Mercurial > hg > xemacs-beta
annotate src/alloc.c @ 2594:bafa01f3cb06
[xemacs-hg @ 2005-02-18 06:26:31 by stephent]
XEmacs 21.5.19 "chives" is released.
| author | stephent |
|---|---|
| date | Fri, 18 Feb 2005 06:31:22 +0000 |
| parents | 9f70af3ac939 |
| children | e6854ec89f8e |
| rev | line source |
|---|---|
| 428 | 1 /* Storage allocation and gc for XEmacs Lisp interpreter. |
| 2 Copyright (C) 1985-1998 Free Software Foundation, Inc. | |
| 3 Copyright (C) 1995 Sun Microsystems, Inc. | |
| 2367 | 4 Copyright (C) 1995, 1996, 2001, 2002, 2003, 2004 Ben Wing. |
| 428 | 5 |
| 6 This file is part of XEmacs. | |
| 7 | |
| 8 XEmacs is free software; you can redistribute it and/or modify it | |
| 9 under the terms of the GNU General Public License as published by the | |
| 10 Free Software Foundation; either version 2, or (at your option) any | |
| 11 later version. | |
| 12 | |
| 13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
| 14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
| 15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
| 16 for more details. | |
| 17 | |
| 18 You should have received a copy of the GNU General Public License | |
| 19 along with XEmacs; see the file COPYING. If not, write to | |
| 20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
| 21 Boston, MA 02111-1307, USA. */ | |
| 22 | |
| 23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from | |
| 24 FSF. */ | |
| 25 | |
| 26 /* Authorship: | |
| 27 | |
| 28 FSF: Original version; a long time ago. | |
| 29 Mly: Significantly rewritten to use new 3-bit tags and | |
| 30 nicely abstracted object definitions, for 19.8. | |
| 31 JWZ: Improved code to keep track of purespace usage and | |
| 32 issue nice purespace and GC stats. | |
| 33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking | |
| 34 and various changes for Mule, for 19.12. | |
| 35 Added bit vectors for 19.13. | |
| 36 Added lcrecord lists for 19.14. | |
| 37 slb: Lots of work on the purification and dump time code. | |
| 38 Synched Doug Lea malloc support from Emacs 20.2. | |
| 442 | 39 og: Killed the purespace. Portable dumper (moved to dumper.c) |
| 428 | 40 */ |
| 41 | |
| 42 #include <config.h> | |
| 43 #include "lisp.h" | |
| 44 | |
| 45 #include "backtrace.h" | |
| 46 #include "buffer.h" | |
| 47 #include "bytecode.h" | |
| 48 #include "chartab.h" | |
| 49 #include "device.h" | |
| 50 #include "elhash.h" | |
| 51 #include "events.h" | |
| 872 | 52 #include "extents-impl.h" |
| 1204 | 53 #include "file-coding.h" |
| 872 | 54 #include "frame-impl.h" |
| 428 | 55 #include "glyphs.h" |
| 56 #include "opaque.h" | |
| 1204 | 57 #include "lstream.h" |
| 872 | 58 #include "process.h" |
| 1292 | 59 #include "profile.h" |
| 428 | 60 #include "redisplay.h" |
| 61 #include "specifier.h" | |
| 62 #include "sysfile.h" | |
| 442 | 63 #include "sysdep.h" |
| 428 | 64 #include "window.h" |
| 65 #include "console-stream.h" | |
| 66 | |
| 67 #ifdef DOUG_LEA_MALLOC | |
| 68 #include <malloc.h> | |
| 69 #endif | |
| 70 | |
| 71 EXFUN (Fgarbage_collect, 0); | |
| 72 | |
| 814 | 73 static void recompute_need_to_garbage_collect (void); |
| 74 | |
| 428 | 75 #if 0 /* this is _way_ too slow to be part of the standard debug options */ |
| 76 #if defined(DEBUG_XEMACS) && defined(MULE) | |
| 77 #define VERIFY_STRING_CHARS_INTEGRITY | |
| 78 #endif | |
| 79 #endif | |
| 80 | |
| 81 /* Define this to use malloc/free with no freelist for all datatypes, | |
| 82 the hope being that some debugging tools may help detect | |
| 83 freed memory references */ | |
| 84 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */ | |
| 85 #include <dmalloc.h> | |
| 86 #define ALLOC_NO_POOLS | |
| 87 #endif | |
| 88 | |
| 89 #ifdef DEBUG_XEMACS | |
| 458 | 90 static Fixnum debug_allocation; |
| 91 static Fixnum debug_allocation_backtrace_length; | |
| 428 | 92 #endif |
| 93 | |
| 94 /* Number of bytes of consing done since the last gc */ | |
| 814 | 95 static EMACS_INT consing_since_gc; |
| 1292 | 96 EMACS_UINT total_consing; |
| 97 | |
| 814 | 98 int need_to_garbage_collect; |
| 851 | 99 int need_to_check_c_alloca; |
| 887 | 100 int need_to_signal_post_gc; |
| 851 | 101 int funcall_allocation_flag; |
| 102 Bytecount __temp_alloca_size__; | |
| 103 Bytecount funcall_alloca_count; | |
| 814 | 104 |
| 105 /* Determine now whether we need to garbage collect or not, to make | |
| 106 Ffuncall() faster */ | |
| 107 #define INCREMENT_CONS_COUNTER_1(size) \ | |
| 108 do \ | |
| 109 { \ | |
| 110 consing_since_gc += (size); \ | |
| 1292 | 111 total_consing += (size); \ |
| 112 if (profiling_active) \ | |
| 113 profile_record_consing (size); \ | |
| 814 | 114 recompute_need_to_garbage_collect (); \ |
| 115 } while (0) | |
| 428 | 116 |
| 117 #define debug_allocation_backtrace() \ | |
| 118 do { \ | |
| 119 if (debug_allocation_backtrace_length > 0) \ | |
| 120 debug_short_backtrace (debug_allocation_backtrace_length); \ | |
| 121 } while (0) | |
| 122 | |
| 123 #ifdef DEBUG_XEMACS | |
| 801 | 124 #define INCREMENT_CONS_COUNTER(foosize, type) \ |
| 125 do { \ | |
| 126 if (debug_allocation) \ | |
| 127 { \ | |
| 128 stderr_out ("allocating %s (size %ld)\n", type, \ | |
| 129 (long) foosize); \ | |
| 130 debug_allocation_backtrace (); \ | |
| 131 } \ | |
| 132 INCREMENT_CONS_COUNTER_1 (foosize); \ | |
| 428 | 133 } while (0) |
| 134 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \ | |
| 135 do { \ | |
| 136 if (debug_allocation > 1) \ | |
| 137 { \ | |
| 801 | 138 stderr_out ("allocating noseeum %s (size %ld)\n", type, \ |
| 139 (long) foosize); \ | |
| 428 | 140 debug_allocation_backtrace (); \ |
| 141 } \ | |
| 142 INCREMENT_CONS_COUNTER_1 (foosize); \ | |
| 143 } while (0) | |
| 144 #else | |
| 145 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size) | |
| 146 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \ | |
| 147 INCREMENT_CONS_COUNTER_1 (size) | |
| 148 #endif | |
| 149 | |
| 150 #define DECREMENT_CONS_COUNTER(size) do { \ | |
| 151 consing_since_gc -= (size); \ | |
| 1292 | 152 total_consing -= (size); \ |
| 153 if (profiling_active) \ | |
| 154 profile_record_unconsing (size); \ | |
| 428 | 155 if (consing_since_gc < 0) \ |
| 156 consing_since_gc = 0; \ | |
| 814 | 157 recompute_need_to_garbage_collect (); \ |
| 428 | 158 } while (0) |
| 159 | |
| 160 /* Number of bytes of consing since gc before another gc should be done. */ | |
| 801 | 161 static EMACS_INT gc_cons_threshold; |
| 162 | |
| 163 /* Percentage of consing of total data size before another GC. */ | |
| 164 static EMACS_INT gc_cons_percentage; | |
| 165 | |
| 166 #ifdef ERROR_CHECK_GC | |
| 853 | 167 int always_gc; /* Debugging hack; equivalent to |
| 168 (setq gc-cons-thresold -1) */ | |
| 801 | 169 #else |
| 170 #define always_gc 0 | |
| 171 #endif | |
| 428 | 172 |
| 173 /* Nonzero during gc */ | |
| 174 int gc_in_progress; | |
| 175 | |
| 1154 | 176 /* Nonzero means display messages at beginning and end of GC. */ |
| 177 | |
| 178 int garbage_collection_messages; | |
| 179 | |
| 428 | 180 /* Number of times GC has happened at this level or below. |
| 181 * Level 0 is most volatile, contrary to usual convention. | |
| 182 * (Of course, there's only one level at present) */ | |
| 183 EMACS_INT gc_generation_number[1]; | |
| 184 | |
| 185 /* This is just for use by the printer, to allow things to print uniquely */ | |
| 186 static int lrecord_uid_counter; | |
| 187 | |
| 188 /* Nonzero when calling certain hooks or doing other things where | |
| 189 a GC would be bad */ | |
| 1957 | 190 int gc_currently_forbidden; |
| 428 | 191 |
| 192 /* Hooks. */ | |
| 193 Lisp_Object Vpre_gc_hook, Qpre_gc_hook; | |
| 194 Lisp_Object Vpost_gc_hook, Qpost_gc_hook; | |
| 195 | |
| 196 /* "Garbage collecting" */ | |
| 197 Lisp_Object Vgc_message; | |
| 198 Lisp_Object Vgc_pointer_glyph; | |
| 2367 | 199 static const Ascbyte gc_default_message[] = "Garbage collecting"; |
| 428 | 200 Lisp_Object Qgarbage_collecting; |
| 201 | |
| 1292 | 202 static Lisp_Object QSin_garbage_collection; |
| 203 | |
| 428 | 204 /* Non-zero means we're in the process of doing the dump */ |
| 205 int purify_flag; | |
| 206 | |
| 1204 | 207 /* Non-zero means we're pdumping out or in */ |
| 208 #ifdef PDUMP | |
| 209 int in_pdump; | |
| 210 #endif | |
| 211 | |
| 800 | 212 #ifdef ERROR_CHECK_TYPES |
| 428 | 213 |
| 793 | 214 Error_Behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN, ERROR_ME_DEBUG_WARN; |
| 428 | 215 |
| 216 #endif | |
| 217 | |
| 801 | 218 /* Very cheesy ways of figuring out how much memory is being used for |
| 219 data. #### Need better (system-dependent) ways. */ | |
| 220 void *minimum_address_seen; | |
| 221 void *maximum_address_seen; | |
| 222 | |
| 428 | 223 int |
| 224 c_readonly (Lisp_Object obj) | |
| 225 { | |
| 226 return POINTER_TYPE_P (XTYPE (obj)) && C_READONLY (obj); | |
| 227 } | |
| 228 | |
| 229 int | |
| 230 lisp_readonly (Lisp_Object obj) | |
| 231 { | |
| 232 return POINTER_TYPE_P (XTYPE (obj)) && LISP_READONLY (obj); | |
| 233 } | |
| 234 | |
| 235 | |
| 236 /* Maximum amount of C stack to save when a GC happens. */ | |
| 237 | |
| 238 #ifndef MAX_SAVE_STACK | |
| 239 #define MAX_SAVE_STACK 0 /* 16000 */ | |
| 240 #endif | |
| 241 | |
| 242 /* Non-zero means ignore malloc warnings. Set during initialization. */ | |
| 243 int ignore_malloc_warnings; | |
| 244 | |
| 245 | |
| 246 static void *breathing_space; | |
| 247 | |
| 248 void | |
| 249 release_breathing_space (void) | |
| 250 { | |
| 251 if (breathing_space) | |
| 252 { | |
| 253 void *tmp = breathing_space; | |
| 254 breathing_space = 0; | |
| 1726 | 255 xfree (tmp, void *); |
| 428 | 256 } |
| 257 } | |
| 258 | |
| 259 /* malloc calls this if it finds we are near exhausting storage */ | |
| 260 void | |
| 442 | 261 malloc_warning (const char *str) |
| 428 | 262 { |
| 263 if (ignore_malloc_warnings) | |
| 264 return; | |
| 265 | |
| 266 warn_when_safe | |
| 793 | 267 (Qmemory, Qemergency, |
| 428 | 268 "%s\n" |
| 269 "Killing some buffers may delay running out of memory.\n" | |
| 270 "However, certainly by the time you receive the 95%% warning,\n" | |
| 271 "you should clean up, kill this Emacs, and start a new one.", | |
| 272 str); | |
| 273 } | |
| 274 | |
| 275 /* Called if malloc returns zero */ | |
| 276 DOESNT_RETURN | |
| 277 memory_full (void) | |
| 278 { | |
| 279 /* Force a GC next time eval is called. | |
| 280 It's better to loop garbage-collecting (we might reclaim enough | |
| 281 to win) than to loop beeping and barfing "Memory exhausted" | |
| 282 */ | |
| 283 consing_since_gc = gc_cons_threshold + 1; | |
| 814 | 284 recompute_need_to_garbage_collect (); |
| 428 | 285 release_breathing_space (); |
| 286 | |
| 287 /* Flush some histories which might conceivably contain garbalogical | |
| 288 inhibitors. */ | |
| 289 if (!NILP (Fboundp (Qvalues))) | |
| 290 Fset (Qvalues, Qnil); | |
| 291 Vcommand_history = Qnil; | |
| 292 | |
| 563 | 293 out_of_memory ("Memory exhausted", Qunbound); |
| 428 | 294 } |
| 295 | |
| 801 | 296 static void |
| 297 set_alloc_mins_and_maxes (void *val, Bytecount size) | |
| 298 { | |
| 299 if (!val) | |
| 300 return; | |
| 301 if ((char *) val + size > (char *) maximum_address_seen) | |
| 302 maximum_address_seen = (char *) val + size; | |
| 303 if (!minimum_address_seen) | |
| 304 minimum_address_seen = | |
| 305 #if SIZEOF_VOID_P == 8 | |
| 306 (void *) 0xFFFFFFFFFFFFFFFF; | |
| 307 #else | |
| 308 (void *) 0xFFFFFFFF; | |
| 309 #endif | |
| 310 if ((char *) val < (char *) minimum_address_seen) | |
| 311 minimum_address_seen = (char *) val; | |
| 312 } | |
| 313 | |
| 1315 | 314 #ifdef ERROR_CHECK_MALLOC |
| 1292 | 315 static int in_malloc; |
| 1333 | 316 extern int regex_malloc_disallowed; |
| 2367 | 317 |
| 318 #define MALLOC_BEGIN() \ | |
| 319 do \ | |
| 320 { \ | |
| 321 assert (!in_malloc); \ | |
| 322 assert (!regex_malloc_disallowed); \ | |
| 323 in_malloc = 1; \ | |
| 324 } \ | |
| 325 while (0) | |
| 326 | |
| 327 #define FREE_OR_REALLOC_BEGIN(block) \ | |
| 328 do \ | |
| 329 { \ | |
| 330 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an \ | |
| 331 error until much later on for many system mallocs, such as \ | |
| 332 the one that comes with Solaris 2.3. FMH!! */ \ | |
| 333 assert (block != (void *) 0xDEADBEEF); \ | |
| 334 /* You cannot free something within dumped space, because there is \ | |
| 335 no longer any sort of malloc structure associated with the block. \ | |
| 336 If you are tripping this, you may need to conditionalize on \ | |
| 337 DUMPEDP. */ \ | |
| 338 assert (!DUMPEDP (block)); \ | |
| 339 MALLOC_BEGIN (); \ | |
| 340 } \ | |
| 341 while (0) | |
| 342 | |
| 343 #define MALLOC_END() \ | |
| 344 do \ | |
| 345 { \ | |
| 346 in_malloc = 0; \ | |
| 347 } \ | |
| 348 while (0) | |
| 349 | |
| 350 #else /* ERROR_CHECK_MALLOC */ | |
| 351 | |
| 352 #define MALLOC_BEGIN(block) | |
| 353 #define FREE_OR_REALLOC_BEGIN(block) | |
| 354 #define MALLOC_END() | |
| 355 | |
| 356 #endif /* ERROR_CHECK_MALLOC */ | |
| 357 | |
| 358 static void | |
| 359 malloc_after (void *val, Bytecount size) | |
| 360 { | |
| 361 if (!val && size != 0) | |
| 362 memory_full (); | |
| 363 set_alloc_mins_and_maxes (val, size); | |
| 364 } | |
| 365 | |
| 366 /* like malloc, calloc, realloc, free but: | |
| 367 | |
| 368 -- check for no memory left | |
| 369 -- set internal mins and maxes | |
| 370 -- with error-checking on, check for reentrancy, invalid freeing, etc. | |
| 371 */ | |
| 1292 | 372 |
| 428 | 373 #undef xmalloc |
| 374 void * | |
| 665 | 375 xmalloc (Bytecount size) |
| 428 | 376 { |
| 1292 | 377 void *val; |
| 2367 | 378 MALLOC_BEGIN (); |
| 1292 | 379 val = malloc (size); |
| 2367 | 380 MALLOC_END (); |
| 381 malloc_after (val, size); | |
| 428 | 382 return val; |
| 383 } | |
| 384 | |
| 385 #undef xcalloc | |
| 386 static void * | |
| 665 | 387 xcalloc (Elemcount nelem, Bytecount elsize) |
| 428 | 388 { |
| 1292 | 389 void *val; |
| 2367 | 390 MALLOC_BEGIN (); |
| 1292 | 391 val= calloc (nelem, elsize); |
| 2367 | 392 MALLOC_END (); |
| 393 malloc_after (val, nelem * elsize); | |
| 428 | 394 return val; |
| 395 } | |
| 396 | |
| 397 void * | |
| 665 | 398 xmalloc_and_zero (Bytecount size) |
| 428 | 399 { |
| 400 return xcalloc (size, sizeof (char)); | |
| 401 } | |
| 402 | |
| 403 #undef xrealloc | |
| 404 void * | |
| 665 | 405 xrealloc (void *block, Bytecount size) |
| 428 | 406 { |
| 2367 | 407 FREE_OR_REALLOC_BEGIN (block); |
| 551 | 408 block = realloc (block, size); |
| 2367 | 409 MALLOC_END (); |
| 410 malloc_after (block, size); | |
| 551 | 411 return block; |
| 428 | 412 } |
| 413 | |
| 414 void | |
| 415 xfree_1 (void *block) | |
| 416 { | |
| 417 #ifdef ERROR_CHECK_MALLOC | |
| 418 assert (block); | |
| 419 #endif /* ERROR_CHECK_MALLOC */ | |
| 2367 | 420 FREE_OR_REALLOC_BEGIN (block); |
| 428 | 421 free (block); |
| 2367 | 422 MALLOC_END (); |
| 428 | 423 } |
| 424 | |
| 425 #ifdef ERROR_CHECK_GC | |
| 426 | |
| 427 static void | |
| 665 | 428 deadbeef_memory (void *ptr, Bytecount size) |
| 428 | 429 { |
| 826 | 430 UINT_32_BIT *ptr4 = (UINT_32_BIT *) ptr; |
| 665 | 431 Bytecount beefs = size >> 2; |
| 428 | 432 |
| 433 /* In practice, size will always be a multiple of four. */ | |
| 434 while (beefs--) | |
| 1204 | 435 (*ptr4++) = 0xDEADBEEF; /* -559038737 base 10 */ |
| 428 | 436 } |
| 437 | |
| 438 #else /* !ERROR_CHECK_GC */ | |
| 439 | |
| 440 | |
| 441 #define deadbeef_memory(ptr, size) | |
| 442 | |
| 443 #endif /* !ERROR_CHECK_GC */ | |
| 444 | |
| 445 #undef xstrdup | |
| 446 char * | |
| 442 | 447 xstrdup (const char *str) |
| 428 | 448 { |
| 449 int len = strlen (str) + 1; /* for stupid terminating 0 */ | |
| 450 void *val = xmalloc (len); | |
| 771 | 451 |
| 428 | 452 if (val == 0) return 0; |
| 453 return (char *) memcpy (val, str, len); | |
| 454 } | |
| 455 | |
| 456 #ifdef NEED_STRDUP | |
| 457 char * | |
| 442 | 458 strdup (const char *s) |
| 428 | 459 { |
| 460 return xstrdup (s); | |
| 461 } | |
| 462 #endif /* NEED_STRDUP */ | |
| 463 | |
| 464 | |
| 465 static void * | |
| 665 | 466 allocate_lisp_storage (Bytecount size) |
| 428 | 467 { |
| 793 | 468 void *val = xmalloc (size); |
| 469 /* We don't increment the cons counter anymore. Calling functions do | |
| 470 that now because we have two different kinds of cons counters -- one | |
| 471 for normal objects, and one for no-see-um conses (and possibly others | |
| 472 similar) where the conses are used totally internally, never escape, | |
| 473 and are created and then freed and shouldn't logically increment the | |
| 474 cons counting. #### (Or perhaps, we should decrement it when an object | |
| 475 get freed?) */ | |
| 476 | |
| 477 /* But we do now (as of 3-27-02) go and zero out the memory. This is a | |
| 478 good thing, as it will guarantee we won't get any intermittent bugs | |
| 1204 | 479 coming from an uninitiated field. The speed loss is unnoticeable, |
| 480 esp. as the objects are not large -- large stuff like buffer text and | |
| 481 redisplay structures are allocated separately. */ | |
| 793 | 482 memset (val, 0, size); |
| 851 | 483 |
| 484 if (need_to_check_c_alloca) | |
| 485 xemacs_c_alloca (0); | |
| 486 | |
| 793 | 487 return val; |
| 428 | 488 } |
| 489 | |
| 490 | |
| 442 | 491 /* lcrecords are chained together through their "next" field. |
| 492 After doing the mark phase, GC will walk this linked list | |
| 493 and free any lcrecord which hasn't been marked. */ | |
| 428 | 494 static struct lcrecord_header *all_lcrecords; |
| 495 | |
| 1204 | 496 /* The most basic of the lcrecord allocation functions. Not usually called |
| 497 directly. Allocates an lrecord not managed by any lcrecord-list, of a | |
| 498 specified size. See lrecord.h. */ | |
| 499 | |
| 428 | 500 void * |
| 1204 | 501 basic_alloc_lcrecord (Bytecount size, |
| 502 const struct lrecord_implementation *implementation) | |
| 428 | 503 { |
| 504 struct lcrecord_header *lcheader; | |
| 505 | |
| 442 | 506 type_checking_assert |
| 507 ((implementation->static_size == 0 ? | |
| 508 implementation->size_in_bytes_method != NULL : | |
| 509 implementation->static_size == size) | |
| 510 && | |
| 511 (! implementation->basic_p) | |
| 512 && | |
| 513 (! (implementation->hash == NULL && implementation->equal != NULL))); | |
| 428 | 514 |
| 515 lcheader = (struct lcrecord_header *) allocate_lisp_storage (size); | |
| 442 | 516 set_lheader_implementation (&lcheader->lheader, implementation); |
| 428 | 517 lcheader->next = all_lcrecords; |
| 518 #if 1 /* mly prefers to see small ID numbers */ | |
| 519 lcheader->uid = lrecord_uid_counter++; | |
| 520 #else /* jwz prefers to see real addrs */ | |
| 521 lcheader->uid = (int) &lcheader; | |
| 522 #endif | |
| 523 lcheader->free = 0; | |
| 524 all_lcrecords = lcheader; | |
| 525 INCREMENT_CONS_COUNTER (size, implementation->name); | |
| 526 return lcheader; | |
| 527 } | |
| 528 | |
| 529 #if 0 /* Presently unused */ | |
| 530 /* Very, very poor man's EGC? | |
| 531 * This may be slow and thrash pages all over the place. | |
| 532 * Only call it if you really feel you must (and if the | |
| 533 * lrecord was fairly recently allocated). | |
| 534 * Otherwise, just let the GC do its job -- that's what it's there for | |
| 535 */ | |
| 536 void | |
| 771 | 537 very_old_free_lcrecord (struct lcrecord_header *lcrecord) |
| 428 | 538 { |
| 539 if (all_lcrecords == lcrecord) | |
| 540 { | |
| 541 all_lcrecords = lcrecord->next; | |
| 542 } | |
| 543 else | |
| 544 { | |
| 545 struct lrecord_header *header = all_lcrecords; | |
| 546 for (;;) | |
| 547 { | |
| 548 struct lrecord_header *next = header->next; | |
| 549 if (next == lcrecord) | |
| 550 { | |
| 551 header->next = lrecord->next; | |
| 552 break; | |
| 553 } | |
| 554 else if (next == 0) | |
| 2500 | 555 ABORT (); |
| 428 | 556 else |
| 557 header = next; | |
| 558 } | |
| 559 } | |
| 560 if (lrecord->implementation->finalizer) | |
| 561 lrecord->implementation->finalizer (lrecord, 0); | |
| 562 xfree (lrecord); | |
| 563 return; | |
| 564 } | |
| 565 #endif /* Unused */ | |
| 566 | |
| 567 | |
| 568 static void | |
| 569 disksave_object_finalization_1 (void) | |
| 570 { | |
| 571 struct lcrecord_header *header; | |
| 572 | |
| 573 for (header = all_lcrecords; header; header = header->next) | |
| 574 { | |
| 442 | 575 if (LHEADER_IMPLEMENTATION (&header->lheader)->finalizer && |
| 428 | 576 !header->free) |
| 442 | 577 LHEADER_IMPLEMENTATION (&header->lheader)->finalizer (header, 1); |
| 428 | 578 } |
| 579 } | |
| 580 | |
| 1204 | 581 /* Bitwise copy all parts of a Lisp object other than the header */ |
| 582 | |
| 583 void | |
| 584 copy_lisp_object (Lisp_Object dst, Lisp_Object src) | |
| 585 { | |
| 586 const struct lrecord_implementation *imp = | |
| 587 XRECORD_LHEADER_IMPLEMENTATION (src); | |
| 588 Bytecount size = lisp_object_size (src); | |
| 589 | |
| 590 assert (imp == XRECORD_LHEADER_IMPLEMENTATION (dst)); | |
| 591 assert (size == lisp_object_size (dst)); | |
| 592 | |
| 593 if (imp->basic_p) | |
| 594 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lrecord_header), | |
| 595 (char *) XRECORD_LHEADER (src) + sizeof (struct lrecord_header), | |
| 596 size - sizeof (struct lrecord_header)); | |
| 597 else | |
| 598 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lcrecord_header), | |
| 599 (char *) XRECORD_LHEADER (src) + sizeof (struct lcrecord_header), | |
| 600 size - sizeof (struct lcrecord_header)); | |
| 601 } | |
| 602 | |
| 428 | 603 |
| 604 /************************************************************************/ | |
| 605 /* Debugger support */ | |
| 606 /************************************************************************/ | |
| 607 /* Give gdb/dbx enough information to decode Lisp Objects. We make | |
| 608 sure certain symbols are always defined, so gdb doesn't complain | |
| 438 | 609 about expressions in src/.gdbinit. See src/.gdbinit or src/.dbxrc |
| 610 to see how this is used. */ | |
| 428 | 611 |
| 458 | 612 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS; |
| 613 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1; | |
| 428 | 614 |
| 615 #ifdef USE_UNION_TYPE | |
| 458 | 616 unsigned char dbg_USE_UNION_TYPE = 1; |
| 428 | 617 #else |
| 458 | 618 unsigned char dbg_USE_UNION_TYPE = 0; |
| 428 | 619 #endif |
| 620 | |
| 458 | 621 unsigned char dbg_valbits = VALBITS; |
| 622 unsigned char dbg_gctypebits = GCTYPEBITS; | |
| 623 | |
| 624 /* On some systems, the above definitions will be optimized away by | |
| 625 the compiler or linker unless they are referenced in some function. */ | |
| 626 long dbg_inhibit_dbg_symbol_deletion (void); | |
| 627 long | |
| 628 dbg_inhibit_dbg_symbol_deletion (void) | |
| 629 { | |
| 630 return | |
| 631 (dbg_valmask + | |
| 632 dbg_typemask + | |
| 633 dbg_USE_UNION_TYPE + | |
| 634 dbg_valbits + | |
| 635 dbg_gctypebits); | |
| 636 } | |
| 428 | 637 |
| 638 /* Macros turned into functions for ease of debugging. | |
| 639 Debuggers don't know about macros! */ | |
| 640 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2); | |
| 641 int | |
| 642 dbg_eq (Lisp_Object obj1, Lisp_Object obj2) | |
| 643 { | |
| 644 return EQ (obj1, obj2); | |
| 645 } | |
| 646 | |
| 647 | |
| 648 /************************************************************************/ | |
| 649 /* Fixed-size type macros */ | |
| 650 /************************************************************************/ | |
| 651 | |
| 652 /* For fixed-size types that are commonly used, we malloc() large blocks | |
| 653 of memory at a time and subdivide them into chunks of the correct | |
| 654 size for an object of that type. This is more efficient than | |
| 655 malloc()ing each object separately because we save on malloc() time | |
| 656 and overhead due to the fewer number of malloc()ed blocks, and | |
| 657 also because we don't need any extra pointers within each object | |
| 658 to keep them threaded together for GC purposes. For less common | |
| 659 (and frequently large-size) types, we use lcrecords, which are | |
| 660 malloc()ed individually and chained together through a pointer | |
| 661 in the lcrecord header. lcrecords do not need to be fixed-size | |
| 662 (i.e. two objects of the same type need not have the same size; | |
| 663 however, the size of a particular object cannot vary dynamically). | |
| 664 It is also much easier to create a new lcrecord type because no | |
| 665 additional code needs to be added to alloc.c. Finally, lcrecords | |
| 666 may be more efficient when there are only a small number of them. | |
| 667 | |
| 668 The types that are stored in these large blocks (or "frob blocks") | |
| 1983 | 669 are cons, all number types except fixnum, compiled-function, symbol, |
| 670 marker, extent, event, and string. | |
| 428 | 671 |
| 672 Note that strings are special in that they are actually stored in | |
| 673 two parts: a structure containing information about the string, and | |
| 674 the actual data associated with the string. The former structure | |
| 675 (a struct Lisp_String) is a fixed-size structure and is managed the | |
| 676 same way as all the other such types. This structure contains a | |
| 677 pointer to the actual string data, which is stored in structures of | |
| 678 type struct string_chars_block. Each string_chars_block consists | |
| 679 of a pointer to a struct Lisp_String, followed by the data for that | |
| 440 | 680 string, followed by another pointer to a Lisp_String, followed by |
| 681 the data for that string, etc. At GC time, the data in these | |
| 682 blocks is compacted by searching sequentially through all the | |
| 428 | 683 blocks and compressing out any holes created by unmarked strings. |
| 684 Strings that are more than a certain size (bigger than the size of | |
| 685 a string_chars_block, although something like half as big might | |
| 686 make more sense) are malloc()ed separately and not stored in | |
| 687 string_chars_blocks. Furthermore, no one string stretches across | |
| 688 two string_chars_blocks. | |
| 689 | |
| 1204 | 690 Vectors are each malloc()ed separately as lcrecords. |
| 428 | 691 |
| 692 In the following discussion, we use conses, but it applies equally | |
| 693 well to the other fixed-size types. | |
| 694 | |
| 695 We store cons cells inside of cons_blocks, allocating a new | |
| 696 cons_block with malloc() whenever necessary. Cons cells reclaimed | |
| 697 by GC are put on a free list to be reallocated before allocating | |
| 698 any new cons cells from the latest cons_block. Each cons_block is | |
| 699 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least | |
| 700 the versions in malloc.c and gmalloc.c) really allocates in units | |
| 701 of powers of two and uses 4 bytes for its own overhead. | |
| 702 | |
| 703 What GC actually does is to search through all the cons_blocks, | |
| 704 from the most recently allocated to the oldest, and put all | |
| 705 cons cells that are not marked (whether or not they're already | |
| 706 free) on a cons_free_list. The cons_free_list is a stack, and | |
| 707 so the cons cells in the oldest-allocated cons_block end up | |
| 708 at the head of the stack and are the first to be reallocated. | |
| 709 If any cons_block is entirely free, it is freed with free() | |
| 710 and its cons cells removed from the cons_free_list. Because | |
| 711 the cons_free_list ends up basically in memory order, we have | |
| 712 a high locality of reference (assuming a reasonable turnover | |
| 713 of allocating and freeing) and have a reasonable probability | |
| 714 of entirely freeing up cons_blocks that have been more recently | |
| 715 allocated. This stage is called the "sweep stage" of GC, and | |
| 716 is executed after the "mark stage", which involves starting | |
| 717 from all places that are known to point to in-use Lisp objects | |
| 718 (e.g. the obarray, where are all symbols are stored; the | |
| 719 current catches and condition-cases; the backtrace list of | |
| 720 currently executing functions; the gcpro list; etc.) and | |
| 721 recursively marking all objects that are accessible. | |
| 722 | |
| 454 | 723 At the beginning of the sweep stage, the conses in the cons blocks |
| 724 are in one of three states: in use and marked, in use but not | |
| 725 marked, and not in use (already freed). Any conses that are marked | |
| 726 have been marked in the mark stage just executed, because as part | |
| 727 of the sweep stage we unmark any marked objects. The way we tell | |
| 728 whether or not a cons cell is in use is through the LRECORD_FREE_P | |
| 729 macro. This uses a special lrecord type `lrecord_type_free', | |
| 730 which is never associated with any valid object. | |
| 731 | |
| 732 Conses on the free_cons_list are threaded through a pointer stored | |
| 733 in the conses themselves. Because the cons is still in a | |
| 734 cons_block and needs to remain marked as not in use for the next | |
| 735 time that GC happens, we need room to store both the "free" | |
| 736 indicator and the chaining pointer. So this pointer is stored | |
| 737 after the lrecord header (actually where C places a pointer after | |
| 738 the lrecord header; they are not necessarily contiguous). This | |
| 739 implies that all fixed-size types must be big enough to contain at | |
| 740 least one pointer. This is true for all current fixed-size types, | |
| 741 with the possible exception of Lisp_Floats, for which we define the | |
| 742 meat of the struct using a union of a pointer and a double to | |
| 743 ensure adequate space for the free list chain pointer. | |
| 428 | 744 |
| 745 Some types of objects need additional "finalization" done | |
| 746 when an object is converted from in use to not in use; | |
| 747 this is the purpose of the ADDITIONAL_FREE_type macro. | |
| 748 For example, markers need to be removed from the chain | |
| 749 of markers that is kept in each buffer. This is because | |
| 750 markers in a buffer automatically disappear if the marker | |
| 751 is no longer referenced anywhere (the same does not | |
| 752 apply to extents, however). | |
| 753 | |
| 754 WARNING: Things are in an extremely bizarre state when | |
| 755 the ADDITIONAL_FREE_type macros are called, so beware! | |
| 756 | |
| 454 | 757 When ERROR_CHECK_GC is defined, we do things differently so as to |
| 758 maximize our chances of catching places where there is insufficient | |
| 759 GCPROing. The thing we want to avoid is having an object that | |
| 760 we're using but didn't GCPRO get freed by GC and then reallocated | |
| 761 while we're in the process of using it -- this will result in | |
| 762 something seemingly unrelated getting trashed, and is extremely | |
| 763 difficult to track down. If the object gets freed but not | |
| 764 reallocated, we can usually catch this because we set most of the | |
| 765 bytes of a freed object to 0xDEADBEEF. (The lisp object type is set | |
| 766 to the invalid type `lrecord_type_free', however, and a pointer | |
| 767 used to chain freed objects together is stored after the lrecord | |
| 768 header; we play some tricks with this pointer to make it more | |
| 428 | 769 bogus, so crashes are more likely to occur right away.) |
| 770 | |
| 771 We want freed objects to stay free as long as possible, | |
| 772 so instead of doing what we do above, we maintain the | |
| 773 free objects in a first-in first-out queue. We also | |
| 774 don't recompute the free list each GC, unlike above; | |
| 775 this ensures that the queue ordering is preserved. | |
| 776 [This means that we are likely to have worse locality | |
| 777 of reference, and that we can never free a frob block | |
| 778 once it's allocated. (Even if we know that all cells | |
| 779 in it are free, there's no easy way to remove all those | |
| 780 cells from the free list because the objects on the | |
| 781 free list are unlikely to be in memory order.)] | |
| 782 Furthermore, we never take objects off the free list | |
| 783 unless there's a large number (usually 1000, but | |
| 784 varies depending on type) of them already on the list. | |
| 785 This way, we ensure that an object that gets freed will | |
| 786 remain free for the next 1000 (or whatever) times that | |
| 440 | 787 an object of that type is allocated. */ |
| 428 | 788 |
| 789 #ifndef MALLOC_OVERHEAD | |
| 790 #ifdef GNU_MALLOC | |
| 791 #define MALLOC_OVERHEAD 0 | |
| 792 #elif defined (rcheck) | |
| 793 #define MALLOC_OVERHEAD 20 | |
| 794 #else | |
| 795 #define MALLOC_OVERHEAD 8 | |
| 796 #endif | |
| 797 #endif /* MALLOC_OVERHEAD */ | |
| 798 | |
| 799 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC) | |
| 800 /* If we released our reserve (due to running out of memory), | |
| 801 and we have a fair amount free once again, | |
| 802 try to set aside another reserve in case we run out once more. | |
| 803 | |
| 804 This is called when a relocatable block is freed in ralloc.c. */ | |
| 805 void refill_memory_reserve (void); | |
| 806 void | |
| 442 | 807 refill_memory_reserve (void) |
| 428 | 808 { |
| 809 if (breathing_space == 0) | |
| 810 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD); | |
| 811 } | |
| 812 #endif | |
| 813 | |
| 814 #ifdef ALLOC_NO_POOLS | |
| 815 # define TYPE_ALLOC_SIZE(type, structtype) 1 | |
| 816 #else | |
| 817 # define TYPE_ALLOC_SIZE(type, structtype) \ | |
| 818 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \ | |
| 819 / sizeof (structtype)) | |
| 820 #endif /* ALLOC_NO_POOLS */ | |
| 821 | |
| 822 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \ | |
| 823 \ | |
| 824 struct type##_block \ | |
| 825 { \ | |
| 826 struct type##_block *prev; \ | |
| 827 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \ | |
| 828 }; \ | |
| 829 \ | |
| 830 static struct type##_block *current_##type##_block; \ | |
| 831 static int current_##type##_block_index; \ | |
| 832 \ | |
| 454 | 833 static Lisp_Free *type##_free_list; \ |
| 834 static Lisp_Free *type##_free_list_tail; \ | |
| 428 | 835 \ |
| 836 static void \ | |
| 837 init_##type##_alloc (void) \ | |
| 838 { \ | |
| 839 current_##type##_block = 0; \ | |
| 840 current_##type##_block_index = \ | |
| 841 countof (current_##type##_block->block); \ | |
| 842 type##_free_list = 0; \ | |
| 843 type##_free_list_tail = 0; \ | |
| 844 } \ | |
| 845 \ | |
| 846 static int gc_count_num_##type##_in_use; \ | |
| 847 static int gc_count_num_##type##_freelist | |
| 848 | |
| 849 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \ | |
| 850 if (current_##type##_block_index \ | |
| 851 == countof (current_##type##_block->block)) \ | |
| 852 { \ | |
| 853 struct type##_block *AFTFB_new = (struct type##_block *) \ | |
| 854 allocate_lisp_storage (sizeof (struct type##_block)); \ | |
| 855 AFTFB_new->prev = current_##type##_block; \ | |
| 856 current_##type##_block = AFTFB_new; \ | |
| 857 current_##type##_block_index = 0; \ | |
| 858 } \ | |
| 859 (result) = \ | |
| 860 &(current_##type##_block->block[current_##type##_block_index++]); \ | |
| 861 } while (0) | |
| 862 | |
| 863 /* Allocate an instance of a type that is stored in blocks. | |
| 864 TYPE is the "name" of the type, STRUCTTYPE is the corresponding | |
| 865 structure type. */ | |
| 866 | |
| 867 #ifdef ERROR_CHECK_GC | |
| 868 | |
| 869 /* Note: if you get crashes in this function, suspect incorrect calls | |
| 870 to free_cons() and friends. This happened once because the cons | |
| 871 cell was not GC-protected and was getting collected before | |
| 872 free_cons() was called. */ | |
| 873 | |
| 454 | 874 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \ |
| 875 if (gc_count_num_##type##_freelist > \ | |
| 876 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \ | |
| 877 { \ | |
| 878 result = (structtype *) type##_free_list; \ | |
| 1204 | 879 assert (LRECORD_FREE_P (result)); \ |
| 880 /* Before actually using the chain pointer, we complement \ | |
| 881 all its bits; see PUT_FIXED_TYPE_ON_FREE_LIST(). */ \ | |
| 454 | 882 type##_free_list = (Lisp_Free *) \ |
| 883 (~ (EMACS_UINT) (type##_free_list->chain)); \ | |
| 884 gc_count_num_##type##_freelist--; \ | |
| 885 } \ | |
| 886 else \ | |
| 887 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ | |
| 888 MARK_LRECORD_AS_NOT_FREE (result); \ | |
| 428 | 889 } while (0) |
| 890 | |
| 891 #else /* !ERROR_CHECK_GC */ | |
| 892 | |
| 454 | 893 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \ |
| 428 | 894 if (type##_free_list) \ |
| 895 { \ | |
| 454 | 896 result = (structtype *) type##_free_list; \ |
| 897 type##_free_list = type##_free_list->chain; \ | |
| 428 | 898 } \ |
| 899 else \ | |
| 900 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ | |
| 454 | 901 MARK_LRECORD_AS_NOT_FREE (result); \ |
| 428 | 902 } while (0) |
| 903 | |
| 904 #endif /* !ERROR_CHECK_GC */ | |
| 905 | |
| 454 | 906 |
| 428 | 907 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \ |
| 908 do \ | |
| 909 { \ | |
| 910 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ | |
| 911 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ | |
| 912 } while (0) | |
| 913 | |
| 914 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \ | |
| 915 do \ | |
| 916 { \ | |
| 917 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ | |
| 918 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ | |
| 919 } while (0) | |
| 920 | |
| 454 | 921 |
| 922 /* Lisp_Free is the type to represent a free list member inside a frob | |
| 923 block of any lisp object type. */ | |
| 924 typedef struct Lisp_Free | |
| 925 { | |
| 926 struct lrecord_header lheader; | |
| 927 struct Lisp_Free *chain; | |
| 928 } Lisp_Free; | |
| 929 | |
| 930 #define LRECORD_FREE_P(ptr) \ | |
| 771 | 931 (((struct lrecord_header *) ptr)->type == lrecord_type_free) |
| 454 | 932 |
| 933 #define MARK_LRECORD_AS_FREE(ptr) \ | |
| 771 | 934 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_free)) |
| 454 | 935 |
| 936 #ifdef ERROR_CHECK_GC | |
| 937 #define MARK_LRECORD_AS_NOT_FREE(ptr) \ | |
| 771 | 938 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_undefined)) |
| 428 | 939 #else |
| 454 | 940 #define MARK_LRECORD_AS_NOT_FREE(ptr) DO_NOTHING |
| 428 | 941 #endif |
| 942 | |
| 943 #ifdef ERROR_CHECK_GC | |
| 944 | |
| 454 | 945 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \ |
| 946 if (type##_free_list_tail) \ | |
| 947 { \ | |
| 948 /* When we store the chain pointer, we complement all \ | |
| 949 its bits; this should significantly increase its \ | |
| 950 bogosity in case someone tries to use the value, and \ | |
| 951 should make us crash faster if someone overwrites the \ | |
| 952 pointer because when it gets un-complemented in \ | |
| 953 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \ | |
| 954 extremely bogus. */ \ | |
| 955 type##_free_list_tail->chain = \ | |
| 956 (Lisp_Free *) ~ (EMACS_UINT) (ptr); \ | |
| 957 } \ | |
| 958 else \ | |
| 959 type##_free_list = (Lisp_Free *) (ptr); \ | |
| 960 type##_free_list_tail = (Lisp_Free *) (ptr); \ | |
| 961 } while (0) | |
| 428 | 962 |
| 963 #else /* !ERROR_CHECK_GC */ | |
| 964 | |
| 454 | 965 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \ |
| 966 ((Lisp_Free *) (ptr))->chain = type##_free_list; \ | |
| 967 type##_free_list = (Lisp_Free *) (ptr); \ | |
| 968 } while (0) \ | |
| 428 | 969 |
| 970 #endif /* !ERROR_CHECK_GC */ | |
| 971 | |
| 972 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */ | |
| 973 | |
| 974 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \ | |
| 975 structtype *FFT_ptr = (ptr); \ | |
| 1204 | 976 gc_checking_assert (!LRECORD_FREE_P (FFT_ptr)); \ |
| 2367 | 977 gc_checking_assert (!DUMPEDP (FFT_ptr)); \ |
| 428 | 978 ADDITIONAL_FREE_##type (FFT_ptr); \ |
| 979 deadbeef_memory (FFT_ptr, sizeof (structtype)); \ | |
| 980 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \ | |
| 454 | 981 MARK_LRECORD_AS_FREE (FFT_ptr); \ |
| 428 | 982 } while (0) |
| 983 | |
| 984 /* Like FREE_FIXED_TYPE() but used when we are explicitly | |
| 985 freeing a structure through free_cons(), free_marker(), etc. | |
| 986 rather than through the normal process of sweeping. | |
| 987 We attempt to undo the changes made to the allocation counters | |
| 988 as a result of this structure being allocated. This is not | |
| 989 completely necessary but helps keep things saner: e.g. this way, | |
| 990 repeatedly allocating and freeing a cons will not result in | |
| 991 the consing-since-gc counter advancing, which would cause a GC | |
| 1204 | 992 and somewhat defeat the purpose of explicitly freeing. |
| 993 | |
| 994 We also disable this mechanism entirely when ALLOC_NO_POOLS is | |
| 995 set, which is used for Purify and the like. */ | |
| 996 | |
| 997 #ifndef ALLOC_NO_POOLS | |
| 428 | 998 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \ |
| 999 do { FREE_FIXED_TYPE (type, structtype, ptr); \ | |
| 1000 DECREMENT_CONS_COUNTER (sizeof (structtype)); \ | |
| 1001 gc_count_num_##type##_freelist++; \ | |
| 1002 } while (0) | |
| 1204 | 1003 #else |
| 1004 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) | |
| 1005 #endif | |
| 428 | 1006 |
| 1007 | |
| 1008 | |
| 1009 /************************************************************************/ | |
| 1010 /* Cons allocation */ | |
| 1011 /************************************************************************/ | |
| 1012 | |
| 440 | 1013 DECLARE_FIXED_TYPE_ALLOC (cons, Lisp_Cons); |
| 428 | 1014 /* conses are used and freed so often that we set this really high */ |
| 1015 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */ | |
| 1016 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000 | |
| 1017 | |
| 1018 static Lisp_Object | |
| 1019 mark_cons (Lisp_Object obj) | |
| 1020 { | |
| 1021 if (NILP (XCDR (obj))) | |
| 1022 return XCAR (obj); | |
| 1023 | |
| 1024 mark_object (XCAR (obj)); | |
| 1025 return XCDR (obj); | |
| 1026 } | |
| 1027 | |
| 1028 static int | |
| 1029 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth) | |
| 1030 { | |
| 442 | 1031 depth++; |
| 1032 while (internal_equal (XCAR (ob1), XCAR (ob2), depth)) | |
| 428 | 1033 { |
| 1034 ob1 = XCDR (ob1); | |
| 1035 ob2 = XCDR (ob2); | |
| 1036 if (! CONSP (ob1) || ! CONSP (ob2)) | |
| 442 | 1037 return internal_equal (ob1, ob2, depth); |
| 428 | 1038 } |
| 1039 return 0; | |
| 1040 } | |
| 1041 | |
| 1204 | 1042 static const struct memory_description cons_description[] = { |
| 853 | 1043 { XD_LISP_OBJECT, offsetof (Lisp_Cons, car_) }, |
| 1044 { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr_) }, | |
| 428 | 1045 { XD_END } |
| 1046 }; | |
| 1047 | |
| 934 | 1048 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons, |
| 1049 1, /*dumpable-flag*/ | |
| 1050 mark_cons, print_cons, 0, | |
| 1051 cons_equal, | |
| 1052 /* | |
| 1053 * No `hash' method needed. | |
| 1054 * internal_hash knows how to | |
| 1055 * handle conses. | |
| 1056 */ | |
| 1057 0, | |
| 1058 cons_description, | |
| 1059 Lisp_Cons); | |
| 428 | 1060 |
| 1061 DEFUN ("cons", Fcons, 2, 2, 0, /* | |
| 1062 Create a new cons, give it CAR and CDR as components, and return it. | |
| 1063 */ | |
| 1064 (car, cdr)) | |
| 1065 { | |
| 1066 /* This cannot GC. */ | |
| 1067 Lisp_Object val; | |
| 440 | 1068 Lisp_Cons *c; |
| 1069 | |
| 1070 ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c); | |
| 442 | 1071 set_lheader_implementation (&c->lheader, &lrecord_cons); |
| 793 | 1072 val = wrap_cons (c); |
| 853 | 1073 XSETCAR (val, car); |
| 1074 XSETCDR (val, cdr); | |
| 428 | 1075 return val; |
| 1076 } | |
| 1077 | |
| 1078 /* This is identical to Fcons() but it used for conses that we're | |
| 1079 going to free later, and is useful when trying to track down | |
| 1080 "real" consing. */ | |
| 1081 Lisp_Object | |
| 1082 noseeum_cons (Lisp_Object car, Lisp_Object cdr) | |
| 1083 { | |
| 1084 Lisp_Object val; | |
| 440 | 1085 Lisp_Cons *c; |
| 1086 | |
| 1087 NOSEEUM_ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c); | |
| 442 | 1088 set_lheader_implementation (&c->lheader, &lrecord_cons); |
| 793 | 1089 val = wrap_cons (c); |
| 428 | 1090 XCAR (val) = car; |
| 1091 XCDR (val) = cdr; | |
| 1092 return val; | |
| 1093 } | |
| 1094 | |
| 1095 DEFUN ("list", Flist, 0, MANY, 0, /* | |
| 1096 Return a newly created list with specified arguments as elements. | |
| 1097 Any number of arguments, even zero arguments, are allowed. | |
| 1098 */ | |
| 1099 (int nargs, Lisp_Object *args)) | |
| 1100 { | |
| 1101 Lisp_Object val = Qnil; | |
| 1102 Lisp_Object *argp = args + nargs; | |
| 1103 | |
| 1104 while (argp > args) | |
| 1105 val = Fcons (*--argp, val); | |
| 1106 return val; | |
| 1107 } | |
| 1108 | |
| 1109 Lisp_Object | |
| 1110 list1 (Lisp_Object obj0) | |
| 1111 { | |
| 1112 /* This cannot GC. */ | |
| 1113 return Fcons (obj0, Qnil); | |
| 1114 } | |
| 1115 | |
| 1116 Lisp_Object | |
| 1117 list2 (Lisp_Object obj0, Lisp_Object obj1) | |
| 1118 { | |
| 1119 /* This cannot GC. */ | |
| 1120 return Fcons (obj0, Fcons (obj1, Qnil)); | |
| 1121 } | |
| 1122 | |
| 1123 Lisp_Object | |
| 1124 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
| 1125 { | |
| 1126 /* This cannot GC. */ | |
| 1127 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil))); | |
| 1128 } | |
| 1129 | |
| 1130 Lisp_Object | |
| 1131 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
| 1132 { | |
| 1133 /* This cannot GC. */ | |
| 1134 return Fcons (obj0, Fcons (obj1, obj2)); | |
| 1135 } | |
| 1136 | |
| 1137 Lisp_Object | |
| 1138 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist) | |
| 1139 { | |
| 1140 return Fcons (Fcons (key, value), alist); | |
| 1141 } | |
| 1142 | |
| 1143 Lisp_Object | |
| 1144 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3) | |
| 1145 { | |
| 1146 /* This cannot GC. */ | |
| 1147 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil)))); | |
| 1148 } | |
| 1149 | |
| 1150 Lisp_Object | |
| 1151 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, | |
| 1152 Lisp_Object obj4) | |
| 1153 { | |
| 1154 /* This cannot GC. */ | |
| 1155 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil))))); | |
| 1156 } | |
| 1157 | |
| 1158 Lisp_Object | |
| 1159 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, | |
| 1160 Lisp_Object obj4, Lisp_Object obj5) | |
| 1161 { | |
| 1162 /* This cannot GC. */ | |
| 1163 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil)))))); | |
| 1164 } | |
| 1165 | |
| 1166 DEFUN ("make-list", Fmake_list, 2, 2, 0, /* | |
| 444 | 1167 Return a new list of length LENGTH, with each element being OBJECT. |
| 428 | 1168 */ |
| 444 | 1169 (length, object)) |
| 428 | 1170 { |
| 1171 CHECK_NATNUM (length); | |
| 1172 | |
| 1173 { | |
| 1174 Lisp_Object val = Qnil; | |
| 647 | 1175 EMACS_INT size = XINT (length); |
| 428 | 1176 |
| 1177 while (size--) | |
| 444 | 1178 val = Fcons (object, val); |
| 428 | 1179 return val; |
| 1180 } | |
| 1181 } | |
| 1182 | |
| 1183 | |
| 1184 /************************************************************************/ | |
| 1185 /* Float allocation */ | |
| 1186 /************************************************************************/ | |
| 1187 | |
| 1983 | 1188 /*** With enhanced number support, these are short floats */ |
| 1189 | |
| 440 | 1190 DECLARE_FIXED_TYPE_ALLOC (float, Lisp_Float); |
| 428 | 1191 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000 |
| 1192 | |
| 1193 Lisp_Object | |
| 1194 make_float (double float_value) | |
| 1195 { | |
| 440 | 1196 Lisp_Float *f; |
| 1197 | |
| 1198 ALLOCATE_FIXED_TYPE (float, Lisp_Float, f); | |
| 1199 | |
| 1200 /* Avoid dump-time `uninitialized memory read' purify warnings. */ | |
| 1201 if (sizeof (struct lrecord_header) + sizeof (double) != sizeof (*f)) | |
| 1202 xzero (*f); | |
| 1203 | |
| 442 | 1204 set_lheader_implementation (&f->lheader, &lrecord_float); |
| 428 | 1205 float_data (f) = float_value; |
| 793 | 1206 return wrap_float (f); |
| 428 | 1207 } |
| 1208 | |
| 1209 | |
| 1210 /************************************************************************/ | |
| 1983 | 1211 /* Enhanced number allocation */ |
| 1212 /************************************************************************/ | |
| 1213 | |
| 1214 /*** Bignum ***/ | |
| 1215 #ifdef HAVE_BIGNUM | |
| 1216 DECLARE_FIXED_TYPE_ALLOC (bignum, Lisp_Bignum); | |
| 1217 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_bignum 250 | |
| 1218 | |
| 1219 /* WARNING: This function returns a bignum even if its argument fits into a | |
| 1220 fixnum. See Fcanonicalize_number(). */ | |
| 1221 Lisp_Object | |
| 1222 make_bignum (long bignum_value) | |
| 1223 { | |
| 1224 Lisp_Bignum *b; | |
| 1225 | |
| 1226 ALLOCATE_FIXED_TYPE (bignum, Lisp_Bignum, b); | |
| 1227 set_lheader_implementation (&b->lheader, &lrecord_bignum); | |
| 1228 bignum_init (bignum_data (b)); | |
| 1229 bignum_set_long (bignum_data (b), bignum_value); | |
| 1230 return wrap_bignum (b); | |
| 1231 } | |
| 1232 | |
| 1233 /* WARNING: This function returns a bignum even if its argument fits into a | |
| 1234 fixnum. See Fcanonicalize_number(). */ | |
| 1235 Lisp_Object | |
| 1236 make_bignum_bg (bignum bg) | |
| 1237 { | |
| 1238 Lisp_Bignum *b; | |
| 1239 | |
| 1240 ALLOCATE_FIXED_TYPE (bignum, Lisp_Bignum, b); | |
| 1241 set_lheader_implementation (&b->lheader, &lrecord_bignum); | |
| 1242 bignum_init (bignum_data (b)); | |
| 1243 bignum_set (bignum_data (b), bg); | |
| 1244 return wrap_bignum (b); | |
| 1245 } | |
| 1246 #endif /* HAVE_BIGNUM */ | |
| 1247 | |
| 1248 /*** Ratio ***/ | |
| 1249 #ifdef HAVE_RATIO | |
| 1250 DECLARE_FIXED_TYPE_ALLOC (ratio, Lisp_Ratio); | |
| 1251 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_ratio 250 | |
| 1252 | |
| 1253 Lisp_Object | |
| 1254 make_ratio (long numerator, unsigned long denominator) | |
| 1255 { | |
| 1256 Lisp_Ratio *r; | |
| 1257 | |
| 1258 ALLOCATE_FIXED_TYPE (ratio, Lisp_Ratio, r); | |
| 1259 set_lheader_implementation (&r->lheader, &lrecord_ratio); | |
| 1260 ratio_init (ratio_data (r)); | |
| 1261 ratio_set_long_ulong (ratio_data (r), numerator, denominator); | |
| 1262 ratio_canonicalize (ratio_data (r)); | |
| 1263 return wrap_ratio (r); | |
| 1264 } | |
| 1265 | |
| 1266 Lisp_Object | |
| 1267 make_ratio_bg (bignum numerator, bignum denominator) | |
| 1268 { | |
| 1269 Lisp_Ratio *r; | |
| 1270 | |
| 1271 ALLOCATE_FIXED_TYPE (ratio, Lisp_Ratio, r); | |
| 1272 set_lheader_implementation (&r->lheader, &lrecord_ratio); | |
| 1273 ratio_init (ratio_data (r)); | |
| 1274 ratio_set_bignum_bignum (ratio_data (r), numerator, denominator); | |
| 1275 ratio_canonicalize (ratio_data (r)); | |
| 1276 return wrap_ratio (r); | |
| 1277 } | |
| 1278 | |
| 1279 Lisp_Object | |
| 1280 make_ratio_rt (ratio rat) | |
| 1281 { | |
| 1282 Lisp_Ratio *r; | |
| 1283 | |
| 1284 ALLOCATE_FIXED_TYPE (ratio, Lisp_Ratio, r); | |
| 1285 set_lheader_implementation (&r->lheader, &lrecord_ratio); | |
| 1286 ratio_init (ratio_data (r)); | |
| 1287 ratio_set (ratio_data (r), rat); | |
| 1288 return wrap_ratio (r); | |
| 1289 } | |
| 1290 #endif /* HAVE_RATIO */ | |
| 1291 | |
| 1292 /*** Bigfloat ***/ | |
| 1293 #ifdef HAVE_BIGFLOAT | |
| 1294 DECLARE_FIXED_TYPE_ALLOC (bigfloat, Lisp_Bigfloat); | |
| 1295 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_bigfloat 250 | |
| 1296 | |
| 1297 /* This function creates a bigfloat with the default precision if the | |
| 1298 PRECISION argument is zero. */ | |
| 1299 Lisp_Object | |
| 1300 make_bigfloat (double float_value, unsigned long precision) | |
| 1301 { | |
| 1302 Lisp_Bigfloat *f; | |
| 1303 | |
| 1304 ALLOCATE_FIXED_TYPE (bigfloat, Lisp_Bigfloat, f); | |
| 1305 set_lheader_implementation (&f->lheader, &lrecord_bigfloat); | |
| 1306 if (precision == 0UL) | |
| 1307 bigfloat_init (bigfloat_data (f)); | |
| 1308 else | |
| 1309 bigfloat_init_prec (bigfloat_data (f), precision); | |
| 1310 bigfloat_set_double (bigfloat_data (f), float_value); | |
| 1311 return wrap_bigfloat (f); | |
| 1312 } | |
| 1313 | |
| 1314 /* This function creates a bigfloat with the precision of its argument */ | |
| 1315 Lisp_Object | |
| 1316 make_bigfloat_bf (bigfloat float_value) | |
| 1317 { | |
| 1318 Lisp_Bigfloat *f; | |
| 1319 | |
| 1320 ALLOCATE_FIXED_TYPE (bigfloat, Lisp_Bigfloat, f); | |
| 1321 set_lheader_implementation (&f->lheader, &lrecord_bigfloat); | |
| 1322 bigfloat_init_prec (bigfloat_data (f), bigfloat_get_prec (float_value)); | |
| 1323 bigfloat_set (bigfloat_data (f), float_value); | |
| 1324 return wrap_bigfloat (f); | |
| 1325 } | |
| 1326 #endif /* HAVE_BIGFLOAT */ | |
| 1327 | |
| 1328 /************************************************************************/ | |
| 428 | 1329 /* Vector allocation */ |
| 1330 /************************************************************************/ | |
| 1331 | |
| 1332 static Lisp_Object | |
| 1333 mark_vector (Lisp_Object obj) | |
| 1334 { | |
| 1335 Lisp_Vector *ptr = XVECTOR (obj); | |
| 1336 int len = vector_length (ptr); | |
| 1337 int i; | |
| 1338 | |
| 1339 for (i = 0; i < len - 1; i++) | |
| 1340 mark_object (ptr->contents[i]); | |
| 1341 return (len > 0) ? ptr->contents[len - 1] : Qnil; | |
| 1342 } | |
| 1343 | |
| 665 | 1344 static Bytecount |
| 442 | 1345 size_vector (const void *lheader) |
| 428 | 1346 { |
| 456 | 1347 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, contents, |
| 442 | 1348 ((Lisp_Vector *) lheader)->size); |
| 428 | 1349 } |
| 1350 | |
| 1351 static int | |
| 1352 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
| 1353 { | |
| 1354 int len = XVECTOR_LENGTH (obj1); | |
| 1355 if (len != XVECTOR_LENGTH (obj2)) | |
| 1356 return 0; | |
| 1357 | |
| 1358 { | |
| 1359 Lisp_Object *ptr1 = XVECTOR_DATA (obj1); | |
| 1360 Lisp_Object *ptr2 = XVECTOR_DATA (obj2); | |
| 1361 while (len--) | |
| 1362 if (!internal_equal (*ptr1++, *ptr2++, depth + 1)) | |
| 1363 return 0; | |
| 1364 } | |
| 1365 return 1; | |
| 1366 } | |
| 1367 | |
| 665 | 1368 static Hashcode |
| 442 | 1369 vector_hash (Lisp_Object obj, int depth) |
| 1370 { | |
| 1371 return HASH2 (XVECTOR_LENGTH (obj), | |
| 1372 internal_array_hash (XVECTOR_DATA (obj), | |
| 1373 XVECTOR_LENGTH (obj), | |
| 1374 depth + 1)); | |
| 1375 } | |
| 1376 | |
| 1204 | 1377 static const struct memory_description vector_description[] = { |
| 440 | 1378 { XD_LONG, offsetof (Lisp_Vector, size) }, |
| 1379 { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Vector, contents), XD_INDIRECT(0, 0) }, | |
| 428 | 1380 { XD_END } |
| 1381 }; | |
| 1382 | |
| 1204 | 1383 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION ("vector", vector, |
| 1384 1, /*dumpable-flag*/ | |
| 1385 mark_vector, print_vector, 0, | |
| 1386 vector_equal, | |
| 1387 vector_hash, | |
| 1388 vector_description, | |
| 1389 size_vector, Lisp_Vector); | |
| 428 | 1390 /* #### should allocate `small' vectors from a frob-block */ |
| 1391 static Lisp_Vector * | |
| 665 | 1392 make_vector_internal (Elemcount sizei) |
| 428 | 1393 { |
| 1204 | 1394 /* no `next' field; we use lcrecords */ |
| 665 | 1395 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, |
| 1204 | 1396 contents, sizei); |
| 1397 Lisp_Vector *p = | |
| 1398 (Lisp_Vector *) basic_alloc_lcrecord (sizem, &lrecord_vector); | |
| 428 | 1399 |
| 1400 p->size = sizei; | |
| 1401 return p; | |
| 1402 } | |
| 1403 | |
| 1404 Lisp_Object | |
| 665 | 1405 make_vector (Elemcount length, Lisp_Object object) |
| 428 | 1406 { |
| 1407 Lisp_Vector *vecp = make_vector_internal (length); | |
| 1408 Lisp_Object *p = vector_data (vecp); | |
| 1409 | |
| 1410 while (length--) | |
| 444 | 1411 *p++ = object; |
| 428 | 1412 |
| 793 | 1413 return wrap_vector (vecp); |
| 428 | 1414 } |
| 1415 | |
| 1416 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /* | |
| 444 | 1417 Return a new vector of length LENGTH, with each element being OBJECT. |
| 428 | 1418 See also the function `vector'. |
| 1419 */ | |
| 444 | 1420 (length, object)) |
| 428 | 1421 { |
| 1422 CONCHECK_NATNUM (length); | |
| 444 | 1423 return make_vector (XINT (length), object); |
| 428 | 1424 } |
| 1425 | |
| 1426 DEFUN ("vector", Fvector, 0, MANY, 0, /* | |
| 1427 Return a newly created vector with specified arguments as elements. | |
| 1428 Any number of arguments, even zero arguments, are allowed. | |
| 1429 */ | |
| 1430 (int nargs, Lisp_Object *args)) | |
| 1431 { | |
| 1432 Lisp_Vector *vecp = make_vector_internal (nargs); | |
| 1433 Lisp_Object *p = vector_data (vecp); | |
| 1434 | |
| 1435 while (nargs--) | |
| 1436 *p++ = *args++; | |
| 1437 | |
| 793 | 1438 return wrap_vector (vecp); |
| 428 | 1439 } |
| 1440 | |
| 1441 Lisp_Object | |
| 1442 vector1 (Lisp_Object obj0) | |
| 1443 { | |
| 1444 return Fvector (1, &obj0); | |
| 1445 } | |
| 1446 | |
| 1447 Lisp_Object | |
| 1448 vector2 (Lisp_Object obj0, Lisp_Object obj1) | |
| 1449 { | |
| 1450 Lisp_Object args[2]; | |
| 1451 args[0] = obj0; | |
| 1452 args[1] = obj1; | |
| 1453 return Fvector (2, args); | |
| 1454 } | |
| 1455 | |
| 1456 Lisp_Object | |
| 1457 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
| 1458 { | |
| 1459 Lisp_Object args[3]; | |
| 1460 args[0] = obj0; | |
| 1461 args[1] = obj1; | |
| 1462 args[2] = obj2; | |
| 1463 return Fvector (3, args); | |
| 1464 } | |
| 1465 | |
| 1466 #if 0 /* currently unused */ | |
| 1467 | |
| 1468 Lisp_Object | |
| 1469 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
| 1470 Lisp_Object obj3) | |
| 1471 { | |
| 1472 Lisp_Object args[4]; | |
| 1473 args[0] = obj0; | |
| 1474 args[1] = obj1; | |
| 1475 args[2] = obj2; | |
| 1476 args[3] = obj3; | |
| 1477 return Fvector (4, args); | |
| 1478 } | |
| 1479 | |
| 1480 Lisp_Object | |
| 1481 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
| 1482 Lisp_Object obj3, Lisp_Object obj4) | |
| 1483 { | |
| 1484 Lisp_Object args[5]; | |
| 1485 args[0] = obj0; | |
| 1486 args[1] = obj1; | |
| 1487 args[2] = obj2; | |
| 1488 args[3] = obj3; | |
| 1489 args[4] = obj4; | |
| 1490 return Fvector (5, args); | |
| 1491 } | |
| 1492 | |
| 1493 Lisp_Object | |
| 1494 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
| 1495 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5) | |
| 1496 { | |
| 1497 Lisp_Object args[6]; | |
| 1498 args[0] = obj0; | |
| 1499 args[1] = obj1; | |
| 1500 args[2] = obj2; | |
| 1501 args[3] = obj3; | |
| 1502 args[4] = obj4; | |
| 1503 args[5] = obj5; | |
| 1504 return Fvector (6, args); | |
| 1505 } | |
| 1506 | |
| 1507 Lisp_Object | |
| 1508 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
| 1509 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, | |
| 1510 Lisp_Object obj6) | |
| 1511 { | |
| 1512 Lisp_Object args[7]; | |
| 1513 args[0] = obj0; | |
| 1514 args[1] = obj1; | |
| 1515 args[2] = obj2; | |
| 1516 args[3] = obj3; | |
| 1517 args[4] = obj4; | |
| 1518 args[5] = obj5; | |
| 1519 args[6] = obj6; | |
| 1520 return Fvector (7, args); | |
| 1521 } | |
| 1522 | |
| 1523 Lisp_Object | |
| 1524 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
| 1525 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, | |
| 1526 Lisp_Object obj6, Lisp_Object obj7) | |
| 1527 { | |
| 1528 Lisp_Object args[8]; | |
| 1529 args[0] = obj0; | |
| 1530 args[1] = obj1; | |
| 1531 args[2] = obj2; | |
| 1532 args[3] = obj3; | |
| 1533 args[4] = obj4; | |
| 1534 args[5] = obj5; | |
| 1535 args[6] = obj6; | |
| 1536 args[7] = obj7; | |
| 1537 return Fvector (8, args); | |
| 1538 } | |
| 1539 #endif /* unused */ | |
| 1540 | |
| 1541 /************************************************************************/ | |
| 1542 /* Bit Vector allocation */ | |
| 1543 /************************************************************************/ | |
| 1544 | |
| 1545 /* #### should allocate `small' bit vectors from a frob-block */ | |
| 440 | 1546 static Lisp_Bit_Vector * |
| 665 | 1547 make_bit_vector_internal (Elemcount sizei) |
| 428 | 1548 { |
| 1204 | 1549 /* no `next' field; we use lcrecords */ |
| 665 | 1550 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (sizei); |
| 1551 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, | |
| 1204 | 1552 unsigned long, |
| 1553 bits, num_longs); | |
| 1554 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *) | |
| 1555 basic_alloc_lcrecord (sizem, &lrecord_bit_vector); | |
| 428 | 1556 |
| 1557 bit_vector_length (p) = sizei; | |
| 1558 return p; | |
| 1559 } | |
| 1560 | |
| 1561 Lisp_Object | |
| 665 | 1562 make_bit_vector (Elemcount length, Lisp_Object bit) |
| 428 | 1563 { |
| 440 | 1564 Lisp_Bit_Vector *p = make_bit_vector_internal (length); |
| 665 | 1565 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (length); |
| 428 | 1566 |
| 444 | 1567 CHECK_BIT (bit); |
| 1568 | |
| 1569 if (ZEROP (bit)) | |
| 428 | 1570 memset (p->bits, 0, num_longs * sizeof (long)); |
| 1571 else | |
| 1572 { | |
| 665 | 1573 Elemcount bits_in_last = length & (LONGBITS_POWER_OF_2 - 1); |
| 428 | 1574 memset (p->bits, ~0, num_longs * sizeof (long)); |
| 1575 /* But we have to make sure that the unused bits in the | |
| 1576 last long are 0, so that equal/hash is easy. */ | |
| 1577 if (bits_in_last) | |
| 1578 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1; | |
| 1579 } | |
| 1580 | |
| 793 | 1581 return wrap_bit_vector (p); |
| 428 | 1582 } |
| 1583 | |
| 1584 Lisp_Object | |
| 665 | 1585 make_bit_vector_from_byte_vector (unsigned char *bytevec, Elemcount length) |
| 428 | 1586 { |
| 665 | 1587 Elemcount i; |
| 428 | 1588 Lisp_Bit_Vector *p = make_bit_vector_internal (length); |
| 1589 | |
| 1590 for (i = 0; i < length; i++) | |
| 1591 set_bit_vector_bit (p, i, bytevec[i]); | |
| 1592 | |
| 793 | 1593 return wrap_bit_vector (p); |
| 428 | 1594 } |
| 1595 | |
| 1596 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /* | |
| 444 | 1597 Return a new bit vector of length LENGTH. with each bit set to BIT. |
| 1598 BIT must be one of the integers 0 or 1. See also the function `bit-vector'. | |
| 428 | 1599 */ |
| 444 | 1600 (length, bit)) |
| 428 | 1601 { |
| 1602 CONCHECK_NATNUM (length); | |
| 1603 | |
| 444 | 1604 return make_bit_vector (XINT (length), bit); |
| 428 | 1605 } |
| 1606 | |
| 1607 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /* | |
| 1608 Return a newly created bit vector with specified arguments as elements. | |
| 1609 Any number of arguments, even zero arguments, are allowed. | |
| 444 | 1610 Each argument must be one of the integers 0 or 1. |
| 428 | 1611 */ |
| 1612 (int nargs, Lisp_Object *args)) | |
| 1613 { | |
| 1614 int i; | |
| 1615 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs); | |
| 1616 | |
| 1617 for (i = 0; i < nargs; i++) | |
| 1618 { | |
| 1619 CHECK_BIT (args[i]); | |
| 1620 set_bit_vector_bit (p, i, !ZEROP (args[i])); | |
| 1621 } | |
| 1622 | |
| 793 | 1623 return wrap_bit_vector (p); |
| 428 | 1624 } |
| 1625 | |
| 1626 | |
| 1627 /************************************************************************/ | |
| 1628 /* Compiled-function allocation */ | |
| 1629 /************************************************************************/ | |
| 1630 | |
| 1631 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function); | |
| 1632 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000 | |
| 1633 | |
| 1634 static Lisp_Object | |
| 1635 make_compiled_function (void) | |
| 1636 { | |
| 1637 Lisp_Compiled_Function *f; | |
| 1638 | |
| 1639 ALLOCATE_FIXED_TYPE (compiled_function, Lisp_Compiled_Function, f); | |
| 442 | 1640 set_lheader_implementation (&f->lheader, &lrecord_compiled_function); |
| 428 | 1641 |
| 1642 f->stack_depth = 0; | |
| 1643 f->specpdl_depth = 0; | |
| 1644 f->flags.documentationp = 0; | |
| 1645 f->flags.interactivep = 0; | |
| 1646 f->flags.domainp = 0; /* I18N3 */ | |
| 1647 f->instructions = Qzero; | |
| 1648 f->constants = Qzero; | |
| 1649 f->arglist = Qnil; | |
| 1739 | 1650 f->args = NULL; |
| 1651 f->max_args = f->min_args = f->args_in_array = 0; | |
| 428 | 1652 f->doc_and_interactive = Qnil; |
| 1653 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK | |
| 1654 f->annotated = Qnil; | |
| 1655 #endif | |
| 793 | 1656 return wrap_compiled_function (f); |
| 428 | 1657 } |
| 1658 | |
| 1659 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /* | |
| 1660 Return a new compiled-function object. | |
| 1661 Usage: (arglist instructions constants stack-depth | |
| 1662 &optional doc-string interactive) | |
| 1663 Note that, unlike all other emacs-lisp functions, calling this with five | |
| 1664 arguments is NOT the same as calling it with six arguments, the last of | |
| 1665 which is nil. If the INTERACTIVE arg is specified as nil, then that means | |
| 1666 that this function was defined with `(interactive)'. If the arg is not | |
| 1667 specified, then that means the function is not interactive. | |
| 1668 This is terrible behavior which is retained for compatibility with old | |
| 1669 `.elc' files which expect these semantics. | |
| 1670 */ | |
| 1671 (int nargs, Lisp_Object *args)) | |
| 1672 { | |
| 1673 /* In a non-insane world this function would have this arglist... | |
| 1674 (arglist instructions constants stack_depth &optional doc_string interactive) | |
| 1675 */ | |
| 1676 Lisp_Object fun = make_compiled_function (); | |
| 1677 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun); | |
| 1678 | |
| 1679 Lisp_Object arglist = args[0]; | |
| 1680 Lisp_Object instructions = args[1]; | |
| 1681 Lisp_Object constants = args[2]; | |
| 1682 Lisp_Object stack_depth = args[3]; | |
| 1683 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil; | |
| 1684 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound; | |
| 1685 | |
| 1686 if (nargs < 4 || nargs > 6) | |
| 1687 return Fsignal (Qwrong_number_of_arguments, | |
| 1688 list2 (intern ("make-byte-code"), make_int (nargs))); | |
| 1689 | |
| 1690 /* Check for valid formal parameter list now, to allow us to use | |
| 1691 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */ | |
| 1692 { | |
| 814 | 1693 EXTERNAL_LIST_LOOP_2 (symbol, arglist) |
| 428 | 1694 { |
| 1695 CHECK_SYMBOL (symbol); | |
| 1696 if (EQ (symbol, Qt) || | |
| 1697 EQ (symbol, Qnil) || | |
| 1698 SYMBOL_IS_KEYWORD (symbol)) | |
| 563 | 1699 invalid_constant_2 |
| 428 | 1700 ("Invalid constant symbol in formal parameter list", |
| 1701 symbol, arglist); | |
| 1702 } | |
| 1703 } | |
| 1704 f->arglist = arglist; | |
| 1705 | |
| 1706 /* `instructions' is a string or a cons (string . int) for a | |
| 1707 lazy-loaded function. */ | |
| 1708 if (CONSP (instructions)) | |
| 1709 { | |
| 1710 CHECK_STRING (XCAR (instructions)); | |
| 1711 CHECK_INT (XCDR (instructions)); | |
| 1712 } | |
| 1713 else | |
| 1714 { | |
| 1715 CHECK_STRING (instructions); | |
| 1716 } | |
| 1717 f->instructions = instructions; | |
| 1718 | |
| 1719 if (!NILP (constants)) | |
| 1720 CHECK_VECTOR (constants); | |
| 1721 f->constants = constants; | |
| 1722 | |
| 1723 CHECK_NATNUM (stack_depth); | |
| 442 | 1724 f->stack_depth = (unsigned short) XINT (stack_depth); |
| 428 | 1725 |
| 1726 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK | |
| 1727 if (!NILP (Vcurrent_compiled_function_annotation)) | |
| 1728 f->annotated = Fcopy (Vcurrent_compiled_function_annotation); | |
| 1729 else if (!NILP (Vload_file_name_internal_the_purecopy)) | |
| 1730 f->annotated = Vload_file_name_internal_the_purecopy; | |
| 1731 else if (!NILP (Vload_file_name_internal)) | |
| 1732 { | |
| 1733 struct gcpro gcpro1; | |
| 1734 GCPRO1 (fun); /* don't let fun get reaped */ | |
| 1735 Vload_file_name_internal_the_purecopy = | |
| 1736 Ffile_name_nondirectory (Vload_file_name_internal); | |
| 1737 f->annotated = Vload_file_name_internal_the_purecopy; | |
| 1738 UNGCPRO; | |
| 1739 } | |
| 1740 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */ | |
| 1741 | |
| 1742 /* doc_string may be nil, string, int, or a cons (string . int). | |
| 1743 interactive may be list or string (or unbound). */ | |
| 1744 f->doc_and_interactive = Qunbound; | |
| 1745 #ifdef I18N3 | |
| 1746 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0) | |
| 1747 f->doc_and_interactive = Vfile_domain; | |
| 1748 #endif | |
| 1749 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0) | |
| 1750 { | |
| 1751 f->doc_and_interactive | |
| 1752 = (UNBOUNDP (f->doc_and_interactive) ? interactive : | |
| 1753 Fcons (interactive, f->doc_and_interactive)); | |
| 1754 } | |
| 1755 if ((f->flags.documentationp = !NILP (doc_string)) != 0) | |
| 1756 { | |
| 1757 f->doc_and_interactive | |
| 1758 = (UNBOUNDP (f->doc_and_interactive) ? doc_string : | |
| 1759 Fcons (doc_string, f->doc_and_interactive)); | |
| 1760 } | |
| 1761 if (UNBOUNDP (f->doc_and_interactive)) | |
| 1762 f->doc_and_interactive = Qnil; | |
| 1763 | |
| 1764 return fun; | |
| 1765 } | |
| 1766 | |
| 1767 | |
| 1768 /************************************************************************/ | |
| 1769 /* Symbol allocation */ | |
| 1770 /************************************************************************/ | |
| 1771 | |
| 440 | 1772 DECLARE_FIXED_TYPE_ALLOC (symbol, Lisp_Symbol); |
| 428 | 1773 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000 |
| 1774 | |
| 1775 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /* | |
| 1776 Return a newly allocated uninterned symbol whose name is NAME. | |
| 1777 Its value and function definition are void, and its property list is nil. | |
| 1778 */ | |
| 1779 (name)) | |
| 1780 { | |
| 440 | 1781 Lisp_Symbol *p; |
| 428 | 1782 |
| 1783 CHECK_STRING (name); | |
| 1784 | |
| 440 | 1785 ALLOCATE_FIXED_TYPE (symbol, Lisp_Symbol, p); |
| 442 | 1786 set_lheader_implementation (&p->lheader, &lrecord_symbol); |
| 793 | 1787 p->name = name; |
| 428 | 1788 p->plist = Qnil; |
| 1789 p->value = Qunbound; | |
| 1790 p->function = Qunbound; | |
| 1791 symbol_next (p) = 0; | |
| 793 | 1792 return wrap_symbol (p); |
| 428 | 1793 } |
| 1794 | |
| 1795 | |
| 1796 /************************************************************************/ | |
| 1797 /* Extent allocation */ | |
| 1798 /************************************************************************/ | |
| 1799 | |
| 1800 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent); | |
| 1801 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000 | |
| 1802 | |
| 1803 struct extent * | |
| 1804 allocate_extent (void) | |
| 1805 { | |
| 1806 struct extent *e; | |
| 1807 | |
| 1808 ALLOCATE_FIXED_TYPE (extent, struct extent, e); | |
| 442 | 1809 set_lheader_implementation (&e->lheader, &lrecord_extent); |
| 428 | 1810 extent_object (e) = Qnil; |
| 1811 set_extent_start (e, -1); | |
| 1812 set_extent_end (e, -1); | |
| 1813 e->plist = Qnil; | |
| 1814 | |
| 1815 xzero (e->flags); | |
| 1816 | |
| 1817 extent_face (e) = Qnil; | |
| 1818 e->flags.end_open = 1; /* default is for endpoints to behave like markers */ | |
| 1819 e->flags.detachable = 1; | |
| 1820 | |
| 1821 return e; | |
| 1822 } | |
| 1823 | |
| 1824 | |
| 1825 /************************************************************************/ | |
| 1826 /* Event allocation */ | |
| 1827 /************************************************************************/ | |
| 1828 | |
| 440 | 1829 DECLARE_FIXED_TYPE_ALLOC (event, Lisp_Event); |
| 428 | 1830 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000 |
| 1831 | |
| 1832 Lisp_Object | |
| 1833 allocate_event (void) | |
| 1834 { | |
| 440 | 1835 Lisp_Event *e; |
| 1836 | |
| 1837 ALLOCATE_FIXED_TYPE (event, Lisp_Event, e); | |
| 442 | 1838 set_lheader_implementation (&e->lheader, &lrecord_event); |
| 428 | 1839 |
| 793 | 1840 return wrap_event (e); |
| 428 | 1841 } |
| 1842 | |
| 1204 | 1843 #ifdef EVENT_DATA_AS_OBJECTS |
| 934 | 1844 DECLARE_FIXED_TYPE_ALLOC (key_data, Lisp_Key_Data); |
| 1845 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_key_data 1000 | |
| 1846 | |
| 1847 Lisp_Object | |
| 1204 | 1848 make_key_data (void) |
| 934 | 1849 { |
| 1850 Lisp_Key_Data *d; | |
| 1851 | |
| 1852 ALLOCATE_FIXED_TYPE (key_data, Lisp_Key_Data, d); | |
| 1204 | 1853 xzero (*d); |
| 934 | 1854 set_lheader_implementation (&d->lheader, &lrecord_key_data); |
| 1204 | 1855 d->keysym = Qnil; |
| 1856 | |
| 1857 return wrap_key_data (d); | |
| 934 | 1858 } |
| 1859 | |
| 1860 DECLARE_FIXED_TYPE_ALLOC (button_data, Lisp_Button_Data); | |
| 1861 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_button_data 1000 | |
| 1862 | |
| 1863 Lisp_Object | |
| 1204 | 1864 make_button_data (void) |
| 934 | 1865 { |
| 1866 Lisp_Button_Data *d; | |
| 1867 | |
| 1868 ALLOCATE_FIXED_TYPE (button_data, Lisp_Button_Data, d); | |
| 1204 | 1869 xzero (*d); |
| 934 | 1870 set_lheader_implementation (&d->lheader, &lrecord_button_data); |
| 1871 | |
| 1204 | 1872 return wrap_button_data (d); |
| 934 | 1873 } |
| 1874 | |
| 1875 DECLARE_FIXED_TYPE_ALLOC (motion_data, Lisp_Motion_Data); | |
| 1876 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_motion_data 1000 | |
| 1877 | |
| 1878 Lisp_Object | |
| 1204 | 1879 make_motion_data (void) |
| 934 | 1880 { |
| 1881 Lisp_Motion_Data *d; | |
| 1882 | |
| 1883 ALLOCATE_FIXED_TYPE (motion_data, Lisp_Motion_Data, d); | |
| 1204 | 1884 xzero (*d); |
| 934 | 1885 set_lheader_implementation (&d->lheader, &lrecord_motion_data); |
| 1886 | |
| 1204 | 1887 return wrap_motion_data (d); |
| 934 | 1888 } |
| 1889 | |
| 1890 DECLARE_FIXED_TYPE_ALLOC (process_data, Lisp_Process_Data); | |
| 1891 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_process_data 1000 | |
| 1892 | |
| 1893 Lisp_Object | |
| 1204 | 1894 make_process_data (void) |
| 934 | 1895 { |
| 1896 Lisp_Process_Data *d; | |
| 1897 | |
| 1898 ALLOCATE_FIXED_TYPE (process_data, Lisp_Process_Data, d); | |
| 1204 | 1899 xzero (*d); |
| 934 | 1900 set_lheader_implementation (&d->lheader, &lrecord_process_data); |
| 1204 | 1901 d->process = Qnil; |
| 1902 | |
| 1903 return wrap_process_data (d); | |
| 934 | 1904 } |
| 1905 | |
| 1906 DECLARE_FIXED_TYPE_ALLOC (timeout_data, Lisp_Timeout_Data); | |
| 1907 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_timeout_data 1000 | |
| 1908 | |
| 1909 Lisp_Object | |
| 1204 | 1910 make_timeout_data (void) |
| 934 | 1911 { |
| 1912 Lisp_Timeout_Data *d; | |
| 1913 | |
| 1914 ALLOCATE_FIXED_TYPE (timeout_data, Lisp_Timeout_Data, d); | |
| 1204 | 1915 xzero (*d); |
| 934 | 1916 set_lheader_implementation (&d->lheader, &lrecord_timeout_data); |
| 1204 | 1917 d->function = Qnil; |
| 1918 d->object = Qnil; | |
| 1919 | |
| 1920 return wrap_timeout_data (d); | |
| 934 | 1921 } |
| 1922 | |
| 1923 DECLARE_FIXED_TYPE_ALLOC (magic_data, Lisp_Magic_Data); | |
| 1924 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_data 1000 | |
| 1925 | |
| 1926 Lisp_Object | |
| 1204 | 1927 make_magic_data (void) |
| 934 | 1928 { |
| 1929 Lisp_Magic_Data *d; | |
| 1930 | |
| 1931 ALLOCATE_FIXED_TYPE (magic_data, Lisp_Magic_Data, d); | |
| 1204 | 1932 xzero (*d); |
| 934 | 1933 set_lheader_implementation (&d->lheader, &lrecord_magic_data); |
| 1934 | |
| 1204 | 1935 return wrap_magic_data (d); |
| 934 | 1936 } |
| 1937 | |
| 1938 DECLARE_FIXED_TYPE_ALLOC (magic_eval_data, Lisp_Magic_Eval_Data); | |
| 1939 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_eval_data 1000 | |
| 1940 | |
| 1941 Lisp_Object | |
| 1204 | 1942 make_magic_eval_data (void) |
| 934 | 1943 { |
| 1944 Lisp_Magic_Eval_Data *d; | |
| 1945 | |
| 1946 ALLOCATE_FIXED_TYPE (magic_eval_data, Lisp_Magic_Eval_Data, d); | |
| 1204 | 1947 xzero (*d); |
| 934 | 1948 set_lheader_implementation (&d->lheader, &lrecord_magic_eval_data); |
| 1204 | 1949 d->object = Qnil; |
| 1950 | |
| 1951 return wrap_magic_eval_data (d); | |
| 934 | 1952 } |
| 1953 | |
| 1954 DECLARE_FIXED_TYPE_ALLOC (eval_data, Lisp_Eval_Data); | |
| 1955 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_eval_data 1000 | |
| 1956 | |
| 1957 Lisp_Object | |
| 1204 | 1958 make_eval_data (void) |
| 934 | 1959 { |
| 1960 Lisp_Eval_Data *d; | |
| 1961 | |
| 1962 ALLOCATE_FIXED_TYPE (eval_data, Lisp_Eval_Data, d); | |
| 1204 | 1963 xzero (*d); |
| 934 | 1964 set_lheader_implementation (&d->lheader, &lrecord_eval_data); |
| 1204 | 1965 d->function = Qnil; |
| 1966 d->object = Qnil; | |
| 1967 | |
| 1968 return wrap_eval_data (d); | |
| 934 | 1969 } |
| 1970 | |
| 1971 DECLARE_FIXED_TYPE_ALLOC (misc_user_data, Lisp_Misc_User_Data); | |
| 1972 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_misc_user_data 1000 | |
| 1973 | |
| 1974 Lisp_Object | |
| 1204 | 1975 make_misc_user_data (void) |
| 934 | 1976 { |
| 1977 Lisp_Misc_User_Data *d; | |
| 1978 | |
| 1979 ALLOCATE_FIXED_TYPE (misc_user_data, Lisp_Misc_User_Data, d); | |
| 1204 | 1980 xzero (*d); |
| 934 | 1981 set_lheader_implementation (&d->lheader, &lrecord_misc_user_data); |
| 1204 | 1982 d->function = Qnil; |
| 1983 d->object = Qnil; | |
| 1984 | |
| 1985 return wrap_misc_user_data (d); | |
| 934 | 1986 } |
| 1204 | 1987 |
| 1988 #endif /* EVENT_DATA_AS_OBJECTS */ | |
| 428 | 1989 |
| 1990 /************************************************************************/ | |
| 1991 /* Marker allocation */ | |
| 1992 /************************************************************************/ | |
| 1993 | |
| 440 | 1994 DECLARE_FIXED_TYPE_ALLOC (marker, Lisp_Marker); |
| 428 | 1995 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000 |
| 1996 | |
| 1997 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /* | |
| 1998 Return a new marker which does not point at any place. | |
| 1999 */ | |
| 2000 ()) | |
| 2001 { | |
| 440 | 2002 Lisp_Marker *p; |
| 2003 | |
| 2004 ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p); | |
| 442 | 2005 set_lheader_implementation (&p->lheader, &lrecord_marker); |
| 428 | 2006 p->buffer = 0; |
| 665 | 2007 p->membpos = 0; |
| 428 | 2008 marker_next (p) = 0; |
| 2009 marker_prev (p) = 0; | |
| 2010 p->insertion_type = 0; | |
| 793 | 2011 return wrap_marker (p); |
| 428 | 2012 } |
| 2013 | |
| 2014 Lisp_Object | |
| 2015 noseeum_make_marker (void) | |
| 2016 { | |
| 440 | 2017 Lisp_Marker *p; |
| 2018 | |
| 2019 NOSEEUM_ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p); | |
| 442 | 2020 set_lheader_implementation (&p->lheader, &lrecord_marker); |
| 428 | 2021 p->buffer = 0; |
| 665 | 2022 p->membpos = 0; |
| 428 | 2023 marker_next (p) = 0; |
| 2024 marker_prev (p) = 0; | |
| 2025 p->insertion_type = 0; | |
| 793 | 2026 return wrap_marker (p); |
| 428 | 2027 } |
| 2028 | |
| 2029 | |
| 2030 /************************************************************************/ | |
| 2031 /* String allocation */ | |
| 2032 /************************************************************************/ | |
| 2033 | |
| 2034 /* The data for "short" strings generally resides inside of structs of type | |
| 2035 string_chars_block. The Lisp_String structure is allocated just like any | |
| 1204 | 2036 other basic lrecord, and these are freelisted when they get garbage |
| 2037 collected. The data for short strings get compacted, but the data for | |
| 2038 large strings do not. | |
| 428 | 2039 |
| 2040 Previously Lisp_String structures were relocated, but this caused a lot | |
| 2041 of bus-errors because the C code didn't include enough GCPRO's for | |
| 2042 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so | |
| 2043 that the reference would get relocated). | |
| 2044 | |
| 2045 This new method makes things somewhat bigger, but it is MUCH safer. */ | |
| 2046 | |
| 438 | 2047 DECLARE_FIXED_TYPE_ALLOC (string, Lisp_String); |
| 428 | 2048 /* strings are used and freed quite often */ |
| 2049 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */ | |
| 2050 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000 | |
| 2051 | |
| 2052 static Lisp_Object | |
| 2053 mark_string (Lisp_Object obj) | |
| 2054 { | |
| 793 | 2055 if (CONSP (XSTRING_PLIST (obj)) && EXTENT_INFOP (XCAR (XSTRING_PLIST (obj)))) |
| 2056 flush_cached_extent_info (XCAR (XSTRING_PLIST (obj))); | |
| 2057 return XSTRING_PLIST (obj); | |
| 428 | 2058 } |
| 2059 | |
| 2060 static int | |
| 2286 | 2061 string_equal (Lisp_Object obj1, Lisp_Object obj2, int UNUSED (depth)) |
| 428 | 2062 { |
| 2063 Bytecount len; | |
| 2064 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) && | |
| 2065 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len)); | |
| 2066 } | |
| 2067 | |
| 1204 | 2068 static const struct memory_description string_description[] = { |
| 793 | 2069 { XD_BYTECOUNT, offsetof (Lisp_String, size_) }, |
| 2070 { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data_), XD_INDIRECT(0, 1) }, | |
| 440 | 2071 { XD_LISP_OBJECT, offsetof (Lisp_String, plist) }, |
| 428 | 2072 { XD_END } |
| 2073 }; | |
| 2074 | |
| 442 | 2075 /* We store the string's extent info as the first element of the string's |
| 2076 property list; and the string's MODIFF as the first or second element | |
| 2077 of the string's property list (depending on whether the extent info | |
| 2078 is present), but only if the string has been modified. This is ugly | |
| 2079 but it reduces the memory allocated for the string in the vast | |
| 2080 majority of cases, where the string is never modified and has no | |
| 2081 extent info. | |
| 2082 | |
| 2083 #### This means you can't use an int as a key in a string's plist. */ | |
| 2084 | |
| 2085 static Lisp_Object * | |
| 2086 string_plist_ptr (Lisp_Object string) | |
| 2087 { | |
| 793 | 2088 Lisp_Object *ptr = &XSTRING_PLIST (string); |
| 442 | 2089 |
| 2090 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr))) | |
| 2091 ptr = &XCDR (*ptr); | |
| 2092 if (CONSP (*ptr) && INTP (XCAR (*ptr))) | |
| 2093 ptr = &XCDR (*ptr); | |
| 2094 return ptr; | |
| 2095 } | |
| 2096 | |
| 2097 static Lisp_Object | |
| 2098 string_getprop (Lisp_Object string, Lisp_Object property) | |
| 2099 { | |
| 2100 return external_plist_get (string_plist_ptr (string), property, 0, ERROR_ME); | |
| 2101 } | |
| 2102 | |
| 2103 static int | |
| 2104 string_putprop (Lisp_Object string, Lisp_Object property, Lisp_Object value) | |
| 2105 { | |
| 2106 external_plist_put (string_plist_ptr (string), property, value, 0, ERROR_ME); | |
| 2107 return 1; | |
| 2108 } | |
| 2109 | |
| 2110 static int | |
| 2111 string_remprop (Lisp_Object string, Lisp_Object property) | |
| 2112 { | |
| 2113 return external_remprop (string_plist_ptr (string), property, 0, ERROR_ME); | |
| 2114 } | |
| 2115 | |
| 2116 static Lisp_Object | |
| 2117 string_plist (Lisp_Object string) | |
| 2118 { | |
| 2119 return *string_plist_ptr (string); | |
| 2120 } | |
| 2121 | |
| 2122 /* No `finalize', or `hash' methods. | |
| 2123 internal_hash() already knows how to hash strings and finalization | |
| 2124 is done with the ADDITIONAL_FREE_string macro, which is the | |
| 2125 standard way to do finalization when using | |
| 2126 SWEEP_FIXED_TYPE_BLOCK(). */ | |
| 934 | 2127 DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS ("string", string, |
| 2128 1, /*dumpable-flag*/ | |
| 2129 mark_string, print_string, | |
| 2130 0, string_equal, 0, | |
| 2131 string_description, | |
| 2132 string_getprop, | |
| 2133 string_putprop, | |
| 2134 string_remprop, | |
| 2135 string_plist, | |
| 2136 Lisp_String); | |
| 428 | 2137 /* String blocks contain this many useful bytes. */ |
| 2138 #define STRING_CHARS_BLOCK_SIZE \ | |
| 814 | 2139 ((Bytecount) (8192 - MALLOC_OVERHEAD - \ |
| 2140 ((2 * sizeof (struct string_chars_block *)) \ | |
| 2141 + sizeof (EMACS_INT)))) | |
| 428 | 2142 /* Block header for small strings. */ |
| 2143 struct string_chars_block | |
| 2144 { | |
| 2145 EMACS_INT pos; | |
| 2146 struct string_chars_block *next; | |
| 2147 struct string_chars_block *prev; | |
| 2148 /* Contents of string_chars_block->string_chars are interleaved | |
| 2149 string_chars structures (see below) and the actual string data */ | |
| 2150 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE]; | |
| 2151 }; | |
| 2152 | |
| 2153 static struct string_chars_block *first_string_chars_block; | |
| 2154 static struct string_chars_block *current_string_chars_block; | |
| 2155 | |
| 2156 /* If SIZE is the length of a string, this returns how many bytes | |
| 2157 * the string occupies in string_chars_block->string_chars | |
| 2158 * (including alignment padding). | |
| 2159 */ | |
| 438 | 2160 #define STRING_FULLSIZE(size) \ |
| 826 | 2161 ALIGN_FOR_TYPE (((size) + 1 + sizeof (Lisp_String *)), Lisp_String *) |
| 428 | 2162 |
| 2163 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE) | |
| 2164 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size))) | |
| 2165 | |
| 454 | 2166 #define STRING_CHARS_FREE_P(ptr) ((ptr)->string == NULL) |
| 2167 #define MARK_STRING_CHARS_AS_FREE(ptr) ((void) ((ptr)->string = NULL)) | |
| 2168 | |
| 428 | 2169 struct string_chars |
| 2170 { | |
| 438 | 2171 Lisp_String *string; |
| 428 | 2172 unsigned char chars[1]; |
| 2173 }; | |
| 2174 | |
| 2175 struct unused_string_chars | |
| 2176 { | |
| 438 | 2177 Lisp_String *string; |
| 428 | 2178 EMACS_INT fullsize; |
| 2179 }; | |
| 2180 | |
| 2181 static void | |
| 2182 init_string_chars_alloc (void) | |
| 2183 { | |
| 2184 first_string_chars_block = xnew (struct string_chars_block); | |
| 2185 first_string_chars_block->prev = 0; | |
| 2186 first_string_chars_block->next = 0; | |
| 2187 first_string_chars_block->pos = 0; | |
| 2188 current_string_chars_block = first_string_chars_block; | |
| 2189 } | |
| 2190 | |
| 1550 | 2191 static Ibyte * |
| 2192 allocate_big_string_chars (Bytecount length) | |
| 2193 { | |
| 2194 Ibyte *p = xnew_array (Ibyte, length); | |
| 2195 INCREMENT_CONS_COUNTER (length, "string chars"); | |
| 2196 return p; | |
| 2197 } | |
| 2198 | |
| 428 | 2199 static struct string_chars * |
| 793 | 2200 allocate_string_chars_struct (Lisp_Object string_it_goes_with, |
| 814 | 2201 Bytecount fullsize) |
| 428 | 2202 { |
| 2203 struct string_chars *s_chars; | |
| 2204 | |
| 438 | 2205 if (fullsize <= |
| 2206 (countof (current_string_chars_block->string_chars) | |
| 2207 - current_string_chars_block->pos)) | |
| 428 | 2208 { |
| 2209 /* This string can fit in the current string chars block */ | |
| 2210 s_chars = (struct string_chars *) | |
| 2211 (current_string_chars_block->string_chars | |
| 2212 + current_string_chars_block->pos); | |
| 2213 current_string_chars_block->pos += fullsize; | |
| 2214 } | |
| 2215 else | |
| 2216 { | |
| 2217 /* Make a new current string chars block */ | |
| 2218 struct string_chars_block *new_scb = xnew (struct string_chars_block); | |
| 2219 | |
| 2220 current_string_chars_block->next = new_scb; | |
| 2221 new_scb->prev = current_string_chars_block; | |
| 2222 new_scb->next = 0; | |
| 2223 current_string_chars_block = new_scb; | |
| 2224 new_scb->pos = fullsize; | |
| 2225 s_chars = (struct string_chars *) | |
| 2226 current_string_chars_block->string_chars; | |
| 2227 } | |
| 2228 | |
| 793 | 2229 s_chars->string = XSTRING (string_it_goes_with); |
| 428 | 2230 |
| 2231 INCREMENT_CONS_COUNTER (fullsize, "string chars"); | |
| 2232 | |
| 2233 return s_chars; | |
| 2234 } | |
| 2235 | |
| 771 | 2236 #ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN |
| 2237 void | |
| 2238 sledgehammer_check_ascii_begin (Lisp_Object str) | |
| 2239 { | |
| 2240 Bytecount i; | |
| 2241 | |
| 2242 for (i = 0; i < XSTRING_LENGTH (str); i++) | |
| 2243 { | |
| 826 | 2244 if (!byte_ascii_p (string_byte (str, i))) |
| 771 | 2245 break; |
| 2246 } | |
| 2247 | |
| 2248 assert (i == (Bytecount) XSTRING_ASCII_BEGIN (str) || | |
| 2249 (i > MAX_STRING_ASCII_BEGIN && | |
| 2250 (Bytecount) XSTRING_ASCII_BEGIN (str) == | |
| 2251 (Bytecount) MAX_STRING_ASCII_BEGIN)); | |
| 2252 } | |
| 2253 #endif | |
| 2254 | |
| 2255 /* You do NOT want to be calling this! (And if you do, you must call | |
| 851 | 2256 XSET_STRING_ASCII_BEGIN() after modifying the string.) Use ALLOCA () |
| 771 | 2257 instead and then call make_string() like the rest of the world. */ |
| 2258 | |
| 428 | 2259 Lisp_Object |
| 2260 make_uninit_string (Bytecount length) | |
| 2261 { | |
| 438 | 2262 Lisp_String *s; |
| 814 | 2263 Bytecount fullsize = STRING_FULLSIZE (length); |
| 428 | 2264 |
| 438 | 2265 assert (length >= 0 && fullsize > 0); |
| 428 | 2266 |
| 2267 /* Allocate the string header */ | |
| 438 | 2268 ALLOCATE_FIXED_TYPE (string, Lisp_String, s); |
| 793 | 2269 xzero (*s); |
| 771 | 2270 set_lheader_implementation (&s->u.lheader, &lrecord_string); |
| 793 | 2271 |
| 826 | 2272 set_lispstringp_data (s, BIG_STRING_FULLSIZE_P (fullsize) |
| 1550 | 2273 ? allocate_big_string_chars (length + 1) |
| 793 | 2274 : allocate_string_chars_struct (wrap_string (s), |
| 2275 fullsize)->chars); | |
| 438 | 2276 |
| 826 | 2277 set_lispstringp_length (s, length); |
| 428 | 2278 s->plist = Qnil; |
| 793 | 2279 set_string_byte (wrap_string (s), length, 0); |
| 2280 | |
| 2281 return wrap_string (s); | |
| 428 | 2282 } |
| 2283 | |
| 2284 #ifdef VERIFY_STRING_CHARS_INTEGRITY | |
| 2285 static void verify_string_chars_integrity (void); | |
| 2286 #endif | |
| 2287 | |
| 2288 /* Resize the string S so that DELTA bytes can be inserted starting | |
| 2289 at POS. If DELTA < 0, it means deletion starting at POS. If | |
| 2290 POS < 0, resize the string but don't copy any characters. Use | |
| 2291 this if you're planning on completely overwriting the string. | |
| 2292 */ | |
| 2293 | |
| 2294 void | |
| 793 | 2295 resize_string (Lisp_Object s, Bytecount pos, Bytecount delta) |
| 428 | 2296 { |
| 438 | 2297 Bytecount oldfullsize, newfullsize; |
| 428 | 2298 #ifdef VERIFY_STRING_CHARS_INTEGRITY |
| 2299 verify_string_chars_integrity (); | |
| 2300 #endif | |
| 2301 | |
| 800 | 2302 #ifdef ERROR_CHECK_TEXT |
| 428 | 2303 if (pos >= 0) |
| 2304 { | |
| 793 | 2305 assert (pos <= XSTRING_LENGTH (s)); |
| 428 | 2306 if (delta < 0) |
| 793 | 2307 assert (pos + (-delta) <= XSTRING_LENGTH (s)); |
| 428 | 2308 } |
| 2309 else | |
| 2310 { | |
| 2311 if (delta < 0) | |
| 793 | 2312 assert ((-delta) <= XSTRING_LENGTH (s)); |
| 428 | 2313 } |
| 800 | 2314 #endif /* ERROR_CHECK_TEXT */ |
| 428 | 2315 |
| 2316 if (delta == 0) | |
| 2317 /* simplest case: no size change. */ | |
| 2318 return; | |
| 438 | 2319 |
| 2320 if (pos >= 0 && delta < 0) | |
| 2321 /* If DELTA < 0, the functions below will delete the characters | |
| 2322 before POS. We want to delete characters *after* POS, however, | |
| 2323 so convert this to the appropriate form. */ | |
| 2324 pos += -delta; | |
| 2325 | |
| 793 | 2326 oldfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s)); |
| 2327 newfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s) + delta); | |
| 438 | 2328 |
| 2329 if (BIG_STRING_FULLSIZE_P (oldfullsize)) | |
| 428 | 2330 { |
| 438 | 2331 if (BIG_STRING_FULLSIZE_P (newfullsize)) |
| 428 | 2332 { |
| 440 | 2333 /* Both strings are big. We can just realloc(). |
| 2334 But careful! If the string is shrinking, we have to | |
| 2335 memmove() _before_ realloc(), and if growing, we have to | |
| 2336 memmove() _after_ realloc() - otherwise the access is | |
| 2337 illegal, and we might crash. */ | |
| 793 | 2338 Bytecount len = XSTRING_LENGTH (s) + 1 - pos; |
| 440 | 2339 |
| 2340 if (delta < 0 && pos >= 0) | |
| 793 | 2341 memmove (XSTRING_DATA (s) + pos + delta, |
| 2342 XSTRING_DATA (s) + pos, len); | |
| 2343 XSET_STRING_DATA | |
| 867 | 2344 (s, (Ibyte *) xrealloc (XSTRING_DATA (s), |
| 793 | 2345 XSTRING_LENGTH (s) + delta + 1)); |
| 440 | 2346 if (delta > 0 && pos >= 0) |
| 793 | 2347 memmove (XSTRING_DATA (s) + pos + delta, XSTRING_DATA (s) + pos, |
| 2348 len); | |
| 1550 | 2349 /* Bump the cons counter. |
| 2350 Conservative; Martin let the increment be delta. */ | |
| 2351 INCREMENT_CONS_COUNTER (newfullsize, "string chars"); | |
| 428 | 2352 } |
| 438 | 2353 else /* String has been demoted from BIG_STRING. */ |
| 428 | 2354 { |
| 867 | 2355 Ibyte *new_data = |
| 438 | 2356 allocate_string_chars_struct (s, newfullsize)->chars; |
| 867 | 2357 Ibyte *old_data = XSTRING_DATA (s); |
| 438 | 2358 |
| 2359 if (pos >= 0) | |
| 2360 { | |
| 2361 memcpy (new_data, old_data, pos); | |
| 2362 memcpy (new_data + pos + delta, old_data + pos, | |
| 793 | 2363 XSTRING_LENGTH (s) + 1 - pos); |
| 438 | 2364 } |
| 793 | 2365 XSET_STRING_DATA (s, new_data); |
| 1726 | 2366 xfree (old_data, Ibyte *); |
| 438 | 2367 } |
| 2368 } | |
| 2369 else /* old string is small */ | |
| 2370 { | |
| 2371 if (oldfullsize == newfullsize) | |
| 2372 { | |
| 2373 /* special case; size change but the necessary | |
| 2374 allocation size won't change (up or down; code | |
| 2375 somewhere depends on there not being any unused | |
| 2376 allocation space, modulo any alignment | |
| 2377 constraints). */ | |
| 428 | 2378 if (pos >= 0) |
| 2379 { | |
| 867 | 2380 Ibyte *addroff = pos + XSTRING_DATA (s); |
| 428 | 2381 |
| 2382 memmove (addroff + delta, addroff, | |
| 2383 /* +1 due to zero-termination. */ | |
| 793 | 2384 XSTRING_LENGTH (s) + 1 - pos); |
| 428 | 2385 } |
| 2386 } | |
| 2387 else | |
| 2388 { | |
| 867 | 2389 Ibyte *old_data = XSTRING_DATA (s); |
| 2390 Ibyte *new_data = | |
| 438 | 2391 BIG_STRING_FULLSIZE_P (newfullsize) |
| 1550 | 2392 ? allocate_big_string_chars (XSTRING_LENGTH (s) + delta + 1) |
| 438 | 2393 : allocate_string_chars_struct (s, newfullsize)->chars; |
| 2394 | |
| 428 | 2395 if (pos >= 0) |
| 2396 { | |
| 438 | 2397 memcpy (new_data, old_data, pos); |
| 2398 memcpy (new_data + pos + delta, old_data + pos, | |
| 793 | 2399 XSTRING_LENGTH (s) + 1 - pos); |
| 428 | 2400 } |
| 793 | 2401 XSET_STRING_DATA (s, new_data); |
| 438 | 2402 |
| 2403 { | |
| 2404 /* We need to mark this chunk of the string_chars_block | |
| 2405 as unused so that compact_string_chars() doesn't | |
| 2406 freak. */ | |
| 2407 struct string_chars *old_s_chars = (struct string_chars *) | |
| 2408 ((char *) old_data - offsetof (struct string_chars, chars)); | |
| 2409 /* Sanity check to make sure we aren't hosed by strange | |
| 2410 alignment/padding. */ | |
| 793 | 2411 assert (old_s_chars->string == XSTRING (s)); |
| 454 | 2412 MARK_STRING_CHARS_AS_FREE (old_s_chars); |
| 438 | 2413 ((struct unused_string_chars *) old_s_chars)->fullsize = |
| 2414 oldfullsize; | |
| 2415 } | |
| 428 | 2416 } |
| 438 | 2417 } |
| 2418 | |
| 793 | 2419 XSET_STRING_LENGTH (s, XSTRING_LENGTH (s) + delta); |
| 438 | 2420 /* If pos < 0, the string won't be zero-terminated. |
| 2421 Terminate now just to make sure. */ | |
| 793 | 2422 XSTRING_DATA (s)[XSTRING_LENGTH (s)] = '\0'; |
| 438 | 2423 |
| 2424 if (pos >= 0) | |
| 793 | 2425 /* We also have to adjust all of the extent indices after the |
| 2426 place we did the change. We say "pos - 1" because | |
| 2427 adjust_extents() is exclusive of the starting position | |
| 2428 passed to it. */ | |
| 2429 adjust_extents (s, pos - 1, XSTRING_LENGTH (s), delta); | |
| 428 | 2430 |
| 2431 #ifdef VERIFY_STRING_CHARS_INTEGRITY | |
| 2432 verify_string_chars_integrity (); | |
| 2433 #endif | |
| 2434 } | |
| 2435 | |
| 2436 #ifdef MULE | |
| 2437 | |
| 771 | 2438 /* WARNING: If you modify an existing string, you must call |
| 2439 CHECK_LISP_WRITEABLE() before and bump_string_modiff() afterwards. */ | |
| 428 | 2440 void |
| 867 | 2441 set_string_char (Lisp_Object s, Charcount i, Ichar c) |
| 428 | 2442 { |
| 867 | 2443 Ibyte newstr[MAX_ICHAR_LEN]; |
| 771 | 2444 Bytecount bytoff = string_index_char_to_byte (s, i); |
| 867 | 2445 Bytecount oldlen = itext_ichar_len (XSTRING_DATA (s) + bytoff); |
| 2446 Bytecount newlen = set_itext_ichar (newstr, c); | |
| 428 | 2447 |
| 793 | 2448 sledgehammer_check_ascii_begin (s); |
| 428 | 2449 if (oldlen != newlen) |
| 2450 resize_string (s, bytoff, newlen - oldlen); | |
| 793 | 2451 /* Remember, XSTRING_DATA (s) might have changed so we can't cache it. */ |
| 2452 memcpy (XSTRING_DATA (s) + bytoff, newstr, newlen); | |
| 771 | 2453 if (oldlen != newlen) |
| 2454 { | |
| 793 | 2455 if (newlen > 1 && i <= (Charcount) XSTRING_ASCII_BEGIN (s)) |
| 771 | 2456 /* Everything starting with the new char is no longer part of |
| 2457 ascii_begin */ | |
| 793 | 2458 XSET_STRING_ASCII_BEGIN (s, i); |
| 2459 else if (newlen == 1 && i == (Charcount) XSTRING_ASCII_BEGIN (s)) | |
| 771 | 2460 /* We've extended ascii_begin, and we have to figure out how much by */ |
| 2461 { | |
| 2462 Bytecount j; | |
| 814 | 2463 for (j = (Bytecount) i + 1; j < XSTRING_LENGTH (s); j++) |
| 771 | 2464 { |
| 826 | 2465 if (!byte_ascii_p (XSTRING_DATA (s)[j])) |
| 771 | 2466 break; |
| 2467 } | |
| 814 | 2468 XSET_STRING_ASCII_BEGIN (s, min (j, (Bytecount) MAX_STRING_ASCII_BEGIN)); |
| 771 | 2469 } |
| 2470 } | |
| 793 | 2471 sledgehammer_check_ascii_begin (s); |
| 428 | 2472 } |
| 2473 | |
| 2474 #endif /* MULE */ | |
| 2475 | |
| 2476 DEFUN ("make-string", Fmake_string, 2, 2, 0, /* | |
| 444 | 2477 Return a new string consisting of LENGTH copies of CHARACTER. |
| 2478 LENGTH must be a non-negative integer. | |
| 428 | 2479 */ |
| 444 | 2480 (length, character)) |
| 428 | 2481 { |
| 2482 CHECK_NATNUM (length); | |
| 444 | 2483 CHECK_CHAR_COERCE_INT (character); |
| 428 | 2484 { |
| 867 | 2485 Ibyte init_str[MAX_ICHAR_LEN]; |
| 2486 int len = set_itext_ichar (init_str, XCHAR (character)); | |
| 428 | 2487 Lisp_Object val = make_uninit_string (len * XINT (length)); |
| 2488 | |
| 2489 if (len == 1) | |
| 771 | 2490 { |
| 2491 /* Optimize the single-byte case */ | |
| 2492 memset (XSTRING_DATA (val), XCHAR (character), XSTRING_LENGTH (val)); | |
| 793 | 2493 XSET_STRING_ASCII_BEGIN (val, min (MAX_STRING_ASCII_BEGIN, |
| 2494 len * XINT (length))); | |
| 771 | 2495 } |
| 428 | 2496 else |
| 2497 { | |
| 647 | 2498 EMACS_INT i; |
| 867 | 2499 Ibyte *ptr = XSTRING_DATA (val); |
| 428 | 2500 |
| 2501 for (i = XINT (length); i; i--) | |
| 2502 { | |
| 867 | 2503 Ibyte *init_ptr = init_str; |
| 428 | 2504 switch (len) |
| 2505 { | |
| 2506 case 4: *ptr++ = *init_ptr++; | |
| 2507 case 3: *ptr++ = *init_ptr++; | |
| 2508 case 2: *ptr++ = *init_ptr++; | |
| 2509 case 1: *ptr++ = *init_ptr++; | |
| 2510 } | |
| 2511 } | |
| 2512 } | |
| 771 | 2513 sledgehammer_check_ascii_begin (val); |
| 428 | 2514 return val; |
| 2515 } | |
| 2516 } | |
| 2517 | |
| 2518 DEFUN ("string", Fstring, 0, MANY, 0, /* | |
| 2519 Concatenate all the argument characters and make the result a string. | |
| 2520 */ | |
| 2521 (int nargs, Lisp_Object *args)) | |
| 2522 { | |
| 2367 | 2523 Ibyte *storage = alloca_ibytes (nargs * MAX_ICHAR_LEN); |
| 867 | 2524 Ibyte *p = storage; |
| 428 | 2525 |
| 2526 for (; nargs; nargs--, args++) | |
| 2527 { | |
| 2528 Lisp_Object lisp_char = *args; | |
| 2529 CHECK_CHAR_COERCE_INT (lisp_char); | |
| 867 | 2530 p += set_itext_ichar (p, XCHAR (lisp_char)); |
| 428 | 2531 } |
| 2532 return make_string (storage, p - storage); | |
| 2533 } | |
| 2534 | |
| 771 | 2535 /* Initialize the ascii_begin member of a string to the correct value. */ |
| 2536 | |
| 2537 void | |
| 2538 init_string_ascii_begin (Lisp_Object string) | |
| 2539 { | |
| 2540 #ifdef MULE | |
| 2541 int i; | |
| 2542 Bytecount length = XSTRING_LENGTH (string); | |
| 867 | 2543 Ibyte *contents = XSTRING_DATA (string); |
| 771 | 2544 |
| 2545 for (i = 0; i < length; i++) | |
| 2546 { | |
| 826 | 2547 if (!byte_ascii_p (contents[i])) |
| 771 | 2548 break; |
| 2549 } | |
| 793 | 2550 XSET_STRING_ASCII_BEGIN (string, min (i, MAX_STRING_ASCII_BEGIN)); |
| 771 | 2551 #else |
| 793 | 2552 XSET_STRING_ASCII_BEGIN (string, min (XSTRING_LENGTH (string), |
| 2553 MAX_STRING_ASCII_BEGIN)); | |
| 771 | 2554 #endif |
| 2555 sledgehammer_check_ascii_begin (string); | |
| 2556 } | |
| 428 | 2557 |
| 2558 /* Take some raw memory, which MUST already be in internal format, | |
| 2559 and package it up into a Lisp string. */ | |
| 2560 Lisp_Object | |
| 867 | 2561 make_string (const Ibyte *contents, Bytecount length) |
| 428 | 2562 { |
| 2563 Lisp_Object val; | |
| 2564 | |
| 2565 /* Make sure we find out about bad make_string's when they happen */ | |
| 800 | 2566 #if defined (ERROR_CHECK_TEXT) && defined (MULE) |
| 428 | 2567 bytecount_to_charcount (contents, length); /* Just for the assertions */ |
| 2568 #endif | |
| 2569 | |
| 2570 val = make_uninit_string (length); | |
| 2571 memcpy (XSTRING_DATA (val), contents, length); | |
| 771 | 2572 init_string_ascii_begin (val); |
| 2573 sledgehammer_check_ascii_begin (val); | |
| 428 | 2574 return val; |
| 2575 } | |
| 2576 | |
| 2577 /* Take some raw memory, encoded in some external data format, | |
| 2578 and convert it into a Lisp string. */ | |
| 2579 Lisp_Object | |
| 442 | 2580 make_ext_string (const Extbyte *contents, EMACS_INT length, |
| 440 | 2581 Lisp_Object coding_system) |
| 428 | 2582 { |
| 440 | 2583 Lisp_Object string; |
| 2584 TO_INTERNAL_FORMAT (DATA, (contents, length), | |
| 2585 LISP_STRING, string, | |
| 2586 coding_system); | |
| 2587 return string; | |
| 428 | 2588 } |
| 2589 | |
| 2590 Lisp_Object | |
| 867 | 2591 build_intstring (const Ibyte *str) |
| 771 | 2592 { |
| 2593 /* Some strlen's crash and burn if passed null. */ | |
| 814 | 2594 return make_string (str, (str ? qxestrlen (str) : (Bytecount) 0)); |
| 771 | 2595 } |
| 2596 | |
| 2597 Lisp_Object | |
| 867 | 2598 build_string (const CIbyte *str) |
| 428 | 2599 { |
| 2600 /* Some strlen's crash and burn if passed null. */ | |
| 867 | 2601 return make_string ((const Ibyte *) str, (str ? strlen (str) : 0)); |
| 428 | 2602 } |
| 2603 | |
| 2604 Lisp_Object | |
| 593 | 2605 build_ext_string (const Extbyte *str, Lisp_Object coding_system) |
| 428 | 2606 { |
| 2607 /* Some strlen's crash and burn if passed null. */ | |
| 2367 | 2608 return make_ext_string ((const Extbyte *) str, |
| 2609 (str ? dfc_external_data_len (str, coding_system) : | |
| 2610 0), | |
| 440 | 2611 coding_system); |
| 428 | 2612 } |
| 2613 | |
| 2614 Lisp_Object | |
| 867 | 2615 build_msg_intstring (const Ibyte *str) |
| 428 | 2616 { |
| 771 | 2617 return build_intstring (GETTEXT (str)); |
| 2618 } | |
| 2619 | |
| 2620 Lisp_Object | |
| 867 | 2621 build_msg_string (const CIbyte *str) |
| 771 | 2622 { |
| 2623 return build_string (CGETTEXT (str)); | |
| 428 | 2624 } |
| 2625 | |
| 2626 Lisp_Object | |
| 867 | 2627 make_string_nocopy (const Ibyte *contents, Bytecount length) |
| 428 | 2628 { |
| 438 | 2629 Lisp_String *s; |
| 428 | 2630 Lisp_Object val; |
| 2631 | |
| 2632 /* Make sure we find out about bad make_string_nocopy's when they happen */ | |
| 800 | 2633 #if defined (ERROR_CHECK_TEXT) && defined (MULE) |
| 428 | 2634 bytecount_to_charcount (contents, length); /* Just for the assertions */ |
| 2635 #endif | |
| 2636 | |
| 2637 /* Allocate the string header */ | |
| 438 | 2638 ALLOCATE_FIXED_TYPE (string, Lisp_String, s); |
| 771 | 2639 set_lheader_implementation (&s->u.lheader, &lrecord_string); |
| 2640 SET_C_READONLY_RECORD_HEADER (&s->u.lheader); | |
| 428 | 2641 s->plist = Qnil; |
| 867 | 2642 set_lispstringp_data (s, (Ibyte *) contents); |
| 826 | 2643 set_lispstringp_length (s, length); |
| 793 | 2644 val = wrap_string (s); |
| 771 | 2645 init_string_ascii_begin (val); |
| 2646 sledgehammer_check_ascii_begin (val); | |
| 2647 | |
| 428 | 2648 return val; |
| 2649 } | |
| 2650 | |
| 2651 | |
| 2652 /************************************************************************/ | |
| 2653 /* lcrecord lists */ | |
| 2654 /************************************************************************/ | |
| 2655 | |
| 2656 /* Lcrecord lists are used to manage the allocation of particular | |
| 1204 | 2657 sorts of lcrecords, to avoid calling basic_alloc_lcrecord() (and thus |
| 428 | 2658 malloc() and garbage-collection junk) as much as possible. |
| 2659 It is similar to the Blocktype class. | |
| 2660 | |
| 1204 | 2661 See detailed comment in lcrecord.h. |
| 2662 */ | |
| 2663 | |
| 2664 const struct memory_description free_description[] = { | |
| 2551 | 2665 { XD_LISP_OBJECT, offsetof (struct free_lcrecord_header, chain), 0, { 0 }, |
| 1204 | 2666 XD_FLAG_FREE_LISP_OBJECT }, |
| 2667 { XD_END } | |
| 2668 }; | |
| 2669 | |
| 2670 DEFINE_LRECORD_IMPLEMENTATION ("free", free, | |
| 2671 0, /*dumpable-flag*/ | |
| 2672 0, internal_object_printer, | |
| 2673 0, 0, 0, free_description, | |
| 2674 struct free_lcrecord_header); | |
| 2675 | |
| 2676 const struct memory_description lcrecord_list_description[] = { | |
| 2551 | 2677 { XD_LISP_OBJECT, offsetof (struct lcrecord_list, free), 0, { 0 }, |
| 1204 | 2678 XD_FLAG_FREE_LISP_OBJECT }, |
| 2679 { XD_END } | |
| 2680 }; | |
| 428 | 2681 |
| 2682 static Lisp_Object | |
| 2683 mark_lcrecord_list (Lisp_Object obj) | |
| 2684 { | |
| 2685 struct lcrecord_list *list = XLCRECORD_LIST (obj); | |
| 2686 Lisp_Object chain = list->free; | |
| 2687 | |
| 2688 while (!NILP (chain)) | |
| 2689 { | |
| 2690 struct lrecord_header *lheader = XRECORD_LHEADER (chain); | |
| 2691 struct free_lcrecord_header *free_header = | |
| 2692 (struct free_lcrecord_header *) lheader; | |
| 2693 | |
| 442 | 2694 gc_checking_assert |
| 2695 (/* There should be no other pointers to the free list. */ | |
| 2696 ! MARKED_RECORD_HEADER_P (lheader) | |
| 2697 && | |
| 2698 /* Only lcrecords should be here. */ | |
| 1204 | 2699 ! list->implementation->basic_p |
| 442 | 2700 && |
| 2701 /* Only free lcrecords should be here. */ | |
| 2702 free_header->lcheader.free | |
| 2703 && | |
| 2704 /* The type of the lcrecord must be right. */ | |
| 1204 | 2705 lheader->type == lrecord_type_free |
| 442 | 2706 && |
| 2707 /* So must the size. */ | |
| 1204 | 2708 (list->implementation->static_size == 0 || |
| 2709 list->implementation->static_size == list->size) | |
| 442 | 2710 ); |
| 428 | 2711 |
| 2712 MARK_RECORD_HEADER (lheader); | |
| 2713 chain = free_header->chain; | |
| 2714 } | |
| 2715 | |
| 2716 return Qnil; | |
| 2717 } | |
| 2718 | |
| 934 | 2719 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list, |
| 2720 0, /*dumpable-flag*/ | |
| 2721 mark_lcrecord_list, internal_object_printer, | |
| 1204 | 2722 0, 0, 0, lcrecord_list_description, |
| 2723 struct lcrecord_list); | |
| 934 | 2724 |
| 428 | 2725 Lisp_Object |
| 665 | 2726 make_lcrecord_list (Elemcount size, |
| 442 | 2727 const struct lrecord_implementation *implementation) |
| 428 | 2728 { |
| 1204 | 2729 /* Don't use alloc_lcrecord_type() avoid infinite recursion |
| 2730 allocating this, */ | |
| 2731 struct lcrecord_list *p = (struct lcrecord_list *) | |
| 2732 basic_alloc_lcrecord (sizeof (struct lcrecord_list), | |
| 2733 &lrecord_lcrecord_list); | |
| 428 | 2734 |
| 2735 p->implementation = implementation; | |
| 2736 p->size = size; | |
| 2737 p->free = Qnil; | |
| 793 | 2738 return wrap_lcrecord_list (p); |
| 428 | 2739 } |
| 2740 | |
| 2741 Lisp_Object | |
| 1204 | 2742 alloc_managed_lcrecord (Lisp_Object lcrecord_list) |
| 428 | 2743 { |
| 2744 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); | |
| 2745 if (!NILP (list->free)) | |
| 2746 { | |
| 2747 Lisp_Object val = list->free; | |
| 2748 struct free_lcrecord_header *free_header = | |
| 2749 (struct free_lcrecord_header *) XPNTR (val); | |
| 1204 | 2750 struct lrecord_header *lheader = &free_header->lcheader.lheader; |
| 428 | 2751 |
| 2752 #ifdef ERROR_CHECK_GC | |
| 1204 | 2753 /* Major overkill here. */ |
| 428 | 2754 /* There should be no other pointers to the free list. */ |
| 442 | 2755 assert (! MARKED_RECORD_HEADER_P (lheader)); |
| 428 | 2756 /* Only free lcrecords should be here. */ |
| 2757 assert (free_header->lcheader.free); | |
| 1204 | 2758 assert (lheader->type == lrecord_type_free); |
| 2759 /* Only lcrecords should be here. */ | |
| 2760 assert (! (list->implementation->basic_p)); | |
| 2761 #if 0 /* Not used anymore, now that we set the type of the header to | |
| 2762 lrecord_type_free. */ | |
| 428 | 2763 /* The type of the lcrecord must be right. */ |
| 442 | 2764 assert (LHEADER_IMPLEMENTATION (lheader) == list->implementation); |
| 1204 | 2765 #endif /* 0 */ |
| 428 | 2766 /* So must the size. */ |
| 1204 | 2767 assert (list->implementation->static_size == 0 || |
| 2768 list->implementation->static_size == list->size); | |
| 428 | 2769 #endif /* ERROR_CHECK_GC */ |
| 442 | 2770 |
| 428 | 2771 list->free = free_header->chain; |
| 2772 free_header->lcheader.free = 0; | |
| 1204 | 2773 /* Put back the correct type, as we set it to lrecord_type_free. */ |
| 2774 lheader->type = list->implementation->lrecord_type_index; | |
| 2775 zero_sized_lcrecord (free_header, list->size); | |
| 428 | 2776 return val; |
| 2777 } | |
| 2778 else | |
| 1204 | 2779 return wrap_pointer_1 (basic_alloc_lcrecord (list->size, |
| 2780 list->implementation)); | |
| 428 | 2781 } |
| 2782 | |
| 771 | 2783 /* "Free" a Lisp object LCRECORD by placing it on its associated free list |
| 1204 | 2784 LCRECORD_LIST; next time alloc_managed_lcrecord() is called with the |
| 771 | 2785 same LCRECORD_LIST as its parameter, it will return an object from the |
| 2786 free list, which may be this one. Be VERY VERY SURE there are no | |
| 2787 pointers to this object hanging around anywhere where they might be | |
| 2788 used! | |
| 2789 | |
| 2790 The first thing this does before making any global state change is to | |
| 2791 call the finalize method of the object, if it exists. */ | |
| 2792 | |
| 428 | 2793 void |
| 2794 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord) | |
| 2795 { | |
| 2796 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); | |
| 2797 struct free_lcrecord_header *free_header = | |
| 2798 (struct free_lcrecord_header *) XPNTR (lcrecord); | |
| 442 | 2799 struct lrecord_header *lheader = &free_header->lcheader.lheader; |
| 2800 const struct lrecord_implementation *implementation | |
| 428 | 2801 = LHEADER_IMPLEMENTATION (lheader); |
| 2802 | |
| 771 | 2803 /* Finalizer methods may try to free objects within them, which typically |
| 2804 won't be marked and thus are scheduled for demolition. Putting them | |
| 2805 on the free list would be very bad, as we'd have xfree()d memory in | |
| 2806 the list. Even if for some reason the objects are still live | |
| 2807 (generally a logic error!), we still will have problems putting such | |
| 2808 an object on the free list right now (e.g. we'd have to avoid calling | |
| 2809 the finalizer twice, etc.). So basically, those finalizers should not | |
| 2810 be freeing any objects if during GC. Abort now to catch those | |
| 2811 problems. */ | |
| 2812 gc_checking_assert (!gc_in_progress); | |
| 2813 | |
| 428 | 2814 /* Make sure the size is correct. This will catch, for example, |
| 2815 putting a window configuration on the wrong free list. */ | |
| 1204 | 2816 gc_checking_assert (detagged_lisp_object_size (lheader) == list->size); |
| 771 | 2817 /* Make sure the object isn't already freed. */ |
| 2818 gc_checking_assert (!free_header->lcheader.free); | |
| 2367 | 2819 /* Freeing stuff in dumped memory is bad. If you trip this, you |
| 2820 may need to check for this before freeing. */ | |
| 2821 gc_checking_assert (!OBJECT_DUMPED_P (lcrecord)); | |
| 771 | 2822 |
| 428 | 2823 if (implementation->finalizer) |
| 2824 implementation->finalizer (lheader, 0); | |
| 1204 | 2825 /* Yes, there are two ways to indicate freeness -- the type is |
| 2826 lrecord_type_free or the ->free flag is set. We used to do only the | |
| 2827 latter; now we do the former as well for KKCC purposes. Probably | |
| 2828 safer in any case, as we will lose quicker this way than keeping | |
| 2829 around an lrecord of apparently correct type but bogus junk in it. */ | |
| 2830 MARK_LRECORD_AS_FREE (lheader); | |
| 428 | 2831 free_header->chain = list->free; |
| 2832 free_header->lcheader.free = 1; | |
| 2833 list->free = lcrecord; | |
| 2834 } | |
| 2835 | |
| 771 | 2836 static Lisp_Object all_lcrecord_lists[countof (lrecord_implementations_table)]; |
| 2837 | |
| 2838 void * | |
| 2839 alloc_automanaged_lcrecord (Bytecount size, | |
| 2840 const struct lrecord_implementation *imp) | |
| 2841 { | |
| 2842 if (EQ (all_lcrecord_lists[imp->lrecord_type_index], Qzero)) | |
| 2843 all_lcrecord_lists[imp->lrecord_type_index] = | |
| 2844 make_lcrecord_list (size, imp); | |
| 2845 | |
| 1204 | 2846 return XPNTR (alloc_managed_lcrecord |
| 771 | 2847 (all_lcrecord_lists[imp->lrecord_type_index])); |
| 2848 } | |
| 2849 | |
| 2850 void | |
| 2851 free_lcrecord (Lisp_Object rec) | |
| 2852 { | |
| 2853 int type = XRECORD_LHEADER (rec)->type; | |
| 2854 | |
| 2855 assert (!EQ (all_lcrecord_lists[type], Qzero)); | |
| 2856 | |
| 2857 free_managed_lcrecord (all_lcrecord_lists[type], rec); | |
| 2858 } | |
| 428 | 2859 |
| 2860 | |
| 2861 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /* | |
| 2862 Kept for compatibility, returns its argument. | |
| 2863 Old: | |
| 2864 Make a copy of OBJECT in pure storage. | |
| 2865 Recursively copies contents of vectors and cons cells. | |
| 2866 Does not copy symbols. | |
| 2867 */ | |
| 444 | 2868 (object)) |
| 428 | 2869 { |
| 444 | 2870 return object; |
| 428 | 2871 } |
| 2872 | |
| 2873 | |
| 2874 /************************************************************************/ | |
| 2875 /* Garbage Collection */ | |
| 2876 /************************************************************************/ | |
| 2877 | |
| 442 | 2878 /* All the built-in lisp object types are enumerated in `enum lrecord_type'. |
| 2879 Additional ones may be defined by a module (none yet). We leave some | |
| 2880 room in `lrecord_implementations_table' for such new lisp object types. */ | |
| 647 | 2881 const struct lrecord_implementation *lrecord_implementations_table[(int)lrecord_type_last_built_in_type + MODULE_DEFINABLE_TYPE_COUNT]; |
| 2882 int lrecord_type_count = lrecord_type_last_built_in_type; | |
| 1676 | 2883 #ifndef USE_KKCC |
| 442 | 2884 /* Object marker functions are in the lrecord_implementation structure. |
| 2885 But copying them to a parallel array is much more cache-friendly. | |
| 2886 This hack speeds up (garbage-collect) by about 5%. */ | |
| 2887 Lisp_Object (*lrecord_markers[countof (lrecord_implementations_table)]) (Lisp_Object); | |
| 1676 | 2888 #endif /* not USE_KKCC */ |
| 428 | 2889 |
| 2890 struct gcpro *gcprolist; | |
| 2891 | |
| 771 | 2892 /* We want the staticpro list relocated, but not the pointers found |
| 2893 therein, because they refer to locations in the global data segment, not | |
| 2894 in the heap; we only dump heap objects. Hence we use a trivial | |
| 2895 description, as for pointerless objects. (Note that the data segment | |
| 2896 objects, which are global variables like Qfoo or Vbar, themselves are | |
| 2897 pointers to heap objects. Each needs to be described to pdump as a | |
| 2898 "root pointer"; this happens in the call to staticpro(). */ | |
| 1204 | 2899 static const struct memory_description staticpro_description_1[] = { |
| 452 | 2900 { XD_END } |
| 2901 }; | |
| 2902 | |
| 1204 | 2903 static const struct sized_memory_description staticpro_description = { |
| 452 | 2904 sizeof (Lisp_Object *), |
| 2905 staticpro_description_1 | |
| 2906 }; | |
| 2907 | |
| 1204 | 2908 static const struct memory_description staticpros_description_1[] = { |
| 452 | 2909 XD_DYNARR_DESC (Lisp_Object_ptr_dynarr, &staticpro_description), |
| 2910 { XD_END } | |
| 2911 }; | |
| 2912 | |
| 1204 | 2913 static const struct sized_memory_description staticpros_description = { |
| 452 | 2914 sizeof (Lisp_Object_ptr_dynarr), |
| 2915 staticpros_description_1 | |
| 2916 }; | |
| 2917 | |
| 771 | 2918 #ifdef DEBUG_XEMACS |
| 2919 | |
| 1204 | 2920 static const struct memory_description staticpro_one_name_description_1[] = { |
| 2367 | 2921 { XD_ASCII_STRING, 0 }, |
| 771 | 2922 { XD_END } |
| 2923 }; | |
| 2924 | |
| 1204 | 2925 static const struct sized_memory_description staticpro_one_name_description = { |
| 771 | 2926 sizeof (char *), |
| 2927 staticpro_one_name_description_1 | |
| 2928 }; | |
| 2929 | |
| 1204 | 2930 static const struct memory_description staticpro_names_description_1[] = { |
| 771 | 2931 XD_DYNARR_DESC (char_ptr_dynarr, &staticpro_one_name_description), |
| 2932 { XD_END } | |
| 2933 }; | |
| 2934 | |
| 1204 | 2935 |
| 2936 extern const struct sized_memory_description staticpro_names_description; | |
| 2937 | |
| 2938 const struct sized_memory_description staticpro_names_description = { | |
| 771 | 2939 sizeof (char_ptr_dynarr), |
| 2940 staticpro_names_description_1 | |
| 2941 }; | |
| 2942 | |
| 2943 /* Help debug crashes gc-marking a staticpro'ed object. */ | |
| 2944 | |
| 2945 Lisp_Object_ptr_dynarr *staticpros; | |
| 2946 char_ptr_dynarr *staticpro_names; | |
| 2947 | |
| 2948 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
| 2949 garbage collection, and for dumping. */ | |
| 2950 void | |
| 2951 staticpro_1 (Lisp_Object *varaddress, char *varname) | |
| 2952 { | |
| 2953 Dynarr_add (staticpros, varaddress); | |
| 2954 Dynarr_add (staticpro_names, varname); | |
| 1204 | 2955 dump_add_root_lisp_object (varaddress); |
| 771 | 2956 } |
| 2957 | |
| 2958 | |
| 2959 Lisp_Object_ptr_dynarr *staticpros_nodump; | |
| 2960 char_ptr_dynarr *staticpro_nodump_names; | |
| 2961 | |
| 2962 /* Mark the Lisp_Object at heap VARADDRESS as a root object for | |
| 2963 garbage collection, but not for dumping. (See below.) */ | |
| 2964 void | |
| 2965 staticpro_nodump_1 (Lisp_Object *varaddress, char *varname) | |
| 2966 { | |
| 2967 Dynarr_add (staticpros_nodump, varaddress); | |
| 2968 Dynarr_add (staticpro_nodump_names, varname); | |
| 2969 } | |
| 2970 | |
| 996 | 2971 #ifdef HAVE_SHLIB |
| 2972 /* Stop treating the Lisp_Object at non-heap VARADDRESS as a root object | |
| 2973 for garbage collection, but not for dumping. */ | |
| 2974 void | |
| 2975 unstaticpro_nodump_1 (Lisp_Object *varaddress, char *varname) | |
| 2976 { | |
| 2977 Dynarr_delete_object (staticpros, varaddress); | |
| 2978 Dynarr_delete_object (staticpro_names, varname); | |
| 2979 } | |
| 2980 #endif | |
| 2981 | |
| 771 | 2982 #else /* not DEBUG_XEMACS */ |
| 2983 | |
| 452 | 2984 Lisp_Object_ptr_dynarr *staticpros; |
| 2985 | |
| 2986 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
| 2987 garbage collection, and for dumping. */ | |
| 428 | 2988 void |
| 2989 staticpro (Lisp_Object *varaddress) | |
| 2990 { | |
| 452 | 2991 Dynarr_add (staticpros, varaddress); |
| 1204 | 2992 dump_add_root_lisp_object (varaddress); |
| 428 | 2993 } |
| 2994 | |
| 442 | 2995 |
| 452 | 2996 Lisp_Object_ptr_dynarr *staticpros_nodump; |
| 2997 | |
| 771 | 2998 /* Mark the Lisp_Object at heap VARADDRESS as a root object for garbage |
| 2999 collection, but not for dumping. This is used for objects where the | |
| 3000 only sure pointer is in the heap (rather than in the global data | |
| 3001 segment, as must be the case for pdump root pointers), but not inside of | |
| 3002 another Lisp object (where it will be marked as a result of that Lisp | |
| 3003 object's mark method). The call to staticpro_nodump() must occur *BOTH* | |
| 3004 at initialization time and at "reinitialization" time (startup, after | |
| 3005 pdump load.) (For example, this is the case with the predicate symbols | |
| 3006 for specifier and coding system types. The pointer to this symbol is | |
| 3007 inside of a methods structure, which is allocated on the heap. The | |
| 3008 methods structure will be written out to the pdump data file, and may be | |
| 3009 reloaded at a different address.) | |
| 3010 | |
| 3011 #### The necessity for reinitialization is a bug in pdump. Pdump should | |
| 3012 automatically regenerate the staticpro()s for these symbols when it | |
| 3013 loads the data in. */ | |
| 3014 | |
| 428 | 3015 void |
| 3016 staticpro_nodump (Lisp_Object *varaddress) | |
| 3017 { | |
| 452 | 3018 Dynarr_add (staticpros_nodump, varaddress); |
| 428 | 3019 } |
| 3020 | |
| 996 | 3021 #ifdef HAVE_SHLIB |
| 3022 /* Unmark the Lisp_Object at non-heap VARADDRESS as a root object for | |
| 3023 garbage collection, but not for dumping. */ | |
| 3024 void | |
| 3025 unstaticpro_nodump (Lisp_Object *varaddress) | |
| 3026 { | |
| 3027 Dynarr_delete_object (staticpros, varaddress); | |
| 3028 } | |
| 3029 #endif | |
| 3030 | |
| 771 | 3031 #endif /* not DEBUG_XEMACS */ |
| 3032 | |
| 442 | 3033 #ifdef ERROR_CHECK_GC |
| 3034 #define GC_CHECK_LHEADER_INVARIANTS(lheader) do { \ | |
| 3035 struct lrecord_header * GCLI_lh = (lheader); \ | |
| 3036 assert (GCLI_lh != 0); \ | |
| 647 | 3037 assert (GCLI_lh->type < (unsigned int) lrecord_type_count); \ |
| 442 | 3038 assert (! C_READONLY_RECORD_HEADER_P (GCLI_lh) || \ |
| 3039 (MARKED_RECORD_HEADER_P (GCLI_lh) && \ | |
| 3040 LISP_READONLY_RECORD_HEADER_P (GCLI_lh))); \ | |
| 3041 } while (0) | |
| 3042 #else | |
| 3043 #define GC_CHECK_LHEADER_INVARIANTS(lheader) | |
| 3044 #endif | |
| 3045 | |
| 934 | 3046 |
| 1204 | 3047 static const struct memory_description lisp_object_description_1[] = { |
| 3048 { XD_LISP_OBJECT, 0 }, | |
| 3049 { XD_END } | |
| 3050 }; | |
| 3051 | |
| 3052 const struct sized_memory_description lisp_object_description = { | |
| 3053 sizeof (Lisp_Object), | |
| 3054 lisp_object_description_1 | |
| 3055 }; | |
| 3056 | |
| 3057 #if defined (USE_KKCC) || defined (PDUMP) | |
| 934 | 3058 |
| 3059 /* This function extracts the value of a count variable described somewhere | |
| 3060 else in the description. It is converted corresponding to the type */ | |
| 1204 | 3061 EMACS_INT |
| 3062 lispdesc_indirect_count_1 (EMACS_INT code, | |
| 3063 const struct memory_description *idesc, | |
| 3064 const void *idata) | |
| 934 | 3065 { |
| 3066 EMACS_INT count; | |
| 3067 const void *irdata; | |
| 3068 | |
| 3069 int line = XD_INDIRECT_VAL (code); | |
| 3070 int delta = XD_INDIRECT_DELTA (code); | |
| 3071 | |
| 1204 | 3072 irdata = ((char *) idata) + |
| 3073 lispdesc_indirect_count (idesc[line].offset, idesc, idata); | |
| 934 | 3074 switch (idesc[line].type) |
| 3075 { | |
| 3076 case XD_BYTECOUNT: | |
| 1204 | 3077 count = * (Bytecount *) irdata; |
| 934 | 3078 break; |
| 3079 case XD_ELEMCOUNT: | |
| 1204 | 3080 count = * (Elemcount *) irdata; |
| 934 | 3081 break; |
| 3082 case XD_HASHCODE: | |
| 1204 | 3083 count = * (Hashcode *) irdata; |
| 934 | 3084 break; |
| 3085 case XD_INT: | |
| 1204 | 3086 count = * (int *) irdata; |
| 934 | 3087 break; |
| 3088 case XD_LONG: | |
| 1204 | 3089 count = * (long *) irdata; |
| 934 | 3090 break; |
| 3091 default: | |
| 3092 stderr_out ("Unsupported count type : %d (line = %d, code = %ld)\n", | |
| 1204 | 3093 idesc[line].type, line, (long) code); |
| 3094 #ifdef PDUMP | |
| 3095 if (in_pdump) | |
| 3096 pdump_backtrace (); | |
| 3097 #endif | |
| 934 | 3098 count = 0; /* warning suppression */ |
| 2500 | 3099 ABORT (); |
| 934 | 3100 } |
| 3101 count += delta; | |
| 3102 return count; | |
| 3103 } | |
| 3104 | |
| 1204 | 3105 /* SDESC is a "description map" (basically, a list of offsets used for |
| 3106 successive indirections) and OBJ is the first object to indirect off of. | |
| 3107 Return the description ultimately found. */ | |
| 3108 | |
| 3109 const struct sized_memory_description * | |
| 3110 lispdesc_indirect_description_1 (const void *obj, | |
| 3111 const struct sized_memory_description *sdesc) | |
| 934 | 3112 { |
| 3113 int pos; | |
| 3114 | |
| 1204 | 3115 for (pos = 0; sdesc[pos].size >= 0; pos++) |
| 3116 obj = * (const void **) ((const char *) obj + sdesc[pos].size); | |
| 3117 | |
| 3118 return (const struct sized_memory_description *) obj; | |
| 3119 } | |
| 3120 | |
| 3121 /* Compute the size of the data at RDATA, described by a single entry | |
| 3122 DESC1 in a description array. OBJ and DESC are used for | |
| 3123 XD_INDIRECT references. */ | |
| 3124 | |
| 3125 static Bytecount | |
| 3126 lispdesc_one_description_line_size (void *rdata, | |
| 3127 const struct memory_description *desc1, | |
| 3128 const void *obj, | |
| 3129 const struct memory_description *desc) | |
| 3130 { | |
| 3131 union_switcheroo: | |
| 3132 switch (desc1->type) | |
| 934 | 3133 { |
| 1204 | 3134 case XD_LISP_OBJECT_ARRAY: |
| 3135 { | |
| 3136 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
| 3137 return (val * sizeof (Lisp_Object)); | |
| 3138 } | |
| 3139 case XD_LISP_OBJECT: | |
| 3140 case XD_LO_LINK: | |
| 3141 return sizeof (Lisp_Object); | |
| 3142 case XD_OPAQUE_PTR: | |
| 3143 return sizeof (void *); | |
| 2367 | 3144 case XD_BLOCK_PTR: |
| 1204 | 3145 { |
| 3146 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
| 3147 return val * sizeof (void *); | |
| 3148 } | |
| 2367 | 3149 case XD_BLOCK_ARRAY: |
| 1204 | 3150 { |
| 3151 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
| 3152 | |
| 3153 return (val * | |
| 2367 | 3154 lispdesc_block_size |
| 2551 | 3155 (rdata, |
| 3156 lispdesc_indirect_description (obj, desc1->data2.descr))); | |
| 1204 | 3157 } |
| 3158 case XD_OPAQUE_DATA_PTR: | |
| 3159 return sizeof (void *); | |
| 3160 case XD_UNION_DYNAMIC_SIZE: | |
| 3161 { | |
| 3162 /* If an explicit size was given in the first-level structure | |
| 3163 description, use it; else compute size based on current union | |
| 3164 constant. */ | |
| 3165 const struct sized_memory_description *sdesc = | |
| 2551 | 3166 lispdesc_indirect_description (obj, desc1->data2.descr); |
| 1204 | 3167 if (sdesc->size) |
| 3168 return sdesc->size; | |
| 3169 else | |
| 3170 { | |
| 3171 desc1 = lispdesc_process_xd_union (desc1, desc, obj); | |
| 3172 if (desc1) | |
| 3173 goto union_switcheroo; | |
| 934 | 3174 break; |
| 1204 | 3175 } |
| 3176 } | |
| 3177 case XD_UNION: | |
| 3178 { | |
| 3179 /* If an explicit size was given in the first-level structure | |
| 3180 description, use it; else compute size based on maximum of all | |
| 3181 possible structures. */ | |
| 3182 const struct sized_memory_description *sdesc = | |
| 2551 | 3183 lispdesc_indirect_description (obj, desc1->data2.descr); |
| 1204 | 3184 if (sdesc->size) |
| 3185 return sdesc->size; | |
| 3186 else | |
| 3187 { | |
| 3188 int count; | |
| 3189 Bytecount max_size = -1, size; | |
| 3190 | |
| 3191 desc1 = sdesc->description; | |
| 3192 | |
| 3193 for (count = 0; desc1[count].type != XD_END; count++) | |
| 3194 { | |
| 3195 size = lispdesc_one_description_line_size (rdata, | |
| 3196 &desc1[count], | |
| 3197 obj, desc); | |
| 3198 if (size > max_size) | |
| 3199 max_size = size; | |
| 3200 } | |
| 3201 return max_size; | |
| 3202 } | |
| 934 | 3203 } |
| 2367 | 3204 case XD_ASCII_STRING: |
| 1204 | 3205 return sizeof (void *); |
| 3206 case XD_DOC_STRING: | |
| 3207 return sizeof (void *); | |
| 3208 case XD_INT_RESET: | |
| 3209 return sizeof (int); | |
| 3210 case XD_BYTECOUNT: | |
| 3211 return sizeof (Bytecount); | |
| 3212 case XD_ELEMCOUNT: | |
| 3213 return sizeof (Elemcount); | |
| 3214 case XD_HASHCODE: | |
| 3215 return sizeof (Hashcode); | |
| 3216 case XD_INT: | |
| 3217 return sizeof (int); | |
| 3218 case XD_LONG: | |
| 3219 return sizeof (long); | |
| 3220 default: | |
| 3221 stderr_out ("Unsupported dump type : %d\n", desc1->type); | |
| 2500 | 3222 ABORT (); |
| 934 | 3223 } |
| 3224 | |
| 1204 | 3225 return 0; |
| 934 | 3226 } |
| 3227 | |
| 3228 | |
| 1204 | 3229 /* Return the size of the memory block (NOT necessarily a structure!) |
| 3230 described by SDESC and pointed to by OBJ. If SDESC records an | |
| 3231 explicit size (i.e. non-zero), it is simply returned; otherwise, | |
| 3232 the size is calculated by the maximum offset and the size of the | |
| 3233 object at that offset, rounded up to the maximum alignment. In | |
| 3234 this case, we may need the object, for example when retrieving an | |
| 3235 "indirect count" of an inlined array (the count is not constant, | |
| 3236 but is specified by one of the elements of the memory block). (It | |
| 3237 is generally not a problem if we return an overly large size -- we | |
| 3238 will simply end up reserving more space than necessary; but if the | |
| 3239 size is too small we could be in serious trouble, in particular | |
| 3240 with nested inlined structures, where there may be alignment | |
| 3241 padding in the middle of a block. #### In fact there is an (at | |
| 3242 least theoretical) problem with an overly large size -- we may | |
| 3243 trigger a protection fault when reading from invalid memory. We | |
| 3244 need to handle this -- perhaps in a stupid but dependable way, | |
| 3245 i.e. by trapping SIGSEGV and SIGBUS.) */ | |
| 3246 | |
| 3247 Bytecount | |
| 2367 | 3248 lispdesc_block_size_1 (const void *obj, Bytecount size, |
| 3249 const struct memory_description *desc) | |
| 934 | 3250 { |
| 1204 | 3251 EMACS_INT max_offset = -1; |
| 934 | 3252 int max_offset_pos = -1; |
| 3253 int pos; | |
| 2367 | 3254 |
| 3255 if (size) | |
| 3256 return size; | |
| 934 | 3257 |
| 3258 for (pos = 0; desc[pos].type != XD_END; pos++) | |
| 3259 { | |
| 1204 | 3260 EMACS_INT offset = lispdesc_indirect_count (desc[pos].offset, desc, obj); |
| 3261 if (offset == max_offset) | |
| 934 | 3262 { |
| 3263 stderr_out ("Two relocatable elements at same offset?\n"); | |
| 2500 | 3264 ABORT (); |
| 934 | 3265 } |
| 1204 | 3266 else if (offset > max_offset) |
| 934 | 3267 { |
| 1204 | 3268 max_offset = offset; |
| 934 | 3269 max_offset_pos = pos; |
| 3270 } | |
| 3271 } | |
| 3272 | |
| 3273 if (max_offset_pos < 0) | |
| 3274 return 0; | |
| 3275 | |
| 1204 | 3276 { |
| 3277 Bytecount size_at_max; | |
| 3278 size_at_max = | |
| 3279 lispdesc_one_description_line_size ((char *) obj + max_offset, | |
| 3280 &desc[max_offset_pos], obj, desc); | |
| 3281 | |
| 3282 /* We have no way of knowing the required alignment for this structure, | |
| 3283 so just make it maximally aligned. */ | |
| 3284 return MAX_ALIGN_SIZE (max_offset + size_at_max); | |
| 3285 } | |
| 3286 } | |
| 3287 | |
| 3288 #endif /* defined (USE_KKCC) || defined (PDUMP) */ | |
| 3289 | |
| 1276 | 3290 #define GC_CHECK_NOT_FREE(lheader) \ |
| 3291 gc_checking_assert (LHEADER_IMPLEMENTATION (lheader)->basic_p || \ | |
| 3292 ! ((struct lcrecord_header *) lheader)->free) | |
| 3293 | |
| 1204 | 3294 #ifdef USE_KKCC |
| 3295 /* The following functions implement the new mark algorithm. | |
| 3296 They mark objects according to their descriptions. They | |
| 3297 are modeled on the corresponding pdumper procedures. */ | |
| 3298 | |
| 1676 | 3299 /* Object memory descriptions are in the lrecord_implementation structure. |
| 3300 But copying them to a parallel array is much more cache-friendly. */ | |
| 3301 const struct memory_description *lrecord_memory_descriptions[countof (lrecord_implementations_table)]; | |
| 3302 | |
| 3303 /* the initial stack size in kkcc_gc_stack_entries */ | |
| 3304 #define KKCC_INIT_GC_STACK_SIZE 16384 | |
| 3305 | |
| 3306 typedef struct | |
| 3307 { | |
| 3308 void *data; | |
| 3309 const struct memory_description *desc; | |
| 3310 } kkcc_gc_stack_entry; | |
| 3311 | |
| 3312 static kkcc_gc_stack_entry *kkcc_gc_stack_ptr; | |
| 3313 static kkcc_gc_stack_entry *kkcc_gc_stack_top; | |
| 3314 static kkcc_gc_stack_entry *kkcc_gc_stack_last_entry; | |
| 3315 static int kkcc_gc_stack_size; | |
| 3316 | |
| 3317 static void | |
| 3318 kkcc_gc_stack_init (void) | |
| 3319 { | |
| 3320 kkcc_gc_stack_size = KKCC_INIT_GC_STACK_SIZE; | |
| 3321 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *) | |
| 3322 malloc (kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry)); | |
| 3323 if (!kkcc_gc_stack_ptr) | |
| 3324 { | |
| 3325 stderr_out ("stack init failed for size %d\n", kkcc_gc_stack_size); | |
| 3326 exit(23); | |
| 3327 } | |
| 3328 kkcc_gc_stack_top = kkcc_gc_stack_ptr - 1; | |
| 3329 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1; | |
| 3330 } | |
| 3331 | |
| 3332 static void | |
| 3333 kkcc_gc_stack_free (void) | |
| 3334 { | |
| 3335 free (kkcc_gc_stack_ptr); | |
| 3336 kkcc_gc_stack_ptr = 0; | |
| 3337 kkcc_gc_stack_top = 0; | |
| 3338 kkcc_gc_stack_size = 0; | |
| 3339 } | |
| 3340 | |
| 3341 static void | |
| 3342 kkcc_gc_stack_realloc (void) | |
| 3343 { | |
| 3344 int current_offset = (int)(kkcc_gc_stack_top - kkcc_gc_stack_ptr); | |
| 3345 kkcc_gc_stack_size *= 2; | |
| 3346 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *) | |
| 3347 realloc (kkcc_gc_stack_ptr, | |
| 3348 kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry)); | |
| 3349 if (!kkcc_gc_stack_ptr) | |
| 3350 { | |
| 3351 stderr_out ("stack realloc failed for size %d\n", kkcc_gc_stack_size); | |
| 3352 exit(23); | |
| 3353 } | |
| 3354 kkcc_gc_stack_top = kkcc_gc_stack_ptr + current_offset; | |
| 3355 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1; | |
| 3356 } | |
| 3357 | |
| 3358 #define KKCC_GC_STACK_FULL (kkcc_gc_stack_top >= kkcc_gc_stack_last_entry) | |
| 3359 #define KKCC_GC_STACK_EMPTY (kkcc_gc_stack_top < kkcc_gc_stack_ptr) | |
| 3360 | |
| 3361 static void | |
| 3362 kkcc_gc_stack_push (void *data, const struct memory_description *desc) | |
| 3363 { | |
| 3364 if (KKCC_GC_STACK_FULL) | |
| 3365 kkcc_gc_stack_realloc(); | |
| 3366 kkcc_gc_stack_top++; | |
| 3367 kkcc_gc_stack_top->data = data; | |
| 3368 kkcc_gc_stack_top->desc = desc; | |
| 3369 } | |
| 3370 | |
| 3371 static kkcc_gc_stack_entry * | |
| 3372 kkcc_gc_stack_pop (void) | |
| 3373 { | |
| 3374 if (KKCC_GC_STACK_EMPTY) | |
| 3375 return 0; | |
| 3376 kkcc_gc_stack_top--; | |
| 3377 return kkcc_gc_stack_top + 1; | |
| 3378 } | |
| 3379 | |
| 3380 void | |
| 3381 kkcc_gc_stack_push_lisp_object (Lisp_Object obj) | |
| 3382 { | |
| 3383 if (XTYPE (obj) == Lisp_Type_Record) | |
| 3384 { | |
| 3385 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
| 3386 const struct memory_description *desc; | |
| 3387 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
| 3388 desc = RECORD_DESCRIPTION (lheader); | |
| 3389 if (! MARKED_RECORD_HEADER_P (lheader)) | |
| 3390 { | |
| 3391 MARK_RECORD_HEADER (lheader); | |
| 3392 kkcc_gc_stack_push((void*) lheader, desc); | |
| 3393 } | |
| 3394 } | |
| 3395 } | |
| 3396 | |
| 1265 | 3397 #ifdef ERROR_CHECK_GC |
| 3398 #define KKCC_DO_CHECK_FREE(obj, allow_free) \ | |
| 3399 do \ | |
| 3400 { \ | |
| 3401 if (!allow_free && XTYPE (obj) == Lisp_Type_Record) \ | |
| 3402 { \ | |
| 3403 struct lrecord_header *lheader = XRECORD_LHEADER (obj); \ | |
| 3404 GC_CHECK_NOT_FREE (lheader); \ | |
| 3405 } \ | |
| 3406 } while (0) | |
| 3407 #else | |
| 3408 #define KKCC_DO_CHECK_FREE(obj, allow_free) | |
| 3409 #endif | |
| 1204 | 3410 |
| 3411 #ifdef ERROR_CHECK_GC | |
| 1598 | 3412 static void |
| 1204 | 3413 mark_object_maybe_checking_free (Lisp_Object obj, int allow_free) |
| 3414 { | |
| 1265 | 3415 KKCC_DO_CHECK_FREE (obj, allow_free); |
| 1598 | 3416 kkcc_gc_stack_push_lisp_object (obj); |
| 1204 | 3417 } |
| 3418 #else | |
| 1643 | 3419 #define mark_object_maybe_checking_free(obj, allow_free) \ |
| 3420 kkcc_gc_stack_push_lisp_object (obj) | |
| 1204 | 3421 #endif /* ERROR_CHECK_GC */ |
| 3422 | |
| 934 | 3423 |
| 3424 /* This function loops all elements of a struct pointer and calls | |
| 3425 mark_with_description with each element. */ | |
| 3426 static void | |
| 3427 mark_struct_contents (const void *data, | |
| 1204 | 3428 const struct sized_memory_description *sdesc, |
| 3429 int count) | |
| 934 | 3430 { |
| 3431 int i; | |
| 3432 Bytecount elsize; | |
| 2367 | 3433 elsize = lispdesc_block_size (data, sdesc); |
| 934 | 3434 |
| 3435 for (i = 0; i < count; i++) | |
| 3436 { | |
| 1598 | 3437 kkcc_gc_stack_push (((char *) data) + elsize * i, sdesc->description); |
| 934 | 3438 } |
| 3439 } | |
| 3440 | |
| 1598 | 3441 |
| 3442 /* This function implements the KKCC mark algorithm. | |
| 3443 Instead of calling mark_object, all the alive Lisp_Objects are pushed | |
| 3444 on the kkcc_gc_stack. This function processes all elements on the stack | |
| 3445 according to their descriptions. */ | |
| 3446 static void | |
| 3447 kkcc_marking (void) | |
| 3448 { | |
| 3449 kkcc_gc_stack_entry *stack_entry = 0; | |
| 3450 void *data = 0; | |
| 3451 const struct memory_description *desc = 0; | |
| 3452 int pos; | |
| 3453 | |
| 3454 while ((stack_entry = kkcc_gc_stack_pop ()) != 0) | |
| 3455 { | |
| 3456 data = stack_entry->data; | |
| 3457 desc = stack_entry->desc; | |
| 3458 | |
| 3459 for (pos = 0; desc[pos].type != XD_END; pos++) | |
| 3460 { | |
| 3461 const struct memory_description *desc1 = &desc[pos]; | |
| 3462 const void *rdata = | |
| 3463 (const char *) data + lispdesc_indirect_count (desc1->offset, | |
| 3464 desc, data); | |
| 3465 union_switcheroo: | |
| 3466 | |
| 3467 /* If the flag says don't mark, then don't mark. */ | |
| 3468 if ((desc1->flags) & XD_FLAG_NO_KKCC) | |
| 3469 continue; | |
| 3470 | |
| 3471 switch (desc1->type) | |
| 3472 { | |
| 3473 case XD_BYTECOUNT: | |
| 3474 case XD_ELEMCOUNT: | |
| 3475 case XD_HASHCODE: | |
| 3476 case XD_INT: | |
| 3477 case XD_LONG: | |
| 3478 case XD_INT_RESET: | |
| 3479 case XD_LO_LINK: | |
| 3480 case XD_OPAQUE_PTR: | |
| 3481 case XD_OPAQUE_DATA_PTR: | |
| 2367 | 3482 case XD_ASCII_STRING: |
| 1598 | 3483 case XD_DOC_STRING: |
| 3484 break; | |
| 3485 case XD_LISP_OBJECT: | |
| 3486 { | |
| 3487 const Lisp_Object *stored_obj = (const Lisp_Object *) rdata; | |
| 3488 | |
| 3489 /* Because of the way that tagged objects work (pointers and | |
| 3490 Lisp_Objects have the same representation), XD_LISP_OBJECT | |
| 3491 can be used for untagged pointers. They might be NULL, | |
| 3492 though. */ | |
| 3493 if (EQ (*stored_obj, Qnull_pointer)) | |
| 3494 break; | |
| 3495 mark_object_maybe_checking_free | |
| 3496 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT); | |
| 3497 | |
| 3498 break; | |
| 3499 } | |
| 3500 case XD_LISP_OBJECT_ARRAY: | |
| 3501 { | |
| 3502 int i; | |
| 3503 EMACS_INT count = | |
| 3504 lispdesc_indirect_count (desc1->data1, desc, data); | |
| 3505 | |
| 3506 for (i = 0; i < count; i++) | |
| 3507 { | |
| 3508 const Lisp_Object *stored_obj = | |
| 3509 (const Lisp_Object *) rdata + i; | |
| 3510 | |
| 3511 if (EQ (*stored_obj, Qnull_pointer)) | |
| 3512 break; | |
| 3513 | |
| 3514 mark_object_maybe_checking_free | |
| 3515 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT); | |
| 3516 } | |
| 3517 break; | |
| 3518 } | |
| 2367 | 3519 case XD_BLOCK_PTR: |
| 1598 | 3520 { |
| 3521 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
| 3522 data); | |
| 3523 const struct sized_memory_description *sdesc = | |
| 2551 | 3524 lispdesc_indirect_description (data, desc1->data2.descr); |
| 1598 | 3525 const char *dobj = * (const char **) rdata; |
| 3526 if (dobj) | |
| 3527 mark_struct_contents (dobj, sdesc, count); | |
| 3528 break; | |
| 3529 } | |
| 2367 | 3530 case XD_BLOCK_ARRAY: |
| 1598 | 3531 { |
| 3532 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
| 3533 data); | |
| 3534 const struct sized_memory_description *sdesc = | |
| 2551 | 3535 lispdesc_indirect_description (data, desc1->data2.descr); |
| 1598 | 3536 |
| 3537 mark_struct_contents (rdata, sdesc, count); | |
| 3538 break; | |
| 3539 } | |
| 3540 case XD_UNION: | |
| 3541 case XD_UNION_DYNAMIC_SIZE: | |
| 3542 desc1 = lispdesc_process_xd_union (desc1, desc, data); | |
| 3543 if (desc1) | |
| 3544 goto union_switcheroo; | |
| 3545 break; | |
| 3546 | |
| 3547 default: | |
| 3548 stderr_out ("Unsupported description type : %d\n", desc1->type); | |
| 2500 | 3549 ABORT (); |
| 1598 | 3550 } |
| 3551 } | |
| 3552 } | |
| 3553 } | |
| 934 | 3554 #endif /* USE_KKCC */ |
| 3555 | |
| 428 | 3556 /* Mark reference to a Lisp_Object. If the object referred to has not been |
| 3557 seen yet, recursively mark all the references contained in it. */ | |
| 3558 | |
| 3559 void | |
| 2286 | 3560 mark_object ( |
| 3561 #ifdef USE_KKCC | |
| 3562 Lisp_Object UNUSED (obj) | |
| 3563 #else | |
| 3564 Lisp_Object obj | |
| 3565 #endif | |
| 3566 ) | |
| 428 | 3567 { |
| 1598 | 3568 #ifdef USE_KKCC |
| 3569 /* this code should never be reached when configured for KKCC */ | |
| 3570 stderr_out ("KKCC: Invalid mark_object call.\n"); | |
| 3571 stderr_out ("Replace mark_object with kkcc_gc_stack_push_lisp_object.\n"); | |
| 2500 | 3572 ABORT (); |
| 1676 | 3573 #else /* not USE_KKCC */ |
| 1598 | 3574 |
| 428 | 3575 tail_recurse: |
| 3576 | |
| 3577 /* Checks we used to perform */ | |
| 3578 /* if (EQ (obj, Qnull_pointer)) return; */ | |
| 3579 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */ | |
| 3580 /* if (PURIFIED (XPNTR (obj))) return; */ | |
| 3581 | |
| 3582 if (XTYPE (obj) == Lisp_Type_Record) | |
| 3583 { | |
| 3584 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
| 442 | 3585 |
| 3586 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
| 3587 | |
| 1204 | 3588 /* We handle this separately, above, so we can mark free objects */ |
| 1265 | 3589 GC_CHECK_NOT_FREE (lheader); |
| 1204 | 3590 |
| 442 | 3591 /* All c_readonly objects have their mark bit set, |
| 3592 so that we only need to check the mark bit here. */ | |
| 3593 if (! MARKED_RECORD_HEADER_P (lheader)) | |
| 428 | 3594 { |
| 3595 MARK_RECORD_HEADER (lheader); | |
| 442 | 3596 |
| 1598 | 3597 if (RECORD_MARKER (lheader)) |
| 3598 { | |
| 3599 obj = RECORD_MARKER (lheader) (obj); | |
| 3600 if (!NILP (obj)) goto tail_recurse; | |
| 3601 } | |
| 428 | 3602 } |
| 3603 } | |
| 1676 | 3604 #endif /* not KKCC */ |
| 428 | 3605 } |
| 3606 | |
| 3607 | |
| 3608 static int gc_count_num_short_string_in_use; | |
| 647 | 3609 static Bytecount gc_count_string_total_size; |
| 3610 static Bytecount gc_count_short_string_total_size; | |
| 428 | 3611 |
| 3612 /* static int gc_count_total_records_used, gc_count_records_total_size; */ | |
| 3613 | |
| 3614 | |
| 3615 /* stats on lcrecords in use - kinda kludgy */ | |
| 3616 | |
| 3617 static struct | |
| 3618 { | |
| 3619 int instances_in_use; | |
| 3620 int bytes_in_use; | |
| 3621 int instances_freed; | |
| 3622 int bytes_freed; | |
| 3623 int instances_on_free_list; | |
| 707 | 3624 } lcrecord_stats [countof (lrecord_implementations_table) |
| 3625 + MODULE_DEFINABLE_TYPE_COUNT]; | |
| 428 | 3626 |
| 3627 static void | |
| 442 | 3628 tick_lcrecord_stats (const struct lrecord_header *h, int free_p) |
| 428 | 3629 { |
| 647 | 3630 int type_index = h->type; |
| 428 | 3631 |
| 3632 if (((struct lcrecord_header *) h)->free) | |
| 3633 { | |
| 442 | 3634 gc_checking_assert (!free_p); |
| 428 | 3635 lcrecord_stats[type_index].instances_on_free_list++; |
| 3636 } | |
| 3637 else | |
| 3638 { | |
| 1204 | 3639 Bytecount sz = detagged_lisp_object_size (h); |
| 3640 | |
| 428 | 3641 if (free_p) |
| 3642 { | |
| 3643 lcrecord_stats[type_index].instances_freed++; | |
| 3644 lcrecord_stats[type_index].bytes_freed += sz; | |
| 3645 } | |
| 3646 else | |
| 3647 { | |
| 3648 lcrecord_stats[type_index].instances_in_use++; | |
| 3649 lcrecord_stats[type_index].bytes_in_use += sz; | |
| 3650 } | |
| 3651 } | |
| 3652 } | |
| 3653 | |
| 3654 | |
| 3655 /* Free all unmarked records */ | |
| 3656 static void | |
| 3657 sweep_lcrecords_1 (struct lcrecord_header **prev, int *used) | |
| 3658 { | |
| 3659 struct lcrecord_header *header; | |
| 3660 int num_used = 0; | |
| 3661 /* int total_size = 0; */ | |
| 3662 | |
| 3663 xzero (lcrecord_stats); /* Reset all statistics to 0. */ | |
| 3664 | |
| 3665 /* First go through and call all the finalize methods. | |
| 3666 Then go through and free the objects. There used to | |
| 3667 be only one loop here, with the call to the finalizer | |
| 3668 occurring directly before the xfree() below. That | |
| 3669 is marginally faster but much less safe -- if the | |
| 3670 finalize method for an object needs to reference any | |
| 3671 other objects contained within it (and many do), | |
| 3672 we could easily be screwed by having already freed that | |
| 3673 other object. */ | |
| 3674 | |
| 3675 for (header = *prev; header; header = header->next) | |
| 3676 { | |
| 3677 struct lrecord_header *h = &(header->lheader); | |
| 442 | 3678 |
| 3679 GC_CHECK_LHEADER_INVARIANTS (h); | |
| 3680 | |
| 3681 if (! MARKED_RECORD_HEADER_P (h) && ! header->free) | |
| 428 | 3682 { |
| 3683 if (LHEADER_IMPLEMENTATION (h)->finalizer) | |
| 3684 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0); | |
| 3685 } | |
| 3686 } | |
| 3687 | |
| 3688 for (header = *prev; header; ) | |
| 3689 { | |
| 3690 struct lrecord_header *h = &(header->lheader); | |
| 442 | 3691 if (MARKED_RECORD_HEADER_P (h)) |
| 428 | 3692 { |
| 442 | 3693 if (! C_READONLY_RECORD_HEADER_P (h)) |
| 428 | 3694 UNMARK_RECORD_HEADER (h); |
| 3695 num_used++; | |
| 3696 /* total_size += n->implementation->size_in_bytes (h);*/ | |
| 440 | 3697 /* #### May modify header->next on a C_READONLY lcrecord */ |
| 428 | 3698 prev = &(header->next); |
| 3699 header = *prev; | |
| 3700 tick_lcrecord_stats (h, 0); | |
| 3701 } | |
| 3702 else | |
| 3703 { | |
| 3704 struct lcrecord_header *next = header->next; | |
| 3705 *prev = next; | |
| 3706 tick_lcrecord_stats (h, 1); | |
| 3707 /* used to call finalizer right here. */ | |
| 1726 | 3708 xfree (header, struct lcrecord_header *); |
| 428 | 3709 header = next; |
| 3710 } | |
| 3711 } | |
| 3712 *used = num_used; | |
| 3713 /* *total = total_size; */ | |
| 3714 } | |
| 3715 | |
| 3716 /* And the Lord said: Thou shalt use the `c-backslash-region' command | |
| 3717 to make macros prettier. */ | |
| 3718 | |
| 3719 #ifdef ERROR_CHECK_GC | |
| 3720 | |
| 771 | 3721 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \ |
| 428 | 3722 do { \ |
| 3723 struct typename##_block *SFTB_current; \ | |
| 3724 int SFTB_limit; \ | |
| 3725 int num_free = 0, num_used = 0; \ | |
| 3726 \ | |
| 444 | 3727 for (SFTB_current = current_##typename##_block, \ |
| 428 | 3728 SFTB_limit = current_##typename##_block_index; \ |
| 3729 SFTB_current; \ | |
| 3730 ) \ | |
| 3731 { \ | |
| 3732 int SFTB_iii; \ | |
| 3733 \ | |
| 3734 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ | |
| 3735 { \ | |
| 3736 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ | |
| 3737 \ | |
| 454 | 3738 if (LRECORD_FREE_P (SFTB_victim)) \ |
| 428 | 3739 { \ |
| 3740 num_free++; \ | |
| 3741 } \ | |
| 3742 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
| 3743 { \ | |
| 3744 num_used++; \ | |
| 3745 } \ | |
| 442 | 3746 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ |
| 428 | 3747 { \ |
| 3748 num_free++; \ | |
| 3749 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ | |
| 3750 } \ | |
| 3751 else \ | |
| 3752 { \ | |
| 3753 num_used++; \ | |
| 3754 UNMARK_##typename (SFTB_victim); \ | |
| 3755 } \ | |
| 3756 } \ | |
| 3757 SFTB_current = SFTB_current->prev; \ | |
| 3758 SFTB_limit = countof (current_##typename##_block->block); \ | |
| 3759 } \ | |
| 3760 \ | |
| 3761 gc_count_num_##typename##_in_use = num_used; \ | |
| 3762 gc_count_num_##typename##_freelist = num_free; \ | |
| 3763 } while (0) | |
| 3764 | |
| 3765 #else /* !ERROR_CHECK_GC */ | |
| 3766 | |
| 771 | 3767 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \ |
| 3768 do { \ | |
| 3769 struct typename##_block *SFTB_current; \ | |
| 3770 struct typename##_block **SFTB_prev; \ | |
| 3771 int SFTB_limit; \ | |
| 3772 int num_free = 0, num_used = 0; \ | |
| 3773 \ | |
| 3774 typename##_free_list = 0; \ | |
| 3775 \ | |
| 3776 for (SFTB_prev = ¤t_##typename##_block, \ | |
| 3777 SFTB_current = current_##typename##_block, \ | |
| 3778 SFTB_limit = current_##typename##_block_index; \ | |
| 3779 SFTB_current; \ | |
| 3780 ) \ | |
| 3781 { \ | |
| 3782 int SFTB_iii; \ | |
| 3783 int SFTB_empty = 1; \ | |
| 3784 Lisp_Free *SFTB_old_free_list = typename##_free_list; \ | |
| 3785 \ | |
| 3786 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ | |
| 3787 { \ | |
| 3788 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ | |
| 3789 \ | |
| 3790 if (LRECORD_FREE_P (SFTB_victim)) \ | |
| 3791 { \ | |
| 3792 num_free++; \ | |
| 3793 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \ | |
| 3794 } \ | |
| 3795 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
| 3796 { \ | |
| 3797 SFTB_empty = 0; \ | |
| 3798 num_used++; \ | |
| 3799 } \ | |
| 3800 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
| 3801 { \ | |
| 3802 num_free++; \ | |
| 3803 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ | |
| 3804 } \ | |
| 3805 else \ | |
| 3806 { \ | |
| 3807 SFTB_empty = 0; \ | |
| 3808 num_used++; \ | |
| 3809 UNMARK_##typename (SFTB_victim); \ | |
| 3810 } \ | |
| 3811 } \ | |
| 3812 if (!SFTB_empty) \ | |
| 3813 { \ | |
| 3814 SFTB_prev = &(SFTB_current->prev); \ | |
| 3815 SFTB_current = SFTB_current->prev; \ | |
| 3816 } \ | |
| 3817 else if (SFTB_current == current_##typename##_block \ | |
| 3818 && !SFTB_current->prev) \ | |
| 3819 { \ | |
| 3820 /* No real point in freeing sole allocation block */ \ | |
| 3821 break; \ | |
| 3822 } \ | |
| 3823 else \ | |
| 3824 { \ | |
| 3825 struct typename##_block *SFTB_victim_block = SFTB_current; \ | |
| 3826 if (SFTB_victim_block == current_##typename##_block) \ | |
| 3827 current_##typename##_block_index \ | |
| 3828 = countof (current_##typename##_block->block); \ | |
| 3829 SFTB_current = SFTB_current->prev; \ | |
| 3830 { \ | |
| 3831 *SFTB_prev = SFTB_current; \ | |
| 1726 | 3832 xfree (SFTB_victim_block, struct typename##_block *); \ |
| 771 | 3833 /* Restore free list to what it was before victim was swept */ \ |
| 3834 typename##_free_list = SFTB_old_free_list; \ | |
| 3835 num_free -= SFTB_limit; \ | |
| 3836 } \ | |
| 3837 } \ | |
| 3838 SFTB_limit = countof (current_##typename##_block->block); \ | |
| 3839 } \ | |
| 3840 \ | |
| 3841 gc_count_num_##typename##_in_use = num_used; \ | |
| 3842 gc_count_num_##typename##_freelist = num_free; \ | |
| 428 | 3843 } while (0) |
| 3844 | |
| 3845 #endif /* !ERROR_CHECK_GC */ | |
| 3846 | |
| 771 | 3847 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \ |
| 3848 SWEEP_FIXED_TYPE_BLOCK_1 (typename, obj_type, lheader) | |
| 3849 | |
| 428 | 3850 |
| 3851 | |
| 3852 | |
| 3853 static void | |
| 3854 sweep_conses (void) | |
| 3855 { | |
| 3856 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3857 #define ADDITIONAL_FREE_cons(ptr) | |
| 3858 | |
| 440 | 3859 SWEEP_FIXED_TYPE_BLOCK (cons, Lisp_Cons); |
| 428 | 3860 } |
| 3861 | |
| 3862 /* Explicitly free a cons cell. */ | |
| 3863 void | |
| 853 | 3864 free_cons (Lisp_Object cons) |
| 428 | 3865 { |
| 853 | 3866 Lisp_Cons *ptr = XCONS (cons); |
| 3867 | |
| 428 | 3868 #ifdef ERROR_CHECK_GC |
| 3869 /* If the CAR is not an int, then it will be a pointer, which will | |
| 3870 always be four-byte aligned. If this cons cell has already been | |
| 3871 placed on the free list, however, its car will probably contain | |
| 3872 a chain pointer to the next cons on the list, which has cleverly | |
| 3873 had all its 0's and 1's inverted. This allows for a quick | |
| 1204 | 3874 check to make sure we're not freeing something already freed. |
| 3875 | |
| 3876 NOTE: This check may not be necessary. Freeing an object sets its | |
| 3877 type to lrecord_type_free, which will trip up the XCONS() above -- as | |
| 3878 well as a check in FREE_FIXED_TYPE(). */ | |
| 853 | 3879 if (POINTER_TYPE_P (XTYPE (cons_car (ptr)))) |
| 3880 ASSERT_VALID_POINTER (XPNTR (cons_car (ptr))); | |
| 428 | 3881 #endif /* ERROR_CHECK_GC */ |
| 3882 | |
| 440 | 3883 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, Lisp_Cons, ptr); |
| 428 | 3884 } |
| 3885 | |
| 3886 /* explicitly free a list. You **must make sure** that you have | |
| 3887 created all the cons cells that make up this list and that there | |
| 3888 are no pointers to any of these cons cells anywhere else. If there | |
| 3889 are, you will lose. */ | |
| 3890 | |
| 3891 void | |
| 3892 free_list (Lisp_Object list) | |
| 3893 { | |
| 3894 Lisp_Object rest, next; | |
| 3895 | |
| 3896 for (rest = list; !NILP (rest); rest = next) | |
| 3897 { | |
| 3898 next = XCDR (rest); | |
| 853 | 3899 free_cons (rest); |
| 428 | 3900 } |
| 3901 } | |
| 3902 | |
| 3903 /* explicitly free an alist. You **must make sure** that you have | |
| 3904 created all the cons cells that make up this alist and that there | |
| 3905 are no pointers to any of these cons cells anywhere else. If there | |
| 3906 are, you will lose. */ | |
| 3907 | |
| 3908 void | |
| 3909 free_alist (Lisp_Object alist) | |
| 3910 { | |
| 3911 Lisp_Object rest, next; | |
| 3912 | |
| 3913 for (rest = alist; !NILP (rest); rest = next) | |
| 3914 { | |
| 3915 next = XCDR (rest); | |
| 853 | 3916 free_cons (XCAR (rest)); |
| 3917 free_cons (rest); | |
| 428 | 3918 } |
| 3919 } | |
| 3920 | |
| 3921 static void | |
| 3922 sweep_compiled_functions (void) | |
| 3923 { | |
| 3924 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 945 | 3925 #define ADDITIONAL_FREE_compiled_function(ptr) \ |
| 1726 | 3926 if (ptr->args_in_array) xfree (ptr->args, Lisp_Object *) |
| 428 | 3927 |
| 3928 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function); | |
| 3929 } | |
| 3930 | |
| 3931 static void | |
| 3932 sweep_floats (void) | |
| 3933 { | |
| 3934 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3935 #define ADDITIONAL_FREE_float(ptr) | |
| 3936 | |
| 440 | 3937 SWEEP_FIXED_TYPE_BLOCK (float, Lisp_Float); |
| 428 | 3938 } |
| 3939 | |
| 1983 | 3940 #ifdef HAVE_BIGNUM |
| 3941 static void | |
| 3942 sweep_bignums (void) | |
| 3943 { | |
| 3944 #define UNMARK_bignum(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3945 #define ADDITIONAL_FREE_bignum(ptr) bignum_fini (ptr->data) | |
| 3946 | |
| 3947 SWEEP_FIXED_TYPE_BLOCK (bignum, Lisp_Bignum); | |
| 3948 } | |
| 3949 #endif /* HAVE_BIGNUM */ | |
| 3950 | |
| 3951 #ifdef HAVE_RATIO | |
| 3952 static void | |
| 3953 sweep_ratios (void) | |
| 3954 { | |
| 3955 #define UNMARK_ratio(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3956 #define ADDITIONAL_FREE_ratio(ptr) ratio_fini (ptr->data) | |
| 3957 | |
| 3958 SWEEP_FIXED_TYPE_BLOCK (ratio, Lisp_Ratio); | |
| 3959 } | |
| 3960 #endif /* HAVE_RATIO */ | |
| 3961 | |
| 3962 #ifdef HAVE_BIGFLOAT | |
| 3963 static void | |
| 3964 sweep_bigfloats (void) | |
| 3965 { | |
| 3966 #define UNMARK_bigfloat(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3967 #define ADDITIONAL_FREE_bigfloat(ptr) bigfloat_fini (ptr->bf) | |
| 3968 | |
| 3969 SWEEP_FIXED_TYPE_BLOCK (bigfloat, Lisp_Bigfloat); | |
| 3970 } | |
| 3971 #endif | |
| 3972 | |
| 428 | 3973 static void |
| 3974 sweep_symbols (void) | |
| 3975 { | |
| 3976 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3977 #define ADDITIONAL_FREE_symbol(ptr) | |
| 3978 | |
| 440 | 3979 SWEEP_FIXED_TYPE_BLOCK (symbol, Lisp_Symbol); |
| 428 | 3980 } |
| 3981 | |
| 3982 static void | |
| 3983 sweep_extents (void) | |
| 3984 { | |
| 3985 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3986 #define ADDITIONAL_FREE_extent(ptr) | |
| 3987 | |
| 3988 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent); | |
| 3989 } | |
| 3990 | |
| 3991 static void | |
| 3992 sweep_events (void) | |
| 3993 { | |
| 3994 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3995 #define ADDITIONAL_FREE_event(ptr) | |
| 3996 | |
| 440 | 3997 SWEEP_FIXED_TYPE_BLOCK (event, Lisp_Event); |
| 428 | 3998 } |
| 3999 | |
| 1204 | 4000 #ifdef EVENT_DATA_AS_OBJECTS |
| 934 | 4001 |
| 4002 static void | |
| 4003 sweep_key_data (void) | |
| 4004 { | |
| 4005 #define UNMARK_key_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4006 #define ADDITIONAL_FREE_key_data(ptr) | |
| 4007 | |
| 4008 SWEEP_FIXED_TYPE_BLOCK (key_data, Lisp_Key_Data); | |
| 4009 } | |
| 4010 | |
| 1204 | 4011 void |
| 4012 free_key_data (Lisp_Object ptr) | |
| 4013 { | |
| 4014 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (key_data, Lisp_Key_Data, XKEY_DATA (ptr)); | |
| 4015 } | |
| 4016 | |
| 934 | 4017 static void |
| 4018 sweep_button_data (void) | |
| 4019 { | |
| 4020 #define UNMARK_button_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4021 #define ADDITIONAL_FREE_button_data(ptr) | |
| 4022 | |
| 4023 SWEEP_FIXED_TYPE_BLOCK (button_data, Lisp_Button_Data); | |
| 4024 } | |
| 4025 | |
| 1204 | 4026 void |
| 4027 free_button_data (Lisp_Object ptr) | |
| 4028 { | |
| 4029 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (button_data, Lisp_Button_Data, XBUTTON_DATA (ptr)); | |
| 4030 } | |
| 4031 | |
| 934 | 4032 static void |
| 4033 sweep_motion_data (void) | |
| 4034 { | |
| 4035 #define UNMARK_motion_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4036 #define ADDITIONAL_FREE_motion_data(ptr) | |
| 4037 | |
| 4038 SWEEP_FIXED_TYPE_BLOCK (motion_data, Lisp_Motion_Data); | |
| 4039 } | |
| 4040 | |
| 1204 | 4041 void |
| 4042 free_motion_data (Lisp_Object ptr) | |
| 4043 { | |
| 4044 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (motion_data, Lisp_Motion_Data, XMOTION_DATA (ptr)); | |
| 4045 } | |
| 4046 | |
| 934 | 4047 static void |
| 4048 sweep_process_data (void) | |
| 4049 { | |
| 4050 #define UNMARK_process_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4051 #define ADDITIONAL_FREE_process_data(ptr) | |
| 4052 | |
| 4053 SWEEP_FIXED_TYPE_BLOCK (process_data, Lisp_Process_Data); | |
| 4054 } | |
| 4055 | |
| 1204 | 4056 void |
| 4057 free_process_data (Lisp_Object ptr) | |
| 4058 { | |
| 4059 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (process_data, Lisp_Process_Data, XPROCESS_DATA (ptr)); | |
| 4060 } | |
| 4061 | |
| 934 | 4062 static void |
| 4063 sweep_timeout_data (void) | |
| 4064 { | |
| 4065 #define UNMARK_timeout_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4066 #define ADDITIONAL_FREE_timeout_data(ptr) | |
| 4067 | |
| 4068 SWEEP_FIXED_TYPE_BLOCK (timeout_data, Lisp_Timeout_Data); | |
| 4069 } | |
| 4070 | |
| 1204 | 4071 void |
| 4072 free_timeout_data (Lisp_Object ptr) | |
| 4073 { | |
| 4074 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (timeout_data, Lisp_Timeout_Data, XTIMEOUT_DATA (ptr)); | |
| 4075 } | |
| 4076 | |
| 934 | 4077 static void |
| 4078 sweep_magic_data (void) | |
| 4079 { | |
| 4080 #define UNMARK_magic_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4081 #define ADDITIONAL_FREE_magic_data(ptr) | |
| 4082 | |
| 4083 SWEEP_FIXED_TYPE_BLOCK (magic_data, Lisp_Magic_Data); | |
| 4084 } | |
| 4085 | |
| 1204 | 4086 void |
| 4087 free_magic_data (Lisp_Object ptr) | |
| 4088 { | |
| 4089 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_data, Lisp_Magic_Data, XMAGIC_DATA (ptr)); | |
| 4090 } | |
| 4091 | |
| 934 | 4092 static void |
| 4093 sweep_magic_eval_data (void) | |
| 4094 { | |
| 4095 #define UNMARK_magic_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4096 #define ADDITIONAL_FREE_magic_eval_data(ptr) | |
| 4097 | |
| 4098 SWEEP_FIXED_TYPE_BLOCK (magic_eval_data, Lisp_Magic_Eval_Data); | |
| 4099 } | |
| 4100 | |
| 1204 | 4101 void |
| 4102 free_magic_eval_data (Lisp_Object ptr) | |
| 4103 { | |
| 4104 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_eval_data, Lisp_Magic_Eval_Data, XMAGIC_EVAL_DATA (ptr)); | |
| 4105 } | |
| 4106 | |
| 934 | 4107 static void |
| 4108 sweep_eval_data (void) | |
| 4109 { | |
| 4110 #define UNMARK_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4111 #define ADDITIONAL_FREE_eval_data(ptr) | |
| 4112 | |
| 4113 SWEEP_FIXED_TYPE_BLOCK (eval_data, Lisp_Eval_Data); | |
| 4114 } | |
| 4115 | |
| 1204 | 4116 void |
| 4117 free_eval_data (Lisp_Object ptr) | |
| 4118 { | |
| 4119 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (eval_data, Lisp_Eval_Data, XEVAL_DATA (ptr)); | |
| 4120 } | |
| 4121 | |
| 934 | 4122 static void |
| 4123 sweep_misc_user_data (void) | |
| 4124 { | |
| 4125 #define UNMARK_misc_user_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4126 #define ADDITIONAL_FREE_misc_user_data(ptr) | |
| 4127 | |
| 4128 SWEEP_FIXED_TYPE_BLOCK (misc_user_data, Lisp_Misc_User_Data); | |
| 4129 } | |
| 4130 | |
| 1204 | 4131 void |
| 4132 free_misc_user_data (Lisp_Object ptr) | |
| 4133 { | |
| 4134 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (misc_user_data, Lisp_Misc_User_Data, XMISC_USER_DATA (ptr)); | |
| 4135 } | |
| 4136 | |
| 4137 #endif /* EVENT_DATA_AS_OBJECTS */ | |
| 934 | 4138 |
| 428 | 4139 static void |
| 4140 sweep_markers (void) | |
| 4141 { | |
| 4142 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4143 #define ADDITIONAL_FREE_marker(ptr) \ | |
| 4144 do { Lisp_Object tem; \ | |
| 793 | 4145 tem = wrap_marker (ptr); \ |
| 428 | 4146 unchain_marker (tem); \ |
| 4147 } while (0) | |
| 4148 | |
| 440 | 4149 SWEEP_FIXED_TYPE_BLOCK (marker, Lisp_Marker); |
| 428 | 4150 } |
| 4151 | |
| 4152 /* Explicitly free a marker. */ | |
| 4153 void | |
| 1204 | 4154 free_marker (Lisp_Object ptr) |
| 428 | 4155 { |
| 1204 | 4156 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, Lisp_Marker, XMARKER (ptr)); |
| 428 | 4157 } |
| 4158 | |
| 4159 | |
| 4160 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) | |
| 4161 | |
| 4162 static void | |
| 4163 verify_string_chars_integrity (void) | |
| 4164 { | |
| 4165 struct string_chars_block *sb; | |
| 4166 | |
| 4167 /* Scan each existing string block sequentially, string by string. */ | |
| 4168 for (sb = first_string_chars_block; sb; sb = sb->next) | |
| 4169 { | |
| 4170 int pos = 0; | |
| 4171 /* POS is the index of the next string in the block. */ | |
| 4172 while (pos < sb->pos) | |
| 4173 { | |
| 4174 struct string_chars *s_chars = | |
| 4175 (struct string_chars *) &(sb->string_chars[pos]); | |
| 438 | 4176 Lisp_String *string; |
| 428 | 4177 int size; |
| 4178 int fullsize; | |
| 4179 | |
| 454 | 4180 /* If the string_chars struct is marked as free (i.e. the |
| 4181 STRING pointer is NULL) then this is an unused chunk of | |
| 4182 string storage. (See below.) */ | |
| 4183 | |
| 4184 if (STRING_CHARS_FREE_P (s_chars)) | |
| 428 | 4185 { |
| 4186 fullsize = ((struct unused_string_chars *) s_chars)->fullsize; | |
| 4187 pos += fullsize; | |
| 4188 continue; | |
| 4189 } | |
| 4190 | |
| 4191 string = s_chars->string; | |
| 4192 /* Must be 32-bit aligned. */ | |
| 4193 assert ((((int) string) & 3) == 0); | |
| 4194 | |
| 793 | 4195 size = string->size_; |
| 428 | 4196 fullsize = STRING_FULLSIZE (size); |
| 4197 | |
| 4198 assert (!BIG_STRING_FULLSIZE_P (fullsize)); | |
| 793 | 4199 assert (string->data_ == s_chars->chars); |
| 428 | 4200 pos += fullsize; |
| 4201 } | |
| 4202 assert (pos == sb->pos); | |
| 4203 } | |
| 4204 } | |
| 4205 | |
| 1204 | 4206 #endif /* defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) */ |
| 428 | 4207 |
| 4208 /* Compactify string chars, relocating the reference to each -- | |
| 4209 free any empty string_chars_block we see. */ | |
| 4210 static void | |
| 4211 compact_string_chars (void) | |
| 4212 { | |
| 4213 struct string_chars_block *to_sb = first_string_chars_block; | |
| 4214 int to_pos = 0; | |
| 4215 struct string_chars_block *from_sb; | |
| 4216 | |
| 4217 /* Scan each existing string block sequentially, string by string. */ | |
| 4218 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next) | |
| 4219 { | |
| 4220 int from_pos = 0; | |
| 4221 /* FROM_POS is the index of the next string in the block. */ | |
| 4222 while (from_pos < from_sb->pos) | |
| 4223 { | |
| 4224 struct string_chars *from_s_chars = | |
| 4225 (struct string_chars *) &(from_sb->string_chars[from_pos]); | |
| 4226 struct string_chars *to_s_chars; | |
| 438 | 4227 Lisp_String *string; |
| 428 | 4228 int size; |
| 4229 int fullsize; | |
| 4230 | |
| 454 | 4231 /* If the string_chars struct is marked as free (i.e. the |
| 4232 STRING pointer is NULL) then this is an unused chunk of | |
| 4233 string storage. This happens under Mule when a string's | |
| 4234 size changes in such a way that its fullsize changes. | |
| 4235 (Strings can change size because a different-length | |
| 4236 character can be substituted for another character.) | |
| 4237 In this case, after the bogus string pointer is the | |
| 4238 "fullsize" of this entry, i.e. how many bytes to skip. */ | |
| 4239 | |
| 4240 if (STRING_CHARS_FREE_P (from_s_chars)) | |
| 428 | 4241 { |
| 4242 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize; | |
| 4243 from_pos += fullsize; | |
| 4244 continue; | |
| 4245 } | |
| 4246 | |
| 4247 string = from_s_chars->string; | |
| 1204 | 4248 gc_checking_assert (!(LRECORD_FREE_P (string))); |
| 428 | 4249 |
| 793 | 4250 size = string->size_; |
| 428 | 4251 fullsize = STRING_FULLSIZE (size); |
| 4252 | |
| 442 | 4253 gc_checking_assert (! BIG_STRING_FULLSIZE_P (fullsize)); |
| 428 | 4254 |
| 4255 /* Just skip it if it isn't marked. */ | |
| 771 | 4256 if (! MARKED_RECORD_HEADER_P (&(string->u.lheader))) |
| 428 | 4257 { |
| 4258 from_pos += fullsize; | |
| 4259 continue; | |
| 4260 } | |
| 4261 | |
| 4262 /* If it won't fit in what's left of TO_SB, close TO_SB out | |
| 4263 and go on to the next string_chars_block. We know that TO_SB | |
| 4264 cannot advance past FROM_SB here since FROM_SB is large enough | |
| 4265 to currently contain this string. */ | |
| 4266 if ((to_pos + fullsize) > countof (to_sb->string_chars)) | |
| 4267 { | |
| 4268 to_sb->pos = to_pos; | |
| 4269 to_sb = to_sb->next; | |
| 4270 to_pos = 0; | |
| 4271 } | |
| 4272 | |
| 4273 /* Compute new address of this string | |
| 4274 and update TO_POS for the space being used. */ | |
| 4275 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]); | |
| 4276 | |
| 4277 /* Copy the string_chars to the new place. */ | |
| 4278 if (from_s_chars != to_s_chars) | |
| 4279 memmove (to_s_chars, from_s_chars, fullsize); | |
| 4280 | |
| 4281 /* Relocate FROM_S_CHARS's reference */ | |
| 826 | 4282 set_lispstringp_data (string, &(to_s_chars->chars[0])); |
| 428 | 4283 |
| 4284 from_pos += fullsize; | |
| 4285 to_pos += fullsize; | |
| 4286 } | |
| 4287 } | |
| 4288 | |
| 4289 /* Set current to the last string chars block still used and | |
| 4290 free any that follow. */ | |
| 4291 { | |
| 4292 struct string_chars_block *victim; | |
| 4293 | |
| 4294 for (victim = to_sb->next; victim; ) | |
| 4295 { | |
| 4296 struct string_chars_block *next = victim->next; | |
| 1726 | 4297 xfree (victim, struct string_chars_block *); |
| 428 | 4298 victim = next; |
| 4299 } | |
| 4300 | |
| 4301 current_string_chars_block = to_sb; | |
| 4302 current_string_chars_block->pos = to_pos; | |
| 4303 current_string_chars_block->next = 0; | |
| 4304 } | |
| 4305 } | |
| 4306 | |
| 4307 #if 1 /* Hack to debug missing purecopy's */ | |
| 4308 static int debug_string_purity; | |
| 4309 | |
| 4310 static void | |
| 793 | 4311 debug_string_purity_print (Lisp_Object p) |
| 428 | 4312 { |
| 4313 Charcount i; | |
| 826 | 4314 Charcount s = string_char_length (p); |
| 442 | 4315 stderr_out ("\""); |
| 428 | 4316 for (i = 0; i < s; i++) |
| 4317 { | |
| 867 | 4318 Ichar ch = string_ichar (p, i); |
| 428 | 4319 if (ch < 32 || ch >= 126) |
| 4320 stderr_out ("\\%03o", ch); | |
| 4321 else if (ch == '\\' || ch == '\"') | |
| 4322 stderr_out ("\\%c", ch); | |
| 4323 else | |
| 4324 stderr_out ("%c", ch); | |
| 4325 } | |
| 4326 stderr_out ("\"\n"); | |
| 4327 } | |
| 4328 #endif /* 1 */ | |
| 4329 | |
| 4330 | |
| 4331 static void | |
| 4332 sweep_strings (void) | |
| 4333 { | |
| 647 | 4334 int num_small_used = 0; |
| 4335 Bytecount num_small_bytes = 0, num_bytes = 0; | |
| 428 | 4336 int debug = debug_string_purity; |
| 4337 | |
| 793 | 4338 #define UNMARK_string(ptr) do { \ |
| 4339 Lisp_String *p = (ptr); \ | |
| 4340 Bytecount size = p->size_; \ | |
| 4341 UNMARK_RECORD_HEADER (&(p->u.lheader)); \ | |
| 4342 num_bytes += size; \ | |
| 4343 if (!BIG_STRING_SIZE_P (size)) \ | |
| 4344 { \ | |
| 4345 num_small_bytes += size; \ | |
| 4346 num_small_used++; \ | |
| 4347 } \ | |
| 4348 if (debug) \ | |
| 4349 debug_string_purity_print (wrap_string (p)); \ | |
| 438 | 4350 } while (0) |
| 4351 #define ADDITIONAL_FREE_string(ptr) do { \ | |
| 793 | 4352 Bytecount size = ptr->size_; \ |
| 438 | 4353 if (BIG_STRING_SIZE_P (size)) \ |
| 1726 | 4354 xfree (ptr->data_, Ibyte *); \ |
| 438 | 4355 } while (0) |
| 4356 | |
| 771 | 4357 SWEEP_FIXED_TYPE_BLOCK_1 (string, Lisp_String, u.lheader); |
| 428 | 4358 |
| 4359 gc_count_num_short_string_in_use = num_small_used; | |
| 4360 gc_count_string_total_size = num_bytes; | |
| 4361 gc_count_short_string_total_size = num_small_bytes; | |
| 4362 } | |
| 4363 | |
| 4364 | |
| 4365 /* I hate duplicating all this crap! */ | |
| 4366 int | |
| 4367 marked_p (Lisp_Object obj) | |
| 4368 { | |
| 4369 /* Checks we used to perform. */ | |
| 4370 /* if (EQ (obj, Qnull_pointer)) return 1; */ | |
| 4371 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */ | |
| 4372 /* if (PURIFIED (XPNTR (obj))) return 1; */ | |
| 4373 | |
| 4374 if (XTYPE (obj) == Lisp_Type_Record) | |
| 4375 { | |
| 4376 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
| 442 | 4377 |
| 4378 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
| 4379 | |
| 4380 return MARKED_RECORD_HEADER_P (lheader); | |
| 428 | 4381 } |
| 4382 return 1; | |
| 4383 } | |
| 4384 | |
| 4385 static void | |
| 4386 gc_sweep (void) | |
| 4387 { | |
| 4388 /* Free all unmarked records. Do this at the very beginning, | |
| 4389 before anything else, so that the finalize methods can safely | |
| 4390 examine items in the objects. sweep_lcrecords_1() makes | |
| 4391 sure to call all the finalize methods *before* freeing anything, | |
| 4392 to complete the safety. */ | |
| 4393 { | |
| 4394 int ignored; | |
| 4395 sweep_lcrecords_1 (&all_lcrecords, &ignored); | |
| 4396 } | |
| 4397 | |
| 4398 compact_string_chars (); | |
| 4399 | |
| 4400 /* Finalize methods below (called through the ADDITIONAL_FREE_foo | |
| 4401 macros) must be *extremely* careful to make sure they're not | |
| 4402 referencing freed objects. The only two existing finalize | |
| 4403 methods (for strings and markers) pass muster -- the string | |
| 4404 finalizer doesn't look at anything but its own specially- | |
| 4405 created block, and the marker finalizer only looks at live | |
| 4406 buffers (which will never be freed) and at the markers before | |
| 4407 and after it in the chain (which, by induction, will never be | |
| 4408 freed because if so, they would have already removed themselves | |
| 4409 from the chain). */ | |
| 4410 | |
| 4411 /* Put all unmarked strings on free list, free'ing the string chars | |
| 4412 of large unmarked strings */ | |
| 4413 sweep_strings (); | |
| 4414 | |
| 4415 /* Put all unmarked conses on free list */ | |
| 4416 sweep_conses (); | |
| 4417 | |
| 4418 /* Free all unmarked compiled-function objects */ | |
| 4419 sweep_compiled_functions (); | |
| 4420 | |
| 4421 /* Put all unmarked floats on free list */ | |
| 4422 sweep_floats (); | |
| 4423 | |
| 1983 | 4424 #ifdef HAVE_BIGNUM |
| 4425 /* Put all unmarked bignums on free list */ | |
| 4426 sweep_bignums (); | |
| 4427 #endif | |
| 4428 | |
| 4429 #ifdef HAVE_RATIO | |
| 4430 /* Put all unmarked ratios on free list */ | |
| 4431 sweep_ratios (); | |
| 4432 #endif | |
| 4433 | |
| 4434 #ifdef HAVE_BIGFLOAT | |
| 4435 /* Put all unmarked bigfloats on free list */ | |
| 4436 sweep_bigfloats (); | |
| 4437 #endif | |
| 4438 | |
| 428 | 4439 /* Put all unmarked symbols on free list */ |
| 4440 sweep_symbols (); | |
| 4441 | |
| 4442 /* Put all unmarked extents on free list */ | |
| 4443 sweep_extents (); | |
| 4444 | |
| 4445 /* Put all unmarked markers on free list. | |
| 4446 Dechain each one first from the buffer into which it points. */ | |
| 4447 sweep_markers (); | |
| 4448 | |
| 4449 sweep_events (); | |
| 4450 | |
| 1204 | 4451 #ifdef EVENT_DATA_AS_OBJECTS |
| 934 | 4452 sweep_key_data (); |
| 4453 sweep_button_data (); | |
| 4454 sweep_motion_data (); | |
| 4455 sweep_process_data (); | |
| 4456 sweep_timeout_data (); | |
| 4457 sweep_magic_data (); | |
| 4458 sweep_magic_eval_data (); | |
| 4459 sweep_eval_data (); | |
| 4460 sweep_misc_user_data (); | |
| 1204 | 4461 #endif /* EVENT_DATA_AS_OBJECTS */ |
| 934 | 4462 |
| 428 | 4463 #ifdef PDUMP |
| 442 | 4464 pdump_objects_unmark (); |
| 428 | 4465 #endif |
| 4466 } | |
| 4467 | |
| 4468 /* Clearing for disksave. */ | |
| 4469 | |
| 4470 void | |
| 4471 disksave_object_finalization (void) | |
| 4472 { | |
| 4473 /* It's important that certain information from the environment not get | |
| 4474 dumped with the executable (pathnames, environment variables, etc.). | |
| 4475 To make it easier to tell when this has happened with strings(1) we | |
| 4476 clear some known-to-be-garbage blocks of memory, so that leftover | |
| 4477 results of old evaluation don't look like potential problems. | |
| 4478 But first we set some notable variables to nil and do one more GC, | |
| 4479 to turn those strings into garbage. | |
| 440 | 4480 */ |
| 428 | 4481 |
| 4482 /* Yeah, this list is pretty ad-hoc... */ | |
| 4483 Vprocess_environment = Qnil; | |
| 771 | 4484 env_initted = 0; |
| 428 | 4485 Vexec_directory = Qnil; |
| 4486 Vdata_directory = Qnil; | |
| 4487 Vsite_directory = Qnil; | |
| 4488 Vdoc_directory = Qnil; | |
| 4489 Vexec_path = Qnil; | |
| 4490 Vload_path = Qnil; | |
| 4491 /* Vdump_load_path = Qnil; */ | |
| 4492 /* Release hash tables for locate_file */ | |
| 4493 Flocate_file_clear_hashing (Qt); | |
| 771 | 4494 uncache_home_directory (); |
| 776 | 4495 zero_out_command_line_status_vars (); |
| 872 | 4496 clear_default_devices (); |
| 428 | 4497 |
| 4498 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \ | |
| 4499 defined(LOADHIST_BUILTIN)) | |
| 4500 Vload_history = Qnil; | |
| 4501 #endif | |
| 4502 Vshell_file_name = Qnil; | |
| 4503 | |
| 4504 garbage_collect_1 (); | |
| 4505 | |
| 4506 /* Run the disksave finalization methods of all live objects. */ | |
| 4507 disksave_object_finalization_1 (); | |
| 4508 | |
| 4509 /* Zero out the uninitialized (really, unused) part of the containers | |
| 4510 for the live strings. */ | |
| 4511 { | |
| 4512 struct string_chars_block *scb; | |
| 4513 for (scb = first_string_chars_block; scb; scb = scb->next) | |
| 4514 { | |
| 4515 int count = sizeof (scb->string_chars) - scb->pos; | |
| 4516 | |
| 4517 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE); | |
| 440 | 4518 if (count != 0) |
| 4519 { | |
| 4520 /* from the block's fill ptr to the end */ | |
| 4521 memset ((scb->string_chars + scb->pos), 0, count); | |
| 4522 } | |
| 428 | 4523 } |
| 4524 } | |
| 4525 | |
| 4526 /* There, that ought to be enough... */ | |
| 4527 | |
| 4528 } | |
| 4529 | |
| 4530 | |
| 771 | 4531 int |
| 4532 begin_gc_forbidden (void) | |
| 4533 { | |
| 853 | 4534 return internal_bind_int (&gc_currently_forbidden, 1); |
| 771 | 4535 } |
| 4536 | |
| 4537 void | |
| 4538 end_gc_forbidden (int count) | |
| 4539 { | |
| 4540 unbind_to (count); | |
| 4541 } | |
| 4542 | |
| 428 | 4543 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */ |
| 4544 static int gc_hooks_inhibited; | |
| 4545 | |
| 611 | 4546 struct post_gc_action |
| 4547 { | |
| 4548 void (*fun) (void *); | |
| 4549 void *arg; | |
| 4550 }; | |
| 4551 | |
| 4552 typedef struct post_gc_action post_gc_action; | |
| 4553 | |
| 4554 typedef struct | |
| 4555 { | |
| 4556 Dynarr_declare (post_gc_action); | |
| 4557 } post_gc_action_dynarr; | |
| 4558 | |
| 4559 static post_gc_action_dynarr *post_gc_actions; | |
| 4560 | |
| 4561 /* Register an action to be called at the end of GC. | |
| 4562 gc_in_progress is 0 when this is called. | |
| 4563 This is used when it is discovered that an action needs to be taken, | |
| 4564 but it's during GC, so it's not safe. (e.g. in a finalize method.) | |
| 4565 | |
| 4566 As a general rule, do not use Lisp objects here. | |
| 4567 And NEVER signal an error. | |
| 4568 */ | |
| 4569 | |
| 4570 void | |
| 4571 register_post_gc_action (void (*fun) (void *), void *arg) | |
| 4572 { | |
| 4573 post_gc_action action; | |
| 4574 | |
| 4575 if (!post_gc_actions) | |
| 4576 post_gc_actions = Dynarr_new (post_gc_action); | |
| 4577 | |
| 4578 action.fun = fun; | |
| 4579 action.arg = arg; | |
| 4580 | |
| 4581 Dynarr_add (post_gc_actions, action); | |
| 4582 } | |
| 4583 | |
| 4584 static void | |
| 4585 run_post_gc_actions (void) | |
| 4586 { | |
| 4587 int i; | |
| 4588 | |
| 4589 if (post_gc_actions) | |
| 4590 { | |
| 4591 for (i = 0; i < Dynarr_length (post_gc_actions); i++) | |
| 4592 { | |
| 4593 post_gc_action action = Dynarr_at (post_gc_actions, i); | |
| 4594 (action.fun) (action.arg); | |
| 4595 } | |
| 4596 | |
| 4597 Dynarr_reset (post_gc_actions); | |
| 4598 } | |
| 4599 } | |
| 4600 | |
| 428 | 4601 |
| 4602 void | |
| 4603 garbage_collect_1 (void) | |
| 4604 { | |
| 4605 #if MAX_SAVE_STACK > 0 | |
| 4606 char stack_top_variable; | |
| 4607 extern char *stack_bottom; | |
| 4608 #endif | |
| 4609 struct frame *f; | |
| 4610 int speccount; | |
| 4611 int cursor_changed; | |
| 4612 Lisp_Object pre_gc_cursor; | |
| 4613 struct gcpro gcpro1; | |
| 1292 | 4614 PROFILE_DECLARE (); |
| 428 | 4615 |
| 1123 | 4616 assert (!in_display || gc_currently_forbidden); |
| 4617 | |
| 428 | 4618 if (gc_in_progress |
| 4619 || gc_currently_forbidden | |
| 4620 || in_display | |
| 4621 || preparing_for_armageddon) | |
| 4622 return; | |
| 4623 | |
| 1292 | 4624 PROFILE_RECORD_ENTERING_SECTION (QSin_garbage_collection); |
| 4625 | |
| 428 | 4626 /* We used to call selected_frame() here. |
| 4627 | |
| 4628 The following functions cannot be called inside GC | |
| 4629 so we move to after the above tests. */ | |
| 4630 { | |
| 4631 Lisp_Object frame; | |
| 4632 Lisp_Object device = Fselected_device (Qnil); | |
| 4633 if (NILP (device)) /* Could happen during startup, eg. if always_gc */ | |
| 4634 return; | |
| 872 | 4635 frame = Fselected_frame (device); |
| 428 | 4636 if (NILP (frame)) |
| 563 | 4637 invalid_state ("No frames exist on device", device); |
| 428 | 4638 f = XFRAME (frame); |
| 4639 } | |
| 4640 | |
| 4641 pre_gc_cursor = Qnil; | |
| 4642 cursor_changed = 0; | |
| 4643 | |
| 4644 GCPRO1 (pre_gc_cursor); | |
| 4645 | |
| 4646 /* Very important to prevent GC during any of the following | |
| 4647 stuff that might run Lisp code; otherwise, we'll likely | |
| 4648 have infinite GC recursion. */ | |
| 771 | 4649 speccount = begin_gc_forbidden (); |
| 428 | 4650 |
| 887 | 4651 need_to_signal_post_gc = 0; |
| 1318 | 4652 recompute_funcall_allocation_flag (); |
| 887 | 4653 |
| 428 | 4654 if (!gc_hooks_inhibited) |
| 853 | 4655 run_hook_trapping_problems |
| 1333 | 4656 (Qgarbage_collecting, Qpre_gc_hook, |
| 853 | 4657 INHIBIT_EXISTING_PERMANENT_DISPLAY_OBJECT_DELETION); |
| 428 | 4658 |
| 4659 /* Now show the GC cursor/message. */ | |
| 4660 if (!noninteractive) | |
| 4661 { | |
| 4662 if (FRAME_WIN_P (f)) | |
| 4663 { | |
| 771 | 4664 Lisp_Object frame = wrap_frame (f); |
| 428 | 4665 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph, |
| 4666 FRAME_SELECTED_WINDOW (f), | |
| 4667 ERROR_ME_NOT, 1); | |
| 4668 pre_gc_cursor = f->pointer; | |
| 4669 if (POINTER_IMAGE_INSTANCEP (cursor) | |
| 4670 /* don't change if we don't know how to change back. */ | |
| 4671 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor)) | |
| 4672 { | |
| 4673 cursor_changed = 1; | |
| 4674 Fset_frame_pointer (frame, cursor); | |
| 4675 } | |
| 4676 } | |
| 4677 | |
| 4678 /* Don't print messages to the stream device. */ | |
| 4679 if (!cursor_changed && !FRAME_STREAM_P (f)) | |
| 4680 { | |
| 1154 | 4681 if (garbage_collection_messages) |
| 4682 { | |
| 4683 Lisp_Object args[2], whole_msg; | |
| 4684 args[0] = (STRINGP (Vgc_message) ? Vgc_message : | |
| 4685 build_msg_string (gc_default_message)); | |
| 4686 args[1] = build_string ("..."); | |
| 4687 whole_msg = Fconcat (2, args); | |
| 4688 echo_area_message (f, (Ibyte *) 0, whole_msg, 0, -1, | |
| 4689 Qgarbage_collecting); | |
| 4690 } | |
| 428 | 4691 } |
| 4692 } | |
| 4693 | |
| 4694 /***** Now we actually start the garbage collection. */ | |
| 4695 | |
| 4696 gc_in_progress = 1; | |
| 2367 | 4697 inhibit_non_essential_conversion_operations = 1; |
| 428 | 4698 |
| 4699 gc_generation_number[0]++; | |
| 4700 | |
| 4701 #if MAX_SAVE_STACK > 0 | |
| 4702 | |
| 4703 /* Save a copy of the contents of the stack, for debugging. */ | |
| 4704 if (!purify_flag) | |
| 4705 { | |
| 4706 /* Static buffer in which we save a copy of the C stack at each GC. */ | |
| 4707 static char *stack_copy; | |
| 665 | 4708 static Bytecount stack_copy_size; |
| 428 | 4709 |
| 4710 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom; | |
| 665 | 4711 Bytecount stack_size = (stack_diff > 0 ? stack_diff : -stack_diff); |
| 428 | 4712 if (stack_size < MAX_SAVE_STACK) |
| 4713 { | |
| 4714 if (stack_copy_size < stack_size) | |
| 4715 { | |
| 4716 stack_copy = (char *) xrealloc (stack_copy, stack_size); | |
| 4717 stack_copy_size = stack_size; | |
| 4718 } | |
| 4719 | |
| 4720 memcpy (stack_copy, | |
| 4721 stack_diff > 0 ? stack_bottom : &stack_top_variable, | |
| 4722 stack_size); | |
| 4723 } | |
| 4724 } | |
| 4725 #endif /* MAX_SAVE_STACK > 0 */ | |
| 4726 | |
| 4727 /* Do some totally ad-hoc resource clearing. */ | |
| 4728 /* #### generalize this? */ | |
| 4729 clear_event_resource (); | |
| 4730 cleanup_specifiers (); | |
| 1204 | 4731 cleanup_buffer_undo_lists (); |
| 428 | 4732 |
| 4733 /* Mark all the special slots that serve as the roots of accessibility. */ | |
| 4734 | |
| 1598 | 4735 #ifdef USE_KKCC |
| 4736 /* initialize kkcc stack */ | |
| 4737 kkcc_gc_stack_init(); | |
| 1676 | 4738 #define mark_object kkcc_gc_stack_push_lisp_object |
| 1598 | 4739 #endif /* USE_KKCC */ |
| 4740 | |
| 428 | 4741 { /* staticpro() */ |
| 452 | 4742 Lisp_Object **p = Dynarr_begin (staticpros); |
| 665 | 4743 Elemcount count; |
| 452 | 4744 for (count = Dynarr_length (staticpros); count; count--) |
| 4745 mark_object (**p++); | |
| 4746 } | |
| 4747 | |
| 4748 { /* staticpro_nodump() */ | |
| 4749 Lisp_Object **p = Dynarr_begin (staticpros_nodump); | |
| 665 | 4750 Elemcount count; |
| 452 | 4751 for (count = Dynarr_length (staticpros_nodump); count; count--) |
| 4752 mark_object (**p++); | |
| 428 | 4753 } |
| 4754 | |
| 4755 { /* GCPRO() */ | |
| 4756 struct gcpro *tail; | |
| 4757 int i; | |
| 4758 for (tail = gcprolist; tail; tail = tail->next) | |
| 4759 for (i = 0; i < tail->nvars; i++) | |
| 4760 mark_object (tail->var[i]); | |
| 4761 } | |
| 4762 | |
| 4763 { /* specbind() */ | |
| 4764 struct specbinding *bind; | |
| 4765 for (bind = specpdl; bind != specpdl_ptr; bind++) | |
| 4766 { | |
| 4767 mark_object (bind->symbol); | |
| 4768 mark_object (bind->old_value); | |
| 4769 } | |
| 4770 } | |
| 4771 | |
| 4772 { | |
| 4773 struct catchtag *catch; | |
| 4774 for (catch = catchlist; catch; catch = catch->next) | |
| 4775 { | |
| 4776 mark_object (catch->tag); | |
| 4777 mark_object (catch->val); | |
| 853 | 4778 mark_object (catch->actual_tag); |
| 2532 | 4779 mark_object (catch->backtrace); |
| 428 | 4780 } |
| 4781 } | |
| 4782 | |
| 4783 { | |
| 4784 struct backtrace *backlist; | |
| 4785 for (backlist = backtrace_list; backlist; backlist = backlist->next) | |
| 4786 { | |
| 4787 int nargs = backlist->nargs; | |
| 4788 int i; | |
| 4789 | |
| 4790 mark_object (*backlist->function); | |
| 1292 | 4791 if (nargs < 0 /* nargs == UNEVALLED || nargs == MANY */ |
| 4792 /* might be fake (internal profiling entry) */ | |
| 4793 && backlist->args) | |
| 428 | 4794 mark_object (backlist->args[0]); |
| 4795 else | |
| 4796 for (i = 0; i < nargs; i++) | |
| 4797 mark_object (backlist->args[i]); | |
| 4798 } | |
| 4799 } | |
| 4800 | |
| 4801 mark_profiling_info (); | |
| 4802 | |
| 4803 /* OK, now do the after-mark stuff. This is for things that | |
| 4804 are only marked when something else is marked (e.g. weak hash tables). | |
| 4805 There may be complex dependencies between such objects -- e.g. | |
| 4806 a weak hash table might be unmarked, but after processing a later | |
| 4807 weak hash table, the former one might get marked. So we have to | |
| 4808 iterate until nothing more gets marked. */ | |
| 1598 | 4809 #ifdef USE_KKCC |
| 4810 kkcc_marking (); | |
| 4811 #endif /* USE_KKCC */ | |
| 1590 | 4812 init_marking_ephemerons (); |
| 428 | 4813 while (finish_marking_weak_hash_tables () > 0 || |
| 887 | 4814 finish_marking_weak_lists () > 0 || |
| 1590 | 4815 continue_marking_ephemerons () > 0) |
|
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4816 #ifdef USE_KKCC |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4817 { |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4818 kkcc_marking (); |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4819 } |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4820 #else /* NOT USE_KKCC */ |
| 1590 | 4821 ; |
| 1598 | 4822 #endif /* USE_KKCC */ |
| 4823 | |
| 1590 | 4824 /* At this point, we know which objects need to be finalized: we |
| 4825 still need to resurrect them */ | |
| 4826 | |
| 4827 while (finish_marking_ephemerons () > 0 || | |
| 4828 finish_marking_weak_lists () > 0 || | |
| 4829 finish_marking_weak_hash_tables () > 0) | |
| 1643 | 4830 #ifdef USE_KKCC |
|
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4831 { |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4832 kkcc_marking (); |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4833 } |
| 1643 | 4834 kkcc_gc_stack_free (); |
| 1676 | 4835 #undef mark_object |
|
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4836 #else /* NOT USE_KKCC */ |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4837 ; |
| 1643 | 4838 #endif /* USE_KKCC */ |
| 4839 | |
| 428 | 4840 /* And prune (this needs to be called after everything else has been |
| 4841 marked and before we do any sweeping). */ | |
| 4842 /* #### this is somewhat ad-hoc and should probably be an object | |
| 4843 method */ | |
| 4844 prune_weak_hash_tables (); | |
| 4845 prune_weak_lists (); | |
| 4846 prune_specifiers (); | |
| 4847 prune_syntax_tables (); | |
| 4848 | |
| 887 | 4849 prune_ephemerons (); |
| 858 | 4850 prune_weak_boxes (); |
| 4851 | |
| 428 | 4852 gc_sweep (); |
| 4853 | |
| 4854 consing_since_gc = 0; | |
| 4855 #ifndef DEBUG_XEMACS | |
| 4856 /* Allow you to set it really fucking low if you really want ... */ | |
| 4857 if (gc_cons_threshold < 10000) | |
| 4858 gc_cons_threshold = 10000; | |
| 4859 #endif | |
| 814 | 4860 recompute_need_to_garbage_collect (); |
| 428 | 4861 |
| 2367 | 4862 inhibit_non_essential_conversion_operations = 0; |
| 428 | 4863 gc_in_progress = 0; |
| 4864 | |
| 611 | 4865 run_post_gc_actions (); |
| 4866 | |
| 428 | 4867 /******* End of garbage collection ********/ |
| 4868 | |
| 4869 /* Now remove the GC cursor/message */ | |
| 4870 if (!noninteractive) | |
| 4871 { | |
| 4872 if (cursor_changed) | |
| 771 | 4873 Fset_frame_pointer (wrap_frame (f), pre_gc_cursor); |
| 428 | 4874 else if (!FRAME_STREAM_P (f)) |
| 4875 { | |
| 4876 /* Show "...done" only if the echo area would otherwise be empty. */ | |
| 4877 if (NILP (clear_echo_area (selected_frame (), | |
| 4878 Qgarbage_collecting, 0))) | |
| 4879 { | |
| 1154 | 4880 if (garbage_collection_messages) |
| 4881 { | |
| 4882 Lisp_Object args[2], whole_msg; | |
| 4883 args[0] = (STRINGP (Vgc_message) ? Vgc_message : | |
| 4884 build_msg_string (gc_default_message)); | |
| 4885 args[1] = build_msg_string ("... done"); | |
| 4886 whole_msg = Fconcat (2, args); | |
| 4887 echo_area_message (selected_frame (), (Ibyte *) 0, | |
| 4888 whole_msg, 0, -1, | |
| 4889 Qgarbage_collecting); | |
| 4890 } | |
| 428 | 4891 } |
| 4892 } | |
| 4893 } | |
| 4894 | |
| 4895 /* now stop inhibiting GC */ | |
| 771 | 4896 unbind_to (speccount); |
| 428 | 4897 |
| 4898 if (!breathing_space) | |
| 4899 { | |
| 4900 breathing_space = malloc (4096 - MALLOC_OVERHEAD); | |
| 4901 } | |
| 4902 | |
| 4903 UNGCPRO; | |
| 887 | 4904 |
| 4905 need_to_signal_post_gc = 1; | |
| 4906 funcall_allocation_flag = 1; | |
| 4907 | |
| 1292 | 4908 PROFILE_RECORD_EXITING_SECTION (QSin_garbage_collection); |
| 4909 | |
| 428 | 4910 return; |
| 4911 } | |
| 4912 | |
| 4913 /* Debugging aids. */ | |
| 4914 | |
| 4915 static Lisp_Object | |
| 2367 | 4916 gc_plist_hack (const Ascbyte *name, int value, Lisp_Object tail) |
| 428 | 4917 { |
| 4918 /* C doesn't have local functions (or closures, or GC, or readable syntax, | |
| 4919 or portable numeric datatypes, or bit-vectors, or characters, or | |
| 4920 arrays, or exceptions, or ...) */ | |
| 4921 return cons3 (intern (name), make_int (value), tail); | |
| 4922 } | |
| 4923 | |
| 4924 #define HACK_O_MATIC(type, name, pl) do { \ | |
| 4925 int s = 0; \ | |
| 4926 struct type##_block *x = current_##type##_block; \ | |
| 4927 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \ | |
| 4928 (pl) = gc_plist_hack ((name), s, (pl)); \ | |
| 4929 } while (0) | |
| 4930 | |
| 4931 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /* | |
| 4932 Reclaim storage for Lisp objects no longer needed. | |
| 4933 Return info on amount of space in use: | |
| 4934 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS) | |
| 4935 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS | |
| 4936 PLIST) | |
| 4937 where `PLIST' is a list of alternating keyword/value pairs providing | |
| 4938 more detailed information. | |
| 4939 Garbage collection happens automatically if you cons more than | |
| 4940 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. | |
| 4941 */ | |
| 4942 ()) | |
| 4943 { | |
| 4944 Lisp_Object pl = Qnil; | |
| 647 | 4945 int i; |
| 428 | 4946 int gc_count_vector_total_size = 0; |
| 4947 garbage_collect_1 (); | |
| 4948 | |
| 442 | 4949 for (i = 0; i < lrecord_type_count; i++) |
| 428 | 4950 { |
| 4951 if (lcrecord_stats[i].bytes_in_use != 0 | |
| 4952 || lcrecord_stats[i].bytes_freed != 0 | |
| 4953 || lcrecord_stats[i].instances_on_free_list != 0) | |
| 4954 { | |
| 4955 char buf [255]; | |
| 442 | 4956 const char *name = lrecord_implementations_table[i]->name; |
| 428 | 4957 int len = strlen (name); |
| 4958 /* save this for the FSFmacs-compatible part of the summary */ | |
| 460 | 4959 if (i == lrecord_type_vector) |
| 428 | 4960 gc_count_vector_total_size = |
| 4961 lcrecord_stats[i].bytes_in_use + lcrecord_stats[i].bytes_freed; | |
| 4962 | |
| 4963 sprintf (buf, "%s-storage", name); | |
| 4964 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl); | |
| 4965 /* Okay, simple pluralization check for `symbol-value-varalias' */ | |
| 4966 if (name[len-1] == 's') | |
| 4967 sprintf (buf, "%ses-freed", name); | |
| 4968 else | |
| 4969 sprintf (buf, "%ss-freed", name); | |
| 4970 if (lcrecord_stats[i].instances_freed != 0) | |
| 4971 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl); | |
| 4972 if (name[len-1] == 's') | |
| 4973 sprintf (buf, "%ses-on-free-list", name); | |
| 4974 else | |
| 4975 sprintf (buf, "%ss-on-free-list", name); | |
| 4976 if (lcrecord_stats[i].instances_on_free_list != 0) | |
| 4977 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list, | |
| 4978 pl); | |
| 4979 if (name[len-1] == 's') | |
| 4980 sprintf (buf, "%ses-used", name); | |
| 4981 else | |
| 4982 sprintf (buf, "%ss-used", name); | |
| 4983 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl); | |
| 4984 } | |
| 4985 } | |
| 4986 | |
| 4987 HACK_O_MATIC (extent, "extent-storage", pl); | |
| 4988 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl); | |
| 4989 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl); | |
| 4990 HACK_O_MATIC (event, "event-storage", pl); | |
| 4991 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl); | |
| 4992 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl); | |
| 4993 HACK_O_MATIC (marker, "marker-storage", pl); | |
| 4994 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl); | |
| 4995 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl); | |
| 4996 HACK_O_MATIC (float, "float-storage", pl); | |
| 4997 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl); | |
| 4998 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl); | |
| 1983 | 4999 #ifdef HAVE_BIGNUM |
| 5000 HACK_O_MATIC (bignum, "bignum-storage", pl); | |
| 5001 pl = gc_plist_hack ("bignums-free", gc_count_num_bignum_freelist, pl); | |
| 5002 pl = gc_plist_hack ("bignums-used", gc_count_num_bignum_in_use, pl); | |
| 5003 #endif /* HAVE_BIGNUM */ | |
| 5004 #ifdef HAVE_RATIO | |
| 5005 HACK_O_MATIC (ratio, "ratio-storage", pl); | |
| 5006 pl = gc_plist_hack ("ratios-free", gc_count_num_ratio_freelist, pl); | |
| 5007 pl = gc_plist_hack ("ratios-used", gc_count_num_ratio_in_use, pl); | |
| 5008 #endif /* HAVE_RATIO */ | |
| 5009 #ifdef HAVE_BIGFLOAT | |
| 5010 HACK_O_MATIC (bigfloat, "bigfloat-storage", pl); | |
| 5011 pl = gc_plist_hack ("bigfloats-free", gc_count_num_bigfloat_freelist, pl); | |
| 5012 pl = gc_plist_hack ("bigfloats-used", gc_count_num_bigfloat_in_use, pl); | |
| 5013 #endif /* HAVE_BIGFLOAT */ | |
| 428 | 5014 HACK_O_MATIC (string, "string-header-storage", pl); |
| 5015 pl = gc_plist_hack ("long-strings-total-length", | |
| 5016 gc_count_string_total_size | |
| 5017 - gc_count_short_string_total_size, pl); | |
| 5018 HACK_O_MATIC (string_chars, "short-string-storage", pl); | |
| 5019 pl = gc_plist_hack ("short-strings-total-length", | |
| 5020 gc_count_short_string_total_size, pl); | |
| 5021 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl); | |
| 5022 pl = gc_plist_hack ("long-strings-used", | |
| 5023 gc_count_num_string_in_use | |
| 5024 - gc_count_num_short_string_in_use, pl); | |
| 5025 pl = gc_plist_hack ("short-strings-used", | |
| 5026 gc_count_num_short_string_in_use, pl); | |
| 5027 | |
| 5028 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl); | |
| 5029 pl = gc_plist_hack ("compiled-functions-free", | |
| 5030 gc_count_num_compiled_function_freelist, pl); | |
| 5031 pl = gc_plist_hack ("compiled-functions-used", | |
| 5032 gc_count_num_compiled_function_in_use, pl); | |
| 5033 | |
| 5034 HACK_O_MATIC (symbol, "symbol-storage", pl); | |
| 5035 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl); | |
| 5036 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl); | |
| 5037 | |
| 5038 HACK_O_MATIC (cons, "cons-storage", pl); | |
| 5039 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl); | |
| 5040 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl); | |
| 5041 | |
| 5042 /* The things we do for backwards-compatibility */ | |
| 5043 return | |
| 5044 list6 (Fcons (make_int (gc_count_num_cons_in_use), | |
| 5045 make_int (gc_count_num_cons_freelist)), | |
| 5046 Fcons (make_int (gc_count_num_symbol_in_use), | |
| 5047 make_int (gc_count_num_symbol_freelist)), | |
| 5048 Fcons (make_int (gc_count_num_marker_in_use), | |
| 5049 make_int (gc_count_num_marker_freelist)), | |
| 5050 make_int (gc_count_string_total_size), | |
| 5051 make_int (gc_count_vector_total_size), | |
| 5052 pl); | |
| 5053 } | |
| 5054 #undef HACK_O_MATIC | |
| 5055 | |
| 5056 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /* | |
| 5057 Return the number of bytes consed since the last garbage collection. | |
| 5058 \"Consed\" is a misnomer in that this actually counts allocation | |
| 5059 of all different kinds of objects, not just conses. | |
| 5060 | |
| 5061 If this value exceeds `gc-cons-threshold', a garbage collection happens. | |
| 5062 */ | |
| 5063 ()) | |
| 5064 { | |
| 5065 return make_int (consing_since_gc); | |
| 5066 } | |
| 5067 | |
| 440 | 5068 #if 0 |
| 444 | 5069 DEFUN ("memory-limit", Fmemory_limit, 0, 0, 0, /* |
| 801 | 5070 Return the address of the last byte XEmacs has allocated, divided by 1024. |
| 5071 This may be helpful in debugging XEmacs's memory usage. | |
| 428 | 5072 The value is divided by 1024 to make sure it will fit in a lisp integer. |
| 5073 */ | |
| 5074 ()) | |
| 5075 { | |
| 5076 return make_int ((EMACS_INT) sbrk (0) / 1024); | |
| 5077 } | |
| 440 | 5078 #endif |
| 428 | 5079 |
| 801 | 5080 DEFUN ("memory-usage", Fmemory_usage, 0, 0, 0, /* |
| 5081 Return the total number of bytes used by the data segment in XEmacs. | |
| 5082 This may be helpful in debugging XEmacs's memory usage. | |
| 5083 */ | |
| 5084 ()) | |
| 5085 { | |
| 5086 return make_int (total_data_usage ()); | |
| 5087 } | |
| 5088 | |
| 851 | 5089 void |
| 5090 recompute_funcall_allocation_flag (void) | |
| 5091 { | |
| 887 | 5092 funcall_allocation_flag = |
| 5093 need_to_garbage_collect || | |
| 5094 need_to_check_c_alloca || | |
| 5095 need_to_signal_post_gc; | |
| 851 | 5096 } |
| 5097 | |
| 801 | 5098 /* True if it's time to garbage collect now. */ |
| 814 | 5099 static void |
| 5100 recompute_need_to_garbage_collect (void) | |
| 801 | 5101 { |
| 5102 if (always_gc) | |
| 814 | 5103 need_to_garbage_collect = 1; |
| 5104 else | |
| 5105 need_to_garbage_collect = | |
| 5106 (consing_since_gc > gc_cons_threshold | |
| 5107 #if 0 /* #### implement this better */ | |
| 5108 && | |
| 5109 (100 * consing_since_gc) / total_data_usage () >= | |
| 5110 gc_cons_percentage | |
| 5111 #endif /* 0 */ | |
| 5112 ); | |
| 851 | 5113 recompute_funcall_allocation_flag (); |
| 801 | 5114 } |
| 5115 | |
| 428 | 5116 |
| 5117 int | |
| 5118 object_dead_p (Lisp_Object obj) | |
| 5119 { | |
| 5120 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) || | |
| 5121 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) || | |
| 5122 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) || | |
| 5123 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) || | |
| 5124 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) || | |
| 5125 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) || | |
| 5126 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj)))); | |
| 5127 } | |
| 5128 | |
| 5129 #ifdef MEMORY_USAGE_STATS | |
| 5130 | |
| 5131 /* Attempt to determine the actual amount of space that is used for | |
| 5132 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE". | |
| 5133 | |
| 5134 It seems that the following holds: | |
| 5135 | |
| 5136 1. When using the old allocator (malloc.c): | |
| 5137 | |
| 5138 -- blocks are always allocated in chunks of powers of two. For | |
| 5139 each block, there is an overhead of 8 bytes if rcheck is not | |
| 5140 defined, 20 bytes if it is defined. In other words, a | |
| 5141 one-byte allocation needs 8 bytes of overhead for a total of | |
| 5142 9 bytes, and needs to have 16 bytes of memory chunked out for | |
| 5143 it. | |
| 5144 | |
| 5145 2. When using the new allocator (gmalloc.c): | |
| 5146 | |
| 5147 -- blocks are always allocated in chunks of powers of two up | |
| 5148 to 4096 bytes. Larger blocks are allocated in chunks of | |
| 5149 an integral multiple of 4096 bytes. The minimum block | |
| 5150 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG | |
| 5151 is defined. There is no per-block overhead, but there | |
| 5152 is an overhead of 3*sizeof (size_t) for each 4096 bytes | |
| 5153 allocated. | |
| 5154 | |
| 5155 3. When using the system malloc, anything goes, but they are | |
| 5156 generally slower and more space-efficient than the GNU | |
| 5157 allocators. One possibly reasonable assumption to make | |
| 5158 for want of better data is that sizeof (void *), or maybe | |
| 5159 2 * sizeof (void *), is required as overhead and that | |
| 5160 blocks are allocated in the minimum required size except | |
| 5161 that some minimum block size is imposed (e.g. 16 bytes). */ | |
| 5162 | |
| 665 | 5163 Bytecount |
| 2286 | 5164 malloced_storage_size (void *UNUSED (ptr), Bytecount claimed_size, |
| 428 | 5165 struct overhead_stats *stats) |
| 5166 { | |
| 665 | 5167 Bytecount orig_claimed_size = claimed_size; |
| 428 | 5168 |
| 5169 #ifdef GNU_MALLOC | |
| 665 | 5170 if (claimed_size < (Bytecount) (2 * sizeof (void *))) |
| 428 | 5171 claimed_size = 2 * sizeof (void *); |
| 5172 # ifdef SUNOS_LOCALTIME_BUG | |
| 5173 if (claimed_size < 16) | |
| 5174 claimed_size = 16; | |
| 5175 # endif | |
| 5176 if (claimed_size < 4096) | |
| 5177 { | |
| 2260 | 5178 /* fxg: rename log->log2 to supress gcc3 shadow warning */ |
| 5179 int log2 = 1; | |
| 428 | 5180 |
| 5181 /* compute the log base two, more or less, then use it to compute | |
| 5182 the block size needed. */ | |
| 5183 claimed_size--; | |
| 5184 /* It's big, it's heavy, it's wood! */ | |
| 5185 while ((claimed_size /= 2) != 0) | |
| 2260 | 5186 ++log2; |
| 428 | 5187 claimed_size = 1; |
| 5188 /* It's better than bad, it's good! */ | |
| 2260 | 5189 while (log2 > 0) |
| 428 | 5190 { |
| 5191 claimed_size *= 2; | |
| 2260 | 5192 log2--; |
| 428 | 5193 } |
| 5194 /* We have to come up with some average about the amount of | |
| 5195 blocks used. */ | |
| 665 | 5196 if ((Bytecount) (rand () & 4095) < claimed_size) |
| 428 | 5197 claimed_size += 3 * sizeof (void *); |
| 5198 } | |
| 5199 else | |
| 5200 { | |
| 5201 claimed_size += 4095; | |
| 5202 claimed_size &= ~4095; | |
| 5203 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t); | |
| 5204 } | |
| 5205 | |
| 5206 #elif defined (SYSTEM_MALLOC) | |
| 5207 | |
| 5208 if (claimed_size < 16) | |
| 5209 claimed_size = 16; | |
| 5210 claimed_size += 2 * sizeof (void *); | |
| 5211 | |
| 5212 #else /* old GNU allocator */ | |
| 5213 | |
| 5214 # ifdef rcheck /* #### may not be defined here */ | |
| 5215 claimed_size += 20; | |
| 5216 # else | |
| 5217 claimed_size += 8; | |
| 5218 # endif | |
| 5219 { | |
| 2260 | 5220 /* fxg: rename log->log2 to supress gcc3 shadow warning */ |
| 5221 int log2 = 1; | |
| 428 | 5222 |
| 5223 /* compute the log base two, more or less, then use it to compute | |
| 5224 the block size needed. */ | |
| 5225 claimed_size--; | |
| 5226 /* It's big, it's heavy, it's wood! */ | |
| 5227 while ((claimed_size /= 2) != 0) | |
| 2260 | 5228 ++log2; |
| 428 | 5229 claimed_size = 1; |
| 5230 /* It's better than bad, it's good! */ | |
| 2260 | 5231 while (log2 > 0) |
| 428 | 5232 { |
| 5233 claimed_size *= 2; | |
| 2260 | 5234 log2--; |
| 428 | 5235 } |
| 5236 } | |
| 5237 | |
| 5238 #endif /* old GNU allocator */ | |
| 5239 | |
| 5240 if (stats) | |
| 5241 { | |
| 5242 stats->was_requested += orig_claimed_size; | |
| 5243 stats->malloc_overhead += claimed_size - orig_claimed_size; | |
| 5244 } | |
| 5245 return claimed_size; | |
| 5246 } | |
| 5247 | |
| 665 | 5248 Bytecount |
| 5249 fixed_type_block_overhead (Bytecount size) | |
| 428 | 5250 { |
| 665 | 5251 Bytecount per_block = TYPE_ALLOC_SIZE (cons, unsigned char); |
| 5252 Bytecount overhead = 0; | |
| 5253 Bytecount storage_size = malloced_storage_size (0, per_block, 0); | |
| 428 | 5254 while (size >= per_block) |
| 5255 { | |
| 5256 size -= per_block; | |
| 5257 overhead += sizeof (void *) + per_block - storage_size; | |
| 5258 } | |
| 5259 if (rand () % per_block < size) | |
| 5260 overhead += sizeof (void *) + per_block - storage_size; | |
| 5261 return overhead; | |
| 5262 } | |
| 5263 | |
| 5264 #endif /* MEMORY_USAGE_STATS */ | |
| 5265 | |
| 5266 | |
| 5267 /* Initialization */ | |
| 771 | 5268 static void |
| 1204 | 5269 common_init_alloc_early (void) |
| 428 | 5270 { |
| 771 | 5271 #ifndef Qzero |
| 5272 Qzero = make_int (0); /* Only used if Lisp_Object is a union type */ | |
| 5273 #endif | |
| 5274 | |
| 5275 #ifndef Qnull_pointer | |
| 5276 /* C guarantees that Qnull_pointer will be initialized to all 0 bits, | |
| 5277 so the following is actually a no-op. */ | |
| 793 | 5278 Qnull_pointer = wrap_pointer_1 (0); |
| 771 | 5279 #endif |
| 5280 | |
| 428 | 5281 gc_generation_number[0] = 0; |
| 5282 breathing_space = 0; | |
| 771 | 5283 Vgc_message = Qzero; |
| 428 | 5284 all_lcrecords = 0; |
| 5285 ignore_malloc_warnings = 1; | |
| 5286 #ifdef DOUG_LEA_MALLOC | |
| 5287 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */ | |
| 5288 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */ | |
| 5289 #if 0 /* Moved to emacs.c */ | |
| 5290 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */ | |
| 5291 #endif | |
| 5292 #endif | |
| 5293 init_string_alloc (); | |
| 5294 init_string_chars_alloc (); | |
| 5295 init_cons_alloc (); | |
| 5296 init_symbol_alloc (); | |
| 5297 init_compiled_function_alloc (); | |
| 5298 init_float_alloc (); | |
| 1983 | 5299 #ifdef HAVE_BIGNUM |
| 5300 init_bignum_alloc (); | |
| 5301 #endif | |
| 5302 #ifdef HAVE_RATIO | |
| 5303 init_ratio_alloc (); | |
| 5304 #endif | |
| 5305 #ifdef HAVE_BIGFLOAT | |
| 5306 init_bigfloat_alloc (); | |
| 5307 #endif | |
| 428 | 5308 init_marker_alloc (); |
| 5309 init_extent_alloc (); | |
| 5310 init_event_alloc (); | |
| 1204 | 5311 #ifdef EVENT_DATA_AS_OBJECTS |
| 934 | 5312 init_key_data_alloc (); |
| 5313 init_button_data_alloc (); | |
| 5314 init_motion_data_alloc (); | |
| 5315 init_process_data_alloc (); | |
| 5316 init_timeout_data_alloc (); | |
| 5317 init_magic_data_alloc (); | |
| 5318 init_magic_eval_data_alloc (); | |
| 5319 init_eval_data_alloc (); | |
| 5320 init_misc_user_data_alloc (); | |
| 1204 | 5321 #endif /* EVENT_DATA_AS_OBJECTS */ |
| 428 | 5322 |
| 5323 ignore_malloc_warnings = 0; | |
| 5324 | |
| 452 | 5325 if (staticpros_nodump) |
| 5326 Dynarr_free (staticpros_nodump); | |
| 5327 staticpros_nodump = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); | |
| 5328 Dynarr_resize (staticpros_nodump, 100); /* merely a small optimization */ | |
| 771 | 5329 #ifdef DEBUG_XEMACS |
| 5330 if (staticpro_nodump_names) | |
| 5331 Dynarr_free (staticpro_nodump_names); | |
| 5332 staticpro_nodump_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
| 5333 Dynarr_resize (staticpro_nodump_names, 100); /* ditto */ | |
| 5334 #endif | |
| 428 | 5335 |
| 5336 consing_since_gc = 0; | |
| 814 | 5337 need_to_garbage_collect = always_gc; |
| 851 | 5338 need_to_check_c_alloca = 0; |
| 5339 funcall_allocation_flag = 0; | |
| 5340 funcall_alloca_count = 0; | |
| 814 | 5341 |
| 428 | 5342 #if 1 |
| 5343 gc_cons_threshold = 500000; /* XEmacs change */ | |
| 5344 #else | |
| 5345 gc_cons_threshold = 15000; /* debugging */ | |
| 5346 #endif | |
| 801 | 5347 gc_cons_percentage = 0; /* #### 20; Don't have an accurate measure of |
| 5348 memory usage on Windows; not verified on other | |
| 5349 systems */ | |
| 428 | 5350 lrecord_uid_counter = 259; |
| 5351 debug_string_purity = 0; | |
| 5352 | |
| 5353 gc_currently_forbidden = 0; | |
| 5354 gc_hooks_inhibited = 0; | |
| 5355 | |
| 800 | 5356 #ifdef ERROR_CHECK_TYPES |
| 428 | 5357 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = |
| 5358 666; | |
| 5359 ERROR_ME_NOT. | |
| 5360 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42; | |
| 5361 ERROR_ME_WARN. | |
| 5362 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = | |
| 5363 3333632; | |
| 793 | 5364 ERROR_ME_DEBUG_WARN. |
| 5365 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = | |
| 5366 8675309; | |
| 800 | 5367 #endif /* ERROR_CHECK_TYPES */ |
| 428 | 5368 } |
| 5369 | |
| 771 | 5370 static void |
| 5371 init_lcrecord_lists (void) | |
| 5372 { | |
| 5373 int i; | |
| 5374 | |
| 5375 for (i = 0; i < countof (lrecord_implementations_table); i++) | |
| 5376 { | |
| 5377 all_lcrecord_lists[i] = Qzero; /* Qnil not yet set */ | |
| 5378 staticpro_nodump (&all_lcrecord_lists[i]); | |
| 5379 } | |
| 5380 } | |
| 5381 | |
| 5382 void | |
| 1204 | 5383 init_alloc_early (void) |
| 771 | 5384 { |
| 1204 | 5385 #if defined (__cplusplus) && defined (ERROR_CHECK_GC) |
| 5386 static struct gcpro initial_gcpro; | |
| 5387 | |
| 5388 initial_gcpro.next = 0; | |
| 5389 initial_gcpro.var = &Qnil; | |
| 5390 initial_gcpro.nvars = 1; | |
| 5391 gcprolist = &initial_gcpro; | |
| 5392 #else | |
| 5393 gcprolist = 0; | |
| 5394 #endif /* defined (__cplusplus) && defined (ERROR_CHECK_GC) */ | |
| 5395 } | |
| 5396 | |
| 5397 void | |
| 5398 reinit_alloc_early (void) | |
| 5399 { | |
| 5400 common_init_alloc_early (); | |
| 771 | 5401 init_lcrecord_lists (); |
| 5402 } | |
| 5403 | |
| 428 | 5404 void |
| 5405 init_alloc_once_early (void) | |
| 5406 { | |
| 1204 | 5407 common_init_alloc_early (); |
| 428 | 5408 |
| 442 | 5409 { |
| 5410 int i; | |
| 5411 for (i = 0; i < countof (lrecord_implementations_table); i++) | |
| 5412 lrecord_implementations_table[i] = 0; | |
| 5413 } | |
| 5414 | |
| 5415 INIT_LRECORD_IMPLEMENTATION (cons); | |
| 5416 INIT_LRECORD_IMPLEMENTATION (vector); | |
| 5417 INIT_LRECORD_IMPLEMENTATION (string); | |
| 5418 INIT_LRECORD_IMPLEMENTATION (lcrecord_list); | |
| 1204 | 5419 INIT_LRECORD_IMPLEMENTATION (free); |
| 428 | 5420 |
| 452 | 5421 staticpros = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); |
| 5422 Dynarr_resize (staticpros, 1410); /* merely a small optimization */ | |
| 2367 | 5423 dump_add_root_block_ptr (&staticpros, &staticpros_description); |
| 771 | 5424 #ifdef DEBUG_XEMACS |
| 5425 staticpro_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
| 5426 Dynarr_resize (staticpro_names, 1410); /* merely a small optimization */ | |
| 2367 | 5427 dump_add_root_block_ptr (&staticpro_names, &staticpro_names_description); |
| 771 | 5428 #endif |
| 5429 | |
| 5430 init_lcrecord_lists (); | |
| 428 | 5431 } |
| 5432 | |
| 5433 void | |
| 5434 syms_of_alloc (void) | |
| 5435 { | |
| 442 | 5436 DEFSYMBOL (Qpre_gc_hook); |
| 5437 DEFSYMBOL (Qpost_gc_hook); | |
| 5438 DEFSYMBOL (Qgarbage_collecting); | |
| 428 | 5439 |
| 5440 DEFSUBR (Fcons); | |
| 5441 DEFSUBR (Flist); | |
| 5442 DEFSUBR (Fvector); | |
| 5443 DEFSUBR (Fbit_vector); | |
| 5444 DEFSUBR (Fmake_byte_code); | |
| 5445 DEFSUBR (Fmake_list); | |
| 5446 DEFSUBR (Fmake_vector); | |
| 5447 DEFSUBR (Fmake_bit_vector); | |
| 5448 DEFSUBR (Fmake_string); | |
| 5449 DEFSUBR (Fstring); | |
| 5450 DEFSUBR (Fmake_symbol); | |
| 5451 DEFSUBR (Fmake_marker); | |
| 5452 DEFSUBR (Fpurecopy); | |
| 5453 DEFSUBR (Fgarbage_collect); | |
| 440 | 5454 #if 0 |
| 428 | 5455 DEFSUBR (Fmemory_limit); |
| 440 | 5456 #endif |
| 801 | 5457 DEFSUBR (Fmemory_usage); |
| 428 | 5458 DEFSUBR (Fconsing_since_gc); |
| 5459 } | |
| 5460 | |
| 5461 void | |
| 5462 vars_of_alloc (void) | |
| 5463 { | |
| 1292 | 5464 QSin_garbage_collection = build_msg_string ("(in garbage collection)"); |
| 5465 staticpro (&QSin_garbage_collection); | |
| 5466 | |
| 428 | 5467 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /* |
| 5468 *Number of bytes of consing between garbage collections. | |
| 5469 \"Consing\" is a misnomer in that this actually counts allocation | |
| 5470 of all different kinds of objects, not just conses. | |
| 5471 Garbage collection can happen automatically once this many bytes have been | |
| 5472 allocated since the last garbage collection. All data types count. | |
| 5473 | |
| 5474 Garbage collection happens automatically when `eval' or `funcall' are | |
| 5475 called. (Note that `funcall' is called implicitly as part of evaluation.) | |
| 5476 By binding this temporarily to a large number, you can effectively | |
| 5477 prevent garbage collection during a part of the program. | |
| 5478 | |
| 853 | 5479 Normally, you cannot set this value less than 10,000 (if you do, it is |
| 5480 automatically reset during the next garbage collection). However, if | |
| 5481 XEmacs was compiled with DEBUG_XEMACS, this does not happen, allowing | |
| 5482 you to set this value very low to track down problems with insufficient | |
| 5483 GCPRO'ing. If you set this to a negative number, garbage collection will | |
| 5484 happen at *EVERY* call to `eval' or `funcall'. This is an extremely | |
| 5485 effective way to check GCPRO problems, but be warned that your XEmacs | |
| 5486 will be unusable! You almost certainly won't have the patience to wait | |
| 5487 long enough to be able to set it back. | |
| 5488 | |
| 428 | 5489 See also `consing-since-gc'. |
| 5490 */ ); | |
| 5491 | |
| 801 | 5492 DEFVAR_INT ("gc-cons-percentage", &gc_cons_percentage /* |
| 5493 *Percentage of memory allocated between garbage collections. | |
| 5494 | |
| 5495 Garbage collection will happen if this percentage of the total amount of | |
| 5496 memory used for data has been allocated since the last garbage collection. | |
| 5497 However, it will not happen if less than `gc-cons-threshold' bytes have | |
| 5498 been allocated -- this sets an absolute minimum in case very little data | |
| 5499 has been allocated or the percentage is set very low. Set this to 0 to | |
| 5500 have garbage collection always happen after `gc-cons-threshold' bytes have | |
| 5501 been allocated, regardless of current memory usage. | |
| 5502 | |
| 5503 Garbage collection happens automatically when `eval' or `funcall' are | |
| 5504 called. (Note that `funcall' is called implicitly as part of evaluation.) | |
| 5505 By binding this temporarily to a large number, you can effectively | |
| 5506 prevent garbage collection during a part of the program. | |
| 5507 | |
| 5508 See also `consing-since-gc'. | |
| 5509 */ ); | |
| 5510 | |
| 428 | 5511 #ifdef DEBUG_XEMACS |
| 5512 DEFVAR_INT ("debug-allocation", &debug_allocation /* | |
| 5513 If non-zero, print out information to stderr about all objects allocated. | |
| 5514 See also `debug-allocation-backtrace-length'. | |
| 5515 */ ); | |
| 5516 debug_allocation = 0; | |
| 5517 | |
| 5518 DEFVAR_INT ("debug-allocation-backtrace-length", | |
| 5519 &debug_allocation_backtrace_length /* | |
| 5520 Length (in stack frames) of short backtrace printed out by `debug-allocation'. | |
| 5521 */ ); | |
| 5522 debug_allocation_backtrace_length = 2; | |
| 5523 #endif | |
| 5524 | |
| 5525 DEFVAR_BOOL ("purify-flag", &purify_flag /* | |
| 5526 Non-nil means loading Lisp code in order to dump an executable. | |
| 5527 This means that certain objects should be allocated in readonly space. | |
| 5528 */ ); | |
| 5529 | |
| 1154 | 5530 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages /* |
| 5531 Non-nil means display messages at start and end of garbage collection. | |
| 5532 */ ); | |
| 5533 garbage_collection_messages = 0; | |
| 5534 | |
| 428 | 5535 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /* |
| 5536 Function or functions to be run just before each garbage collection. | |
| 5537 Interrupts, garbage collection, and errors are inhibited while this hook | |
| 5538 runs, so be extremely careful in what you add here. In particular, avoid | |
| 5539 consing, and do not interact with the user. | |
| 5540 */ ); | |
| 5541 Vpre_gc_hook = Qnil; | |
| 5542 | |
| 5543 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /* | |
| 5544 Function or functions to be run just after each garbage collection. | |
| 5545 Interrupts, garbage collection, and errors are inhibited while this hook | |
| 887 | 5546 runs. Each hook is called with one argument which is an alist with |
| 5547 finalization data. | |
| 428 | 5548 */ ); |
| 5549 Vpost_gc_hook = Qnil; | |
| 5550 | |
| 5551 DEFVAR_LISP ("gc-message", &Vgc_message /* | |
| 5552 String to print to indicate that a garbage collection is in progress. | |
| 5553 This is printed in the echo area. If the selected frame is on a | |
| 5554 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer | |
| 5555 image instance) in the domain of the selected frame, the mouse pointer | |
| 5556 will change instead of this message being printed. | |
| 5557 */ ); | |
| 5558 Vgc_message = build_string (gc_default_message); | |
| 5559 | |
| 5560 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /* | |
| 5561 Pointer glyph used to indicate that a garbage collection is in progress. | |
| 5562 If the selected window is on a window system and this glyph specifies a | |
| 5563 value (i.e. a pointer image instance) in the domain of the selected | |
| 5564 window, the pointer will be changed as specified during garbage collection. | |
| 5565 Otherwise, a message will be printed in the echo area, as controlled | |
| 5566 by `gc-message'. | |
| 5567 */ ); | |
| 5568 } | |
| 5569 | |
| 5570 void | |
| 5571 complex_vars_of_alloc (void) | |
| 5572 { | |
| 5573 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer); | |
| 5574 } |
