_composite_char, 1, 1, 0, /* Convert a string into a single composite character. The character is the result of overstriking all the characters in the string. @@ -3381,7 +3600,7 @@ XSTRING_LENGTH (string))); } -xxDEFUN ("composite-char-string", Fcomposite_char_string, 1, 1, 0, /* +DEFUN ("composite-char-string", Fcomposite_char_string, 1, 1, 0, /* Return a string of the characters comprising a composite character. */ (ch)) @@ -3390,7 +3609,7 @@ CHECK_CHAR (ch); emch = XCHAR (ch); - if (CHAR_LEADING_BYTE (emch) != LEADING_BYTE_COMPOSITE) + if (emchar_leading_byte (emch) != LEADING_BYTE_COMPOSITE) invalid_argument ("Must be composite char", ch); return composite_char_string (emch); }