Mercurial > hg > xemacs-beta
annotate src/text.c @ 5008:cad59a0a3b19
Add license information from Marcus Thiessel.
See xemacs-beta message <20100208091453.25900@gmx.net>.
| author | Jerry James <james@xemacs.org> |
|---|---|
| date | Tue, 09 Feb 2010 09:50:49 -0700 |
| parents | 16112448d484 |
| children | ae48681c47fa |
| rev | line source |
|---|---|
| 2367 | 1 /* Text manipulation primitives for XEmacs. |
| 771 | 2 Copyright (C) 1995 Sun Microsystems, Inc. |
| 2367 | 3 Copyright (C) 1995, 1996, 2000, 2001, 2002, 2003, 2004 Ben Wing. |
| 771 | 4 Copyright (C) 1999 Martin Buchholz. |
| 5 | |
| 6 This file is part of XEmacs. | |
| 7 | |
| 8 XEmacs is free software; you can redistribute it and/or modify it | |
| 9 under the terms of the GNU General Public License as published by the | |
| 10 Free Software Foundation; either version 2, or (at your option) any | |
| 11 later version. | |
| 12 | |
| 13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
| 14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
| 15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
| 16 for more details. | |
| 17 | |
| 18 You should have received a copy of the GNU General Public License | |
| 19 along with XEmacs; see the file COPYING. If not, write to | |
| 20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
| 21 Boston, MA 02111-1307, USA. */ | |
| 22 | |
| 23 /* Synched up with: Not in FSF. */ | |
| 24 | |
| 25 /* Authorship: | |
| 26 */ | |
| 27 | |
| 28 #include <config.h> | |
| 29 #include "lisp.h" | |
| 30 | |
| 31 #include "buffer.h" | |
| 32 #include "charset.h" | |
| 33 #include "file-coding.h" | |
| 34 #include "lstream.h" | |
| 1292 | 35 #include "profile.h" |
| 771 | 36 |
| 37 | |
| 38 /************************************************************************/ | |
| 39 /* long comments */ | |
| 40 /************************************************************************/ | |
| 41 | |
| 2367 | 42 /* NB: Everything below was written by Ben Wing except as otherwise noted. */ |
| 43 | |
| 44 /************************************************************************/ | |
| 45 /* */ | |
| 46 /* */ | |
| 47 /* Part A: More carefully-written documentation */ | |
| 48 /* */ | |
| 49 /* */ | |
| 50 /************************************************************************/ | |
| 51 | |
| 52 /* Authorship: Ben Wing | |
| 53 | |
| 771 | 54 |
| 826 | 55 ========================================================================== |
| 2367 | 56 7. Handling non-default formats |
| 826 | 57 ========================================================================== |
| 771 | 58 |
| 2367 | 59 We support, at least to some extent, formats other than the default |
| 60 variable-width format, for speed; all of these alternative formats are | |
| 61 fixed-width. Currently we only handle these non-default formats in | |
| 62 buffers, because access to their text is strictly controlled and thus | |
| 63 the details of the format mostly compartmentalized. The only really | |
| 64 tricky part is the search code -- the regex, Boyer-Moore, and | |
| 65 simple-search algorithms in search.c and regex.c. All other code that | |
| 66 knows directly about the buffer representation is the basic code to | |
| 67 modify or retrieve the buffer text. | |
| 68 | |
| 69 Supporting fixed-width formats in Lisp strings is harder, but possible | |
| 70 -- FSF currently does this, for example. In this case, however, | |
| 71 probably only 8-bit-fixed is reasonable for Lisp strings -- getting | |
| 72 non-ASCII-compatible fixed-width formats to work is much, much harder | |
| 73 because a lot of code assumes that strings are ASCII-compatible | |
| 74 (i.e. ASCII + other characters represented exclusively using high-bit | |
| 75 bytes) and a lot of code mixes Lisp strings and non-Lisp strings freely. | |
| 76 | |
| 77 The different possible fixed-width formats are 8-bit fixed, 16-bit | |
| 78 fixed, and 32-bit fixed. The latter can represent all possible | |
| 79 characters, but at a substantial memory penalty. The other two can | |
| 80 represent only a subset of the possible characters. How these subsets | |
| 81 are defined can be simple or very tricky. | |
| 82 | |
| 83 Currently we support only the default format and the 8-bit fixed format, | |
| 84 and in the latter, we only allow these to be the first 256 characters in | |
| 85 an Ichar (ASCII and Latin 1). | |
| 86 | |
| 87 One reasonable approach for 8-bit fixed is to allow the upper half to | |
| 88 represent any 1-byte charset, which is specified on a per-buffer basis. | |
| 89 This should work fairly well in practice since most documents are in | |
| 90 only one foreign language (possibly with some English mixed in). I | |
| 91 think FSF does something like this; or at least, they have something | |
| 92 called nonascii-translation-table and use it when converting from | |
| 93 8-bit-fixed text ("unibyte text") to default text ("multibyte text"). | |
| 94 With 16-bit fixed, you could do something like assign chunks of the 64K | |
| 95 worth of characters to charsets as they're encountered in documents. | |
| 96 This should work well with most Asian documents. | |
| 97 | |
| 98 If/when we switch to using Unicode internally, we might have formats more | |
| 99 like this: | |
| 100 | |
| 101 -- UTF-8 or some extension as the default format. Perl uses an | |
| 102 extension that handles 64-bit chars and requires as much as 13 bytes per | |
| 103 char, vs. the standard of 31-bit chars and 6 bytes max. UTF-8 has the | |
| 104 same basic properties as our own variable-width format (see text.c, | |
| 105 Internal String Encoding) and so most code would not need to be changed. | |
| 106 | |
| 107 -- UTF-16 as a "pseudo-fixed" format (i.e. 16-bit fixed plus surrogates | |
| 108 for representing characters not in the BMP, aka >= 65536). The vast | |
| 109 majority of documents will have no surrogates in them so byte/char | |
| 110 conversion will be very fast. | |
| 111 | |
| 112 -- an 8-bit fixed format, like currently. | |
| 113 | |
| 114 -- possibly, UCS-4 as a 32-bit fixed format. | |
| 115 | |
| 116 The fixed-width formats essentially treat the buffer as an array of | |
| 117 8-bit, 16-bit or 32-bit integers. This means that how they are stored | |
| 118 in memory (in particular, big-endian or little-endian) depends on the | |
| 119 native format of the machine's processor. It also means we have to | |
| 120 worry a bit about alignment (basically, we just need to keep the gap an | |
| 121 integral size of the character size, and get things aligned properly | |
| 122 when converting the buffer between formats). | |
| 826 | 123 |
| 124 ========================================================================== | |
| 2367 | 125 8. Using UTF-16 as the default text format |
| 826 | 126 ========================================================================== |
| 127 | |
| 2367 | 128 NOTE: The Eistring API is (or should be) Mule-correct even without |
| 129 an ASCII-compatible internal representation. | |
| 130 | |
| 131 #### Currently, the assumption that text units are one byte in size is | |
| 132 embedded throughout XEmacs, and `Ibyte *' is used where `Itext *' should | |
| 133 be. The way to fix this is to (among other things) | |
| 134 | |
| 135 (a) review all places referencing `Ibyte' and `Ibyte *', change them to | |
| 136 use Itext, and fix up the code. | |
| 137 (b) change XSTRING_DATA to be of type Itext * | |
| 138 (c) review all uses of XSTRING_DATA | |
| 139 (d) eliminate XSTRING_LENGTH, splitting it into XSTRING_BYTE_LENGTH and | |
| 140 XSTRING_TEXT_LENGTH and reviewing all places referencing this | |
| 141 (e) make similar changes to other API's that refer to the "length" of | |
| 142 something, such as qxestrlen() and eilen() | |
| 143 (f) review all use of `CIbyte *'. Currently this is usually a way of | |
| 144 passing literal ASCII text strings in places that want internal text. | |
| 145 Either create separate _ascii() and _itext() versions of the | |
| 146 functions taking CIbyte *, or make use of something like the | |
| 147 WEXTTEXT() macro, which will generate wide strings as appropriate. | |
| 148 (g) review all uses of Bytecount and see which ones should be Textcount. | |
| 149 (h) put in error-checking code that will be tripped as often as possible | |
| 150 when doing anything with internal text, and check to see that ASCII | |
| 151 text has not mistakenly filtered in. This should be fairly easy as | |
| 152 ASCII text will generally be entirely spaces and letters whereas every | |
| 153 second byte of Unicode text will generally be a null byte. Either we | |
| 154 abort if the second bytes are entirely letters and numbers, or, | |
| 155 perhaps better, do the equivalent of a non-MULE build, where we should | |
| 156 be dealing entirely with 8-bit characters, and assert that the high | |
| 157 bytes of each pair are null. | |
| 158 (i) review places where xmalloc() is called. If we convert each use of | |
| 159 xmalloc() to instead be xnew_array() or some other typed routine, | |
| 160 then we will find every place that allocates space for Itext and | |
| 161 assumes it is based on one-byte units. | |
| 162 (j) encourage the use of ITEXT_ZTERM_SIZE instead of '+ 1' whenever we | |
| 163 are adding space for a zero-terminator, to emphasize what we are | |
| 164 doing and make sure the calculations are correct. Similarly for | |
| 165 EXTTEXT_ZTERM_SIZE. | |
| 166 (k) Note that the qxestr*() functions, among other things, will need to | |
| 167 be rewritten. | |
| 168 | |
| 169 Note that this is a lot of work, and is not high on the list of priorities | |
| 170 currently. | |
| 826 | 171 |
| 172 ========================================================================== | |
| 2367 | 173 9. Miscellaneous |
| 826 | 174 ========================================================================== |
| 175 | |
| 176 A. Unicode Support | |
| 771 | 177 |
| 1292 | 178 Unicode support is very desirable. Currrently we know how to handle |
| 179 externally-encoded Unicode data in various encodings -- UTF-16, UTF-8, | |
| 180 etc. However, we really need to represent Unicode characters internally | |
| 181 as-is, rather than converting to some language-specific character set. | |
| 182 For efficiency, we should represent Unicode characters using 3 bytes | |
| 183 rather than 4. This means we need to find leading bytes for Unicode. | |
| 184 Given that there are 65,536 characters in Unicode and we can attach | |
| 185 96x96 = 9,216 characters per leading byte, we need eight leading bytes | |
| 186 for Unicode. We currently have four free (0x9A - 0x9D), and with a | |
| 187 little bit of rearranging we can get five: ASCII doesn't really need to | |
| 188 take up a leading byte. (We could just as well use 0x7F, with a little | |
| 189 change to the functions that assume that 0x80 is the lowest leading | |
| 190 byte.) This means we still need to dump three leading bytes and move | |
| 191 them into private space. The CNS charsets are good candidates since | |
| 192 they are rarely used, and JAPANESE_JISX0208_1978 is becoming less and | |
| 193 less used and could also be dumped. | |
| 826 | 194 |
| 195 B. Composite Characters | |
| 196 | |
| 197 Composite characters are characters constructed by overstriking two | |
| 771 | 198 or more regular characters. |
| 199 | |
| 200 1) The old Mule implementation involves storing composite characters | |
| 201 in a buffer as a tag followed by all of the actual characters | |
| 202 used to make up the composite character. I think this is a bad | |
| 203 idea; it greatly complicates code that wants to handle strings | |
| 204 one character at a time because it has to deal with the possibility | |
| 205 of great big ungainly characters. It's much more reasonable to | |
| 206 simply store an index into a table of composite characters. | |
| 207 | |
| 208 2) The current implementation only allows for 16,384 separate | |
| 209 composite characters over the lifetime of the XEmacs process. | |
| 210 This could become a potential problem if the user | |
| 211 edited lots of different files that use composite characters. | |
| 212 Due to FSF bogosity, increasing the number of allowable | |
| 213 composite characters under Mule would decrease the number | |
| 214 of possible faces that can exist. Mule already has shrunk | |
| 215 this to 2048, and further shrinkage would become uncomfortable. | |
| 216 No such problems exist in XEmacs. | |
| 217 | |
| 3498 | 218 Composite characters could be represented as 0x8D C1 C2 C3, where each |
| 219 C[1-3] is in the range 0xA0 - 0xFF. This allows for slightly under | |
| 220 2^20 (one million) composite characters over the XEmacs process | |
| 221 lifetime. Or you could use 0x8D C1 C2 C3 C4, allowing for about 85 | |
| 222 million (slightly over 2^26) composite characters. | |
| 826 | 223 |
| 2367 | 224 ========================================================================== |
| 225 10. Internal API's | |
| 226 ========================================================================== | |
| 227 | |
| 228 All of these are documented in more detail in text.h. | |
| 229 | |
| 230 @enumerate | |
| 231 @item | |
| 232 Basic internal-format API's | |
| 233 | |
| 234 These are simple functions and macros to convert between text | |
| 235 representation and characters, move forward and back in text, etc. | |
| 236 | |
| 237 @item | |
| 238 The DFC API | |
| 239 | |
| 240 This is for conversion between internal and external text. Note that | |
| 241 there is also the "new DFC" API, which *returns* a pointer to the | |
| 242 converted text (in alloca space), rather than storing it into a | |
| 243 variable. | |
| 244 | |
| 245 @item | |
| 246 The Eistring API | |
| 247 | |
| 4073 | 248 \(This API is currently under-used) When doing simple things with |
| 2367 | 249 internal text, the basic internal-format API's are enough. But to do |
| 250 things like delete or replace a substring, concatenate various strings, | |
| 251 etc. is difficult to do cleanly because of the allocation issues. | |
| 252 The Eistring API is designed to deal with this, and provides a clean | |
| 253 way of modifying and building up internal text. (Note that the former | |
| 254 lack of this API has meant that some code uses Lisp strings to do | |
| 255 similar manipulations, resulting in excess garbage and increased | |
| 256 garbage collection.) | |
| 257 | |
| 258 NOTE: The Eistring API is (or should be) Mule-correct even without | |
| 259 an ASCII-compatible internal representation. | |
| 260 @end enumerate | |
| 261 | |
| 262 ========================================================================== | |
| 263 11. Other Sources of Documentation | |
| 264 ========================================================================== | |
| 265 | |
| 266 man/lispref/mule.texi | |
| 267 @enumerate | |
| 268 @item | |
| 269 another intro to characters, encodings, etc; #### Merge with the | |
| 270 above info | |
| 271 @item | |
| 272 documentation of ISO-2022 | |
| 273 @item | |
| 274 The charset and coding-system Lisp API's | |
| 275 @item | |
| 276 The CCL conversion language for writing encoding conversions | |
| 277 @item | |
| 278 The Latin-Unity package for unifying Latin charsets | |
| 279 @end enumerate | |
| 280 | |
| 281 man/internals/internals.texi (the Internals manual) | |
| 282 @enumerate | |
| 283 @item | |
| 284 "Coding for Mule" -- how to write Mule-aware code | |
| 285 @item | |
| 286 "Modules for Internationalization" | |
| 287 @item | |
| 288 "The Text in a Buffer" -- more about the different ways of | |
| 289 viewing buffer positions; #### Merge with the above info | |
| 290 @item | |
| 291 "MULE Character Sets and Encodings" -- yet another intro | |
| 292 to characters, encodings, etc; #### Merge with the | |
| 293 above info; also some documentation of Japanese EUC and JIS7, | |
| 294 and CCL internals | |
| 295 @end enumerate | |
| 296 | |
| 297 text.h -- info about specific XEmacs-C API's for handling internal and | |
| 298 external text | |
| 299 | |
| 300 intl-win32.c -- Windows-specific I18N information | |
| 301 | |
| 302 lisp.h -- some info appears alongside the definitions of the basic | |
| 303 character-related types | |
| 304 | |
| 305 unicode.c -- documentation about Unicode translation tables | |
| 826 | 306 */ |
| 771 | 307 |
| 2367 | 308 |
| 309 /************************************************************************/ | |
| 310 /* */ | |
| 311 /* */ | |
| 312 /* Part B: Random proposals for work to be done */ | |
| 313 /* */ | |
| 314 /* */ | |
| 315 /************************************************************************/ | |
| 316 | |
| 317 | |
| 318 /* | |
| 319 | |
| 320 | |
| 321 ========================================================================== | |
| 322 - Mule design issues (ben) | |
| 323 ========================================================================== | |
| 324 | |
| 325 circa 1999 | |
| 326 | |
| 327 Here is a more detailed list of Mule-related projects that we will be | |
| 328 working on. They are more or less ordered according to how we will | |
| 329 proceed, but it's not exact. In particular, there will probably be | |
| 330 time overlap among adjacent projects. | |
| 331 | |
| 332 @enumerate | |
| 333 @item | |
| 334 Modify the internal/external conversion macros to allow for | |
| 335 MS Windows support. | |
| 336 | |
| 337 @item | |
| 338 Modify the buffer macros to allow for more than one internal | |
| 339 representation, e.g. fixed width and variable width. | |
| 340 | |
| 341 @item | |
| 342 Review the existing Mule code, especially the lisp code, for code | |
| 343 quality issues and improve the cleanliness of it. Also work on | |
| 344 creating a specification for the Mule API. | |
| 345 | |
| 346 @item | |
| 347 Write some more automated mule tests. | |
| 348 | |
| 349 @item | |
| 350 Integrate Tomohiko's UTF-2000 code, fixing it up so that nothing is | |
| 351 broken when the UTF-2000 configure option is not enabled. | |
| 352 | |
| 353 @item | |
| 354 Fix up the MS Windows code to be Mule-correct, so that you can | |
| 355 compile with Mule support under MS windows and have a working | |
| 356 XEmacs, at least just with Latin-1. | |
| 357 | |
| 358 @item | |
| 359 Implement a scheme to guarantee no corruption of files, even with | |
| 360 an incorrect coding system - in particular, guarantee no corruption | |
| 361 of binary files. | |
| 362 | |
| 363 @item | |
| 364 Make the text property support in XEmacs robust with respect to | |
| 365 string and text operations, so that the `no corruption' support in | |
| 366 the previous entry works properly, even if a lot of cutting and | |
| 367 pasting is done. | |
| 368 | |
| 369 @item | |
| 370 Improve the handling of auto-detection so that, when there is any | |
| 371 possibility at all of mistake, the user is informed of the detected | |
| 372 encoding and given the choice of choosing other possibilities. | |
| 373 | |
| 374 @item | |
| 375 Improve the support for different language environments in XEmacs, | |
| 376 for example, the priority of coding systems used in auto-detection | |
| 377 should properly reflect the language environment. This probably | |
| 378 necessitates rethinking the current `coding system priority' | |
| 379 scheme. | |
| 380 | |
| 381 @item | |
| 382 Do quality work to improve the existing UTF-2000 implementation. | |
| 383 | |
| 384 @item | |
| 385 Implement preliminary support for 8-bit fixed width | |
| 386 representation. First, we will only implement 7-bit support, and | |
| 387 will fall back to variable width as soon as any non-ASCII | |
| 388 character is encountered. Then we will improve the support to | |
| 389 handle an arbitrary character set in the upper half of the 8-bit space. | |
| 390 | |
| 391 @item | |
| 392 Investigate any remaining hurdles to making --with-mule be the | |
| 393 default configure option. | |
| 394 @end enumerate | |
| 395 | |
| 396 ========================================================================== | |
| 397 - Mule design issues (stephen) | |
| 398 ========================================================================== | |
| 399 | |
| 400 What I see as Mule priorities (in rough benefit order, I am not taking | |
| 401 account of difficulty, nor the fact that some - eg 8 & 10 - will | |
| 402 probably come as packages): | |
| 403 | |
| 404 @enumerate | |
| 405 @item | |
| 406 Fix the autodetect problem (by making the coding priority list | |
| 407 user-configurable, as short as he likes, even null, with "binary" | |
| 408 as the default). | |
| 409 @item | |
| 410 Document the language environments and other Mule "APIs" as | |
| 411 implemented (since there is no real design spec). Check to see | |
| 412 how and where they are broken. | |
| 413 @item | |
| 414 Make the Mule menu useful to non-ISO-2022-literate folks. | |
| 415 @item | |
| 416 Redo the lstreams stuff to make it easy and robust to "pipeline", | |
| 417 eg, libz | gnupg | jis2mule. | |
| 418 @item | |
| 419 Make Custom Mule-aware. (This probably depends on a sensible | |
| 420 fonts model.) | |
| 421 @item | |
| 422 Implement the "literal byte stream" memory feature. | |
| 423 @item | |
| 424 Study the FSF implementation of Mule for background for 7 & 8. | |
| 425 @item | |
| 426 Identify desirable Mule features (eg, i18n-ized messages as above, | |
| 427 collating tables by language environment, etc). (New features | |
| 428 might have priority as high as 9.) | |
| 429 @item | |
| 430 Specify Mule UIs, APIs, etc, and design and (re)implement them. | |
| 431 @item | |
| 432 Implement the 8-bit-wide buffer optimization. | |
| 433 @item | |
| 434 Move the internal encoding to UTF-32 (subject to Olivier's caveats | |
| 435 regarding compose characters), with the variable-width char | |
| 436 buffers using UTF-8. | |
| 437 @item | |
| 438 Implement the 16- and 32-bit-wide buffer optimizations. | |
| 439 @end enumerate | |
| 440 | |
| 441 ========================================================================== | |
| 442 - Mule design issues "short term" (ben) | |
| 443 ========================================================================== | |
| 444 | |
| 445 @enumerate | |
| 446 @item | |
| 447 Finish changes in fixup/directory, get in CVS. | |
| 448 | |
| 449 (Test with and without "quick-build", to see if really faster) | |
| 450 (need autoconf) | |
| 451 | |
| 452 @item | |
| 453 Finish up Windows/Mule changes. Outline of this elsewhere; Do | |
| 454 *minimal* effort. | |
| 455 | |
| 456 @item | |
| 457 Continue work on Windows stability, e.g. go through existing notes | |
| 458 on Windows Mule-ization + extract all info. | |
| 459 | |
| 460 @item | |
| 461 Get Unicode translation tables integrated. | |
| 462 | |
| 463 Finish UCS2/UTF16 coding system. | |
| 464 | |
| 465 @item | |
| 466 Make sure coding system priority list is language-environment specific. | |
| 467 | |
| 468 @item | |
| 469 Consider moving language selection Menu up to be parallel with Mule menu. | |
| 470 | |
| 471 @item | |
| 472 Check to make sure we grok the default locale at startup under | |
| 473 Windows and understand the Windows locales. Finish implementation | |
| 474 of mswindows-multibyte and make sure it groks all the locales. | |
| 475 | |
| 476 @item | |
| 477 Do the above as best as we can without using Unicode tables. | |
| 478 | |
| 479 @item | |
| 480 Start tagging all text with a language text property, | |
| 481 indicating the current language environment when the text was input. | |
| 482 | |
| 483 @item | |
| 484 Make sure we correctly accept input of non-ASCII chars | |
| 485 (probably already do!) | |
| 486 | |
| 487 @item | |
| 488 Implement active language/keyboard switching under Windows. | |
| 489 | |
| 490 @item | |
| 491 Look into implementing support for "MS IME" protocol (Microsoft | |
| 492 fancy built-in Asian input methods). | |
| 493 | |
| 494 @item | |
| 495 Redo implementation of mswindows-multibyte and internal display to | |
| 496 entirely use translation to/from Unicode for increased accuracy. | |
| 497 | |
| 498 @item | |
| 499 Implement buf<->char improvements from FSF. Also implement | |
| 500 my string byte<->char optimization structure. | |
| 501 | |
| 502 @item | |
| 503 Integrate all Mule DOCS from 20.6 or 21.0. Try to add sections | |
| 504 for what we've added. | |
| 505 | |
| 506 @item | |
| 507 Implement 8-bit fixed width optimizations. Then work on 16-bit. | |
| 508 @end enumerate | |
| 509 | |
| 510 ========================================================================== | |
| 511 - Mule design issues (more) (ben) | |
| 512 ========================================================================== | |
| 513 | |
| 514 Get minimal Mule for Windows working using Ikeyama's patches. At | |
| 515 first, rely on his conversion of internal -> external | |
| 516 locale-specific but very soon (as soon as we get translation | |
| 517 tables) can switch to using Unicode versions of display funs, which | |
| 518 will allow many more charsets to be handled and in a more | |
| 519 consistent fashion. | |
| 520 | |
| 521 i.e. to convert an internal string to an external format, at first | |
| 522 we use our own knowledge of the Microsoft locale file formats but | |
| 523 an alternative is to convert to Unicode and use Microsoft's | |
| 524 convert-Unicode-to-locale encoding functions. This gains us a | |
| 525 great deal of generality, since in practice all charset caching | |
| 526 points can be wrapped into Unicode caching points. | |
| 527 | |
| 528 This requires adding UCS2 support, which I'm doing. This support | |
| 529 would let us convert internal -> Unicode, which is exactly what we | |
| 530 want. | |
| 531 | |
| 532 At first, though, I would do the UCS2 support, but leave the | |
| 533 existing way of doing things in redisplay. Meanwhile, I'd go | |
| 534 through and fix up the places in the code that assume we are | |
| 535 dealing with unibytes. | |
| 536 | |
| 537 After this, the font problems will be fixed , we should have a | |
| 538 pretty well working XEmacs + MULE under Windows. The only real | |
| 539 other work is the clipboard code, which should be straightforward. | |
| 540 | |
| 541 ========================================================================== | |
| 542 - Mule design discussion | |
| 543 ========================================================================== | |
| 544 | |
| 545 -------------------------------------------------------------------------- | |
| 546 | |
| 547 Ben | |
| 548 | |
| 549 April 11, 2000 | |
| 550 | |
| 551 Well yes, this was the whole point of my "no lossage" proposal of being | |
| 552 able to undo any coding-system transformation on a buffer. The idea was | |
| 553 to figure out which transformations were definitely reversable, and for | |
| 554 all the others, cache the original text in a text property. This way, you | |
| 555 could probably still do a fairly good job at constructing a good reversal | |
| 556 even after you've gone into the text and added, deleted, and rearranged | |
| 557 some things. | |
| 558 | |
| 559 But you could implement it much more simply and usefully by just | |
| 560 determining, for any text being decoded into mule-internal, can we go back | |
| 561 and read the source again? If not, remember the entire file (GNUS | |
| 562 message, etc) in text properties. Then, implement the UI interface (like | |
| 563 Netscape's) on top of that. This way, you have something that at least | |
| 564 works, but it might be inefficient. All we would need to do is work on | |
| 565 making the | |
| 566 underlying implementation more efficient. | |
| 567 | |
| 568 Are you interested in doing this? It would be a huge win for users. | |
| 569 Hrvoje Niksic wrote: | |
| 570 | |
| 571 > Ben Wing <ben@666.com> writes: | |
| 572 > | |
| 573 > > let me know exactly what "rethink" functionality you want and i'll | |
| 574 > > come up with an interface. perhaps you just want something like | |
| 575 > > netscape's encoding menu, where if you switch encodings, it reloads | |
| 576 > > and reencodes? | |
| 577 > | |
| 578 > It might be a bit more complex than that. In many cases, it's hard or | |
| 579 > impossible to meaningfully "reload" -- for instance, this | |
| 580 > functionality should be available while editing a Gnus message, as | |
| 581 > well as while visiting a file. | |
| 582 > | |
| 583 > For the special case of Latin-N <-> Latin-M conversion, things could | |
| 584 > be done easily -- to convert from N to M, you only need to convert | |
| 585 > internal representation back to N, and then convert it forth to M. | |
| 586 | |
| 587 -------------------------------------------------------------------------- | |
| 588 April 11, 2000 | |
| 589 | |
| 590 Well yes, this was the whole point of my "no lossage" proposal of being | |
| 591 able to undo any coding-system transformation on a buffer. The idea was | |
| 592 to figure out which transformations were definitely reversable, and for | |
| 593 all the others, cache the original text in a text property. This way, you | |
| 594 could probably still do a fairly good job at constructing a good reversal | |
| 595 even after you've gone into the text and added, deleted, and rearranged | |
| 596 some things. | |
| 597 | |
| 598 But you could implement it much more simply and usefully by just | |
| 599 determining, for any text being decoded into mule-internal, can we go back | |
| 600 and read the source again? If not, remember the entire file (GNUS | |
| 601 message, etc) in text properties. Then, implement the UI interface (like | |
| 602 Netscape's) on top of that. This way, you have something that at least | |
| 603 works, but it might be inefficient. All we would need to do is work on | |
| 604 making the | |
| 605 underlying implementation more efficient. | |
| 606 | |
| 607 Are you interested in doing this? It would be a huge win for users. | |
| 608 Hrvoje Niksic wrote: | |
| 609 | |
| 610 > Ben Wing <ben@666.com> writes: | |
| 611 > | |
| 612 > > let me know exactly what "rethink" functionality you want and i'll | |
| 613 > > come up with an interface. perhaps you just want something like | |
| 614 > > netscape's encoding menu, where if you switch encodings, it reloads | |
| 615 > > and reencodes? | |
| 616 > | |
| 617 > It might be a bit more complex than that. In many cases, it's hard or | |
| 618 > impossible to meaningfully "reload" -- for instance, this | |
| 619 > functionality should be available while editing a Gnus message, as | |
| 620 > well as while visiting a file. | |
| 621 > | |
| 622 > For the special case of Latin-N <-> Latin-M conversion, things could | |
| 623 > be done easily -- to convert from N to M, you only need to convert | |
| 624 > internal representation back to N, and then convert it forth to M. | |
| 625 | |
| 626 | |
| 627 ------------------------------------------------------------------------ | |
| 628 | |
| 629 ========================================================================== | |
| 630 - Redoing translation macros [old] | |
| 631 ========================================================================== | |
| 632 | |
| 633 Currently the translation macros (the macros with names such as | |
| 634 GET_C_STRING_CTEXT_DATA_ALLOCA) have names that are difficult to parse | |
| 635 or remember, and are not all that general. In the process of | |
| 636 reviewing the Windows code so that it could be muleized, I discovered | |
| 637 that these macros need to be extended in various ways to allow for | |
| 638 the Windows code to be easily muleized. | |
| 639 | |
| 640 Since the macros needed to be changed anyways, I figured it would be a | |
| 641 good time to redo them properly. I propose new macros which have | |
| 642 names like this: | |
| 643 | |
| 644 @itemize @bullet | |
| 645 @item | |
| 646 <A>_TO_EXTERNAL_FORMAT_<B> | |
| 647 @item | |
| 648 <A>_TO_EXTERNAL_FORMAT_<B>_1 | |
| 649 @item | |
| 650 <C>_TO_INTERNAL_FORMAT_<D> | |
| 651 @item | |
| 652 <C>_TO_INTERNAL_FORMAT_<D>_1 | |
| 653 @end itemize | |
| 654 | |
| 655 A and C represent the source of the data, and B and D represent the | |
| 656 sink of the data. | |
| 657 | |
| 658 All of these macros call either the functions | |
| 659 convert_to_external_format or convert_to_internal_format internally, | |
| 660 with some massaging of the arguments. | |
| 661 | |
| 662 All of these macros take the following arguments: | |
| 663 | |
| 664 @itemize @bullet | |
| 665 @item | |
| 666 First, one or two arguments indicating the source of the data. | |
| 667 @item | |
| 668 Second, an argument indicating the coding system. (In order to avoid | |
| 669 an excessive number of macros, we no longer provide separate macros | |
| 670 for specific coding systems.) | |
| 671 @item | |
| 672 Third, one or two arguments indicating the sink of the data. | |
| 673 @item | |
| 674 Fourth, optionally, arguments indicating the error behavior and the | |
| 675 warning class (these arguments are only present in the _1 versions | |
| 676 of the macros). The other, shorter named macros are trivial | |
| 677 interfaces onto these macros with the error behavior being | |
| 678 ERROR_ME_WARN, with the warning class being Vstandard_warning_class. | |
| 679 @end itemize | |
| 680 | |
| 681 <A> can be one of the following: | |
| 682 @itemize @bullet | |
| 683 @item | |
| 684 LISP (which means a Lisp string) Takes one argument, a Lisp Object. | |
| 685 @item | |
| 686 LSTREAM (which indicates an lstream) Takes one argument, an | |
| 687 lstream. The data is read from the lstream until EOF is reached. | |
| 688 @item | |
| 689 DATA (which indicates a raw memory area) Takes two arguments, a | |
| 690 pointer and a length in bytes. | |
| 691 (You must never use this if the source of the data is a Lisp string, | |
| 692 because of the possibility of relocation during garbage collection.) | |
| 693 @end itemize | |
| 694 | |
| 695 <B> can be one of the following: | |
| 696 @itemize @bullet | |
| 697 @item | |
| 698 ALLOCA (which means that the resulting data is stored in alloca()ed | |
| 699 memory. Two arguments should be specified, a pointer and a length, | |
| 700 which should be lvalues.) | |
| 701 @item | |
| 702 MALLOC (which means that the resulting data is stored in malloc()ed | |
| 703 memory. Two arguments should be specified, a pointer and a | |
| 704 length. The memory must be free()d by the caller. | |
| 705 @item | |
| 706 OPAQUE (which means the resulting data is stored in an opaque Lisp | |
| 707 Object. This takes one argument, a lvalue Lisp Object. | |
| 708 @item | |
| 709 LSTREAM. The data is written to an lstream. | |
| 710 @end itemize | |
| 711 | |
| 712 <C> can be one of the : | |
| 713 @itemize @bullet | |
| 714 @item | |
| 715 DATA | |
| 716 @item | |
| 717 LSTREAM | |
| 718 @end itemize | |
| 719 (just like <A> above) | |
| 720 | |
| 721 <D> can be one of | |
| 722 @itemize @bullet | |
| 723 @item | |
| 724 ALLOCA | |
| 725 @item | |
| 726 MALLOC | |
| 727 @item | |
| 728 LISP This means a Lisp String. | |
| 729 @item | |
| 730 BUFFER The resulting data is inserted into a buffer at the buffer's | |
| 731 value of point. | |
| 732 @item | |
| 733 LSTREAM The data is written to the lstream. | |
| 734 @end itemize | |
| 735 | |
| 736 | |
| 737 Note that I have eliminated the FORMAT argument of previous macros, | |
| 738 and replaced it with a coding system. This was made possible by | |
| 739 coding system aliases. In place of old `format's, we use a `virtual | |
| 740 coding system', which is aliased to the actual coding system. | |
| 741 | |
| 742 The value of the coding system argument can be anything that is legal | |
| 743 input to get_coding_system, i.e. a symbol or a coding system object. | |
| 744 | |
| 745 ========================================================================== | |
| 746 - creation of generic macros for accessing internally formatted data [old] | |
| 747 ========================================================================== | |
| 748 | |
| 749 I have a design; it's all written down (I did it in Tsukuba), and I just have | |
| 750 to have it transcribed. It's higher level than the macros, though; it's Lisp | |
| 751 primitives that I'm designing. | |
| 752 | |
| 753 As for the design of the macros, don't worry so much about all files having to | |
| 754 get included (which is inevitable with macros), but about how the files are | |
| 755 separated. Your design might go like this: | |
| 756 | |
| 757 @enumerate | |
| 758 @item | |
| 759 you have generic macro interfaces, which specify a particular | |
| 760 behavior but not an implementation. these generic macros have | |
| 761 complementary versions for buffers and for strings (and the buffer | |
| 762 or string is an argument to all of the macros), and do such things | |
| 763 as convert between byte and char indices, retrieve the character at | |
| 764 a particular byte or char index, increment or decrement a byte | |
| 765 index to the beginning of the next or previous character, indicate | |
| 766 the number of bytes occupied by the character at a particular byte | |
| 767 or character index, etc. These are similar to what's already out | |
| 768 there except that they confound buffers and strings and that they | |
| 769 can also work with actual char *'s, which I think is a really bad | |
| 770 idea because it encourages code to "assume" that the representation | |
| 771 is ASCII compatible, which is might not be (e.g. 16-bit fixed | |
| 772 width). In fact, one thing I'm planning on doing is redefining | |
| 773 Bufbyte as a struct, for debugging purposes, to catch all places | |
| 774 that cavalierly compare them with ASCII char's. Note also that I | |
| 775 really want to rename Bufpos and Bytind, which are confusing and | |
| 776 wrong in that they also apply to strings. They should be Bytepos | |
| 777 and Charpos, or something like that, to go along with Bytecount and | |
| 778 Charcount. Similarly, Bufbyte is similarly a misnomer and should be | |
| 779 Intbyte -- a byte in the internal string representation (any of the | |
| 780 internal representations) of a string or buffer. Corresponding to | |
| 781 this is Extbyte (which we already have), a byte in any external | |
| 782 string representation. We also have Extcount, which makes sense, | |
| 783 and we might possibly want Extcharcount, the number of characters | |
| 784 in an external string representation; but that gets sticky in modal | |
| 785 encodings, and it's not clear how useful it would be. | |
| 786 | |
| 787 @item | |
| 788 for all generic macro interfaces, there are specific versions of | |
| 789 each of them for each possible representation (pure ASCII in the | |
| 790 non-Mule world, Mule standard, UTF-8, 8-bit fixed, 16-bit fixed, | |
| 791 32-bit fixed, etc.; there may well be more than one possible 16-bit | |
| 792 fixed version, as well). Each representation has a corresponding | |
| 793 prefix, e.g. MULE_ or FIXED16_ or whatever, which is prefixed onto | |
| 794 the generic macro names. The resulting macros perform the | |
| 795 operation defined for the macro, but assume, and only work | |
| 796 correctly with, text in the corresponding representation. | |
| 797 | |
| 798 @item | |
| 799 The definition of the generic versions merely conditionalizes on | |
| 800 the appropriate things (i.e. bit flags in the buffer or string | |
| 801 object) and calls the appropriate representation-specific version. | |
| 802 There may be more than one definition (protected by ifdefs, of | |
| 803 course), or one definition that amalgamated out of many ifdef'ed | |
| 804 sections. | |
| 805 | |
| 806 @item | |
| 807 You should probably put each different representation in its own | |
| 808 header file, e.g. charset-mule.h or charset-fixed16.h or | |
| 809 charset-ascii.h or whatever. Then put the main macros into | |
| 810 charset.h, and conditionalize in this file appropriately to include | |
| 811 the other ones. That way, code that actually needs to play around | |
| 812 with internal-format text at this level can include "charset.h" | |
| 813 (certainly a much better place than buffer.h), and everyone else | |
| 814 uses higher-level routines. The representation-specific macros | |
| 815 should not normally be used *directly* at all; they are invoked | |
| 816 automatically from the generic macros. However, code that needs to | |
| 817 be highly, highly optimized might choose to take a loop and write | |
| 818 two versions of it, one for each representation, to avoid the | |
| 819 per-loop-iteration cost of a comparison. Until the macro interface | |
| 820 is rock stable and solid, we should strongly discourage such | |
| 821 nanosecond optimizations. | |
| 822 @end enumerate | |
| 823 | |
| 824 ========================================================================== | |
| 825 - UTF-16 compatible representation | |
| 826 ========================================================================== | |
| 827 | |
| 828 NOTE: One possible default internal representation that was compatible | |
| 829 with UTF16 but allowed all possible chars in UCS4 would be to take a | |
| 830 more-or-less unused range of 2048 chars (not from the private area | |
| 831 because Microsoft actually uses up most or all of it with EUDC chars). | |
| 832 Let's say we picked A400 - ABFF. Then, we'd have: | |
| 833 | |
| 834 0000 - FFFF Simple chars | |
| 835 | |
| 836 D[8-B]xx D[C-F]xx Surrogate char, represents 1M chars | |
| 837 | |
| 838 A[4-B]xx D[C-F]xx D[C-F]xx Surrogate char, represents 2G chars | |
| 839 | |
| 840 This is exactly the same number of chars as UCS-4 handles, and it follows the | |
| 841 same property as UTF8 and Mule-internal: | |
| 842 | |
| 843 @enumerate | |
| 844 @item | |
| 845 There are two disjoint groupings of units, one representing leading units | |
| 846 and one representing non-leading units. | |
| 847 @item | |
| 848 Given a leading unit, you immediately know how many units follow to make | |
| 849 up a valid char, irrespective of any other context. | |
| 850 @end enumerate | |
| 851 | |
| 852 Note that A4xx is actually currently assigned to Yi. Since this is an | |
| 853 internal representation, we could just move these elsewhere. | |
| 854 | |
| 855 An alternative is to pick two disjoint ranges, e.g. 2D00 - 2DFF and | |
| 856 A500 - ABFF. | |
| 857 | |
| 858 ========================================================================== | |
| 859 New API for char->font mapping | |
| 860 ========================================================================== | |
| 861 - ; supersedes charset-registry and CCL; | |
| 862 supports all windows systems; powerful enough for Unicode; etc. | |
| 863 | |
| 864 (charset-font-mapping charset) | |
| 865 | |
| 866 font-mapping-specifier string | |
| 867 | |
| 868 char-font-mapping-table | |
| 869 | |
| 870 char-table, specifier; elements of char table are either strings (which | |
| 871 specify a registry or comparable font property, or vectors of a string | |
| 872 (same) followed by keyword-value pairs (optional). The only allowable | |
| 873 keyword currently is :ccl-program, which specifies a CCL program to map | |
| 874 the characters into font indices. Other keywords may be added | |
| 875 e.g. allowing Elisp fragments instead of CCL programs, also allowed is | |
| 876 [inherit], which inherits from the next less-specific char-table in the | |
| 877 specifier. | |
| 878 | |
| 879 The preferred interface onto this mapping (which should be portable | |
| 880 across Emacsen) is | |
| 881 | |
| 882 (set-char-font-mapping key value &optional locale tag-set how-to-add) | |
| 883 | |
| 884 where key is a char, range or charset (as for put-char-table), value is | |
| 885 as above, and the other arguments are standard for specifiers. This | |
| 886 automatically creates a char table in the locale, as necessary (all | |
| 887 elements default to [inherit]). On GNU Emacs, some specifiers arguments | |
| 888 may be unimplemented. | |
| 889 | |
| 890 (char-font-mapping key value &optional locale) | |
| 891 works vaguely like get-specifier? But does inheritance processing. | |
| 892 locale should clearly default here to current-buffer | |
| 893 | |
| 894 #### should get-specifier as well? Would make it work most like | |
| 895 #### buffer-local variables. | |
| 896 | |
| 897 NB. set-charset-registry and set-charset-ccl-program are obsoleted. | |
| 898 | |
| 899 ========================================================================== | |
| 900 Implementing fixed-width 8,16,32 bit buffer optimizations | |
| 901 ========================================================================== | |
| 902 | |
| 903 Add set-buffer-optimization (buffer &rest keywords) for | |
| 904 controlling these things. | |
| 905 | |
| 906 Also, put in hack so that correct arglist can be retrieved by | |
| 907 Lisp code. | |
| 908 | |
| 909 Look at the way keyword primitives are currently handled; make | |
| 910 sure it works and is documented, etc. | |
| 911 | |
| 912 Implement 8-bit fixed width optimization. Take the things that | |
| 913 know about the actual implementation and put them in a single | |
| 914 file, in essence creating an abstraction layer to allow | |
| 915 pluggable internal representations. Implement a fairly general | |
| 916 scheme for mapping between character codes in the 8 bits or 16 | |
| 917 bits representation and on actual charset characters. As part of | |
| 918 set-buffer-optimization, you can specify a list of character sets | |
| 919 to be used in the 8 bit to 16 bit, etc. world. You can also | |
| 920 request that the buffer be in 8, 16, etc. if possible. | |
| 921 | |
| 922 -> set defaults wrt this. | |
| 923 -> perhaps this should be just buffer properties. | |
| 924 -> this brings up the idea of default properties on an object. | |
| 925 -> Implement default-put, default-get, etc. | |
| 926 | |
| 927 What happens when a character not assigned in the range gets | |
| 928 added? Then, must convert to variable width of some sort. | |
| 929 | |
| 930 Note: at first, possibly we just convert whole hog to get things | |
| 931 right. Then we'd have to poy alternative to characters that got | |
| 932 added + deleted that were unassigned in the fixed width. When | |
| 933 this goes to zero and there's been enough time (heuristics), we | |
| 934 go back to fixed. | |
| 935 | |
| 936 Side note: We could dynamically build up the set of assigned | |
| 937 chars as they go. Conceivably this could even go down to the | |
| 938 single char level: Just keep a big array of mapping from 16 bit | |
| 939 values to chars, and add empty time, a char has been encountered | |
| 940 that wasn't there before. Problem need inverse mapping. | |
| 941 | |
| 942 -> Possibility; chars are actual objects, not just numbers. | |
| 943 Then you could keep track of such info in the chars itself. | |
| 944 *Think about this.* | |
| 945 | |
| 946 Eventually, we might consider allowing mixed fixed-width, | |
| 947 variable-width buffer encodings. Then, we use range tables to | |
| 948 indicate which sections are fixed and which variable and INC_CHAR does | |
| 949 something like this: binary search to find the current range, which | |
| 950 indicates whether it's fixed or variable, and tells us what the | |
| 951 increment is. We can cache this info and use it next time to speed | |
| 952 up. | |
| 953 | |
| 954 -> We will then have two partially shared range tables - one for | |
| 955 overall fixed width vs. variable width, and possibly one containing | |
| 956 this same info, but partitioning the variable width in one. Maybe | |
| 957 need fancier nested range table model. | |
| 958 | |
| 959 ========================================================================== | |
| 960 Expansion of display table and case mapping table support for all | |
| 961 chars, not just ASCII/Latin1. | |
| 962 ========================================================================== | |
| 963 | |
| 964 ========================================================================== | |
| 965 Improved flexibility for display tables, and evaluation of its | |
| 966 features to make sure it meshes with and complements the char<->font | |
| 967 mapping API mentioned earlier | |
| 968 ========================================================================== | |
| 969 | |
| 970 ========================================================================== | |
| 971 String access speedup: | |
| 972 ========================================================================== | |
| 973 | |
| 974 For strings larger than some size in bytes (10?), keep extra fields of | |
| 975 info: length in chars, and a (char, byte) pair in the middle to speed | |
| 976 up sequential access. | |
| 977 | |
| 978 (Better idea: do this for any size string, but only if it contains | |
| 979 non-ASCII chars. Then if info is missing, we know string is | |
| 980 ASCII-only.) | |
| 981 | |
| 982 Use a string-extra-info object, replacing string property slot and | |
| 983 containing fields for string mod tick, string extents, string props, | |
| 984 and string char length, and cached (char,byte) pair. | |
| 985 string-extra-info (or string-auxiliary?) objects could be in frob | |
| 986 blocks, esp. if creating frob blocks is easy + worth it. | |
| 987 | |
| 988 - Caching of char<->byte conversions in strings - should make nearly | |
| 989 all operations on strings O(N) | |
| 990 | |
| 991 ========================================================================== | |
| 992 Improvements in buffer char<->byte mapping | |
| 993 ========================================================================== | |
| 994 | |
| 995 - Range table implementation - especially when there are few runs of | |
| 996 different widths, e.g. recently converted from fixed-width | |
| 997 optimization to variable width | |
| 998 | |
| 999 Range Tables to speed up Bufpos <-> Bytind caching | |
| 1000 ================================================== | |
| 1001 | |
| 1002 This describes an alternative implementation using ranges. We | |
| 1003 maintain a range table of all spans of characters of a fixed width. | |
| 1004 Updating this table could take time if there are a large number of | |
| 1005 spans; but constant factors of operations should be quick. This method really wins | |
| 1006 when you have 8-bit buffers just converted to variable width, where | |
| 1007 there will be few spans. More specifically, lookup in this range | |
| 1008 table is O(log N) and can be done with simple binary search, which is | |
| 1009 very fast. If we maintain the ranges using a gap array, updating this | |
| 1010 table will be fast for local operations, which is most of the time. | |
| 1011 | |
| 1012 We will also provide (at first, at least) a Lisp function to set the | |
| 1013 caching mechanism explicitly - either range tables or the existing | |
| 1014 implementation. Eventually, we want to improve things, to the point | |
| 1015 where we automatically pick the right caching for the situation and | |
| 1016 have more caching schemes implemented. | |
| 1017 | |
| 1018 ========================================================================== | |
| 1019 - Robustify Text Properties | |
| 1020 ========================================================================== | |
| 1021 | |
| 1022 ========================================================================== | |
| 1023 Support for unified internal representation, e.g. Unicode | |
| 1024 ========================================================================== | |
| 1025 | |
| 1026 Start tagging all text with a language text property, | |
| 1027 indicating the current language environment when the text was input. | |
| 1028 (needs "Robustify Text Properties") | |
| 1029 | |
| 1030 ========================================================================== | |
| 1031 - Generalized Coding Systems | |
| 1032 ========================================================================== | |
| 1033 | |
| 1034 - Lisp API for Defining Coding Systems | |
| 1035 | |
| 1036 User-defined coding systems. | |
| 1037 | |
| 1038 (define-coding-system-type 'type | |
| 1039 :encode-function fun | |
| 1040 :decode-function fun | |
| 1041 :detect-function fun | |
| 1042 :buffering (number = at least this many chars | |
| 1043 line = buffer up to end of line | |
| 1044 regexp = buffer until this regexp is found in match | |
| 1045 source data. match data will be appropriate when fun is | |
| 1046 called | |
| 1047 | |
| 1048 encode fun is called as | |
| 1049 | |
| 1050 (encode instream outstream) | |
| 1051 | |
| 1052 should read data from instream and write converted result onto | |
| 1053 outstream. Can leave some data stuff in stream, it will reappear | |
| 1054 next time. Generally, there is a finite amount of data in instream | |
| 1055 and further attempts to read lead to would-block errors or retvals. | |
| 1056 Can use instream properties to record state. May use read-stream | |
| 1057 functionality to read everything into a vector or string. | |
| 1058 | |
| 1059 ->Need vectors + string exposed to resizing of Lisp implementation | |
| 1060 where necessary. | |
| 1061 | |
| 1062 ========================================================================== | |
| 1063 Support Windows Active Kbd Switching, Far East IME API (done already?) | |
| 1064 ========================================================================== | |
| 1065 | |
| 1066 ========================================================================== | |
| 1067 - UI/design changes for Coding System Pipelining | |
| 1068 ========================================================================== | |
| 1069 | |
| 1070 ------------------------------------------------------------------ | |
| 1071 CODING-SYSTEM CHAINS | |
| 1072 ------------------------------------------------------------------ | |
| 1073 | |
| 1074 sjt sez: | |
| 1075 | |
| 1076 There should be no elementary coding systems in the Lisp API, only | |
| 1077 chains. Chains should be declared, not computed, as a sequence of coding | |
| 1078 formats. (Probably the internal representation can be a vector for | |
| 1079 efficiency but programmers would probably rather work with lists.) A | |
| 1080 stream has a token type. Most streams are octet streams. Text is a | |
| 1081 stream of characters (in _internal_ format; a file on disk is not text!) | |
| 1082 An octet-stream has no implicit semantics, so its format must always be | |
| 1083 specified. The only type currently having semantics is characters. This | |
| 1084 means that the chain [euc-jp -> internal -> shift_jis) may be specified | |
| 1085 (euc-jp, shift_jis), and if no euc-jp -> shift_jis converter is | |
| 1086 available, then the chain is automatically constructed. (N.B. I f we | |
| 1087 have fixed width buffers in the future, then we could have ASCII -> 8-bit | |
| 1088 char -> 16-bit char -> ISO-2022-JP (with escape sequences). | |
| 1089 | |
| 1090 EOL handling is a char <-> char coding. It should not be part of another | |
| 1091 coding system except as a convenience for users. For text coding, | |
| 1092 automatically insert EOL handlers between char <-> octet boundaries. | |
| 1093 | |
| 1094 ------------------------------------------------------------------ | |
| 1095 ABOUT DETECTION | |
| 1096 ------------------------------------------------------------------ | |
| 1097 | |
| 1098 | |
| 1099 ------------------------------------------------------------------ | |
| 1100 EFFICIENCY OF CODING CONVERSION WITH MULTIPLE COPIES/CHAINS | |
| 1101 ------------------------------------------------------------------ | |
| 1102 | |
| 1103 A comment in encode_decode_coding_region(): | |
| 1104 | |
| 1105 The chain of streams looks like this: | |
| 1106 | |
| 1107 [BUFFER] <----- (( read from/send to loop )) | |
| 1108 ------> [CHAR->BYTE i.e. ENCODE AS BINARY if source is | |
| 1109 in bytes] | |
| 1110 ------> [ENCODE/DECODE AS SPECIFIED] | |
| 1111 ------> [BYTE->CHAR i.e. DECODE AS BINARY | |
| 1112 if sink is in bytes] | |
| 1113 ------> [AUTODETECT EOL if | |
| 1114 we're decoding and | |
| 1115 coding system calls | |
| 1116 for this] | |
| 1117 ------> [BUFFER] | |
| 1118 | |
| 1119 sjt (?) responds: | |
| 1120 | |
| 1121 Of course, this is just horrible. BYTE<->CHAR should only be available | |
| 1122 to I/O routines. It should not be visible to Mule proper. | |
| 1123 | |
| 1124 A comment on the implementation. Hrvoje and Kyle worry about the | |
| 1125 inefficiency of repeated copying among buffers that chained coding | |
| 1126 systems entail. But this may not be as time inefficient as it appears | |
| 1127 in the Mule ("house rules") context. The issue is how do you do chain | |
| 1128 coding systems without copying? In theory you could have | |
| 1129 | |
| 1130 IChar external_to_raw (ExtChar *cp, State *s); | |
| 1131 IChar decode_utf16 (IChar c, State *s); | |
| 1132 IChar decode_crlf (ExtChar *cp, State *s); | |
| 1133 | |
| 1134 typedef Ichar (*Converter[]) (Ichar, State*); | |
| 1135 | |
| 1136 Converter utf16[2] = { &decode_utf16, &decode_crlf }; | |
| 1137 | |
| 1138 void convert (ExtChar *inbuf, IChar *outbuf, Converter cvtr) | |
| 1139 { | |
| 1140 int i; | |
| 1141 ExtChar c; | |
| 1142 State s; | |
| 1143 | |
| 1144 while (c = external_to_raw (*inbuf++, &s)) | |
| 1145 { | |
| 1146 for (i = 0; i < sizeof(cvtr)/sizeof(Converter); ++i) | |
| 1147 if (s.ready) | |
| 1148 c = (*cvtr[i]) (c, &s); | |
| 1149 } | |
| 1150 if (s.ready) | |
| 1151 *outbuf++ = c; | |
| 1152 } | |
| 1153 | |
| 1154 But this is a lot of function calls; what Ben is doing is basically | |
| 1155 reducing this to one call per buffer-full. The only way to avoid this | |
| 1156 is to hardcode all the "interesting" coding systems, maybe using | |
| 1157 inline or macros to give structure. But this is still a huge amount | |
| 1158 of work, and code. | |
| 1159 | |
| 1160 One advantage to the call-per-char approach is that we might be able | |
| 1161 to do something about the marker/extent destruction that coding | |
| 1162 normally entails. | |
| 1163 | |
| 1164 ben sez: | |
| 1165 | |
| 1166 it should be possible to preserve the markers/extents without | |
| 1167 switching completely to one-call-per-char -- we could at least do one | |
| 1168 call per "run", where a run is more or less the maximal stretch of | |
| 1169 text not overlapping any markers or extent boundaries. (It's a bit | |
| 1170 more complicated if we want to properly support the different extent | |
| 1171 begins/ends; in some cases we might have to pump a single character | |
| 1172 adjacent to where two extents meet.) The "stateless" way that I wrote | |
| 1173 all of the conversion routines may be a real hassle but it allows | |
| 1174 something like this to work without too much problem -- pump in one | |
| 1175 run at a time into one end of the chain, do a flush after each | |
| 1176 iteration, and stick what comes out the other end in its place. | |
| 1177 | |
| 1178 ------------------------------------------------------------------ | |
| 1179 ABOUT FORMATS | |
| 1180 ------------------------------------------------------------------ | |
| 1181 | |
| 1182 when calling make-coding-system, the name can be a cons of (format1 . | |
| 1183 format2), specifying that it decodes format1->format2 and encodes the other | |
| 1184 way. if only one name is given, that is assumed to be format1, and the | |
| 1185 other is either `external' or `internal' depending on the end type. | |
| 1186 normally the user when decoding gives the decoding order in formats, but | |
| 1187 can leave off the last one, `internal', which is assumed. a multichain | |
| 1188 might look like gzip|multibyte|unicode, using the coding systems named | |
| 1189 `gzip', `(unicode . multibyte)' and `unicode'. the way this actually works | |
| 1190 is by searching for gzip->multibyte; if not found, look for gzip->external | |
| 1191 or gzip->internal. (In general we automatically do conversion between | |
| 1192 internal and external as necessary: thus gzip|crlf does the expected, and | |
| 1193 maps to gzip->external, external->internal, crlf->internal, which when | |
| 1194 fully specified would be gzip|external:external|internal:crlf|internal -- | |
| 1195 see below.) To forcibly fit together two converters that have explicitly | |
| 1196 specified and incompatible names (say you have unicode->multibyte and | |
| 1197 iso8859-1->ebcdic and you know that the multibyte and iso8859-1 in this | |
| 1198 case are compatible), you can force-cast using :, like this: | |
| 1199 ebcdic|iso8859-1:multibyte|unicode. (again, if you force-cast between | |
| 1200 internal and external formats, the conversion happens automatically.) | |
| 1201 | |
| 1202 -------------------------------------------------------------------------- | |
| 1203 ABOUT PDUMP, UNICODE, AND RUNNING XEMACS FROM A DIRECTORY WITH WEIRD CHARS | |
| 1204 -------------------------------------------------------------------------- | |
| 1205 | |
| 1206 -- there's the problem that XEmacs can't be run in a directory with | |
| 1207 non-ASCII/Latin-1 chars in it, since it will be doing Unicode | |
| 1208 processing before we've had a chance to load the tables. In fact, | |
| 1209 even finding the tables in such a situation is problematic using | |
| 1210 the normal commands. my idea is to eventually load the stuff | |
| 1211 extremely extremely early, at the same time as the pdump data gets | |
| 1212 loaded. in fact, the unicode table data (stored in an efficient | |
| 1213 binary format) can even be stuck into the pdump file (which would | |
| 1214 mean as a resource to the executable, for windows). we'd need to | |
| 1215 extend pdump a bit: to allow for attaching extra data to the pdump | |
| 1216 file. (something like pdump_attach_extra_data (addr, length) | |
| 1217 returns a number of some sort, an index into the file, which you | |
| 1218 can then retrieve with pdump_load_extra_data(), which returns an | |
| 1219 addr (mmap()ed or loaded), and later you pdump_unload_extra_data() | |
| 1220 when finished. we'd probably also need | |
| 1221 pdump_attach_extra_data_append(), which appends data to the data | |
| 1222 just written out with pdump_attach_extra_data(). this way, | |
| 1223 multiple tables in memory can be written out into one contiguous | |
| 1224 table. (we'd use the tar-like trick of allowing new blocks to be | |
| 1225 written without going back to change the old blocks -- we just rely | |
| 1226 on the end of file/end of memory.) this same mechanism could be | |
| 1227 extracted out of pdump and used to handle the non-pdump situation | |
| 1228 (or alternatively, we could just dump either the memory image of | |
| 1229 the tables themselves or the compressed binary version). in the | |
| 1230 case of extra unicode tables not known about at compile time that | |
| 1231 get loaded before dumping, we either just dump them into the image | |
| 1232 (pdump and all) or extract them into the compressed binary format, | |
| 1233 free the original tables, and treat them like all other tables. | |
| 1234 | |
| 1235 | |
| 1236 ========================================================================== | |
| 1237 - Generalized language appropriate word wrapping (requires | |
| 1238 layout-exposing API defined in BIDI section) | |
| 1239 ========================================================================== | |
| 1240 | |
| 1241 ========================================================================== | |
| 1242 - Make Custom Mule-aware | |
| 1243 ========================================================================== | |
| 1244 | |
| 1245 ========================================================================== | |
| 1246 - Composite character support | |
| 1247 ========================================================================== | |
| 1248 | |
| 1249 ========================================================================== | |
| 1250 - Language appropriate sorting and searching | |
| 1251 ========================================================================== | |
| 1252 | |
| 1253 ========================================================================== | |
| 1254 - Glyph shaping for Arabic and Devanagari | |
| 1255 ========================================================================== | |
| 1256 | |
| 1257 - (needs to be handled mostly | |
| 1258 at C level, as part of layout; luckily it's entirely local in its | |
| 1259 changes, as this is not hard) | |
| 1260 | |
| 1261 | |
| 1262 ========================================================================== | |
| 1263 Consider moving language selection Menu up to be parallel with Mule menu | |
| 1264 ========================================================================== | |
| 1265 | |
| 1266 */ | |
| 1267 | |
| 1268 | |
| 771 | 1269 |
| 1270 /************************************************************************/ | |
| 1271 /* declarations */ | |
| 1272 /************************************************************************/ | |
| 1273 | |
| 1274 Eistring the_eistring_zero_init, the_eistring_malloc_zero_init; | |
| 1275 | |
| 1276 #define MAX_CHARBPOS_GAP_SIZE_3 (65535/3) | |
| 1277 #define MAX_BYTEBPOS_GAP_SIZE_3 (3 * MAX_CHARBPOS_GAP_SIZE_3) | |
| 1278 | |
| 1279 short three_to_one_table[1 + MAX_BYTEBPOS_GAP_SIZE_3]; | |
| 1280 | |
| 1281 #ifdef MULE | |
| 1282 | |
| 1283 /* Table of number of bytes in the string representation of a character | |
| 1284 indexed by the first byte of that representation. | |
| 1285 | |
| 1286 rep_bytes_by_first_byte(c) is more efficient than the equivalent | |
| 1287 canonical computation: | |
| 1288 | |
| 826 | 1289 XCHARSET_REP_BYTES (charset_by_leading_byte (c)) */ |
| 771 | 1290 |
| 1291 const Bytecount rep_bytes_by_first_byte[0xA0] = | |
| 1292 { /* 0x00 - 0x7f are for straight ASCII */ | |
| 1293 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 1294 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 1295 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 1296 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 1297 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 1298 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 1299 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 1300 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| 1301 /* 0x80 - 0x8f are for Dimension-1 official charsets */ | |
| 1302 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
| 1303 /* 0x90 - 0x9d are for Dimension-2 official charsets */ | |
| 1304 /* 0x9e is for Dimension-1 private charsets */ | |
| 1305 /* 0x9f is for Dimension-2 private charsets */ | |
| 1306 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4 | |
| 1307 }; | |
| 1308 | |
| 1309 #ifdef ENABLE_COMPOSITE_CHARS | |
| 1310 | |
| 1311 /* Hash tables for composite chars. One maps string representing | |
| 1312 composed chars to their equivalent chars; one goes the | |
| 1313 other way. */ | |
| 1314 Lisp_Object Vcomposite_char_char2string_hash_table; | |
| 1315 Lisp_Object Vcomposite_char_string2char_hash_table; | |
| 1316 | |
| 1317 static int composite_char_row_next; | |
| 1318 static int composite_char_col_next; | |
| 1319 | |
| 1320 #endif /* ENABLE_COMPOSITE_CHARS */ | |
| 1321 | |
| 1322 #endif /* MULE */ | |
| 1323 | |
| 1292 | 1324 Lisp_Object QSin_char_byte_conversion; |
| 1325 Lisp_Object QSin_internal_external_conversion; | |
| 1326 | |
| 771 | 1327 |
| 1328 /************************************************************************/ | |
| 1329 /* qxestr***() functions */ | |
| 1330 /************************************************************************/ | |
| 1331 | |
| 1332 /* Most are inline functions in lisp.h */ | |
| 1333 | |
| 1334 int | |
| 867 | 1335 qxesprintf (Ibyte *buffer, const CIbyte *format, ...) |
| 771 | 1336 { |
| 1337 va_list args; | |
| 1338 int retval; | |
| 1339 | |
| 1340 va_start (args, format); | |
| 2367 | 1341 retval = vsprintf ((Chbyte *) buffer, format, args); |
| 771 | 1342 va_end (args); |
| 1343 | |
| 1344 return retval; | |
| 1345 } | |
| 1346 | |
| 1347 /* strcasecmp() implementation from BSD */ | |
| 867 | 1348 static Ibyte strcasecmp_charmap[] = { |
| 1429 | 1349 0000, 0001, 0002, 0003, 0004, 0005, 0006, 0007, |
| 1350 0010, 0011, 0012, 0013, 0014, 0015, 0016, 0017, | |
| 1351 0020, 0021, 0022, 0023, 0024, 0025, 0026, 0027, | |
| 1352 0030, 0031, 0032, 0033, 0034, 0035, 0036, 0037, | |
| 1353 0040, 0041, 0042, 0043, 0044, 0045, 0046, 0047, | |
| 1354 0050, 0051, 0052, 0053, 0054, 0055, 0056, 0057, | |
| 1355 0060, 0061, 0062, 0063, 0064, 0065, 0066, 0067, | |
| 1356 0070, 0071, 0072, 0073, 0074, 0075, 0076, 0077, | |
| 1357 0100, 0141, 0142, 0143, 0144, 0145, 0146, 0147, | |
| 1358 0150, 0151, 0152, 0153, 0154, 0155, 0156, 0157, | |
| 1359 0160, 0161, 0162, 0163, 0164, 0165, 0166, 0167, | |
| 1360 0170, 0171, 0172, 0133, 0134, 0135, 0136, 0137, | |
| 1361 0140, 0141, 0142, 0143, 0144, 0145, 0146, 0147, | |
| 1362 0150, 0151, 0152, 0153, 0154, 0155, 0156, 0157, | |
| 1363 0160, 0161, 0162, 0163, 0164, 0165, 0166, 0167, | |
| 1364 0170, 0171, 0172, 0173, 0174, 0175, 0176, 0177, | |
| 1365 0200, 0201, 0202, 0203, 0204, 0205, 0206, 0207, | |
| 1366 0210, 0211, 0212, 0213, 0214, 0215, 0216, 0217, | |
| 1367 0220, 0221, 0222, 0223, 0224, 0225, 0226, 0227, | |
| 1368 0230, 0231, 0232, 0233, 0234, 0235, 0236, 0237, | |
| 1369 0240, 0241, 0242, 0243, 0244, 0245, 0246, 0247, | |
| 1370 0250, 0251, 0252, 0253, 0254, 0255, 0256, 0257, | |
| 1371 0260, 0261, 0262, 0263, 0264, 0265, 0266, 0267, | |
| 1372 0270, 0271, 0272, 0273, 0274, 0275, 0276, 0277, | |
| 1373 0300, 0301, 0302, 0303, 0304, 0305, 0306, 0307, | |
| 1374 0310, 0311, 0312, 0313, 0314, 0315, 0316, 0317, | |
| 1375 0320, 0321, 0322, 0323, 0324, 0325, 0326, 0327, | |
| 1376 0330, 0331, 0332, 0333, 0334, 0335, 0336, 0337, | |
| 1377 0340, 0341, 0342, 0343, 0344, 0345, 0346, 0347, | |
| 1378 0350, 0351, 0352, 0353, 0354, 0355, 0356, 0357, | |
| 1379 0360, 0361, 0362, 0363, 0364, 0365, 0366, 0367, | |
| 1380 0370, 0371, 0372, 0373, 0374, 0375, 0376, 0377 | |
| 771 | 1381 }; |
| 1382 | |
| 1383 /* A version that works like generic strcasecmp() -- only collapsing | |
| 1384 case in ASCII A-Z/a-z. This is safe on Mule strings due to the | |
| 1385 current representation. | |
| 1386 | |
| 1387 This version was written by some Berkeley coder, favoring | |
| 1388 nanosecond improvements over clarity. In all other versions below, | |
| 1389 we use symmetrical algorithms that may sacrifice a few machine | |
| 1390 cycles but are MUCH MUCH clearer, which counts a lot more. | |
| 1391 */ | |
| 1392 | |
| 1393 int | |
| 867 | 1394 qxestrcasecmp (const Ibyte *s1, const Ibyte *s2) |
| 771 | 1395 { |
| 867 | 1396 Ibyte *cm = strcasecmp_charmap; |
| 771 | 1397 |
| 1398 while (cm[*s1] == cm[*s2++]) | |
| 1399 if (*s1++ == '\0') | |
| 1400 return (0); | |
| 1401 | |
| 1402 return (cm[*s1] - cm[*--s2]); | |
| 1403 } | |
| 1404 | |
| 1405 int | |
| 2367 | 1406 ascii_strcasecmp (const Ascbyte *s1, const Ascbyte *s2) |
| 771 | 1407 { |
| 867 | 1408 return qxestrcasecmp ((const Ibyte *) s1, (const Ibyte *) s2); |
| 771 | 1409 } |
| 1410 | |
| 1411 int | |
| 2367 | 1412 qxestrcasecmp_ascii (const Ibyte *s1, const Ascbyte *s2) |
| 771 | 1413 { |
| 867 | 1414 return qxestrcasecmp (s1, (const Ibyte *) s2); |
| 771 | 1415 } |
| 1416 | |
| 1417 /* An internationalized version that collapses case in a general fashion. | |
| 1418 */ | |
| 1419 | |
| 1420 int | |
| 867 | 1421 qxestrcasecmp_i18n (const Ibyte *s1, const Ibyte *s2) |
| 771 | 1422 { |
| 1423 while (*s1 && *s2) | |
| 1424 { | |
|
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4526
diff
changeset
|
1425 if (CANONCASE (0, itext_ichar (s1)) != |
|
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4526
diff
changeset
|
1426 CANONCASE (0, itext_ichar (s2))) |
| 771 | 1427 break; |
| 867 | 1428 INC_IBYTEPTR (s1); |
| 1429 INC_IBYTEPTR (s2); | |
| 771 | 1430 } |
| 1431 | |
|
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4526
diff
changeset
|
1432 return (CANONCASE (0, itext_ichar (s1)) - |
|
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4526
diff
changeset
|
1433 CANONCASE (0, itext_ichar (s2))); |
| 771 | 1434 } |
| 1435 | |
| 1436 /* The only difference between these next two and | |
| 1437 qxememcasecmp()/qxememcasecmp_i18n() is that these two will stop if | |
| 1438 both strings are equal and less than LEN in length, while | |
| 1439 the mem...() versions would would run off the end. */ | |
| 1440 | |
| 1441 int | |
| 867 | 1442 qxestrncasecmp (const Ibyte *s1, const Ibyte *s2, Bytecount len) |
| 771 | 1443 { |
| 867 | 1444 Ibyte *cm = strcasecmp_charmap; |
| 771 | 1445 |
| 1446 while (len--) | |
| 1447 { | |
| 1448 int diff = cm[*s1] - cm[*s2]; | |
| 1449 if (diff != 0) | |
| 1450 return diff; | |
| 1451 if (!*s1) | |
| 1452 return 0; | |
| 1453 s1++, s2++; | |
| 1454 } | |
| 1455 | |
| 1456 return 0; | |
| 1457 } | |
| 1458 | |
| 1459 int | |
| 2367 | 1460 ascii_strncasecmp (const Ascbyte *s1, const Ascbyte *s2, Bytecount len) |
| 771 | 1461 { |
| 867 | 1462 return qxestrncasecmp ((const Ibyte *) s1, (const Ibyte *) s2, len); |
| 771 | 1463 } |
| 1464 | |
| 1465 int | |
| 2367 | 1466 qxestrncasecmp_ascii (const Ibyte *s1, const Ascbyte *s2, Bytecount len) |
| 771 | 1467 { |
| 867 | 1468 return qxestrncasecmp (s1, (const Ibyte *) s2, len); |
| 771 | 1469 } |
| 1470 | |
| 801 | 1471 /* Compare LEN_FROM_S1 worth of characters from S1 with the same number of |
| 1472 characters from S2, case insensitive. NOTE: Downcasing can convert | |
| 1473 characters from one length in bytes to another, so reversing S1 and S2 | |
| 1474 is *NOT* a symmetric operations! You must choose a length that agrees | |
| 1475 with S1. */ | |
| 1476 | |
| 771 | 1477 int |
| 867 | 1478 qxestrncasecmp_i18n (const Ibyte *s1, const Ibyte *s2, |
| 801 | 1479 Bytecount len_from_s1) |
| 771 | 1480 { |
| 801 | 1481 while (len_from_s1 > 0) |
| 771 | 1482 { |
| 867 | 1483 const Ibyte *old_s1 = s1; |
|
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4526
diff
changeset
|
1484 int diff = (CANONCASE (0, itext_ichar (s1)) - |
|
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4526
diff
changeset
|
1485 CANONCASE (0, itext_ichar (s2))); |
| 771 | 1486 if (diff != 0) |
| 1487 return diff; | |
| 1488 if (!*s1) | |
| 1489 return 0; | |
| 867 | 1490 INC_IBYTEPTR (s1); |
| 1491 INC_IBYTEPTR (s2); | |
| 801 | 1492 len_from_s1 -= s1 - old_s1; |
| 771 | 1493 } |
| 1494 | |
| 1495 return 0; | |
| 1496 } | |
| 1497 | |
| 1498 int | |
| 867 | 1499 qxememcmp (const Ibyte *s1, const Ibyte *s2, Bytecount len) |
| 771 | 1500 { |
| 1501 return memcmp (s1, s2, len); | |
| 1502 } | |
| 1503 | |
| 1504 int | |
| 867 | 1505 qxememcmp4 (const Ibyte *s1, Bytecount len1, |
| 1506 const Ibyte *s2, Bytecount len2) | |
| 801 | 1507 { |
| 1508 int retval = qxememcmp (s1, s2, min (len1, len2)); | |
| 1509 if (retval) | |
| 1510 return retval; | |
| 1511 return len1 - len2; | |
| 1512 } | |
| 1513 | |
| 1514 int | |
| 867 | 1515 qxememcasecmp (const Ibyte *s1, const Ibyte *s2, Bytecount len) |
| 771 | 1516 { |
| 867 | 1517 Ibyte *cm = strcasecmp_charmap; |
| 771 | 1518 |
| 1519 while (len--) | |
| 1520 { | |
| 1521 int diff = cm[*s1] - cm[*s2]; | |
| 1522 if (diff != 0) | |
| 1523 return diff; | |
| 1524 s1++, s2++; | |
| 1525 } | |
| 1526 | |
| 1527 return 0; | |
| 1528 } | |
| 1529 | |
| 1530 int | |
| 867 | 1531 qxememcasecmp4 (const Ibyte *s1, Bytecount len1, |
| 1532 const Ibyte *s2, Bytecount len2) | |
| 771 | 1533 { |
| 801 | 1534 int retval = qxememcasecmp (s1, s2, min (len1, len2)); |
| 1535 if (retval) | |
| 1536 return retval; | |
| 1537 return len1 - len2; | |
| 1538 } | |
| 1539 | |
| 1540 /* Do a character-by-character comparison, returning "which is greater" by | |
| 867 | 1541 comparing the Ichar values. (#### Should have option to compare Unicode |
| 801 | 1542 points) */ |
| 1543 | |
| 1544 int | |
| 867 | 1545 qxetextcmp (const Ibyte *s1, Bytecount len1, |
| 1546 const Ibyte *s2, Bytecount len2) | |
| 801 | 1547 { |
| 1548 while (len1 > 0 && len2 > 0) | |
| 771 | 1549 { |
| 867 | 1550 const Ibyte *old_s1 = s1; |
| 1551 const Ibyte *old_s2 = s2; | |
| 1552 int diff = itext_ichar (s1) - itext_ichar (s2); | |
| 801 | 1553 if (diff != 0) |
| 1554 return diff; | |
| 867 | 1555 INC_IBYTEPTR (s1); |
| 1556 INC_IBYTEPTR (s2); | |
| 801 | 1557 len1 -= s1 - old_s1; |
| 1558 len2 -= s2 - old_s2; | |
| 1559 } | |
| 1560 | |
| 1561 assert (len1 >= 0 && len2 >= 0); | |
| 1562 return len1 - len2; | |
| 1563 } | |
| 1564 | |
| 1565 int | |
| 867 | 1566 qxetextcmp_matching (const Ibyte *s1, Bytecount len1, |
| 1567 const Ibyte *s2, Bytecount len2, | |
| 801 | 1568 Charcount *matching) |
| 1569 { | |
| 1570 *matching = 0; | |
| 1571 while (len1 > 0 && len2 > 0) | |
| 1572 { | |
| 867 | 1573 const Ibyte *old_s1 = s1; |
| 1574 const Ibyte *old_s2 = s2; | |
| 1575 int diff = itext_ichar (s1) - itext_ichar (s2); | |
| 801 | 1576 if (diff != 0) |
| 1577 return diff; | |
| 867 | 1578 INC_IBYTEPTR (s1); |
| 1579 INC_IBYTEPTR (s2); | |
| 801 | 1580 len1 -= s1 - old_s1; |
| 1581 len2 -= s2 - old_s2; | |
| 1582 (*matching)++; | |
| 1583 } | |
| 1584 | |
| 1585 assert (len1 >= 0 && len2 >= 0); | |
| 1586 return len1 - len2; | |
| 1587 } | |
| 1588 | |
| 1589 /* Do a character-by-character comparison, returning "which is greater" by | |
| 867 | 1590 comparing the Ichar values, case insensitively (by downcasing both |
| 801 | 1591 first). (#### Should have option to compare Unicode points) |
| 1592 | |
| 1593 In this case, both lengths must be specified becaused downcasing can | |
| 1594 convert characters from one length in bytes to another; therefore, two | |
| 1595 blocks of text of different length might be equal. If both compare | |
| 1596 equal up to the limit in length of one but not the other, the longer one | |
| 1597 is "greater". */ | |
| 1598 | |
| 1599 int | |
| 867 | 1600 qxetextcasecmp (const Ibyte *s1, Bytecount len1, |
| 1601 const Ibyte *s2, Bytecount len2) | |
| 801 | 1602 { |
| 1603 while (len1 > 0 && len2 > 0) | |
| 1604 { | |
| 867 | 1605 const Ibyte *old_s1 = s1; |
| 1606 const Ibyte *old_s2 = s2; | |
|
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4526
diff
changeset
|
1607 int diff = (CANONCASE (0, itext_ichar (s1)) - |
|
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4526
diff
changeset
|
1608 CANONCASE (0, itext_ichar (s2))); |
| 771 | 1609 if (diff != 0) |
| 1610 return diff; | |
| 867 | 1611 INC_IBYTEPTR (s1); |
| 1612 INC_IBYTEPTR (s2); | |
| 801 | 1613 len1 -= s1 - old_s1; |
| 1614 len2 -= s2 - old_s2; | |
| 771 | 1615 } |
| 1616 | |
| 801 | 1617 assert (len1 >= 0 && len2 >= 0); |
| 1618 return len1 - len2; | |
| 1619 } | |
| 1620 | |
| 1621 /* Like qxetextcasecmp() but also return number of characters at | |
| 1622 beginning that match. */ | |
| 1623 | |
| 1624 int | |
| 867 | 1625 qxetextcasecmp_matching (const Ibyte *s1, Bytecount len1, |
| 1626 const Ibyte *s2, Bytecount len2, | |
| 801 | 1627 Charcount *matching) |
| 1628 { | |
| 1629 *matching = 0; | |
| 1630 while (len1 > 0 && len2 > 0) | |
| 1631 { | |
| 867 | 1632 const Ibyte *old_s1 = s1; |
| 1633 const Ibyte *old_s2 = s2; | |
|
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4526
diff
changeset
|
1634 int diff = (CANONCASE (0, itext_ichar (s1)) - |
|
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4526
diff
changeset
|
1635 CANONCASE (0, itext_ichar (s2))); |
| 801 | 1636 if (diff != 0) |
| 1637 return diff; | |
| 867 | 1638 INC_IBYTEPTR (s1); |
| 1639 INC_IBYTEPTR (s2); | |
| 801 | 1640 len1 -= s1 - old_s1; |
| 1641 len2 -= s2 - old_s2; | |
| 1642 (*matching)++; | |
| 1643 } | |
| 1644 | |
| 1645 assert (len1 >= 0 && len2 >= 0); | |
| 1646 return len1 - len2; | |
| 771 | 1647 } |
| 1648 | |
| 1649 int | |
|
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4526
diff
changeset
|
1650 lisp_strcasecmp_ascii (Lisp_Object s1, Lisp_Object s2) |
| 771 | 1651 { |
| 867 | 1652 Ibyte *cm = strcasecmp_charmap; |
| 1653 Ibyte *p1 = XSTRING_DATA (s1); | |
| 1654 Ibyte *p2 = XSTRING_DATA (s2); | |
| 1655 Ibyte *e1 = p1 + XSTRING_LENGTH (s1); | |
| 1656 Ibyte *e2 = p2 + XSTRING_LENGTH (s2); | |
| 771 | 1657 |
| 1658 /* again, we use a symmetric algorithm and favor clarity over | |
| 1659 nanosecond improvements. */ | |
| 1660 while (1) | |
| 1661 { | |
| 1662 /* if we reached the end of either string, compare lengths. | |
| 1663 do NOT compare the final null byte against anything, in case | |
| 1664 the other string also has a null byte at that position. */ | |
| 1665 if (p1 == e1 || p2 == e2) | |
| 1666 return e1 - e2; | |
| 1667 if (cm[*p1] != cm[*p2]) | |
| 1668 return cm[*p1] - cm[*p2]; | |
| 1669 p1++, p2++; | |
| 1670 } | |
| 1671 } | |
| 1672 | |
| 1673 int | |
| 1674 lisp_strcasecmp_i18n (Lisp_Object s1, Lisp_Object s2) | |
| 1675 { | |
| 801 | 1676 return qxetextcasecmp (XSTRING_DATA (s1), XSTRING_LENGTH (s1), |
| 1677 XSTRING_DATA (s2), XSTRING_LENGTH (s2)); | |
| 771 | 1678 } |
| 1679 | |
| 2367 | 1680 /* Compare a wide string with an ASCII string */ |
| 1681 | |
| 1682 int | |
| 1683 wcscmp_ascii (const wchar_t *s1, const Ascbyte *s2) | |
| 1684 { | |
| 1685 while (*s1 && *s2) | |
| 1686 { | |
| 2956 | 1687 if (*s1 != (wchar_t) *s2) |
| 2367 | 1688 break; |
| 1689 s1++, s2++; | |
| 1690 } | |
| 1691 | |
| 1692 return *s1 - *s2; | |
| 1693 } | |
| 1694 | |
| 1695 int | |
| 1696 wcsncmp_ascii (const wchar_t *s1, const Ascbyte *s2, Charcount len) | |
| 1697 { | |
| 1698 while (len--) | |
| 1699 { | |
| 1700 int diff = *s1 - *s2; | |
| 1701 if (diff != 0) | |
| 1702 return diff; | |
| 1703 if (!*s1) | |
| 1704 return 0; | |
| 1705 s1++, s2++; | |
| 1706 } | |
| 1707 | |
| 1708 return 0; | |
| 1709 } | |
| 1710 | |
| 771 | 1711 |
| 1712 /************************************************************************/ | |
| 1713 /* conversion between textual representations */ | |
| 1714 /************************************************************************/ | |
| 1715 | |
| 1716 /* NOTE: Does not reset the Dynarr. */ | |
| 1717 | |
| 1718 void | |
| 867 | 1719 convert_ibyte_string_into_ichar_dynarr (const Ibyte *str, Bytecount len, |
| 2367 | 1720 Ichar_dynarr *dyn) |
| 771 | 1721 { |
| 867 | 1722 const Ibyte *strend = str + len; |
| 771 | 1723 |
| 1724 while (str < strend) | |
| 1725 { | |
| 867 | 1726 Ichar ch = itext_ichar (str); |
| 771 | 1727 Dynarr_add (dyn, ch); |
| 867 | 1728 INC_IBYTEPTR (str); |
| 771 | 1729 } |
| 1730 } | |
| 1731 | |
| 1732 Charcount | |
| 867 | 1733 convert_ibyte_string_into_ichar_string (const Ibyte *str, Bytecount len, |
| 2367 | 1734 Ichar *arr) |
| 771 | 1735 { |
| 867 | 1736 const Ibyte *strend = str + len; |
| 771 | 1737 Charcount newlen = 0; |
| 1738 while (str < strend) | |
| 1739 { | |
| 867 | 1740 Ichar ch = itext_ichar (str); |
| 771 | 1741 arr[newlen++] = ch; |
| 867 | 1742 INC_IBYTEPTR (str); |
| 771 | 1743 } |
| 1744 return newlen; | |
| 1745 } | |
| 1746 | |
| 867 | 1747 /* Convert an array of Ichars into the equivalent string representation. |
| 1748 Store into the given Ibyte dynarr. Does not reset the dynarr. | |
| 771 | 1749 Does not add a terminating zero. */ |
| 1750 | |
| 1751 void | |
| 867 | 1752 convert_ichar_string_into_ibyte_dynarr (Ichar *arr, int nels, |
| 1753 Ibyte_dynarr *dyn) | |
| 771 | 1754 { |
| 867 | 1755 Ibyte str[MAX_ICHAR_LEN]; |
| 771 | 1756 int i; |
| 1757 | |
| 1758 for (i = 0; i < nels; i++) | |
| 1759 { | |
| 867 | 1760 Bytecount len = set_itext_ichar (str, arr[i]); |
| 771 | 1761 Dynarr_add_many (dyn, str, len); |
| 1762 } | |
| 1763 } | |
| 1764 | |
| 867 | 1765 /* Convert an array of Ichars into the equivalent string representation. |
| 771 | 1766 Malloc the space needed for this and return it. If LEN_OUT is not a |
| 867 | 1767 NULL pointer, store into LEN_OUT the number of Ibytes in the |
| 1768 malloc()ed string. Note that the actual number of Ibytes allocated | |
| 771 | 1769 is one more than this: the returned string is zero-terminated. */ |
| 1770 | |
| 867 | 1771 Ibyte * |
| 1772 convert_ichar_string_into_malloced_string (Ichar *arr, int nels, | |
| 826 | 1773 Bytecount *len_out) |
| 771 | 1774 { |
| 1775 /* Damn zero-termination. */ | |
| 2367 | 1776 Ibyte *str = alloca_ibytes (nels * MAX_ICHAR_LEN + 1); |
| 867 | 1777 Ibyte *strorig = str; |
| 771 | 1778 Bytecount len; |
| 1779 | |
| 1780 int i; | |
| 1781 | |
| 1782 for (i = 0; i < nels; i++) | |
| 867 | 1783 str += set_itext_ichar (str, arr[i]); |
| 771 | 1784 *str = '\0'; |
| 1785 len = str - strorig; | |
| 2367 | 1786 str = xnew_ibytes (1 + len); |
| 771 | 1787 memcpy (str, strorig, 1 + len); |
| 1788 if (len_out) | |
| 1789 *len_out = len; | |
| 1790 return str; | |
| 1791 } | |
| 1792 | |
| 826 | 1793 #define COPY_TEXT_BETWEEN_FORMATS(srcfmt, dstfmt) \ |
| 1794 do \ | |
| 1795 { \ | |
| 1796 if (dst) \ | |
| 1797 { \ | |
| 867 | 1798 Ibyte *dstend = dst + dstlen; \ |
| 1799 Ibyte *dstp = dst; \ | |
| 1800 const Ibyte *srcend = src + srclen; \ | |
| 1801 const Ibyte *srcp = src; \ | |
| 826 | 1802 \ |
| 1803 while (srcp < srcend) \ | |
| 1804 { \ | |
| 867 | 1805 Ichar ch = itext_ichar_fmt (srcp, srcfmt, srcobj); \ |
| 1806 Bytecount len = ichar_len_fmt (ch, dstfmt); \ | |
| 826 | 1807 \ |
| 1808 if (dstp + len <= dstend) \ | |
| 1809 { \ | |
| 2956 | 1810 (void) set_itext_ichar_fmt (dstp, ch, dstfmt, dstobj); \ |
| 826 | 1811 dstp += len; \ |
| 1812 } \ | |
| 1813 else \ | |
| 1814 break; \ | |
| 867 | 1815 INC_IBYTEPTR_FMT (srcp, srcfmt); \ |
| 826 | 1816 } \ |
| 1817 text_checking_assert (srcp <= srcend); \ | |
| 1818 if (src_used) \ | |
| 1819 *src_used = srcp - src; \ | |
| 1820 return dstp - dst; \ | |
| 1821 } \ | |
| 1822 else \ | |
| 1823 { \ | |
| 867 | 1824 const Ibyte *srcend = src + srclen; \ |
| 1825 const Ibyte *srcp = src; \ | |
| 826 | 1826 Bytecount total = 0; \ |
| 1827 \ | |
| 1828 while (srcp < srcend) \ | |
| 1829 { \ | |
| 867 | 1830 total += ichar_len_fmt (itext_ichar_fmt (srcp, srcfmt, \ |
| 826 | 1831 srcobj), dstfmt); \ |
| 867 | 1832 INC_IBYTEPTR_FMT (srcp, srcfmt); \ |
| 826 | 1833 } \ |
| 1834 text_checking_assert (srcp == srcend); \ | |
| 1835 if (src_used) \ | |
| 1836 *src_used = srcp - src; \ | |
| 1837 return total; \ | |
| 1838 } \ | |
| 1839 } \ | |
| 1840 while (0) | |
| 1841 | |
| 1842 /* Copy as much text from SRC/SRCLEN to DST/DSTLEN as will fit, converting | |
| 1843 from SRCFMT/SRCOBJ to DSTFMT/DSTOBJ. Return number of bytes stored into | |
| 1844 DST as return value, and number of bytes copied from SRC through | |
| 1845 SRC_USED (if not NULL). If DST is NULL, don't actually store anything | |
| 1846 and just return the size needed to store all the text. Will not copy | |
| 1847 partial characters into DST. */ | |
| 1848 | |
| 1849 Bytecount | |
| 867 | 1850 copy_text_between_formats (const Ibyte *src, Bytecount srclen, |
| 826 | 1851 Internal_Format srcfmt, |
| 2333 | 1852 Lisp_Object USED_IF_MULE (srcobj), |
| 867 | 1853 Ibyte *dst, Bytecount dstlen, |
| 826 | 1854 Internal_Format dstfmt, |
| 2333 | 1855 Lisp_Object USED_IF_MULE (dstobj), |
| 826 | 1856 Bytecount *src_used) |
| 1857 { | |
| 1858 if (srcfmt == dstfmt && | |
| 1859 objects_have_same_internal_representation (srcobj, dstobj)) | |
| 1860 { | |
| 1861 if (dst) | |
| 1862 { | |
| 1863 srclen = min (srclen, dstlen); | |
| 867 | 1864 srclen = validate_ibyte_string_backward (src, srclen); |
| 826 | 1865 memcpy (dst, src, srclen); |
| 1866 if (src_used) | |
| 1867 *src_used = srclen; | |
| 1868 return srclen; | |
| 1869 } | |
| 1870 else | |
| 1871 return srclen; | |
| 1872 } | |
| 1873 /* Everything before the final else statement is an optimization. | |
| 1874 The inner loops inside COPY_TEXT_BETWEEN_FORMATS() have a number | |
| 1875 of calls to *_fmt(), each of which has a switch statement in it. | |
| 1876 By using constants as the FMT argument, these switch statements | |
| 1877 will be optimized out of existence. */ | |
| 1878 #define ELSE_FORMATS(fmt1, fmt2) \ | |
| 1879 else if (srcfmt == fmt1 && dstfmt == fmt2) \ | |
| 1880 COPY_TEXT_BETWEEN_FORMATS (fmt1, fmt2) | |
| 1881 ELSE_FORMATS (FORMAT_DEFAULT, FORMAT_8_BIT_FIXED); | |
| 1882 ELSE_FORMATS (FORMAT_8_BIT_FIXED, FORMAT_DEFAULT); | |
| 1883 ELSE_FORMATS (FORMAT_DEFAULT, FORMAT_32_BIT_FIXED); | |
| 1884 ELSE_FORMATS (FORMAT_32_BIT_FIXED, FORMAT_DEFAULT); | |
| 1885 else | |
| 1886 COPY_TEXT_BETWEEN_FORMATS (srcfmt, dstfmt); | |
| 1887 #undef ELSE_FORMATS | |
| 1888 } | |
| 1889 | |
| 1890 /* Copy as much buffer text in BUF, starting at POS, of length LEN, as will | |
| 1891 fit into DST/DSTLEN, converting to DSTFMT. Return number of bytes | |
| 1892 stored into DST as return value, and number of bytes copied from BUF | |
| 1893 through SRC_USED (if not NULL). If DST is NULL, don't actually store | |
| 1894 anything and just return the size needed to store all the text. */ | |
| 1895 | |
| 1896 Bytecount | |
| 1897 copy_buffer_text_out (struct buffer *buf, Bytebpos pos, | |
| 867 | 1898 Bytecount len, Ibyte *dst, Bytecount dstlen, |
| 826 | 1899 Internal_Format dstfmt, Lisp_Object dstobj, |
| 1900 Bytecount *src_used) | |
| 1901 { | |
| 1902 Bytecount dst_used = 0; | |
| 1903 if (src_used) | |
| 1904 *src_used = 0; | |
| 1905 | |
| 1906 { | |
| 1907 BUFFER_TEXT_LOOP (buf, pos, len, runptr, runlen) | |
| 1908 { | |
| 1909 Bytecount the_src_used, the_dst_used; | |
| 1910 | |
| 1911 the_dst_used = copy_text_between_formats (runptr, runlen, | |
| 1912 BUF_FORMAT (buf), | |
| 1913 wrap_buffer (buf), | |
| 1914 dst, dstlen, dstfmt, | |
| 1915 dstobj, &the_src_used); | |
| 1916 dst_used += the_dst_used; | |
| 1917 if (src_used) | |
| 1918 *src_used += the_src_used; | |
| 1919 if (dst) | |
| 1920 { | |
| 1921 dst += the_dst_used; | |
| 1922 dstlen -= the_dst_used; | |
| 841 | 1923 /* Stop if we didn't use all of the source text. Also stop |
| 1924 if the destination is full. We need the first test because | |
| 1925 there might be a couple bytes left in the destination, but | |
| 1926 not enough to fit a full character. The first test will in | |
| 1927 fact catch the vast majority of cases where the destination | |
| 1928 is empty, too -- but in case the destination holds *exactly* | |
| 1929 the run length, we put in the second check. (It shouldn't | |
| 1930 really matter though -- next time through we'll just get a | |
| 1931 0.) */ | |
| 1932 if (the_src_used < runlen || !dstlen) | |
| 826 | 1933 break; |
| 1934 } | |
| 1935 } | |
| 1936 } | |
| 1937 | |
| 1938 return dst_used; | |
| 1939 } | |
| 1940 | |
| 771 | 1941 |
| 1942 /************************************************************************/ | |
| 1943 /* charset properties of strings */ | |
| 1944 /************************************************************************/ | |
| 1945 | |
| 1946 void | |
| 2333 | 1947 find_charsets_in_ibyte_string (unsigned char *charsets, |
| 1948 const Ibyte *USED_IF_MULE (str), | |
| 1949 Bytecount USED_IF_MULE (len)) | |
| 771 | 1950 { |
| 1951 #ifndef MULE | |
| 1952 /* Telescope this. */ | |
| 1953 charsets[0] = 1; | |
| 1954 #else | |
| 867 | 1955 const Ibyte *strend = str + len; |
| 771 | 1956 memset (charsets, 0, NUM_LEADING_BYTES); |
| 1957 | |
| 1958 /* #### SJT doesn't like this. */ | |
| 1959 if (len == 0) | |
| 1960 { | |
| 1961 charsets[XCHARSET_LEADING_BYTE (Vcharset_ascii) - MIN_LEADING_BYTE] = 1; | |
| 1962 return; | |
| 1963 } | |
| 1964 | |
| 1965 while (str < strend) | |
| 1966 { | |
| 867 | 1967 charsets[ichar_leading_byte (itext_ichar (str)) - MIN_LEADING_BYTE] = |
| 771 | 1968 1; |
| 867 | 1969 INC_IBYTEPTR (str); |
| 771 | 1970 } |
| 1971 #endif | |
| 1972 } | |
| 1973 | |
| 1974 void | |
| 2333 | 1975 find_charsets_in_ichar_string (unsigned char *charsets, |
| 1976 const Ichar *USED_IF_MULE (str), | |
| 1977 Charcount USED_IF_MULE (len)) | |
| 771 | 1978 { |
| 1979 #ifndef MULE | |
| 1980 /* Telescope this. */ | |
| 1981 charsets[0] = 1; | |
| 1982 #else | |
| 1983 int i; | |
| 1984 | |
| 1985 memset (charsets, 0, NUM_LEADING_BYTES); | |
| 1986 | |
| 1987 /* #### SJT doesn't like this. */ | |
| 1988 if (len == 0) | |
| 1989 { | |
| 1990 charsets[XCHARSET_LEADING_BYTE (Vcharset_ascii) - MIN_LEADING_BYTE] = 1; | |
| 1991 return; | |
| 1992 } | |
| 1993 | |
| 1994 for (i = 0; i < len; i++) | |
| 1995 { | |
| 867 | 1996 charsets[ichar_leading_byte (str[i]) - MIN_LEADING_BYTE] = 1; |
| 771 | 1997 } |
| 1998 #endif | |
| 1999 } | |
| 2000 | |
| 3571 | 2001 /* A couple of these functions should only be called on a non-Mule build. */ |
| 2002 #ifdef MULE | |
| 2003 #define ASSERT_BUILT_WITH_MULE() assert(1) | |
| 2004 #else /* MULE */ | |
| 2005 #define ASSERT_BUILT_WITH_MULE() assert(0) | |
| 2006 #endif /* MULE */ | |
| 2007 | |
| 771 | 2008 int |
| 867 | 2009 ibyte_string_displayed_columns (const Ibyte *str, Bytecount len) |
| 771 | 2010 { |
| 2011 int cols = 0; | |
| 867 | 2012 const Ibyte *end = str + len; |
| 3571 | 2013 Ichar ch; |
| 2014 | |
| 2015 ASSERT_BUILT_WITH_MULE(); | |
| 771 | 2016 |
| 2017 while (str < end) | |
| 2018 { | |
| 3571 | 2019 ch = itext_ichar (str); |
| 867 | 2020 cols += XCHARSET_COLUMNS (ichar_charset (ch)); |
| 2021 INC_IBYTEPTR (str); | |
| 771 | 2022 } |
| 2023 | |
| 2024 return cols; | |
| 2025 } | |
| 2026 | |
| 2027 int | |
| 3571 | 2028 ichar_string_displayed_columns (const Ichar * USED_IF_MULE(str), Charcount len) |
| 771 | 2029 { |
| 2030 int cols = 0; | |
| 2031 int i; | |
| 2032 | |
| 3571 | 2033 ASSERT_BUILT_WITH_MULE(); |
| 2034 | |
| 771 | 2035 for (i = 0; i < len; i++) |
| 867 | 2036 cols += XCHARSET_COLUMNS (ichar_charset (str[i])); |
| 771 | 2037 |
| 2038 return cols; | |
| 2039 } | |
| 2040 | |
| 2041 Charcount | |
| 2333 | 2042 ibyte_string_nonascii_chars (const Ibyte *USED_IF_MULE (str), |
| 2043 Bytecount USED_IF_MULE (len)) | |
| 771 | 2044 { |
| 2045 #ifdef MULE | |
| 867 | 2046 const Ibyte *end = str + len; |
| 771 | 2047 Charcount retval = 0; |
| 2048 | |
| 2049 while (str < end) | |
| 2050 { | |
| 826 | 2051 if (!byte_ascii_p (*str)) |
| 771 | 2052 retval++; |
| 867 | 2053 INC_IBYTEPTR (str); |
| 771 | 2054 } |
| 2055 | |
| 2056 return retval; | |
| 2057 #else | |
| 2058 return 0; | |
| 2059 #endif | |
| 2060 } | |
| 2061 | |
| 2062 | |
| 2063 /***************************************************************************/ | |
| 2064 /* Eistring helper functions */ | |
| 2065 /***************************************************************************/ | |
| 2066 | |
| 2067 int | |
| 867 | 2068 eistr_casefiddle_1 (Ibyte *olddata, Bytecount len, Ibyte *newdata, |
| 771 | 2069 int downp) |
| 2070 { | |
| 867 | 2071 Ibyte *endp = olddata + len; |
| 2072 Ibyte *newp = newdata; | |
| 771 | 2073 int changedp = 0; |
| 2074 | |
| 2075 while (olddata < endp) | |
| 2076 { | |
| 867 | 2077 Ichar c = itext_ichar (olddata); |
| 2078 Ichar newc; | |
| 771 | 2079 |
| 2080 if (downp) | |
| 2081 newc = DOWNCASE (0, c); | |
| 2082 else | |
| 2083 newc = UPCASE (0, c); | |
| 2084 | |
| 2085 if (c != newc) | |
| 2086 changedp = 1; | |
| 2087 | |
| 867 | 2088 newp += set_itext_ichar (newp, newc); |
| 2089 INC_IBYTEPTR (olddata); | |
| 771 | 2090 } |
| 2091 | |
| 2092 *newp = '\0'; | |
| 2093 | |
| 2094 return changedp ? newp - newdata : 0; | |
| 2095 } | |
| 2096 | |
| 2097 int | |
| 2098 eifind_large_enough_buffer (int oldbufsize, int needed_size) | |
| 2099 { | |
| 2100 while (oldbufsize < needed_size) | |
| 2101 { | |
| 2102 oldbufsize = oldbufsize * 3 / 2; | |
| 2103 oldbufsize = max (oldbufsize, 32); | |
| 2104 } | |
| 2105 | |
| 2106 return oldbufsize; | |
| 2107 } | |
| 2108 | |
| 2109 void | |
| 2110 eito_malloc_1 (Eistring *ei) | |
| 2111 { | |
| 2112 if (ei->mallocp_) | |
| 2113 return; | |
| 2114 ei->mallocp_ = 1; | |
| 2115 if (ei->data_) | |
| 2116 { | |
| 867 | 2117 Ibyte *newdata; |
| 771 | 2118 |
| 2119 ei->max_size_allocated_ = | |
| 2120 eifind_large_enough_buffer (0, ei->bytelen_ + 1); | |
| 2367 | 2121 newdata = xnew_ibytes (ei->max_size_allocated_); |
| 771 | 2122 memcpy (newdata, ei->data_, ei->bytelen_ + 1); |
| 2123 ei->data_ = newdata; | |
| 2124 } | |
| 2125 | |
| 2126 if (ei->extdata_) | |
| 2127 { | |
| 2367 | 2128 Extbyte *newdata = xnew_extbytes (ei->extlen_ + 2); |
| 771 | 2129 |
| 2130 memcpy (newdata, ei->extdata_, ei->extlen_); | |
| 2131 /* Double null-terminate in case of Unicode data */ | |
| 2132 newdata[ei->extlen_] = '\0'; | |
| 2133 newdata[ei->extlen_ + 1] = '\0'; | |
| 2134 ei->extdata_ = newdata; | |
| 2135 } | |
| 2136 } | |
| 2137 | |
| 2138 int | |
| 2139 eicmp_1 (Eistring *ei, Bytecount off, Charcount charoff, | |
| 867 | 2140 Bytecount len, Charcount charlen, const Ibyte *data, |
| 2421 | 2141 const Eistring *ei2, int is_ascii, int fold_case) |
| 771 | 2142 { |
| 3462 | 2143 assert ((data == 0) != (ei == 0)); |
| 2144 assert ((is_ascii != 0) == (data != 0)); | |
| 2145 assert (fold_case >= 0 && fold_case <= 2); | |
| 771 | 2146 assert ((off < 0) != (charoff < 0)); |
| 3462 | 2147 |
| 771 | 2148 if (off < 0) |
| 2149 { | |
| 2150 off = charcount_to_bytecount (ei->data_, charoff); | |
| 2151 if (charlen < 0) | |
| 2152 len = -1; | |
| 2153 else | |
| 2154 len = charcount_to_bytecount (ei->data_ + off, charlen); | |
| 2155 } | |
| 2156 if (len < 0) | |
| 2157 len = ei->bytelen_ - off; | |
| 2158 | |
| 2159 assert (off >= 0 && off <= ei->bytelen_); | |
| 2160 assert (len >= 0 && off + len <= ei->bytelen_); | |
| 2161 | |
| 2162 { | |
| 2163 Bytecount dstlen; | |
| 867 | 2164 const Ibyte *src = ei->data_, *dst; |
| 771 | 2165 |
| 2166 if (data) | |
| 2167 { | |
| 2168 dst = data; | |
| 2169 dstlen = qxestrlen (data); | |
| 2170 } | |
| 2171 else | |
| 2172 { | |
| 2173 dst = ei2->data_; | |
| 2174 dstlen = ei2->bytelen_; | |
| 2175 } | |
| 2176 | |
| 2421 | 2177 if (is_ascii) |
| 2367 | 2178 ASSERT_ASCTEXT_ASCII_LEN ((Ascbyte *) dst, dstlen); |
| 771 | 2179 |
| 801 | 2180 return (fold_case == 0 ? qxememcmp4 (src, len, dst, dstlen) : |
| 2181 fold_case == 1 ? qxememcasecmp4 (src, len, dst, dstlen) : | |
| 2182 qxetextcasecmp (src, len, dst, dstlen)); | |
| 771 | 2183 } |
| 2184 } | |
| 2185 | |
| 867 | 2186 Ibyte * |
| 826 | 2187 eicpyout_malloc_fmt (Eistring *eistr, Bytecount *len_out, Internal_Format fmt, |
| 2286 | 2188 Lisp_Object UNUSED (object)) |
| 771 | 2189 { |
| 867 | 2190 Ibyte *ptr; |
| 771 | 2191 |
| 2192 assert (fmt == FORMAT_DEFAULT); | |
| 867 | 2193 ptr = xnew_array (Ibyte, eistr->bytelen_ + 1); |
| 771 | 2194 if (len_out) |
| 2195 *len_out = eistr->bytelen_; | |
| 2196 memcpy (ptr, eistr->data_, eistr->bytelen_ + 1); | |
| 2197 return ptr; | |
| 2198 } | |
| 2199 | |
| 2200 | |
| 2201 /************************************************************************/ | |
| 2202 /* Charcount/Bytecount conversion */ | |
| 2203 /************************************************************************/ | |
| 2204 | |
| 2205 /* Optimization. Do it. Live it. Love it. */ | |
| 2206 | |
| 2207 #ifdef MULE | |
| 2208 | |
| 826 | 2209 #ifdef EFFICIENT_INT_128_BIT |
| 2210 # define STRIDE_TYPE INT_128_BIT | |
| 2211 # define HIGH_BIT_MASK \ | |
| 2212 MAKE_128_BIT_UNSIGNED_CONSTANT (0x80808080808080808080808080808080) | |
| 2213 #elif defined (EFFICIENT_INT_64_BIT) | |
| 2214 # define STRIDE_TYPE INT_64_BIT | |
| 2215 # define HIGH_BIT_MASK MAKE_64_BIT_UNSIGNED_CONSTANT (0x8080808080808080) | |
| 771 | 2216 #else |
| 826 | 2217 # define STRIDE_TYPE INT_32_BIT |
| 2218 # define HIGH_BIT_MASK MAKE_32_BIT_UNSIGNED_CONSTANT (0x80808080) | |
| 771 | 2219 #endif |
| 2220 | |
| 2221 #define ALIGN_BITS ((EMACS_UINT) (ALIGNOF (STRIDE_TYPE) - 1)) | |
| 2222 #define ALIGN_MASK (~ ALIGN_BITS) | |
| 2223 #define ALIGNED(ptr) ((((EMACS_UINT) ptr) & ALIGN_BITS) == 0) | |
| 2224 #define STRIDE sizeof (STRIDE_TYPE) | |
| 2225 | |
| 2367 | 2226 /* Skip as many ASCII bytes as possible in the memory block [PTR, END). |
| 2227 Return pointer to the first non-ASCII byte. optimized for long | |
| 2228 stretches of ASCII. */ | |
| 2229 inline static const Ibyte * | |
| 2230 skip_ascii (const Ibyte *ptr, const Ibyte *end) | |
| 2231 { | |
| 826 | 2232 const unsigned STRIDE_TYPE *ascii_end; |
| 2233 | |
| 2234 /* Need to do in 3 sections -- before alignment start, aligned chunk, | |
| 2235 after alignment end. */ | |
| 2236 while (!ALIGNED (ptr)) | |
| 771 | 2237 { |
| 826 | 2238 if (ptr == end || !byte_ascii_p (*ptr)) |
| 2239 return ptr; | |
| 2240 ptr++; | |
| 2241 } | |
| 2242 ascii_end = (const unsigned STRIDE_TYPE *) ptr; | |
| 2243 /* This loop screams, because we can detect ASCII | |
| 2244 characters 4 or 8 at a time. */ | |
| 867 | 2245 while ((const Ibyte *) ascii_end + STRIDE <= end |
| 826 | 2246 && !(*ascii_end & HIGH_BIT_MASK)) |
| 2247 ascii_end++; | |
| 867 | 2248 ptr = (Ibyte *) ascii_end; |
| 826 | 2249 while (ptr < end && byte_ascii_p (*ptr)) |
| 2250 ptr++; | |
| 2251 return ptr; | |
| 2252 } | |
| 2253 | |
| 2367 | 2254 /* Skip as many ASCII bytes as possible in the memory block [END, PTR), |
| 2255 going downwards. Return pointer to the location above the first | |
| 2256 non-ASCII byte. Optimized for long stretches of ASCII. */ | |
| 2257 inline static const Ibyte * | |
| 2258 skip_ascii_down (const Ibyte *ptr, const Ibyte *end) | |
| 2259 { | |
| 2260 const unsigned STRIDE_TYPE *ascii_end; | |
| 2261 | |
| 2262 /* Need to do in 3 sections -- before alignment start, aligned chunk, | |
| 2263 after alignment end. */ | |
| 2264 while (!ALIGNED (ptr)) | |
| 2265 { | |
| 2266 if (ptr == end || !byte_ascii_p (*(ptr - 1))) | |
| 2267 return ptr; | |
| 2268 ptr--; | |
| 2269 } | |
| 2270 ascii_end = (const unsigned STRIDE_TYPE *) ptr - 1; | |
| 2271 /* This loop screams, because we can detect ASCII | |
| 2272 characters 4 or 8 at a time. */ | |
| 2273 while ((const Ibyte *) ascii_end >= end | |
| 2274 && !(*ascii_end & HIGH_BIT_MASK)) | |
| 2275 ascii_end--; | |
| 2276 ptr = (Ibyte *) (ascii_end + 1); | |
| 2277 while (ptr > end && byte_ascii_p (*(ptr - 1))) | |
| 2278 ptr--; | |
| 2279 return ptr; | |
| 2280 } | |
| 2281 | |
| 826 | 2282 /* Function equivalents of bytecount_to_charcount/charcount_to_bytecount. |
| 2283 These work on strings of all sizes but are more efficient than a simple | |
| 2284 loop on large strings and probably less efficient on sufficiently small | |
| 2285 strings. */ | |
| 2286 | |
| 2287 Charcount | |
| 867 | 2288 bytecount_to_charcount_fun (const Ibyte *ptr, Bytecount len) |
| 826 | 2289 { |
| 2290 Charcount count = 0; | |
| 867 | 2291 const Ibyte *end = ptr + len; |
| 826 | 2292 while (1) |
| 2293 { | |
| 867 | 2294 const Ibyte *newptr = skip_ascii (ptr, end); |
| 826 | 2295 count += newptr - ptr; |
| 2296 ptr = newptr; | |
| 2297 if (ptr == end) | |
| 2298 break; | |
| 2299 { | |
| 2300 /* Optimize for successive characters from the same charset */ | |
| 867 | 2301 Ibyte leading_byte = *ptr; |
| 826 | 2302 int bytes = rep_bytes_by_first_byte (leading_byte); |
| 2303 while (ptr < end && *ptr == leading_byte) | |
| 2304 ptr += bytes, count++; | |
| 2305 } | |
| 771 | 2306 } |
| 2307 | |
| 2308 /* Bomb out if the specified substring ends in the middle | |
| 2309 of a character. Note that we might have already gotten | |
| 2310 a core dump above from an invalid reference, but at least | |
| 2311 we will get no farther than here. | |
| 2312 | |
| 2313 This also catches len < 0. */ | |
| 800 | 2314 text_checking_assert (ptr == end); |
| 771 | 2315 |
| 2316 return count; | |
| 2317 } | |
| 2318 | |
| 2319 Bytecount | |
| 867 | 2320 charcount_to_bytecount_fun (const Ibyte *ptr, Charcount len) |
| 771 | 2321 { |
| 867 | 2322 const Ibyte *newptr = ptr; |
| 826 | 2323 while (1) |
| 771 | 2324 { |
| 867 | 2325 const Ibyte *newnewptr = skip_ascii (newptr, newptr + len); |
| 826 | 2326 len -= newnewptr - newptr; |
| 2327 newptr = newnewptr; | |
| 2328 if (!len) | |
| 2329 break; | |
| 2330 { | |
| 2331 /* Optimize for successive characters from the same charset */ | |
| 867 | 2332 Ibyte leading_byte = *newptr; |
| 826 | 2333 int bytes = rep_bytes_by_first_byte (leading_byte); |
| 2334 while (len > 0 && *newptr == leading_byte) | |
| 2335 newptr += bytes, len--; | |
| 2336 } | |
| 771 | 2337 } |
| 2338 return newptr - ptr; | |
| 2339 } | |
| 2340 | |
| 2367 | 2341 /* Function equivalent of charcount_to_bytecount_down. This works on strings |
| 2342 of all sizes but is more efficient than a simple loop on large strings | |
| 2343 and probably less efficient on sufficiently small strings. */ | |
| 2344 | |
| 2345 Bytecount | |
| 2346 charcount_to_bytecount_down_fun (const Ibyte *ptr, Charcount len) | |
| 2347 { | |
| 2348 const Ibyte *newptr = ptr; | |
| 2349 while (1) | |
| 2350 { | |
| 2351 const Ibyte *newnewptr = skip_ascii_down (newptr, newptr - len); | |
| 2352 len -= newptr - newnewptr; | |
| 2353 newptr = newnewptr; | |
| 2354 /* Skip over all non-ASCII chars, counting the length and | |
| 2355 stopping if it's zero */ | |
| 2356 while (len && !byte_ascii_p (*(newptr - 1))) | |
| 2357 if (ibyte_first_byte_p (*--newptr)) | |
| 2358 len--; | |
| 2359 if (!len) | |
| 2360 break; | |
| 2361 } | |
| 2362 text_checking_assert (ptr - newptr >= 0); | |
| 2363 return ptr - newptr; | |
| 2364 } | |
| 2365 | |
| 771 | 2366 /* The next two functions are the actual meat behind the |
| 2367 charbpos-to-bytebpos and bytebpos-to-charbpos conversions. Currently | |
| 2368 the method they use is fairly unsophisticated; see buffer.h. | |
| 2369 | |
| 2370 Note that charbpos_to_bytebpos_func() is probably the most-called | |
| 2371 function in all of XEmacs. Therefore, it must be FAST FAST FAST. | |
| 2372 This is the reason why so much of the code is duplicated. | |
| 2373 | |
| 2374 Similar considerations apply to bytebpos_to_charbpos_func(), although | |
| 2375 less so because the function is not called so often. | |
| 2367 | 2376 */ |
| 2377 | |
| 2378 /* | |
| 2379 | |
| 2380 Info on Byte-Char conversion: | |
| 2381 | |
| 2382 (Info-goto-node "(internals)Byte-Char Position Conversion") | |
| 2383 */ | |
| 2384 | |
| 2385 #ifdef OLD_BYTE_CHAR | |
| 771 | 2386 static int not_very_random_number; |
| 2367 | 2387 #endif /* OLD_BYTE_CHAR */ |
| 2388 | |
| 2389 #define OLD_LOOP | |
| 2390 | |
| 2391 /* If we are this many characters away from any known position, cache the | |
| 2392 new position in the buffer's char-byte cache. */ | |
| 2393 #define FAR_AWAY_DISTANCE 5000 | |
| 2394 | |
| 2395 /* Converting between character positions and byte positions. */ | |
| 2396 | |
| 2397 /* There are several places in the buffer where we know | |
| 2398 the correspondence: BEG, BEGV, PT, GPT, ZV and Z, | |
| 2399 and everywhere there is a marker. So we find the one of these places | |
| 2400 that is closest to the specified position, and scan from there. */ | |
| 2401 | |
| 2402 /* This macro is a subroutine of charbpos_to_bytebpos_func. | |
| 2403 Note that it is desirable that BYTEPOS is not evaluated | |
| 2404 except when we really want its value. */ | |
| 2405 | |
| 2406 #define CONSIDER(CHARPOS, BYTEPOS) \ | |
| 2407 do \ | |
| 2408 { \ | |
| 2409 Charbpos this_charpos = (CHARPOS); \ | |
| 2410 int changed = 0; \ | |
| 2411 \ | |
| 2412 if (this_charpos == x) \ | |
| 2413 { \ | |
| 2414 retval = (BYTEPOS); \ | |
| 2415 goto done; \ | |
| 2416 } \ | |
| 2417 else if (this_charpos > x) \ | |
| 2418 { \ | |
| 2419 if (this_charpos < best_above) \ | |
| 2420 { \ | |
| 2421 best_above = this_charpos; \ | |
| 2422 best_above_byte = (BYTEPOS); \ | |
| 2423 changed = 1; \ | |
| 2424 } \ | |
| 2425 } \ | |
| 2426 else if (this_charpos > best_below) \ | |
| 2427 { \ | |
| 2428 best_below = this_charpos; \ | |
| 2429 best_below_byte = (BYTEPOS); \ | |
| 2430 changed = 1; \ | |
| 2431 } \ | |
| 2432 \ | |
| 2433 if (changed) \ | |
| 2434 { \ | |
| 2435 if (best_above - best_below == best_above_byte - best_below_byte) \ | |
| 2436 { \ | |
| 2437 retval = best_below_byte + (x - best_below); \ | |
| 2438 goto done; \ | |
| 2439 } \ | |
| 2440 } \ | |
| 2441 } \ | |
| 2442 while (0) | |
| 2443 | |
| 771 | 2444 |
| 2445 Bytebpos | |
| 2446 charbpos_to_bytebpos_func (struct buffer *buf, Charbpos x) | |
| 2447 { | |
| 2367 | 2448 #ifdef OLD_BYTE_CHAR |
| 771 | 2449 Charbpos bufmin; |
| 2450 Charbpos bufmax; | |
| 2451 Bytebpos bytmin; | |
| 2452 Bytebpos bytmax; | |
| 2453 int size; | |
| 2454 int forward_p; | |
| 2455 int diff_so_far; | |
| 2456 int add_to_cache = 0; | |
| 2367 | 2457 #endif /* OLD_BYTE_CHAR */ |
| 2458 | |
| 2459 Charbpos best_above, best_below; | |
| 2460 Bytebpos best_above_byte, best_below_byte; | |
| 2461 int i; | |
| 2462 struct buffer_text *t; | |
| 2463 Bytebpos retval; | |
| 2464 | |
| 1292 | 2465 PROFILE_DECLARE (); |
| 771 | 2466 |
| 1292 | 2467 PROFILE_RECORD_ENTERING_SECTION (QSin_char_byte_conversion); |
| 2468 | |
| 2367 | 2469 best_above = BUF_Z (buf); |
| 2470 best_above_byte = BYTE_BUF_Z (buf); | |
| 2471 | |
| 2472 /* In this case, we simply have all one-byte characters. But this should | |
| 2473 have been intercepted before, in charbpos_to_bytebpos(). */ | |
| 2474 text_checking_assert (best_above != best_above_byte); | |
| 2475 | |
| 2476 best_below = BUF_BEG (buf); | |
| 2477 best_below_byte = BYTE_BUF_BEG (buf); | |
| 2478 | |
| 2479 /* We find in best_above and best_above_byte | |
| 2480 the closest known point above CHARPOS, | |
| 2481 and in best_below and best_below_byte | |
| 2482 the closest known point below CHARPOS, | |
| 2483 | |
| 2484 If at any point we can tell that the space between those | |
| 2485 two best approximations is all single-byte, | |
| 2486 we interpolate the result immediately. */ | |
| 2487 | |
| 2488 CONSIDER (BUF_PT (buf), BYTE_BUF_PT (buf)); | |
| 2489 CONSIDER (BUF_GPT (buf), BYTE_BUF_GPT (buf)); | |
| 2490 CONSIDER (BUF_BEGV (buf), BYTE_BUF_BEGV (buf)); | |
| 2491 CONSIDER (BUF_ZV (buf), BYTE_BUF_ZV (buf)); | |
| 2492 | |
| 2493 t = buf->text; | |
| 2494 CONSIDER (t->cached_charpos, t->cached_bytepos); | |
| 2495 | |
| 2496 /* Check the most recently entered positions first */ | |
| 2497 | |
| 2498 for (i = t->next_cache_pos - 1; i >= 0; i--) | |
| 2499 { | |
| 2500 CONSIDER (t->mule_charbpos_cache[i], t->mule_bytebpos_cache[i]); | |
| 2501 | |
| 2502 /* If we are down to a range of 50 chars, | |
| 2503 don't bother checking any other markers; | |
| 2504 scan the intervening chars directly now. */ | |
| 2505 if (best_above - best_below < 50) | |
| 2506 break; | |
| 2507 } | |
| 2508 | |
| 2509 /* We get here if we did not exactly hit one of the known places. | |
| 2510 We have one known above and one known below. | |
| 2511 Scan, counting characters, from whichever one is closer. */ | |
| 2512 | |
| 2513 if (x - best_below < best_above - x) | |
| 2514 { | |
| 2515 int record = x - best_below > FAR_AWAY_DISTANCE; | |
| 2516 | |
| 2517 #ifdef OLD_LOOP /* old code */ | |
| 2518 while (best_below != x) | |
| 2519 { | |
| 2520 best_below++; | |
| 2521 INC_BYTEBPOS (buf, best_below_byte); | |
| 2522 } | |
| 2523 #else | |
| 2524 text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT); | |
| 2525 /* The gap should not occur between best_below and x, or we will be | |
| 2526 screwed in using charcount_to_bytecount(). It should not be exactly | |
| 2527 at x either, because we already should have caught that. */ | |
| 2528 text_checking_assert | |
| 2529 (BUF_CEILING_OF_IGNORE_ACCESSIBLE (buf, best_below) > x); | |
| 2530 | |
| 2531 /* Using charcount_to_bytecount() is potentially a lot faster than a | |
| 2532 simple loop using INC_BYTEBPOS() because (a) the checks for gap | |
| 2533 and buffer format are factored out instead of getting checked | |
| 2534 every time; (b) the checking goes 4 or 8 bytes at a time in ASCII | |
| 2535 text. | |
| 2536 */ | |
| 2537 best_below_byte += | |
| 2538 charcount_to_bytecount | |
| 2539 (BYTE_BUF_BYTE_ADDRESS (buf, best_below_byte), x - best_below); | |
| 2540 best_below = x; | |
| 2541 #endif /* 0 */ | |
| 2542 | |
| 2543 /* If this position is quite far from the nearest known position, | |
| 2544 cache the correspondence. | |
| 2545 | |
| 2546 NB FSF does this: "... by creating a marker here. | |
| 2547 It will last until the next GC." | |
| 2548 */ | |
| 2549 | |
| 2550 if (record) | |
| 2551 { | |
| 2552 /* If we have run out of positions to record, discard some of the | |
| 2553 old ones. I used to use a circular buffer, which avoids the | |
| 2554 need to block-move any memory. But it makes it more difficult | |
| 2555 to keep track of which positions haven't been used -- commonly | |
| 2556 we haven't yet filled out anywhere near the whole set of | |
| 2557 positions and don't want to check them all. We should not be | |
| 2558 recording that often, and block-moving is extremely fast in | |
| 2559 any case. --ben */ | |
| 2560 if (t->next_cache_pos == NUM_CACHED_POSITIONS) | |
| 2561 { | |
| 2562 memmove (t->mule_charbpos_cache, | |
| 2563 t->mule_charbpos_cache + NUM_MOVED_POSITIONS, | |
| 2564 sizeof (Charbpos) * | |
| 2565 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
| 2566 memmove (t->mule_bytebpos_cache, | |
| 2567 t->mule_bytebpos_cache + NUM_MOVED_POSITIONS, | |
| 2568 sizeof (Bytebpos) * | |
| 2569 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
| 2570 t->next_cache_pos -= NUM_MOVED_POSITIONS; | |
| 2571 } | |
| 2572 t->mule_charbpos_cache[t->next_cache_pos] = best_below; | |
| 2573 t->mule_bytebpos_cache[t->next_cache_pos] = best_below_byte; | |
| 2574 t->next_cache_pos++; | |
| 2575 } | |
| 2576 | |
| 2577 t->cached_charpos = best_below; | |
| 2578 t->cached_bytepos = best_below_byte; | |
| 2579 | |
| 2580 retval = best_below_byte; | |
| 2581 text_checking_assert (best_below_byte >= best_below); | |
| 2582 goto done; | |
| 2583 } | |
| 2584 else | |
| 2585 { | |
| 2586 int record = best_above - x > FAR_AWAY_DISTANCE; | |
| 2587 | |
| 2588 #ifdef OLD_LOOP | |
| 2589 while (best_above != x) | |
| 2590 { | |
| 2591 best_above--; | |
| 2592 DEC_BYTEBPOS (buf, best_above_byte); | |
| 2593 } | |
| 2594 #else | |
| 2595 text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT); | |
| 2596 /* The gap should not occur between best_above and x, or we will be | |
| 2597 screwed in using charcount_to_bytecount_down(). It should not be | |
| 2598 exactly at x either, because we already should have caught | |
| 2599 that. */ | |
| 2600 text_checking_assert | |
| 2601 (BUF_FLOOR_OF_IGNORE_ACCESSIBLE (buf, best_above) < x); | |
| 2602 | |
| 2603 /* Using charcount_to_bytecount_down() is potentially a lot faster | |
| 2604 than a simple loop using DEC_BYTEBPOS(); see above. */ | |
| 2605 best_above_byte -= | |
| 2606 charcount_to_bytecount_down | |
| 2607 /* BYTE_BUF_BYTE_ADDRESS will return a value on the high side of the | |
| 2608 gap if we are at the gap, which is the wrong side. So do the | |
| 2609 following trick instead. */ | |
| 2610 (BYTE_BUF_BYTE_ADDRESS_BEFORE (buf, best_above_byte) + 1, | |
| 2611 best_above - x); | |
| 2612 best_above = x; | |
| 2613 #endif /* SLEDGEHAMMER_CHECK_TEXT */ | |
| 2614 | |
| 2615 | |
| 2616 /* If this position is quite far from the nearest known position, | |
| 2617 cache the correspondence. | |
| 2618 | |
| 2619 NB FSF does this: "... by creating a marker here. | |
| 2620 It will last until the next GC." | |
| 2621 */ | |
| 2622 if (record) | |
| 2623 { | |
| 2624 if (t->next_cache_pos == NUM_CACHED_POSITIONS) | |
| 2625 { | |
| 2626 memmove (t->mule_charbpos_cache, | |
| 2627 t->mule_charbpos_cache + NUM_MOVED_POSITIONS, | |
| 2628 sizeof (Charbpos) * | |
| 2629 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
| 2630 memmove (t->mule_bytebpos_cache, | |
| 2631 t->mule_bytebpos_cache + NUM_MOVED_POSITIONS, | |
| 2632 sizeof (Bytebpos) * | |
| 2633 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
| 2634 t->next_cache_pos -= NUM_MOVED_POSITIONS; | |
| 2635 } | |
| 2636 t->mule_charbpos_cache[t->next_cache_pos] = best_above; | |
| 2637 t->mule_bytebpos_cache[t->next_cache_pos] = best_above_byte; | |
| 2638 t->next_cache_pos++; | |
| 2639 } | |
| 2640 | |
| 2641 t->cached_charpos = best_above; | |
| 2642 t->cached_bytepos = best_above_byte; | |
| 2643 | |
| 2644 retval = best_above_byte; | |
| 2645 text_checking_assert (best_above_byte >= best_above); | |
| 2646 goto done; | |
| 2647 } | |
| 2648 | |
| 2649 #ifdef OLD_BYTE_CHAR | |
| 2650 | |
| 771 | 2651 bufmin = buf->text->mule_bufmin; |
| 2652 bufmax = buf->text->mule_bufmax; | |
| 2653 bytmin = buf->text->mule_bytmin; | |
| 2654 bytmax = buf->text->mule_bytmax; | |
| 2655 size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p; | |
| 2656 | |
| 2657 /* The basic idea here is that we shift the "known region" up or down | |
| 2658 until it overlaps the specified position. We do this by moving | |
| 2659 the upper bound of the known region up one character at a time, | |
| 2660 and moving the lower bound of the known region up as necessary | |
| 2661 when the size of the character just seen changes. | |
| 2662 | |
| 2663 We optimize this, however, by first shifting the known region to | |
| 2664 one of the cached points if it's close by. (We don't check BEG or | |
| 2665 Z, even though they're cached; most of the time these will be the | |
| 2666 same as BEGV and ZV, and when they're not, they're not likely | |
| 2667 to be used.) */ | |
| 2668 | |
| 2669 if (x > bufmax) | |
| 2670 { | |
| 2671 Charbpos diffmax = x - bufmax; | |
| 2672 Charbpos diffpt = x - BUF_PT (buf); | |
| 2673 Charbpos diffzv = BUF_ZV (buf) - x; | |
| 2674 /* #### This value could stand some more exploration. */ | |
| 2675 Charcount heuristic_hack = (bufmax - bufmin) >> 2; | |
| 2676 | |
| 2677 /* Check if the position is closer to PT or ZV than to the | |
| 2678 end of the known region. */ | |
| 2679 | |
| 2680 if (diffpt < 0) | |
| 2681 diffpt = -diffpt; | |
| 2682 if (diffzv < 0) | |
| 2683 diffzv = -diffzv; | |
| 2684 | |
| 2685 /* But also implement a heuristic that favors the known region | |
| 2686 over PT or ZV. The reason for this is that switching to | |
| 2687 PT or ZV will wipe out the knowledge in the known region, | |
| 2688 which might be annoying if the known region is large and | |
| 2689 PT or ZV is not that much closer than the end of the known | |
| 2690 region. */ | |
| 2691 | |
| 2692 diffzv += heuristic_hack; | |
| 2693 diffpt += heuristic_hack; | |
| 2694 if (diffpt < diffmax && diffpt <= diffzv) | |
| 2695 { | |
| 2696 bufmax = bufmin = BUF_PT (buf); | |
| 826 | 2697 bytmax = bytmin = BYTE_BUF_PT (buf); |
| 771 | 2698 /* We set the size to 1 even though it doesn't really |
| 2699 matter because the new known region contains no | |
| 2700 characters. We do this because this is the most | |
| 2701 likely size of the characters around the new known | |
| 2702 region, and we avoid potential yuckiness that is | |
| 2703 done when size == 3. */ | |
| 2704 size = 1; | |
| 2705 } | |
| 2706 if (diffzv < diffmax) | |
| 2707 { | |
| 2708 bufmax = bufmin = BUF_ZV (buf); | |
| 826 | 2709 bytmax = bytmin = BYTE_BUF_ZV (buf); |
| 771 | 2710 size = 1; |
| 2711 } | |
| 2712 } | |
| 800 | 2713 #ifdef ERROR_CHECK_TEXT |
| 771 | 2714 else if (x >= bufmin) |
| 2500 | 2715 ABORT (); |
| 771 | 2716 #endif |
| 2717 else | |
| 2718 { | |
| 2719 Charbpos diffmin = bufmin - x; | |
| 2720 Charbpos diffpt = BUF_PT (buf) - x; | |
| 2721 Charbpos diffbegv = x - BUF_BEGV (buf); | |
| 2722 /* #### This value could stand some more exploration. */ | |
| 2723 Charcount heuristic_hack = (bufmax - bufmin) >> 2; | |
| 2724 | |
| 2725 if (diffpt < 0) | |
| 2726 diffpt = -diffpt; | |
| 2727 if (diffbegv < 0) | |
| 2728 diffbegv = -diffbegv; | |
| 2729 | |
| 2730 /* But also implement a heuristic that favors the known region -- | |
| 2731 see above. */ | |
| 2732 | |
| 2733 diffbegv += heuristic_hack; | |
| 2734 diffpt += heuristic_hack; | |
| 2735 | |
| 2736 if (diffpt < diffmin && diffpt <= diffbegv) | |
| 2737 { | |
| 2738 bufmax = bufmin = BUF_PT (buf); | |
| 826 | 2739 bytmax = bytmin = BYTE_BUF_PT (buf); |
| 771 | 2740 /* We set the size to 1 even though it doesn't really |
| 2741 matter because the new known region contains no | |
| 2742 characters. We do this because this is the most | |
| 2743 likely size of the characters around the new known | |
| 2744 region, and we avoid potential yuckiness that is | |
| 2745 done when size == 3. */ | |
| 2746 size = 1; | |
| 2747 } | |
| 2748 if (diffbegv < diffmin) | |
| 2749 { | |
| 2750 bufmax = bufmin = BUF_BEGV (buf); | |
| 826 | 2751 bytmax = bytmin = BYTE_BUF_BEGV (buf); |
| 771 | 2752 size = 1; |
| 2753 } | |
| 2754 } | |
| 2755 | |
| 2756 diff_so_far = x > bufmax ? x - bufmax : bufmin - x; | |
| 2757 if (diff_so_far > 50) | |
| 2758 { | |
| 2759 /* If we have to move more than a certain amount, then look | |
| 2760 into our cache. */ | |
| 2761 int minval = INT_MAX; | |
| 2762 int found = 0; | |
| 2763 int i; | |
| 2764 | |
| 2765 add_to_cache = 1; | |
| 2766 /* I considered keeping the positions ordered. This would speed | |
| 2767 up this loop, but updating the cache would take longer, so | |
| 2768 it doesn't seem like it would really matter. */ | |
| 2367 | 2769 for (i = 0; i < NUM_CACHED_POSITIONS; i++) |
| 771 | 2770 { |
| 2771 int diff = buf->text->mule_charbpos_cache[i] - x; | |
| 2772 | |
| 2773 if (diff < 0) | |
| 2774 diff = -diff; | |
| 2775 if (diff < minval) | |
| 2776 { | |
| 2777 minval = diff; | |
| 2778 found = i; | |
| 2779 } | |
| 2780 } | |
| 2781 | |
| 2782 if (minval < diff_so_far) | |
| 2783 { | |
| 2784 bufmax = bufmin = buf->text->mule_charbpos_cache[found]; | |
| 2785 bytmax = bytmin = buf->text->mule_bytebpos_cache[found]; | |
| 2786 size = 1; | |
| 2787 } | |
| 2788 } | |
| 2789 | |
| 2790 /* It's conceivable that the caching above could lead to X being | |
| 2791 the same as one of the range edges. */ | |
| 2792 if (x >= bufmax) | |
| 2793 { | |
| 2794 Bytebpos newmax; | |
| 2795 Bytecount newsize; | |
| 2796 | |
| 2797 forward_p = 1; | |
| 2798 while (x > bufmax) | |
| 2799 { | |
| 2800 newmax = bytmax; | |
| 2801 | |
| 2802 INC_BYTEBPOS (buf, newmax); | |
| 2803 newsize = newmax - bytmax; | |
| 2804 if (newsize != size) | |
| 2805 { | |
| 2806 bufmin = bufmax; | |
| 2807 bytmin = bytmax; | |
| 2808 size = newsize; | |
| 2809 } | |
| 2810 bytmax = newmax; | |
| 2811 bufmax++; | |
| 2812 } | |
| 2813 retval = bytmax; | |
| 2814 | |
| 2815 /* #### Should go past the found location to reduce the number | |
| 2816 of times that this function is called */ | |
| 2817 } | |
| 2818 else /* x < bufmin */ | |
| 2819 { | |
| 2820 Bytebpos newmin; | |
| 2821 Bytecount newsize; | |
| 2822 | |
| 2823 forward_p = 0; | |
| 2824 while (x < bufmin) | |
| 2825 { | |
| 2826 newmin = bytmin; | |
| 2827 | |
| 2828 DEC_BYTEBPOS (buf, newmin); | |
| 2829 newsize = bytmin - newmin; | |
| 2830 if (newsize != size) | |
| 2831 { | |
| 2832 bufmax = bufmin; | |
| 2833 bytmax = bytmin; | |
| 2834 size = newsize; | |
| 2835 } | |
| 2836 bytmin = newmin; | |
| 2837 bufmin--; | |
| 2838 } | |
| 2839 retval = bytmin; | |
| 2840 | |
| 2841 /* #### Should go past the found location to reduce the number | |
| 2842 of times that this function is called | |
| 2843 */ | |
| 2844 } | |
| 2845 | |
| 2846 /* If size is three, than we have to max sure that the range we | |
| 2847 discovered isn't too large, because we use a fixed-length | |
| 2848 table to divide by 3. */ | |
| 2849 | |
| 2850 if (size == 3) | |
| 2851 { | |
| 2852 int gap = bytmax - bytmin; | |
| 2853 buf->text->mule_three_p = 1; | |
| 2854 buf->text->mule_shifter = 1; | |
| 2855 | |
| 2856 if (gap > MAX_BYTEBPOS_GAP_SIZE_3) | |
| 2857 { | |
| 2858 if (forward_p) | |
| 2859 { | |
| 2860 bytmin = bytmax - MAX_BYTEBPOS_GAP_SIZE_3; | |
| 2861 bufmin = bufmax - MAX_CHARBPOS_GAP_SIZE_3; | |
| 2862 } | |
| 2863 else | |
| 2864 { | |
| 2865 bytmax = bytmin + MAX_BYTEBPOS_GAP_SIZE_3; | |
| 2866 bufmax = bufmin + MAX_CHARBPOS_GAP_SIZE_3; | |
| 2867 } | |
| 2868 } | |
| 2869 } | |
| 2870 else | |
| 2871 { | |
| 2872 buf->text->mule_three_p = 0; | |
| 2873 if (size == 4) | |
| 2874 buf->text->mule_shifter = 2; | |
| 2875 else | |
| 2876 buf->text->mule_shifter = size - 1; | |
| 2877 } | |
| 2878 | |
| 2879 buf->text->mule_bufmin = bufmin; | |
| 2880 buf->text->mule_bufmax = bufmax; | |
| 2881 buf->text->mule_bytmin = bytmin; | |
| 2882 buf->text->mule_bytmax = bytmax; | |
| 2883 | |
| 2884 if (add_to_cache) | |
| 2885 { | |
| 2886 int replace_loc; | |
| 2887 | |
| 2888 /* We throw away a "random" cached value and replace it with | |
| 2889 the new value. It doesn't actually have to be very random | |
| 2890 at all, just evenly distributed. | |
| 2891 | |
| 2892 #### It would be better to use a least-recently-used algorithm | |
| 2893 or something that tries to space things out, but I'm not sure | |
| 2894 it's worth it to go to the trouble of maintaining that. */ | |
| 2895 not_very_random_number += 621; | |
| 2896 replace_loc = not_very_random_number & 15; | |
| 2897 buf->text->mule_charbpos_cache[replace_loc] = x; | |
| 2898 buf->text->mule_bytebpos_cache[replace_loc] = retval; | |
| 2899 } | |
| 2900 | |
| 2367 | 2901 #endif /* OLD_BYTE_CHAR */ |
| 2902 | |
| 2903 done: | |
| 1292 | 2904 PROFILE_RECORD_EXITING_SECTION (QSin_char_byte_conversion); |
| 2905 | |
| 771 | 2906 return retval; |
| 2907 } | |
| 2908 | |
| 2367 | 2909 #undef CONSIDER |
| 2910 | |
| 2911 /* bytepos_to_charpos returns the char position corresponding to BYTEPOS. */ | |
| 2912 | |
| 2913 /* This macro is a subroutine of bytebpos_to_charbpos_func. | |
| 2914 It is used when BYTEPOS is actually the byte position. */ | |
| 2915 | |
| 2916 #define CONSIDER(BYTEPOS, CHARPOS) \ | |
| 2917 do \ | |
| 2918 { \ | |
| 2919 Bytebpos this_bytepos = (BYTEPOS); \ | |
| 2920 int changed = 0; \ | |
| 2921 \ | |
| 2922 if (this_bytepos == x) \ | |
| 2923 { \ | |
| 2924 retval = (CHARPOS); \ | |
| 2925 goto done; \ | |
| 2926 } \ | |
| 2927 else if (this_bytepos > x) \ | |
| 2928 { \ | |
| 2929 if (this_bytepos < best_above_byte) \ | |
| 2930 { \ | |
| 2931 best_above = (CHARPOS); \ | |
| 2932 best_above_byte = this_bytepos; \ | |
| 2933 changed = 1; \ | |
| 2934 } \ | |
| 2935 } \ | |
| 2936 else if (this_bytepos > best_below_byte) \ | |
| 2937 { \ | |
| 2938 best_below = (CHARPOS); \ | |
| 2939 best_below_byte = this_bytepos; \ | |
| 2940 changed = 1; \ | |
| 2941 } \ | |
| 2942 \ | |
| 2943 if (changed) \ | |
| 2944 { \ | |
| 2945 if (best_above - best_below == best_above_byte - best_below_byte) \ | |
| 2946 { \ | |
| 2947 retval = best_below + (x - best_below_byte); \ | |
| 2948 goto done; \ | |
| 2949 } \ | |
| 2950 } \ | |
| 2951 } \ | |
| 2952 while (0) | |
| 2953 | |
| 771 | 2954 /* The logic in this function is almost identical to the logic in |
| 2955 the previous function. */ | |
| 2956 | |
| 2957 Charbpos | |
| 2958 bytebpos_to_charbpos_func (struct buffer *buf, Bytebpos x) | |
| 2959 { | |
| 2367 | 2960 #ifdef OLD_BYTE_CHAR |
| 771 | 2961 Charbpos bufmin; |
| 2962 Charbpos bufmax; | |
| 2963 Bytebpos bytmin; | |
| 2964 Bytebpos bytmax; | |
| 2965 int size; | |
| 2966 int forward_p; | |
| 2967 int diff_so_far; | |
| 2968 int add_to_cache = 0; | |
| 2367 | 2969 #endif /* OLD_BYTE_CHAR */ |
| 2970 | |
| 2971 Charbpos best_above, best_above_byte; | |
| 2972 Bytebpos best_below, best_below_byte; | |
| 2973 int i; | |
| 2974 struct buffer_text *t; | |
| 2975 Charbpos retval; | |
| 2976 | |
| 1292 | 2977 PROFILE_DECLARE (); |
| 771 | 2978 |
| 1292 | 2979 PROFILE_RECORD_ENTERING_SECTION (QSin_char_byte_conversion); |
| 2980 | |
| 2367 | 2981 best_above = BUF_Z (buf); |
| 2982 best_above_byte = BYTE_BUF_Z (buf); | |
| 2983 | |
| 2984 /* In this case, we simply have all one-byte characters. But this should | |
| 2985 have been intercepted before, in bytebpos_to_charbpos(). */ | |
| 2986 text_checking_assert (best_above != best_above_byte); | |
| 2987 | |
| 2988 best_below = BUF_BEG (buf); | |
| 2989 best_below_byte = BYTE_BUF_BEG (buf); | |
| 2990 | |
| 2991 CONSIDER (BYTE_BUF_PT (buf), BUF_PT (buf)); | |
| 2992 CONSIDER (BYTE_BUF_GPT (buf), BUF_GPT (buf)); | |
| 2993 CONSIDER (BYTE_BUF_BEGV (buf), BUF_BEGV (buf)); | |
| 2994 CONSIDER (BYTE_BUF_ZV (buf), BUF_ZV (buf)); | |
| 2995 | |
| 2996 t = buf->text; | |
| 2997 CONSIDER (t->cached_bytepos, t->cached_charpos); | |
| 2998 | |
| 2999 /* Check the most recently entered positions first */ | |
| 3000 | |
| 3001 for (i = t->next_cache_pos - 1; i >= 0; i--) | |
| 3002 { | |
| 3003 CONSIDER (t->mule_bytebpos_cache[i], t->mule_charbpos_cache[i]); | |
| 3004 | |
| 3005 /* If we are down to a range of 50 chars, | |
| 3006 don't bother checking any other markers; | |
| 3007 scan the intervening chars directly now. */ | |
| 3008 if (best_above - best_below < 50) | |
| 3009 break; | |
| 3010 } | |
| 3011 | |
| 3012 /* We get here if we did not exactly hit one of the known places. | |
| 3013 We have one known above and one known below. | |
| 3014 Scan, counting characters, from whichever one is closer. */ | |
| 3015 | |
| 3016 if (x - best_below_byte < best_above_byte - x) | |
| 3017 { | |
| 3018 int record = x - best_below_byte > 5000; | |
| 3019 | |
| 3020 #ifdef OLD_LOOP /* old code */ | |
|
4526
38493c0fb952
Fix accidental deletion in src/text.c.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4525
diff
changeset
|
3021 while (best_below_byte < x) |
| 2367 | 3022 { |
| 3023 best_below++; | |
| 3024 INC_BYTEBPOS (buf, best_below_byte); | |
| 3025 } | |
| 3026 #else | |
| 3027 text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT); | |
| 3028 /* The gap should not occur between best_below and x, or we will be | |
| 3029 screwed in using charcount_to_bytecount(). It should not be exactly | |
| 3030 at x either, because we already should have caught that. */ | |
| 3031 text_checking_assert | |
| 3032 (BYTE_BUF_CEILING_OF_IGNORE_ACCESSIBLE (buf, best_below_byte) > x); | |
| 3033 | |
| 3034 /* Using bytecount_to_charcount() is potentially a lot faster than | |
| 3035 a simple loop above using INC_BYTEBPOS(); see above. | |
| 3036 */ | |
| 3037 best_below += | |
| 3038 bytecount_to_charcount | |
| 3039 (BYTE_BUF_BYTE_ADDRESS (buf, best_below_byte), x - best_below_byte); | |
| 3040 best_below_byte = x; | |
| 3041 #endif | |
| 3042 | |
| 3043 /* If this position is quite far from the nearest known position, | |
| 3044 cache the correspondence. | |
| 3045 | |
| 3046 NB FSF does this: "... by creating a marker here. | |
| 3047 It will last until the next GC." | |
| 3048 */ | |
| 3049 | |
| 3050 if (record) | |
| 3051 { | |
| 3052 if (t->next_cache_pos == NUM_CACHED_POSITIONS) | |
| 3053 { | |
| 3054 memmove (t->mule_charbpos_cache, | |
| 3055 t->mule_charbpos_cache + NUM_MOVED_POSITIONS, | |
| 3056 sizeof (Charbpos) * | |
| 3057 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
| 3058 memmove (t->mule_bytebpos_cache, | |
| 3059 t->mule_bytebpos_cache + NUM_MOVED_POSITIONS, | |
| 3060 sizeof (Bytebpos) * | |
| 3061 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
| 3062 t->next_cache_pos -= NUM_MOVED_POSITIONS; | |
| 3063 } | |
| 3064 t->mule_charbpos_cache[t->next_cache_pos] = best_below; | |
| 3065 t->mule_bytebpos_cache[t->next_cache_pos] = best_below_byte; | |
| 3066 t->next_cache_pos++; | |
| 3067 } | |
| 3068 | |
| 3069 | |
| 3070 t->cached_charpos = best_below; | |
| 3071 t->cached_bytepos = best_below_byte; | |
| 3072 | |
| 3073 retval = best_below; | |
| 3074 text_checking_assert (best_below_byte >= best_below); | |
| 3075 goto done; | |
| 3076 } | |
| 3077 else | |
| 3078 { | |
| 3079 int record = best_above_byte - x > 5000; | |
| 3080 | |
| 3081 #ifdef OLD_LOOP /* old code */ | |
| 3082 while (best_above_byte > x) | |
| 3083 { | |
| 3084 best_above--; | |
| 3085 DEC_BYTEBPOS (buf, best_above_byte); | |
| 3086 } | |
| 3087 #else | |
| 3088 text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT); | |
| 3089 /* The gap should not occur between best_above and x, or we will be | |
| 3090 screwed in using bytecount_to_charcount_down(). It should not be | |
| 3091 exactly at x either, because we already should have caught | |
| 3092 that. */ | |
| 3093 text_checking_assert | |
| 3094 (BYTE_BUF_FLOOR_OF_IGNORE_ACCESSIBLE (buf, best_above_byte) < x); | |
| 3095 | |
| 3096 /* Using bytecount_to_charcount_down() is potentially a lot faster | |
| 3097 than a simple loop using INC_BYTEBPOS(); see above. */ | |
| 3098 best_above -= | |
| 3099 bytecount_to_charcount_down | |
| 3100 /* BYTE_BUF_BYTE_ADDRESS will return a value on the high side of the | |
| 3101 gap if we are at the gap, which is the wrong side. So do the | |
| 3102 following trick instead. */ | |
| 3103 (BYTE_BUF_BYTE_ADDRESS_BEFORE (buf, best_above_byte) + 1, | |
| 3104 best_above_byte - x); | |
| 3105 best_above_byte = x; | |
| 3106 #endif | |
| 3107 | |
| 3108 | |
| 3109 /* If this position is quite far from the nearest known position, | |
| 3110 cache the correspondence. | |
| 3111 | |
| 3112 NB FSF does this: "... by creating a marker here. | |
| 3113 It will last until the next GC." | |
| 3114 */ | |
| 3115 if (record) | |
| 3116 { | |
| 3117 if (t->next_cache_pos == NUM_CACHED_POSITIONS) | |
| 3118 { | |
| 3119 memmove (t->mule_charbpos_cache, | |
| 3120 t->mule_charbpos_cache + NUM_MOVED_POSITIONS, | |
| 3121 sizeof (Charbpos) * | |
| 3122 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
| 3123 memmove (t->mule_bytebpos_cache, | |
| 3124 t->mule_bytebpos_cache + NUM_MOVED_POSITIONS, | |
| 3125 sizeof (Bytebpos) * | |
| 3126 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS)); | |
| 3127 t->next_cache_pos -= NUM_MOVED_POSITIONS; | |
| 3128 } | |
| 3129 t->mule_charbpos_cache[t->next_cache_pos] = best_above; | |
| 3130 t->mule_bytebpos_cache[t->next_cache_pos] = best_above_byte; | |
| 3131 t->next_cache_pos++; | |
| 3132 } | |
| 3133 | |
| 3134 t->cached_charpos = best_above; | |
| 3135 t->cached_bytepos = best_above_byte; | |
| 3136 | |
| 3137 retval = best_above; | |
| 3138 text_checking_assert (best_above_byte >= best_above); | |
| 3139 goto done; | |
| 3140 } | |
| 3141 | |
| 3142 #ifdef OLD_BYTE_CHAR | |
| 3143 | |
| 771 | 3144 bufmin = buf->text->mule_bufmin; |
| 3145 bufmax = buf->text->mule_bufmax; | |
| 3146 bytmin = buf->text->mule_bytmin; | |
| 3147 bytmax = buf->text->mule_bytmax; | |
| 3148 size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p; | |
| 3149 | |
| 3150 /* The basic idea here is that we shift the "known region" up or down | |
| 3151 until it overlaps the specified position. We do this by moving | |
| 3152 the upper bound of the known region up one character at a time, | |
| 3153 and moving the lower bound of the known region up as necessary | |
| 3154 when the size of the character just seen changes. | |
| 3155 | |
| 3156 We optimize this, however, by first shifting the known region to | |
| 826 | 3157 one of the cached points if it's close by. (We don't check BYTE_BEG or |
| 3158 BYTE_Z, even though they're cached; most of the time these will be the | |
| 3159 same as BYTE_BEGV and BYTE_ZV, and when they're not, they're not likely | |
| 771 | 3160 to be used.) */ |
| 3161 | |
| 3162 if (x > bytmax) | |
| 3163 { | |
| 3164 Bytebpos diffmax = x - bytmax; | |
| 826 | 3165 Bytebpos diffpt = x - BYTE_BUF_PT (buf); |
| 3166 Bytebpos diffzv = BYTE_BUF_ZV (buf) - x; | |
| 771 | 3167 /* #### This value could stand some more exploration. */ |
| 3168 Bytecount heuristic_hack = (bytmax - bytmin) >> 2; | |
| 3169 | |
| 3170 /* Check if the position is closer to PT or ZV than to the | |
| 3171 end of the known region. */ | |
| 3172 | |
| 3173 if (diffpt < 0) | |
| 3174 diffpt = -diffpt; | |
| 3175 if (diffzv < 0) | |
| 3176 diffzv = -diffzv; | |
| 3177 | |
| 3178 /* But also implement a heuristic that favors the known region | |
| 826 | 3179 over BYTE_PT or BYTE_ZV. The reason for this is that switching to |
| 3180 BYTE_PT or BYTE_ZV will wipe out the knowledge in the known region, | |
| 771 | 3181 which might be annoying if the known region is large and |
| 826 | 3182 BYTE_PT or BYTE_ZV is not that much closer than the end of the known |
| 771 | 3183 region. */ |
| 3184 | |
| 3185 diffzv += heuristic_hack; | |
| 3186 diffpt += heuristic_hack; | |
| 3187 if (diffpt < diffmax && diffpt <= diffzv) | |
| 3188 { | |
| 3189 bufmax = bufmin = BUF_PT (buf); | |
| 826 | 3190 bytmax = bytmin = BYTE_BUF_PT (buf); |
| 771 | 3191 /* We set the size to 1 even though it doesn't really |
| 3192 matter because the new known region contains no | |
| 3193 characters. We do this because this is the most | |
| 3194 likely size of the characters around the new known | |
| 3195 region, and we avoid potential yuckiness that is | |
| 3196 done when size == 3. */ | |
| 3197 size = 1; | |
| 3198 } | |
| 3199 if (diffzv < diffmax) | |
| 3200 { | |
| 3201 bufmax = bufmin = BUF_ZV (buf); | |
| 826 | 3202 bytmax = bytmin = BYTE_BUF_ZV (buf); |
| 771 | 3203 size = 1; |
| 3204 } | |
| 3205 } | |
| 800 | 3206 #ifdef ERROR_CHECK_TEXT |
| 771 | 3207 else if (x >= bytmin) |
| 2500 | 3208 ABORT (); |
| 771 | 3209 #endif |
| 3210 else | |
| 3211 { | |
| 3212 Bytebpos diffmin = bytmin - x; | |
| 826 | 3213 Bytebpos diffpt = BYTE_BUF_PT (buf) - x; |
| 3214 Bytebpos diffbegv = x - BYTE_BUF_BEGV (buf); | |
| 771 | 3215 /* #### This value could stand some more exploration. */ |
| 3216 Bytecount heuristic_hack = (bytmax - bytmin) >> 2; | |
| 3217 | |
| 3218 if (diffpt < 0) | |
| 3219 diffpt = -diffpt; | |
| 3220 if (diffbegv < 0) | |
| 3221 diffbegv = -diffbegv; | |
| 3222 | |
| 3223 /* But also implement a heuristic that favors the known region -- | |
| 3224 see above. */ | |
| 3225 | |
| 3226 diffbegv += heuristic_hack; | |
| 3227 diffpt += heuristic_hack; | |
| 3228 | |
| 3229 if (diffpt < diffmin && diffpt <= diffbegv) | |
| 3230 { | |
| 3231 bufmax = bufmin = BUF_PT (buf); | |
| 826 | 3232 bytmax = bytmin = BYTE_BUF_PT (buf); |
| 771 | 3233 /* We set the size to 1 even though it doesn't really |
| 3234 matter because the new known region contains no | |
| 3235 characters. We do this because this is the most | |
| 3236 likely size of the characters around the new known | |
| 3237 region, and we avoid potential yuckiness that is | |
| 3238 done when size == 3. */ | |
| 3239 size = 1; | |
| 3240 } | |
| 3241 if (diffbegv < diffmin) | |
| 3242 { | |
| 3243 bufmax = bufmin = BUF_BEGV (buf); | |
| 826 | 3244 bytmax = bytmin = BYTE_BUF_BEGV (buf); |
| 771 | 3245 size = 1; |
| 3246 } | |
| 3247 } | |
| 3248 | |
| 3249 diff_so_far = x > bytmax ? x - bytmax : bytmin - x; | |
| 3250 if (diff_so_far > 50) | |
| 3251 { | |
| 3252 /* If we have to move more than a certain amount, then look | |
| 3253 into our cache. */ | |
| 3254 int minval = INT_MAX; | |
| 3255 int found = 0; | |
| 3256 int i; | |
| 3257 | |
| 3258 add_to_cache = 1; | |
| 3259 /* I considered keeping the positions ordered. This would speed | |
| 3260 up this loop, but updating the cache would take longer, so | |
| 3261 it doesn't seem like it would really matter. */ | |
| 2367 | 3262 for (i = 0; i < NUM_CACHED_POSITIONS; i++) |
| 771 | 3263 { |
| 3264 int diff = buf->text->mule_bytebpos_cache[i] - x; | |
| 3265 | |
| 3266 if (diff < 0) | |
| 3267 diff = -diff; | |
| 3268 if (diff < minval) | |
| 3269 { | |
| 3270 minval = diff; | |
| 3271 found = i; | |
| 3272 } | |
| 3273 } | |
| 3274 | |
| 3275 if (minval < diff_so_far) | |
| 3276 { | |
| 3277 bufmax = bufmin = buf->text->mule_charbpos_cache[found]; | |
| 3278 bytmax = bytmin = buf->text->mule_bytebpos_cache[found]; | |
| 3279 size = 1; | |
| 3280 } | |
| 3281 } | |
| 3282 | |
| 3283 /* It's conceivable that the caching above could lead to X being | |
| 3284 the same as one of the range edges. */ | |
| 3285 if (x >= bytmax) | |
| 3286 { | |
| 3287 Bytebpos newmax; | |
| 3288 Bytecount newsize; | |
| 3289 | |
| 3290 forward_p = 1; | |
| 3291 while (x > bytmax) | |
| 3292 { | |
| 3293 newmax = bytmax; | |
| 3294 | |
| 3295 INC_BYTEBPOS (buf, newmax); | |
| 3296 newsize = newmax - bytmax; | |
| 3297 if (newsize != size) | |
| 3298 { | |
| 3299 bufmin = bufmax; | |
| 3300 bytmin = bytmax; | |
| 3301 size = newsize; | |
| 3302 } | |
| 3303 bytmax = newmax; | |
| 3304 bufmax++; | |
| 3305 } | |
| 3306 retval = bufmax; | |
| 3307 | |
| 3308 /* #### Should go past the found location to reduce the number | |
| 3309 of times that this function is called */ | |
| 3310 } | |
| 3311 else /* x <= bytmin */ | |
| 3312 { | |
| 3313 Bytebpos newmin; | |
| 3314 Bytecount newsize; | |
| 3315 | |
| 3316 forward_p = 0; | |
| 3317 while (x < bytmin) | |
| 3318 { | |
| 3319 newmin = bytmin; | |
| 3320 | |
| 3321 DEC_BYTEBPOS (buf, newmin); | |
| 3322 newsize = bytmin - newmin; | |
| 3323 if (newsize != size) | |
| 3324 { | |
| 3325 bufmax = bufmin; | |
| 3326 bytmax = bytmin; | |
| 3327 size = newsize; | |
| 3328 } | |
| 3329 bytmin = newmin; | |
| 3330 bufmin--; | |
| 3331 } | |
| 3332 retval = bufmin; | |
| 3333 | |
| 3334 /* #### Should go past the found location to reduce the number | |
| 3335 of times that this function is called | |
| 3336 */ | |
| 3337 } | |
| 3338 | |
| 3339 /* If size is three, than we have to max sure that the range we | |
| 3340 discovered isn't too large, because we use a fixed-length | |
| 3341 table to divide by 3. */ | |
| 3342 | |
| 3343 if (size == 3) | |
| 3344 { | |
| 3345 int gap = bytmax - bytmin; | |
| 3346 buf->text->mule_three_p = 1; | |
| 3347 buf->text->mule_shifter = 1; | |
| 3348 | |
| 3349 if (gap > MAX_BYTEBPOS_GAP_SIZE_3) | |
| 3350 { | |
| 3351 if (forward_p) | |
| 3352 { | |
| 3353 bytmin = bytmax - MAX_BYTEBPOS_GAP_SIZE_3; | |
| 3354 bufmin = bufmax - MAX_CHARBPOS_GAP_SIZE_3; | |
| 3355 } | |
| 3356 else | |
| 3357 { | |
| 3358 bytmax = bytmin + MAX_BYTEBPOS_GAP_SIZE_3; | |
| 3359 bufmax = bufmin + MAX_CHARBPOS_GAP_SIZE_3; | |
| 3360 } | |
| 3361 } | |
| 3362 } | |
| 3363 else | |
| 3364 { | |
| 3365 buf->text->mule_three_p = 0; | |
| 3366 if (size == 4) | |
| 3367 buf->text->mule_shifter = 2; | |
| 3368 else | |
| 3369 buf->text->mule_shifter = size - 1; | |
| 3370 } | |
| 3371 | |
| 3372 buf->text->mule_bufmin = bufmin; | |
| 3373 buf->text->mule_bufmax = bufmax; | |
| 3374 buf->text->mule_bytmin = bytmin; | |
| 3375 buf->text->mule_bytmax = bytmax; | |
| 3376 | |
| 3377 if (add_to_cache) | |
| 3378 { | |
| 3379 int replace_loc; | |
| 3380 | |
| 3381 /* We throw away a "random" cached value and replace it with | |
| 3382 the new value. It doesn't actually have to be very random | |
| 3383 at all, just evenly distributed. | |
| 3384 | |
| 3385 #### It would be better to use a least-recently-used algorithm | |
| 3386 or something that tries to space things out, but I'm not sure | |
| 3387 it's worth it to go to the trouble of maintaining that. */ | |
| 3388 not_very_random_number += 621; | |
| 3389 replace_loc = not_very_random_number & 15; | |
| 3390 buf->text->mule_charbpos_cache[replace_loc] = retval; | |
| 3391 buf->text->mule_bytebpos_cache[replace_loc] = x; | |
| 3392 } | |
| 2367 | 3393 #endif /* OLD_BYTE_CHAR */ |
| 3394 | |
| 3395 done: | |
| 1292 | 3396 PROFILE_RECORD_EXITING_SECTION (QSin_char_byte_conversion); |
| 3397 | |
| 771 | 3398 return retval; |
| 3399 } | |
| 3400 | |
| 3401 /* Text of length BYTELENGTH and CHARLENGTH (in different units) | |
| 3402 was inserted at charbpos START. */ | |
| 3403 | |
| 3404 void | |
| 3405 buffer_mule_signal_inserted_region (struct buffer *buf, Charbpos start, | |
| 3406 Bytecount bytelength, | |
| 3407 Charcount charlength) | |
| 3408 { | |
| 2367 | 3409 #ifdef OLD_BYTE_CHAR |
| 771 | 3410 int size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p; |
| 2367 | 3411 #endif /* OLD_BYTE_CHAR */ |
| 771 | 3412 int i; |
| 3413 | |
| 3414 /* Adjust the cache of known positions. */ | |
| 2367 | 3415 for (i = 0; i < buf->text->next_cache_pos; i++) |
| 771 | 3416 { |
| 3417 | |
| 3418 if (buf->text->mule_charbpos_cache[i] > start) | |
| 3419 { | |
| 3420 buf->text->mule_charbpos_cache[i] += charlength; | |
| 3421 buf->text->mule_bytebpos_cache[i] += bytelength; | |
| 3422 } | |
| 3423 } | |
| 3424 | |
| 2367 | 3425 /* Adjust the special cached position. */ |
| 3426 | |
| 3427 if (buf->text->cached_charpos > start) | |
| 3428 { | |
| 3429 buf->text->cached_charpos += charlength; | |
| 3430 buf->text->cached_bytepos += bytelength; | |
| 3431 } | |
| 3432 | |
| 3433 #ifdef OLD_BYTE_CHAR | |
| 771 | 3434 if (start >= buf->text->mule_bufmax) |
| 826 | 3435 return; |
| 771 | 3436 |
| 3437 /* The insertion is either before the known region, in which case | |
| 3438 it shoves it forward; or within the known region, in which case | |
| 3439 it shoves the end forward. (But it may make the known region | |
| 3440 inconsistent, so we may have to shorten it.) */ | |
| 3441 | |
| 3442 if (start <= buf->text->mule_bufmin) | |
| 3443 { | |
| 3444 buf->text->mule_bufmin += charlength; | |
| 3445 buf->text->mule_bufmax += charlength; | |
| 3446 buf->text->mule_bytmin += bytelength; | |
| 3447 buf->text->mule_bytmax += bytelength; | |
| 3448 } | |
| 3449 else | |
| 3450 { | |
| 3451 Charbpos end = start + charlength; | |
| 3452 /* the insertion point divides the known region in two. | |
| 3453 Keep the longer half, at least, and expand into the | |
| 3454 inserted chunk as much as possible. */ | |
| 3455 | |
| 3456 if (start - buf->text->mule_bufmin > buf->text->mule_bufmax - start) | |
| 3457 { | |
| 3458 Bytebpos bytestart = (buf->text->mule_bytmin | |
| 3459 + size * (start - buf->text->mule_bufmin)); | |
| 3460 Bytebpos bytenew; | |
| 3461 | |
| 3462 while (start < end) | |
| 3463 { | |
| 3464 bytenew = bytestart; | |
| 3465 INC_BYTEBPOS (buf, bytenew); | |
| 3466 if (bytenew - bytestart != size) | |
| 3467 break; | |
| 3468 start++; | |
| 3469 bytestart = bytenew; | |
| 3470 } | |
| 3471 if (start != end) | |
| 3472 { | |
| 3473 buf->text->mule_bufmax = start; | |
| 3474 buf->text->mule_bytmax = bytestart; | |
| 3475 } | |
| 3476 else | |
| 3477 { | |
| 3478 buf->text->mule_bufmax += charlength; | |
| 3479 buf->text->mule_bytmax += bytelength; | |
| 3480 } | |
| 3481 } | |
| 3482 else | |
| 3483 { | |
| 3484 Bytebpos byteend = (buf->text->mule_bytmin | |
| 3485 + size * (start - buf->text->mule_bufmin) | |
| 3486 + bytelength); | |
| 3487 Bytebpos bytenew; | |
| 3488 | |
| 3489 buf->text->mule_bufmax += charlength; | |
| 3490 buf->text->mule_bytmax += bytelength; | |
| 3491 | |
| 3492 while (end > start) | |
| 3493 { | |
| 3494 bytenew = byteend; | |
| 3495 DEC_BYTEBPOS (buf, bytenew); | |
| 3496 if (byteend - bytenew != size) | |
| 3497 break; | |
| 3498 end--; | |
| 3499 byteend = bytenew; | |
| 3500 } | |
| 3501 if (start != end) | |
| 3502 { | |
| 3503 buf->text->mule_bufmin = end; | |
| 3504 buf->text->mule_bytmin = byteend; | |
| 3505 } | |
| 3506 } | |
| 3507 } | |
| 2367 | 3508 #endif /* OLD_BYTE_CHAR */ |
| 771 | 3509 } |
| 3510 | |
| 826 | 3511 /* Text from START to END (equivalent in Bytebpos's: from BYTE_START to |
| 3512 BYTE_END) was deleted. */ | |
| 771 | 3513 |
| 3514 void | |
| 3515 buffer_mule_signal_deleted_region (struct buffer *buf, Charbpos start, | |
| 826 | 3516 Charbpos end, Bytebpos byte_start, |
| 3517 Bytebpos byte_end) | |
| 771 | 3518 { |
| 3519 int i; | |
| 3520 | |
| 3521 /* Adjust the cache of known positions. */ | |
| 2367 | 3522 for (i = 0; i < buf->text->next_cache_pos; i++) |
| 771 | 3523 { |
| 3524 /* After the end; gets shoved backward */ | |
| 3525 if (buf->text->mule_charbpos_cache[i] > end) | |
| 3526 { | |
| 3527 buf->text->mule_charbpos_cache[i] -= end - start; | |
| 826 | 3528 buf->text->mule_bytebpos_cache[i] -= byte_end - byte_start; |
| 771 | 3529 } |
| 3530 /* In the range; moves to start of range */ | |
| 3531 else if (buf->text->mule_charbpos_cache[i] > start) | |
| 3532 { | |
| 3533 buf->text->mule_charbpos_cache[i] = start; | |
| 826 | 3534 buf->text->mule_bytebpos_cache[i] = byte_start; |
| 771 | 3535 } |
| 3536 } | |
| 3537 | |
| 2367 | 3538 /* Adjust the special cached position. */ |
| 3539 | |
| 3540 /* After the end; gets shoved backward */ | |
| 3541 if (buf->text->cached_charpos > end) | |
| 3542 { | |
| 3543 buf->text->cached_charpos -= end - start; | |
| 3544 buf->text->cached_bytepos -= byte_end - byte_start; | |
| 3545 } | |
| 3546 /* In the range; moves to start of range */ | |
| 3547 else if (buf->text->cached_charpos > start) | |
| 3548 { | |
| 3549 buf->text->cached_charpos = start; | |
| 3550 buf->text->cached_bytepos = byte_start; | |
| 3551 } | |
| 3552 | |
| 3553 #ifdef OLD_BYTE_CHAR | |
| 771 | 3554 /* We don't care about any text after the end of the known region. */ |
| 3555 | |
| 3556 end = min (end, buf->text->mule_bufmax); | |
| 826 | 3557 byte_end = min (byte_end, buf->text->mule_bytmax); |
| 771 | 3558 if (start >= end) |
| 826 | 3559 return; |
| 771 | 3560 |
| 3561 /* The end of the known region offsets by the total amount of deletion, | |
| 3562 since it's all before it. */ | |
| 3563 | |
| 3564 buf->text->mule_bufmax -= end - start; | |
| 826 | 3565 buf->text->mule_bytmax -= byte_end - byte_start; |
| 771 | 3566 |
| 3567 /* Now we don't care about any text after the start of the known region. */ | |
| 3568 | |
| 3569 end = min (end, buf->text->mule_bufmin); | |
| 826 | 3570 byte_end = min (byte_end, buf->text->mule_bytmin); |
| 771 | 3571 if (start < end) |
| 3572 { | |
| 3573 buf->text->mule_bufmin -= end - start; | |
| 826 | 3574 buf->text->mule_bytmin -= byte_end - byte_start; |
| 771 | 3575 } |
| 2367 | 3576 #endif /* OLD_BYTE_CHAR */ |
| 771 | 3577 } |
| 3578 | |
| 3579 #endif /* MULE */ | |
| 3580 | |
| 3581 | |
| 3582 /************************************************************************/ | |
| 3583 /* verifying buffer and string positions */ | |
| 3584 /************************************************************************/ | |
| 3585 | |
| 3586 /* Functions below are tagged with either _byte or _char indicating | |
| 3587 whether they return byte or character positions. For a buffer, | |
| 3588 a character position is a "Charbpos" and a byte position is a "Bytebpos". | |
| 3589 For strings, these are sometimes typed using "Charcount" and | |
| 3590 "Bytecount". */ | |
| 3591 | |
| 3592 /* Flags for the functions below are: | |
| 3593 | |
| 3594 GB_ALLOW_PAST_ACCESSIBLE | |
| 3595 | |
| 3596 Allow positions to range over the entire buffer (BUF_BEG to BUF_Z), | |
| 3597 rather than just the accessible portion (BUF_BEGV to BUF_ZV). | |
| 3598 For strings, this flag has no effect. | |
| 3599 | |
| 3600 GB_COERCE_RANGE | |
| 3601 | |
| 3602 If the position is outside the allowable range, return the lower | |
| 3603 or upper bound of the range, whichever is closer to the specified | |
| 3604 position. | |
| 3605 | |
| 3606 GB_NO_ERROR_IF_BAD | |
| 3607 | |
| 3608 If the position is outside the allowable range, return -1. | |
| 3609 | |
| 3610 GB_NEGATIVE_FROM_END | |
| 3611 | |
| 3612 If a value is negative, treat it as an offset from the end. | |
| 3613 Only applies to strings. | |
| 3614 | |
| 3615 The following additional flags apply only to the functions | |
| 3616 that return ranges: | |
| 3617 | |
| 3618 GB_ALLOW_NIL | |
| 3619 | |
| 3620 Either or both positions can be nil. If FROM is nil, | |
| 3621 FROM_OUT will contain the lower bound of the allowed range. | |
| 3622 If TO is nil, TO_OUT will contain the upper bound of the | |
| 3623 allowed range. | |
| 3624 | |
| 3625 GB_CHECK_ORDER | |
| 3626 | |
| 3627 FROM must contain the lower bound and TO the upper bound | |
| 3628 of the range. If the positions are reversed, an error is | |
| 3629 signalled. | |
| 3630 | |
| 3631 The following is a combination flag: | |
| 3632 | |
| 3633 GB_HISTORICAL_STRING_BEHAVIOR | |
| 3634 | |
| 3635 Equivalent to (GB_NEGATIVE_FROM_END | GB_ALLOW_NIL). | |
| 3636 */ | |
| 3637 | |
| 3638 /* Return a buffer position stored in a Lisp_Object. Full | |
| 3639 error-checking is done on the position. Flags can be specified to | |
| 3640 control the behavior of out-of-range values. The default behavior | |
| 3641 is to require that the position is within the accessible part of | |
| 3642 the buffer (BEGV and ZV), and to signal an error if the position is | |
| 3643 out of range. | |
| 3644 | |
| 3645 */ | |
| 3646 | |
| 3647 Charbpos | |
| 3648 get_buffer_pos_char (struct buffer *b, Lisp_Object pos, unsigned int flags) | |
| 3649 { | |
| 3650 /* Does not GC */ | |
| 3651 Charbpos ind; | |
| 3652 Charbpos min_allowed, max_allowed; | |
| 3653 | |
| 3654 CHECK_INT_COERCE_MARKER (pos); | |
| 3655 ind = XINT (pos); | |
| 3656 min_allowed = flags & GB_ALLOW_PAST_ACCESSIBLE ? BUF_BEG (b) : BUF_BEGV (b); | |
| 3657 max_allowed = flags & GB_ALLOW_PAST_ACCESSIBLE ? BUF_Z (b) : BUF_ZV (b); | |
| 3658 | |
| 3659 if (ind < min_allowed || ind > max_allowed) | |
| 3660 { | |
| 3661 if (flags & GB_COERCE_RANGE) | |
| 3662 ind = ind < min_allowed ? min_allowed : max_allowed; | |
| 3663 else if (flags & GB_NO_ERROR_IF_BAD) | |
| 3664 ind = -1; | |
| 3665 else | |
| 3666 { | |
| 793 | 3667 Lisp_Object buffer = wrap_buffer (b); |
| 3668 | |
| 771 | 3669 args_out_of_range (buffer, pos); |
| 3670 } | |
| 3671 } | |
| 3672 | |
| 3673 return ind; | |
| 3674 } | |
| 3675 | |
| 3676 Bytebpos | |
| 3677 get_buffer_pos_byte (struct buffer *b, Lisp_Object pos, unsigned int flags) | |
| 3678 { | |
| 3679 Charbpos bpos = get_buffer_pos_char (b, pos, flags); | |
| 3680 if (bpos < 0) /* could happen with GB_NO_ERROR_IF_BAD */ | |
| 3681 return -1; | |
| 3682 return charbpos_to_bytebpos (b, bpos); | |
| 3683 } | |
| 3684 | |
| 3685 /* Return a pair of buffer positions representing a range of text, | |
| 3686 taken from a pair of Lisp_Objects. Full error-checking is | |
| 3687 done on the positions. Flags can be specified to control the | |
| 3688 behavior of out-of-range values. The default behavior is to | |
| 3689 allow the range bounds to be specified in either order | |
| 3690 (however, FROM_OUT will always be the lower bound of the range | |
| 3691 and TO_OUT the upper bound),to require that the positions | |
| 3692 are within the accessible part of the buffer (BEGV and ZV), | |
| 3693 and to signal an error if the positions are out of range. | |
| 3694 */ | |
| 3695 | |
| 3696 void | |
| 3697 get_buffer_range_char (struct buffer *b, Lisp_Object from, Lisp_Object to, | |
| 826 | 3698 Charbpos *from_out, Charbpos *to_out, |
| 3699 unsigned int flags) | |
| 771 | 3700 { |
| 3701 /* Does not GC */ | |
| 3702 Charbpos min_allowed, max_allowed; | |
| 3703 | |
| 3704 min_allowed = (flags & GB_ALLOW_PAST_ACCESSIBLE) ? | |
| 3705 BUF_BEG (b) : BUF_BEGV (b); | |
| 3706 max_allowed = (flags & GB_ALLOW_PAST_ACCESSIBLE) ? | |
| 3707 BUF_Z (b) : BUF_ZV (b); | |
| 3708 | |
| 3709 if (NILP (from) && (flags & GB_ALLOW_NIL)) | |
| 3710 *from_out = min_allowed; | |
| 3711 else | |
| 3712 *from_out = get_buffer_pos_char (b, from, flags | GB_NO_ERROR_IF_BAD); | |
| 3713 | |
| 3714 if (NILP (to) && (flags & GB_ALLOW_NIL)) | |
| 3715 *to_out = max_allowed; | |
| 3716 else | |
| 3717 *to_out = get_buffer_pos_char (b, to, flags | GB_NO_ERROR_IF_BAD); | |
| 3718 | |
| 3719 if ((*from_out < 0 || *to_out < 0) && !(flags & GB_NO_ERROR_IF_BAD)) | |
| 3720 { | |
| 793 | 3721 Lisp_Object buffer = wrap_buffer (b); |
| 3722 | |
| 771 | 3723 args_out_of_range_3 (buffer, from, to); |
| 3724 } | |
| 3725 | |
| 3726 if (*from_out >= 0 && *to_out >= 0 && *from_out > *to_out) | |
| 3727 { | |
| 3728 if (flags & GB_CHECK_ORDER) | |
| 3729 invalid_argument_2 ("start greater than end", from, to); | |
| 3730 else | |
| 3731 { | |
| 3732 Charbpos temp = *from_out; | |
| 3733 *from_out = *to_out; | |
| 3734 *to_out = temp; | |
| 3735 } | |
| 3736 } | |
| 3737 } | |
| 3738 | |
| 3739 void | |
| 3740 get_buffer_range_byte (struct buffer *b, Lisp_Object from, Lisp_Object to, | |
| 826 | 3741 Bytebpos *from_out, Bytebpos *to_out, |
| 3742 unsigned int flags) | |
| 771 | 3743 { |
| 3744 Charbpos s, e; | |
| 3745 | |
| 3746 get_buffer_range_char (b, from, to, &s, &e, flags); | |
| 3747 if (s >= 0) | |
| 3748 *from_out = charbpos_to_bytebpos (b, s); | |
| 3749 else /* could happen with GB_NO_ERROR_IF_BAD */ | |
| 3750 *from_out = -1; | |
| 3751 if (e >= 0) | |
| 3752 *to_out = charbpos_to_bytebpos (b, e); | |
| 3753 else | |
| 3754 *to_out = -1; | |
| 3755 } | |
| 3756 | |
| 3757 static Charcount | |
| 3758 get_string_pos_char_1 (Lisp_Object string, Lisp_Object pos, unsigned int flags, | |
| 3759 Charcount known_length) | |
| 3760 { | |
| 3761 Charcount ccpos; | |
| 3762 Charcount min_allowed = 0; | |
| 3763 Charcount max_allowed = known_length; | |
| 3764 | |
| 3765 /* Computation of KNOWN_LENGTH is potentially expensive so we pass | |
| 3766 it in. */ | |
| 3767 CHECK_INT (pos); | |
| 3768 ccpos = XINT (pos); | |
| 3769 if (ccpos < 0 && flags & GB_NEGATIVE_FROM_END) | |
| 3770 ccpos += max_allowed; | |
| 3771 | |
| 3772 if (ccpos < min_allowed || ccpos > max_allowed) | |
| 3773 { | |
| 3774 if (flags & GB_COERCE_RANGE) | |
| 3775 ccpos = ccpos < min_allowed ? min_allowed : max_allowed; | |
| 3776 else if (flags & GB_NO_ERROR_IF_BAD) | |
| 3777 ccpos = -1; | |
| 3778 else | |
| 3779 args_out_of_range (string, pos); | |
| 3780 } | |
| 3781 | |
| 3782 return ccpos; | |
| 3783 } | |
| 3784 | |
| 3785 Charcount | |
| 3786 get_string_pos_char (Lisp_Object string, Lisp_Object pos, unsigned int flags) | |
| 3787 { | |
| 3788 return get_string_pos_char_1 (string, pos, flags, | |
| 826 | 3789 string_char_length (string)); |
| 771 | 3790 } |
| 3791 | |
| 3792 Bytecount | |
| 3793 get_string_pos_byte (Lisp_Object string, Lisp_Object pos, unsigned int flags) | |
| 3794 { | |
| 3795 Charcount ccpos = get_string_pos_char (string, pos, flags); | |
| 3796 if (ccpos < 0) /* could happen with GB_NO_ERROR_IF_BAD */ | |
| 3797 return -1; | |
| 793 | 3798 return string_index_char_to_byte (string, ccpos); |
| 771 | 3799 } |
| 3800 | |
| 3801 void | |
| 3802 get_string_range_char (Lisp_Object string, Lisp_Object from, Lisp_Object to, | |
| 3803 Charcount *from_out, Charcount *to_out, | |
| 3804 unsigned int flags) | |
| 3805 { | |
| 3806 Charcount min_allowed = 0; | |
| 826 | 3807 Charcount max_allowed = string_char_length (string); |
| 771 | 3808 |
| 3809 if (NILP (from) && (flags & GB_ALLOW_NIL)) | |
| 3810 *from_out = min_allowed; | |
| 3811 else | |
| 3812 *from_out = get_string_pos_char_1 (string, from, | |
| 3813 flags | GB_NO_ERROR_IF_BAD, | |
| 3814 max_allowed); | |
| 3815 | |
| 3816 if (NILP (to) && (flags & GB_ALLOW_NIL)) | |
| 3817 *to_out = max_allowed; | |
| 3818 else | |
| 3819 *to_out = get_string_pos_char_1 (string, to, | |
| 3820 flags | GB_NO_ERROR_IF_BAD, | |
| 3821 max_allowed); | |
| 3822 | |
| 3823 if ((*from_out < 0 || *to_out < 0) && !(flags & GB_NO_ERROR_IF_BAD)) | |
| 3824 args_out_of_range_3 (string, from, to); | |
| 3825 | |
| 3826 if (*from_out >= 0 && *to_out >= 0 && *from_out > *to_out) | |
| 3827 { | |
| 3828 if (flags & GB_CHECK_ORDER) | |
| 3829 invalid_argument_2 ("start greater than end", from, to); | |
| 3830 else | |
| 3831 { | |
| 3832 Charbpos temp = *from_out; | |
| 3833 *from_out = *to_out; | |
| 3834 *to_out = temp; | |
| 3835 } | |
| 3836 } | |
| 3837 } | |
| 3838 | |
| 3839 void | |
| 3840 get_string_range_byte (Lisp_Object string, Lisp_Object from, Lisp_Object to, | |
| 3841 Bytecount *from_out, Bytecount *to_out, | |
| 3842 unsigned int flags) | |
| 3843 { | |
| 3844 Charcount s, e; | |
| 3845 | |
| 3846 get_string_range_char (string, from, to, &s, &e, flags); | |
| 3847 if (s >= 0) | |
| 793 | 3848 *from_out = string_index_char_to_byte (string, s); |
| 771 | 3849 else /* could happen with GB_NO_ERROR_IF_BAD */ |
| 3850 *from_out = -1; | |
| 3851 if (e >= 0) | |
| 793 | 3852 *to_out = string_index_char_to_byte (string, e); |
| 771 | 3853 else |
| 3854 *to_out = -1; | |
| 3855 | |
| 3856 } | |
| 3857 | |
| 826 | 3858 Charxpos |
| 771 | 3859 get_buffer_or_string_pos_char (Lisp_Object object, Lisp_Object pos, |
| 3860 unsigned int flags) | |
| 3861 { | |
| 3862 return STRINGP (object) ? | |
| 3863 get_string_pos_char (object, pos, flags) : | |
| 3864 get_buffer_pos_char (XBUFFER (object), pos, flags); | |
| 3865 } | |
| 3866 | |
| 826 | 3867 Bytexpos |
| 771 | 3868 get_buffer_or_string_pos_byte (Lisp_Object object, Lisp_Object pos, |
| 3869 unsigned int flags) | |
| 3870 { | |
| 3871 return STRINGP (object) ? | |
| 3872 get_string_pos_byte (object, pos, flags) : | |
| 3873 get_buffer_pos_byte (XBUFFER (object), pos, flags); | |
| 3874 } | |
| 3875 | |
| 3876 void | |
| 3877 get_buffer_or_string_range_char (Lisp_Object object, Lisp_Object from, | |
| 826 | 3878 Lisp_Object to, Charxpos *from_out, |
| 3879 Charxpos *to_out, unsigned int flags) | |
| 771 | 3880 { |
| 3881 if (STRINGP (object)) | |
| 3882 get_string_range_char (object, from, to, from_out, to_out, flags); | |
| 3883 else | |
| 826 | 3884 get_buffer_range_char (XBUFFER (object), from, to, from_out, to_out, |
| 3885 flags); | |
| 771 | 3886 } |
| 3887 | |
| 3888 void | |
| 3889 get_buffer_or_string_range_byte (Lisp_Object object, Lisp_Object from, | |
| 826 | 3890 Lisp_Object to, Bytexpos *from_out, |
| 3891 Bytexpos *to_out, unsigned int flags) | |
| 771 | 3892 { |
| 3893 if (STRINGP (object)) | |
| 3894 get_string_range_byte (object, from, to, from_out, to_out, flags); | |
| 3895 else | |
| 826 | 3896 get_buffer_range_byte (XBUFFER (object), from, to, from_out, to_out, |
| 3897 flags); | |
| 771 | 3898 } |
| 3899 | |
| 826 | 3900 Charxpos |
| 771 | 3901 buffer_or_string_accessible_begin_char (Lisp_Object object) |
| 3902 { | |
| 3903 return STRINGP (object) ? 0 : BUF_BEGV (XBUFFER (object)); | |
| 3904 } | |
| 3905 | |
| 826 | 3906 Charxpos |
| 771 | 3907 buffer_or_string_accessible_end_char (Lisp_Object object) |
| 3908 { | |
| 3909 return STRINGP (object) ? | |
| 826 | 3910 string_char_length (object) : BUF_ZV (XBUFFER (object)); |
| 771 | 3911 } |
| 3912 | |
| 826 | 3913 Bytexpos |
| 771 | 3914 buffer_or_string_accessible_begin_byte (Lisp_Object object) |
| 3915 { | |
| 826 | 3916 return STRINGP (object) ? 0 : BYTE_BUF_BEGV (XBUFFER (object)); |
| 771 | 3917 } |
| 3918 | |
| 826 | 3919 Bytexpos |
| 771 | 3920 buffer_or_string_accessible_end_byte (Lisp_Object object) |
| 3921 { | |
| 3922 return STRINGP (object) ? | |
| 826 | 3923 XSTRING_LENGTH (object) : BYTE_BUF_ZV (XBUFFER (object)); |
| 771 | 3924 } |
| 3925 | |
| 826 | 3926 Charxpos |
| 771 | 3927 buffer_or_string_absolute_begin_char (Lisp_Object object) |
| 3928 { | |
| 3929 return STRINGP (object) ? 0 : BUF_BEG (XBUFFER (object)); | |
| 3930 } | |
| 3931 | |
| 826 | 3932 Charxpos |
| 771 | 3933 buffer_or_string_absolute_end_char (Lisp_Object object) |
| 3934 { | |
| 3935 return STRINGP (object) ? | |
| 826 | 3936 string_char_length (object) : BUF_Z (XBUFFER (object)); |
| 3937 } | |
| 3938 | |
| 3939 Bytexpos | |
| 3940 buffer_or_string_absolute_begin_byte (Lisp_Object object) | |
| 3941 { | |
| 3942 return STRINGP (object) ? 0 : BYTE_BUF_BEG (XBUFFER (object)); | |
| 3943 } | |
| 3944 | |
| 3945 Bytexpos | |
| 3946 buffer_or_string_absolute_end_byte (Lisp_Object object) | |
| 3947 { | |
| 3948 return STRINGP (object) ? | |
| 3949 XSTRING_LENGTH (object) : BYTE_BUF_Z (XBUFFER (object)); | |
| 3950 } | |
| 3951 | |
| 3952 Charbpos | |
| 3953 charbpos_clip_to_bounds (Charbpos lower, Charbpos num, Charbpos upper) | |
| 3954 { | |
| 3955 return (num < lower ? lower : | |
| 3956 num > upper ? upper : | |
| 3957 num); | |
| 771 | 3958 } |
| 3959 | |
| 3960 Bytebpos | |
| 826 | 3961 bytebpos_clip_to_bounds (Bytebpos lower, Bytebpos num, Bytebpos upper) |
| 3962 { | |
| 3963 return (num < lower ? lower : | |
| 3964 num > upper ? upper : | |
| 3965 num); | |
| 3966 } | |
| 3967 | |
| 3968 Charxpos | |
| 3969 charxpos_clip_to_bounds (Charxpos lower, Charxpos num, Charxpos upper) | |
| 771 | 3970 { |
| 826 | 3971 return (num < lower ? lower : |
| 3972 num > upper ? upper : | |
| 3973 num); | |
| 3974 } | |
| 3975 | |
| 3976 Bytexpos | |
| 3977 bytexpos_clip_to_bounds (Bytexpos lower, Bytexpos num, Bytexpos upper) | |
| 3978 { | |
| 3979 return (num < lower ? lower : | |
| 3980 num > upper ? upper : | |
| 3981 num); | |
| 771 | 3982 } |
| 3983 | |
| 826 | 3984 /* These could be implemented in terms of the get_buffer_or_string() |
| 3985 functions above, but those are complicated and handle lots of weird | |
| 3986 cases stemming from uncertain external input. */ | |
| 3987 | |
| 3988 Charxpos | |
| 3989 buffer_or_string_clip_to_accessible_char (Lisp_Object object, Charxpos pos) | |
| 3990 { | |
| 3991 return (charxpos_clip_to_bounds | |
| 3992 (pos, buffer_or_string_accessible_begin_char (object), | |
| 3993 buffer_or_string_accessible_end_char (object))); | |
| 3994 } | |
| 3995 | |
| 3996 Bytexpos | |
| 3997 buffer_or_string_clip_to_accessible_byte (Lisp_Object object, Bytexpos pos) | |
| 771 | 3998 { |
| 826 | 3999 return (bytexpos_clip_to_bounds |
| 4000 (pos, buffer_or_string_accessible_begin_byte (object), | |
| 4001 buffer_or_string_accessible_end_byte (object))); | |
| 4002 } | |
| 4003 | |
| 4004 Charxpos | |
| 4005 buffer_or_string_clip_to_absolute_char (Lisp_Object object, Charxpos pos) | |
| 4006 { | |
| 4007 return (charxpos_clip_to_bounds | |
| 4008 (pos, buffer_or_string_absolute_begin_char (object), | |
| 4009 buffer_or_string_absolute_end_char (object))); | |
| 4010 } | |
| 4011 | |
| 4012 Bytexpos | |
| 4013 buffer_or_string_clip_to_absolute_byte (Lisp_Object object, Bytexpos pos) | |
| 4014 { | |
| 4015 return (bytexpos_clip_to_bounds | |
| 4016 (pos, buffer_or_string_absolute_begin_byte (object), | |
| 4017 buffer_or_string_absolute_end_byte (object))); | |
| 771 | 4018 } |
| 4019 | |
| 4020 | |
| 4021 /************************************************************************/ | |
| 4022 /* Implement TO_EXTERNAL_FORMAT, TO_INTERNAL_FORMAT */ | |
| 4023 /************************************************************************/ | |
| 4024 | |
| 4025 typedef struct | |
| 4026 { | |
| 867 | 4027 Dynarr_declare (Ibyte_dynarr *); |
| 4028 } Ibyte_dynarr_dynarr; | |
| 771 | 4029 |
| 4030 typedef struct | |
| 4031 { | |
| 4032 Dynarr_declare (Extbyte_dynarr *); | |
| 4033 } Extbyte_dynarr_dynarr; | |
| 4034 | |
| 4035 static Extbyte_dynarr_dynarr *conversion_out_dynarr_list; | |
| 867 | 4036 static Ibyte_dynarr_dynarr *conversion_in_dynarr_list; |
| 771 | 4037 |
| 4038 static int dfc_convert_to_external_format_in_use; | |
| 4039 static int dfc_convert_to_internal_format_in_use; | |
| 4040 | |
| 4041 void | |
| 4042 dfc_convert_to_external_format (dfc_conversion_type source_type, | |
| 4043 dfc_conversion_data *source, | |
| 4044 Lisp_Object coding_system, | |
| 4045 dfc_conversion_type sink_type, | |
| 4046 dfc_conversion_data *sink) | |
| 4047 { | |
| 4048 /* It's guaranteed that many callers are not prepared for GC here, | |
| 4049 esp. given that this code conversion occurs in many very hidden | |
| 4050 places. */ | |
| 1292 | 4051 int count; |
| 771 | 4052 Extbyte_dynarr *conversion_out_dynarr; |
| 1292 | 4053 PROFILE_DECLARE (); |
| 4054 | |
| 2367 | 4055 assert (!inhibit_non_essential_conversion_operations); |
| 1292 | 4056 PROFILE_RECORD_ENTERING_SECTION (QSin_internal_external_conversion); |
| 4057 | |
| 4058 count = begin_gc_forbidden (); | |
| 771 | 4059 |
| 4060 type_checking_assert | |
| 4061 (((source_type == DFC_TYPE_DATA) || | |
| 4062 (source_type == DFC_TYPE_LISP_LSTREAM && LSTREAMP (source->lisp_object)) || | |
| 4063 (source_type == DFC_TYPE_LISP_STRING && STRINGP (source->lisp_object))) | |
| 4064 && | |
| 4065 ((sink_type == DFC_TYPE_DATA) || | |
| 4066 (sink_type == DFC_TYPE_LISP_LSTREAM && LSTREAMP (source->lisp_object)))); | |
| 4067 | |
| 4068 if (Dynarr_length (conversion_out_dynarr_list) <= | |
| 4069 dfc_convert_to_external_format_in_use) | |
| 4070 Dynarr_add (conversion_out_dynarr_list, Dynarr_new (Extbyte)); | |
| 4071 conversion_out_dynarr = Dynarr_at (conversion_out_dynarr_list, | |
| 4072 dfc_convert_to_external_format_in_use); | |
| 4073 Dynarr_reset (conversion_out_dynarr); | |
| 4074 | |
| 853 | 4075 internal_bind_int (&dfc_convert_to_external_format_in_use, |
| 4076 dfc_convert_to_external_format_in_use + 1); | |
| 4077 | |
| 771 | 4078 coding_system = get_coding_system_for_text_file (coding_system, 0); |
| 4079 | |
| 4080 /* Here we optimize in the case where the coding system does no | |
| 4081 conversion. However, we don't want to optimize in case the source | |
| 4082 or sink is an lstream, since writing to an lstream can cause a | |
| 4083 garbage collection, and this could be problematic if the source | |
| 4084 is a lisp string. */ | |
| 4085 if (source_type != DFC_TYPE_LISP_LSTREAM && | |
| 4086 sink_type != DFC_TYPE_LISP_LSTREAM && | |
| 4087 coding_system_is_binary (coding_system)) | |
| 4088 { | |
| 867 | 4089 const Ibyte *ptr; |
| 771 | 4090 Bytecount len; |
| 4091 | |
| 4092 if (source_type == DFC_TYPE_LISP_STRING) | |
| 4093 { | |
| 4094 ptr = XSTRING_DATA (source->lisp_object); | |
| 4095 len = XSTRING_LENGTH (source->lisp_object); | |
| 4096 } | |
| 4097 else | |
| 4098 { | |
| 867 | 4099 ptr = (Ibyte *) source->data.ptr; |
| 771 | 4100 len = source->data.len; |
| 4101 } | |
| 4102 | |
| 4103 #ifdef MULE | |
| 4104 { | |
| 867 | 4105 const Ibyte *end; |
| 771 | 4106 for (end = ptr + len; ptr < end;) |
| 4107 { | |
| 867 | 4108 Ibyte c = |
| 826 | 4109 (byte_ascii_p (*ptr)) ? *ptr : |
| 771 | 4110 (*ptr == LEADING_BYTE_CONTROL_1) ? (*(ptr+1) - 0x20) : |
| 4111 (*ptr == LEADING_BYTE_LATIN_ISO8859_1) ? (*(ptr+1)) : | |
| 4112 '~'; | |
| 4113 | |
| 4114 Dynarr_add (conversion_out_dynarr, (Extbyte) c); | |
| 867 | 4115 INC_IBYTEPTR (ptr); |
| 771 | 4116 } |
| 800 | 4117 text_checking_assert (ptr == end); |
| 771 | 4118 } |
| 4119 #else | |
| 4120 Dynarr_add_many (conversion_out_dynarr, ptr, len); | |
| 4121 #endif | |
| 4122 | |
| 4123 } | |
| 1315 | 4124 #ifdef WIN32_ANY |
| 771 | 4125 /* Optimize the common case involving Unicode where only ASCII is involved */ |
| 4126 else if (source_type != DFC_TYPE_LISP_LSTREAM && | |
| 4127 sink_type != DFC_TYPE_LISP_LSTREAM && | |
| 4128 dfc_coding_system_is_unicode (coding_system)) | |
| 4129 { | |
| 867 | 4130 const Ibyte *ptr, *p; |
| 771 | 4131 Bytecount len; |
| 867 | 4132 const Ibyte *end; |
| 771 | 4133 |
| 4134 if (source_type == DFC_TYPE_LISP_STRING) | |
| 4135 { | |
| 4136 ptr = XSTRING_DATA (source->lisp_object); | |
| 4137 len = XSTRING_LENGTH (source->lisp_object); | |
| 4138 } | |
| 4139 else | |
| 4140 { | |
| 867 | 4141 ptr = (Ibyte *) source->data.ptr; |
| 771 | 4142 len = source->data.len; |
| 4143 } | |
| 4144 end = ptr + len; | |
| 4145 | |
| 4146 for (p = ptr; p < end; p++) | |
| 4147 { | |
| 826 | 4148 if (!byte_ascii_p (*p)) |
| 771 | 4149 goto the_hard_way; |
| 4150 } | |
| 4151 | |
| 4152 for (p = ptr; p < end; p++) | |
| 4153 { | |
| 4154 Dynarr_add (conversion_out_dynarr, (Extbyte) (*p)); | |
| 4155 Dynarr_add (conversion_out_dynarr, (Extbyte) '\0'); | |
| 4156 } | |
| 4157 } | |
| 1315 | 4158 #endif /* WIN32_ANY */ |
| 771 | 4159 else |
| 4160 { | |
| 4161 Lisp_Object streams_to_delete[3]; | |
| 4162 int delete_count; | |
| 4163 Lisp_Object instream, outstream; | |
| 4164 Lstream *reader, *writer; | |
| 4165 | |
| 1315 | 4166 #ifdef WIN32_ANY |
| 771 | 4167 the_hard_way: |
| 1315 | 4168 #endif /* WIN32_ANY */ |
| 771 | 4169 delete_count = 0; |
| 4170 if (source_type == DFC_TYPE_LISP_LSTREAM) | |
| 4171 instream = source->lisp_object; | |
| 4172 else if (source_type == DFC_TYPE_DATA) | |
| 4173 streams_to_delete[delete_count++] = instream = | |
| 4174 make_fixed_buffer_input_stream (source->data.ptr, source->data.len); | |
| 4175 else | |
| 4176 { | |
| 4177 type_checking_assert (source_type == DFC_TYPE_LISP_STRING); | |
| 4178 streams_to_delete[delete_count++] = instream = | |
| 4179 /* This will GCPRO the Lisp string */ | |
| 4180 make_lisp_string_input_stream (source->lisp_object, 0, -1); | |
| 4181 } | |
| 4182 | |
| 4183 if (sink_type == DFC_TYPE_LISP_LSTREAM) | |
| 4184 outstream = sink->lisp_object; | |
| 4185 else | |
| 4186 { | |
| 4187 type_checking_assert (sink_type == DFC_TYPE_DATA); | |
| 4188 streams_to_delete[delete_count++] = outstream = | |
| 4189 make_dynarr_output_stream | |
| 4190 ((unsigned_char_dynarr *) conversion_out_dynarr); | |
| 4191 } | |
| 4192 | |
| 4193 streams_to_delete[delete_count++] = outstream = | |
| 800 | 4194 make_coding_output_stream (XLSTREAM (outstream), coding_system, |
| 4195 CODING_ENCODE, 0); | |
| 771 | 4196 |
| 4197 reader = XLSTREAM (instream); | |
| 4198 writer = XLSTREAM (outstream); | |
| 4199 /* decoding_stream will gc-protect outstream */ | |
| 1204 | 4200 { |
| 4201 struct gcpro gcpro1, gcpro2; | |
| 4202 GCPRO2 (instream, outstream); | |
| 4203 | |
| 4204 while (1) | |
| 4205 { | |
| 4206 Bytecount size_in_bytes; | |
| 4207 char tempbuf[1024]; /* some random amount */ | |
| 4208 | |
| 4209 size_in_bytes = Lstream_read (reader, tempbuf, sizeof (tempbuf)); | |
| 4210 | |
| 4211 if (size_in_bytes == 0) | |
| 4212 break; | |
| 4213 else if (size_in_bytes < 0) | |
| 4214 signal_error (Qtext_conversion_error, | |
| 4215 "Error converting to external format", Qunbound); | |
| 4216 | |
| 4217 if (Lstream_write (writer, tempbuf, size_in_bytes) < 0) | |
| 4218 signal_error (Qtext_conversion_error, | |
| 4219 "Error converting to external format", Qunbound); | |
| 4220 } | |
| 4221 | |
| 4222 /* Closing writer will close any stream at the other end of writer. */ | |
| 4223 Lstream_close (writer); | |
| 4224 Lstream_close (reader); | |
| 4225 UNGCPRO; | |
| 4226 } | |
| 771 | 4227 |
| 4228 /* The idea is that this function will create no garbage. */ | |
| 4229 while (delete_count) | |
| 4230 Lstream_delete (XLSTREAM (streams_to_delete [--delete_count])); | |
| 4231 } | |
| 4232 | |
| 4233 unbind_to (count); | |
| 4234 | |
| 4235 if (sink_type != DFC_TYPE_LISP_LSTREAM) | |
| 4236 { | |
| 4237 sink->data.len = Dynarr_length (conversion_out_dynarr); | |
| 4238 /* double zero-extend because we may be dealing with Unicode data */ | |
| 4239 Dynarr_add (conversion_out_dynarr, '\0'); | |
| 4240 Dynarr_add (conversion_out_dynarr, '\0'); | |
| 4967 | 4241 sink->data.ptr = Dynarr_begin (conversion_out_dynarr); |
| 771 | 4242 } |
| 1292 | 4243 |
| 4244 PROFILE_RECORD_EXITING_SECTION (QSin_internal_external_conversion); | |
| 771 | 4245 } |
| 4246 | |
| 4247 void | |
| 4248 dfc_convert_to_internal_format (dfc_conversion_type source_type, | |
| 4249 dfc_conversion_data *source, | |
| 4250 Lisp_Object coding_system, | |
| 4251 dfc_conversion_type sink_type, | |
| 4252 dfc_conversion_data *sink) | |
| 4253 { | |
| 4254 /* It's guaranteed that many callers are not prepared for GC here, | |
| 4255 esp. given that this code conversion occurs in many very hidden | |
| 4256 places. */ | |
| 1292 | 4257 int count; |
| 867 | 4258 Ibyte_dynarr *conversion_in_dynarr; |
| 2421 | 4259 Lisp_Object underlying_cs; |
| 1292 | 4260 PROFILE_DECLARE (); |
| 4261 | |
| 2367 | 4262 assert (!inhibit_non_essential_conversion_operations); |
| 1292 | 4263 PROFILE_RECORD_ENTERING_SECTION (QSin_internal_external_conversion); |
| 4264 | |
| 4265 count = begin_gc_forbidden (); | |
| 771 | 4266 |
| 4267 type_checking_assert | |
| 4268 ((source_type == DFC_TYPE_DATA || | |
| 4269 source_type == DFC_TYPE_LISP_LSTREAM) | |
| 4270 && | |
| 4271 (sink_type == DFC_TYPE_DATA || | |
| 4272 sink_type == DFC_TYPE_LISP_LSTREAM)); | |
| 4273 | |
| 4274 if (Dynarr_length (conversion_in_dynarr_list) <= | |
| 4275 dfc_convert_to_internal_format_in_use) | |
| 867 | 4276 Dynarr_add (conversion_in_dynarr_list, Dynarr_new (Ibyte)); |
| 771 | 4277 conversion_in_dynarr = Dynarr_at (conversion_in_dynarr_list, |
| 4278 dfc_convert_to_internal_format_in_use); | |
| 4279 Dynarr_reset (conversion_in_dynarr); | |
| 4280 | |
| 853 | 4281 internal_bind_int (&dfc_convert_to_internal_format_in_use, |
| 4282 dfc_convert_to_internal_format_in_use + 1); | |
| 4283 | |
| 2421 | 4284 /* The second call does the equivalent of both calls, but we need |
| 4285 the result after the first call (which wraps just a to-text | |
| 4286 converter) as well as the result after the second call (which | |
| 4287 also wraps an EOL-detection converter). */ | |
| 4288 underlying_cs = get_coding_system_for_text_file (coding_system, 0); | |
| 4289 coding_system = get_coding_system_for_text_file (underlying_cs, 1); | |
| 771 | 4290 |
| 4291 if (source_type != DFC_TYPE_LISP_LSTREAM && | |
| 4292 sink_type != DFC_TYPE_LISP_LSTREAM && | |
| 2421 | 4293 coding_system_is_binary (underlying_cs)) |
| 771 | 4294 { |
| 4295 #ifdef MULE | |
| 2421 | 4296 const Ibyte *ptr; |
| 771 | 4297 Bytecount len = source->data.len; |
| 2421 | 4298 const Ibyte *end; |
| 4299 | |
| 4300 /* Make sure no EOL conversion is needed. With a little work we | |
| 4301 could handle EOL conversion as well but it may not be needed as an | |
| 4302 optimization. */ | |
| 4303 if (!EQ (coding_system, underlying_cs)) | |
| 4304 { | |
| 4305 for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len; | |
| 4306 ptr < end; ptr++) | |
| 4307 { | |
| 4308 if (*ptr == '\r' || *ptr == '\n') | |
| 4309 goto the_hard_way; | |
| 4310 } | |
| 4311 } | |
| 4312 | |
| 4313 for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len; | |
| 4314 ptr < end; ptr++) | |
| 771 | 4315 { |
| 867 | 4316 Ibyte c = *ptr; |
| 771 | 4317 |
| 826 | 4318 if (byte_ascii_p (c)) |
| 771 | 4319 Dynarr_add (conversion_in_dynarr, c); |
| 826 | 4320 else if (byte_c1_p (c)) |
| 771 | 4321 { |
| 4322 Dynarr_add (conversion_in_dynarr, LEADING_BYTE_CONTROL_1); | |
| 4323 Dynarr_add (conversion_in_dynarr, c + 0x20); | |
| 4324 } | |
| 4325 else | |
| 4326 { | |
| 4327 Dynarr_add (conversion_in_dynarr, LEADING_BYTE_LATIN_ISO8859_1); | |
| 4328 Dynarr_add (conversion_in_dynarr, c); | |
| 4329 } | |
| 4330 } | |
| 4331 #else | |
| 4332 Dynarr_add_many (conversion_in_dynarr, source->data.ptr, source->data.len); | |
| 4333 #endif | |
| 4334 } | |
| 1315 | 4335 #ifdef WIN32_ANY |
| 1292 | 4336 /* Optimize the common case involving Unicode where only ASCII/Latin-1 is |
| 4337 involved */ | |
| 771 | 4338 else if (source_type != DFC_TYPE_LISP_LSTREAM && |
| 4339 sink_type != DFC_TYPE_LISP_LSTREAM && | |
| 2421 | 4340 dfc_coding_system_is_unicode (underlying_cs)) |
| 771 | 4341 { |
| 2421 | 4342 const Ibyte *ptr; |
| 771 | 4343 Bytecount len = source->data.len; |
| 2421 | 4344 const Ibyte *end; |
| 771 | 4345 |
| 4346 if (len & 1) | |
| 4347 goto the_hard_way; | |
| 4348 | |
| 2421 | 4349 /* Make sure only ASCII/Latin-1 is involved */ |
| 4350 for (ptr = (const Ibyte *) source->data.ptr + 1, end = ptr + len; | |
| 4351 ptr < end; ptr += 2) | |
| 771 | 4352 { |
| 4353 if (*ptr) | |
| 4354 goto the_hard_way; | |
| 4355 } | |
| 4356 | |
| 2421 | 4357 /* Make sure no EOL conversion is needed. With a little work we |
| 4358 could handle EOL conversion as well but it may not be needed as an | |
| 4359 optimization. */ | |
| 4360 if (!EQ (coding_system, underlying_cs)) | |
| 4361 { | |
| 4362 for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len; | |
| 4363 ptr < end; ptr += 2) | |
| 4364 { | |
| 4365 if (*ptr == '\r' || *ptr == '\n') | |
| 4366 goto the_hard_way; | |
| 4367 } | |
| 4368 } | |
| 4369 | |
| 4370 for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len; | |
| 4371 ptr < end; ptr += 2) | |
| 771 | 4372 { |
| 867 | 4373 Ibyte c = *ptr; |
| 771 | 4374 |
| 826 | 4375 if (byte_ascii_p (c)) |
| 771 | 4376 Dynarr_add (conversion_in_dynarr, c); |
| 4377 #ifdef MULE | |
| 826 | 4378 else if (byte_c1_p (c)) |
| 771 | 4379 { |
| 4380 Dynarr_add (conversion_in_dynarr, LEADING_BYTE_CONTROL_1); | |
| 4381 Dynarr_add (conversion_in_dynarr, c + 0x20); | |
| 4382 } | |
| 4383 else | |
| 4384 { | |
| 4385 Dynarr_add (conversion_in_dynarr, LEADING_BYTE_LATIN_ISO8859_1); | |
| 4386 Dynarr_add (conversion_in_dynarr, c); | |
| 4387 } | |
| 4388 #endif /* MULE */ | |
| 4389 } | |
| 4390 } | |
| 1315 | 4391 #endif /* WIN32_ANY */ |
| 771 | 4392 else |
| 4393 { | |
| 4394 Lisp_Object streams_to_delete[3]; | |
| 4395 int delete_count; | |
| 4396 Lisp_Object instream, outstream; | |
| 4397 Lstream *reader, *writer; | |
| 4398 | |
| 2421 | 4399 #if defined (WIN32_ANY) || defined (MULE) |
| 771 | 4400 the_hard_way: |
| 2421 | 4401 #endif |
| 771 | 4402 delete_count = 0; |
| 4403 if (source_type == DFC_TYPE_LISP_LSTREAM) | |
| 4404 instream = source->lisp_object; | |
| 4405 else | |
| 4406 { | |
| 4407 type_checking_assert (source_type == DFC_TYPE_DATA); | |
| 4408 streams_to_delete[delete_count++] = instream = | |
| 4409 make_fixed_buffer_input_stream (source->data.ptr, source->data.len); | |
| 4410 } | |
| 4411 | |
| 4412 if (sink_type == DFC_TYPE_LISP_LSTREAM) | |
| 4413 outstream = sink->lisp_object; | |
| 4414 else | |
| 4415 { | |
| 4416 type_checking_assert (sink_type == DFC_TYPE_DATA); | |
| 4417 streams_to_delete[delete_count++] = outstream = | |
| 4418 make_dynarr_output_stream | |
| 4419 ((unsigned_char_dynarr *) conversion_in_dynarr); | |
| 4420 } | |
| 4421 | |
| 4422 streams_to_delete[delete_count++] = outstream = | |
| 800 | 4423 make_coding_output_stream (XLSTREAM (outstream), coding_system, |
| 4424 CODING_DECODE, 0); | |
| 771 | 4425 |
| 4426 reader = XLSTREAM (instream); | |
| 4427 writer = XLSTREAM (outstream); | |
| 1204 | 4428 { |
| 4429 struct gcpro gcpro1, gcpro2; | |
| 4430 /* outstream will gc-protect its sink stream, if necessary */ | |
| 4431 GCPRO2 (instream, outstream); | |
| 4432 | |
| 4433 while (1) | |
| 4434 { | |
| 4435 Bytecount size_in_bytes; | |
| 4436 char tempbuf[1024]; /* some random amount */ | |
| 4437 | |
| 4438 size_in_bytes = Lstream_read (reader, tempbuf, sizeof (tempbuf)); | |
| 4439 | |
| 4440 if (size_in_bytes == 0) | |
| 4441 break; | |
| 4442 else if (size_in_bytes < 0) | |
| 4443 signal_error (Qtext_conversion_error, | |
| 4444 "Error converting to internal format", Qunbound); | |
| 4445 | |
| 4446 if (Lstream_write (writer, tempbuf, size_in_bytes) < 0) | |
| 4447 signal_error (Qtext_conversion_error, | |
| 4448 "Error converting to internal format", Qunbound); | |
| 4449 } | |
| 4450 | |
| 4451 /* Closing writer will close any stream at the other end of writer. */ | |
| 4452 Lstream_close (writer); | |
| 4453 Lstream_close (reader); | |
| 4454 UNGCPRO; | |
| 4455 } | |
| 771 | 4456 |
| 4457 /* The idea is that this function will create no garbage. */ | |
| 4458 while (delete_count) | |
| 4459 Lstream_delete (XLSTREAM (streams_to_delete [--delete_count])); | |
| 4460 } | |
| 4461 | |
| 4462 unbind_to (count); | |
| 4463 | |
| 4464 if (sink_type != DFC_TYPE_LISP_LSTREAM) | |
| 4465 { | |
| 4466 sink->data.len = Dynarr_length (conversion_in_dynarr); | |
| 4467 Dynarr_add (conversion_in_dynarr, '\0'); /* remember to NUL-terminate! */ | |
| 4468 /* The macros don't currently distinguish between internal and | |
| 4469 external sinks, and allocate and copy two extra bytes in both | |
| 4470 cases. So we add a second zero, just like for external data | |
| 4471 (in that case, because we may be converting to Unicode). */ | |
| 4472 Dynarr_add (conversion_in_dynarr, '\0'); | |
| 4967 | 4473 sink->data.ptr = Dynarr_begin (conversion_in_dynarr); |
| 771 | 4474 } |
| 1292 | 4475 |
| 4476 PROFILE_RECORD_EXITING_SECTION (QSin_internal_external_conversion); | |
| 771 | 4477 } |
| 4478 | |
| 1318 | 4479 /* ----------------------------------------------------------------------- */ |
| 2367 | 4480 /* Alloca-conversion helpers */ |
| 4481 /* ----------------------------------------------------------------------- */ | |
| 4482 | |
| 4483 /* For alloca(), things are trickier because the calling function needs to | |
| 4484 allocate. This means that the caller needs to do the following: | |
| 4485 | |
| 4486 (a) invoke us to do the conversion, remember the data and return the size. | |
| 4487 (b) alloca() the proper size. | |
| 4488 (c) invoke us again to copy the data. | |
| 4489 | |
| 4490 We need to handle the possibility of two or more invocations of the | |
| 4491 converter in the same expression. In such cases it's conceivable that | |
| 4492 the evaluation of the sub-expressions will be overlapping (e.g. one size | |
| 4493 function called, then the other one called, then the copy functions | |
| 4494 called). To handle this, we keep a list of active data, indexed by the | |
| 4495 src expression. (We use the stringize operator to avoid evaluating the | |
| 4496 expression multiple times.) If the caller uses the exact same src | |
| 4497 expression twice in two converter calls in the same subexpression, we | |
| 2500 | 4498 will lose, but at least we can check for this and ABORT(). We could |
| 2367 | 4499 conceivably try to index on other parameters as well, but there is not |
| 4500 really any point. */ | |
| 4501 | |
| 4502 alloca_convert_vals_dynarr *active_alloca_convert; | |
| 4503 | |
| 4504 int | |
| 4505 find_pos_of_existing_active_alloca_convert (const char *srctext) | |
| 4506 { | |
| 4507 alloca_convert_vals *vals = NULL; | |
| 4508 int i; | |
| 4509 | |
| 4510 if (!active_alloca_convert) | |
| 4511 active_alloca_convert = Dynarr_new (alloca_convert_vals); | |
| 4512 | |
| 4513 for (i = 0; i < Dynarr_length (active_alloca_convert); i++) | |
| 4514 { | |
| 4515 vals = Dynarr_atp (active_alloca_convert, i); | |
| 2385 | 4516 /* On my system, two different occurrences of the same stringized |
| 4517 argument always point to the same string. However, on someone | |
| 4518 else's system, that wasn't the case. We check for equality | |
| 4519 first, since it seems systems work my way more than the other | |
| 4520 way. */ | |
| 4521 if (vals->srctext == srctext || !strcmp (vals->srctext, srctext)) | |
| 2367 | 4522 return i; |
| 4523 } | |
| 4524 | |
| 4525 return -1; | |
| 4526 } | |
| 4527 | |
| 4528 /* ----------------------------------------------------------------------- */ | |
| 1318 | 4529 /* New-style DFC converters (data is returned rather than stored into var) */ |
| 4530 /* ----------------------------------------------------------------------- */ | |
| 4531 | |
| 4532 /* We handle here the cases where SRC is a Lisp_Object, internal data | |
| 4533 (sized or unsized), or external data (sized or unsized), and return type | |
| 4534 is unsized alloca() or malloc() data. If the return type is a | |
|
4953
304aebb79cd3
function renamings to track names of char typedefs
Ben Wing <ben@xemacs.org>
parents:
4952
diff
changeset
|
4535 Lisp_Object, use build_extstring() for unsized external data, |
|
304aebb79cd3
function renamings to track names of char typedefs
Ben Wing <ben@xemacs.org>
parents:
4952
diff
changeset
|
4536 make_extstring() for sized external data. If the return type needs to |
| 1318 | 4537 be sized data, use the *_TO_SIZED_*() macros, and for other more |
| 4538 complicated cases, use the original TO_*_FORMAT() macros. */ | |
| 4539 | |
| 4540 static void | |
| 4541 new_dfc_convert_now_damn_it (const void *src, Bytecount src_size, | |
| 4542 enum new_dfc_src_type type, | |
| 4543 void **dst, Bytecount *dst_size, | |
| 4544 Lisp_Object codesys) | |
| 4545 { | |
| 4546 /* #### In the case of alloca(), it would be a bit more efficient, for | |
| 4547 small strings, to use static Dynarr's like are used internally in | |
| 4548 TO_*_FORMAT(), or some other way of avoiding malloc() followed by | |
| 4549 free(). I doubt it really matters, though. */ | |
| 4550 | |
| 4551 switch (type) | |
| 4552 { | |
| 4553 case DFC_EXTERNAL: | |
| 4554 TO_INTERNAL_FORMAT (C_STRING, src, | |
| 4555 MALLOC, (*dst, *dst_size), codesys); | |
| 4556 break; | |
| 4557 | |
| 4558 case DFC_SIZED_EXTERNAL: | |
| 4559 TO_INTERNAL_FORMAT (DATA, (src, src_size), | |
| 4560 MALLOC, (*dst, *dst_size), codesys); | |
| 4561 break; | |
| 4562 | |
| 4563 case DFC_INTERNAL: | |
| 4564 TO_EXTERNAL_FORMAT (C_STRING, src, | |
| 4565 MALLOC, (*dst, *dst_size), codesys); | |
| 4566 break; | |
| 4567 | |
| 4568 case DFC_SIZED_INTERNAL: | |
| 4569 TO_EXTERNAL_FORMAT (DATA, (src, src_size), | |
| 4570 MALLOC, (*dst, *dst_size), codesys); | |
| 4571 break; | |
| 4572 | |
| 4573 case DFC_LISP_STRING: | |
| 4574 TO_EXTERNAL_FORMAT (LISP_STRING, VOID_TO_LISP (src), | |
| 4575 MALLOC, (*dst, *dst_size), codesys); | |
| 4576 break; | |
| 4577 | |
| 4578 default: | |
| 2500 | 4579 ABORT (); |
| 1318 | 4580 } |
| 2367 | 4581 |
| 4582 /* The size is always + 2 because we have double zero-termination at the | |
| 4583 end of all data (for Unicode-correctness). */ | |
| 4584 *dst_size += 2; | |
| 4585 } | |
| 4586 | |
| 4587 Bytecount | |
| 4588 new_dfc_convert_size (const char *srctext, const void *src, | |
| 4589 Bytecount src_size, enum new_dfc_src_type type, | |
| 4590 Lisp_Object codesys) | |
| 4591 { | |
| 4592 alloca_convert_vals vals; | |
| 4593 | |
| 2721 | 4594 int i = find_pos_of_existing_active_alloca_convert (srctext); |
| 4595 assert (i < 0); | |
| 2367 | 4596 |
| 4597 vals.srctext = srctext; | |
| 4598 | |
| 4599 new_dfc_convert_now_damn_it (src, src_size, type, &vals.dst, &vals.dst_size, | |
| 4600 codesys); | |
| 4601 | |
| 4602 Dynarr_add (active_alloca_convert, vals); | |
| 4603 return vals.dst_size; | |
| 4604 } | |
| 4605 | |
| 4606 void * | |
| 4607 new_dfc_convert_copy_data (const char *srctext, void *alloca_data) | |
| 4608 { | |
| 4609 alloca_convert_vals *vals; | |
| 4610 int i = find_pos_of_existing_active_alloca_convert (srctext); | |
| 4611 | |
| 4612 assert (i >= 0); | |
| 4613 vals = Dynarr_atp (active_alloca_convert, i); | |
| 4614 assert (alloca_data); | |
| 4615 memcpy (alloca_data, vals->dst, vals->dst_size); | |
|
4976
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
4967
diff
changeset
|
4616 xfree (vals->dst); |
| 2367 | 4617 Dynarr_delete (active_alloca_convert, i); |
| 4618 return alloca_data; | |
| 1318 | 4619 } |
| 4620 | |
| 4621 void * | |
| 4622 new_dfc_convert_malloc (const void *src, Bytecount src_size, | |
| 4623 enum new_dfc_src_type type, Lisp_Object codesys) | |
| 4624 { | |
| 4625 void *dst; | |
| 4626 Bytecount dst_size; | |
| 4627 | |
| 4628 new_dfc_convert_now_damn_it (src, src_size, type, &dst, &dst_size, codesys); | |
| 4629 return dst; | |
| 4630 } | |
| 4631 | |
| 771 | 4632 |
| 4633 /************************************************************************/ | |
| 867 | 4634 /* Basic Ichar functions */ |
| 771 | 4635 /************************************************************************/ |
| 4636 | |
| 4637 #ifdef MULE | |
| 4638 | |
| 4639 /* Convert a non-ASCII Mule character C into a one-character Mule-encoded | |
| 4640 string in STR. Returns the number of bytes stored. | |
| 867 | 4641 Do not call this directly. Use the macro set_itext_ichar() instead. |
| 771 | 4642 */ |
| 4643 | |
| 4644 Bytecount | |
| 867 | 4645 non_ascii_set_itext_ichar (Ibyte *str, Ichar c) |
| 771 | 4646 { |
| 867 | 4647 Ibyte *p; |
| 4648 Ibyte lb; | |
| 771 | 4649 int c1, c2; |
| 4650 Lisp_Object charset; | |
| 4651 | |
| 4652 p = str; | |
| 867 | 4653 BREAKUP_ICHAR (c, charset, c1, c2); |
| 4654 lb = ichar_leading_byte (c); | |
| 826 | 4655 if (leading_byte_private_p (lb)) |
| 4656 *p++ = private_leading_byte_prefix (lb); | |
| 771 | 4657 *p++ = lb; |
| 4658 if (EQ (charset, Vcharset_control_1)) | |
| 4659 c1 += 0x20; | |
| 4660 *p++ = c1 | 0x80; | |
| 4661 if (c2) | |
| 4662 *p++ = c2 | 0x80; | |
| 4663 | |
| 4664 return (p - str); | |
| 4665 } | |
| 4666 | |
| 4667 /* Return the first character from a Mule-encoded string in STR, | |
| 4668 assuming it's non-ASCII. Do not call this directly. | |
| 867 | 4669 Use the macro itext_ichar() instead. */ |
| 4670 | |
| 4671 Ichar | |
| 4672 non_ascii_itext_ichar (const Ibyte *str) | |
| 771 | 4673 { |
| 867 | 4674 Ibyte i0 = *str, i1, i2 = 0; |
| 771 | 4675 Lisp_Object charset; |
| 4676 | |
| 4677 if (i0 == LEADING_BYTE_CONTROL_1) | |
| 867 | 4678 return (Ichar) (*++str - 0x20); |
| 771 | 4679 |
| 826 | 4680 if (leading_byte_prefix_p (i0)) |
| 771 | 4681 i0 = *++str; |
| 4682 | |
| 4683 i1 = *++str & 0x7F; | |
| 4684 | |
| 826 | 4685 charset = charset_by_leading_byte (i0); |
| 771 | 4686 if (XCHARSET_DIMENSION (charset) == 2) |
| 4687 i2 = *++str & 0x7F; | |
| 4688 | |
| 867 | 4689 return make_ichar (charset, i1, i2); |
| 771 | 4690 } |
| 4691 | |
| 867 | 4692 /* Return whether CH is a valid Ichar, assuming it's non-ASCII. |
| 4693 Do not call this directly. Use the macro valid_ichar_p() instead. */ | |
| 771 | 4694 |
| 4695 int | |
| 867 | 4696 non_ascii_valid_ichar_p (Ichar ch) |
| 771 | 4697 { |
| 4698 int f1, f2, f3; | |
| 4699 | |
| 3498 | 4700 /* Must have only lowest 21 bits set */ |
| 4701 if (ch & ~0x1FFFFF) | |
| 771 | 4702 return 0; |
| 4703 | |
| 867 | 4704 f1 = ichar_field1 (ch); |
| 4705 f2 = ichar_field2 (ch); | |
| 4706 f3 = ichar_field3 (ch); | |
| 771 | 4707 |
| 4708 if (f1 == 0) | |
| 4709 { | |
| 4710 /* dimension-1 char */ | |
| 4711 Lisp_Object charset; | |
| 4712 | |
| 4713 /* leading byte must be correct */ | |
| 867 | 4714 if (f2 < MIN_ICHAR_FIELD2_OFFICIAL || |
| 4715 (f2 > MAX_ICHAR_FIELD2_OFFICIAL && f2 < MIN_ICHAR_FIELD2_PRIVATE) || | |
| 4716 f2 > MAX_ICHAR_FIELD2_PRIVATE) | |
| 771 | 4717 return 0; |
| 4718 /* octet not out of range */ | |
| 4719 if (f3 < 0x20) | |
| 4720 return 0; | |
| 4721 /* charset exists */ | |
| 4722 /* | |
| 4723 NOTE: This takes advantage of the fact that | |
| 4724 FIELD2_TO_OFFICIAL_LEADING_BYTE and | |
| 4725 FIELD2_TO_PRIVATE_LEADING_BYTE are the same. | |
| 4726 */ | |
| 826 | 4727 charset = charset_by_leading_byte (f2 + FIELD2_TO_OFFICIAL_LEADING_BYTE); |
| 771 | 4728 if (EQ (charset, Qnil)) |
| 4729 return 0; | |
| 4730 /* check range as per size (94 or 96) of charset */ | |
| 4731 return ((f3 > 0x20 && f3 < 0x7f) || XCHARSET_CHARS (charset) == 96); | |
| 4732 } | |
| 4733 else | |
| 4734 { | |
| 4735 /* dimension-2 char */ | |
| 4736 Lisp_Object charset; | |
| 4737 | |
| 4738 /* leading byte must be correct */ | |
| 867 | 4739 if (f1 < MIN_ICHAR_FIELD1_OFFICIAL || |
| 4740 (f1 > MAX_ICHAR_FIELD1_OFFICIAL && f1 < MIN_ICHAR_FIELD1_PRIVATE) || | |
| 4741 f1 > MAX_ICHAR_FIELD1_PRIVATE) | |
| 771 | 4742 return 0; |
| 4743 /* octets not out of range */ | |
| 4744 if (f2 < 0x20 || f3 < 0x20) | |
| 4745 return 0; | |
| 4746 | |
| 4747 #ifdef ENABLE_COMPOSITE_CHARS | |
| 4748 if (f1 + FIELD1_TO_OFFICIAL_LEADING_BYTE == LEADING_BYTE_COMPOSITE) | |
| 4749 { | |
| 4750 if (UNBOUNDP (Fgethash (make_int (ch), | |
| 4751 Vcomposite_char_char2string_hash_table, | |
| 4752 Qunbound))) | |
| 4753 return 0; | |
| 4754 return 1; | |
| 4755 } | |
| 4756 #endif /* ENABLE_COMPOSITE_CHARS */ | |
| 4757 | |
| 4758 /* charset exists */ | |
| 867 | 4759 if (f1 <= MAX_ICHAR_FIELD1_OFFICIAL) |
| 771 | 4760 charset = |
| 826 | 4761 charset_by_leading_byte (f1 + FIELD1_TO_OFFICIAL_LEADING_BYTE); |
| 771 | 4762 else |
| 4763 charset = | |
| 826 | 4764 charset_by_leading_byte (f1 + FIELD1_TO_PRIVATE_LEADING_BYTE); |
| 771 | 4765 |
| 4766 if (EQ (charset, Qnil)) | |
| 4767 return 0; | |
| 4768 /* check range as per size (94x94 or 96x96) of charset */ | |
| 4769 return ((f2 != 0x20 && f2 != 0x7F && f3 != 0x20 && f3 != 0x7F) || | |
| 4770 XCHARSET_CHARS (charset) == 96); | |
| 4771 } | |
| 4772 } | |
| 4773 | |
| 4774 /* Copy the character pointed to by SRC into DST. Do not call this | |
| 867 | 4775 directly. Use the macro itext_copy_ichar() instead. |
| 771 | 4776 Return the number of bytes copied. */ |
| 4777 | |
| 4778 Bytecount | |
| 867 | 4779 non_ascii_itext_copy_ichar (const Ibyte *src, Ibyte *dst) |
| 771 | 4780 { |
| 826 | 4781 Bytecount bytes = rep_bytes_by_first_byte (*src); |
| 771 | 4782 Bytecount i; |
| 4783 for (i = bytes; i; i--, dst++, src++) | |
| 4784 *dst = *src; | |
| 4785 return bytes; | |
| 4786 } | |
| 4787 | |
| 4788 #endif /* MULE */ | |
| 4789 | |
| 4790 | |
| 4791 /************************************************************************/ | |
| 867 | 4792 /* streams of Ichars */ |
| 771 | 4793 /************************************************************************/ |
| 4794 | |
| 4795 #ifdef MULE | |
| 4796 | |
| 867 | 4797 /* Treat a stream as a stream of Ichar's rather than a stream of bytes. |
| 771 | 4798 The functions below are not meant to be called directly; use |
| 4799 the macros in insdel.h. */ | |
| 4800 | |
| 867 | 4801 Ichar |
| 4802 Lstream_get_ichar_1 (Lstream *stream, int ch) | |
| 771 | 4803 { |
| 867 | 4804 Ibyte str[MAX_ICHAR_LEN]; |
| 4805 Ibyte *strptr = str; | |
| 771 | 4806 Bytecount bytes; |
| 4807 | |
| 867 | 4808 str[0] = (Ibyte) ch; |
| 771 | 4809 |
| 826 | 4810 for (bytes = rep_bytes_by_first_byte (ch) - 1; bytes; bytes--) |
| 771 | 4811 { |
| 4812 int c = Lstream_getc (stream); | |
| 800 | 4813 text_checking_assert (c >= 0); |
| 867 | 4814 *++strptr = (Ibyte) c; |
| 771 | 4815 } |
| 867 | 4816 return itext_ichar (str); |
| 771 | 4817 } |
| 4818 | |
| 4819 int | |
| 867 | 4820 Lstream_fput_ichar (Lstream *stream, Ichar ch) |
| 771 | 4821 { |
| 867 | 4822 Ibyte str[MAX_ICHAR_LEN]; |
| 4823 Bytecount len = set_itext_ichar (str, ch); | |
| 771 | 4824 return Lstream_write (stream, str, len); |
| 4825 } | |
| 4826 | |
| 4827 void | |
| 867 | 4828 Lstream_funget_ichar (Lstream *stream, Ichar ch) |
| 771 | 4829 { |
| 867 | 4830 Ibyte str[MAX_ICHAR_LEN]; |
| 4831 Bytecount len = set_itext_ichar (str, ch); | |
| 771 | 4832 Lstream_unread (stream, str, len); |
| 4833 } | |
| 4834 | |
| 4835 #endif /* MULE */ | |
| 4836 | |
| 4837 | |
| 4838 /************************************************************************/ | |
| 4839 /* Lisp primitives for working with characters */ | |
| 4840 /************************************************************************/ | |
| 4841 | |
| 4842 DEFUN ("make-char", Fmake_char, 2, 3, 0, /* | |
| 4843 Make a character from CHARSET and octets ARG1 and ARG2. | |
| 4844 ARG2 is required only for characters from two-dimensional charsets. | |
| 4845 | |
| 4846 Each octet should be in the range 32 through 127 for a 96 or 96x96 | |
| 4847 charset and 33 through 126 for a 94 or 94x94 charset. (Most charsets | |
| 4848 are either 96 or 94x94.) Note that this is 32 more than the values | |
| 4849 typically given for 94x94 charsets. When two octets are required, the | |
| 4850 order is "standard" -- the same as appears in ISO-2022 encodings, | |
| 4851 reference tables, etc. | |
| 4852 | |
| 4853 \(Note the following non-obvious result: Computerized translation | |
| 4854 tables often encode the two octets as the high and low bytes, | |
| 4855 respectively, of a hex short, while when there's only one octet, it | |
| 4856 goes in the low byte. When decoding such a value, you need to treat | |
| 4857 the two cases differently when calling make-char: One is (make-char | |
| 4858 CHARSET HIGH LOW), the other is (make-char CHARSET LOW).) | |
| 4859 | |
| 4860 For example, (make-char 'latin-iso8859-2 185) or (make-char | |
| 4861 'latin-iso8859-2 57) will return the Latin 2 character s with caron. | |
| 4862 | |
| 4863 As another example, the Japanese character for "kawa" (stream), which | |
| 4864 looks something like this: | |
| 4865 | |
| 4866 | | | |
| 4867 | | | | |
| 4868 | | | | |
| 4869 | | | | |
| 4870 / | | |
| 4871 | |
| 4872 appears in the Unicode Standard (version 2.0) on page 7-287 with the | |
| 4873 following values (see also page 7-4): | |
| 4874 | |
| 4875 U 5DDD (Unicode) | |
| 4876 G 0-2008 (GB 2312-80) | |
| 4877 J 0-3278 (JIS X 0208-1990) | |
| 4878 K 0-8425 (KS C 5601-1987) | |
| 4879 B A474 (Big Five) | |
| 4880 C 1-4455 (CNS 11643-1986 (1st plane)) | |
| 4881 A 213C34 (ANSI Z39.64-1989) | |
| 4882 | |
| 4883 These are equivalent to: | |
| 4884 | |
| 4885 \(make-char 'chinese-gb2312 52 40) | |
| 4886 \(make-char 'japanese-jisx0208 64 110) | |
| 4887 \(make-char 'korean-ksc5601 116 57) | |
| 4888 \(make-char 'chinese-cns11643-1 76 87) | |
| 4889 \(decode-big5-char '(164 . 116)) | |
| 4890 | |
| 4891 \(All codes above are two decimal numbers except for Big Five and ANSI | |
| 4892 Z39.64, which we don't support. We add 32 to each of the decimal | |
| 4893 numbers. Big Five is split in a rather hackish fashion into two | |
| 4894 charsets, `big5-1' and `big5-2', due to its excessive size -- 94x157, | |
| 4895 with the first codepoint in the range 0xA1 to 0xFE and the second in | |
| 4896 the range 0x40 to 0x7E or 0xA1 to 0xFE. `decode-big5-char' is used to | |
| 4897 generate the char from its codes, and `encode-big5-char' extracts the | |
| 4898 codes.) | |
| 4899 | |
| 4900 When compiled without MULE, this function does not do much, but it's | |
| 4901 provided for compatibility. In this case, the following CHARSET symbols | |
| 4902 are allowed: | |
| 4903 | |
| 4904 `ascii' -- ARG1 should be in the range 0 through 127. | |
| 4905 `control-1' -- ARG1 should be in the range 128 through 159. | |
| 4906 else -- ARG1 is coerced to be between 0 and 255, and then the high | |
| 4907 bit is set. | |
| 4908 | |
| 4909 `int-to-char of the resulting ARG1' is returned, and ARG2 is always ignored. | |
| 4910 */ | |
| 2333 | 4911 (charset, arg1, USED_IF_MULE (arg2))) |
| 771 | 4912 { |
| 4913 #ifdef MULE | |
| 4914 Lisp_Charset *cs; | |
| 4915 int a1, a2; | |
| 4916 int lowlim, highlim; | |
| 4917 | |
| 4918 charset = Fget_charset (charset); | |
| 4919 cs = XCHARSET (charset); | |
| 4920 | |
| 788 | 4921 get_charset_limits (charset, &lowlim, &highlim); |
| 771 | 4922 |
| 4923 CHECK_INT (arg1); | |
| 4924 /* It is useful (and safe, according to Olivier Galibert) to strip | |
| 4925 the 8th bit off ARG1 and ARG2 because it allows programmers to | |
| 4926 write (make-char 'latin-iso8859-2 CODE) where code is the actual | |
| 4927 Latin 2 code of the character. */ | |
| 4928 a1 = XINT (arg1) & 0x7f; | |
| 4929 if (a1 < lowlim || a1 > highlim) | |
| 4930 args_out_of_range_3 (arg1, make_int (lowlim), make_int (highlim)); | |
| 4931 | |
| 4932 if (CHARSET_DIMENSION (cs) == 1) | |
| 4933 { | |
| 4934 if (!NILP (arg2)) | |
| 4935 invalid_argument | |
| 4936 ("Charset is of dimension one; second octet must be nil", arg2); | |
| 867 | 4937 return make_char (make_ichar (charset, a1, 0)); |
| 771 | 4938 } |
| 4939 | |
| 4940 CHECK_INT (arg2); | |
| 4941 a2 = XINT (arg2) & 0x7f; | |
| 4942 if (a2 < lowlim || a2 > highlim) | |
| 4943 args_out_of_range_3 (arg2, make_int (lowlim), make_int (highlim)); | |
| 4944 | |
| 867 | 4945 return make_char (make_ichar (charset, a1, a2)); |
| 771 | 4946 #else |
| 4947 int a1; | |
| 4948 int lowlim, highlim; | |
| 4949 | |
| 4950 if (EQ (charset, Qascii)) lowlim = 0, highlim = 127; | |
| 4951 else if (EQ (charset, Qcontrol_1)) lowlim = 0, highlim = 31; | |
| 4952 else lowlim = 0, highlim = 127; | |
| 4953 | |
| 4954 CHECK_INT (arg1); | |
| 4955 /* It is useful (and safe, according to Olivier Galibert) to strip | |
| 4956 the 8th bit off ARG1 and ARG2 because it allows programmers to | |
| 4957 write (make-char 'latin-iso8859-2 CODE) where code is the actual | |
| 4958 Latin 2 code of the character. */ | |
| 4959 a1 = XINT (arg1) & 0x7f; | |
| 4960 if (a1 < lowlim || a1 > highlim) | |
| 4961 args_out_of_range_3 (arg1, make_int (lowlim), make_int (highlim)); | |
| 4962 | |
| 4963 if (EQ (charset, Qascii)) | |
| 4964 return make_char (a1); | |
| 4965 return make_char (a1 + 128); | |
| 4966 #endif /* MULE */ | |
| 4967 } | |
| 4968 | |
| 4969 #ifdef MULE | |
| 4970 | |
| 4971 DEFUN ("char-charset", Fchar_charset, 1, 1, 0, /* | |
| 4972 Return the character set of char CH. | |
| 4973 */ | |
| 4974 (ch)) | |
| 4975 { | |
| 4976 CHECK_CHAR_COERCE_INT (ch); | |
| 4977 | |
| 826 | 4978 return XCHARSET_NAME (charset_by_leading_byte |
| 867 | 4979 (ichar_leading_byte (XCHAR (ch)))); |
| 771 | 4980 } |
| 4981 | |
| 4982 DEFUN ("char-octet", Fchar_octet, 1, 2, 0, /* | |
| 4983 Return the octet numbered N (should be 0 or 1) of char CH. | |
| 4984 N defaults to 0 if omitted. | |
| 4985 */ | |
| 4986 (ch, n)) | |
| 4987 { | |
| 4988 Lisp_Object charset; | |
| 4989 int octet0, octet1; | |
| 4990 | |
| 4991 CHECK_CHAR_COERCE_INT (ch); | |
| 4992 | |
| 867 | 4993 BREAKUP_ICHAR (XCHAR (ch), charset, octet0, octet1); |
| 771 | 4994 |
| 4995 if (NILP (n) || EQ (n, Qzero)) | |
| 4996 return make_int (octet0); | |
| 4997 else if (EQ (n, make_int (1))) | |
| 4998 return make_int (octet1); | |
| 4999 else | |
| 5000 invalid_constant ("Octet number must be 0 or 1", n); | |
| 5001 } | |
| 5002 | |
| 3724 | 5003 #endif /* MULE */ |
| 5004 | |
| 771 | 5005 DEFUN ("split-char", Fsplit_char, 1, 1, 0, /* |
| 5006 Return list of charset and one or two position-codes of CHAR. | |
| 5007 */ | |
| 5008 (character)) | |
| 5009 { | |
| 5010 /* This function can GC */ | |
| 5011 struct gcpro gcpro1, gcpro2; | |
| 5012 Lisp_Object charset = Qnil; | |
| 5013 Lisp_Object rc = Qnil; | |
| 5014 int c1, c2; | |
| 5015 | |
| 5016 GCPRO2 (charset, rc); | |
| 5017 CHECK_CHAR_COERCE_INT (character); | |
| 5018 | |
| 867 | 5019 BREAKUP_ICHAR (XCHAR (character), charset, c1, c2); |
| 771 | 5020 |
| 3724 | 5021 if (XCHARSET_DIMENSION (charset) == 2) |
| 771 | 5022 { |
| 5023 rc = list3 (XCHARSET_NAME (charset), make_int (c1), make_int (c2)); | |
| 5024 } | |
| 5025 else | |
| 5026 { | |
| 5027 rc = list2 (XCHARSET_NAME (charset), make_int (c1)); | |
| 5028 } | |
| 5029 UNGCPRO; | |
| 5030 | |
| 5031 return rc; | |
| 5032 } | |
| 5033 | |
| 5034 | |
| 5035 /************************************************************************/ | |
| 5036 /* composite character functions */ | |
| 5037 /************************************************************************/ | |
| 5038 | |
| 5039 #ifdef ENABLE_COMPOSITE_CHARS | |
| 5040 | |
| 867 | 5041 Ichar |
| 5042 lookup_composite_char (Ibyte *str, int len) | |
| 771 | 5043 { |
| 5044 Lisp_Object lispstr = make_string (str, len); | |
| 5045 Lisp_Object ch = Fgethash (lispstr, | |
| 5046 Vcomposite_char_string2char_hash_table, | |
| 5047 Qunbound); | |
| 867 | 5048 Ichar emch; |
| 771 | 5049 |
| 5050 if (UNBOUNDP (ch)) | |
| 5051 { | |
| 5052 if (composite_char_row_next >= 128) | |
| 5053 invalid_operation ("No more composite chars available", lispstr); | |
| 867 | 5054 emch = make_ichar (Vcharset_composite, composite_char_row_next, |
| 771 | 5055 composite_char_col_next); |
| 5056 Fputhash (make_char (emch), lispstr, | |
| 5057 Vcomposite_char_char2string_hash_table); | |
| 5058 Fputhash (lispstr, make_char (emch), | |
| 5059 Vcomposite_char_string2char_hash_table); | |
| 5060 composite_char_col_next++; | |
| 5061 if (composite_char_col_next >= 128) | |
| 5062 { | |
| 5063 composite_char_col_next = 32; | |
| 5064 composite_char_row_next++; | |
| 5065 } | |
| 5066 } | |
| 5067 else | |
| 5068 emch = XCHAR (ch); | |
| 5069 return emch; | |
| 5070 } | |
| 5071 | |
| 5072 Lisp_Object | |
| 867 | 5073 composite_char_string (Ichar ch) |
| 771 | 5074 { |
| 5075 Lisp_Object str = Fgethash (make_char (ch), | |
| 5076 Vcomposite_char_char2string_hash_table, | |
| 5077 Qunbound); | |
| 5078 assert (!UNBOUNDP (str)); | |
| 5079 return str; | |
| 5080 } | |
| 5081 | |
| 826 | 5082 DEFUN ("make-composite-char", Fmake_composite_char, 1, 1, 0, /* |
| 771 | 5083 Convert a string into a single composite character. |
| 5084 The character is the result of overstriking all the characters in | |
| 5085 the string. | |
| 5086 */ | |
| 5087 (string)) | |
| 5088 { | |
| 5089 CHECK_STRING (string); | |
| 5090 return make_char (lookup_composite_char (XSTRING_DATA (string), | |
| 5091 XSTRING_LENGTH (string))); | |
| 5092 } | |
| 5093 | |
| 826 | 5094 DEFUN ("composite-char-string", Fcomposite_char_string, 1, 1, 0, /* |
| 771 | 5095 Return a string of the characters comprising a composite character. |
| 5096 */ | |
| 5097 (ch)) | |
| 5098 { | |
| 867 | 5099 Ichar emch; |
| 771 | 5100 |
| 5101 CHECK_CHAR (ch); | |
| 5102 emch = XCHAR (ch); | |
| 867 | 5103 if (ichar_leading_byte (emch) != LEADING_BYTE_COMPOSITE) |
| 771 | 5104 invalid_argument ("Must be composite char", ch); |
| 5105 return composite_char_string (emch); | |
| 5106 } | |
| 5107 #endif /* ENABLE_COMPOSITE_CHARS */ | |
| 5108 | |
| 5109 | |
| 5110 /************************************************************************/ | |
| 5111 /* initialization */ | |
| 5112 /************************************************************************/ | |
| 5113 | |
| 5114 void | |
| 1204 | 5115 reinit_eistring_early (void) |
| 771 | 5116 { |
| 5117 the_eistring_malloc_zero_init = the_eistring_zero_init; | |
| 5118 the_eistring_malloc_zero_init.mallocp_ = 1; | |
| 5119 } | |
| 5120 | |
| 5121 void | |
| 814 | 5122 init_eistring_once_early (void) |
| 5123 { | |
| 1204 | 5124 reinit_eistring_early (); |
| 814 | 5125 } |
| 5126 | |
| 5127 void | |
| 771 | 5128 syms_of_text (void) |
| 5129 { | |
| 5130 DEFSUBR (Fmake_char); | |
| 3724 | 5131 DEFSUBR (Fsplit_char); |
| 771 | 5132 |
| 5133 #ifdef MULE | |
| 5134 DEFSUBR (Fchar_charset); | |
| 5135 DEFSUBR (Fchar_octet); | |
| 5136 | |
| 5137 #ifdef ENABLE_COMPOSITE_CHARS | |
| 5138 DEFSUBR (Fmake_composite_char); | |
| 5139 DEFSUBR (Fcomposite_char_string); | |
| 5140 #endif | |
| 5141 #endif /* MULE */ | |
| 5142 } | |
| 5143 | |
| 5144 void | |
| 5145 reinit_vars_of_text (void) | |
| 5146 { | |
| 5147 int i; | |
| 5148 | |
| 867 | 5149 conversion_in_dynarr_list = Dynarr_new2 (Ibyte_dynarr_dynarr, |
| 5150 Ibyte_dynarr *); | |
| 771 | 5151 conversion_out_dynarr_list = Dynarr_new2 (Extbyte_dynarr_dynarr, |
| 5152 Extbyte_dynarr *); | |
| 5153 | |
| 5154 for (i = 0; i <= MAX_BYTEBPOS_GAP_SIZE_3; i++) | |
| 5155 three_to_one_table[i] = i / 3; | |
| 5156 } | |
| 5157 | |
| 5158 void | |
| 5159 vars_of_text (void) | |
| 5160 { | |
|
4952
19a72041c5ed
Mule-izing, various fixes related to char * arguments
Ben Wing <ben@xemacs.org>
parents:
4526
diff
changeset
|
5161 QSin_char_byte_conversion = build_defer_string ("(in char-byte conversion)"); |
| 1292 | 5162 staticpro (&QSin_char_byte_conversion); |
| 5163 QSin_internal_external_conversion = | |
|
4952
19a72041c5ed
Mule-izing, various fixes related to char * arguments
Ben Wing <ben@xemacs.org>
parents:
4526
diff
changeset
|
5164 build_defer_string ("(in internal-external conversion)"); |
| 1292 | 5165 staticpro (&QSin_internal_external_conversion); |
| 5166 | |
| 771 | 5167 #ifdef ENABLE_COMPOSITE_CHARS |
| 5168 /* #### not dumped properly */ | |
| 5169 composite_char_row_next = 32; | |
| 5170 composite_char_col_next = 32; | |
| 5171 | |
| 5172 Vcomposite_char_string2char_hash_table = | |
| 5173 make_lisp_hash_table (500, HASH_TABLE_NON_WEAK, HASH_TABLE_EQUAL); | |
| 5174 Vcomposite_char_char2string_hash_table = | |
| 5175 make_lisp_hash_table (500, HASH_TABLE_NON_WEAK, HASH_TABLE_EQ); | |
| 5176 staticpro (&Vcomposite_char_string2char_hash_table); | |
| 5177 staticpro (&Vcomposite_char_char2string_hash_table); | |
| 5178 #endif /* ENABLE_COMPOSITE_CHARS */ | |
| 5179 } |
