771
|
1 /* Code to handle Unicode conversion.
|
1267
|
2 Copyright (C) 2000, 2001, 2002, 2003 Ben Wing.
|
771
|
3
|
|
4 This file is part of XEmacs.
|
|
5
|
|
6 XEmacs is free software; you can redistribute it and/or modify it
|
|
7 under the terms of the GNU General Public License as published by the
|
|
8 Free Software Foundation; either version 2, or (at your option) any
|
|
9 later version.
|
|
10
|
|
11 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 for more details.
|
|
15
|
|
16 You should have received a copy of the GNU General Public License
|
|
17 along with XEmacs; see the file COPYING. If not, write to
|
|
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
19 Boston, MA 02111-1307, USA. */
|
|
20
|
|
21 /* Synched up with: FSF 20.3. Not in FSF. */
|
|
22
|
|
23 /* Authorship:
|
|
24
|
|
25 Current primary author: Ben Wing <ben@xemacs.org>
|
|
26
|
|
27 Written by Ben Wing <ben@xemacs.org>, June, 2001.
|
|
28 Separated out into this file, August, 2001.
|
|
29 Includes Unicode coding systems, some parts of which have been written
|
877
|
30 by someone else. #### Morioka and Hayashi, I think.
|
771
|
31
|
|
32 As of September 2001, the detection code is here and abstraction of the
|
877
|
33 detection system is finished. The unicode detectors have been rewritten
|
771
|
34 to include multiple levels of likelihood.
|
|
35 */
|
|
36
|
|
37 #include <config.h>
|
|
38 #include "lisp.h"
|
|
39
|
|
40 #include "charset.h"
|
|
41 #include "file-coding.h"
|
|
42 #include "opaque.h"
|
|
43
|
|
44 #include "sysfile.h"
|
|
45
|
|
46 /* #### WARNING! The current sledgehammer routines have a fundamental
|
|
47 problem in that they can't handle two characters mapping to a
|
|
48 single Unicode codepoint or vice-versa in a single charset table.
|
|
49 It's not clear there is any way to handle this and still make the
|
877
|
50 sledgehammer routines useful.
|
|
51
|
|
52 Inquiring Minds Want To Know Dept: does the above WARNING mean that
|
|
53 _if_ it happens, then it will signal error, or then it will do
|
|
54 something evil and unpredictable? Signaling an error is OK: for
|
|
55 all national standards, the national to Unicode map is an inclusion
|
|
56 (1-to-1). Any character set that does not behave that way is
|
|
57 broken according to the Unicode standard. */
|
|
58
|
771
|
59 /* #define SLEDGEHAMMER_CHECK_UNICODE */
|
|
60
|
|
61 /* We currently use the following format for tables:
|
|
62
|
|
63 If dimension == 1, to_unicode_table is a 96-element array of ints
|
|
64 (Unicode code points); else, it's a 96-element array of int *
|
|
65 pointers, each of which points to a 96-element array of ints. If no
|
|
66 elements in a row have been filled in, the pointer will point to a
|
|
67 default empty table; that way, memory usage is more reasonable but
|
|
68 lookup still fast.
|
|
69
|
|
70 -- If from_unicode_levels == 1, from_unicode_table is a 256-element
|
|
71 array of shorts (octet 1 in high byte, octet 2 in low byte; we don't
|
867
|
72 store Ichars directly to save space).
|
771
|
73
|
|
74 -- If from_unicode_levels == 2, from_unicode_table is a
|
|
75 256-element array of short * pointers, each of which points to a
|
|
76 256-element array of shorts.
|
|
77
|
|
78 -- If from_unicode_levels == 3, from_unicode_table is a
|
|
79 256-element array of short ** pointers, each of which points to
|
|
80 a 256-element array of short * pointers, each of which points to
|
|
81 a 256-element array of shorts.
|
|
82
|
|
83 -- If from_unicode_levels == 4, same thing but one level deeper.
|
|
84
|
|
85 Just as for to_unicode_table, we use default tables to fill in
|
|
86 all entries with no values in them.
|
|
87
|
|
88 #### An obvious space-saving optimization is to use variable-sized
|
|
89 tables, where each table instead of just being a 256-element array,
|
|
90 is a structure with a start value, an end value, and a variable
|
|
91 number of entries (END - START + 1). Only 8 bits are needed for
|
|
92 END and START, and could be stored at the end to avoid alignment
|
|
93 problems. However, before charging off and implementing this,
|
|
94 we need to consider whether it's worth it:
|
|
95
|
|
96 (1) Most tables will be highly localized in which code points are
|
|
97 defined, heavily reducing the possible memory waste. Before
|
|
98 doing any rewriting, write some code to see how much memory is
|
|
99 actually being wasted (i.e. ratio of empty entries to total # of
|
|
100 entries) and only start rewriting if it's unacceptably high. You
|
|
101 have to check over all charsets.
|
|
102
|
|
103 (2) Since entries are usually added one at a time, you have to be
|
|
104 very careful when creating the tables to avoid realloc()/free()
|
|
105 thrashing in the common case when you are in an area of high
|
|
106 localization and are going to end up using most entries in the
|
|
107 table. You'd certainly want to allow only certain sizes, not
|
|
108 arbitrary ones (probably powers of 2, where you want the entire
|
|
109 block including the START/END values to fit into a power of 2,
|
|
110 minus any malloc overhead if there is any -- there's none under
|
|
111 gmalloc.c, and probably most system malloc() functions are quite
|
|
112 smart nowadays and also have no overhead). You could optimize
|
|
113 somewhat during the in-C initializations, because you can compute
|
|
114 the actual usage of various tables by scanning the entries you're
|
|
115 going to add in a separate pass before adding them. (You could
|
|
116 actually do the same thing when entries are added on the Lisp
|
|
117 level by making the assumption that all the entries will come in
|
|
118 one after another before any use is made of the data. So as
|
|
119 they're coming in, you just store them in a big long list, and
|
|
120 the first time you need to retrieve an entry, you compute the
|
|
121 whole table at once.) You'd still have to deal with the
|
|
122 possibility of later entries coming in, though.
|
|
123
|
|
124 (3) You do lose some speed using START/END values, since you need
|
|
125 a couple of comparisons at each level. This could easily make
|
|
126 each single lookup become 3-4 times slower. The Unicode book
|
|
127 considers this a big issue, and recommends against variable-sized
|
|
128 tables for this reason; however, they almost certainly have in
|
|
129 mind applications that primarily involve conversion of large
|
|
130 amounts of data. Most Unicode strings that are translated in
|
|
131 XEmacs are fairly small. The only place where this might matter
|
|
132 is in loading large files -- e.g. a 3-megabyte Unicode-encoded
|
|
133 file. So think about this, and maybe do a trial implementation
|
|
134 where you don't worry too much about the intricacies of (2) and
|
|
135 just implement some basic "multiply by 1.5" trick or something to
|
|
136 do the resizing. There is a very good FAQ on Unicode called
|
|
137 something like the Linux-Unicode How-To (it should be part of the
|
|
138 Linux How-To's, I think), that lists the url of a guy with a
|
|
139 whole bunch of unicode files you can use to stress-test your
|
|
140 implementations, and he's highly likely to have a good
|
|
141 multi-megabyte Unicode-encoded file (with normal text in it -- if
|
|
142 you created your own just by creating repeated strings of letters
|
|
143 and numbers, you probably wouldn't get accurate results).
|
|
144 */
|
|
145
|
|
146 /* When MULE is not defined, we may still need some Unicode support --
|
|
147 in particular, some Windows API's always want Unicode, and the way
|
|
148 we've set up the Unicode encapsulation, we may as well go ahead and
|
|
149 always use the Unicode versions of split API's. (It would be
|
|
150 trickier to not use them, and pointless -- under NT, the ANSI API's
|
|
151 call the Unicode ones anyway, so in the case of structures, we'd be
|
|
152 converting from Unicode to ANSI structures, only to have the OS
|
|
153 convert them back.) */
|
|
154
|
|
155 Lisp_Object Qunicode;
|
|
156 Lisp_Object Qutf_16, Qutf_8, Qucs_4, Qutf_7;
|
|
157 Lisp_Object Qneed_bom;
|
|
158
|
|
159 Lisp_Object Qutf_16_little_endian, Qutf_16_bom;
|
|
160 Lisp_Object Qutf_16_little_endian_bom;
|
|
161
|
985
|
162 Lisp_Object Qutf_8_bom;
|
|
163
|
771
|
164 #ifdef MULE
|
|
165
|
877
|
166 /* #### Using ints for to_unicode is OK (as long as they are >= 32 bits).
|
|
167 However, shouldn't the shorts below be unsigned? */
|
771
|
168 static int *to_unicode_blank_1;
|
|
169 static int **to_unicode_blank_2;
|
|
170
|
|
171 static short *from_unicode_blank_1;
|
|
172 static short **from_unicode_blank_2;
|
|
173 static short ***from_unicode_blank_3;
|
|
174 static short ****from_unicode_blank_4;
|
|
175
|
1204
|
176 static const struct memory_description to_unicode_level_0_desc_1[] = {
|
771
|
177 { XD_END }
|
|
178 };
|
|
179
|
1204
|
180 static const struct sized_memory_description to_unicode_level_0_desc = {
|
|
181 sizeof (int), to_unicode_level_0_desc_1
|
771
|
182 };
|
|
183
|
1204
|
184 static const struct memory_description to_unicode_level_1_desc_1[] = {
|
|
185 { XD_STRUCT_PTR, 0, 96, &to_unicode_level_0_desc },
|
771
|
186 { XD_END }
|
|
187 };
|
|
188
|
1204
|
189 static const struct sized_memory_description to_unicode_level_1_desc = {
|
|
190 sizeof (void *), to_unicode_level_1_desc_1
|
771
|
191 };
|
|
192
|
1204
|
193 static const struct memory_description to_unicode_description_1[] = {
|
|
194 { XD_STRUCT_PTR, 1, 96, &to_unicode_level_0_desc },
|
|
195 { XD_STRUCT_PTR, 2, 96, &to_unicode_level_1_desc },
|
771
|
196 { XD_END }
|
|
197 };
|
|
198
|
|
199 /* Not static because each charset has a set of to and from tables and
|
|
200 needs to describe them to pdump. */
|
1204
|
201 const struct sized_memory_description to_unicode_description = {
|
|
202 sizeof (void *), to_unicode_description_1
|
|
203 };
|
|
204
|
|
205 static const struct memory_description from_unicode_level_0_desc_1[] = {
|
771
|
206 { XD_END }
|
|
207 };
|
|
208
|
1204
|
209 static const struct sized_memory_description from_unicode_level_0_desc = {
|
|
210 sizeof (short), from_unicode_level_0_desc_1
|
771
|
211 };
|
|
212
|
1204
|
213 static const struct memory_description from_unicode_level_1_desc_1[] = {
|
|
214 { XD_STRUCT_PTR, 0, 256, &from_unicode_level_0_desc },
|
771
|
215 { XD_END }
|
|
216 };
|
|
217
|
1204
|
218 static const struct sized_memory_description from_unicode_level_1_desc = {
|
|
219 sizeof (void *), from_unicode_level_1_desc_1
|
771
|
220 };
|
|
221
|
1204
|
222 static const struct memory_description from_unicode_level_2_desc_1[] = {
|
|
223 { XD_STRUCT_PTR, 0, 256, &from_unicode_level_1_desc },
|
771
|
224 { XD_END }
|
|
225 };
|
|
226
|
1204
|
227 static const struct sized_memory_description from_unicode_level_2_desc = {
|
|
228 sizeof (void *), from_unicode_level_2_desc_1
|
771
|
229 };
|
|
230
|
1204
|
231 static const struct memory_description from_unicode_level_3_desc_1[] = {
|
|
232 { XD_STRUCT_PTR, 0, 256, &from_unicode_level_2_desc },
|
771
|
233 { XD_END }
|
|
234 };
|
|
235
|
1204
|
236 static const struct sized_memory_description from_unicode_level_3_desc = {
|
|
237 sizeof (void *), from_unicode_level_3_desc_1
|
771
|
238 };
|
|
239
|
1204
|
240 static const struct memory_description from_unicode_description_1[] = {
|
|
241 { XD_STRUCT_PTR, 1, 256, &from_unicode_level_0_desc },
|
|
242 { XD_STRUCT_PTR, 2, 256, &from_unicode_level_1_desc },
|
|
243 { XD_STRUCT_PTR, 3, 256, &from_unicode_level_2_desc },
|
|
244 { XD_STRUCT_PTR, 4, 256, &from_unicode_level_3_desc },
|
771
|
245 { XD_END }
|
|
246 };
|
|
247
|
|
248 /* Not static because each charset has a set of to and from tables and
|
|
249 needs to describe them to pdump. */
|
1204
|
250 const struct sized_memory_description from_unicode_description = {
|
|
251 sizeof (void *), from_unicode_description_1
|
771
|
252 };
|
|
253
|
|
254 static Lisp_Object_dynarr *unicode_precedence_dynarr;
|
|
255
|
1204
|
256 static const struct memory_description lod_description_1[] = {
|
|
257 XD_DYNARR_DESC (Lisp_Object_dynarr, &lisp_object_description),
|
771
|
258 { XD_END }
|
|
259 };
|
|
260
|
1204
|
261 static const struct sized_memory_description lisp_object_dynarr_description = {
|
771
|
262 sizeof (Lisp_Object_dynarr),
|
|
263 lod_description_1
|
|
264 };
|
|
265
|
|
266 Lisp_Object Vlanguage_unicode_precedence_list;
|
|
267 Lisp_Object Vdefault_unicode_precedence_list;
|
|
268
|
|
269 Lisp_Object Qignore_first_column;
|
|
270
|
|
271
|
|
272 /************************************************************************/
|
|
273 /* Unicode implementation */
|
|
274 /************************************************************************/
|
|
275
|
|
276 #define BREAKUP_UNICODE_CODE(val, u1, u2, u3, u4, levels) \
|
|
277 do { \
|
|
278 int buc_val = (val); \
|
|
279 \
|
|
280 (u1) = buc_val >> 24; \
|
|
281 (u2) = (buc_val >> 16) & 255; \
|
|
282 (u3) = (buc_val >> 8) & 255; \
|
|
283 (u4) = buc_val & 255; \
|
|
284 (levels) = (buc_val <= 0xFF ? 1 : \
|
|
285 buc_val <= 0xFFFF ? 2 : \
|
|
286 buc_val <= 0xFFFFFF ? 3 : \
|
|
287 4); \
|
|
288 } while (0)
|
|
289
|
|
290 static void
|
|
291 init_blank_unicode_tables (void)
|
|
292 {
|
|
293 int i;
|
|
294
|
|
295 from_unicode_blank_1 = xnew_array (short, 256);
|
|
296 from_unicode_blank_2 = xnew_array (short *, 256);
|
|
297 from_unicode_blank_3 = xnew_array (short **, 256);
|
|
298 from_unicode_blank_4 = xnew_array (short ***, 256);
|
|
299 for (i = 0; i < 256; i++)
|
|
300 {
|
877
|
301 /* #### IMWTK: Why does using -1 here work? Simply because there are
|
|
302 no existing 96x96 charsets? */
|
771
|
303 from_unicode_blank_1[i] = (short) -1;
|
|
304 from_unicode_blank_2[i] = from_unicode_blank_1;
|
|
305 from_unicode_blank_3[i] = from_unicode_blank_2;
|
|
306 from_unicode_blank_4[i] = from_unicode_blank_3;
|
|
307 }
|
|
308
|
|
309 to_unicode_blank_1 = xnew_array (int, 96);
|
|
310 to_unicode_blank_2 = xnew_array (int *, 96);
|
|
311 for (i = 0; i < 96; i++)
|
|
312 {
|
877
|
313 /* Here -1 is guaranteed OK. */
|
771
|
314 to_unicode_blank_1[i] = -1;
|
|
315 to_unicode_blank_2[i] = to_unicode_blank_1;
|
|
316 }
|
|
317 }
|
|
318
|
|
319 static void *
|
|
320 create_new_from_unicode_table (int level)
|
|
321 {
|
|
322 switch (level)
|
|
323 {
|
|
324 /* WARNING: If you are thinking of compressing these, keep in
|
|
325 mind that sizeof (short) does not equal sizeof (short *). */
|
|
326 case 1:
|
|
327 {
|
|
328 short *newtab = xnew_array (short, 256);
|
|
329 memcpy (newtab, from_unicode_blank_1, 256 * sizeof (short));
|
|
330 return newtab;
|
|
331 }
|
|
332 case 2:
|
|
333 {
|
|
334 short **newtab = xnew_array (short *, 256);
|
|
335 memcpy (newtab, from_unicode_blank_2, 256 * sizeof (short *));
|
|
336 return newtab;
|
|
337 }
|
|
338 case 3:
|
|
339 {
|
|
340 short ***newtab = xnew_array (short **, 256);
|
|
341 memcpy (newtab, from_unicode_blank_3, 256 * sizeof (short **));
|
|
342 return newtab;
|
|
343 }
|
|
344 case 4:
|
|
345 {
|
|
346 short ****newtab = xnew_array (short ***, 256);
|
|
347 memcpy (newtab, from_unicode_blank_4, 256 * sizeof (short ***));
|
|
348 return newtab;
|
|
349 }
|
|
350 default:
|
|
351 abort ();
|
|
352 return 0;
|
|
353 }
|
|
354 }
|
|
355
|
877
|
356 /* Allocate and blank the tables.
|
|
357 Loading them up is done by parse-unicode-translation-table. */
|
771
|
358 void
|
|
359 init_charset_unicode_tables (Lisp_Object charset)
|
|
360 {
|
|
361 if (XCHARSET_DIMENSION (charset) == 1)
|
|
362 {
|
|
363 int *to_table = xnew_array (int, 96);
|
|
364 memcpy (to_table, to_unicode_blank_1, 96 * sizeof (int));
|
|
365 XCHARSET_TO_UNICODE_TABLE (charset) = to_table;
|
|
366 }
|
|
367 else
|
|
368 {
|
|
369 int **to_table = xnew_array (int *, 96);
|
|
370 memcpy (to_table, to_unicode_blank_2, 96 * sizeof (int *));
|
|
371 XCHARSET_TO_UNICODE_TABLE (charset) = to_table;
|
|
372 }
|
|
373
|
|
374 {
|
|
375 XCHARSET_FROM_UNICODE_TABLE (charset) = create_new_from_unicode_table (1);
|
|
376 XCHARSET_FROM_UNICODE_LEVELS (charset) = 1;
|
|
377 }
|
|
378 }
|
|
379
|
|
380 static void
|
|
381 free_from_unicode_table (void *table, int level)
|
|
382 {
|
|
383 int i;
|
|
384
|
|
385 switch (level)
|
|
386 {
|
|
387 case 2:
|
|
388 {
|
|
389 short **tab = (short **) table;
|
|
390 for (i = 0; i < 256; i++)
|
|
391 {
|
|
392 if (tab[i] != from_unicode_blank_1)
|
|
393 free_from_unicode_table (tab[i], 1);
|
|
394 }
|
|
395 break;
|
|
396 }
|
|
397 case 3:
|
|
398 {
|
|
399 short ***tab = (short ***) table;
|
|
400 for (i = 0; i < 256; i++)
|
|
401 {
|
|
402 if (tab[i] != from_unicode_blank_2)
|
|
403 free_from_unicode_table (tab[i], 2);
|
|
404 }
|
|
405 break;
|
|
406 }
|
|
407 case 4:
|
|
408 {
|
|
409 short ****tab = (short ****) table;
|
|
410 for (i = 0; i < 256; i++)
|
|
411 {
|
|
412 if (tab[i] != from_unicode_blank_3)
|
|
413 free_from_unicode_table (tab[i], 3);
|
|
414 }
|
|
415 break;
|
|
416 }
|
|
417 }
|
|
418
|
|
419 xfree (table);
|
|
420 }
|
|
421
|
|
422 static void
|
|
423 free_to_unicode_table (void *table, int level)
|
|
424 {
|
|
425 if (level == 2)
|
|
426 {
|
|
427 int i;
|
|
428 int **tab = (int **) table;
|
|
429
|
|
430 for (i = 0; i < 96; i++)
|
|
431 {
|
|
432 if (tab[i] != to_unicode_blank_1)
|
|
433 free_to_unicode_table (tab[i], 1);
|
|
434 }
|
|
435 }
|
|
436
|
|
437 xfree (table);
|
|
438 }
|
|
439
|
|
440 void
|
|
441 free_charset_unicode_tables (Lisp_Object charset)
|
|
442 {
|
|
443 free_to_unicode_table (XCHARSET_TO_UNICODE_TABLE (charset),
|
|
444 XCHARSET_DIMENSION (charset));
|
|
445 free_from_unicode_table (XCHARSET_FROM_UNICODE_TABLE (charset),
|
|
446 XCHARSET_FROM_UNICODE_LEVELS (charset));
|
|
447 }
|
|
448
|
|
449 #ifdef MEMORY_USAGE_STATS
|
|
450
|
|
451 static Bytecount
|
|
452 compute_from_unicode_table_size_1 (void *table, int level,
|
|
453 struct overhead_stats *stats)
|
|
454 {
|
|
455 int i;
|
|
456 Bytecount size = 0;
|
|
457
|
|
458 switch (level)
|
|
459 {
|
|
460 case 2:
|
|
461 {
|
|
462 short **tab = (short **) table;
|
|
463 for (i = 0; i < 256; i++)
|
|
464 {
|
|
465 if (tab[i] != from_unicode_blank_1)
|
|
466 size += compute_from_unicode_table_size_1 (tab[i], 1, stats);
|
|
467 }
|
|
468 break;
|
|
469 }
|
|
470 case 3:
|
|
471 {
|
|
472 short ***tab = (short ***) table;
|
|
473 for (i = 0; i < 256; i++)
|
|
474 {
|
|
475 if (tab[i] != from_unicode_blank_2)
|
|
476 size += compute_from_unicode_table_size_1 (tab[i], 2, stats);
|
|
477 }
|
|
478 break;
|
|
479 }
|
|
480 case 4:
|
|
481 {
|
|
482 short ****tab = (short ****) table;
|
|
483 for (i = 0; i < 256; i++)
|
|
484 {
|
|
485 if (tab[i] != from_unicode_blank_3)
|
|
486 size += compute_from_unicode_table_size_1 (tab[i], 3, stats);
|
|
487 }
|
|
488 break;
|
|
489 }
|
|
490 }
|
|
491
|
|
492 size += malloced_storage_size (table,
|
|
493 256 * (level == 1 ? sizeof (short) :
|
|
494 sizeof (void *)),
|
|
495 stats);
|
|
496 return size;
|
|
497 }
|
|
498
|
|
499 static Bytecount
|
|
500 compute_to_unicode_table_size_1 (void *table, int level,
|
|
501 struct overhead_stats *stats)
|
|
502 {
|
|
503 Bytecount size = 0;
|
|
504
|
|
505 if (level == 2)
|
|
506 {
|
|
507 int i;
|
|
508 int **tab = (int **) table;
|
|
509
|
|
510 for (i = 0; i < 96; i++)
|
|
511 {
|
|
512 if (tab[i] != to_unicode_blank_1)
|
|
513 size += compute_to_unicode_table_size_1 (tab[i], 1, stats);
|
|
514 }
|
|
515 }
|
|
516
|
|
517 size += malloced_storage_size (table,
|
|
518 96 * (level == 1 ? sizeof (int) :
|
|
519 sizeof (void *)),
|
|
520 stats);
|
|
521 return size;
|
|
522 }
|
|
523
|
|
524 Bytecount
|
|
525 compute_from_unicode_table_size (Lisp_Object charset,
|
|
526 struct overhead_stats *stats)
|
|
527 {
|
|
528 return (compute_from_unicode_table_size_1
|
|
529 (XCHARSET_FROM_UNICODE_TABLE (charset),
|
|
530 XCHARSET_FROM_UNICODE_LEVELS (charset),
|
|
531 stats));
|
|
532 }
|
|
533
|
|
534 Bytecount
|
|
535 compute_to_unicode_table_size (Lisp_Object charset,
|
|
536 struct overhead_stats *stats)
|
|
537 {
|
|
538 return (compute_to_unicode_table_size_1
|
|
539 (XCHARSET_TO_UNICODE_TABLE (charset),
|
|
540 XCHARSET_DIMENSION (charset),
|
|
541 stats));
|
|
542 }
|
|
543
|
|
544 #endif
|
|
545
|
|
546 #ifdef SLEDGEHAMMER_CHECK_UNICODE
|
|
547
|
|
548 /* "Sledgehammer checks" are checks that verify the self-consistency
|
|
549 of an entire structure every time a change is about to be made or
|
|
550 has been made to the structure. Not fast but a pretty much
|
|
551 sure-fire way of flushing out any incorrectnesses in the algorithms
|
|
552 that create the structure.
|
|
553
|
|
554 Checking only after a change has been made will speed things up by
|
|
555 a factor of 2, but it doesn't absolutely prove that the code just
|
|
556 checked caused the problem; perhaps it happened elsewhere, either
|
|
557 in some code you forgot to sledgehammer check or as a result of
|
|
558 data corruption. */
|
|
559
|
|
560 static void
|
|
561 assert_not_any_blank_table (void *tab)
|
|
562 {
|
|
563 assert (tab != from_unicode_blank_1);
|
|
564 assert (tab != from_unicode_blank_2);
|
|
565 assert (tab != from_unicode_blank_3);
|
|
566 assert (tab != from_unicode_blank_4);
|
|
567 assert (tab != to_unicode_blank_1);
|
|
568 assert (tab != to_unicode_blank_2);
|
|
569 assert (tab);
|
|
570 }
|
|
571
|
|
572 static void
|
|
573 sledgehammer_check_from_table (Lisp_Object charset, void *table, int level,
|
|
574 int codetop)
|
|
575 {
|
|
576 int i;
|
|
577
|
|
578 switch (level)
|
|
579 {
|
|
580 case 1:
|
|
581 {
|
|
582 short *tab = (short *) table;
|
|
583 for (i = 0; i < 256; i++)
|
|
584 {
|
|
585 if (tab[i] != -1)
|
|
586 {
|
|
587 Lisp_Object char_charset;
|
|
588 int c1, c2;
|
|
589
|
867
|
590 assert (valid_ichar_p (tab[i]));
|
|
591 BREAKUP_ICHAR (tab[i], char_charset, c1, c2);
|
771
|
592 assert (EQ (charset, char_charset));
|
|
593 if (XCHARSET_DIMENSION (charset) == 1)
|
|
594 {
|
|
595 int *to_table =
|
|
596 (int *) XCHARSET_TO_UNICODE_TABLE (charset);
|
|
597 assert_not_any_blank_table (to_table);
|
|
598 assert (to_table[c1 - 32] == (codetop << 8) + i);
|
|
599 }
|
|
600 else
|
|
601 {
|
|
602 int **to_table =
|
|
603 (int **) XCHARSET_TO_UNICODE_TABLE (charset);
|
|
604 assert_not_any_blank_table (to_table);
|
|
605 assert_not_any_blank_table (to_table[c1 - 32]);
|
|
606 assert (to_table[c1 - 32][c2 - 32] == (codetop << 8) + i);
|
|
607 }
|
|
608 }
|
|
609 }
|
|
610 break;
|
|
611 }
|
|
612 case 2:
|
|
613 {
|
|
614 short **tab = (short **) table;
|
|
615 for (i = 0; i < 256; i++)
|
|
616 {
|
|
617 if (tab[i] != from_unicode_blank_1)
|
|
618 sledgehammer_check_from_table (charset, tab[i], 1,
|
|
619 (codetop << 8) + i);
|
|
620 }
|
|
621 break;
|
|
622 }
|
|
623 case 3:
|
|
624 {
|
|
625 short ***tab = (short ***) table;
|
|
626 for (i = 0; i < 256; i++)
|
|
627 {
|
|
628 if (tab[i] != from_unicode_blank_2)
|
|
629 sledgehammer_check_from_table (charset, tab[i], 2,
|
|
630 (codetop << 8) + i);
|
|
631 }
|
|
632 break;
|
|
633 }
|
|
634 case 4:
|
|
635 {
|
|
636 short ****tab = (short ****) table;
|
|
637 for (i = 0; i < 256; i++)
|
|
638 {
|
|
639 if (tab[i] != from_unicode_blank_3)
|
|
640 sledgehammer_check_from_table (charset, tab[i], 3,
|
|
641 (codetop << 8) + i);
|
|
642 }
|
|
643 break;
|
|
644 }
|
|
645 default:
|
|
646 abort ();
|
|
647 }
|
|
648 }
|
|
649
|
|
650 static void
|
|
651 sledgehammer_check_to_table (Lisp_Object charset, void *table, int level,
|
|
652 int codetop)
|
|
653 {
|
|
654 int i;
|
|
655
|
|
656 switch (level)
|
|
657 {
|
|
658 case 1:
|
|
659 {
|
|
660 int *tab = (int *) table;
|
|
661
|
|
662 if (XCHARSET_CHARS (charset) == 94)
|
|
663 {
|
|
664 assert (tab[0] == -1);
|
|
665 assert (tab[95] == -1);
|
|
666 }
|
|
667
|
|
668 for (i = 0; i < 96; i++)
|
|
669 {
|
|
670 if (tab[i] != -1)
|
|
671 {
|
|
672 int u4, u3, u2, u1, levels;
|
867
|
673 Ichar ch;
|
|
674 Ichar this_ch;
|
771
|
675 short val;
|
|
676 void *frtab = XCHARSET_FROM_UNICODE_TABLE (charset);
|
|
677
|
|
678 if (XCHARSET_DIMENSION (charset) == 1)
|
867
|
679 this_ch = make_ichar (charset, i + 32, 0);
|
771
|
680 else
|
867
|
681 this_ch = make_ichar (charset, codetop + 32, i + 32);
|
771
|
682
|
|
683 assert (tab[i] >= 0);
|
|
684 BREAKUP_UNICODE_CODE (tab[i], u4, u3, u2, u1, levels);
|
|
685 assert (levels <= XCHARSET_FROM_UNICODE_LEVELS (charset));
|
|
686
|
|
687 switch (XCHARSET_FROM_UNICODE_LEVELS (charset))
|
|
688 {
|
|
689 case 1: val = ((short *) frtab)[u1]; break;
|
|
690 case 2: val = ((short **) frtab)[u2][u1]; break;
|
|
691 case 3: val = ((short ***) frtab)[u3][u2][u1]; break;
|
|
692 case 4: val = ((short ****) frtab)[u4][u3][u2][u1]; break;
|
|
693 default: abort ();
|
|
694 }
|
|
695
|
867
|
696 ch = make_ichar (charset, val >> 8, val & 0xFF);
|
771
|
697 assert (ch == this_ch);
|
|
698
|
|
699 switch (XCHARSET_FROM_UNICODE_LEVELS (charset))
|
|
700 {
|
|
701 case 4:
|
|
702 assert_not_any_blank_table (frtab);
|
|
703 frtab = ((short ****) frtab)[u4];
|
|
704 /* fall through */
|
|
705 case 3:
|
|
706 assert_not_any_blank_table (frtab);
|
|
707 frtab = ((short ***) frtab)[u3];
|
|
708 /* fall through */
|
|
709 case 2:
|
|
710 assert_not_any_blank_table (frtab);
|
|
711 frtab = ((short **) frtab)[u2];
|
|
712 /* fall through */
|
|
713 case 1:
|
|
714 assert_not_any_blank_table (frtab);
|
|
715 break;
|
|
716 default: abort ();
|
|
717 }
|
|
718 }
|
|
719 }
|
|
720 break;
|
|
721 }
|
|
722 case 2:
|
|
723 {
|
|
724 int **tab = (int **) table;
|
|
725
|
|
726 if (XCHARSET_CHARS (charset) == 94)
|
|
727 {
|
|
728 assert (tab[0] == to_unicode_blank_1);
|
|
729 assert (tab[95] == to_unicode_blank_1);
|
|
730 }
|
|
731
|
|
732 for (i = 0; i < 96; i++)
|
|
733 {
|
|
734 if (tab[i] != to_unicode_blank_1)
|
|
735 sledgehammer_check_to_table (charset, tab[i], 1, i);
|
|
736 }
|
|
737 break;
|
|
738 }
|
|
739 default:
|
|
740 abort ();
|
|
741 }
|
|
742 }
|
|
743
|
|
744 static void
|
|
745 sledgehammer_check_unicode_tables (Lisp_Object charset)
|
|
746 {
|
|
747 /* verify that the blank tables have not been modified */
|
|
748 int i;
|
|
749 int from_level = XCHARSET_FROM_UNICODE_LEVELS (charset);
|
|
750 int to_level = XCHARSET_FROM_UNICODE_LEVELS (charset);
|
|
751
|
|
752 for (i = 0; i < 256; i++)
|
|
753 {
|
|
754 assert (from_unicode_blank_1[i] == (short) -1);
|
|
755 assert (from_unicode_blank_2[i] == from_unicode_blank_1);
|
|
756 assert (from_unicode_blank_3[i] == from_unicode_blank_2);
|
|
757 assert (from_unicode_blank_4[i] == from_unicode_blank_3);
|
|
758 }
|
|
759
|
|
760 for (i = 0; i < 96; i++)
|
|
761 {
|
|
762 assert (to_unicode_blank_1[i] == -1);
|
|
763 assert (to_unicode_blank_2[i] == to_unicode_blank_1);
|
|
764 }
|
|
765
|
|
766 assert (from_level >= 1 && from_level <= 4);
|
|
767
|
|
768 sledgehammer_check_from_table (charset,
|
|
769 XCHARSET_FROM_UNICODE_TABLE (charset),
|
|
770 from_level, 0);
|
|
771
|
|
772 sledgehammer_check_to_table (charset,
|
|
773 XCHARSET_TO_UNICODE_TABLE (charset),
|
|
774 XCHARSET_DIMENSION (charset), 0);
|
|
775 }
|
|
776
|
|
777 #endif /* SLEDGEHAMMER_CHECK_UNICODE */
|
|
778
|
|
779 static void
|
867
|
780 set_unicode_conversion (Ichar chr, int code)
|
771
|
781 {
|
|
782 Lisp_Object charset;
|
|
783 int c1, c2;
|
|
784
|
867
|
785 BREAKUP_ICHAR (chr, charset, c1, c2);
|
771
|
786
|
877
|
787 /* I tried an assert on code > 255 || chr == code, but that fails because
|
|
788 Mule gives many Latin characters separate code points for different
|
|
789 ISO 8859 coded character sets. Obvious in hindsight.... */
|
|
790 assert (!EQ (charset, Vcharset_ascii) || chr == code);
|
|
791 assert (!EQ (charset, Vcharset_latin_iso8859_1) || chr == code);
|
|
792 assert (!EQ (charset, Vcharset_control_1) || chr == code);
|
|
793
|
|
794 /* This assert is needed because it is simply unimplemented. */
|
771
|
795 assert (!EQ (charset, Vcharset_composite));
|
|
796
|
|
797 #ifdef SLEDGEHAMMER_CHECK_UNICODE
|
|
798 sledgehammer_check_unicode_tables (charset);
|
|
799 #endif
|
|
800
|
|
801 /* First, the char -> unicode translation */
|
|
802
|
|
803 if (XCHARSET_DIMENSION (charset) == 1)
|
|
804 {
|
|
805 int *to_table = (int *) XCHARSET_TO_UNICODE_TABLE (charset);
|
|
806 to_table[c1 - 32] = code;
|
|
807 }
|
|
808 else
|
|
809 {
|
|
810 int **to_table_2 = (int **) XCHARSET_TO_UNICODE_TABLE (charset);
|
|
811 int *to_table_1;
|
|
812
|
|
813 assert (XCHARSET_DIMENSION (charset) == 2);
|
|
814 to_table_1 = to_table_2[c1 - 32];
|
|
815 if (to_table_1 == to_unicode_blank_1)
|
|
816 {
|
|
817 to_table_1 = xnew_array (int, 96);
|
|
818 memcpy (to_table_1, to_unicode_blank_1, 96 * sizeof (int));
|
|
819 to_table_2[c1 - 32] = to_table_1;
|
|
820 }
|
|
821 to_table_1[c2 - 32] = code;
|
|
822 }
|
|
823
|
|
824 /* Then, unicode -> char: much harder */
|
|
825
|
|
826 {
|
|
827 int charset_levels;
|
|
828 int u4, u3, u2, u1;
|
|
829 int code_levels;
|
|
830 BREAKUP_UNICODE_CODE (code, u4, u3, u2, u1, code_levels);
|
|
831
|
|
832 charset_levels = XCHARSET_FROM_UNICODE_LEVELS (charset);
|
|
833
|
|
834 /* Make sure the charset's tables have at least as many levels as
|
|
835 the code point has: Note that the charset is guaranteed to have
|
|
836 at least one level, because it was created that way */
|
|
837 if (charset_levels < code_levels)
|
|
838 {
|
|
839 int i;
|
|
840
|
|
841 assert (charset_levels > 0);
|
|
842 for (i = 2; i <= code_levels; i++)
|
|
843 {
|
|
844 if (charset_levels < i)
|
|
845 {
|
|
846 void *old_table = XCHARSET_FROM_UNICODE_TABLE (charset);
|
|
847 void *table = create_new_from_unicode_table (i);
|
|
848 XCHARSET_FROM_UNICODE_TABLE (charset) = table;
|
|
849
|
|
850 switch (i)
|
|
851 {
|
|
852 case 2:
|
|
853 ((short **) table)[0] = (short *) old_table;
|
|
854 break;
|
|
855 case 3:
|
|
856 ((short ***) table)[0] = (short **) old_table;
|
|
857 break;
|
|
858 case 4:
|
|
859 ((short ****) table)[0] = (short ***) old_table;
|
|
860 break;
|
|
861 default: abort ();
|
|
862 }
|
|
863 }
|
|
864 }
|
|
865
|
|
866 charset_levels = code_levels;
|
|
867 XCHARSET_FROM_UNICODE_LEVELS (charset) = code_levels;
|
|
868 }
|
|
869
|
|
870 /* Now, make sure there is a non-default table at each level */
|
|
871 {
|
|
872 int i;
|
|
873 void *table = XCHARSET_FROM_UNICODE_TABLE (charset);
|
|
874
|
|
875 for (i = charset_levels; i >= 2; i--)
|
|
876 {
|
|
877 switch (i)
|
|
878 {
|
|
879 case 4:
|
|
880 if (((short ****) table)[u4] == from_unicode_blank_3)
|
|
881 ((short ****) table)[u4] =
|
|
882 ((short ***) create_new_from_unicode_table (3));
|
|
883 table = ((short ****) table)[u4];
|
|
884 break;
|
|
885 case 3:
|
|
886 if (((short ***) table)[u3] == from_unicode_blank_2)
|
|
887 ((short ***) table)[u3] =
|
|
888 ((short **) create_new_from_unicode_table (2));
|
|
889 table = ((short ***) table)[u3];
|
|
890 break;
|
|
891 case 2:
|
|
892 if (((short **) table)[u2] == from_unicode_blank_1)
|
|
893 ((short **) table)[u2] =
|
|
894 ((short *) create_new_from_unicode_table (1));
|
|
895 table = ((short **) table)[u2];
|
|
896 break;
|
|
897 default: abort ();
|
|
898 }
|
|
899 }
|
|
900 }
|
|
901
|
|
902 /* Finally, set the character */
|
|
903
|
|
904 {
|
|
905 void *table = XCHARSET_FROM_UNICODE_TABLE (charset);
|
|
906 switch (charset_levels)
|
|
907 {
|
|
908 case 1: ((short *) table)[u1] = (c1 << 8) + c2; break;
|
|
909 case 2: ((short **) table)[u2][u1] = (c1 << 8) + c2; break;
|
|
910 case 3: ((short ***) table)[u3][u2][u1] = (c1 << 8) + c2; break;
|
|
911 case 4: ((short ****) table)[u4][u3][u2][u1] = (c1 << 8) + c2; break;
|
|
912 default: abort ();
|
|
913 }
|
|
914 }
|
|
915 }
|
|
916
|
|
917 #ifdef SLEDGEHAMMER_CHECK_UNICODE
|
|
918 sledgehammer_check_unicode_tables (charset);
|
|
919 #endif
|
|
920 }
|
|
921
|
788
|
922 int
|
867
|
923 ichar_to_unicode (Ichar chr)
|
771
|
924 {
|
|
925 Lisp_Object charset;
|
|
926 int c1, c2;
|
|
927
|
867
|
928 type_checking_assert (valid_ichar_p (chr));
|
877
|
929 /* This shortcut depends on the representation of an Ichar, see text.c. */
|
771
|
930 if (chr < 256)
|
|
931 return (int) chr;
|
|
932
|
867
|
933 BREAKUP_ICHAR (chr, charset, c1, c2);
|
771
|
934 if (EQ (charset, Vcharset_composite))
|
|
935 return -1; /* #### don't know how to handle */
|
|
936 else if (XCHARSET_DIMENSION (charset) == 1)
|
|
937 return ((int *) XCHARSET_TO_UNICODE_TABLE (charset))[c1 - 32];
|
|
938 else
|
|
939 return ((int **) XCHARSET_TO_UNICODE_TABLE (charset))[c1 - 32][c2 - 32];
|
|
940 }
|
|
941
|
867
|
942 static Ichar
|
877
|
943 unicode_to_ichar (int code, Lisp_Object_dynarr *charsets)
|
771
|
944 {
|
|
945 int u1, u2, u3, u4;
|
|
946 int code_levels;
|
|
947 int i;
|
|
948 int n = Dynarr_length (charsets);
|
|
949
|
|
950 type_checking_assert (code >= 0);
|
877
|
951 /* This shortcut depends on the representation of an Ichar, see text.c.
|
|
952 Note that it may _not_ be extended to U+00A0 to U+00FF (many ISO 8859
|
893
|
953 coded character sets have points that map into that region, so this
|
|
954 function is many-valued). */
|
877
|
955 if (code < 0xA0)
|
867
|
956 return (Ichar) code;
|
771
|
957
|
|
958 BREAKUP_UNICODE_CODE (code, u4, u3, u2, u1, code_levels);
|
|
959
|
|
960 for (i = 0; i < n; i++)
|
|
961 {
|
|
962 Lisp_Object charset = Dynarr_at (charsets, i);
|
|
963 int charset_levels = XCHARSET_FROM_UNICODE_LEVELS (charset);
|
|
964 if (charset_levels >= code_levels)
|
|
965 {
|
|
966 void *table = XCHARSET_FROM_UNICODE_TABLE (charset);
|
|
967 short retval;
|
|
968
|
|
969 switch (charset_levels)
|
|
970 {
|
|
971 case 1: retval = ((short *) table)[u1]; break;
|
|
972 case 2: retval = ((short **) table)[u2][u1]; break;
|
|
973 case 3: retval = ((short ***) table)[u3][u2][u1]; break;
|
|
974 case 4: retval = ((short ****) table)[u4][u3][u2][u1]; break;
|
|
975 default: abort (); retval = 0;
|
|
976 }
|
|
977
|
|
978 if (retval != -1)
|
867
|
979 return make_ichar (charset, retval >> 8, retval & 0xFF);
|
771
|
980 }
|
|
981 }
|
|
982
|
867
|
983 return (Ichar) -1;
|
771
|
984 }
|
|
985
|
877
|
986 /* Add charsets to precedence list.
|
|
987 LIST must be a list of charsets. Charsets which are in the list more
|
|
988 than once are given the precedence implied by their earliest appearance.
|
|
989 Later appearances are ignored. */
|
771
|
990 static void
|
|
991 add_charsets_to_precedence_list (Lisp_Object list, int *lbs,
|
|
992 Lisp_Object_dynarr *dynarr)
|
|
993 {
|
|
994 {
|
|
995 EXTERNAL_LIST_LOOP_2 (elt, list)
|
|
996 {
|
|
997 Lisp_Object charset = Fget_charset (elt);
|
778
|
998 int lb = XCHARSET_LEADING_BYTE (charset);
|
771
|
999 if (lbs[lb - MIN_LEADING_BYTE] == 0)
|
|
1000 {
|
877
|
1001 Dynarr_add (dynarr, charset);
|
771
|
1002 lbs[lb - MIN_LEADING_BYTE] = 1;
|
|
1003 }
|
|
1004 }
|
|
1005 }
|
|
1006 }
|
|
1007
|
877
|
1008 /* Rebuild the charset precedence array.
|
|
1009 The "charsets preferred for the current language" get highest precedence,
|
|
1010 followed by the "charsets preferred by default", ordered as in
|
|
1011 Vlanguage_unicode_precedence_list and Vdefault_unicode_precedence_list,
|
|
1012 respectively. All remaining charsets follow in an arbitrary order. */
|
771
|
1013 void
|
|
1014 recalculate_unicode_precedence (void)
|
|
1015 {
|
|
1016 int lbs[NUM_LEADING_BYTES];
|
|
1017 int i;
|
|
1018
|
|
1019 for (i = 0; i < NUM_LEADING_BYTES; i++)
|
|
1020 lbs[i] = 0;
|
|
1021
|
|
1022 Dynarr_reset (unicode_precedence_dynarr);
|
|
1023
|
|
1024 add_charsets_to_precedence_list (Vlanguage_unicode_precedence_list,
|
|
1025 lbs, unicode_precedence_dynarr);
|
|
1026 add_charsets_to_precedence_list (Vdefault_unicode_precedence_list,
|
|
1027 lbs, unicode_precedence_dynarr);
|
|
1028
|
|
1029 for (i = 0; i < NUM_LEADING_BYTES; i++)
|
|
1030 {
|
|
1031 if (lbs[i] == 0)
|
|
1032 {
|
826
|
1033 Lisp_Object charset = charset_by_leading_byte (i + MIN_LEADING_BYTE);
|
771
|
1034 if (!NILP (charset))
|
|
1035 Dynarr_add (unicode_precedence_dynarr, charset);
|
|
1036 }
|
|
1037 }
|
|
1038 }
|
|
1039
|
877
|
1040 DEFUN ("unicode-precedence-list",
|
|
1041 Funicode_precedence_list,
|
|
1042 0, 0, 0, /*
|
|
1043 Return the precedence order among charsets used for Unicode decoding.
|
|
1044
|
|
1045 Value is a list of charsets, which are searched in order for a translation
|
|
1046 matching a given Unicode character.
|
|
1047
|
|
1048 The highest precedence is given to the language-specific precedence list of
|
|
1049 charsets, defined by `set-language-unicode-precedence-list'. These are
|
|
1050 followed by charsets in the default precedence list, defined by
|
|
1051 `set-default-unicode-precedence-list'. Charsets occurring multiple times are
|
|
1052 given precedence according to their first occurrance in either list. These
|
|
1053 are followed by the remaining charsets, in some arbitrary order.
|
771
|
1054
|
|
1055 The language-specific precedence list is meant to be set as part of the
|
|
1056 language environment initialization; the default precedence list is meant
|
|
1057 to be set by the user.
|
|
1058 */
|
877
|
1059 ())
|
|
1060 {
|
|
1061 int i;
|
|
1062 Lisp_Object list = Qnil;
|
|
1063
|
|
1064 for (i = Dynarr_length (unicode_precedence_dynarr) - 1; i >= 0; i--)
|
|
1065 list = Fcons (Dynarr_at (unicode_precedence_dynarr, i), list);
|
|
1066 return list;
|
|
1067 }
|
|
1068
|
|
1069
|
|
1070 /* #### This interface is wrong. Cyrillic users and Chinese users are going
|
|
1071 to have varying opinions about whether ISO Cyrillic, KOI8-R, or Windows
|
|
1072 1251 should take precedence, and whether Big Five or CNS should take
|
|
1073 precedence, respectively. This means that users are sometimes going to
|
|
1074 want to set Vlanguage_unicode_precedence_list.
|
|
1075 Furthermore, this should be language-local (buffer-local would be a
|
|
1076 reasonable approximation). */
|
|
1077 DEFUN ("set-language-unicode-precedence-list",
|
|
1078 Fset_language_unicode_precedence_list,
|
|
1079 1, 1, 0, /*
|
|
1080 Set the language-specific precedence of charsets in Unicode decoding.
|
|
1081 LIST is a list of charsets.
|
|
1082 See `unicode-precedence-list' for more information.
|
|
1083 */
|
771
|
1084 (list))
|
|
1085 {
|
|
1086 {
|
|
1087 EXTERNAL_LIST_LOOP_2 (elt, list)
|
|
1088 Fget_charset (elt);
|
|
1089 }
|
|
1090
|
|
1091 Vlanguage_unicode_precedence_list = list;
|
|
1092 recalculate_unicode_precedence ();
|
|
1093 return Qnil;
|
|
1094 }
|
|
1095
|
|
1096 DEFUN ("language-unicode-precedence-list",
|
|
1097 Flanguage_unicode_precedence_list,
|
|
1098 0, 0, 0, /*
|
|
1099 Return the language-specific precedence list used for Unicode decoding.
|
877
|
1100 See `unicode-precedence-list' for more information.
|
771
|
1101 */
|
|
1102 ())
|
|
1103 {
|
|
1104 return Vlanguage_unicode_precedence_list;
|
|
1105 }
|
|
1106
|
|
1107 DEFUN ("set-default-unicode-precedence-list",
|
|
1108 Fset_default_unicode_precedence_list,
|
|
1109 1, 1, 0, /*
|
|
1110 Set the default precedence list used for Unicode decoding.
|
877
|
1111 This is intended to be set by the user. See
|
|
1112 `unicode-precedence-list' for more information.
|
771
|
1113 */
|
|
1114 (list))
|
|
1115 {
|
|
1116 {
|
|
1117 EXTERNAL_LIST_LOOP_2 (elt, list)
|
|
1118 Fget_charset (elt);
|
|
1119 }
|
|
1120
|
|
1121 Vdefault_unicode_precedence_list = list;
|
|
1122 recalculate_unicode_precedence ();
|
|
1123 return Qnil;
|
|
1124 }
|
|
1125
|
|
1126 DEFUN ("default-unicode-precedence-list",
|
|
1127 Fdefault_unicode_precedence_list,
|
|
1128 0, 0, 0, /*
|
|
1129 Return the default precedence list used for Unicode decoding.
|
877
|
1130 See `unicode-precedence-list' for more information.
|
771
|
1131 */
|
|
1132 ())
|
|
1133 {
|
|
1134 return Vdefault_unicode_precedence_list;
|
|
1135 }
|
|
1136
|
|
1137 DEFUN ("set-unicode-conversion", Fset_unicode_conversion,
|
|
1138 2, 2, 0, /*
|
|
1139 Add conversion information between Unicode codepoints and characters.
|
877
|
1140 Conversions for U+0000 to U+00FF are hardwired to ASCII, Control-1, and
|
|
1141 Latin-1. Attempts to set these values will raise an error.
|
|
1142
|
771
|
1143 CHARACTER is one of the following:
|
|
1144
|
|
1145 -- A character (in which case CODE must be a non-negative integer; values
|
|
1146 above 2^20 - 1 are allowed for the purpose of specifying private
|
877
|
1147 characters, but are illegal in standard Unicode---they will cause errors
|
|
1148 when converted to utf-16)
|
771
|
1149 -- A vector of characters (in which case CODE must be a vector of integers
|
|
1150 of the same length)
|
|
1151 */
|
|
1152 (character, code))
|
|
1153 {
|
|
1154 Lisp_Object charset;
|
877
|
1155 int ichar, unicode;
|
771
|
1156
|
|
1157 CHECK_CHAR (character);
|
|
1158 CHECK_NATNUM (code);
|
|
1159
|
877
|
1160 unicode = XINT (code);
|
|
1161 ichar = XCHAR (character);
|
|
1162 charset = ichar_charset (ichar);
|
|
1163
|
|
1164 /* The translations of ASCII, Control-1, and Latin-1 code points are
|
|
1165 hard-coded in ichar_to_unicode and unicode_to_ichar.
|
|
1166
|
|
1167 Checking unicode < 256 && ichar != unicode is wrong because Mule gives
|
|
1168 many Latin characters code points in a few different character sets. */
|
|
1169 if ((EQ (charset, Vcharset_ascii) ||
|
|
1170 EQ (charset, Vcharset_control_1) ||
|
|
1171 EQ (charset, Vcharset_latin_iso8859_1))
|
|
1172 && unicode != ichar)
|
893
|
1173 signal_error (Qinvalid_argument, "Can't change Unicode translation for ASCII, Control-1 or Latin-1 character",
|
771
|
1174 character);
|
|
1175
|
877
|
1176 /* #### Composite characters are not properly implemented yet. */
|
|
1177 if (EQ (charset, Vcharset_composite))
|
|
1178 signal_error (Qinvalid_argument, "Can't set Unicode translation for Composite char",
|
|
1179 character);
|
|
1180
|
|
1181 set_unicode_conversion (ichar, unicode);
|
771
|
1182 return Qnil;
|
|
1183 }
|
|
1184
|
|
1185 #endif /* MULE */
|
|
1186
|
800
|
1187 DEFUN ("char-to-unicode", Fchar_to_unicode, 1, 1, 0, /*
|
771
|
1188 Convert character to Unicode codepoint.
|
877
|
1189 When there is no international support (i.e. the 'mule feature is not
|
|
1190 present), this function simply does `char-to-int'.
|
771
|
1191 */
|
|
1192 (character))
|
|
1193 {
|
|
1194 CHECK_CHAR (character);
|
|
1195 #ifdef MULE
|
867
|
1196 return make_int (ichar_to_unicode (XCHAR (character)));
|
771
|
1197 #else
|
|
1198 return Fchar_to_int (character);
|
|
1199 #endif /* MULE */
|
|
1200 }
|
|
1201
|
800
|
1202 DEFUN ("unicode-to-char", Funicode_to_char, 1, 2, 0, /*
|
771
|
1203 Convert Unicode codepoint to character.
|
|
1204 CODE should be a non-negative integer.
|
|
1205 If CHARSETS is given, it should be a list of charsets, and only those
|
|
1206 charsets will be consulted, in the given order, for a translation.
|
|
1207 Otherwise, the default ordering of all charsets will be given (see
|
|
1208 `set-unicode-charset-precedence').
|
|
1209
|
877
|
1210 When there is no international support (i.e. the 'mule feature is not
|
|
1211 present), this function simply does `int-to-char' and ignores the CHARSETS
|
|
1212 argument.
|
771
|
1213 */
|
|
1214 (code, charsets))
|
|
1215 {
|
|
1216 #ifdef MULE
|
|
1217 Lisp_Object_dynarr *dyn;
|
|
1218 int lbs[NUM_LEADING_BYTES];
|
|
1219 int c;
|
|
1220
|
|
1221 CHECK_NATNUM (code);
|
|
1222 c = XINT (code);
|
|
1223 {
|
|
1224 EXTERNAL_LIST_LOOP_2 (elt, charsets)
|
|
1225 Fget_charset (elt);
|
|
1226 }
|
|
1227
|
|
1228 if (NILP (charsets))
|
|
1229 {
|
877
|
1230 Ichar ret = unicode_to_ichar (c, unicode_precedence_dynarr);
|
771
|
1231 if (ret == -1)
|
|
1232 return Qnil;
|
|
1233 return make_char (ret);
|
|
1234 }
|
|
1235
|
|
1236 dyn = Dynarr_new (Lisp_Object);
|
|
1237 memset (lbs, 0, NUM_LEADING_BYTES * sizeof (int));
|
|
1238 add_charsets_to_precedence_list (charsets, lbs, dyn);
|
|
1239 {
|
877
|
1240 Ichar ret = unicode_to_ichar (c, dyn);
|
771
|
1241 Dynarr_free (dyn);
|
|
1242 if (ret == -1)
|
|
1243 return Qnil;
|
|
1244 return make_char (ret);
|
|
1245 }
|
|
1246 #else
|
|
1247 CHECK_NATNUM (code);
|
|
1248 return Fint_to_char (code);
|
|
1249 #endif /* MULE */
|
|
1250 }
|
|
1251
|
872
|
1252 #ifdef MULE
|
|
1253
|
771
|
1254 static Lisp_Object
|
|
1255 cerrar_el_fulano (Lisp_Object fulano)
|
|
1256 {
|
|
1257 FILE *file = (FILE *) get_opaque_ptr (fulano);
|
|
1258 retry_fclose (file);
|
|
1259 return Qnil;
|
|
1260 }
|
|
1261
|
877
|
1262 /* #### shouldn't this interface be called load-unicode-mapping-table
|
|
1263 for consistency with Unicode Consortium terminology? */
|
771
|
1264 DEFUN ("parse-unicode-translation-table", Fparse_unicode_translation_table,
|
|
1265 2, 6, 0, /*
|
877
|
1266 Load Unicode tables with the Unicode mapping data in FILENAME for CHARSET.
|
771
|
1267 Data is text, in the form of one translation per line -- charset
|
|
1268 codepoint followed by Unicode codepoint. Numbers are decimal or hex
|
|
1269 \(preceded by 0x). Comments are marked with a #. Charset codepoints
|
877
|
1270 for two-dimensional charsets have the first octet stored in the
|
771
|
1271 high 8 bits of the hex number and the second in the low 8 bits.
|
|
1272
|
|
1273 If START and END are given, only charset codepoints within the given
|
877
|
1274 range will be processed. (START and END apply to the codepoints in the
|
|
1275 file, before OFFSET is applied.)
|
771
|
1276
|
877
|
1277 If OFFSET is given, that value will be added to all charset codepoints
|
|
1278 in the file to obtain the internal charset codepoint. \(We assume
|
|
1279 that octets in the table are in the range 33 to 126 or 32 to 127. If
|
|
1280 you have a table in ku-ten form, with octets in the range 1 to 94, you
|
|
1281 will have to use an offset of 5140, i.e. 0x2020.)
|
771
|
1282
|
|
1283 FLAGS, if specified, control further how the tables are interpreted
|
877
|
1284 and are used to special-case certain known format deviations in the
|
|
1285 Unicode tables or in the charset:
|
771
|
1286
|
|
1287 `ignore-first-column'
|
877
|
1288 The JIS X 0208 tables have 3 columns of data instead of 2. The first
|
|
1289 column contains the Shift-JIS codepoint, which we ignore.
|
771
|
1290 `big5'
|
877
|
1291 The charset codepoints are Big Five codepoints; convert it to the
|
|
1292 hacked-up Mule codepoint in `chinese-big5-1' or `chinese-big5-2'.
|
771
|
1293 */
|
|
1294 (filename, charset, start, end, offset, flags))
|
|
1295 {
|
|
1296 int st = 0, en = INT_MAX, of = 0;
|
|
1297 FILE *file;
|
|
1298 struct gcpro gcpro1;
|
|
1299 char line[1025];
|
|
1300 int fondo = specpdl_depth ();
|
|
1301 int ignore_first_column = 0;
|
|
1302 int big5 = 0;
|
|
1303
|
|
1304 CHECK_STRING (filename);
|
|
1305 charset = Fget_charset (charset);
|
|
1306 if (!NILP (start))
|
|
1307 {
|
|
1308 CHECK_INT (start);
|
|
1309 st = XINT (start);
|
|
1310 }
|
|
1311 if (!NILP (end))
|
|
1312 {
|
|
1313 CHECK_INT (end);
|
|
1314 en = XINT (end);
|
|
1315 }
|
|
1316 if (!NILP (offset))
|
|
1317 {
|
|
1318 CHECK_INT (offset);
|
|
1319 of = XINT (offset);
|
|
1320 }
|
|
1321
|
|
1322 if (!LISTP (flags))
|
|
1323 flags = list1 (flags);
|
|
1324
|
|
1325 {
|
|
1326 EXTERNAL_LIST_LOOP_2 (elt, flags)
|
|
1327 {
|
|
1328 if (EQ (elt, Qignore_first_column))
|
|
1329 ignore_first_column = 1;
|
|
1330 else if (EQ (elt, Qbig5))
|
|
1331 big5 = 1;
|
|
1332 else
|
|
1333 invalid_constant
|
877
|
1334 ("Unrecognized `parse-unicode-translation-table' flag", elt);
|
771
|
1335 }
|
|
1336 }
|
|
1337
|
|
1338 GCPRO1 (filename);
|
|
1339 filename = Fexpand_file_name (filename, Qnil);
|
|
1340 file = qxe_fopen (XSTRING_DATA (filename), READ_TEXT);
|
|
1341 if (!file)
|
|
1342 report_file_error ("Cannot open", filename);
|
|
1343 record_unwind_protect (cerrar_el_fulano, make_opaque_ptr (file));
|
|
1344 while (fgets (line, sizeof (line), file))
|
|
1345 {
|
|
1346 char *p = line;
|
|
1347 int cp1, cp2, endcount;
|
|
1348 int cp1high, cp1low;
|
|
1349 int dummy;
|
|
1350
|
|
1351 while (*p) /* erase all comments out of the line */
|
|
1352 {
|
|
1353 if (*p == '#')
|
|
1354 *p = '\0';
|
|
1355 else
|
|
1356 p++;
|
|
1357 }
|
|
1358 /* see if line is nothing but whitespace and skip if so */
|
|
1359 p = line + strspn (line, " \t\n\r\f");
|
|
1360 if (!*p)
|
|
1361 continue;
|
|
1362 /* NOTE: It appears that MS Windows and Newlib sscanf() have
|
|
1363 different interpretations for whitespace (== "skip all whitespace
|
|
1364 at processing point"): Newlib requires at least one corresponding
|
|
1365 whitespace character in the input, but MS allows none. The
|
|
1366 following would be easier to write if we could count on the MS
|
|
1367 interpretation.
|
|
1368
|
|
1369 Also, the return value does NOT include %n storage. */
|
|
1370 if ((!ignore_first_column ?
|
|
1371 sscanf (p, "%i %i%n", &cp1, &cp2, &endcount) < 2 :
|
|
1372 sscanf (p, "%i %i %i%n", &dummy, &cp1, &cp2, &endcount) < 3)
|
|
1373 || *(p + endcount + strspn (p + endcount, " \t\n\r\f")))
|
|
1374 {
|
793
|
1375 warn_when_safe (Qunicode, Qwarning,
|
771
|
1376 "Unrecognized line in translation file %s:\n%s",
|
|
1377 XSTRING_DATA (filename), line);
|
|
1378 continue;
|
|
1379 }
|
|
1380 if (cp1 >= st && cp1 <= en)
|
|
1381 {
|
|
1382 cp1 += of;
|
|
1383 if (cp1 < 0 || cp1 >= 65536)
|
|
1384 {
|
|
1385 out_of_range:
|
793
|
1386 warn_when_safe (Qunicode, Qwarning,
|
|
1387 "Out of range first codepoint 0x%x in "
|
|
1388 "translation file %s:\n%s",
|
771
|
1389 cp1, XSTRING_DATA (filename), line);
|
|
1390 continue;
|
|
1391 }
|
|
1392
|
|
1393 cp1high = cp1 >> 8;
|
|
1394 cp1low = cp1 & 255;
|
|
1395
|
|
1396 if (big5)
|
|
1397 {
|
867
|
1398 Ichar ch = decode_big5_char (cp1high, cp1low);
|
771
|
1399 if (ch == -1)
|
793
|
1400
|
|
1401 warn_when_safe (Qunicode, Qwarning,
|
|
1402 "Out of range Big5 codepoint 0x%x in "
|
|
1403 "translation file %s:\n%s",
|
771
|
1404 cp1, XSTRING_DATA (filename), line);
|
|
1405 else
|
|
1406 set_unicode_conversion (ch, cp2);
|
|
1407 }
|
|
1408 else
|
|
1409 {
|
|
1410 int l1, h1, l2, h2;
|
867
|
1411 Ichar emch;
|
771
|
1412
|
|
1413 switch (XCHARSET_TYPE (charset))
|
|
1414 {
|
|
1415 case CHARSET_TYPE_94: l1 = 33; h1 = 126; l2 = 0; h2 = 0; break;
|
|
1416 case CHARSET_TYPE_96: l1 = 32; h1 = 127; l2 = 0; h2 = 0; break;
|
|
1417 case CHARSET_TYPE_94X94: l1 = 33; h1 = 126; l2 = 33; h2 = 126;
|
|
1418 break;
|
|
1419 case CHARSET_TYPE_96X96: l1 = 32; h1 = 127; l2 = 32; h2 = 127;
|
|
1420 break;
|
|
1421 default: abort (); l1 = 0; h1 = 0; l2 = 0; h2 = 0;
|
|
1422 }
|
|
1423
|
|
1424 if (cp1high < l2 || cp1high > h2 || cp1low < l1 || cp1low > h1)
|
|
1425 goto out_of_range;
|
|
1426
|
867
|
1427 emch = (cp1high == 0 ? make_ichar (charset, cp1low, 0) :
|
|
1428 make_ichar (charset, cp1high, cp1low));
|
771
|
1429 set_unicode_conversion (emch, cp2);
|
|
1430 }
|
|
1431 }
|
|
1432 }
|
|
1433
|
|
1434 if (ferror (file))
|
|
1435 report_file_error ("IO error when reading", filename);
|
|
1436
|
|
1437 unbind_to (fondo); /* close file */
|
|
1438 UNGCPRO;
|
|
1439 return Qnil;
|
|
1440 }
|
|
1441
|
|
1442 #endif /* MULE */
|
|
1443
|
|
1444
|
|
1445 /************************************************************************/
|
|
1446 /* Unicode coding system */
|
|
1447 /************************************************************************/
|
|
1448
|
|
1449 /* ISO 10646 UTF-16, UCS-4, UTF-8, UTF-7, etc. */
|
|
1450
|
|
1451 enum unicode_type
|
|
1452 {
|
|
1453 UNICODE_UTF_16,
|
|
1454 UNICODE_UTF_8,
|
|
1455 UNICODE_UTF_7,
|
|
1456 UNICODE_UCS_4,
|
|
1457 };
|
|
1458
|
|
1459 struct unicode_coding_system
|
|
1460 {
|
|
1461 enum unicode_type type;
|
|
1462 int little_endian :1;
|
|
1463 int need_bom :1;
|
|
1464 };
|
|
1465
|
|
1466 #define CODING_SYSTEM_UNICODE_TYPE(codesys) \
|
|
1467 (CODING_SYSTEM_TYPE_DATA (codesys, unicode)->type)
|
|
1468 #define XCODING_SYSTEM_UNICODE_TYPE(codesys) \
|
|
1469 CODING_SYSTEM_UNICODE_TYPE (XCODING_SYSTEM (codesys))
|
|
1470 #define CODING_SYSTEM_UNICODE_LITTLE_ENDIAN(codesys) \
|
|
1471 (CODING_SYSTEM_TYPE_DATA (codesys, unicode)->little_endian)
|
|
1472 #define XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN(codesys) \
|
|
1473 CODING_SYSTEM_UNICODE_LITTLE_ENDIAN (XCODING_SYSTEM (codesys))
|
|
1474 #define CODING_SYSTEM_UNICODE_NEED_BOM(codesys) \
|
|
1475 (CODING_SYSTEM_TYPE_DATA (codesys, unicode)->need_bom)
|
|
1476 #define XCODING_SYSTEM_UNICODE_NEED_BOM(codesys) \
|
|
1477 CODING_SYSTEM_UNICODE_NEED_BOM (XCODING_SYSTEM (codesys))
|
|
1478
|
|
1479 struct unicode_coding_stream
|
|
1480 {
|
|
1481 /* decode */
|
|
1482 unsigned char counter;
|
|
1483 int seen_char;
|
|
1484 /* encode */
|
|
1485 Lisp_Object current_charset;
|
|
1486 int current_char_boundary;
|
|
1487 int wrote_bom;
|
|
1488 };
|
|
1489
|
1204
|
1490 static const struct memory_description unicode_coding_system_description[] = {
|
771
|
1491 { XD_END }
|
|
1492 };
|
|
1493
|
1204
|
1494 DEFINE_CODING_SYSTEM_TYPE_WITH_DATA (unicode);
|
|
1495
|
771
|
1496 /* Decode a UCS-2 or UCS-4 character into a buffer. If the lookup fails, use
|
|
1497 <GETA MARK> (U+3013) of JIS X 0208, which means correct character
|
|
1498 is not found, instead.
|
|
1499 #### do something more appropriate (use blob?)
|
|
1500 Danger, Will Robinson! Data loss. Should we signal user? */
|
|
1501 static void
|
|
1502 decode_unicode_char (int ch, unsigned_char_dynarr *dst,
|
|
1503 struct unicode_coding_stream *data, int ignore_bom)
|
|
1504 {
|
|
1505 if (ch == 0xFEFF && !data->seen_char && ignore_bom)
|
|
1506 ;
|
|
1507 else
|
|
1508 {
|
|
1509 #ifdef MULE
|
877
|
1510 Ichar chr = unicode_to_ichar (ch, unicode_precedence_dynarr);
|
771
|
1511
|
|
1512 if (chr != -1)
|
|
1513 {
|
867
|
1514 Ibyte work[MAX_ICHAR_LEN];
|
771
|
1515 int len;
|
|
1516
|
867
|
1517 len = set_itext_ichar (work, chr);
|
771
|
1518 Dynarr_add_many (dst, work, len);
|
|
1519 }
|
|
1520 else
|
|
1521 {
|
|
1522 Dynarr_add (dst, LEADING_BYTE_JAPANESE_JISX0208);
|
|
1523 Dynarr_add (dst, 34 + 128);
|
|
1524 Dynarr_add (dst, 46 + 128);
|
|
1525 }
|
|
1526 #else
|
867
|
1527 Dynarr_add (dst, (Ibyte) ch);
|
771
|
1528 #endif /* MULE */
|
|
1529 }
|
|
1530
|
|
1531 data->seen_char = 1;
|
|
1532 }
|
|
1533
|
|
1534 static void
|
|
1535 encode_unicode_char_1 (int code, unsigned_char_dynarr *dst,
|
|
1536 enum unicode_type type, int little_endian)
|
|
1537 {
|
|
1538 switch (type)
|
|
1539 {
|
|
1540 case UNICODE_UTF_16:
|
|
1541 if (little_endian)
|
|
1542 {
|
|
1543 Dynarr_add (dst, (unsigned char) (code & 255));
|
|
1544 Dynarr_add (dst, (unsigned char) ((code >> 8) & 255));
|
|
1545 }
|
|
1546 else
|
|
1547 {
|
|
1548 Dynarr_add (dst, (unsigned char) ((code >> 8) & 255));
|
|
1549 Dynarr_add (dst, (unsigned char) (code & 255));
|
|
1550 }
|
|
1551 break;
|
|
1552
|
|
1553 case UNICODE_UCS_4:
|
|
1554 if (little_endian)
|
|
1555 {
|
|
1556 Dynarr_add (dst, (unsigned char) (code & 255));
|
|
1557 Dynarr_add (dst, (unsigned char) ((code >> 8) & 255));
|
|
1558 Dynarr_add (dst, (unsigned char) ((code >> 16) & 255));
|
|
1559 Dynarr_add (dst, (unsigned char) (code >> 24));
|
|
1560 }
|
|
1561 else
|
|
1562 {
|
|
1563 Dynarr_add (dst, (unsigned char) (code >> 24));
|
|
1564 Dynarr_add (dst, (unsigned char) ((code >> 16) & 255));
|
|
1565 Dynarr_add (dst, (unsigned char) ((code >> 8) & 255));
|
|
1566 Dynarr_add (dst, (unsigned char) (code & 255));
|
|
1567 }
|
|
1568 break;
|
|
1569
|
|
1570 case UNICODE_UTF_8:
|
|
1571 if (code <= 0x7f)
|
|
1572 {
|
|
1573 Dynarr_add (dst, (unsigned char) code);
|
|
1574 }
|
|
1575 else if (code <= 0x7ff)
|
|
1576 {
|
|
1577 Dynarr_add (dst, (unsigned char) ((code >> 6) | 0xc0));
|
|
1578 Dynarr_add (dst, (unsigned char) ((code & 0x3f) | 0x80));
|
|
1579 }
|
|
1580 else if (code <= 0xffff)
|
|
1581 {
|
|
1582 Dynarr_add (dst, (unsigned char) ((code >> 12) | 0xe0));
|
|
1583 Dynarr_add (dst, (unsigned char) (((code >> 6) & 0x3f) | 0x80));
|
|
1584 Dynarr_add (dst, (unsigned char) ((code & 0x3f) | 0x80));
|
|
1585 }
|
|
1586 else if (code <= 0x1fffff)
|
|
1587 {
|
|
1588 Dynarr_add (dst, (unsigned char) ((code >> 18) | 0xf0));
|
|
1589 Dynarr_add (dst, (unsigned char) (((code >> 12) & 0x3f) | 0x80));
|
|
1590 Dynarr_add (dst, (unsigned char) (((code >> 6) & 0x3f) | 0x80));
|
|
1591 Dynarr_add (dst, (unsigned char) ((code & 0x3f) | 0x80));
|
|
1592 }
|
|
1593 else if (code <= 0x3ffffff)
|
|
1594 {
|
|
1595 Dynarr_add (dst, (unsigned char) ((code >> 24) | 0xf8));
|
|
1596 Dynarr_add (dst, (unsigned char) (((code >> 18) & 0x3f) | 0x80));
|
|
1597 Dynarr_add (dst, (unsigned char) (((code >> 12) & 0x3f) | 0x80));
|
|
1598 Dynarr_add (dst, (unsigned char) (((code >> 6) & 0x3f) | 0x80));
|
|
1599 Dynarr_add (dst, (unsigned char) ((code & 0x3f) | 0x80));
|
|
1600 }
|
|
1601 else
|
|
1602 {
|
|
1603 Dynarr_add (dst, (unsigned char) ((code >> 30) | 0xfc));
|
|
1604 Dynarr_add (dst, (unsigned char) (((code >> 24) & 0x3f) | 0x80));
|
|
1605 Dynarr_add (dst, (unsigned char) (((code >> 18) & 0x3f) | 0x80));
|
|
1606 Dynarr_add (dst, (unsigned char) (((code >> 12) & 0x3f) | 0x80));
|
|
1607 Dynarr_add (dst, (unsigned char) (((code >> 6) & 0x3f) | 0x80));
|
|
1608 Dynarr_add (dst, (unsigned char) ((code & 0x3f) | 0x80));
|
|
1609 }
|
|
1610 break;
|
|
1611
|
|
1612 case UNICODE_UTF_7: abort ();
|
|
1613
|
|
1614 default: abort ();
|
|
1615 }
|
|
1616 }
|
|
1617
|
|
1618 static void
|
|
1619 encode_unicode_char (Lisp_Object charset, int h, int l,
|
|
1620 unsigned_char_dynarr *dst, enum unicode_type type,
|
|
1621 int little_endian)
|
|
1622 {
|
|
1623 #ifdef MULE
|
867
|
1624 int code = ichar_to_unicode (make_ichar (charset, h & 127, l & 127));
|
771
|
1625
|
|
1626 if (code == -1)
|
|
1627 {
|
|
1628 if (type != UNICODE_UTF_16 &&
|
|
1629 XCHARSET_DIMENSION (charset) == 2 &&
|
|
1630 XCHARSET_CHARS (charset) == 94)
|
|
1631 {
|
|
1632 unsigned char final = XCHARSET_FINAL (charset);
|
|
1633
|
|
1634 if (('@' <= final) && (final < 0x7f))
|
|
1635 code = (0xe00000 + (final - '@') * 94 * 94
|
|
1636 + ((h & 127) - 33) * 94 + (l & 127) - 33);
|
|
1637 else
|
|
1638 code = '?';
|
|
1639 }
|
|
1640 else
|
|
1641 code = '?';
|
|
1642 }
|
|
1643 #else
|
|
1644 int code = h;
|
|
1645 #endif /* MULE */
|
|
1646
|
|
1647 encode_unicode_char_1 (code, dst, type, little_endian);
|
|
1648 }
|
|
1649
|
|
1650 static Bytecount
|
|
1651 unicode_convert (struct coding_stream *str, const UExtbyte *src,
|
|
1652 unsigned_char_dynarr *dst, Bytecount n)
|
|
1653 {
|
|
1654 unsigned int ch = str->ch;
|
|
1655 struct unicode_coding_stream *data = CODING_STREAM_TYPE_DATA (str, unicode);
|
|
1656 enum unicode_type type =
|
|
1657 XCODING_SYSTEM_UNICODE_TYPE (str->codesys);
|
|
1658 int little_endian = XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN (str->codesys);
|
|
1659 int ignore_bom = XCODING_SYSTEM_UNICODE_NEED_BOM (str->codesys);
|
|
1660 Bytecount orign = n;
|
|
1661
|
|
1662 if (str->direction == CODING_DECODE)
|
|
1663 {
|
|
1664 unsigned char counter = data->counter;
|
|
1665
|
|
1666 while (n--)
|
|
1667 {
|
|
1668 UExtbyte c = *src++;
|
|
1669
|
|
1670 switch (type)
|
|
1671 {
|
|
1672 case UNICODE_UTF_8:
|
|
1673 switch (counter)
|
|
1674 {
|
|
1675 case 0:
|
|
1676 if (c >= 0xfc)
|
|
1677 {
|
|
1678 ch = c & 0x01;
|
|
1679 counter = 5;
|
|
1680 }
|
|
1681 else if (c >= 0xf8)
|
|
1682 {
|
|
1683 ch = c & 0x03;
|
|
1684 counter = 4;
|
|
1685 }
|
|
1686 else if (c >= 0xf0)
|
|
1687 {
|
|
1688 ch = c & 0x07;
|
|
1689 counter = 3;
|
|
1690 }
|
|
1691 else if (c >= 0xe0)
|
|
1692 {
|
|
1693 ch = c & 0x0f;
|
|
1694 counter = 2;
|
|
1695 }
|
|
1696 else if (c >= 0xc0)
|
|
1697 {
|
|
1698 ch = c & 0x1f;
|
|
1699 counter = 1;
|
|
1700 }
|
|
1701 else
|
|
1702 decode_unicode_char (c, dst, data, ignore_bom);
|
|
1703 break;
|
|
1704 case 1:
|
|
1705 ch = (ch << 6) | (c & 0x3f);
|
|
1706 decode_unicode_char (ch, dst, data, ignore_bom);
|
|
1707 ch = 0;
|
|
1708 counter = 0;
|
|
1709 break;
|
|
1710 default:
|
|
1711 ch = (ch << 6) | (c & 0x3f);
|
|
1712 counter--;
|
|
1713 }
|
|
1714 break;
|
|
1715
|
|
1716 case UNICODE_UTF_16:
|
|
1717 if (little_endian)
|
|
1718 ch = (c << counter) | ch;
|
|
1719 else
|
|
1720 ch = (ch << 8) | c;
|
|
1721 counter += 8;
|
|
1722 if (counter == 16)
|
|
1723 {
|
|
1724 int tempch = ch;
|
|
1725 ch = 0;
|
|
1726 counter = 0;
|
|
1727 decode_unicode_char (tempch, dst, data, ignore_bom);
|
|
1728 }
|
|
1729 break;
|
|
1730
|
|
1731 case UNICODE_UCS_4:
|
|
1732 if (little_endian)
|
|
1733 ch = (c << counter) | ch;
|
|
1734 else
|
|
1735 ch = (ch << 8) | c;
|
|
1736 counter += 8;
|
|
1737 if (counter == 32)
|
|
1738 {
|
|
1739 int tempch = ch;
|
|
1740 ch = 0;
|
|
1741 counter = 0;
|
|
1742 if (tempch < 0)
|
|
1743 {
|
|
1744 /* !!#### indicate an error */
|
|
1745 tempch = '~';
|
|
1746 }
|
|
1747 decode_unicode_char (tempch, dst, data, ignore_bom);
|
|
1748 }
|
|
1749 break;
|
|
1750
|
|
1751 case UNICODE_UTF_7:
|
|
1752 abort ();
|
|
1753 break;
|
|
1754
|
|
1755 default: abort ();
|
|
1756 }
|
|
1757
|
|
1758 }
|
|
1759 if (str->eof)
|
|
1760 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst);
|
|
1761
|
|
1762 data->counter = counter;
|
|
1763 }
|
|
1764 else
|
|
1765 {
|
|
1766 unsigned char char_boundary = data->current_char_boundary;
|
|
1767 Lisp_Object charset = data->current_charset;
|
|
1768
|
|
1769 #ifdef ENABLE_COMPOSITE_CHARS
|
|
1770 /* flags for handling composite chars. We do a little switcheroo
|
|
1771 on the source while we're outputting the composite char. */
|
|
1772 Bytecount saved_n = 0;
|
867
|
1773 const Ibyte *saved_src = NULL;
|
771
|
1774 int in_composite = 0;
|
|
1775
|
|
1776 back_to_square_n:
|
|
1777 #endif /* ENABLE_COMPOSITE_CHARS */
|
|
1778
|
|
1779 if (XCODING_SYSTEM_UNICODE_NEED_BOM (str->codesys) && !data->wrote_bom)
|
|
1780 {
|
|
1781 encode_unicode_char_1 (0xFEFF, dst, type, little_endian);
|
|
1782 data->wrote_bom = 1;
|
|
1783 }
|
|
1784
|
|
1785 while (n--)
|
|
1786 {
|
867
|
1787 Ibyte c = *src++;
|
771
|
1788
|
|
1789 #ifdef MULE
|
826
|
1790 if (byte_ascii_p (c))
|
771
|
1791 #endif /* MULE */
|
|
1792 { /* Processing ASCII character */
|
|
1793 ch = 0;
|
|
1794 encode_unicode_char (Vcharset_ascii, c, 0, dst, type,
|
|
1795 little_endian);
|
|
1796
|
|
1797 char_boundary = 1;
|
|
1798 }
|
|
1799 #ifdef MULE
|
867
|
1800 else if (ibyte_leading_byte_p (c) || ibyte_leading_byte_p (ch))
|
771
|
1801 { /* Processing Leading Byte */
|
|
1802 ch = 0;
|
826
|
1803 charset = charset_by_leading_byte (c);
|
|
1804 if (leading_byte_prefix_p(c))
|
771
|
1805 ch = c;
|
|
1806 char_boundary = 0;
|
|
1807 }
|
|
1808 else
|
|
1809 { /* Processing Non-ASCII character */
|
|
1810 char_boundary = 1;
|
|
1811 if (EQ (charset, Vcharset_control_1))
|
|
1812 encode_unicode_char (Vcharset_control_1, c, 0, dst,
|
|
1813 type, little_endian);
|
|
1814 else
|
|
1815 {
|
|
1816 switch (XCHARSET_REP_BYTES (charset))
|
|
1817 {
|
|
1818 case 2:
|
|
1819 encode_unicode_char (charset, c, 0, dst, type,
|
|
1820 little_endian);
|
|
1821 break;
|
|
1822 case 3:
|
|
1823 if (XCHARSET_PRIVATE_P (charset))
|
|
1824 {
|
|
1825 encode_unicode_char (charset, c, 0, dst, type,
|
|
1826 little_endian);
|
|
1827 ch = 0;
|
|
1828 }
|
|
1829 else if (ch)
|
|
1830 {
|
|
1831 #ifdef ENABLE_COMPOSITE_CHARS
|
|
1832 if (EQ (charset, Vcharset_composite))
|
|
1833 {
|
|
1834 if (in_composite)
|
|
1835 {
|
|
1836 /* #### Bother! We don't know how to
|
|
1837 handle this yet. */
|
|
1838 encode_unicode_char (Vcharset_ascii, '~', 0,
|
|
1839 dst, type,
|
|
1840 little_endian);
|
|
1841 }
|
|
1842 else
|
|
1843 {
|
867
|
1844 Ichar emch = make_ichar (Vcharset_composite,
|
771
|
1845 ch & 0x7F,
|
|
1846 c & 0x7F);
|
|
1847 Lisp_Object lstr =
|
|
1848 composite_char_string (emch);
|
|
1849 saved_n = n;
|
|
1850 saved_src = src;
|
|
1851 in_composite = 1;
|
|
1852 src = XSTRING_DATA (lstr);
|
|
1853 n = XSTRING_LENGTH (lstr);
|
|
1854 }
|
|
1855 }
|
|
1856 else
|
|
1857 #endif /* ENABLE_COMPOSITE_CHARS */
|
|
1858 encode_unicode_char (charset, ch, c, dst, type,
|
|
1859 little_endian);
|
|
1860 ch = 0;
|
|
1861 }
|
|
1862 else
|
|
1863 {
|
|
1864 ch = c;
|
|
1865 char_boundary = 0;
|
|
1866 }
|
|
1867 break;
|
|
1868 case 4:
|
|
1869 if (ch)
|
|
1870 {
|
|
1871 encode_unicode_char (charset, ch, c, dst, type,
|
|
1872 little_endian);
|
|
1873 ch = 0;
|
|
1874 }
|
|
1875 else
|
|
1876 {
|
|
1877 ch = c;
|
|
1878 char_boundary = 0;
|
|
1879 }
|
|
1880 break;
|
|
1881 default:
|
|
1882 abort ();
|
|
1883 }
|
|
1884 }
|
|
1885 }
|
|
1886 #endif /* MULE */
|
|
1887 }
|
|
1888
|
|
1889 #ifdef ENABLE_COMPOSITE_CHARS
|
|
1890 if (in_composite)
|
|
1891 {
|
|
1892 n = saved_n;
|
|
1893 src = saved_src;
|
|
1894 in_composite = 0;
|
|
1895 goto back_to_square_n; /* Wheeeeeeeee ..... */
|
|
1896 }
|
|
1897 #endif /* ENABLE_COMPOSITE_CHARS */
|
|
1898
|
|
1899 data->current_char_boundary = char_boundary;
|
|
1900 data->current_charset = charset;
|
|
1901
|
|
1902 /* La palabra se hizo carne! */
|
|
1903 /* A palavra fez-se carne! */
|
|
1904 /* Whatever. */
|
|
1905 }
|
|
1906
|
|
1907 str->ch = ch;
|
|
1908 return orign;
|
|
1909 }
|
|
1910
|
|
1911 /* DEFINE_DETECTOR (utf_7); */
|
|
1912 DEFINE_DETECTOR (utf_8);
|
|
1913 DEFINE_DETECTOR_CATEGORY (utf_8, utf_8);
|
985
|
1914 DEFINE_DETECTOR_CATEGORY (utf_8, utf_8_bom);
|
771
|
1915 DEFINE_DETECTOR (ucs_4);
|
|
1916 DEFINE_DETECTOR_CATEGORY (ucs_4, ucs_4);
|
|
1917 DEFINE_DETECTOR (utf_16);
|
|
1918 DEFINE_DETECTOR_CATEGORY (utf_16, utf_16);
|
|
1919 DEFINE_DETECTOR_CATEGORY (utf_16, utf_16_little_endian);
|
|
1920 DEFINE_DETECTOR_CATEGORY (utf_16, utf_16_bom);
|
|
1921 DEFINE_DETECTOR_CATEGORY (utf_16, utf_16_little_endian_bom);
|
|
1922
|
|
1923 struct ucs_4_detector
|
|
1924 {
|
|
1925 int in_ucs_4_byte;
|
|
1926 };
|
|
1927
|
|
1928 static void
|
|
1929 ucs_4_detect (struct detection_state *st, const UExtbyte *src,
|
|
1930 Bytecount n)
|
|
1931 {
|
|
1932 struct ucs_4_detector *data = DETECTION_STATE_DATA (st, ucs_4);
|
|
1933
|
|
1934 while (n--)
|
|
1935 {
|
|
1936 UExtbyte c = *src++;
|
|
1937 switch (data->in_ucs_4_byte)
|
|
1938 {
|
|
1939 case 0:
|
|
1940 if (c >= 128)
|
|
1941 {
|
|
1942 DET_RESULT (st, ucs_4) = DET_NEARLY_IMPOSSIBLE;
|
|
1943 return;
|
|
1944 }
|
|
1945 else
|
|
1946 data->in_ucs_4_byte++;
|
|
1947 break;
|
|
1948 case 3:
|
|
1949 data->in_ucs_4_byte = 0;
|
|
1950 break;
|
|
1951 default:
|
|
1952 data->in_ucs_4_byte++;
|
|
1953 }
|
|
1954 }
|
|
1955
|
|
1956 /* !!#### write this for real */
|
|
1957 DET_RESULT (st, ucs_4) = DET_AS_LIKELY_AS_UNLIKELY;
|
|
1958 }
|
|
1959
|
|
1960 struct utf_16_detector
|
|
1961 {
|
|
1962 unsigned int seen_ffff:1;
|
|
1963 unsigned int seen_forward_bom:1;
|
|
1964 unsigned int seen_rev_bom:1;
|
|
1965 int byteno;
|
|
1966 int prev_char;
|
|
1967 int text, rev_text;
|
1267
|
1968 int sep, rev_sep;
|
|
1969 int num_ascii;
|
771
|
1970 };
|
|
1971
|
|
1972 static void
|
|
1973 utf_16_detect (struct detection_state *st, const UExtbyte *src,
|
|
1974 Bytecount n)
|
|
1975 {
|
|
1976 struct utf_16_detector *data = DETECTION_STATE_DATA (st, utf_16);
|
|
1977
|
|
1978 while (n--)
|
|
1979 {
|
|
1980 UExtbyte c = *src++;
|
|
1981 int prevc = data->prev_char;
|
|
1982 if (data->byteno == 1 && c == 0xFF && prevc == 0xFE)
|
|
1983 data->seen_forward_bom = 1;
|
|
1984 else if (data->byteno == 1 && c == 0xFE && prevc == 0xFF)
|
|
1985 data->seen_rev_bom = 1;
|
|
1986
|
|
1987 if (data->byteno & 1)
|
|
1988 {
|
|
1989 if (c == 0xFF && prevc == 0xFF)
|
|
1990 data->seen_ffff = 1;
|
|
1991 if (prevc == 0
|
|
1992 && (c == '\r' || c == '\n'
|
|
1993 || (c >= 0x20 && c <= 0x7E)))
|
|
1994 data->text++;
|
|
1995 if (c == 0
|
|
1996 && (prevc == '\r' || prevc == '\n'
|
|
1997 || (prevc >= 0x20 && prevc <= 0x7E)))
|
|
1998 data->rev_text++;
|
1267
|
1999 /* #### 0x2028 is LINE SEPARATOR and 0x2029 is PARAGRAPH SEPARATOR.
|
|
2000 I used to count these in text and rev_text but that is very bad,
|
|
2001 as 0x2028 is also space + left-paren in ASCII, which is extremely
|
|
2002 common. So, what do we do with these? */
|
771
|
2003 if (prevc == 0x20 && (c == 0x28 || c == 0x29))
|
1267
|
2004 data->sep++;
|
771
|
2005 if (c == 0x20 && (prevc == 0x28 || prevc == 0x29))
|
1267
|
2006 data->rev_sep++;
|
771
|
2007 }
|
|
2008
|
1267
|
2009 if ((c >= ' ' && c <= '~') || c == '\n' || c == '\r' || c == '\t' ||
|
|
2010 c == '\f' || c == '\v')
|
|
2011 data->num_ascii++;
|
771
|
2012 data->byteno++;
|
|
2013 data->prev_char = c;
|
|
2014 }
|
|
2015
|
|
2016 {
|
|
2017 int variance_indicates_big_endian =
|
|
2018 (data->text >= 10
|
|
2019 && (data->rev_text == 0
|
|
2020 || data->text / data->rev_text >= 10));
|
|
2021 int variance_indicates_little_endian =
|
|
2022 (data->rev_text >= 10
|
|
2023 && (data->text == 0
|
|
2024 || data->rev_text / data->text >= 10));
|
|
2025
|
|
2026 if (data->seen_ffff)
|
|
2027 SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE);
|
|
2028 else if (data->seen_forward_bom)
|
|
2029 {
|
|
2030 SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE);
|
|
2031 if (variance_indicates_big_endian)
|
|
2032 DET_RESULT (st, utf_16_bom) = DET_NEAR_CERTAINTY;
|
|
2033 else if (variance_indicates_little_endian)
|
|
2034 DET_RESULT (st, utf_16_bom) = DET_SOMEWHAT_LIKELY;
|
|
2035 else
|
|
2036 DET_RESULT (st, utf_16_bom) = DET_QUITE_PROBABLE;
|
|
2037 }
|
|
2038 else if (data->seen_forward_bom)
|
|
2039 {
|
|
2040 SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE);
|
|
2041 if (variance_indicates_big_endian)
|
|
2042 DET_RESULT (st, utf_16_bom) = DET_NEAR_CERTAINTY;
|
|
2043 else if (variance_indicates_little_endian)
|
|
2044 /* #### may need to rethink */
|
|
2045 DET_RESULT (st, utf_16_bom) = DET_SOMEWHAT_LIKELY;
|
|
2046 else
|
|
2047 /* #### may need to rethink */
|
|
2048 DET_RESULT (st, utf_16_bom) = DET_QUITE_PROBABLE;
|
|
2049 }
|
|
2050 else if (data->seen_rev_bom)
|
|
2051 {
|
|
2052 SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE);
|
|
2053 if (variance_indicates_little_endian)
|
|
2054 DET_RESULT (st, utf_16_little_endian_bom) = DET_NEAR_CERTAINTY;
|
|
2055 else if (variance_indicates_big_endian)
|
|
2056 /* #### may need to rethink */
|
|
2057 DET_RESULT (st, utf_16_little_endian_bom) = DET_SOMEWHAT_LIKELY;
|
|
2058 else
|
|
2059 /* #### may need to rethink */
|
|
2060 DET_RESULT (st, utf_16_little_endian_bom) = DET_QUITE_PROBABLE;
|
|
2061 }
|
|
2062 else if (variance_indicates_big_endian)
|
|
2063 {
|
|
2064 SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE);
|
|
2065 DET_RESULT (st, utf_16) = DET_SOMEWHAT_LIKELY;
|
|
2066 DET_RESULT (st, utf_16_little_endian) = DET_SOMEWHAT_UNLIKELY;
|
|
2067 }
|
|
2068 else if (variance_indicates_little_endian)
|
|
2069 {
|
|
2070 SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE);
|
|
2071 DET_RESULT (st, utf_16) = DET_SOMEWHAT_UNLIKELY;
|
|
2072 DET_RESULT (st, utf_16_little_endian) = DET_SOMEWHAT_LIKELY;
|
|
2073 }
|
|
2074 else
|
1267
|
2075 {
|
|
2076 /* #### FUCKME! There should really be an ASCII detector. This
|
|
2077 would rule out the need to have this built-in here as
|
|
2078 well. --ben */
|
|
2079 int pct_ascii = ((100 * data->num_ascii) / data->byteno);
|
|
2080
|
|
2081 if (pct_ascii > 90)
|
|
2082 SET_DET_RESULTS (st, utf_16, DET_QUITE_IMPROBABLE);
|
|
2083 else if (pct_ascii > 75)
|
|
2084 SET_DET_RESULTS (st, utf_16, DET_SOMEWHAT_UNLIKELY);
|
|
2085 else
|
|
2086 SET_DET_RESULTS (st, utf_16, DET_AS_LIKELY_AS_UNLIKELY);
|
|
2087 }
|
771
|
2088 }
|
|
2089 }
|
|
2090
|
|
2091 struct utf_8_detector
|
|
2092 {
|
985
|
2093 int byteno;
|
|
2094 int first_byte;
|
|
2095 int second_byte;
|
1267
|
2096 int prev_byte;
|
771
|
2097 int in_utf_8_byte;
|
1267
|
2098 int recent_utf_8_sequence;
|
|
2099 int seen_bogus_utf8;
|
|
2100 int seen_really_bogus_utf8;
|
|
2101 int seen_2byte_sequence;
|
|
2102 int seen_longer_sequence;
|
|
2103 int seen_iso2022_esc;
|
|
2104 int seen_iso_shift;
|
|
2105 int seen_utf_bom:1;
|
771
|
2106 };
|
|
2107
|
|
2108 static void
|
|
2109 utf_8_detect (struct detection_state *st, const UExtbyte *src,
|
|
2110 Bytecount n)
|
|
2111 {
|
|
2112 struct utf_8_detector *data = DETECTION_STATE_DATA (st, utf_8);
|
|
2113
|
|
2114 while (n--)
|
|
2115 {
|
|
2116 UExtbyte c = *src++;
|
985
|
2117 switch (data->byteno)
|
|
2118 {
|
|
2119 case 0:
|
|
2120 data->first_byte = c;
|
|
2121 break;
|
|
2122 case 1:
|
|
2123 data->second_byte = c;
|
|
2124 break;
|
|
2125 case 2:
|
|
2126 if (data->first_byte == 0xef &&
|
|
2127 data->second_byte == 0xbb &&
|
|
2128 c == 0xbf)
|
1267
|
2129 data->seen_utf_bom = 1;
|
985
|
2130 break;
|
|
2131 }
|
|
2132
|
771
|
2133 switch (data->in_utf_8_byte)
|
|
2134 {
|
|
2135 case 0:
|
1267
|
2136 if (data->prev_byte == ISO_CODE_ESC && c >= 0x28 && c <= 0x2F)
|
|
2137 data->seen_iso2022_esc++;
|
|
2138 else if (c == ISO_CODE_SI || c == ISO_CODE_SO)
|
|
2139 data->seen_iso_shift++;
|
771
|
2140 else if (c >= 0xfc)
|
|
2141 data->in_utf_8_byte = 5;
|
|
2142 else if (c >= 0xf8)
|
|
2143 data->in_utf_8_byte = 4;
|
|
2144 else if (c >= 0xf0)
|
|
2145 data->in_utf_8_byte = 3;
|
|
2146 else if (c >= 0xe0)
|
|
2147 data->in_utf_8_byte = 2;
|
|
2148 else if (c >= 0xc0)
|
|
2149 data->in_utf_8_byte = 1;
|
|
2150 else if (c >= 0x80)
|
1267
|
2151 data->seen_bogus_utf8++;
|
|
2152 if (data->in_utf_8_byte > 0)
|
|
2153 data->recent_utf_8_sequence = data->in_utf_8_byte;
|
771
|
2154 break;
|
|
2155 default:
|
|
2156 if ((c & 0xc0) != 0x80)
|
1267
|
2157 data->seen_really_bogus_utf8++;
|
|
2158 else
|
771
|
2159 {
|
1267
|
2160 data->in_utf_8_byte--;
|
|
2161 if (data->in_utf_8_byte == 0)
|
|
2162 {
|
|
2163 if (data->recent_utf_8_sequence == 1)
|
|
2164 data->seen_2byte_sequence++;
|
|
2165 else
|
|
2166 {
|
|
2167 assert (data->recent_utf_8_sequence >= 2);
|
|
2168 data->seen_longer_sequence++;
|
|
2169 }
|
|
2170 }
|
771
|
2171 }
|
|
2172 }
|
985
|
2173
|
|
2174 data->byteno++;
|
1267
|
2175 data->prev_byte = c;
|
771
|
2176 }
|
1267
|
2177
|
|
2178 /* either BOM or no BOM, but not both */
|
|
2179 SET_DET_RESULTS (st, utf_8, DET_NEARLY_IMPOSSIBLE);
|
|
2180
|
|
2181
|
|
2182 if (data->seen_utf_bom)
|
|
2183 DET_RESULT (st, utf_8_bom) = DET_NEAR_CERTAINTY;
|
|
2184 else
|
|
2185 {
|
|
2186 if (data->seen_really_bogus_utf8 ||
|
|
2187 data->seen_bogus_utf8 >= 2)
|
|
2188 ; /* bogus */
|
|
2189 else if (data->seen_bogus_utf8)
|
|
2190 DET_RESULT (st, utf_8) = DET_SOMEWHAT_UNLIKELY;
|
|
2191 else if ((data->seen_longer_sequence >= 5 ||
|
|
2192 data->seen_2byte_sequence >= 10) &&
|
|
2193 (!(data->seen_iso2022_esc + data->seen_iso_shift) ||
|
|
2194 (data->seen_longer_sequence * 2 + data->seen_2byte_sequence) /
|
|
2195 (data->seen_iso2022_esc + data->seen_iso_shift) >= 10))
|
|
2196 /* heuristics, heuristics, we love heuristics */
|
|
2197 DET_RESULT (st, utf_8) = DET_QUITE_PROBABLE;
|
|
2198 else if (data->seen_iso2022_esc ||
|
|
2199 data->seen_iso_shift >= 3)
|
|
2200 DET_RESULT (st, utf_8) = DET_SOMEWHAT_UNLIKELY;
|
|
2201 else if (data->seen_longer_sequence ||
|
|
2202 data->seen_2byte_sequence)
|
|
2203 DET_RESULT (st, utf_8) = DET_SOMEWHAT_LIKELY;
|
|
2204 else if (data->seen_iso_shift)
|
|
2205 DET_RESULT (st, utf_8) = DET_SOMEWHAT_UNLIKELY;
|
|
2206 else
|
|
2207 DET_RESULT (st, utf_8) = DET_AS_LIKELY_AS_UNLIKELY;
|
|
2208 }
|
771
|
2209 }
|
|
2210
|
|
2211 static void
|
|
2212 unicode_init_coding_stream (struct coding_stream *str)
|
|
2213 {
|
|
2214 struct unicode_coding_stream *data =
|
|
2215 CODING_STREAM_TYPE_DATA (str, unicode);
|
|
2216 xzero (*data);
|
|
2217 data->current_charset = Qnil;
|
|
2218 }
|
|
2219
|
|
2220 static void
|
|
2221 unicode_rewind_coding_stream (struct coding_stream *str)
|
|
2222 {
|
|
2223 unicode_init_coding_stream (str);
|
|
2224 }
|
|
2225
|
|
2226 static int
|
|
2227 unicode_putprop (Lisp_Object codesys, Lisp_Object key, Lisp_Object value)
|
|
2228 {
|
|
2229 if (EQ (key, Qtype))
|
|
2230 {
|
|
2231 enum unicode_type type;
|
|
2232
|
|
2233 if (EQ (value, Qutf_8))
|
|
2234 type = UNICODE_UTF_8;
|
|
2235 else if (EQ (value, Qutf_16))
|
|
2236 type = UNICODE_UTF_16;
|
|
2237 else if (EQ (value, Qutf_7))
|
|
2238 type = UNICODE_UTF_7;
|
|
2239 else if (EQ (value, Qucs_4))
|
|
2240 type = UNICODE_UCS_4;
|
|
2241 else
|
|
2242 invalid_constant ("Invalid Unicode type", key);
|
|
2243
|
|
2244 XCODING_SYSTEM_UNICODE_TYPE (codesys) = type;
|
|
2245 }
|
|
2246 else if (EQ (key, Qlittle_endian))
|
|
2247 XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN (codesys) = !NILP (value);
|
|
2248 else if (EQ (key, Qneed_bom))
|
|
2249 XCODING_SYSTEM_UNICODE_NEED_BOM (codesys) = !NILP (value);
|
|
2250 else
|
|
2251 return 0;
|
|
2252 return 1;
|
|
2253 }
|
|
2254
|
|
2255 static Lisp_Object
|
|
2256 unicode_getprop (Lisp_Object coding_system, Lisp_Object prop)
|
|
2257 {
|
|
2258 if (EQ (prop, Qtype))
|
|
2259 {
|
|
2260 switch (XCODING_SYSTEM_UNICODE_TYPE (coding_system))
|
|
2261 {
|
|
2262 case UNICODE_UTF_16: return Qutf_16;
|
|
2263 case UNICODE_UTF_8: return Qutf_8;
|
|
2264 case UNICODE_UTF_7: return Qutf_7;
|
|
2265 case UNICODE_UCS_4: return Qucs_4;
|
|
2266 default: abort ();
|
|
2267 }
|
|
2268 }
|
|
2269 else if (EQ (prop, Qlittle_endian))
|
|
2270 return XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN (coding_system) ? Qt : Qnil;
|
|
2271 else if (EQ (prop, Qneed_bom))
|
|
2272 return XCODING_SYSTEM_UNICODE_NEED_BOM (coding_system) ? Qt : Qnil;
|
|
2273 return Qunbound;
|
|
2274 }
|
|
2275
|
|
2276 static void
|
|
2277 unicode_print (Lisp_Object cs, Lisp_Object printcharfun, int escapeflag)
|
|
2278 {
|
800
|
2279 write_fmt_string_lisp (printcharfun, "(%s", 1, unicode_getprop (cs, Qtype));
|
771
|
2280 if (XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN (cs))
|
826
|
2281 write_c_string (printcharfun, ", little-endian");
|
771
|
2282 if (XCODING_SYSTEM_UNICODE_NEED_BOM (cs))
|
826
|
2283 write_c_string (printcharfun, ", need-bom");
|
|
2284 write_c_string (printcharfun, ")");
|
771
|
2285 }
|
|
2286
|
|
2287 int
|
|
2288 dfc_coding_system_is_unicode (Lisp_Object codesys)
|
|
2289 {
|
|
2290 #ifdef HAVE_WIN32_CODING_SYSTEMS
|
|
2291 codesys = Fget_coding_system (codesys);
|
|
2292 return (EQ (XCODING_SYSTEM_TYPE (codesys), Qunicode) &&
|
|
2293 XCODING_SYSTEM_UNICODE_TYPE (codesys) == UNICODE_UTF_16 &&
|
|
2294 XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN (codesys));
|
|
2295
|
|
2296 #else
|
|
2297 return 0;
|
|
2298 #endif
|
|
2299 }
|
|
2300
|
|
2301
|
|
2302 /************************************************************************/
|
|
2303 /* Initialization */
|
|
2304 /************************************************************************/
|
|
2305
|
|
2306 void
|
|
2307 syms_of_unicode (void)
|
|
2308 {
|
|
2309 #ifdef MULE
|
877
|
2310 DEFSUBR (Funicode_precedence_list);
|
771
|
2311 DEFSUBR (Fset_language_unicode_precedence_list);
|
|
2312 DEFSUBR (Flanguage_unicode_precedence_list);
|
|
2313 DEFSUBR (Fset_default_unicode_precedence_list);
|
|
2314 DEFSUBR (Fdefault_unicode_precedence_list);
|
|
2315 DEFSUBR (Fset_unicode_conversion);
|
|
2316
|
|
2317 DEFSUBR (Fparse_unicode_translation_table);
|
|
2318
|
|
2319 DEFSYMBOL (Qignore_first_column);
|
|
2320 #endif /* MULE */
|
|
2321
|
800
|
2322 DEFSUBR (Fchar_to_unicode);
|
|
2323 DEFSUBR (Funicode_to_char);
|
771
|
2324
|
|
2325 DEFSYMBOL (Qunicode);
|
|
2326 DEFSYMBOL (Qucs_4);
|
|
2327 DEFSYMBOL (Qutf_16);
|
|
2328 DEFSYMBOL (Qutf_8);
|
|
2329 DEFSYMBOL (Qutf_7);
|
|
2330
|
|
2331 DEFSYMBOL (Qneed_bom);
|
|
2332
|
|
2333 DEFSYMBOL (Qutf_16);
|
|
2334 DEFSYMBOL (Qutf_16_little_endian);
|
|
2335 DEFSYMBOL (Qutf_16_bom);
|
|
2336 DEFSYMBOL (Qutf_16_little_endian_bom);
|
985
|
2337
|
|
2338 DEFSYMBOL (Qutf_8);
|
|
2339 DEFSYMBOL (Qutf_8_bom);
|
771
|
2340 }
|
|
2341
|
|
2342 void
|
|
2343 coding_system_type_create_unicode (void)
|
|
2344 {
|
|
2345 INITIALIZE_CODING_SYSTEM_TYPE_WITH_DATA (unicode, "unicode-coding-system-p");
|
|
2346 CODING_SYSTEM_HAS_METHOD (unicode, print);
|
|
2347 CODING_SYSTEM_HAS_METHOD (unicode, convert);
|
|
2348 CODING_SYSTEM_HAS_METHOD (unicode, init_coding_stream);
|
|
2349 CODING_SYSTEM_HAS_METHOD (unicode, rewind_coding_stream);
|
|
2350 CODING_SYSTEM_HAS_METHOD (unicode, putprop);
|
|
2351 CODING_SYSTEM_HAS_METHOD (unicode, getprop);
|
|
2352
|
|
2353 INITIALIZE_DETECTOR (utf_8);
|
|
2354 DETECTOR_HAS_METHOD (utf_8, detect);
|
|
2355 INITIALIZE_DETECTOR_CATEGORY (utf_8, utf_8);
|
985
|
2356 INITIALIZE_DETECTOR_CATEGORY (utf_8, utf_8_bom);
|
771
|
2357
|
|
2358 INITIALIZE_DETECTOR (ucs_4);
|
|
2359 DETECTOR_HAS_METHOD (ucs_4, detect);
|
|
2360 INITIALIZE_DETECTOR_CATEGORY (ucs_4, ucs_4);
|
|
2361
|
|
2362 INITIALIZE_DETECTOR (utf_16);
|
|
2363 DETECTOR_HAS_METHOD (utf_16, detect);
|
|
2364 INITIALIZE_DETECTOR_CATEGORY (utf_16, utf_16);
|
|
2365 INITIALIZE_DETECTOR_CATEGORY (utf_16, utf_16_little_endian);
|
|
2366 INITIALIZE_DETECTOR_CATEGORY (utf_16, utf_16_bom);
|
|
2367 INITIALIZE_DETECTOR_CATEGORY (utf_16, utf_16_little_endian_bom);
|
|
2368 }
|
|
2369
|
|
2370 void
|
|
2371 reinit_coding_system_type_create_unicode (void)
|
|
2372 {
|
|
2373 REINITIALIZE_CODING_SYSTEM_TYPE (unicode);
|
|
2374 }
|
|
2375
|
|
2376 void
|
|
2377 reinit_vars_of_unicode (void)
|
|
2378 {
|
|
2379 #ifdef MULE
|
|
2380 init_blank_unicode_tables ();
|
|
2381 #endif /* MULE */
|
|
2382 }
|
|
2383
|
|
2384 void
|
|
2385 vars_of_unicode (void)
|
|
2386 {
|
|
2387 reinit_vars_of_unicode ();
|
|
2388
|
|
2389 Fprovide (intern ("unicode"));
|
|
2390
|
|
2391 #ifdef MULE
|
|
2392 staticpro (&Vlanguage_unicode_precedence_list);
|
|
2393 Vlanguage_unicode_precedence_list = Qnil;
|
|
2394
|
|
2395 staticpro (&Vdefault_unicode_precedence_list);
|
|
2396 Vdefault_unicode_precedence_list = Qnil;
|
|
2397
|
|
2398 unicode_precedence_dynarr = Dynarr_new (Lisp_Object);
|
|
2399 dump_add_root_struct_ptr (&unicode_precedence_dynarr,
|
|
2400 &lisp_object_dynarr_description);
|
|
2401 #endif /* MULE */
|
|
2402 }
|