Mercurial > hg > xemacs-beta
annotate src/alloc.c @ 3071:a80f978d8342
[xemacs-hg @ 2005-11-16 07:14:13 by stephent]
Mule-ize Canna: <87mzk5yu35.fsf@tleepslib.sk.tsukuba.ac.jp>
| author | stephent |
|---|---|
| date | Wed, 16 Nov 2005 07:14:16 +0000 |
| parents | d30cd499e445 |
| children | 141c2920ea48 3742ea8250b5 |
| rev | line source |
|---|---|
| 428 | 1 /* Storage allocation and gc for XEmacs Lisp interpreter. |
| 2 Copyright (C) 1985-1998 Free Software Foundation, Inc. | |
| 3 Copyright (C) 1995 Sun Microsystems, Inc. | |
| 2994 | 4 Copyright (C) 1995, 1996, 2001, 2002, 2003, 2004, 2005 Ben Wing. |
| 428 | 5 |
| 6 This file is part of XEmacs. | |
| 7 | |
| 8 XEmacs is free software; you can redistribute it and/or modify it | |
| 9 under the terms of the GNU General Public License as published by the | |
| 10 Free Software Foundation; either version 2, or (at your option) any | |
| 11 later version. | |
| 12 | |
| 13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
| 14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
| 15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
| 16 for more details. | |
| 17 | |
| 18 You should have received a copy of the GNU General Public License | |
| 19 along with XEmacs; see the file COPYING. If not, write to | |
| 20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
| 21 Boston, MA 02111-1307, USA. */ | |
| 22 | |
| 23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from | |
| 24 FSF. */ | |
| 25 | |
| 26 /* Authorship: | |
| 27 | |
| 28 FSF: Original version; a long time ago. | |
| 29 Mly: Significantly rewritten to use new 3-bit tags and | |
| 30 nicely abstracted object definitions, for 19.8. | |
| 31 JWZ: Improved code to keep track of purespace usage and | |
| 32 issue nice purespace and GC stats. | |
| 33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking | |
| 34 and various changes for Mule, for 19.12. | |
| 35 Added bit vectors for 19.13. | |
| 36 Added lcrecord lists for 19.14. | |
| 37 slb: Lots of work on the purification and dump time code. | |
| 38 Synched Doug Lea malloc support from Emacs 20.2. | |
| 442 | 39 og: Killed the purespace. Portable dumper (moved to dumper.c) |
| 428 | 40 */ |
| 41 | |
| 42 #include <config.h> | |
| 43 #include "lisp.h" | |
| 44 | |
| 45 #include "backtrace.h" | |
| 46 #include "buffer.h" | |
| 47 #include "bytecode.h" | |
| 48 #include "chartab.h" | |
| 49 #include "device.h" | |
| 50 #include "elhash.h" | |
| 51 #include "events.h" | |
| 872 | 52 #include "extents-impl.h" |
| 1204 | 53 #include "file-coding.h" |
| 872 | 54 #include "frame-impl.h" |
| 428 | 55 #include "glyphs.h" |
| 56 #include "opaque.h" | |
| 1204 | 57 #include "lstream.h" |
| 872 | 58 #include "process.h" |
| 1292 | 59 #include "profile.h" |
| 428 | 60 #include "redisplay.h" |
| 61 #include "specifier.h" | |
| 62 #include "sysfile.h" | |
| 442 | 63 #include "sysdep.h" |
| 428 | 64 #include "window.h" |
| 65 #include "console-stream.h" | |
| 66 | |
| 67 #ifdef DOUG_LEA_MALLOC | |
| 68 #include <malloc.h> | |
| 69 #endif | |
| 70 | |
| 71 EXFUN (Fgarbage_collect, 0); | |
| 72 | |
| 814 | 73 static void recompute_need_to_garbage_collect (void); |
| 74 | |
| 428 | 75 #if 0 /* this is _way_ too slow to be part of the standard debug options */ |
| 76 #if defined(DEBUG_XEMACS) && defined(MULE) | |
| 77 #define VERIFY_STRING_CHARS_INTEGRITY | |
| 78 #endif | |
| 79 #endif | |
| 80 | |
| 81 /* Define this to use malloc/free with no freelist for all datatypes, | |
| 82 the hope being that some debugging tools may help detect | |
| 83 freed memory references */ | |
| 84 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */ | |
| 85 #include <dmalloc.h> | |
| 86 #define ALLOC_NO_POOLS | |
| 87 #endif | |
| 88 | |
| 89 #ifdef DEBUG_XEMACS | |
| 458 | 90 static Fixnum debug_allocation; |
| 91 static Fixnum debug_allocation_backtrace_length; | |
| 428 | 92 #endif |
| 93 | |
| 94 /* Number of bytes of consing done since the last gc */ | |
| 814 | 95 static EMACS_INT consing_since_gc; |
| 1292 | 96 EMACS_UINT total_consing; |
| 2994 | 97 EMACS_INT total_gc_usage; |
| 98 int total_gc_usage_set; | |
| 1292 | 99 |
| 814 | 100 int need_to_garbage_collect; |
| 851 | 101 int need_to_check_c_alloca; |
| 887 | 102 int need_to_signal_post_gc; |
| 851 | 103 int funcall_allocation_flag; |
| 104 Bytecount __temp_alloca_size__; | |
| 105 Bytecount funcall_alloca_count; | |
| 814 | 106 |
| 107 /* Determine now whether we need to garbage collect or not, to make | |
| 108 Ffuncall() faster */ | |
| 109 #define INCREMENT_CONS_COUNTER_1(size) \ | |
| 110 do \ | |
| 111 { \ | |
| 112 consing_since_gc += (size); \ | |
| 1292 | 113 total_consing += (size); \ |
| 114 if (profiling_active) \ | |
| 115 profile_record_consing (size); \ | |
| 814 | 116 recompute_need_to_garbage_collect (); \ |
| 117 } while (0) | |
| 428 | 118 |
| 119 #define debug_allocation_backtrace() \ | |
| 120 do { \ | |
| 121 if (debug_allocation_backtrace_length > 0) \ | |
| 122 debug_short_backtrace (debug_allocation_backtrace_length); \ | |
| 123 } while (0) | |
| 124 | |
| 125 #ifdef DEBUG_XEMACS | |
| 801 | 126 #define INCREMENT_CONS_COUNTER(foosize, type) \ |
| 127 do { \ | |
| 128 if (debug_allocation) \ | |
| 129 { \ | |
| 130 stderr_out ("allocating %s (size %ld)\n", type, \ | |
| 131 (long) foosize); \ | |
| 132 debug_allocation_backtrace (); \ | |
| 133 } \ | |
| 134 INCREMENT_CONS_COUNTER_1 (foosize); \ | |
| 428 | 135 } while (0) |
| 136 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \ | |
| 137 do { \ | |
| 138 if (debug_allocation > 1) \ | |
| 139 { \ | |
| 801 | 140 stderr_out ("allocating noseeum %s (size %ld)\n", type, \ |
| 141 (long) foosize); \ | |
| 428 | 142 debug_allocation_backtrace (); \ |
| 143 } \ | |
| 144 INCREMENT_CONS_COUNTER_1 (foosize); \ | |
| 145 } while (0) | |
| 146 #else | |
| 147 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size) | |
| 148 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \ | |
| 149 INCREMENT_CONS_COUNTER_1 (size) | |
| 150 #endif | |
| 151 | |
| 152 #define DECREMENT_CONS_COUNTER(size) do { \ | |
| 153 consing_since_gc -= (size); \ | |
| 1292 | 154 total_consing -= (size); \ |
| 155 if (profiling_active) \ | |
| 156 profile_record_unconsing (size); \ | |
| 428 | 157 if (consing_since_gc < 0) \ |
| 158 consing_since_gc = 0; \ | |
| 814 | 159 recompute_need_to_garbage_collect (); \ |
| 428 | 160 } while (0) |
| 161 | |
| 162 /* Number of bytes of consing since gc before another gc should be done. */ | |
| 801 | 163 static EMACS_INT gc_cons_threshold; |
| 164 | |
| 165 /* Percentage of consing of total data size before another GC. */ | |
| 166 static EMACS_INT gc_cons_percentage; | |
| 167 | |
| 168 #ifdef ERROR_CHECK_GC | |
| 853 | 169 int always_gc; /* Debugging hack; equivalent to |
| 170 (setq gc-cons-thresold -1) */ | |
| 801 | 171 #else |
| 172 #define always_gc 0 | |
| 173 #endif | |
| 428 | 174 |
| 175 /* Nonzero during gc */ | |
| 176 int gc_in_progress; | |
| 177 | |
| 1154 | 178 /* Nonzero means display messages at beginning and end of GC. */ |
| 179 | |
| 180 int garbage_collection_messages; | |
| 181 | |
| 428 | 182 /* Number of times GC has happened at this level or below. |
| 183 * Level 0 is most volatile, contrary to usual convention. | |
| 184 * (Of course, there's only one level at present) */ | |
| 185 EMACS_INT gc_generation_number[1]; | |
| 186 | |
| 187 /* This is just for use by the printer, to allow things to print uniquely */ | |
| 3063 | 188 int lrecord_uid_counter; |
| 428 | 189 |
| 190 /* Nonzero when calling certain hooks or doing other things where | |
| 191 a GC would be bad */ | |
| 1957 | 192 int gc_currently_forbidden; |
| 428 | 193 |
| 194 /* Hooks. */ | |
| 195 Lisp_Object Vpre_gc_hook, Qpre_gc_hook; | |
| 196 Lisp_Object Vpost_gc_hook, Qpost_gc_hook; | |
| 197 | |
| 198 /* "Garbage collecting" */ | |
| 199 Lisp_Object Vgc_message; | |
| 200 Lisp_Object Vgc_pointer_glyph; | |
| 2367 | 201 static const Ascbyte gc_default_message[] = "Garbage collecting"; |
| 428 | 202 Lisp_Object Qgarbage_collecting; |
| 203 | |
| 1292 | 204 static Lisp_Object QSin_garbage_collection; |
| 205 | |
| 428 | 206 /* Non-zero means we're in the process of doing the dump */ |
| 207 int purify_flag; | |
| 208 | |
| 1204 | 209 /* Non-zero means we're pdumping out or in */ |
| 210 #ifdef PDUMP | |
| 211 int in_pdump; | |
| 212 #endif | |
| 213 | |
| 800 | 214 #ifdef ERROR_CHECK_TYPES |
| 428 | 215 |
| 793 | 216 Error_Behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN, ERROR_ME_DEBUG_WARN; |
| 428 | 217 |
| 218 #endif | |
| 219 | |
| 801 | 220 /* Very cheesy ways of figuring out how much memory is being used for |
| 221 data. #### Need better (system-dependent) ways. */ | |
| 222 void *minimum_address_seen; | |
| 223 void *maximum_address_seen; | |
| 224 | |
| 2720 | 225 #ifndef MC_ALLOC |
| 428 | 226 int |
| 227 c_readonly (Lisp_Object obj) | |
| 228 { | |
| 229 return POINTER_TYPE_P (XTYPE (obj)) && C_READONLY (obj); | |
| 230 } | |
| 2720 | 231 #endif /* MC_ALLOC */ |
| 428 | 232 |
| 233 int | |
| 234 lisp_readonly (Lisp_Object obj) | |
| 235 { | |
| 236 return POINTER_TYPE_P (XTYPE (obj)) && LISP_READONLY (obj); | |
| 237 } | |
| 238 | |
| 239 | |
| 240 /* Maximum amount of C stack to save when a GC happens. */ | |
| 241 | |
| 242 #ifndef MAX_SAVE_STACK | |
| 243 #define MAX_SAVE_STACK 0 /* 16000 */ | |
| 244 #endif | |
| 245 | |
| 246 /* Non-zero means ignore malloc warnings. Set during initialization. */ | |
| 247 int ignore_malloc_warnings; | |
| 248 | |
| 249 | |
| 2720 | 250 #ifndef MC_ALLOC |
| 428 | 251 static void *breathing_space; |
| 252 | |
| 253 void | |
| 254 release_breathing_space (void) | |
| 255 { | |
| 256 if (breathing_space) | |
| 257 { | |
| 258 void *tmp = breathing_space; | |
| 259 breathing_space = 0; | |
| 1726 | 260 xfree (tmp, void *); |
| 428 | 261 } |
| 262 } | |
| 2720 | 263 #endif /* not MC_ALLOC */ |
| 428 | 264 |
| 265 /* malloc calls this if it finds we are near exhausting storage */ | |
| 266 void | |
| 442 | 267 malloc_warning (const char *str) |
| 428 | 268 { |
| 269 if (ignore_malloc_warnings) | |
| 270 return; | |
| 271 | |
| 272 warn_when_safe | |
| 793 | 273 (Qmemory, Qemergency, |
| 428 | 274 "%s\n" |
| 275 "Killing some buffers may delay running out of memory.\n" | |
| 276 "However, certainly by the time you receive the 95%% warning,\n" | |
| 277 "you should clean up, kill this Emacs, and start a new one.", | |
| 278 str); | |
| 279 } | |
| 280 | |
| 281 /* Called if malloc returns zero */ | |
| 282 DOESNT_RETURN | |
| 283 memory_full (void) | |
| 284 { | |
| 285 /* Force a GC next time eval is called. | |
| 286 It's better to loop garbage-collecting (we might reclaim enough | |
| 287 to win) than to loop beeping and barfing "Memory exhausted" | |
| 288 */ | |
| 289 consing_since_gc = gc_cons_threshold + 1; | |
| 814 | 290 recompute_need_to_garbage_collect (); |
| 2720 | 291 #ifndef MC_ALLOC |
| 428 | 292 release_breathing_space (); |
| 2720 | 293 #endif /* not MC_ALLOC */ |
| 428 | 294 |
| 295 /* Flush some histories which might conceivably contain garbalogical | |
| 296 inhibitors. */ | |
| 297 if (!NILP (Fboundp (Qvalues))) | |
| 298 Fset (Qvalues, Qnil); | |
| 299 Vcommand_history = Qnil; | |
| 300 | |
| 563 | 301 out_of_memory ("Memory exhausted", Qunbound); |
| 428 | 302 } |
| 303 | |
| 801 | 304 static void |
| 305 set_alloc_mins_and_maxes (void *val, Bytecount size) | |
| 306 { | |
| 307 if (!val) | |
| 308 return; | |
| 309 if ((char *) val + size > (char *) maximum_address_seen) | |
| 310 maximum_address_seen = (char *) val + size; | |
| 311 if (!minimum_address_seen) | |
| 312 minimum_address_seen = | |
| 313 #if SIZEOF_VOID_P == 8 | |
| 314 (void *) 0xFFFFFFFFFFFFFFFF; | |
| 315 #else | |
| 316 (void *) 0xFFFFFFFF; | |
| 317 #endif | |
| 318 if ((char *) val < (char *) minimum_address_seen) | |
| 319 minimum_address_seen = (char *) val; | |
| 320 } | |
| 321 | |
| 1315 | 322 #ifdef ERROR_CHECK_MALLOC |
| 1292 | 323 static int in_malloc; |
| 1333 | 324 extern int regex_malloc_disallowed; |
| 2367 | 325 |
| 326 #define MALLOC_BEGIN() \ | |
| 327 do \ | |
| 328 { \ | |
| 329 assert (!in_malloc); \ | |
| 330 assert (!regex_malloc_disallowed); \ | |
| 331 in_malloc = 1; \ | |
| 332 } \ | |
| 333 while (0) | |
| 334 | |
| 2720 | 335 #ifdef MC_ALLOC |
| 336 #define FREE_OR_REALLOC_BEGIN(block) \ | |
| 337 do \ | |
| 338 { \ | |
| 339 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an \ | |
| 340 error until much later on for many system mallocs, such as \ | |
| 341 the one that comes with Solaris 2.3. FMH!! */ \ | |
| 342 assert (block != (void *) 0xDEADBEEF); \ | |
| 343 MALLOC_BEGIN (); \ | |
| 344 } \ | |
| 345 while (0) | |
| 346 #else /* not MC_ALLOC */ | |
| 2367 | 347 #define FREE_OR_REALLOC_BEGIN(block) \ |
| 348 do \ | |
| 349 { \ | |
| 350 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an \ | |
| 351 error until much later on for many system mallocs, such as \ | |
| 352 the one that comes with Solaris 2.3. FMH!! */ \ | |
| 353 assert (block != (void *) 0xDEADBEEF); \ | |
| 354 /* You cannot free something within dumped space, because there is \ | |
| 355 no longer any sort of malloc structure associated with the block. \ | |
| 356 If you are tripping this, you may need to conditionalize on \ | |
| 357 DUMPEDP. */ \ | |
| 358 assert (!DUMPEDP (block)); \ | |
| 359 MALLOC_BEGIN (); \ | |
| 360 } \ | |
| 361 while (0) | |
| 2720 | 362 #endif /* not MC_ALLOC */ |
| 2367 | 363 |
| 364 #define MALLOC_END() \ | |
| 365 do \ | |
| 366 { \ | |
| 367 in_malloc = 0; \ | |
| 368 } \ | |
| 369 while (0) | |
| 370 | |
| 371 #else /* ERROR_CHECK_MALLOC */ | |
| 372 | |
| 2658 | 373 #define MALLOC_BEGIN() |
| 2367 | 374 #define FREE_OR_REALLOC_BEGIN(block) |
| 375 #define MALLOC_END() | |
| 376 | |
| 377 #endif /* ERROR_CHECK_MALLOC */ | |
| 378 | |
| 379 static void | |
| 380 malloc_after (void *val, Bytecount size) | |
| 381 { | |
| 382 if (!val && size != 0) | |
| 383 memory_full (); | |
| 384 set_alloc_mins_and_maxes (val, size); | |
| 385 } | |
| 386 | |
| 387 /* like malloc, calloc, realloc, free but: | |
| 388 | |
| 389 -- check for no memory left | |
| 390 -- set internal mins and maxes | |
| 391 -- with error-checking on, check for reentrancy, invalid freeing, etc. | |
| 392 */ | |
| 1292 | 393 |
| 428 | 394 #undef xmalloc |
| 395 void * | |
| 665 | 396 xmalloc (Bytecount size) |
| 428 | 397 { |
| 1292 | 398 void *val; |
| 2367 | 399 MALLOC_BEGIN (); |
| 1292 | 400 val = malloc (size); |
| 2367 | 401 MALLOC_END (); |
| 402 malloc_after (val, size); | |
| 428 | 403 return val; |
| 404 } | |
| 405 | |
| 406 #undef xcalloc | |
| 407 static void * | |
| 665 | 408 xcalloc (Elemcount nelem, Bytecount elsize) |
| 428 | 409 { |
| 1292 | 410 void *val; |
| 2367 | 411 MALLOC_BEGIN (); |
| 1292 | 412 val= calloc (nelem, elsize); |
| 2367 | 413 MALLOC_END (); |
| 414 malloc_after (val, nelem * elsize); | |
| 428 | 415 return val; |
| 416 } | |
| 417 | |
| 418 void * | |
| 665 | 419 xmalloc_and_zero (Bytecount size) |
| 428 | 420 { |
| 421 return xcalloc (size, sizeof (char)); | |
| 422 } | |
| 423 | |
| 424 #undef xrealloc | |
| 425 void * | |
| 665 | 426 xrealloc (void *block, Bytecount size) |
| 428 | 427 { |
| 2367 | 428 FREE_OR_REALLOC_BEGIN (block); |
| 551 | 429 block = realloc (block, size); |
| 2367 | 430 MALLOC_END (); |
| 431 malloc_after (block, size); | |
| 551 | 432 return block; |
| 428 | 433 } |
| 434 | |
| 435 void | |
| 436 xfree_1 (void *block) | |
| 437 { | |
| 438 #ifdef ERROR_CHECK_MALLOC | |
| 439 assert (block); | |
| 440 #endif /* ERROR_CHECK_MALLOC */ | |
| 2367 | 441 FREE_OR_REALLOC_BEGIN (block); |
| 428 | 442 free (block); |
| 2367 | 443 MALLOC_END (); |
| 428 | 444 } |
| 445 | |
| 446 #ifdef ERROR_CHECK_GC | |
| 447 | |
| 2720 | 448 #ifndef MC_ALLOC |
| 428 | 449 static void |
| 665 | 450 deadbeef_memory (void *ptr, Bytecount size) |
| 428 | 451 { |
| 826 | 452 UINT_32_BIT *ptr4 = (UINT_32_BIT *) ptr; |
| 665 | 453 Bytecount beefs = size >> 2; |
| 428 | 454 |
| 455 /* In practice, size will always be a multiple of four. */ | |
| 456 while (beefs--) | |
| 1204 | 457 (*ptr4++) = 0xDEADBEEF; /* -559038737 base 10 */ |
| 428 | 458 } |
| 2720 | 459 #endif /* not MC_ALLOC */ |
| 428 | 460 |
| 461 #else /* !ERROR_CHECK_GC */ | |
| 462 | |
| 463 | |
| 464 #define deadbeef_memory(ptr, size) | |
| 465 | |
| 466 #endif /* !ERROR_CHECK_GC */ | |
| 467 | |
| 468 #undef xstrdup | |
| 469 char * | |
| 442 | 470 xstrdup (const char *str) |
| 428 | 471 { |
| 472 int len = strlen (str) + 1; /* for stupid terminating 0 */ | |
| 473 void *val = xmalloc (len); | |
| 771 | 474 |
| 428 | 475 if (val == 0) return 0; |
| 476 return (char *) memcpy (val, str, len); | |
| 477 } | |
| 478 | |
| 479 #ifdef NEED_STRDUP | |
| 480 char * | |
| 442 | 481 strdup (const char *s) |
| 428 | 482 { |
| 483 return xstrdup (s); | |
| 484 } | |
| 485 #endif /* NEED_STRDUP */ | |
| 486 | |
| 487 | |
| 2720 | 488 #ifndef MC_ALLOC |
| 428 | 489 static void * |
| 665 | 490 allocate_lisp_storage (Bytecount size) |
| 428 | 491 { |
| 793 | 492 void *val = xmalloc (size); |
| 493 /* We don't increment the cons counter anymore. Calling functions do | |
| 494 that now because we have two different kinds of cons counters -- one | |
| 495 for normal objects, and one for no-see-um conses (and possibly others | |
| 496 similar) where the conses are used totally internally, never escape, | |
| 497 and are created and then freed and shouldn't logically increment the | |
| 498 cons counting. #### (Or perhaps, we should decrement it when an object | |
| 499 get freed?) */ | |
| 500 | |
| 501 /* But we do now (as of 3-27-02) go and zero out the memory. This is a | |
| 502 good thing, as it will guarantee we won't get any intermittent bugs | |
| 1204 | 503 coming from an uninitiated field. The speed loss is unnoticeable, |
| 504 esp. as the objects are not large -- large stuff like buffer text and | |
| 505 redisplay structures are allocated separately. */ | |
| 793 | 506 memset (val, 0, size); |
| 851 | 507 |
| 508 if (need_to_check_c_alloca) | |
| 509 xemacs_c_alloca (0); | |
| 510 | |
| 793 | 511 return val; |
| 428 | 512 } |
| 2720 | 513 #endif /* not MC_ALLOC */ |
| 514 | |
| 2994 | 515 #if defined (MC_ALLOC) && defined (ALLOC_TYPE_STATS) |
| 2720 | 516 static struct |
| 517 { | |
| 518 int instances_in_use; | |
| 519 int bytes_in_use; | |
| 520 int bytes_in_use_including_overhead; | |
| 521 } lrecord_stats [countof (lrecord_implementations_table) | |
| 522 + MODULE_DEFINABLE_TYPE_COUNT]; | |
| 523 | |
| 2775 | 524 int lrecord_string_data_instances_in_use; |
| 525 int lrecord_string_data_bytes_in_use; | |
| 526 int lrecord_string_data_bytes_in_use_including_overhead; | |
| 527 | |
| 2720 | 528 void |
| 529 init_lrecord_stats () | |
| 530 { | |
| 531 xzero (lrecord_stats); | |
| 2775 | 532 lrecord_string_data_instances_in_use = 0; |
| 533 lrecord_string_data_bytes_in_use = 0; | |
| 534 lrecord_string_data_bytes_in_use_including_overhead = 0; | |
| 535 } | |
| 536 | |
| 537 void | |
| 538 inc_lrecord_string_data_stats (Bytecount size) | |
| 539 { | |
| 540 lrecord_string_data_instances_in_use++; | |
| 541 lrecord_string_data_bytes_in_use += size; | |
| 542 lrecord_string_data_bytes_in_use_including_overhead += size; | |
| 543 } | |
| 544 | |
| 545 void | |
| 546 dec_lrecord_string_data_stats (Bytecount size) | |
| 547 { | |
| 548 lrecord_string_data_instances_in_use--; | |
| 549 lrecord_string_data_bytes_in_use -= size; | |
| 550 lrecord_string_data_bytes_in_use_including_overhead -= size; | |
| 2720 | 551 } |
| 552 | |
| 553 void | |
| 554 inc_lrecord_stats (Bytecount size, const struct lrecord_header *h) | |
| 555 { | |
| 556 int type_index = h->type; | |
| 557 if (!size) | |
| 558 size = detagged_lisp_object_size (h); | |
| 559 | |
| 560 lrecord_stats[type_index].instances_in_use++; | |
| 561 lrecord_stats[type_index].bytes_in_use += size; | |
| 562 lrecord_stats[type_index].bytes_in_use_including_overhead | |
| 563 #ifdef MEMORY_USAGE_STATS | |
| 564 += mc_alloced_storage_size (size, 0); | |
| 565 #else /* not MEMORY_USAGE_STATS */ | |
| 566 += size; | |
| 567 #endif /* not MEMORY_USAGE_STATS */ | |
| 568 } | |
| 569 | |
| 570 void | |
| 571 dec_lrecord_stats (Bytecount size_including_overhead, | |
| 572 const struct lrecord_header *h) | |
| 573 { | |
| 574 int type_index = h->type; | |
| 2775 | 575 int size = detagged_lisp_object_size (h); |
| 2720 | 576 |
| 577 lrecord_stats[type_index].instances_in_use--; | |
| 2775 | 578 lrecord_stats[type_index].bytes_in_use -= size; |
| 2720 | 579 lrecord_stats[type_index].bytes_in_use_including_overhead |
| 580 -= size_including_overhead; | |
| 581 | |
| 2775 | 582 DECREMENT_CONS_COUNTER (size); |
| 2720 | 583 } |
| 2994 | 584 #endif /* not (MC_ALLOC && ALLOC_TYPE_STATS) */ |
| 2720 | 585 |
| 586 #ifndef MC_ALLOC | |
| 442 | 587 /* lcrecords are chained together through their "next" field. |
| 588 After doing the mark phase, GC will walk this linked list | |
| 589 and free any lcrecord which hasn't been marked. */ | |
| 3024 | 590 static struct old_lcrecord_header *all_lcrecords; |
| 2720 | 591 #endif /* not MC_ALLOC */ |
| 592 | |
| 593 #ifdef MC_ALLOC | |
| 594 /* The basic lrecord allocation functions. See lrecord.h for details. */ | |
| 595 void * | |
| 596 alloc_lrecord (Bytecount size, | |
| 597 const struct lrecord_implementation *implementation) | |
| 598 { | |
| 599 struct lrecord_header *lheader; | |
| 600 | |
| 601 type_checking_assert | |
| 602 ((implementation->static_size == 0 ? | |
| 603 implementation->size_in_bytes_method != NULL : | |
| 604 implementation->static_size == size)); | |
| 605 | |
| 606 lheader = (struct lrecord_header *) mc_alloc (size); | |
| 607 gc_checking_assert (LRECORD_FREE_P (lheader)); | |
| 608 set_lheader_implementation (lheader, implementation); | |
| 2994 | 609 #ifdef ALLOC_TYPE_STATS |
| 2720 | 610 inc_lrecord_stats (size, lheader); |
| 2994 | 611 #endif /* ALLOC_TYPE_STATS */ |
| 2720 | 612 INCREMENT_CONS_COUNTER (size, implementation->name); |
| 613 return lheader; | |
| 614 } | |
| 615 | |
| 616 void * | |
| 617 noseeum_alloc_lrecord (Bytecount size, | |
| 618 const struct lrecord_implementation *implementation) | |
| 619 { | |
| 620 struct lrecord_header *lheader; | |
| 621 | |
| 622 type_checking_assert | |
| 623 ((implementation->static_size == 0 ? | |
| 624 implementation->size_in_bytes_method != NULL : | |
| 625 implementation->static_size == size)); | |
| 626 | |
| 627 lheader = (struct lrecord_header *) mc_alloc (size); | |
| 628 gc_checking_assert (LRECORD_FREE_P (lheader)); | |
| 629 set_lheader_implementation (lheader, implementation); | |
| 2994 | 630 #ifdef ALLOC_TYPE_STATS |
| 2720 | 631 inc_lrecord_stats (size, lheader); |
| 2994 | 632 #endif /* ALLOC_TYPE_STATS */ |
| 2720 | 633 NOSEEUM_INCREMENT_CONS_COUNTER (size, implementation->name); |
| 634 return lheader; | |
| 635 } | |
| 636 | |
| 637 void | |
| 638 free_lrecord (Lisp_Object lrecord) | |
| 639 { | |
| 640 gc_checking_assert (!gc_in_progress); | |
| 641 gc_checking_assert (!LRECORD_FREE_P (XRECORD_LHEADER (lrecord))); | |
| 642 gc_checking_assert (!XRECORD_LHEADER (lrecord)->free); | |
| 643 | |
| 644 MC_ALLOC_CALL_FINALIZER (XPNTR (lrecord)); | |
| 645 mc_free (XPNTR (lrecord)); | |
| 646 } | |
| 647 #else /* not MC_ALLOC */ | |
| 428 | 648 |
| 1204 | 649 /* The most basic of the lcrecord allocation functions. Not usually called |
| 650 directly. Allocates an lrecord not managed by any lcrecord-list, of a | |
| 651 specified size. See lrecord.h. */ | |
| 652 | |
| 428 | 653 void * |
| 3024 | 654 old_basic_alloc_lcrecord (Bytecount size, |
| 655 const struct lrecord_implementation *implementation) | |
| 656 { | |
| 657 struct old_lcrecord_header *lcheader; | |
| 428 | 658 |
| 442 | 659 type_checking_assert |
| 660 ((implementation->static_size == 0 ? | |
| 661 implementation->size_in_bytes_method != NULL : | |
| 662 implementation->static_size == size) | |
| 663 && | |
| 664 (! implementation->basic_p) | |
| 665 && | |
| 666 (! (implementation->hash == NULL && implementation->equal != NULL))); | |
| 428 | 667 |
| 3024 | 668 lcheader = (struct old_lcrecord_header *) allocate_lisp_storage (size); |
| 442 | 669 set_lheader_implementation (&lcheader->lheader, implementation); |
| 428 | 670 lcheader->next = all_lcrecords; |
| 671 #if 1 /* mly prefers to see small ID numbers */ | |
| 672 lcheader->uid = lrecord_uid_counter++; | |
| 673 #else /* jwz prefers to see real addrs */ | |
| 674 lcheader->uid = (int) &lcheader; | |
| 675 #endif | |
| 676 lcheader->free = 0; | |
| 677 all_lcrecords = lcheader; | |
| 678 INCREMENT_CONS_COUNTER (size, implementation->name); | |
| 679 return lcheader; | |
| 680 } | |
| 681 | |
| 682 #if 0 /* Presently unused */ | |
| 683 /* Very, very poor man's EGC? | |
| 684 * This may be slow and thrash pages all over the place. | |
| 685 * Only call it if you really feel you must (and if the | |
| 686 * lrecord was fairly recently allocated). | |
| 687 * Otherwise, just let the GC do its job -- that's what it's there for | |
| 688 */ | |
| 689 void | |
| 3024 | 690 very_old_free_lcrecord (struct old_lcrecord_header *lcrecord) |
| 428 | 691 { |
| 692 if (all_lcrecords == lcrecord) | |
| 693 { | |
| 694 all_lcrecords = lcrecord->next; | |
| 695 } | |
| 696 else | |
| 697 { | |
| 3024 | 698 struct old_lcrecord_header *header = all_lcrecords; |
| 428 | 699 for (;;) |
| 700 { | |
| 3024 | 701 struct old_lcrecord_header *next = header->next; |
| 428 | 702 if (next == lcrecord) |
| 703 { | |
| 704 header->next = lrecord->next; | |
| 705 break; | |
| 706 } | |
| 707 else if (next == 0) | |
| 2500 | 708 ABORT (); |
| 428 | 709 else |
| 710 header = next; | |
| 711 } | |
| 712 } | |
| 713 if (lrecord->implementation->finalizer) | |
| 714 lrecord->implementation->finalizer (lrecord, 0); | |
| 715 xfree (lrecord); | |
| 716 return; | |
| 717 } | |
| 718 #endif /* Unused */ | |
| 2720 | 719 #endif /* not MC_ALLOC */ |
| 428 | 720 |
| 721 | |
| 722 static void | |
| 723 disksave_object_finalization_1 (void) | |
| 724 { | |
| 2720 | 725 #ifdef MC_ALLOC |
| 726 mc_finalize_for_disksave (); | |
| 727 #else /* not MC_ALLOC */ | |
| 3024 | 728 struct old_lcrecord_header *header; |
| 428 | 729 |
| 730 for (header = all_lcrecords; header; header = header->next) | |
| 731 { | |
| 442 | 732 if (LHEADER_IMPLEMENTATION (&header->lheader)->finalizer && |
| 428 | 733 !header->free) |
| 442 | 734 LHEADER_IMPLEMENTATION (&header->lheader)->finalizer (header, 1); |
| 428 | 735 } |
| 2720 | 736 #endif /* not MC_ALLOC */ |
| 428 | 737 } |
| 738 | |
| 1204 | 739 /* Bitwise copy all parts of a Lisp object other than the header */ |
| 740 | |
| 741 void | |
| 742 copy_lisp_object (Lisp_Object dst, Lisp_Object src) | |
| 743 { | |
| 744 const struct lrecord_implementation *imp = | |
| 745 XRECORD_LHEADER_IMPLEMENTATION (src); | |
| 746 Bytecount size = lisp_object_size (src); | |
| 747 | |
| 748 assert (imp == XRECORD_LHEADER_IMPLEMENTATION (dst)); | |
| 749 assert (size == lisp_object_size (dst)); | |
| 750 | |
| 2720 | 751 #ifdef MC_ALLOC |
| 752 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lrecord_header), | |
| 753 (char *) XRECORD_LHEADER (src) + sizeof (struct lrecord_header), | |
| 754 size - sizeof (struct lrecord_header)); | |
| 755 #else /* not MC_ALLOC */ | |
| 1204 | 756 if (imp->basic_p) |
| 757 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lrecord_header), | |
| 758 (char *) XRECORD_LHEADER (src) + sizeof (struct lrecord_header), | |
| 759 size - sizeof (struct lrecord_header)); | |
| 760 else | |
| 3024 | 761 memcpy ((char *) XRECORD_LHEADER (dst) + |
| 762 sizeof (struct old_lcrecord_header), | |
| 763 (char *) XRECORD_LHEADER (src) + | |
| 764 sizeof (struct old_lcrecord_header), | |
| 765 size - sizeof (struct old_lcrecord_header)); | |
| 2720 | 766 #endif /* not MC_ALLOC */ |
| 1204 | 767 } |
| 768 | |
| 428 | 769 |
| 770 /************************************************************************/ | |
| 771 /* Debugger support */ | |
| 772 /************************************************************************/ | |
| 773 /* Give gdb/dbx enough information to decode Lisp Objects. We make | |
| 774 sure certain symbols are always defined, so gdb doesn't complain | |
| 438 | 775 about expressions in src/.gdbinit. See src/.gdbinit or src/.dbxrc |
| 776 to see how this is used. */ | |
| 428 | 777 |
| 458 | 778 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS; |
| 779 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1; | |
| 428 | 780 |
| 781 #ifdef USE_UNION_TYPE | |
| 458 | 782 unsigned char dbg_USE_UNION_TYPE = 1; |
| 428 | 783 #else |
| 458 | 784 unsigned char dbg_USE_UNION_TYPE = 0; |
| 428 | 785 #endif |
| 786 | |
| 458 | 787 unsigned char dbg_valbits = VALBITS; |
| 788 unsigned char dbg_gctypebits = GCTYPEBITS; | |
| 789 | |
| 790 /* On some systems, the above definitions will be optimized away by | |
| 791 the compiler or linker unless they are referenced in some function. */ | |
| 792 long dbg_inhibit_dbg_symbol_deletion (void); | |
| 793 long | |
| 794 dbg_inhibit_dbg_symbol_deletion (void) | |
| 795 { | |
| 796 return | |
| 797 (dbg_valmask + | |
| 798 dbg_typemask + | |
| 799 dbg_USE_UNION_TYPE + | |
| 800 dbg_valbits + | |
| 801 dbg_gctypebits); | |
| 802 } | |
| 428 | 803 |
| 804 /* Macros turned into functions for ease of debugging. | |
| 805 Debuggers don't know about macros! */ | |
| 806 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2); | |
| 807 int | |
| 808 dbg_eq (Lisp_Object obj1, Lisp_Object obj2) | |
| 809 { | |
| 810 return EQ (obj1, obj2); | |
| 811 } | |
| 812 | |
| 813 | |
| 3017 | 814 #ifdef MC_ALLOC |
| 815 #define DECLARE_FIXED_TYPE_ALLOC(type, structture) struct __foo__ | |
| 816 #else | |
| 428 | 817 /************************************************************************/ |
| 818 /* Fixed-size type macros */ | |
| 819 /************************************************************************/ | |
| 820 | |
| 821 /* For fixed-size types that are commonly used, we malloc() large blocks | |
| 822 of memory at a time and subdivide them into chunks of the correct | |
| 823 size for an object of that type. This is more efficient than | |
| 824 malloc()ing each object separately because we save on malloc() time | |
| 825 and overhead due to the fewer number of malloc()ed blocks, and | |
| 826 also because we don't need any extra pointers within each object | |
| 827 to keep them threaded together for GC purposes. For less common | |
| 828 (and frequently large-size) types, we use lcrecords, which are | |
| 829 malloc()ed individually and chained together through a pointer | |
| 830 in the lcrecord header. lcrecords do not need to be fixed-size | |
| 831 (i.e. two objects of the same type need not have the same size; | |
| 832 however, the size of a particular object cannot vary dynamically). | |
| 833 It is also much easier to create a new lcrecord type because no | |
| 834 additional code needs to be added to alloc.c. Finally, lcrecords | |
| 835 may be more efficient when there are only a small number of them. | |
| 836 | |
| 837 The types that are stored in these large blocks (or "frob blocks") | |
| 1983 | 838 are cons, all number types except fixnum, compiled-function, symbol, |
| 839 marker, extent, event, and string. | |
| 428 | 840 |
| 841 Note that strings are special in that they are actually stored in | |
| 842 two parts: a structure containing information about the string, and | |
| 843 the actual data associated with the string. The former structure | |
| 844 (a struct Lisp_String) is a fixed-size structure and is managed the | |
| 845 same way as all the other such types. This structure contains a | |
| 846 pointer to the actual string data, which is stored in structures of | |
| 847 type struct string_chars_block. Each string_chars_block consists | |
| 848 of a pointer to a struct Lisp_String, followed by the data for that | |
| 440 | 849 string, followed by another pointer to a Lisp_String, followed by |
| 850 the data for that string, etc. At GC time, the data in these | |
| 851 blocks is compacted by searching sequentially through all the | |
| 428 | 852 blocks and compressing out any holes created by unmarked strings. |
| 853 Strings that are more than a certain size (bigger than the size of | |
| 854 a string_chars_block, although something like half as big might | |
| 855 make more sense) are malloc()ed separately and not stored in | |
| 856 string_chars_blocks. Furthermore, no one string stretches across | |
| 857 two string_chars_blocks. | |
| 858 | |
| 1204 | 859 Vectors are each malloc()ed separately as lcrecords. |
| 428 | 860 |
| 861 In the following discussion, we use conses, but it applies equally | |
| 862 well to the other fixed-size types. | |
| 863 | |
| 864 We store cons cells inside of cons_blocks, allocating a new | |
| 865 cons_block with malloc() whenever necessary. Cons cells reclaimed | |
| 866 by GC are put on a free list to be reallocated before allocating | |
| 867 any new cons cells from the latest cons_block. Each cons_block is | |
| 868 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least | |
| 869 the versions in malloc.c and gmalloc.c) really allocates in units | |
| 870 of powers of two and uses 4 bytes for its own overhead. | |
| 871 | |
| 872 What GC actually does is to search through all the cons_blocks, | |
| 873 from the most recently allocated to the oldest, and put all | |
| 874 cons cells that are not marked (whether or not they're already | |
| 875 free) on a cons_free_list. The cons_free_list is a stack, and | |
| 876 so the cons cells in the oldest-allocated cons_block end up | |
| 877 at the head of the stack and are the first to be reallocated. | |
| 878 If any cons_block is entirely free, it is freed with free() | |
| 879 and its cons cells removed from the cons_free_list. Because | |
| 880 the cons_free_list ends up basically in memory order, we have | |
| 881 a high locality of reference (assuming a reasonable turnover | |
| 882 of allocating and freeing) and have a reasonable probability | |
| 883 of entirely freeing up cons_blocks that have been more recently | |
| 884 allocated. This stage is called the "sweep stage" of GC, and | |
| 885 is executed after the "mark stage", which involves starting | |
| 886 from all places that are known to point to in-use Lisp objects | |
| 887 (e.g. the obarray, where are all symbols are stored; the | |
| 888 current catches and condition-cases; the backtrace list of | |
| 889 currently executing functions; the gcpro list; etc.) and | |
| 890 recursively marking all objects that are accessible. | |
| 891 | |
| 454 | 892 At the beginning of the sweep stage, the conses in the cons blocks |
| 893 are in one of three states: in use and marked, in use but not | |
| 894 marked, and not in use (already freed). Any conses that are marked | |
| 895 have been marked in the mark stage just executed, because as part | |
| 896 of the sweep stage we unmark any marked objects. The way we tell | |
| 897 whether or not a cons cell is in use is through the LRECORD_FREE_P | |
| 898 macro. This uses a special lrecord type `lrecord_type_free', | |
| 899 which is never associated with any valid object. | |
| 900 | |
| 901 Conses on the free_cons_list are threaded through a pointer stored | |
| 902 in the conses themselves. Because the cons is still in a | |
| 903 cons_block and needs to remain marked as not in use for the next | |
| 904 time that GC happens, we need room to store both the "free" | |
| 905 indicator and the chaining pointer. So this pointer is stored | |
| 906 after the lrecord header (actually where C places a pointer after | |
| 907 the lrecord header; they are not necessarily contiguous). This | |
| 908 implies that all fixed-size types must be big enough to contain at | |
| 909 least one pointer. This is true for all current fixed-size types, | |
| 910 with the possible exception of Lisp_Floats, for which we define the | |
| 911 meat of the struct using a union of a pointer and a double to | |
| 912 ensure adequate space for the free list chain pointer. | |
| 428 | 913 |
| 914 Some types of objects need additional "finalization" done | |
| 915 when an object is converted from in use to not in use; | |
| 916 this is the purpose of the ADDITIONAL_FREE_type macro. | |
| 917 For example, markers need to be removed from the chain | |
| 918 of markers that is kept in each buffer. This is because | |
| 919 markers in a buffer automatically disappear if the marker | |
| 920 is no longer referenced anywhere (the same does not | |
| 921 apply to extents, however). | |
| 922 | |
| 923 WARNING: Things are in an extremely bizarre state when | |
| 924 the ADDITIONAL_FREE_type macros are called, so beware! | |
| 925 | |
| 454 | 926 When ERROR_CHECK_GC is defined, we do things differently so as to |
| 927 maximize our chances of catching places where there is insufficient | |
| 928 GCPROing. The thing we want to avoid is having an object that | |
| 929 we're using but didn't GCPRO get freed by GC and then reallocated | |
| 930 while we're in the process of using it -- this will result in | |
| 931 something seemingly unrelated getting trashed, and is extremely | |
| 932 difficult to track down. If the object gets freed but not | |
| 933 reallocated, we can usually catch this because we set most of the | |
| 934 bytes of a freed object to 0xDEADBEEF. (The lisp object type is set | |
| 935 to the invalid type `lrecord_type_free', however, and a pointer | |
| 936 used to chain freed objects together is stored after the lrecord | |
| 937 header; we play some tricks with this pointer to make it more | |
| 428 | 938 bogus, so crashes are more likely to occur right away.) |
| 939 | |
| 940 We want freed objects to stay free as long as possible, | |
| 941 so instead of doing what we do above, we maintain the | |
| 942 free objects in a first-in first-out queue. We also | |
| 943 don't recompute the free list each GC, unlike above; | |
| 944 this ensures that the queue ordering is preserved. | |
| 945 [This means that we are likely to have worse locality | |
| 946 of reference, and that we can never free a frob block | |
| 947 once it's allocated. (Even if we know that all cells | |
| 948 in it are free, there's no easy way to remove all those | |
| 949 cells from the free list because the objects on the | |
| 950 free list are unlikely to be in memory order.)] | |
| 951 Furthermore, we never take objects off the free list | |
| 952 unless there's a large number (usually 1000, but | |
| 953 varies depending on type) of them already on the list. | |
| 954 This way, we ensure that an object that gets freed will | |
| 955 remain free for the next 1000 (or whatever) times that | |
| 440 | 956 an object of that type is allocated. */ |
| 428 | 957 |
| 958 #ifndef MALLOC_OVERHEAD | |
| 959 #ifdef GNU_MALLOC | |
| 960 #define MALLOC_OVERHEAD 0 | |
| 961 #elif defined (rcheck) | |
| 962 #define MALLOC_OVERHEAD 20 | |
| 963 #else | |
| 964 #define MALLOC_OVERHEAD 8 | |
| 965 #endif | |
| 966 #endif /* MALLOC_OVERHEAD */ | |
| 967 | |
| 968 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC) | |
| 969 /* If we released our reserve (due to running out of memory), | |
| 970 and we have a fair amount free once again, | |
| 971 try to set aside another reserve in case we run out once more. | |
| 972 | |
| 973 This is called when a relocatable block is freed in ralloc.c. */ | |
| 974 void refill_memory_reserve (void); | |
| 975 void | |
| 442 | 976 refill_memory_reserve (void) |
| 428 | 977 { |
| 978 if (breathing_space == 0) | |
| 979 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD); | |
| 980 } | |
| 981 #endif | |
| 982 | |
| 983 #ifdef ALLOC_NO_POOLS | |
| 984 # define TYPE_ALLOC_SIZE(type, structtype) 1 | |
| 985 #else | |
| 986 # define TYPE_ALLOC_SIZE(type, structtype) \ | |
| 987 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \ | |
| 988 / sizeof (structtype)) | |
| 989 #endif /* ALLOC_NO_POOLS */ | |
| 990 | |
| 991 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \ | |
| 992 \ | |
| 993 struct type##_block \ | |
| 994 { \ | |
| 995 struct type##_block *prev; \ | |
| 996 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \ | |
| 997 }; \ | |
| 998 \ | |
| 999 static struct type##_block *current_##type##_block; \ | |
| 1000 static int current_##type##_block_index; \ | |
| 1001 \ | |
| 454 | 1002 static Lisp_Free *type##_free_list; \ |
| 1003 static Lisp_Free *type##_free_list_tail; \ | |
| 428 | 1004 \ |
| 1005 static void \ | |
| 1006 init_##type##_alloc (void) \ | |
| 1007 { \ | |
| 1008 current_##type##_block = 0; \ | |
| 1009 current_##type##_block_index = \ | |
| 1010 countof (current_##type##_block->block); \ | |
| 1011 type##_free_list = 0; \ | |
| 1012 type##_free_list_tail = 0; \ | |
| 1013 } \ | |
| 1014 \ | |
| 1015 static int gc_count_num_##type##_in_use; \ | |
| 1016 static int gc_count_num_##type##_freelist | |
| 1017 | |
| 1018 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \ | |
| 1019 if (current_##type##_block_index \ | |
| 1020 == countof (current_##type##_block->block)) \ | |
| 1021 { \ | |
| 1022 struct type##_block *AFTFB_new = (struct type##_block *) \ | |
| 1023 allocate_lisp_storage (sizeof (struct type##_block)); \ | |
| 1024 AFTFB_new->prev = current_##type##_block; \ | |
| 1025 current_##type##_block = AFTFB_new; \ | |
| 1026 current_##type##_block_index = 0; \ | |
| 1027 } \ | |
| 1028 (result) = \ | |
| 1029 &(current_##type##_block->block[current_##type##_block_index++]); \ | |
| 1030 } while (0) | |
| 1031 | |
| 1032 /* Allocate an instance of a type that is stored in blocks. | |
| 1033 TYPE is the "name" of the type, STRUCTTYPE is the corresponding | |
| 1034 structure type. */ | |
| 1035 | |
| 1036 #ifdef ERROR_CHECK_GC | |
| 1037 | |
| 1038 /* Note: if you get crashes in this function, suspect incorrect calls | |
| 1039 to free_cons() and friends. This happened once because the cons | |
| 1040 cell was not GC-protected and was getting collected before | |
| 1041 free_cons() was called. */ | |
| 1042 | |
| 454 | 1043 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \ |
| 1044 if (gc_count_num_##type##_freelist > \ | |
| 1045 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \ | |
| 1046 { \ | |
| 1047 result = (structtype *) type##_free_list; \ | |
| 1204 | 1048 assert (LRECORD_FREE_P (result)); \ |
| 1049 /* Before actually using the chain pointer, we complement \ | |
| 1050 all its bits; see PUT_FIXED_TYPE_ON_FREE_LIST(). */ \ | |
| 454 | 1051 type##_free_list = (Lisp_Free *) \ |
| 1052 (~ (EMACS_UINT) (type##_free_list->chain)); \ | |
| 1053 gc_count_num_##type##_freelist--; \ | |
| 1054 } \ | |
| 1055 else \ | |
| 1056 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ | |
| 1057 MARK_LRECORD_AS_NOT_FREE (result); \ | |
| 428 | 1058 } while (0) |
| 1059 | |
| 1060 #else /* !ERROR_CHECK_GC */ | |
| 1061 | |
| 454 | 1062 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \ |
| 428 | 1063 if (type##_free_list) \ |
| 1064 { \ | |
| 454 | 1065 result = (structtype *) type##_free_list; \ |
| 1066 type##_free_list = type##_free_list->chain; \ | |
| 428 | 1067 } \ |
| 1068 else \ | |
| 1069 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ | |
| 454 | 1070 MARK_LRECORD_AS_NOT_FREE (result); \ |
| 428 | 1071 } while (0) |
| 1072 | |
| 1073 #endif /* !ERROR_CHECK_GC */ | |
| 1074 | |
| 454 | 1075 |
| 428 | 1076 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \ |
| 1077 do \ | |
| 1078 { \ | |
| 1079 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ | |
| 1080 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ | |
| 1081 } while (0) | |
| 1082 | |
| 1083 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \ | |
| 1084 do \ | |
| 1085 { \ | |
| 1086 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ | |
| 1087 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ | |
| 1088 } while (0) | |
| 1089 | |
| 454 | 1090 /* Lisp_Free is the type to represent a free list member inside a frob |
| 1091 block of any lisp object type. */ | |
| 1092 typedef struct Lisp_Free | |
| 1093 { | |
| 1094 struct lrecord_header lheader; | |
| 1095 struct Lisp_Free *chain; | |
| 1096 } Lisp_Free; | |
| 1097 | |
| 1098 #define LRECORD_FREE_P(ptr) \ | |
| 771 | 1099 (((struct lrecord_header *) ptr)->type == lrecord_type_free) |
| 454 | 1100 |
| 1101 #define MARK_LRECORD_AS_FREE(ptr) \ | |
| 771 | 1102 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_free)) |
| 454 | 1103 |
| 1104 #ifdef ERROR_CHECK_GC | |
| 1105 #define MARK_LRECORD_AS_NOT_FREE(ptr) \ | |
| 771 | 1106 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_undefined)) |
| 428 | 1107 #else |
| 454 | 1108 #define MARK_LRECORD_AS_NOT_FREE(ptr) DO_NOTHING |
| 428 | 1109 #endif |
| 1110 | |
| 1111 #ifdef ERROR_CHECK_GC | |
| 1112 | |
| 454 | 1113 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \ |
| 1114 if (type##_free_list_tail) \ | |
| 1115 { \ | |
| 1116 /* When we store the chain pointer, we complement all \ | |
| 1117 its bits; this should significantly increase its \ | |
| 1118 bogosity in case someone tries to use the value, and \ | |
| 1119 should make us crash faster if someone overwrites the \ | |
| 1120 pointer because when it gets un-complemented in \ | |
| 1121 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \ | |
| 1122 extremely bogus. */ \ | |
| 1123 type##_free_list_tail->chain = \ | |
| 1124 (Lisp_Free *) ~ (EMACS_UINT) (ptr); \ | |
| 1125 } \ | |
| 1126 else \ | |
| 1127 type##_free_list = (Lisp_Free *) (ptr); \ | |
| 1128 type##_free_list_tail = (Lisp_Free *) (ptr); \ | |
| 1129 } while (0) | |
| 428 | 1130 |
| 1131 #else /* !ERROR_CHECK_GC */ | |
| 1132 | |
| 454 | 1133 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \ |
| 1134 ((Lisp_Free *) (ptr))->chain = type##_free_list; \ | |
| 1135 type##_free_list = (Lisp_Free *) (ptr); \ | |
| 1136 } while (0) \ | |
| 428 | 1137 |
| 1138 #endif /* !ERROR_CHECK_GC */ | |
| 1139 | |
| 1140 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */ | |
| 1141 | |
| 1142 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \ | |
| 1143 structtype *FFT_ptr = (ptr); \ | |
| 1204 | 1144 gc_checking_assert (!LRECORD_FREE_P (FFT_ptr)); \ |
| 2367 | 1145 gc_checking_assert (!DUMPEDP (FFT_ptr)); \ |
| 428 | 1146 ADDITIONAL_FREE_##type (FFT_ptr); \ |
| 1147 deadbeef_memory (FFT_ptr, sizeof (structtype)); \ | |
| 1148 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \ | |
| 454 | 1149 MARK_LRECORD_AS_FREE (FFT_ptr); \ |
| 428 | 1150 } while (0) |
| 1151 | |
| 1152 /* Like FREE_FIXED_TYPE() but used when we are explicitly | |
| 1153 freeing a structure through free_cons(), free_marker(), etc. | |
| 1154 rather than through the normal process of sweeping. | |
| 1155 We attempt to undo the changes made to the allocation counters | |
| 1156 as a result of this structure being allocated. This is not | |
| 1157 completely necessary but helps keep things saner: e.g. this way, | |
| 1158 repeatedly allocating and freeing a cons will not result in | |
| 1159 the consing-since-gc counter advancing, which would cause a GC | |
| 1204 | 1160 and somewhat defeat the purpose of explicitly freeing. |
| 1161 | |
| 1162 We also disable this mechanism entirely when ALLOC_NO_POOLS is | |
| 1163 set, which is used for Purify and the like. */ | |
| 1164 | |
| 1165 #ifndef ALLOC_NO_POOLS | |
| 428 | 1166 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \ |
| 1167 do { FREE_FIXED_TYPE (type, structtype, ptr); \ | |
| 1168 DECREMENT_CONS_COUNTER (sizeof (structtype)); \ | |
| 1169 gc_count_num_##type##_freelist++; \ | |
| 1170 } while (0) | |
| 1204 | 1171 #else |
| 1172 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) | |
| 1173 #endif | |
| 2720 | 1174 #endif /* not MC_ALLOC */ |
| 428 | 1175 |
| 3017 | 1176 #ifdef MC_ALLOC |
| 1177 #define ALLOCATE_FIXED_TYPE_AND_SET_IMPL(type, lisp_type, var, lrec_ptr) \ | |
| 1178 do { \ | |
| 1179 (var) = alloc_lrecord_type (lisp_type, lrec_ptr); \ | |
| 1180 } while (0) | |
| 1181 #define NOSEEUM_ALLOCATE_FIXED_TYPE_AND_SET_IMPL(type, lisp_type, var, \ | |
| 1182 lrec_ptr) \ | |
| 1183 do { \ | |
| 1184 (var) = noseeum_alloc_lrecord_type (lisp_type, lrec_ptr); \ | |
| 1185 } while (0) | |
| 1186 #else /* not MC_ALLOC */ | |
| 1187 #define ALLOCATE_FIXED_TYPE_AND_SET_IMPL(type, lisp_type, var, lrec_ptr) \ | |
| 1188 do \ | |
| 1189 { \ | |
| 1190 ALLOCATE_FIXED_TYPE (type, lisp_type, var); \ | |
| 1191 set_lheader_implementation (&(var)->lheader, lrec_ptr); \ | |
| 1192 } while (0) | |
| 1193 #define NOSEEUM_ALLOCATE_FIXED_TYPE_AND_SET_IMPL(type, lisp_type, var, \ | |
| 1194 lrec_ptr) \ | |
| 1195 do \ | |
| 1196 { \ | |
| 1197 NOSEEUM_ALLOCATE_FIXED_TYPE (type, lisp_type, var); \ | |
| 1198 set_lheader_implementation (&(var)->lheader, lrec_ptr); \ | |
| 1199 } while (0) | |
| 1200 #endif /* MC_ALLOC */ | |
| 1201 | |
| 428 | 1202 |
| 1203 | |
| 1204 /************************************************************************/ | |
| 1205 /* Cons allocation */ | |
| 1206 /************************************************************************/ | |
| 1207 | |
| 440 | 1208 DECLARE_FIXED_TYPE_ALLOC (cons, Lisp_Cons); |
| 428 | 1209 /* conses are used and freed so often that we set this really high */ |
| 1210 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */ | |
| 1211 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000 | |
| 1212 | |
| 1213 static Lisp_Object | |
| 1214 mark_cons (Lisp_Object obj) | |
| 1215 { | |
| 1216 if (NILP (XCDR (obj))) | |
| 1217 return XCAR (obj); | |
| 1218 | |
| 1219 mark_object (XCAR (obj)); | |
| 1220 return XCDR (obj); | |
| 1221 } | |
| 1222 | |
| 1223 static int | |
| 1224 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth) | |
| 1225 { | |
| 442 | 1226 depth++; |
| 1227 while (internal_equal (XCAR (ob1), XCAR (ob2), depth)) | |
| 428 | 1228 { |
| 1229 ob1 = XCDR (ob1); | |
| 1230 ob2 = XCDR (ob2); | |
| 1231 if (! CONSP (ob1) || ! CONSP (ob2)) | |
| 442 | 1232 return internal_equal (ob1, ob2, depth); |
| 428 | 1233 } |
| 1234 return 0; | |
| 1235 } | |
| 1236 | |
| 1204 | 1237 static const struct memory_description cons_description[] = { |
| 853 | 1238 { XD_LISP_OBJECT, offsetof (Lisp_Cons, car_) }, |
| 1239 { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr_) }, | |
| 428 | 1240 { XD_END } |
| 1241 }; | |
| 1242 | |
| 934 | 1243 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons, |
| 1244 1, /*dumpable-flag*/ | |
| 1245 mark_cons, print_cons, 0, | |
| 1246 cons_equal, | |
| 1247 /* | |
| 1248 * No `hash' method needed. | |
| 1249 * internal_hash knows how to | |
| 1250 * handle conses. | |
| 1251 */ | |
| 1252 0, | |
| 1253 cons_description, | |
| 1254 Lisp_Cons); | |
| 428 | 1255 |
| 1256 DEFUN ("cons", Fcons, 2, 2, 0, /* | |
| 1257 Create a new cons, give it CAR and CDR as components, and return it. | |
| 1258 */ | |
| 1259 (car, cdr)) | |
| 1260 { | |
| 1261 /* This cannot GC. */ | |
| 1262 Lisp_Object val; | |
| 440 | 1263 Lisp_Cons *c; |
| 1264 | |
| 3017 | 1265 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (cons, Lisp_Cons, c, &lrecord_cons); |
| 793 | 1266 val = wrap_cons (c); |
| 853 | 1267 XSETCAR (val, car); |
| 1268 XSETCDR (val, cdr); | |
| 428 | 1269 return val; |
| 1270 } | |
| 1271 | |
| 1272 /* This is identical to Fcons() but it used for conses that we're | |
| 1273 going to free later, and is useful when trying to track down | |
| 1274 "real" consing. */ | |
| 1275 Lisp_Object | |
| 1276 noseeum_cons (Lisp_Object car, Lisp_Object cdr) | |
| 1277 { | |
| 1278 Lisp_Object val; | |
| 440 | 1279 Lisp_Cons *c; |
| 1280 | |
| 3017 | 1281 NOSEEUM_ALLOCATE_FIXED_TYPE_AND_SET_IMPL (cons, Lisp_Cons, c, &lrecord_cons); |
| 793 | 1282 val = wrap_cons (c); |
| 428 | 1283 XCAR (val) = car; |
| 1284 XCDR (val) = cdr; | |
| 1285 return val; | |
| 1286 } | |
| 1287 | |
| 1288 DEFUN ("list", Flist, 0, MANY, 0, /* | |
| 1289 Return a newly created list with specified arguments as elements. | |
| 1290 Any number of arguments, even zero arguments, are allowed. | |
| 1291 */ | |
| 1292 (int nargs, Lisp_Object *args)) | |
| 1293 { | |
| 1294 Lisp_Object val = Qnil; | |
| 1295 Lisp_Object *argp = args + nargs; | |
| 1296 | |
| 1297 while (argp > args) | |
| 1298 val = Fcons (*--argp, val); | |
| 1299 return val; | |
| 1300 } | |
| 1301 | |
| 1302 Lisp_Object | |
| 1303 list1 (Lisp_Object obj0) | |
| 1304 { | |
| 1305 /* This cannot GC. */ | |
| 1306 return Fcons (obj0, Qnil); | |
| 1307 } | |
| 1308 | |
| 1309 Lisp_Object | |
| 1310 list2 (Lisp_Object obj0, Lisp_Object obj1) | |
| 1311 { | |
| 1312 /* This cannot GC. */ | |
| 1313 return Fcons (obj0, Fcons (obj1, Qnil)); | |
| 1314 } | |
| 1315 | |
| 1316 Lisp_Object | |
| 1317 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
| 1318 { | |
| 1319 /* This cannot GC. */ | |
| 1320 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil))); | |
| 1321 } | |
| 1322 | |
| 1323 Lisp_Object | |
| 1324 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
| 1325 { | |
| 1326 /* This cannot GC. */ | |
| 1327 return Fcons (obj0, Fcons (obj1, obj2)); | |
| 1328 } | |
| 1329 | |
| 1330 Lisp_Object | |
| 1331 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist) | |
| 1332 { | |
| 1333 return Fcons (Fcons (key, value), alist); | |
| 1334 } | |
| 1335 | |
| 1336 Lisp_Object | |
| 1337 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3) | |
| 1338 { | |
| 1339 /* This cannot GC. */ | |
| 1340 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil)))); | |
| 1341 } | |
| 1342 | |
| 1343 Lisp_Object | |
| 1344 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, | |
| 1345 Lisp_Object obj4) | |
| 1346 { | |
| 1347 /* This cannot GC. */ | |
| 1348 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil))))); | |
| 1349 } | |
| 1350 | |
| 1351 Lisp_Object | |
| 1352 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, | |
| 1353 Lisp_Object obj4, Lisp_Object obj5) | |
| 1354 { | |
| 1355 /* This cannot GC. */ | |
| 1356 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil)))))); | |
| 1357 } | |
| 1358 | |
| 1359 DEFUN ("make-list", Fmake_list, 2, 2, 0, /* | |
| 444 | 1360 Return a new list of length LENGTH, with each element being OBJECT. |
| 428 | 1361 */ |
| 444 | 1362 (length, object)) |
| 428 | 1363 { |
| 1364 CHECK_NATNUM (length); | |
| 1365 | |
| 1366 { | |
| 1367 Lisp_Object val = Qnil; | |
| 647 | 1368 EMACS_INT size = XINT (length); |
| 428 | 1369 |
| 1370 while (size--) | |
| 444 | 1371 val = Fcons (object, val); |
| 428 | 1372 return val; |
| 1373 } | |
| 1374 } | |
| 1375 | |
| 1376 | |
| 1377 /************************************************************************/ | |
| 1378 /* Float allocation */ | |
| 1379 /************************************************************************/ | |
| 1380 | |
| 1983 | 1381 /*** With enhanced number support, these are short floats */ |
| 1382 | |
| 440 | 1383 DECLARE_FIXED_TYPE_ALLOC (float, Lisp_Float); |
| 428 | 1384 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000 |
| 1385 | |
| 1386 Lisp_Object | |
| 1387 make_float (double float_value) | |
| 1388 { | |
| 440 | 1389 Lisp_Float *f; |
| 1390 | |
| 3017 | 1391 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (float, Lisp_Float, f, &lrecord_float); |
| 440 | 1392 |
| 1393 /* Avoid dump-time `uninitialized memory read' purify warnings. */ | |
| 1394 if (sizeof (struct lrecord_header) + sizeof (double) != sizeof (*f)) | |
| 3017 | 1395 zero_lrecord (f); |
| 1396 | |
| 428 | 1397 float_data (f) = float_value; |
| 793 | 1398 return wrap_float (f); |
| 428 | 1399 } |
| 1400 | |
| 1401 | |
| 1402 /************************************************************************/ | |
| 1983 | 1403 /* Enhanced number allocation */ |
| 1404 /************************************************************************/ | |
| 1405 | |
| 1406 /*** Bignum ***/ | |
| 1407 #ifdef HAVE_BIGNUM | |
| 1408 DECLARE_FIXED_TYPE_ALLOC (bignum, Lisp_Bignum); | |
| 1409 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_bignum 250 | |
| 1410 | |
| 1411 /* WARNING: This function returns a bignum even if its argument fits into a | |
| 1412 fixnum. See Fcanonicalize_number(). */ | |
| 1413 Lisp_Object | |
| 1414 make_bignum (long bignum_value) | |
| 1415 { | |
| 1416 Lisp_Bignum *b; | |
| 1417 | |
| 3017 | 1418 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (bignum, Lisp_Bignum, b, &lrecord_bignum); |
| 1983 | 1419 bignum_init (bignum_data (b)); |
| 1420 bignum_set_long (bignum_data (b), bignum_value); | |
| 1421 return wrap_bignum (b); | |
| 1422 } | |
| 1423 | |
| 1424 /* WARNING: This function returns a bignum even if its argument fits into a | |
| 1425 fixnum. See Fcanonicalize_number(). */ | |
| 1426 Lisp_Object | |
| 1427 make_bignum_bg (bignum bg) | |
| 1428 { | |
| 1429 Lisp_Bignum *b; | |
| 1430 | |
| 3017 | 1431 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (bignum, Lisp_Bignum, b, &lrecord_bignum); |
| 1983 | 1432 bignum_init (bignum_data (b)); |
| 1433 bignum_set (bignum_data (b), bg); | |
| 1434 return wrap_bignum (b); | |
| 1435 } | |
| 1436 #endif /* HAVE_BIGNUM */ | |
| 1437 | |
| 1438 /*** Ratio ***/ | |
| 1439 #ifdef HAVE_RATIO | |
| 1440 DECLARE_FIXED_TYPE_ALLOC (ratio, Lisp_Ratio); | |
| 1441 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_ratio 250 | |
| 1442 | |
| 1443 Lisp_Object | |
| 1444 make_ratio (long numerator, unsigned long denominator) | |
| 1445 { | |
| 1446 Lisp_Ratio *r; | |
| 1447 | |
| 3017 | 1448 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (ratio, Lisp_Ratio, r, &lrecord_ratio); |
| 1983 | 1449 ratio_init (ratio_data (r)); |
| 1450 ratio_set_long_ulong (ratio_data (r), numerator, denominator); | |
| 1451 ratio_canonicalize (ratio_data (r)); | |
| 1452 return wrap_ratio (r); | |
| 1453 } | |
| 1454 | |
| 1455 Lisp_Object | |
| 1456 make_ratio_bg (bignum numerator, bignum denominator) | |
| 1457 { | |
| 1458 Lisp_Ratio *r; | |
| 1459 | |
| 3017 | 1460 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (ratio, Lisp_Ratio, r, &lrecord_ratio); |
| 1983 | 1461 ratio_init (ratio_data (r)); |
| 1462 ratio_set_bignum_bignum (ratio_data (r), numerator, denominator); | |
| 1463 ratio_canonicalize (ratio_data (r)); | |
| 1464 return wrap_ratio (r); | |
| 1465 } | |
| 1466 | |
| 1467 Lisp_Object | |
| 1468 make_ratio_rt (ratio rat) | |
| 1469 { | |
| 1470 Lisp_Ratio *r; | |
| 1471 | |
| 3017 | 1472 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (ratio, Lisp_Ratio, r, &lrecord_ratio); |
| 1983 | 1473 ratio_init (ratio_data (r)); |
| 1474 ratio_set (ratio_data (r), rat); | |
| 1475 return wrap_ratio (r); | |
| 1476 } | |
| 1477 #endif /* HAVE_RATIO */ | |
| 1478 | |
| 1479 /*** Bigfloat ***/ | |
| 1480 #ifdef HAVE_BIGFLOAT | |
| 1481 DECLARE_FIXED_TYPE_ALLOC (bigfloat, Lisp_Bigfloat); | |
| 1482 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_bigfloat 250 | |
| 1483 | |
| 1484 /* This function creates a bigfloat with the default precision if the | |
| 1485 PRECISION argument is zero. */ | |
| 1486 Lisp_Object | |
| 1487 make_bigfloat (double float_value, unsigned long precision) | |
| 1488 { | |
| 1489 Lisp_Bigfloat *f; | |
| 1490 | |
| 3017 | 1491 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (bigfloat, Lisp_Bigfloat, f, &lrecord_bigfloat); |
| 1983 | 1492 if (precision == 0UL) |
| 1493 bigfloat_init (bigfloat_data (f)); | |
| 1494 else | |
| 1495 bigfloat_init_prec (bigfloat_data (f), precision); | |
| 1496 bigfloat_set_double (bigfloat_data (f), float_value); | |
| 1497 return wrap_bigfloat (f); | |
| 1498 } | |
| 1499 | |
| 1500 /* This function creates a bigfloat with the precision of its argument */ | |
| 1501 Lisp_Object | |
| 1502 make_bigfloat_bf (bigfloat float_value) | |
| 1503 { | |
| 1504 Lisp_Bigfloat *f; | |
| 1505 | |
| 3017 | 1506 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (bigfloat, Lisp_Bigfloat, f, &lrecord_bigfloat); |
| 1983 | 1507 bigfloat_init_prec (bigfloat_data (f), bigfloat_get_prec (float_value)); |
| 1508 bigfloat_set (bigfloat_data (f), float_value); | |
| 1509 return wrap_bigfloat (f); | |
| 1510 } | |
| 1511 #endif /* HAVE_BIGFLOAT */ | |
| 1512 | |
| 1513 /************************************************************************/ | |
| 428 | 1514 /* Vector allocation */ |
| 1515 /************************************************************************/ | |
| 1516 | |
| 1517 static Lisp_Object | |
| 1518 mark_vector (Lisp_Object obj) | |
| 1519 { | |
| 1520 Lisp_Vector *ptr = XVECTOR (obj); | |
| 1521 int len = vector_length (ptr); | |
| 1522 int i; | |
| 1523 | |
| 1524 for (i = 0; i < len - 1; i++) | |
| 1525 mark_object (ptr->contents[i]); | |
| 1526 return (len > 0) ? ptr->contents[len - 1] : Qnil; | |
| 1527 } | |
| 1528 | |
| 665 | 1529 static Bytecount |
| 442 | 1530 size_vector (const void *lheader) |
| 428 | 1531 { |
| 456 | 1532 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, contents, |
| 442 | 1533 ((Lisp_Vector *) lheader)->size); |
| 428 | 1534 } |
| 1535 | |
| 1536 static int | |
| 1537 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
| 1538 { | |
| 1539 int len = XVECTOR_LENGTH (obj1); | |
| 1540 if (len != XVECTOR_LENGTH (obj2)) | |
| 1541 return 0; | |
| 1542 | |
| 1543 { | |
| 1544 Lisp_Object *ptr1 = XVECTOR_DATA (obj1); | |
| 1545 Lisp_Object *ptr2 = XVECTOR_DATA (obj2); | |
| 1546 while (len--) | |
| 1547 if (!internal_equal (*ptr1++, *ptr2++, depth + 1)) | |
| 1548 return 0; | |
| 1549 } | |
| 1550 return 1; | |
| 1551 } | |
| 1552 | |
| 665 | 1553 static Hashcode |
| 442 | 1554 vector_hash (Lisp_Object obj, int depth) |
| 1555 { | |
| 1556 return HASH2 (XVECTOR_LENGTH (obj), | |
| 1557 internal_array_hash (XVECTOR_DATA (obj), | |
| 1558 XVECTOR_LENGTH (obj), | |
| 1559 depth + 1)); | |
| 1560 } | |
| 1561 | |
| 1204 | 1562 static const struct memory_description vector_description[] = { |
| 440 | 1563 { XD_LONG, offsetof (Lisp_Vector, size) }, |
| 1564 { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Vector, contents), XD_INDIRECT(0, 0) }, | |
| 428 | 1565 { XD_END } |
| 1566 }; | |
| 1567 | |
| 1204 | 1568 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION ("vector", vector, |
| 1569 1, /*dumpable-flag*/ | |
| 1570 mark_vector, print_vector, 0, | |
| 1571 vector_equal, | |
| 1572 vector_hash, | |
| 1573 vector_description, | |
| 1574 size_vector, Lisp_Vector); | |
| 428 | 1575 /* #### should allocate `small' vectors from a frob-block */ |
| 1576 static Lisp_Vector * | |
| 665 | 1577 make_vector_internal (Elemcount sizei) |
| 428 | 1578 { |
| 1204 | 1579 /* no `next' field; we use lcrecords */ |
| 665 | 1580 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, |
| 1204 | 1581 contents, sizei); |
| 1582 Lisp_Vector *p = | |
| 3017 | 1583 (Lisp_Vector *) BASIC_ALLOC_LCRECORD (sizem, &lrecord_vector); |
| 428 | 1584 |
| 1585 p->size = sizei; | |
| 1586 return p; | |
| 1587 } | |
| 1588 | |
| 1589 Lisp_Object | |
| 665 | 1590 make_vector (Elemcount length, Lisp_Object object) |
| 428 | 1591 { |
| 1592 Lisp_Vector *vecp = make_vector_internal (length); | |
| 1593 Lisp_Object *p = vector_data (vecp); | |
| 1594 | |
| 1595 while (length--) | |
| 444 | 1596 *p++ = object; |
| 428 | 1597 |
| 793 | 1598 return wrap_vector (vecp); |
| 428 | 1599 } |
| 1600 | |
| 1601 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /* | |
| 444 | 1602 Return a new vector of length LENGTH, with each element being OBJECT. |
| 428 | 1603 See also the function `vector'. |
| 1604 */ | |
| 444 | 1605 (length, object)) |
| 428 | 1606 { |
| 1607 CONCHECK_NATNUM (length); | |
| 444 | 1608 return make_vector (XINT (length), object); |
| 428 | 1609 } |
| 1610 | |
| 1611 DEFUN ("vector", Fvector, 0, MANY, 0, /* | |
| 1612 Return a newly created vector with specified arguments as elements. | |
| 1613 Any number of arguments, even zero arguments, are allowed. | |
| 1614 */ | |
| 1615 (int nargs, Lisp_Object *args)) | |
| 1616 { | |
| 1617 Lisp_Vector *vecp = make_vector_internal (nargs); | |
| 1618 Lisp_Object *p = vector_data (vecp); | |
| 1619 | |
| 1620 while (nargs--) | |
| 1621 *p++ = *args++; | |
| 1622 | |
| 793 | 1623 return wrap_vector (vecp); |
| 428 | 1624 } |
| 1625 | |
| 1626 Lisp_Object | |
| 1627 vector1 (Lisp_Object obj0) | |
| 1628 { | |
| 1629 return Fvector (1, &obj0); | |
| 1630 } | |
| 1631 | |
| 1632 Lisp_Object | |
| 1633 vector2 (Lisp_Object obj0, Lisp_Object obj1) | |
| 1634 { | |
| 1635 Lisp_Object args[2]; | |
| 1636 args[0] = obj0; | |
| 1637 args[1] = obj1; | |
| 1638 return Fvector (2, args); | |
| 1639 } | |
| 1640 | |
| 1641 Lisp_Object | |
| 1642 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
| 1643 { | |
| 1644 Lisp_Object args[3]; | |
| 1645 args[0] = obj0; | |
| 1646 args[1] = obj1; | |
| 1647 args[2] = obj2; | |
| 1648 return Fvector (3, args); | |
| 1649 } | |
| 1650 | |
| 1651 #if 0 /* currently unused */ | |
| 1652 | |
| 1653 Lisp_Object | |
| 1654 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
| 1655 Lisp_Object obj3) | |
| 1656 { | |
| 1657 Lisp_Object args[4]; | |
| 1658 args[0] = obj0; | |
| 1659 args[1] = obj1; | |
| 1660 args[2] = obj2; | |
| 1661 args[3] = obj3; | |
| 1662 return Fvector (4, args); | |
| 1663 } | |
| 1664 | |
| 1665 Lisp_Object | |
| 1666 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
| 1667 Lisp_Object obj3, Lisp_Object obj4) | |
| 1668 { | |
| 1669 Lisp_Object args[5]; | |
| 1670 args[0] = obj0; | |
| 1671 args[1] = obj1; | |
| 1672 args[2] = obj2; | |
| 1673 args[3] = obj3; | |
| 1674 args[4] = obj4; | |
| 1675 return Fvector (5, args); | |
| 1676 } | |
| 1677 | |
| 1678 Lisp_Object | |
| 1679 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
| 1680 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5) | |
| 1681 { | |
| 1682 Lisp_Object args[6]; | |
| 1683 args[0] = obj0; | |
| 1684 args[1] = obj1; | |
| 1685 args[2] = obj2; | |
| 1686 args[3] = obj3; | |
| 1687 args[4] = obj4; | |
| 1688 args[5] = obj5; | |
| 1689 return Fvector (6, args); | |
| 1690 } | |
| 1691 | |
| 1692 Lisp_Object | |
| 1693 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
| 1694 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, | |
| 1695 Lisp_Object obj6) | |
| 1696 { | |
| 1697 Lisp_Object args[7]; | |
| 1698 args[0] = obj0; | |
| 1699 args[1] = obj1; | |
| 1700 args[2] = obj2; | |
| 1701 args[3] = obj3; | |
| 1702 args[4] = obj4; | |
| 1703 args[5] = obj5; | |
| 1704 args[6] = obj6; | |
| 1705 return Fvector (7, args); | |
| 1706 } | |
| 1707 | |
| 1708 Lisp_Object | |
| 1709 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
| 1710 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, | |
| 1711 Lisp_Object obj6, Lisp_Object obj7) | |
| 1712 { | |
| 1713 Lisp_Object args[8]; | |
| 1714 args[0] = obj0; | |
| 1715 args[1] = obj1; | |
| 1716 args[2] = obj2; | |
| 1717 args[3] = obj3; | |
| 1718 args[4] = obj4; | |
| 1719 args[5] = obj5; | |
| 1720 args[6] = obj6; | |
| 1721 args[7] = obj7; | |
| 1722 return Fvector (8, args); | |
| 1723 } | |
| 1724 #endif /* unused */ | |
| 1725 | |
| 1726 /************************************************************************/ | |
| 1727 /* Bit Vector allocation */ | |
| 1728 /************************************************************************/ | |
| 1729 | |
| 1730 /* #### should allocate `small' bit vectors from a frob-block */ | |
| 440 | 1731 static Lisp_Bit_Vector * |
| 665 | 1732 make_bit_vector_internal (Elemcount sizei) |
| 428 | 1733 { |
| 1204 | 1734 /* no `next' field; we use lcrecords */ |
| 665 | 1735 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (sizei); |
| 1736 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, | |
| 1204 | 1737 unsigned long, |
| 1738 bits, num_longs); | |
| 1739 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *) | |
| 3017 | 1740 BASIC_ALLOC_LCRECORD (sizem, &lrecord_bit_vector); |
| 428 | 1741 |
| 1742 bit_vector_length (p) = sizei; | |
| 1743 return p; | |
| 1744 } | |
| 1745 | |
| 1746 Lisp_Object | |
| 665 | 1747 make_bit_vector (Elemcount length, Lisp_Object bit) |
| 428 | 1748 { |
| 440 | 1749 Lisp_Bit_Vector *p = make_bit_vector_internal (length); |
| 665 | 1750 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (length); |
| 428 | 1751 |
| 444 | 1752 CHECK_BIT (bit); |
| 1753 | |
| 1754 if (ZEROP (bit)) | |
| 428 | 1755 memset (p->bits, 0, num_longs * sizeof (long)); |
| 1756 else | |
| 1757 { | |
| 665 | 1758 Elemcount bits_in_last = length & (LONGBITS_POWER_OF_2 - 1); |
| 428 | 1759 memset (p->bits, ~0, num_longs * sizeof (long)); |
| 1760 /* But we have to make sure that the unused bits in the | |
| 1761 last long are 0, so that equal/hash is easy. */ | |
| 1762 if (bits_in_last) | |
| 1763 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1; | |
| 1764 } | |
| 1765 | |
| 793 | 1766 return wrap_bit_vector (p); |
| 428 | 1767 } |
| 1768 | |
| 1769 Lisp_Object | |
| 665 | 1770 make_bit_vector_from_byte_vector (unsigned char *bytevec, Elemcount length) |
| 428 | 1771 { |
| 665 | 1772 Elemcount i; |
| 428 | 1773 Lisp_Bit_Vector *p = make_bit_vector_internal (length); |
| 1774 | |
| 1775 for (i = 0; i < length; i++) | |
| 1776 set_bit_vector_bit (p, i, bytevec[i]); | |
| 1777 | |
| 793 | 1778 return wrap_bit_vector (p); |
| 428 | 1779 } |
| 1780 | |
| 1781 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /* | |
| 444 | 1782 Return a new bit vector of length LENGTH. with each bit set to BIT. |
| 1783 BIT must be one of the integers 0 or 1. See also the function `bit-vector'. | |
| 428 | 1784 */ |
| 444 | 1785 (length, bit)) |
| 428 | 1786 { |
| 1787 CONCHECK_NATNUM (length); | |
| 1788 | |
| 444 | 1789 return make_bit_vector (XINT (length), bit); |
| 428 | 1790 } |
| 1791 | |
| 1792 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /* | |
| 1793 Return a newly created bit vector with specified arguments as elements. | |
| 1794 Any number of arguments, even zero arguments, are allowed. | |
| 444 | 1795 Each argument must be one of the integers 0 or 1. |
| 428 | 1796 */ |
| 1797 (int nargs, Lisp_Object *args)) | |
| 1798 { | |
| 1799 int i; | |
| 1800 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs); | |
| 1801 | |
| 1802 for (i = 0; i < nargs; i++) | |
| 1803 { | |
| 1804 CHECK_BIT (args[i]); | |
| 1805 set_bit_vector_bit (p, i, !ZEROP (args[i])); | |
| 1806 } | |
| 1807 | |
| 793 | 1808 return wrap_bit_vector (p); |
| 428 | 1809 } |
| 1810 | |
| 1811 | |
| 1812 /************************************************************************/ | |
| 1813 /* Compiled-function allocation */ | |
| 1814 /************************************************************************/ | |
| 1815 | |
| 1816 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function); | |
| 1817 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000 | |
| 1818 | |
| 1819 static Lisp_Object | |
| 1820 make_compiled_function (void) | |
| 1821 { | |
| 1822 Lisp_Compiled_Function *f; | |
| 1823 | |
| 3017 | 1824 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (compiled_function, Lisp_Compiled_Function, |
| 1825 f, &lrecord_compiled_function); | |
| 428 | 1826 |
| 1827 f->stack_depth = 0; | |
| 1828 f->specpdl_depth = 0; | |
| 1829 f->flags.documentationp = 0; | |
| 1830 f->flags.interactivep = 0; | |
| 1831 f->flags.domainp = 0; /* I18N3 */ | |
| 1832 f->instructions = Qzero; | |
| 1833 f->constants = Qzero; | |
| 1834 f->arglist = Qnil; | |
| 1739 | 1835 f->args = NULL; |
| 1836 f->max_args = f->min_args = f->args_in_array = 0; | |
| 428 | 1837 f->doc_and_interactive = Qnil; |
| 1838 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK | |
| 1839 f->annotated = Qnil; | |
| 1840 #endif | |
| 793 | 1841 return wrap_compiled_function (f); |
| 428 | 1842 } |
| 1843 | |
| 1844 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /* | |
| 1845 Return a new compiled-function object. | |
| 1846 Usage: (arglist instructions constants stack-depth | |
| 1847 &optional doc-string interactive) | |
| 1848 Note that, unlike all other emacs-lisp functions, calling this with five | |
| 1849 arguments is NOT the same as calling it with six arguments, the last of | |
| 1850 which is nil. If the INTERACTIVE arg is specified as nil, then that means | |
| 1851 that this function was defined with `(interactive)'. If the arg is not | |
| 1852 specified, then that means the function is not interactive. | |
| 1853 This is terrible behavior which is retained for compatibility with old | |
| 1854 `.elc' files which expect these semantics. | |
| 1855 */ | |
| 1856 (int nargs, Lisp_Object *args)) | |
| 1857 { | |
| 1858 /* In a non-insane world this function would have this arglist... | |
| 1859 (arglist instructions constants stack_depth &optional doc_string interactive) | |
| 1860 */ | |
| 1861 Lisp_Object fun = make_compiled_function (); | |
| 1862 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun); | |
| 1863 | |
| 1864 Lisp_Object arglist = args[0]; | |
| 1865 Lisp_Object instructions = args[1]; | |
| 1866 Lisp_Object constants = args[2]; | |
| 1867 Lisp_Object stack_depth = args[3]; | |
| 1868 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil; | |
| 1869 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound; | |
| 1870 | |
| 1871 if (nargs < 4 || nargs > 6) | |
| 1872 return Fsignal (Qwrong_number_of_arguments, | |
| 1873 list2 (intern ("make-byte-code"), make_int (nargs))); | |
| 1874 | |
| 1875 /* Check for valid formal parameter list now, to allow us to use | |
| 1876 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */ | |
| 1877 { | |
| 814 | 1878 EXTERNAL_LIST_LOOP_2 (symbol, arglist) |
| 428 | 1879 { |
| 1880 CHECK_SYMBOL (symbol); | |
| 1881 if (EQ (symbol, Qt) || | |
| 1882 EQ (symbol, Qnil) || | |
| 1883 SYMBOL_IS_KEYWORD (symbol)) | |
| 563 | 1884 invalid_constant_2 |
| 428 | 1885 ("Invalid constant symbol in formal parameter list", |
| 1886 symbol, arglist); | |
| 1887 } | |
| 1888 } | |
| 1889 f->arglist = arglist; | |
| 1890 | |
| 1891 /* `instructions' is a string or a cons (string . int) for a | |
| 1892 lazy-loaded function. */ | |
| 1893 if (CONSP (instructions)) | |
| 1894 { | |
| 1895 CHECK_STRING (XCAR (instructions)); | |
| 1896 CHECK_INT (XCDR (instructions)); | |
| 1897 } | |
| 1898 else | |
| 1899 { | |
| 1900 CHECK_STRING (instructions); | |
| 1901 } | |
| 1902 f->instructions = instructions; | |
| 1903 | |
| 1904 if (!NILP (constants)) | |
| 1905 CHECK_VECTOR (constants); | |
| 1906 f->constants = constants; | |
| 1907 | |
| 1908 CHECK_NATNUM (stack_depth); | |
| 442 | 1909 f->stack_depth = (unsigned short) XINT (stack_depth); |
| 428 | 1910 |
| 1911 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK | |
| 1912 if (!NILP (Vcurrent_compiled_function_annotation)) | |
| 1913 f->annotated = Fcopy (Vcurrent_compiled_function_annotation); | |
| 1914 else if (!NILP (Vload_file_name_internal_the_purecopy)) | |
| 1915 f->annotated = Vload_file_name_internal_the_purecopy; | |
| 1916 else if (!NILP (Vload_file_name_internal)) | |
| 1917 { | |
| 1918 struct gcpro gcpro1; | |
| 1919 GCPRO1 (fun); /* don't let fun get reaped */ | |
| 1920 Vload_file_name_internal_the_purecopy = | |
| 1921 Ffile_name_nondirectory (Vload_file_name_internal); | |
| 1922 f->annotated = Vload_file_name_internal_the_purecopy; | |
| 1923 UNGCPRO; | |
| 1924 } | |
| 1925 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */ | |
| 1926 | |
| 1927 /* doc_string may be nil, string, int, or a cons (string . int). | |
| 1928 interactive may be list or string (or unbound). */ | |
| 1929 f->doc_and_interactive = Qunbound; | |
| 1930 #ifdef I18N3 | |
| 1931 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0) | |
| 1932 f->doc_and_interactive = Vfile_domain; | |
| 1933 #endif | |
| 1934 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0) | |
| 1935 { | |
| 1936 f->doc_and_interactive | |
| 1937 = (UNBOUNDP (f->doc_and_interactive) ? interactive : | |
| 1938 Fcons (interactive, f->doc_and_interactive)); | |
| 1939 } | |
| 1940 if ((f->flags.documentationp = !NILP (doc_string)) != 0) | |
| 1941 { | |
| 1942 f->doc_and_interactive | |
| 1943 = (UNBOUNDP (f->doc_and_interactive) ? doc_string : | |
| 1944 Fcons (doc_string, f->doc_and_interactive)); | |
| 1945 } | |
| 1946 if (UNBOUNDP (f->doc_and_interactive)) | |
| 1947 f->doc_and_interactive = Qnil; | |
| 1948 | |
| 1949 return fun; | |
| 1950 } | |
| 1951 | |
| 1952 | |
| 1953 /************************************************************************/ | |
| 1954 /* Symbol allocation */ | |
| 1955 /************************************************************************/ | |
| 1956 | |
| 440 | 1957 DECLARE_FIXED_TYPE_ALLOC (symbol, Lisp_Symbol); |
| 428 | 1958 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000 |
| 1959 | |
| 1960 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /* | |
| 1961 Return a newly allocated uninterned symbol whose name is NAME. | |
| 1962 Its value and function definition are void, and its property list is nil. | |
| 1963 */ | |
| 1964 (name)) | |
| 1965 { | |
| 440 | 1966 Lisp_Symbol *p; |
| 428 | 1967 |
| 1968 CHECK_STRING (name); | |
| 1969 | |
| 3017 | 1970 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (symbol, Lisp_Symbol, p, &lrecord_symbol); |
| 793 | 1971 p->name = name; |
| 428 | 1972 p->plist = Qnil; |
| 1973 p->value = Qunbound; | |
| 1974 p->function = Qunbound; | |
| 1975 symbol_next (p) = 0; | |
| 793 | 1976 return wrap_symbol (p); |
| 428 | 1977 } |
| 1978 | |
| 1979 | |
| 1980 /************************************************************************/ | |
| 1981 /* Extent allocation */ | |
| 1982 /************************************************************************/ | |
| 1983 | |
| 1984 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent); | |
| 1985 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000 | |
| 1986 | |
| 1987 struct extent * | |
| 1988 allocate_extent (void) | |
| 1989 { | |
| 1990 struct extent *e; | |
| 1991 | |
| 3017 | 1992 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (extent, struct extent, e, &lrecord_extent); |
| 428 | 1993 extent_object (e) = Qnil; |
| 1994 set_extent_start (e, -1); | |
| 1995 set_extent_end (e, -1); | |
| 1996 e->plist = Qnil; | |
| 1997 | |
| 1998 xzero (e->flags); | |
| 1999 | |
| 2000 extent_face (e) = Qnil; | |
| 2001 e->flags.end_open = 1; /* default is for endpoints to behave like markers */ | |
| 2002 e->flags.detachable = 1; | |
| 2003 | |
| 2004 return e; | |
| 2005 } | |
| 2006 | |
| 2007 | |
| 2008 /************************************************************************/ | |
| 2009 /* Event allocation */ | |
| 2010 /************************************************************************/ | |
| 2011 | |
| 440 | 2012 DECLARE_FIXED_TYPE_ALLOC (event, Lisp_Event); |
| 428 | 2013 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000 |
| 2014 | |
| 2015 Lisp_Object | |
| 2016 allocate_event (void) | |
| 2017 { | |
| 440 | 2018 Lisp_Event *e; |
| 2019 | |
| 3017 | 2020 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (event, Lisp_Event, e, &lrecord_event); |
| 428 | 2021 |
| 793 | 2022 return wrap_event (e); |
| 428 | 2023 } |
| 2024 | |
| 1204 | 2025 #ifdef EVENT_DATA_AS_OBJECTS |
| 934 | 2026 DECLARE_FIXED_TYPE_ALLOC (key_data, Lisp_Key_Data); |
| 2027 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_key_data 1000 | |
| 2028 | |
| 2029 Lisp_Object | |
| 1204 | 2030 make_key_data (void) |
| 934 | 2031 { |
| 2032 Lisp_Key_Data *d; | |
| 2033 | |
| 3017 | 2034 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (key_data, Lisp_Key_Data, d, |
| 2035 &lrecord_key_data); | |
| 2036 zero_lrecord (d); | |
| 1204 | 2037 d->keysym = Qnil; |
| 2038 | |
| 2039 return wrap_key_data (d); | |
| 934 | 2040 } |
| 2041 | |
| 2042 DECLARE_FIXED_TYPE_ALLOC (button_data, Lisp_Button_Data); | |
| 2043 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_button_data 1000 | |
| 2044 | |
| 2045 Lisp_Object | |
| 1204 | 2046 make_button_data (void) |
| 934 | 2047 { |
| 2048 Lisp_Button_Data *d; | |
| 2049 | |
| 3017 | 2050 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (button_data, Lisp_Button_Data, d, &lrecord_button_data); |
| 2051 zero_lrecord (d); | |
| 1204 | 2052 return wrap_button_data (d); |
| 934 | 2053 } |
| 2054 | |
| 2055 DECLARE_FIXED_TYPE_ALLOC (motion_data, Lisp_Motion_Data); | |
| 2056 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_motion_data 1000 | |
| 2057 | |
| 2058 Lisp_Object | |
| 1204 | 2059 make_motion_data (void) |
| 934 | 2060 { |
| 2061 Lisp_Motion_Data *d; | |
| 2062 | |
| 3017 | 2063 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (motion_data, Lisp_Motion_Data, d, &lrecord_motion_data); |
| 2064 zero_lrecord (d); | |
| 934 | 2065 |
| 1204 | 2066 return wrap_motion_data (d); |
| 934 | 2067 } |
| 2068 | |
| 2069 DECLARE_FIXED_TYPE_ALLOC (process_data, Lisp_Process_Data); | |
| 2070 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_process_data 1000 | |
| 2071 | |
| 2072 Lisp_Object | |
| 1204 | 2073 make_process_data (void) |
| 934 | 2074 { |
| 2075 Lisp_Process_Data *d; | |
| 2076 | |
| 3017 | 2077 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (process_data, Lisp_Process_Data, d, &lrecord_process_data); |
| 2078 zero_lrecord (d); | |
| 1204 | 2079 d->process = Qnil; |
| 2080 | |
| 2081 return wrap_process_data (d); | |
| 934 | 2082 } |
| 2083 | |
| 2084 DECLARE_FIXED_TYPE_ALLOC (timeout_data, Lisp_Timeout_Data); | |
| 2085 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_timeout_data 1000 | |
| 2086 | |
| 2087 Lisp_Object | |
| 1204 | 2088 make_timeout_data (void) |
| 934 | 2089 { |
| 2090 Lisp_Timeout_Data *d; | |
| 2091 | |
| 3017 | 2092 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (timeout_data, Lisp_Timeout_Data, d, &lrecord_timeout_data); |
| 2093 zero_lrecord (d); | |
| 1204 | 2094 d->function = Qnil; |
| 2095 d->object = Qnil; | |
| 2096 | |
| 2097 return wrap_timeout_data (d); | |
| 934 | 2098 } |
| 2099 | |
| 2100 DECLARE_FIXED_TYPE_ALLOC (magic_data, Lisp_Magic_Data); | |
| 2101 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_data 1000 | |
| 2102 | |
| 2103 Lisp_Object | |
| 1204 | 2104 make_magic_data (void) |
| 934 | 2105 { |
| 2106 Lisp_Magic_Data *d; | |
| 2107 | |
| 3017 | 2108 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (magic_data, Lisp_Magic_Data, d, &lrecord_magic_data); |
| 2109 zero_lrecord (d); | |
| 934 | 2110 |
| 1204 | 2111 return wrap_magic_data (d); |
| 934 | 2112 } |
| 2113 | |
| 2114 DECLARE_FIXED_TYPE_ALLOC (magic_eval_data, Lisp_Magic_Eval_Data); | |
| 2115 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_eval_data 1000 | |
| 2116 | |
| 2117 Lisp_Object | |
| 1204 | 2118 make_magic_eval_data (void) |
| 934 | 2119 { |
| 2120 Lisp_Magic_Eval_Data *d; | |
| 2121 | |
| 3017 | 2122 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (magic_eval_data, Lisp_Magic_Eval_Data, d, &lrecord_magic_eval_data); |
| 2123 zero_lrecord (d); | |
| 1204 | 2124 d->object = Qnil; |
| 2125 | |
| 2126 return wrap_magic_eval_data (d); | |
| 934 | 2127 } |
| 2128 | |
| 2129 DECLARE_FIXED_TYPE_ALLOC (eval_data, Lisp_Eval_Data); | |
| 2130 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_eval_data 1000 | |
| 2131 | |
| 2132 Lisp_Object | |
| 1204 | 2133 make_eval_data (void) |
| 934 | 2134 { |
| 2135 Lisp_Eval_Data *d; | |
| 2136 | |
| 3017 | 2137 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (eval_data, Lisp_Eval_Data, d, &lrecord_eval_data); |
| 2138 zero_lrecord (d); | |
| 1204 | 2139 d->function = Qnil; |
| 2140 d->object = Qnil; | |
| 2141 | |
| 2142 return wrap_eval_data (d); | |
| 934 | 2143 } |
| 2144 | |
| 2145 DECLARE_FIXED_TYPE_ALLOC (misc_user_data, Lisp_Misc_User_Data); | |
| 2146 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_misc_user_data 1000 | |
| 2147 | |
| 2148 Lisp_Object | |
| 1204 | 2149 make_misc_user_data (void) |
| 934 | 2150 { |
| 2151 Lisp_Misc_User_Data *d; | |
| 2152 | |
| 3017 | 2153 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (misc_user_data, Lisp_Misc_User_Data, d, &lrecord_misc_user_data); |
| 2154 zero_lrecord (d); | |
| 1204 | 2155 d->function = Qnil; |
| 2156 d->object = Qnil; | |
| 2157 | |
| 2158 return wrap_misc_user_data (d); | |
| 934 | 2159 } |
| 1204 | 2160 |
| 2161 #endif /* EVENT_DATA_AS_OBJECTS */ | |
| 428 | 2162 |
| 2163 /************************************************************************/ | |
| 2164 /* Marker allocation */ | |
| 2165 /************************************************************************/ | |
| 2166 | |
| 440 | 2167 DECLARE_FIXED_TYPE_ALLOC (marker, Lisp_Marker); |
| 428 | 2168 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000 |
| 2169 | |
| 2170 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /* | |
| 2171 Return a new marker which does not point at any place. | |
| 2172 */ | |
| 2173 ()) | |
| 2174 { | |
| 440 | 2175 Lisp_Marker *p; |
| 2176 | |
| 3017 | 2177 ALLOCATE_FIXED_TYPE_AND_SET_IMPL (marker, Lisp_Marker, p, &lrecord_marker); |
| 428 | 2178 p->buffer = 0; |
| 665 | 2179 p->membpos = 0; |
| 428 | 2180 marker_next (p) = 0; |
| 2181 marker_prev (p) = 0; | |
| 2182 p->insertion_type = 0; | |
| 793 | 2183 return wrap_marker (p); |
| 428 | 2184 } |
| 2185 | |
| 2186 Lisp_Object | |
| 2187 noseeum_make_marker (void) | |
| 2188 { | |
| 440 | 2189 Lisp_Marker *p; |
| 2190 | |
| 3017 | 2191 NOSEEUM_ALLOCATE_FIXED_TYPE_AND_SET_IMPL (marker, Lisp_Marker, p, |
| 2192 &lrecord_marker); | |
| 428 | 2193 p->buffer = 0; |
| 665 | 2194 p->membpos = 0; |
| 428 | 2195 marker_next (p) = 0; |
| 2196 marker_prev (p) = 0; | |
| 2197 p->insertion_type = 0; | |
| 793 | 2198 return wrap_marker (p); |
| 428 | 2199 } |
| 2200 | |
| 2201 | |
| 2202 /************************************************************************/ | |
| 2203 /* String allocation */ | |
| 2204 /************************************************************************/ | |
| 2205 | |
| 2206 /* The data for "short" strings generally resides inside of structs of type | |
| 2207 string_chars_block. The Lisp_String structure is allocated just like any | |
| 1204 | 2208 other basic lrecord, and these are freelisted when they get garbage |
| 2209 collected. The data for short strings get compacted, but the data for | |
| 2210 large strings do not. | |
| 428 | 2211 |
| 2212 Previously Lisp_String structures were relocated, but this caused a lot | |
| 2213 of bus-errors because the C code didn't include enough GCPRO's for | |
| 2214 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so | |
| 2215 that the reference would get relocated). | |
| 2216 | |
| 2217 This new method makes things somewhat bigger, but it is MUCH safer. */ | |
| 2218 | |
| 438 | 2219 DECLARE_FIXED_TYPE_ALLOC (string, Lisp_String); |
| 428 | 2220 /* strings are used and freed quite often */ |
| 2221 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */ | |
| 2222 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000 | |
| 2223 | |
| 2224 static Lisp_Object | |
| 2225 mark_string (Lisp_Object obj) | |
| 2226 { | |
| 793 | 2227 if (CONSP (XSTRING_PLIST (obj)) && EXTENT_INFOP (XCAR (XSTRING_PLIST (obj)))) |
| 2228 flush_cached_extent_info (XCAR (XSTRING_PLIST (obj))); | |
| 2229 return XSTRING_PLIST (obj); | |
| 428 | 2230 } |
| 2231 | |
| 2232 static int | |
| 2286 | 2233 string_equal (Lisp_Object obj1, Lisp_Object obj2, int UNUSED (depth)) |
| 428 | 2234 { |
| 2235 Bytecount len; | |
| 2236 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) && | |
| 2237 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len)); | |
| 2238 } | |
| 2239 | |
| 1204 | 2240 static const struct memory_description string_description[] = { |
| 793 | 2241 { XD_BYTECOUNT, offsetof (Lisp_String, size_) }, |
| 2242 { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data_), XD_INDIRECT(0, 1) }, | |
| 440 | 2243 { XD_LISP_OBJECT, offsetof (Lisp_String, plist) }, |
| 428 | 2244 { XD_END } |
| 2245 }; | |
| 2246 | |
| 442 | 2247 /* We store the string's extent info as the first element of the string's |
| 2248 property list; and the string's MODIFF as the first or second element | |
| 2249 of the string's property list (depending on whether the extent info | |
| 2250 is present), but only if the string has been modified. This is ugly | |
| 2251 but it reduces the memory allocated for the string in the vast | |
| 2252 majority of cases, where the string is never modified and has no | |
| 2253 extent info. | |
| 2254 | |
| 2255 #### This means you can't use an int as a key in a string's plist. */ | |
| 2256 | |
| 2257 static Lisp_Object * | |
| 2258 string_plist_ptr (Lisp_Object string) | |
| 2259 { | |
| 793 | 2260 Lisp_Object *ptr = &XSTRING_PLIST (string); |
| 442 | 2261 |
| 2262 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr))) | |
| 2263 ptr = &XCDR (*ptr); | |
| 2264 if (CONSP (*ptr) && INTP (XCAR (*ptr))) | |
| 2265 ptr = &XCDR (*ptr); | |
| 2266 return ptr; | |
| 2267 } | |
| 2268 | |
| 2269 static Lisp_Object | |
| 2270 string_getprop (Lisp_Object string, Lisp_Object property) | |
| 2271 { | |
| 2272 return external_plist_get (string_plist_ptr (string), property, 0, ERROR_ME); | |
| 2273 } | |
| 2274 | |
| 2275 static int | |
| 2276 string_putprop (Lisp_Object string, Lisp_Object property, Lisp_Object value) | |
| 2277 { | |
| 2278 external_plist_put (string_plist_ptr (string), property, value, 0, ERROR_ME); | |
| 2279 return 1; | |
| 2280 } | |
| 2281 | |
| 2282 static int | |
| 2283 string_remprop (Lisp_Object string, Lisp_Object property) | |
| 2284 { | |
| 2285 return external_remprop (string_plist_ptr (string), property, 0, ERROR_ME); | |
| 2286 } | |
| 2287 | |
| 2288 static Lisp_Object | |
| 2289 string_plist (Lisp_Object string) | |
| 2290 { | |
| 2291 return *string_plist_ptr (string); | |
| 2292 } | |
| 2293 | |
| 2720 | 2294 #ifndef MC_ALLOC |
| 442 | 2295 /* No `finalize', or `hash' methods. |
| 2296 internal_hash() already knows how to hash strings and finalization | |
| 2297 is done with the ADDITIONAL_FREE_string macro, which is the | |
| 2298 standard way to do finalization when using | |
| 2299 SWEEP_FIXED_TYPE_BLOCK(). */ | |
| 2720 | 2300 |
| 934 | 2301 DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS ("string", string, |
| 2302 1, /*dumpable-flag*/ | |
| 2303 mark_string, print_string, | |
| 2304 0, string_equal, 0, | |
| 2305 string_description, | |
| 2306 string_getprop, | |
| 2307 string_putprop, | |
| 2308 string_remprop, | |
| 2309 string_plist, | |
| 2310 Lisp_String); | |
| 2720 | 2311 #endif /* not MC_ALLOC */ |
| 2312 | |
| 428 | 2313 /* String blocks contain this many useful bytes. */ |
| 2314 #define STRING_CHARS_BLOCK_SIZE \ | |
| 814 | 2315 ((Bytecount) (8192 - MALLOC_OVERHEAD - \ |
| 2316 ((2 * sizeof (struct string_chars_block *)) \ | |
| 2317 + sizeof (EMACS_INT)))) | |
| 428 | 2318 /* Block header for small strings. */ |
| 2319 struct string_chars_block | |
| 2320 { | |
| 2321 EMACS_INT pos; | |
| 2322 struct string_chars_block *next; | |
| 2323 struct string_chars_block *prev; | |
| 2324 /* Contents of string_chars_block->string_chars are interleaved | |
| 2325 string_chars structures (see below) and the actual string data */ | |
| 2326 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE]; | |
| 2327 }; | |
| 2328 | |
| 2329 static struct string_chars_block *first_string_chars_block; | |
| 2330 static struct string_chars_block *current_string_chars_block; | |
| 2331 | |
| 2332 /* If SIZE is the length of a string, this returns how many bytes | |
| 2333 * the string occupies in string_chars_block->string_chars | |
| 2334 * (including alignment padding). | |
| 2335 */ | |
| 438 | 2336 #define STRING_FULLSIZE(size) \ |
| 826 | 2337 ALIGN_FOR_TYPE (((size) + 1 + sizeof (Lisp_String *)), Lisp_String *) |
| 428 | 2338 |
| 2339 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE) | |
| 2340 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size))) | |
| 2341 | |
| 454 | 2342 #define STRING_CHARS_FREE_P(ptr) ((ptr)->string == NULL) |
| 2343 #define MARK_STRING_CHARS_AS_FREE(ptr) ((void) ((ptr)->string = NULL)) | |
| 2344 | |
| 2720 | 2345 #ifdef MC_ALLOC |
| 2346 static void | |
| 2347 finalize_string (void *header, int for_disksave) | |
| 2348 { | |
| 2349 if (!for_disksave) | |
| 2350 { | |
| 2351 Lisp_String *s = (Lisp_String *) header; | |
| 2352 Bytecount size = s->size_; | |
| 2994 | 2353 #ifdef ALLOC_TYPE_STATS |
| 2775 | 2354 dec_lrecord_string_data_stats (size); |
| 2994 | 2355 #endif /* ALLOC_TYPE_STATS */ |
| 2720 | 2356 if (BIG_STRING_SIZE_P (size)) |
| 2357 xfree (s->data_, Ibyte *); | |
| 2358 } | |
| 2359 } | |
| 2360 | |
| 2361 DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS ("string", string, | |
| 2362 1, /*dumpable-flag*/ | |
| 2363 mark_string, print_string, | |
| 2364 finalize_string, | |
| 2365 string_equal, 0, | |
| 2366 string_description, | |
| 2367 string_getprop, | |
| 2368 string_putprop, | |
| 2369 string_remprop, | |
| 2370 string_plist, | |
| 2371 Lisp_String); | |
| 2372 | |
| 2373 #endif /* MC_ALLOC */ | |
| 2374 | |
| 428 | 2375 struct string_chars |
| 2376 { | |
| 438 | 2377 Lisp_String *string; |
| 428 | 2378 unsigned char chars[1]; |
| 2379 }; | |
| 2380 | |
| 2381 struct unused_string_chars | |
| 2382 { | |
| 438 | 2383 Lisp_String *string; |
| 428 | 2384 EMACS_INT fullsize; |
| 2385 }; | |
| 2386 | |
| 2387 static void | |
| 2388 init_string_chars_alloc (void) | |
| 2389 { | |
| 2390 first_string_chars_block = xnew (struct string_chars_block); | |
| 2391 first_string_chars_block->prev = 0; | |
| 2392 first_string_chars_block->next = 0; | |
| 2393 first_string_chars_block->pos = 0; | |
| 2394 current_string_chars_block = first_string_chars_block; | |
| 2395 } | |
| 2396 | |
| 1550 | 2397 static Ibyte * |
| 2398 allocate_big_string_chars (Bytecount length) | |
| 2399 { | |
| 2400 Ibyte *p = xnew_array (Ibyte, length); | |
| 2401 INCREMENT_CONS_COUNTER (length, "string chars"); | |
| 2402 return p; | |
| 2403 } | |
| 2404 | |
| 428 | 2405 static struct string_chars * |
| 793 | 2406 allocate_string_chars_struct (Lisp_Object string_it_goes_with, |
| 814 | 2407 Bytecount fullsize) |
| 428 | 2408 { |
| 2409 struct string_chars *s_chars; | |
| 2410 | |
| 438 | 2411 if (fullsize <= |
| 2412 (countof (current_string_chars_block->string_chars) | |
| 2413 - current_string_chars_block->pos)) | |
| 428 | 2414 { |
| 2415 /* This string can fit in the current string chars block */ | |
| 2416 s_chars = (struct string_chars *) | |
| 2417 (current_string_chars_block->string_chars | |
| 2418 + current_string_chars_block->pos); | |
| 2419 current_string_chars_block->pos += fullsize; | |
| 2420 } | |
| 2421 else | |
| 2422 { | |
| 2423 /* Make a new current string chars block */ | |
| 2424 struct string_chars_block *new_scb = xnew (struct string_chars_block); | |
| 2425 | |
| 2426 current_string_chars_block->next = new_scb; | |
| 2427 new_scb->prev = current_string_chars_block; | |
| 2428 new_scb->next = 0; | |
| 2429 current_string_chars_block = new_scb; | |
| 2430 new_scb->pos = fullsize; | |
| 2431 s_chars = (struct string_chars *) | |
| 2432 current_string_chars_block->string_chars; | |
| 2433 } | |
| 2434 | |
| 793 | 2435 s_chars->string = XSTRING (string_it_goes_with); |
| 428 | 2436 |
| 2437 INCREMENT_CONS_COUNTER (fullsize, "string chars"); | |
| 2438 | |
| 2439 return s_chars; | |
| 2440 } | |
| 2441 | |
| 771 | 2442 #ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN |
| 2443 void | |
| 2444 sledgehammer_check_ascii_begin (Lisp_Object str) | |
| 2445 { | |
| 2446 Bytecount i; | |
| 2447 | |
| 2448 for (i = 0; i < XSTRING_LENGTH (str); i++) | |
| 2449 { | |
| 826 | 2450 if (!byte_ascii_p (string_byte (str, i))) |
| 771 | 2451 break; |
| 2452 } | |
| 2453 | |
| 2454 assert (i == (Bytecount) XSTRING_ASCII_BEGIN (str) || | |
| 2455 (i > MAX_STRING_ASCII_BEGIN && | |
| 2456 (Bytecount) XSTRING_ASCII_BEGIN (str) == | |
| 2457 (Bytecount) MAX_STRING_ASCII_BEGIN)); | |
| 2458 } | |
| 2459 #endif | |
| 2460 | |
| 2461 /* You do NOT want to be calling this! (And if you do, you must call | |
| 851 | 2462 XSET_STRING_ASCII_BEGIN() after modifying the string.) Use ALLOCA () |
| 771 | 2463 instead and then call make_string() like the rest of the world. */ |
| 2464 | |
| 428 | 2465 Lisp_Object |
| 2466 make_uninit_string (Bytecount length) | |
| 2467 { | |
| 438 | 2468 Lisp_String *s; |
| 814 | 2469 Bytecount fullsize = STRING_FULLSIZE (length); |
| 428 | 2470 |
| 438 | 2471 assert (length >= 0 && fullsize > 0); |
| 428 | 2472 |
| 2720 | 2473 #ifdef MC_ALLOC |
| 2474 s = alloc_lrecord_type (Lisp_String, &lrecord_string); | |
| 2994 | 2475 #ifdef ALLOC_TYPE_STATS |
| 2775 | 2476 inc_lrecord_string_data_stats (length); |
| 2994 | 2477 #endif /* ALLOC_TYPE_STATS */ |
| 2720 | 2478 #else /* not MC_ALLOC */ |
| 428 | 2479 /* Allocate the string header */ |
| 438 | 2480 ALLOCATE_FIXED_TYPE (string, Lisp_String, s); |
| 793 | 2481 xzero (*s); |
| 771 | 2482 set_lheader_implementation (&s->u.lheader, &lrecord_string); |
| 2720 | 2483 #endif /* not MC_ALLOC */ |
| 2484 | |
| 3063 | 2485 /* The above allocations set the UID field, which overlaps with the |
| 2486 ascii-length field, to some non-zero value. We need to zero it. */ | |
| 2487 XSET_STRING_ASCII_BEGIN (wrap_string (s), 0); | |
| 2488 | |
| 826 | 2489 set_lispstringp_data (s, BIG_STRING_FULLSIZE_P (fullsize) |
| 2720 | 2490 ? allocate_big_string_chars (length + 1) |
| 2491 : allocate_string_chars_struct (wrap_string (s), | |
| 2492 fullsize)->chars); | |
| 438 | 2493 |
| 826 | 2494 set_lispstringp_length (s, length); |
| 428 | 2495 s->plist = Qnil; |
| 793 | 2496 set_string_byte (wrap_string (s), length, 0); |
| 2497 | |
| 2498 return wrap_string (s); | |
| 428 | 2499 } |
| 2500 | |
| 2501 #ifdef VERIFY_STRING_CHARS_INTEGRITY | |
| 2502 static void verify_string_chars_integrity (void); | |
| 2503 #endif | |
| 2504 | |
| 2505 /* Resize the string S so that DELTA bytes can be inserted starting | |
| 2506 at POS. If DELTA < 0, it means deletion starting at POS. If | |
| 2507 POS < 0, resize the string but don't copy any characters. Use | |
| 2508 this if you're planning on completely overwriting the string. | |
| 2509 */ | |
| 2510 | |
| 2511 void | |
| 793 | 2512 resize_string (Lisp_Object s, Bytecount pos, Bytecount delta) |
| 428 | 2513 { |
| 438 | 2514 Bytecount oldfullsize, newfullsize; |
| 428 | 2515 #ifdef VERIFY_STRING_CHARS_INTEGRITY |
| 2516 verify_string_chars_integrity (); | |
| 2517 #endif | |
| 800 | 2518 #ifdef ERROR_CHECK_TEXT |
| 428 | 2519 if (pos >= 0) |
| 2520 { | |
| 793 | 2521 assert (pos <= XSTRING_LENGTH (s)); |
| 428 | 2522 if (delta < 0) |
| 793 | 2523 assert (pos + (-delta) <= XSTRING_LENGTH (s)); |
| 428 | 2524 } |
| 2525 else | |
| 2526 { | |
| 2527 if (delta < 0) | |
| 793 | 2528 assert ((-delta) <= XSTRING_LENGTH (s)); |
| 428 | 2529 } |
| 800 | 2530 #endif /* ERROR_CHECK_TEXT */ |
| 428 | 2531 |
| 2532 if (delta == 0) | |
| 2533 /* simplest case: no size change. */ | |
| 2534 return; | |
| 438 | 2535 |
| 2536 if (pos >= 0 && delta < 0) | |
| 2537 /* If DELTA < 0, the functions below will delete the characters | |
| 2538 before POS. We want to delete characters *after* POS, however, | |
| 2539 so convert this to the appropriate form. */ | |
| 2540 pos += -delta; | |
| 2541 | |
| 793 | 2542 oldfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s)); |
| 2543 newfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s) + delta); | |
| 438 | 2544 |
| 2545 if (BIG_STRING_FULLSIZE_P (oldfullsize)) | |
| 428 | 2546 { |
| 438 | 2547 if (BIG_STRING_FULLSIZE_P (newfullsize)) |
| 428 | 2548 { |
| 440 | 2549 /* Both strings are big. We can just realloc(). |
| 2550 But careful! If the string is shrinking, we have to | |
| 2551 memmove() _before_ realloc(), and if growing, we have to | |
| 2552 memmove() _after_ realloc() - otherwise the access is | |
| 2553 illegal, and we might crash. */ | |
| 793 | 2554 Bytecount len = XSTRING_LENGTH (s) + 1 - pos; |
| 440 | 2555 |
| 2556 if (delta < 0 && pos >= 0) | |
| 793 | 2557 memmove (XSTRING_DATA (s) + pos + delta, |
| 2558 XSTRING_DATA (s) + pos, len); | |
| 2559 XSET_STRING_DATA | |
| 867 | 2560 (s, (Ibyte *) xrealloc (XSTRING_DATA (s), |
| 793 | 2561 XSTRING_LENGTH (s) + delta + 1)); |
| 440 | 2562 if (delta > 0 && pos >= 0) |
| 793 | 2563 memmove (XSTRING_DATA (s) + pos + delta, XSTRING_DATA (s) + pos, |
| 2564 len); | |
| 1550 | 2565 /* Bump the cons counter. |
| 2566 Conservative; Martin let the increment be delta. */ | |
| 2567 INCREMENT_CONS_COUNTER (newfullsize, "string chars"); | |
| 428 | 2568 } |
| 438 | 2569 else /* String has been demoted from BIG_STRING. */ |
| 428 | 2570 { |
| 867 | 2571 Ibyte *new_data = |
| 438 | 2572 allocate_string_chars_struct (s, newfullsize)->chars; |
| 867 | 2573 Ibyte *old_data = XSTRING_DATA (s); |
| 438 | 2574 |
| 2575 if (pos >= 0) | |
| 2576 { | |
| 2577 memcpy (new_data, old_data, pos); | |
| 2578 memcpy (new_data + pos + delta, old_data + pos, | |
| 793 | 2579 XSTRING_LENGTH (s) + 1 - pos); |
| 438 | 2580 } |
| 793 | 2581 XSET_STRING_DATA (s, new_data); |
| 1726 | 2582 xfree (old_data, Ibyte *); |
| 438 | 2583 } |
| 2584 } | |
| 2585 else /* old string is small */ | |
| 2586 { | |
| 2587 if (oldfullsize == newfullsize) | |
| 2588 { | |
| 2589 /* special case; size change but the necessary | |
| 2590 allocation size won't change (up or down; code | |
| 2591 somewhere depends on there not being any unused | |
| 2592 allocation space, modulo any alignment | |
| 2593 constraints). */ | |
| 428 | 2594 if (pos >= 0) |
| 2595 { | |
| 867 | 2596 Ibyte *addroff = pos + XSTRING_DATA (s); |
| 428 | 2597 |
| 2598 memmove (addroff + delta, addroff, | |
| 2599 /* +1 due to zero-termination. */ | |
| 793 | 2600 XSTRING_LENGTH (s) + 1 - pos); |
| 428 | 2601 } |
| 2602 } | |
| 2603 else | |
| 2604 { | |
| 867 | 2605 Ibyte *old_data = XSTRING_DATA (s); |
| 2606 Ibyte *new_data = | |
| 438 | 2607 BIG_STRING_FULLSIZE_P (newfullsize) |
| 1550 | 2608 ? allocate_big_string_chars (XSTRING_LENGTH (s) + delta + 1) |
| 438 | 2609 : allocate_string_chars_struct (s, newfullsize)->chars; |
| 2610 | |
| 428 | 2611 if (pos >= 0) |
| 2612 { | |
| 438 | 2613 memcpy (new_data, old_data, pos); |
| 2614 memcpy (new_data + pos + delta, old_data + pos, | |
| 793 | 2615 XSTRING_LENGTH (s) + 1 - pos); |
| 428 | 2616 } |
| 793 | 2617 XSET_STRING_DATA (s, new_data); |
| 438 | 2618 |
| 2619 { | |
| 2620 /* We need to mark this chunk of the string_chars_block | |
| 2621 as unused so that compact_string_chars() doesn't | |
| 2622 freak. */ | |
| 2623 struct string_chars *old_s_chars = (struct string_chars *) | |
| 2624 ((char *) old_data - offsetof (struct string_chars, chars)); | |
| 2625 /* Sanity check to make sure we aren't hosed by strange | |
| 2626 alignment/padding. */ | |
| 793 | 2627 assert (old_s_chars->string == XSTRING (s)); |
| 454 | 2628 MARK_STRING_CHARS_AS_FREE (old_s_chars); |
| 438 | 2629 ((struct unused_string_chars *) old_s_chars)->fullsize = |
| 2630 oldfullsize; | |
| 2631 } | |
| 428 | 2632 } |
| 438 | 2633 } |
| 2634 | |
| 793 | 2635 XSET_STRING_LENGTH (s, XSTRING_LENGTH (s) + delta); |
| 438 | 2636 /* If pos < 0, the string won't be zero-terminated. |
| 2637 Terminate now just to make sure. */ | |
| 793 | 2638 XSTRING_DATA (s)[XSTRING_LENGTH (s)] = '\0'; |
| 438 | 2639 |
| 2640 if (pos >= 0) | |
| 793 | 2641 /* We also have to adjust all of the extent indices after the |
| 2642 place we did the change. We say "pos - 1" because | |
| 2643 adjust_extents() is exclusive of the starting position | |
| 2644 passed to it. */ | |
| 2645 adjust_extents (s, pos - 1, XSTRING_LENGTH (s), delta); | |
| 428 | 2646 |
| 2647 #ifdef VERIFY_STRING_CHARS_INTEGRITY | |
| 2648 verify_string_chars_integrity (); | |
| 2649 #endif | |
| 2650 } | |
| 2651 | |
| 2652 #ifdef MULE | |
| 2653 | |
| 771 | 2654 /* WARNING: If you modify an existing string, you must call |
| 2655 CHECK_LISP_WRITEABLE() before and bump_string_modiff() afterwards. */ | |
| 428 | 2656 void |
| 867 | 2657 set_string_char (Lisp_Object s, Charcount i, Ichar c) |
| 428 | 2658 { |
| 867 | 2659 Ibyte newstr[MAX_ICHAR_LEN]; |
| 771 | 2660 Bytecount bytoff = string_index_char_to_byte (s, i); |
| 867 | 2661 Bytecount oldlen = itext_ichar_len (XSTRING_DATA (s) + bytoff); |
| 2662 Bytecount newlen = set_itext_ichar (newstr, c); | |
| 428 | 2663 |
| 793 | 2664 sledgehammer_check_ascii_begin (s); |
| 428 | 2665 if (oldlen != newlen) |
| 2666 resize_string (s, bytoff, newlen - oldlen); | |
| 793 | 2667 /* Remember, XSTRING_DATA (s) might have changed so we can't cache it. */ |
| 2668 memcpy (XSTRING_DATA (s) + bytoff, newstr, newlen); | |
| 771 | 2669 if (oldlen != newlen) |
| 2670 { | |
| 793 | 2671 if (newlen > 1 && i <= (Charcount) XSTRING_ASCII_BEGIN (s)) |
| 771 | 2672 /* Everything starting with the new char is no longer part of |
| 2673 ascii_begin */ | |
| 793 | 2674 XSET_STRING_ASCII_BEGIN (s, i); |
| 2675 else if (newlen == 1 && i == (Charcount) XSTRING_ASCII_BEGIN (s)) | |
| 771 | 2676 /* We've extended ascii_begin, and we have to figure out how much by */ |
| 2677 { | |
| 2678 Bytecount j; | |
| 814 | 2679 for (j = (Bytecount) i + 1; j < XSTRING_LENGTH (s); j++) |
| 771 | 2680 { |
| 826 | 2681 if (!byte_ascii_p (XSTRING_DATA (s)[j])) |
| 771 | 2682 break; |
| 2683 } | |
| 814 | 2684 XSET_STRING_ASCII_BEGIN (s, min (j, (Bytecount) MAX_STRING_ASCII_BEGIN)); |
| 771 | 2685 } |
| 2686 } | |
| 793 | 2687 sledgehammer_check_ascii_begin (s); |
| 428 | 2688 } |
| 2689 | |
| 2690 #endif /* MULE */ | |
| 2691 | |
| 2692 DEFUN ("make-string", Fmake_string, 2, 2, 0, /* | |
| 444 | 2693 Return a new string consisting of LENGTH copies of CHARACTER. |
| 2694 LENGTH must be a non-negative integer. | |
| 428 | 2695 */ |
| 444 | 2696 (length, character)) |
| 428 | 2697 { |
| 2698 CHECK_NATNUM (length); | |
| 444 | 2699 CHECK_CHAR_COERCE_INT (character); |
| 428 | 2700 { |
| 867 | 2701 Ibyte init_str[MAX_ICHAR_LEN]; |
| 2702 int len = set_itext_ichar (init_str, XCHAR (character)); | |
| 428 | 2703 Lisp_Object val = make_uninit_string (len * XINT (length)); |
| 2704 | |
| 2705 if (len == 1) | |
| 771 | 2706 { |
| 2707 /* Optimize the single-byte case */ | |
| 2708 memset (XSTRING_DATA (val), XCHAR (character), XSTRING_LENGTH (val)); | |
| 793 | 2709 XSET_STRING_ASCII_BEGIN (val, min (MAX_STRING_ASCII_BEGIN, |
| 2710 len * XINT (length))); | |
| 771 | 2711 } |
| 428 | 2712 else |
| 2713 { | |
| 647 | 2714 EMACS_INT i; |
| 867 | 2715 Ibyte *ptr = XSTRING_DATA (val); |
| 428 | 2716 |
| 2717 for (i = XINT (length); i; i--) | |
| 2718 { | |
| 867 | 2719 Ibyte *init_ptr = init_str; |
| 428 | 2720 switch (len) |
| 2721 { | |
| 2722 case 4: *ptr++ = *init_ptr++; | |
| 2723 case 3: *ptr++ = *init_ptr++; | |
| 2724 case 2: *ptr++ = *init_ptr++; | |
| 2725 case 1: *ptr++ = *init_ptr++; | |
| 2726 } | |
| 2727 } | |
| 2728 } | |
| 771 | 2729 sledgehammer_check_ascii_begin (val); |
| 428 | 2730 return val; |
| 2731 } | |
| 2732 } | |
| 2733 | |
| 2734 DEFUN ("string", Fstring, 0, MANY, 0, /* | |
| 2735 Concatenate all the argument characters and make the result a string. | |
| 2736 */ | |
| 2737 (int nargs, Lisp_Object *args)) | |
| 2738 { | |
| 2367 | 2739 Ibyte *storage = alloca_ibytes (nargs * MAX_ICHAR_LEN); |
| 867 | 2740 Ibyte *p = storage; |
| 428 | 2741 |
| 2742 for (; nargs; nargs--, args++) | |
| 2743 { | |
| 2744 Lisp_Object lisp_char = *args; | |
| 2745 CHECK_CHAR_COERCE_INT (lisp_char); | |
| 867 | 2746 p += set_itext_ichar (p, XCHAR (lisp_char)); |
| 428 | 2747 } |
| 2748 return make_string (storage, p - storage); | |
| 2749 } | |
| 2750 | |
| 771 | 2751 /* Initialize the ascii_begin member of a string to the correct value. */ |
| 2752 | |
| 2753 void | |
| 2754 init_string_ascii_begin (Lisp_Object string) | |
| 2755 { | |
| 2756 #ifdef MULE | |
| 2757 int i; | |
| 2758 Bytecount length = XSTRING_LENGTH (string); | |
| 867 | 2759 Ibyte *contents = XSTRING_DATA (string); |
| 771 | 2760 |
| 2761 for (i = 0; i < length; i++) | |
| 2762 { | |
| 826 | 2763 if (!byte_ascii_p (contents[i])) |
| 771 | 2764 break; |
| 2765 } | |
| 793 | 2766 XSET_STRING_ASCII_BEGIN (string, min (i, MAX_STRING_ASCII_BEGIN)); |
| 771 | 2767 #else |
| 793 | 2768 XSET_STRING_ASCII_BEGIN (string, min (XSTRING_LENGTH (string), |
| 2769 MAX_STRING_ASCII_BEGIN)); | |
| 771 | 2770 #endif |
| 2771 sledgehammer_check_ascii_begin (string); | |
| 2772 } | |
| 428 | 2773 |
| 2774 /* Take some raw memory, which MUST already be in internal format, | |
| 2775 and package it up into a Lisp string. */ | |
| 2776 Lisp_Object | |
| 867 | 2777 make_string (const Ibyte *contents, Bytecount length) |
| 428 | 2778 { |
| 2779 Lisp_Object val; | |
| 2780 | |
| 2781 /* Make sure we find out about bad make_string's when they happen */ | |
| 800 | 2782 #if defined (ERROR_CHECK_TEXT) && defined (MULE) |
| 428 | 2783 bytecount_to_charcount (contents, length); /* Just for the assertions */ |
| 2784 #endif | |
| 2785 | |
| 2786 val = make_uninit_string (length); | |
| 2787 memcpy (XSTRING_DATA (val), contents, length); | |
| 771 | 2788 init_string_ascii_begin (val); |
| 2789 sledgehammer_check_ascii_begin (val); | |
| 428 | 2790 return val; |
| 2791 } | |
| 2792 | |
| 2793 /* Take some raw memory, encoded in some external data format, | |
| 2794 and convert it into a Lisp string. */ | |
| 2795 Lisp_Object | |
| 442 | 2796 make_ext_string (const Extbyte *contents, EMACS_INT length, |
| 440 | 2797 Lisp_Object coding_system) |
| 428 | 2798 { |
| 440 | 2799 Lisp_Object string; |
| 2800 TO_INTERNAL_FORMAT (DATA, (contents, length), | |
| 2801 LISP_STRING, string, | |
| 2802 coding_system); | |
| 2803 return string; | |
| 428 | 2804 } |
| 2805 | |
| 2806 Lisp_Object | |
| 867 | 2807 build_intstring (const Ibyte *str) |
| 771 | 2808 { |
| 2809 /* Some strlen's crash and burn if passed null. */ | |
| 814 | 2810 return make_string (str, (str ? qxestrlen (str) : (Bytecount) 0)); |
| 771 | 2811 } |
| 2812 | |
| 2813 Lisp_Object | |
| 867 | 2814 build_string (const CIbyte *str) |
| 428 | 2815 { |
| 2816 /* Some strlen's crash and burn if passed null. */ | |
| 867 | 2817 return make_string ((const Ibyte *) str, (str ? strlen (str) : 0)); |
| 428 | 2818 } |
| 2819 | |
| 2820 Lisp_Object | |
| 593 | 2821 build_ext_string (const Extbyte *str, Lisp_Object coding_system) |
| 428 | 2822 { |
| 2823 /* Some strlen's crash and burn if passed null. */ | |
| 2367 | 2824 return make_ext_string ((const Extbyte *) str, |
| 2825 (str ? dfc_external_data_len (str, coding_system) : | |
| 2826 0), | |
| 440 | 2827 coding_system); |
| 428 | 2828 } |
| 2829 | |
| 2830 Lisp_Object | |
| 867 | 2831 build_msg_intstring (const Ibyte *str) |
| 428 | 2832 { |
| 771 | 2833 return build_intstring (GETTEXT (str)); |
| 2834 } | |
| 2835 | |
| 2836 Lisp_Object | |
| 867 | 2837 build_msg_string (const CIbyte *str) |
| 771 | 2838 { |
| 2839 return build_string (CGETTEXT (str)); | |
| 428 | 2840 } |
| 2841 | |
| 2842 Lisp_Object | |
| 867 | 2843 make_string_nocopy (const Ibyte *contents, Bytecount length) |
| 428 | 2844 { |
| 438 | 2845 Lisp_String *s; |
| 428 | 2846 Lisp_Object val; |
| 2847 | |
| 2848 /* Make sure we find out about bad make_string_nocopy's when they happen */ | |
| 800 | 2849 #if defined (ERROR_CHECK_TEXT) && defined (MULE) |
| 428 | 2850 bytecount_to_charcount (contents, length); /* Just for the assertions */ |
| 2851 #endif | |
| 2852 | |
| 2720 | 2853 #ifdef MC_ALLOC |
| 2854 s = alloc_lrecord_type (Lisp_String, &lrecord_string); | |
| 2994 | 2855 #ifdef ALLOC_TYPE_STATS |
| 2775 | 2856 inc_lrecord_string_data_stats (length); |
| 2994 | 2857 #endif /* ALLOC_TYPE_STATS */ |
| 2720 | 2858 mcpro (wrap_pointer_1 (s)); /* otherwise nocopy_strings get |
| 2859 collected and static data is tried to | |
| 2860 be freed. */ | |
| 2861 #else /* not MC_ALLOC */ | |
| 428 | 2862 /* Allocate the string header */ |
| 438 | 2863 ALLOCATE_FIXED_TYPE (string, Lisp_String, s); |
| 771 | 2864 set_lheader_implementation (&s->u.lheader, &lrecord_string); |
| 2865 SET_C_READONLY_RECORD_HEADER (&s->u.lheader); | |
| 2720 | 2866 #endif /* not MC_ALLOC */ |
| 3063 | 2867 /* Don't need to XSET_STRING_ASCII_BEGIN() here because it happens in |
| 2868 init_string_ascii_begin(). */ | |
| 428 | 2869 s->plist = Qnil; |
| 867 | 2870 set_lispstringp_data (s, (Ibyte *) contents); |
| 826 | 2871 set_lispstringp_length (s, length); |
| 793 | 2872 val = wrap_string (s); |
| 771 | 2873 init_string_ascii_begin (val); |
| 2874 sledgehammer_check_ascii_begin (val); | |
| 2875 | |
| 428 | 2876 return val; |
| 2877 } | |
| 2878 | |
| 2879 | |
| 2720 | 2880 #ifndef MC_ALLOC |
| 428 | 2881 /************************************************************************/ |
| 2882 /* lcrecord lists */ | |
| 2883 /************************************************************************/ | |
| 2884 | |
| 2885 /* Lcrecord lists are used to manage the allocation of particular | |
| 3024 | 2886 sorts of lcrecords, to avoid calling BASIC_ALLOC_LCRECORD() (and thus |
| 428 | 2887 malloc() and garbage-collection junk) as much as possible. |
| 2888 It is similar to the Blocktype class. | |
| 2889 | |
| 1204 | 2890 See detailed comment in lcrecord.h. |
| 2891 */ | |
| 2892 | |
| 2893 const struct memory_description free_description[] = { | |
| 2551 | 2894 { XD_LISP_OBJECT, offsetof (struct free_lcrecord_header, chain), 0, { 0 }, |
| 1204 | 2895 XD_FLAG_FREE_LISP_OBJECT }, |
| 2896 { XD_END } | |
| 2897 }; | |
| 2898 | |
| 2899 DEFINE_LRECORD_IMPLEMENTATION ("free", free, | |
| 2900 0, /*dumpable-flag*/ | |
| 2901 0, internal_object_printer, | |
| 2902 0, 0, 0, free_description, | |
| 2903 struct free_lcrecord_header); | |
| 2904 | |
| 2905 const struct memory_description lcrecord_list_description[] = { | |
| 2551 | 2906 { XD_LISP_OBJECT, offsetof (struct lcrecord_list, free), 0, { 0 }, |
| 1204 | 2907 XD_FLAG_FREE_LISP_OBJECT }, |
| 2908 { XD_END } | |
| 2909 }; | |
| 428 | 2910 |
| 2911 static Lisp_Object | |
| 2912 mark_lcrecord_list (Lisp_Object obj) | |
| 2913 { | |
| 2914 struct lcrecord_list *list = XLCRECORD_LIST (obj); | |
| 2915 Lisp_Object chain = list->free; | |
| 2916 | |
| 2917 while (!NILP (chain)) | |
| 2918 { | |
| 2919 struct lrecord_header *lheader = XRECORD_LHEADER (chain); | |
| 2920 struct free_lcrecord_header *free_header = | |
| 2921 (struct free_lcrecord_header *) lheader; | |
| 2922 | |
| 442 | 2923 gc_checking_assert |
| 2924 (/* There should be no other pointers to the free list. */ | |
| 2925 ! MARKED_RECORD_HEADER_P (lheader) | |
| 2926 && | |
| 2927 /* Only lcrecords should be here. */ | |
| 1204 | 2928 ! list->implementation->basic_p |
| 442 | 2929 && |
| 2930 /* Only free lcrecords should be here. */ | |
| 2931 free_header->lcheader.free | |
| 2932 && | |
| 2933 /* The type of the lcrecord must be right. */ | |
| 1204 | 2934 lheader->type == lrecord_type_free |
| 442 | 2935 && |
| 2936 /* So must the size. */ | |
| 1204 | 2937 (list->implementation->static_size == 0 || |
| 2938 list->implementation->static_size == list->size) | |
| 442 | 2939 ); |
| 428 | 2940 |
| 2941 MARK_RECORD_HEADER (lheader); | |
| 2942 chain = free_header->chain; | |
| 2943 } | |
| 2944 | |
| 2945 return Qnil; | |
| 2946 } | |
| 2947 | |
| 934 | 2948 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list, |
| 2949 0, /*dumpable-flag*/ | |
| 2950 mark_lcrecord_list, internal_object_printer, | |
| 1204 | 2951 0, 0, 0, lcrecord_list_description, |
| 2952 struct lcrecord_list); | |
| 934 | 2953 |
| 428 | 2954 Lisp_Object |
| 665 | 2955 make_lcrecord_list (Elemcount size, |
| 442 | 2956 const struct lrecord_implementation *implementation) |
| 428 | 2957 { |
| 3024 | 2958 /* Don't use old_alloc_lcrecord_type() avoid infinite recursion |
| 1204 | 2959 allocating this, */ |
| 2960 struct lcrecord_list *p = (struct lcrecord_list *) | |
| 3024 | 2961 old_basic_alloc_lcrecord (sizeof (struct lcrecord_list), |
| 2962 &lrecord_lcrecord_list); | |
| 428 | 2963 |
| 2964 p->implementation = implementation; | |
| 2965 p->size = size; | |
| 2966 p->free = Qnil; | |
| 793 | 2967 return wrap_lcrecord_list (p); |
| 428 | 2968 } |
| 2969 | |
| 2970 Lisp_Object | |
| 1204 | 2971 alloc_managed_lcrecord (Lisp_Object lcrecord_list) |
| 428 | 2972 { |
| 2973 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); | |
| 2974 if (!NILP (list->free)) | |
| 2975 { | |
| 2976 Lisp_Object val = list->free; | |
| 2977 struct free_lcrecord_header *free_header = | |
| 2978 (struct free_lcrecord_header *) XPNTR (val); | |
| 1204 | 2979 struct lrecord_header *lheader = &free_header->lcheader.lheader; |
| 428 | 2980 |
| 2981 #ifdef ERROR_CHECK_GC | |
| 1204 | 2982 /* Major overkill here. */ |
| 428 | 2983 /* There should be no other pointers to the free list. */ |
| 442 | 2984 assert (! MARKED_RECORD_HEADER_P (lheader)); |
| 428 | 2985 /* Only free lcrecords should be here. */ |
| 2986 assert (free_header->lcheader.free); | |
| 1204 | 2987 assert (lheader->type == lrecord_type_free); |
| 2988 /* Only lcrecords should be here. */ | |
| 2989 assert (! (list->implementation->basic_p)); | |
| 2990 #if 0 /* Not used anymore, now that we set the type of the header to | |
| 2991 lrecord_type_free. */ | |
| 428 | 2992 /* The type of the lcrecord must be right. */ |
| 442 | 2993 assert (LHEADER_IMPLEMENTATION (lheader) == list->implementation); |
| 1204 | 2994 #endif /* 0 */ |
| 428 | 2995 /* So must the size. */ |
| 1204 | 2996 assert (list->implementation->static_size == 0 || |
| 2997 list->implementation->static_size == list->size); | |
| 428 | 2998 #endif /* ERROR_CHECK_GC */ |
| 442 | 2999 |
| 428 | 3000 list->free = free_header->chain; |
| 3001 free_header->lcheader.free = 0; | |
| 1204 | 3002 /* Put back the correct type, as we set it to lrecord_type_free. */ |
| 3003 lheader->type = list->implementation->lrecord_type_index; | |
| 3024 | 3004 old_zero_sized_lcrecord (free_header, list->size); |
| 428 | 3005 return val; |
| 3006 } | |
| 3007 else | |
| 3024 | 3008 return wrap_pointer_1 (old_basic_alloc_lcrecord (list->size, |
| 3009 list->implementation)); | |
| 428 | 3010 } |
| 3011 | |
| 771 | 3012 /* "Free" a Lisp object LCRECORD by placing it on its associated free list |
| 1204 | 3013 LCRECORD_LIST; next time alloc_managed_lcrecord() is called with the |
| 771 | 3014 same LCRECORD_LIST as its parameter, it will return an object from the |
| 3015 free list, which may be this one. Be VERY VERY SURE there are no | |
| 3016 pointers to this object hanging around anywhere where they might be | |
| 3017 used! | |
| 3018 | |
| 3019 The first thing this does before making any global state change is to | |
| 3020 call the finalize method of the object, if it exists. */ | |
| 3021 | |
| 428 | 3022 void |
| 3023 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord) | |
| 3024 { | |
| 3025 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); | |
| 3026 struct free_lcrecord_header *free_header = | |
| 3027 (struct free_lcrecord_header *) XPNTR (lcrecord); | |
| 442 | 3028 struct lrecord_header *lheader = &free_header->lcheader.lheader; |
| 3029 const struct lrecord_implementation *implementation | |
| 428 | 3030 = LHEADER_IMPLEMENTATION (lheader); |
| 3031 | |
| 771 | 3032 /* Finalizer methods may try to free objects within them, which typically |
| 3033 won't be marked and thus are scheduled for demolition. Putting them | |
| 3034 on the free list would be very bad, as we'd have xfree()d memory in | |
| 3035 the list. Even if for some reason the objects are still live | |
| 3036 (generally a logic error!), we still will have problems putting such | |
| 3037 an object on the free list right now (e.g. we'd have to avoid calling | |
| 3038 the finalizer twice, etc.). So basically, those finalizers should not | |
| 3039 be freeing any objects if during GC. Abort now to catch those | |
| 3040 problems. */ | |
| 3041 gc_checking_assert (!gc_in_progress); | |
| 3042 | |
| 428 | 3043 /* Make sure the size is correct. This will catch, for example, |
| 3044 putting a window configuration on the wrong free list. */ | |
| 1204 | 3045 gc_checking_assert (detagged_lisp_object_size (lheader) == list->size); |
| 771 | 3046 /* Make sure the object isn't already freed. */ |
| 3047 gc_checking_assert (!free_header->lcheader.free); | |
| 2367 | 3048 /* Freeing stuff in dumped memory is bad. If you trip this, you |
| 3049 may need to check for this before freeing. */ | |
| 3050 gc_checking_assert (!OBJECT_DUMPED_P (lcrecord)); | |
| 771 | 3051 |
| 428 | 3052 if (implementation->finalizer) |
| 3053 implementation->finalizer (lheader, 0); | |
| 1204 | 3054 /* Yes, there are two ways to indicate freeness -- the type is |
| 3055 lrecord_type_free or the ->free flag is set. We used to do only the | |
| 3056 latter; now we do the former as well for KKCC purposes. Probably | |
| 3057 safer in any case, as we will lose quicker this way than keeping | |
| 3058 around an lrecord of apparently correct type but bogus junk in it. */ | |
| 3059 MARK_LRECORD_AS_FREE (lheader); | |
| 428 | 3060 free_header->chain = list->free; |
| 3061 free_header->lcheader.free = 1; | |
| 3062 list->free = lcrecord; | |
| 3063 } | |
| 3064 | |
| 771 | 3065 static Lisp_Object all_lcrecord_lists[countof (lrecord_implementations_table)]; |
| 3066 | |
| 3067 void * | |
| 3068 alloc_automanaged_lcrecord (Bytecount size, | |
| 3069 const struct lrecord_implementation *imp) | |
| 3070 { | |
| 3071 if (EQ (all_lcrecord_lists[imp->lrecord_type_index], Qzero)) | |
| 3072 all_lcrecord_lists[imp->lrecord_type_index] = | |
| 3073 make_lcrecord_list (size, imp); | |
| 3074 | |
| 1204 | 3075 return XPNTR (alloc_managed_lcrecord |
| 771 | 3076 (all_lcrecord_lists[imp->lrecord_type_index])); |
| 3077 } | |
| 3078 | |
| 3079 void | |
| 3024 | 3080 old_free_lcrecord (Lisp_Object rec) |
| 771 | 3081 { |
| 3082 int type = XRECORD_LHEADER (rec)->type; | |
| 3083 | |
| 3084 assert (!EQ (all_lcrecord_lists[type], Qzero)); | |
| 3085 | |
| 3086 free_managed_lcrecord (all_lcrecord_lists[type], rec); | |
| 3087 } | |
| 2720 | 3088 #endif /* not MC_ALLOC */ |
| 428 | 3089 |
| 3090 | |
| 3091 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /* | |
| 3092 Kept for compatibility, returns its argument. | |
| 3093 Old: | |
| 3094 Make a copy of OBJECT in pure storage. | |
| 3095 Recursively copies contents of vectors and cons cells. | |
| 3096 Does not copy symbols. | |
| 3097 */ | |
| 444 | 3098 (object)) |
| 428 | 3099 { |
| 444 | 3100 return object; |
| 428 | 3101 } |
| 3102 | |
| 3103 | |
| 3104 /************************************************************************/ | |
| 3105 /* Garbage Collection */ | |
| 3106 /************************************************************************/ | |
| 3107 | |
| 442 | 3108 /* All the built-in lisp object types are enumerated in `enum lrecord_type'. |
| 3109 Additional ones may be defined by a module (none yet). We leave some | |
| 3110 room in `lrecord_implementations_table' for such new lisp object types. */ | |
| 647 | 3111 const struct lrecord_implementation *lrecord_implementations_table[(int)lrecord_type_last_built_in_type + MODULE_DEFINABLE_TYPE_COUNT]; |
| 3112 int lrecord_type_count = lrecord_type_last_built_in_type; | |
| 1676 | 3113 #ifndef USE_KKCC |
| 442 | 3114 /* Object marker functions are in the lrecord_implementation structure. |
| 3115 But copying them to a parallel array is much more cache-friendly. | |
| 3116 This hack speeds up (garbage-collect) by about 5%. */ | |
| 3117 Lisp_Object (*lrecord_markers[countof (lrecord_implementations_table)]) (Lisp_Object); | |
| 1676 | 3118 #endif /* not USE_KKCC */ |
| 428 | 3119 |
| 3120 struct gcpro *gcprolist; | |
| 3121 | |
| 771 | 3122 /* We want the staticpro list relocated, but not the pointers found |
| 3123 therein, because they refer to locations in the global data segment, not | |
| 3124 in the heap; we only dump heap objects. Hence we use a trivial | |
| 3125 description, as for pointerless objects. (Note that the data segment | |
| 3126 objects, which are global variables like Qfoo or Vbar, themselves are | |
| 3127 pointers to heap objects. Each needs to be described to pdump as a | |
| 3128 "root pointer"; this happens in the call to staticpro(). */ | |
| 1204 | 3129 static const struct memory_description staticpro_description_1[] = { |
| 452 | 3130 { XD_END } |
| 3131 }; | |
| 3132 | |
| 1204 | 3133 static const struct sized_memory_description staticpro_description = { |
| 452 | 3134 sizeof (Lisp_Object *), |
| 3135 staticpro_description_1 | |
| 3136 }; | |
| 3137 | |
| 1204 | 3138 static const struct memory_description staticpros_description_1[] = { |
| 452 | 3139 XD_DYNARR_DESC (Lisp_Object_ptr_dynarr, &staticpro_description), |
| 3140 { XD_END } | |
| 3141 }; | |
| 3142 | |
| 1204 | 3143 static const struct sized_memory_description staticpros_description = { |
| 452 | 3144 sizeof (Lisp_Object_ptr_dynarr), |
| 3145 staticpros_description_1 | |
| 3146 }; | |
| 3147 | |
| 771 | 3148 #ifdef DEBUG_XEMACS |
| 3149 | |
| 1204 | 3150 static const struct memory_description staticpro_one_name_description_1[] = { |
| 2367 | 3151 { XD_ASCII_STRING, 0 }, |
| 771 | 3152 { XD_END } |
| 3153 }; | |
| 3154 | |
| 1204 | 3155 static const struct sized_memory_description staticpro_one_name_description = { |
| 771 | 3156 sizeof (char *), |
| 3157 staticpro_one_name_description_1 | |
| 3158 }; | |
| 3159 | |
| 1204 | 3160 static const struct memory_description staticpro_names_description_1[] = { |
| 771 | 3161 XD_DYNARR_DESC (char_ptr_dynarr, &staticpro_one_name_description), |
| 3162 { XD_END } | |
| 3163 }; | |
| 3164 | |
| 1204 | 3165 |
| 3166 extern const struct sized_memory_description staticpro_names_description; | |
| 3167 | |
| 3168 const struct sized_memory_description staticpro_names_description = { | |
| 771 | 3169 sizeof (char_ptr_dynarr), |
| 3170 staticpro_names_description_1 | |
| 3171 }; | |
| 3172 | |
| 3173 /* Help debug crashes gc-marking a staticpro'ed object. */ | |
| 3174 | |
| 3175 Lisp_Object_ptr_dynarr *staticpros; | |
| 3176 char_ptr_dynarr *staticpro_names; | |
| 3177 | |
| 3178 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
| 3179 garbage collection, and for dumping. */ | |
| 3180 void | |
| 3181 staticpro_1 (Lisp_Object *varaddress, char *varname) | |
| 3182 { | |
| 3183 Dynarr_add (staticpros, varaddress); | |
| 3184 Dynarr_add (staticpro_names, varname); | |
| 1204 | 3185 dump_add_root_lisp_object (varaddress); |
| 771 | 3186 } |
| 3187 | |
| 3188 | |
| 3189 Lisp_Object_ptr_dynarr *staticpros_nodump; | |
| 3190 char_ptr_dynarr *staticpro_nodump_names; | |
| 3191 | |
| 3192 /* Mark the Lisp_Object at heap VARADDRESS as a root object for | |
| 3193 garbage collection, but not for dumping. (See below.) */ | |
| 3194 void | |
| 3195 staticpro_nodump_1 (Lisp_Object *varaddress, char *varname) | |
| 3196 { | |
| 3197 Dynarr_add (staticpros_nodump, varaddress); | |
| 3198 Dynarr_add (staticpro_nodump_names, varname); | |
| 3199 } | |
| 3200 | |
| 996 | 3201 #ifdef HAVE_SHLIB |
| 3202 /* Stop treating the Lisp_Object at non-heap VARADDRESS as a root object | |
| 3203 for garbage collection, but not for dumping. */ | |
| 3204 void | |
| 3205 unstaticpro_nodump_1 (Lisp_Object *varaddress, char *varname) | |
| 3206 { | |
| 3207 Dynarr_delete_object (staticpros, varaddress); | |
| 3208 Dynarr_delete_object (staticpro_names, varname); | |
| 3209 } | |
| 3210 #endif | |
| 3211 | |
| 771 | 3212 #else /* not DEBUG_XEMACS */ |
| 3213 | |
| 452 | 3214 Lisp_Object_ptr_dynarr *staticpros; |
| 3215 | |
| 3216 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
| 3217 garbage collection, and for dumping. */ | |
| 428 | 3218 void |
| 3219 staticpro (Lisp_Object *varaddress) | |
| 3220 { | |
| 452 | 3221 Dynarr_add (staticpros, varaddress); |
| 1204 | 3222 dump_add_root_lisp_object (varaddress); |
| 428 | 3223 } |
| 3224 | |
| 442 | 3225 |
| 452 | 3226 Lisp_Object_ptr_dynarr *staticpros_nodump; |
| 3227 | |
| 771 | 3228 /* Mark the Lisp_Object at heap VARADDRESS as a root object for garbage |
| 3229 collection, but not for dumping. This is used for objects where the | |
| 3230 only sure pointer is in the heap (rather than in the global data | |
| 3231 segment, as must be the case for pdump root pointers), but not inside of | |
| 3232 another Lisp object (where it will be marked as a result of that Lisp | |
| 3233 object's mark method). The call to staticpro_nodump() must occur *BOTH* | |
| 3234 at initialization time and at "reinitialization" time (startup, after | |
| 3235 pdump load.) (For example, this is the case with the predicate symbols | |
| 3236 for specifier and coding system types. The pointer to this symbol is | |
| 3237 inside of a methods structure, which is allocated on the heap. The | |
| 3238 methods structure will be written out to the pdump data file, and may be | |
| 3239 reloaded at a different address.) | |
| 3240 | |
| 3241 #### The necessity for reinitialization is a bug in pdump. Pdump should | |
| 3242 automatically regenerate the staticpro()s for these symbols when it | |
| 3243 loads the data in. */ | |
| 3244 | |
| 428 | 3245 void |
| 3246 staticpro_nodump (Lisp_Object *varaddress) | |
| 3247 { | |
| 452 | 3248 Dynarr_add (staticpros_nodump, varaddress); |
| 428 | 3249 } |
| 3250 | |
| 996 | 3251 #ifdef HAVE_SHLIB |
| 3252 /* Unmark the Lisp_Object at non-heap VARADDRESS as a root object for | |
| 3253 garbage collection, but not for dumping. */ | |
| 3254 void | |
| 3255 unstaticpro_nodump (Lisp_Object *varaddress) | |
| 3256 { | |
| 3257 Dynarr_delete_object (staticpros, varaddress); | |
| 3258 } | |
| 3259 #endif | |
| 3260 | |
| 771 | 3261 #endif /* not DEBUG_XEMACS */ |
| 3262 | |
| 2720 | 3263 |
| 3264 | |
| 3265 | |
| 3266 | |
| 3267 #ifdef MC_ALLOC | |
| 3268 static const struct memory_description mcpro_description_1[] = { | |
| 3269 { XD_END } | |
| 3270 }; | |
| 3271 | |
| 3272 static const struct sized_memory_description mcpro_description = { | |
| 3273 sizeof (Lisp_Object *), | |
| 3274 mcpro_description_1 | |
| 3275 }; | |
| 3276 | |
| 3277 static const struct memory_description mcpros_description_1[] = { | |
| 3278 XD_DYNARR_DESC (Lisp_Object_dynarr, &mcpro_description), | |
| 3279 { XD_END } | |
| 3280 }; | |
| 3281 | |
| 3282 static const struct sized_memory_description mcpros_description = { | |
| 3283 sizeof (Lisp_Object_dynarr), | |
| 3284 mcpros_description_1 | |
| 3285 }; | |
| 3286 | |
| 3287 #ifdef DEBUG_XEMACS | |
| 3288 | |
| 3289 static const struct memory_description mcpro_one_name_description_1[] = { | |
| 3290 { XD_ASCII_STRING, 0 }, | |
| 3291 { XD_END } | |
| 3292 }; | |
| 3293 | |
| 3294 static const struct sized_memory_description mcpro_one_name_description = { | |
| 3295 sizeof (char *), | |
| 3296 mcpro_one_name_description_1 | |
| 3297 }; | |
| 3298 | |
| 3299 static const struct memory_description mcpro_names_description_1[] = { | |
| 3300 XD_DYNARR_DESC (char_ptr_dynarr, &mcpro_one_name_description), | |
| 3301 { XD_END } | |
| 3302 }; | |
| 3303 | |
| 3304 extern const struct sized_memory_description mcpro_names_description; | |
| 3305 | |
| 3306 const struct sized_memory_description mcpro_names_description = { | |
| 3307 sizeof (char_ptr_dynarr), | |
| 3308 mcpro_names_description_1 | |
| 3309 }; | |
| 3310 | |
| 3311 /* Help debug crashes gc-marking a mcpro'ed object. */ | |
| 3312 | |
| 3313 Lisp_Object_dynarr *mcpros; | |
| 3314 char_ptr_dynarr *mcpro_names; | |
| 3315 | |
| 3316 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
| 3317 garbage collection, and for dumping. */ | |
| 3318 void | |
| 3319 mcpro_1 (Lisp_Object varaddress, char *varname) | |
| 3320 { | |
| 3321 Dynarr_add (mcpros, varaddress); | |
| 3322 Dynarr_add (mcpro_names, varname); | |
| 3323 } | |
| 3324 | |
| 3325 #else /* not DEBUG_XEMACS */ | |
| 3326 | |
| 3327 Lisp_Object_dynarr *mcpros; | |
| 3328 | |
| 3329 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
| 3330 garbage collection, and for dumping. */ | |
| 3331 void | |
| 3332 mcpro (Lisp_Object varaddress) | |
| 3333 { | |
| 3334 Dynarr_add (mcpros, varaddress); | |
| 3335 } | |
| 3336 | |
| 3337 #endif /* not DEBUG_XEMACS */ | |
| 3338 #endif /* MC_ALLOC */ | |
| 3339 | |
| 442 | 3340 #ifdef ERROR_CHECK_GC |
| 2720 | 3341 #ifdef MC_ALLOC |
| 3342 #define GC_CHECK_LHEADER_INVARIANTS(lheader) do { \ | |
| 3343 struct lrecord_header * GCLI_lh = (lheader); \ | |
| 3344 assert (GCLI_lh != 0); \ | |
| 3345 assert (GCLI_lh->type < (unsigned int) lrecord_type_count); \ | |
| 3346 } while (0) | |
| 3347 #else /* not MC_ALLOC */ | |
| 442 | 3348 #define GC_CHECK_LHEADER_INVARIANTS(lheader) do { \ |
| 3349 struct lrecord_header * GCLI_lh = (lheader); \ | |
| 3350 assert (GCLI_lh != 0); \ | |
| 647 | 3351 assert (GCLI_lh->type < (unsigned int) lrecord_type_count); \ |
| 442 | 3352 assert (! C_READONLY_RECORD_HEADER_P (GCLI_lh) || \ |
| 3353 (MARKED_RECORD_HEADER_P (GCLI_lh) && \ | |
| 3354 LISP_READONLY_RECORD_HEADER_P (GCLI_lh))); \ | |
| 3355 } while (0) | |
| 2720 | 3356 #endif /* not MC_ALLOC */ |
| 442 | 3357 #else |
| 3358 #define GC_CHECK_LHEADER_INVARIANTS(lheader) | |
| 3359 #endif | |
| 3360 | |
| 934 | 3361 |
| 1204 | 3362 static const struct memory_description lisp_object_description_1[] = { |
| 3363 { XD_LISP_OBJECT, 0 }, | |
| 3364 { XD_END } | |
| 3365 }; | |
| 3366 | |
| 3367 const struct sized_memory_description lisp_object_description = { | |
| 3368 sizeof (Lisp_Object), | |
| 3369 lisp_object_description_1 | |
| 3370 }; | |
| 3371 | |
| 3372 #if defined (USE_KKCC) || defined (PDUMP) | |
| 934 | 3373 |
| 3374 /* This function extracts the value of a count variable described somewhere | |
| 3375 else in the description. It is converted corresponding to the type */ | |
| 1204 | 3376 EMACS_INT |
| 3377 lispdesc_indirect_count_1 (EMACS_INT code, | |
| 3378 const struct memory_description *idesc, | |
| 3379 const void *idata) | |
| 934 | 3380 { |
| 3381 EMACS_INT count; | |
| 3382 const void *irdata; | |
| 3383 | |
| 3384 int line = XD_INDIRECT_VAL (code); | |
| 3385 int delta = XD_INDIRECT_DELTA (code); | |
| 3386 | |
| 1204 | 3387 irdata = ((char *) idata) + |
| 3388 lispdesc_indirect_count (idesc[line].offset, idesc, idata); | |
| 934 | 3389 switch (idesc[line].type) |
| 3390 { | |
| 3391 case XD_BYTECOUNT: | |
| 1204 | 3392 count = * (Bytecount *) irdata; |
| 934 | 3393 break; |
| 3394 case XD_ELEMCOUNT: | |
| 1204 | 3395 count = * (Elemcount *) irdata; |
| 934 | 3396 break; |
| 3397 case XD_HASHCODE: | |
| 1204 | 3398 count = * (Hashcode *) irdata; |
| 934 | 3399 break; |
| 3400 case XD_INT: | |
| 1204 | 3401 count = * (int *) irdata; |
| 934 | 3402 break; |
| 3403 case XD_LONG: | |
| 1204 | 3404 count = * (long *) irdata; |
| 934 | 3405 break; |
| 3406 default: | |
| 3407 stderr_out ("Unsupported count type : %d (line = %d, code = %ld)\n", | |
| 1204 | 3408 idesc[line].type, line, (long) code); |
| 2666 | 3409 #if defined(USE_KKCC) && defined(DEBUG_XEMACS) |
| 2645 | 3410 if (gc_in_progress) |
| 3411 kkcc_backtrace (); | |
| 3412 #endif | |
| 1204 | 3413 #ifdef PDUMP |
| 3414 if (in_pdump) | |
| 3415 pdump_backtrace (); | |
| 3416 #endif | |
| 934 | 3417 count = 0; /* warning suppression */ |
| 2500 | 3418 ABORT (); |
| 934 | 3419 } |
| 3420 count += delta; | |
| 3421 return count; | |
| 3422 } | |
| 3423 | |
| 1204 | 3424 /* SDESC is a "description map" (basically, a list of offsets used for |
| 3425 successive indirections) and OBJ is the first object to indirect off of. | |
| 3426 Return the description ultimately found. */ | |
| 3427 | |
| 3428 const struct sized_memory_description * | |
| 3429 lispdesc_indirect_description_1 (const void *obj, | |
| 3430 const struct sized_memory_description *sdesc) | |
| 934 | 3431 { |
| 3432 int pos; | |
| 3433 | |
| 1204 | 3434 for (pos = 0; sdesc[pos].size >= 0; pos++) |
| 3435 obj = * (const void **) ((const char *) obj + sdesc[pos].size); | |
| 3436 | |
| 3437 return (const struct sized_memory_description *) obj; | |
| 3438 } | |
| 3439 | |
| 3440 /* Compute the size of the data at RDATA, described by a single entry | |
| 3441 DESC1 in a description array. OBJ and DESC are used for | |
| 3442 XD_INDIRECT references. */ | |
| 3443 | |
| 3444 static Bytecount | |
| 3445 lispdesc_one_description_line_size (void *rdata, | |
| 3446 const struct memory_description *desc1, | |
| 3447 const void *obj, | |
| 3448 const struct memory_description *desc) | |
| 3449 { | |
| 3450 union_switcheroo: | |
| 3451 switch (desc1->type) | |
| 934 | 3452 { |
| 1204 | 3453 case XD_LISP_OBJECT_ARRAY: |
| 3454 { | |
| 3455 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
| 3456 return (val * sizeof (Lisp_Object)); | |
| 3457 } | |
| 3458 case XD_LISP_OBJECT: | |
| 3459 case XD_LO_LINK: | |
| 3460 return sizeof (Lisp_Object); | |
| 3461 case XD_OPAQUE_PTR: | |
| 3462 return sizeof (void *); | |
| 2367 | 3463 case XD_BLOCK_PTR: |
| 1204 | 3464 { |
| 3465 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
| 3466 return val * sizeof (void *); | |
| 3467 } | |
| 2367 | 3468 case XD_BLOCK_ARRAY: |
| 1204 | 3469 { |
| 3470 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
| 3471 | |
| 3472 return (val * | |
| 2367 | 3473 lispdesc_block_size |
| 2551 | 3474 (rdata, |
| 3475 lispdesc_indirect_description (obj, desc1->data2.descr))); | |
| 1204 | 3476 } |
| 3477 case XD_OPAQUE_DATA_PTR: | |
| 3478 return sizeof (void *); | |
| 3479 case XD_UNION_DYNAMIC_SIZE: | |
| 3480 { | |
| 3481 /* If an explicit size was given in the first-level structure | |
| 3482 description, use it; else compute size based on current union | |
| 3483 constant. */ | |
| 3484 const struct sized_memory_description *sdesc = | |
| 2551 | 3485 lispdesc_indirect_description (obj, desc1->data2.descr); |
| 1204 | 3486 if (sdesc->size) |
| 3487 return sdesc->size; | |
| 3488 else | |
| 3489 { | |
| 3490 desc1 = lispdesc_process_xd_union (desc1, desc, obj); | |
| 3491 if (desc1) | |
| 3492 goto union_switcheroo; | |
| 934 | 3493 break; |
| 1204 | 3494 } |
| 3495 } | |
| 3496 case XD_UNION: | |
| 3497 { | |
| 3498 /* If an explicit size was given in the first-level structure | |
| 3499 description, use it; else compute size based on maximum of all | |
| 3500 possible structures. */ | |
| 3501 const struct sized_memory_description *sdesc = | |
| 2551 | 3502 lispdesc_indirect_description (obj, desc1->data2.descr); |
| 1204 | 3503 if (sdesc->size) |
| 3504 return sdesc->size; | |
| 3505 else | |
| 3506 { | |
| 3507 int count; | |
| 3508 Bytecount max_size = -1, size; | |
| 3509 | |
| 3510 desc1 = sdesc->description; | |
| 3511 | |
| 3512 for (count = 0; desc1[count].type != XD_END; count++) | |
| 3513 { | |
| 3514 size = lispdesc_one_description_line_size (rdata, | |
| 3515 &desc1[count], | |
| 3516 obj, desc); | |
| 3517 if (size > max_size) | |
| 3518 max_size = size; | |
| 3519 } | |
| 3520 return max_size; | |
| 3521 } | |
| 934 | 3522 } |
| 2367 | 3523 case XD_ASCII_STRING: |
| 1204 | 3524 return sizeof (void *); |
| 3525 case XD_DOC_STRING: | |
| 3526 return sizeof (void *); | |
| 3527 case XD_INT_RESET: | |
| 3528 return sizeof (int); | |
| 3529 case XD_BYTECOUNT: | |
| 3530 return sizeof (Bytecount); | |
| 3531 case XD_ELEMCOUNT: | |
| 3532 return sizeof (Elemcount); | |
| 3533 case XD_HASHCODE: | |
| 3534 return sizeof (Hashcode); | |
| 3535 case XD_INT: | |
| 3536 return sizeof (int); | |
| 3537 case XD_LONG: | |
| 3538 return sizeof (long); | |
| 3539 default: | |
| 3540 stderr_out ("Unsupported dump type : %d\n", desc1->type); | |
| 2500 | 3541 ABORT (); |
| 934 | 3542 } |
| 3543 | |
| 1204 | 3544 return 0; |
| 934 | 3545 } |
| 3546 | |
| 3547 | |
| 1204 | 3548 /* Return the size of the memory block (NOT necessarily a structure!) |
| 3549 described by SDESC and pointed to by OBJ. If SDESC records an | |
| 3550 explicit size (i.e. non-zero), it is simply returned; otherwise, | |
| 3551 the size is calculated by the maximum offset and the size of the | |
| 3552 object at that offset, rounded up to the maximum alignment. In | |
| 3553 this case, we may need the object, for example when retrieving an | |
| 3554 "indirect count" of an inlined array (the count is not constant, | |
| 3555 but is specified by one of the elements of the memory block). (It | |
| 3556 is generally not a problem if we return an overly large size -- we | |
| 3557 will simply end up reserving more space than necessary; but if the | |
| 3558 size is too small we could be in serious trouble, in particular | |
| 3559 with nested inlined structures, where there may be alignment | |
| 3560 padding in the middle of a block. #### In fact there is an (at | |
| 3561 least theoretical) problem with an overly large size -- we may | |
| 3562 trigger a protection fault when reading from invalid memory. We | |
| 3563 need to handle this -- perhaps in a stupid but dependable way, | |
| 3564 i.e. by trapping SIGSEGV and SIGBUS.) */ | |
| 3565 | |
| 3566 Bytecount | |
| 2367 | 3567 lispdesc_block_size_1 (const void *obj, Bytecount size, |
| 3568 const struct memory_description *desc) | |
| 934 | 3569 { |
| 1204 | 3570 EMACS_INT max_offset = -1; |
| 934 | 3571 int max_offset_pos = -1; |
| 3572 int pos; | |
| 2367 | 3573 |
| 3574 if (size) | |
| 3575 return size; | |
| 934 | 3576 |
| 3577 for (pos = 0; desc[pos].type != XD_END; pos++) | |
| 3578 { | |
| 1204 | 3579 EMACS_INT offset = lispdesc_indirect_count (desc[pos].offset, desc, obj); |
| 3580 if (offset == max_offset) | |
| 934 | 3581 { |
| 3582 stderr_out ("Two relocatable elements at same offset?\n"); | |
| 2500 | 3583 ABORT (); |
| 934 | 3584 } |
| 1204 | 3585 else if (offset > max_offset) |
| 934 | 3586 { |
| 1204 | 3587 max_offset = offset; |
| 934 | 3588 max_offset_pos = pos; |
| 3589 } | |
| 3590 } | |
| 3591 | |
| 3592 if (max_offset_pos < 0) | |
| 3593 return 0; | |
| 3594 | |
| 1204 | 3595 { |
| 3596 Bytecount size_at_max; | |
| 3597 size_at_max = | |
| 3598 lispdesc_one_description_line_size ((char *) obj + max_offset, | |
| 3599 &desc[max_offset_pos], obj, desc); | |
| 3600 | |
| 3601 /* We have no way of knowing the required alignment for this structure, | |
| 3602 so just make it maximally aligned. */ | |
| 3603 return MAX_ALIGN_SIZE (max_offset + size_at_max); | |
| 3604 } | |
| 3605 } | |
| 3606 | |
| 3607 #endif /* defined (USE_KKCC) || defined (PDUMP) */ | |
| 3608 | |
| 2720 | 3609 #ifdef MC_ALLOC |
| 3610 #define GC_CHECK_NOT_FREE(lheader) \ | |
| 3611 gc_checking_assert (! LRECORD_FREE_P (lheader)); | |
| 3612 #else /* MC_ALLOC */ | |
| 1276 | 3613 #define GC_CHECK_NOT_FREE(lheader) \ |
| 2720 | 3614 gc_checking_assert (! LRECORD_FREE_P (lheader)); \ |
| 1276 | 3615 gc_checking_assert (LHEADER_IMPLEMENTATION (lheader)->basic_p || \ |
| 3024 | 3616 ! ((struct old_lcrecord_header *) lheader)->free) |
| 2720 | 3617 #endif /* MC_ALLOC */ |
| 1276 | 3618 |
| 1204 | 3619 #ifdef USE_KKCC |
| 3620 /* The following functions implement the new mark algorithm. | |
| 3621 They mark objects according to their descriptions. They | |
| 3622 are modeled on the corresponding pdumper procedures. */ | |
| 3623 | |
| 2666 | 3624 #ifdef DEBUG_XEMACS |
| 3625 /* The backtrace for the KKCC mark functions. */ | |
| 3626 #define KKCC_INIT_BT_STACK_SIZE 4096 | |
| 1676 | 3627 |
| 3628 typedef struct | |
| 3629 { | |
| 2645 | 3630 void *obj; |
| 3631 const struct memory_description *desc; | |
| 3632 int pos; | |
| 2666 | 3633 } kkcc_bt_stack_entry; |
| 3634 | |
| 3635 static kkcc_bt_stack_entry *kkcc_bt; | |
| 3636 static int kkcc_bt_stack_size; | |
| 2645 | 3637 static int kkcc_bt_depth = 0; |
| 3638 | |
| 2666 | 3639 static void |
| 3640 kkcc_bt_init (void) | |
| 3641 { | |
| 3642 kkcc_bt_depth = 0; | |
| 3643 kkcc_bt_stack_size = KKCC_INIT_BT_STACK_SIZE; | |
| 3644 kkcc_bt = (kkcc_bt_stack_entry *) | |
| 3645 malloc (kkcc_bt_stack_size * sizeof (kkcc_bt_stack_entry)); | |
| 3646 if (!kkcc_bt) | |
| 3647 { | |
| 3648 stderr_out ("KKCC backtrace stack init failed for size %d\n", | |
| 3649 kkcc_bt_stack_size); | |
| 3650 ABORT (); | |
| 3651 } | |
| 3652 } | |
| 2645 | 3653 |
| 3654 void | |
| 3655 kkcc_backtrace (void) | |
| 3656 { | |
| 3657 int i; | |
| 3658 stderr_out ("KKCC mark stack backtrace :\n"); | |
| 3659 for (i = kkcc_bt_depth - 1; i >= 0; i--) | |
| 3660 { | |
| 2650 | 3661 Lisp_Object obj = wrap_pointer_1 (kkcc_bt[i].obj); |
| 2645 | 3662 stderr_out (" [%d]", i); |
| 2720 | 3663 #ifdef MC_ALLOC |
| 3664 if ((XRECORD_LHEADER (obj)->type >= lrecord_type_last_built_in_type) | |
| 3665 #else /* not MC_ALLOC */ | |
| 2650 | 3666 if ((XRECORD_LHEADER (obj)->type >= lrecord_type_free) |
| 2720 | 3667 #endif /* not MC_ALLOC */ |
| 2650 | 3668 || (!LRECORDP (obj)) |
| 3669 || (!XRECORD_LHEADER_IMPLEMENTATION (obj))) | |
| 2645 | 3670 { |
| 3671 stderr_out (" non Lisp Object"); | |
| 3672 } | |
| 3673 else | |
| 3674 { | |
| 3675 stderr_out (" %s", | |
| 2650 | 3676 XRECORD_LHEADER_IMPLEMENTATION (obj)->name); |
| 2645 | 3677 } |
| 3678 stderr_out (" (addr: 0x%x, desc: 0x%x, ", | |
| 3679 (int) kkcc_bt[i].obj, | |
| 3680 (int) kkcc_bt[i].desc); | |
| 3681 if (kkcc_bt[i].pos >= 0) | |
| 3682 stderr_out ("pos: %d)\n", kkcc_bt[i].pos); | |
| 3683 else | |
| 3684 stderr_out ("root set)\n"); | |
| 3685 } | |
| 3686 } | |
| 3687 | |
| 3688 static void | |
| 2666 | 3689 kkcc_bt_stack_realloc (void) |
| 3690 { | |
| 3691 kkcc_bt_stack_size *= 2; | |
| 3692 kkcc_bt = (kkcc_bt_stack_entry *) | |
| 3693 realloc (kkcc_bt, kkcc_bt_stack_size * sizeof (kkcc_bt_stack_entry)); | |
| 3694 if (!kkcc_bt) | |
| 3695 { | |
| 3696 stderr_out ("KKCC backtrace stack realloc failed for size %d\n", | |
| 3697 kkcc_bt_stack_size); | |
| 3698 ABORT (); | |
| 3699 } | |
| 3700 } | |
| 3701 | |
| 3702 static void | |
| 3703 kkcc_bt_free (void) | |
| 3704 { | |
| 3705 free (kkcc_bt); | |
| 3706 kkcc_bt = 0; | |
| 3707 kkcc_bt_stack_size = 0; | |
| 3708 } | |
| 3709 | |
| 3710 static void | |
| 2645 | 3711 kkcc_bt_push (void *obj, const struct memory_description *desc, |
| 3712 int level, int pos) | |
| 3713 { | |
| 3714 kkcc_bt_depth = level; | |
| 3715 kkcc_bt[kkcc_bt_depth].obj = obj; | |
| 3716 kkcc_bt[kkcc_bt_depth].desc = desc; | |
| 3717 kkcc_bt[kkcc_bt_depth].pos = pos; | |
| 3718 kkcc_bt_depth++; | |
| 2666 | 3719 if (kkcc_bt_depth >= kkcc_bt_stack_size) |
| 3720 kkcc_bt_stack_realloc (); | |
| 2645 | 3721 } |
| 3722 | |
| 3723 #else /* not DEBUG_XEMACS */ | |
| 2666 | 3724 #define kkcc_bt_init() |
| 2645 | 3725 #define kkcc_bt_push(obj, desc, level, pos) |
| 3726 #endif /* not DEBUG_XEMACS */ | |
| 3727 | |
| 2666 | 3728 /* Object memory descriptions are in the lrecord_implementation structure. |
| 3729 But copying them to a parallel array is much more cache-friendly. */ | |
| 3730 const struct memory_description *lrecord_memory_descriptions[countof (lrecord_implementations_table)]; | |
| 3731 | |
| 3732 /* the initial stack size in kkcc_gc_stack_entries */ | |
| 3733 #define KKCC_INIT_GC_STACK_SIZE 16384 | |
| 3734 | |
| 3735 typedef struct | |
| 3736 { | |
| 3737 void *data; | |
| 3738 const struct memory_description *desc; | |
| 3739 #ifdef DEBUG_XEMACS | |
| 3740 int level; | |
| 3741 int pos; | |
| 3742 #endif | |
| 3743 } kkcc_gc_stack_entry; | |
| 3744 | |
| 3745 static kkcc_gc_stack_entry *kkcc_gc_stack_ptr; | |
| 3746 static kkcc_gc_stack_entry *kkcc_gc_stack_top; | |
| 3747 static kkcc_gc_stack_entry *kkcc_gc_stack_last_entry; | |
| 3748 static int kkcc_gc_stack_size; | |
| 3749 | |
| 1676 | 3750 static void |
| 3751 kkcc_gc_stack_init (void) | |
| 3752 { | |
| 3753 kkcc_gc_stack_size = KKCC_INIT_GC_STACK_SIZE; | |
| 3754 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *) | |
| 3755 malloc (kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry)); | |
| 3756 if (!kkcc_gc_stack_ptr) | |
| 3757 { | |
| 3758 stderr_out ("stack init failed for size %d\n", kkcc_gc_stack_size); | |
| 2666 | 3759 ABORT (); |
| 1676 | 3760 } |
| 3761 kkcc_gc_stack_top = kkcc_gc_stack_ptr - 1; | |
| 3762 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1; | |
| 3763 } | |
| 3764 | |
| 3765 static void | |
| 3766 kkcc_gc_stack_free (void) | |
| 3767 { | |
| 3768 free (kkcc_gc_stack_ptr); | |
| 3769 kkcc_gc_stack_ptr = 0; | |
| 3770 kkcc_gc_stack_top = 0; | |
| 3771 kkcc_gc_stack_size = 0; | |
| 3772 } | |
| 3773 | |
| 3774 static void | |
| 3775 kkcc_gc_stack_realloc (void) | |
| 3776 { | |
| 3777 int current_offset = (int)(kkcc_gc_stack_top - kkcc_gc_stack_ptr); | |
| 3778 kkcc_gc_stack_size *= 2; | |
| 3779 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *) | |
| 3780 realloc (kkcc_gc_stack_ptr, | |
| 3781 kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry)); | |
| 3782 if (!kkcc_gc_stack_ptr) | |
| 3783 { | |
| 3784 stderr_out ("stack realloc failed for size %d\n", kkcc_gc_stack_size); | |
| 2666 | 3785 ABORT (); |
| 1676 | 3786 } |
| 3787 kkcc_gc_stack_top = kkcc_gc_stack_ptr + current_offset; | |
| 3788 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1; | |
| 3789 } | |
| 3790 | |
| 3791 #define KKCC_GC_STACK_FULL (kkcc_gc_stack_top >= kkcc_gc_stack_last_entry) | |
| 3792 #define KKCC_GC_STACK_EMPTY (kkcc_gc_stack_top < kkcc_gc_stack_ptr) | |
| 3793 | |
| 3794 static void | |
| 2645 | 3795 #ifdef DEBUG_XEMACS |
| 3796 kkcc_gc_stack_push_1 (void *data, const struct memory_description *desc, | |
| 3797 int level, int pos) | |
| 3798 #else | |
| 3799 kkcc_gc_stack_push_1 (void *data, const struct memory_description *desc) | |
| 3800 #endif | |
| 1676 | 3801 { |
| 3802 if (KKCC_GC_STACK_FULL) | |
| 3803 kkcc_gc_stack_realloc(); | |
| 3804 kkcc_gc_stack_top++; | |
| 3805 kkcc_gc_stack_top->data = data; | |
| 3806 kkcc_gc_stack_top->desc = desc; | |
| 2645 | 3807 #ifdef DEBUG_XEMACS |
| 3808 kkcc_gc_stack_top->level = level; | |
| 3809 kkcc_gc_stack_top->pos = pos; | |
| 3810 #endif | |
| 3811 } | |
| 3812 | |
| 3813 #ifdef DEBUG_XEMACS | |
| 3814 #define kkcc_gc_stack_push(data, desc, level, pos) \ | |
| 3815 kkcc_gc_stack_push_1 (data, desc, level, pos) | |
| 3816 #else | |
| 3817 #define kkcc_gc_stack_push(data, desc, level, pos) \ | |
| 3818 kkcc_gc_stack_push_1 (data, desc) | |
| 3819 #endif | |
| 1676 | 3820 |
| 3821 static kkcc_gc_stack_entry * | |
| 3822 kkcc_gc_stack_pop (void) | |
| 3823 { | |
| 3824 if (KKCC_GC_STACK_EMPTY) | |
| 3825 return 0; | |
| 3826 kkcc_gc_stack_top--; | |
| 3827 return kkcc_gc_stack_top + 1; | |
| 3828 } | |
| 3829 | |
| 3830 void | |
| 2645 | 3831 #ifdef DEBUG_XEMACS |
| 3832 kkcc_gc_stack_push_lisp_object_1 (Lisp_Object obj, int level, int pos) | |
| 3833 #else | |
| 3834 kkcc_gc_stack_push_lisp_object_1 (Lisp_Object obj) | |
| 3835 #endif | |
| 1676 | 3836 { |
| 3837 if (XTYPE (obj) == Lisp_Type_Record) | |
| 3838 { | |
| 3839 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
| 3840 const struct memory_description *desc; | |
| 3841 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
| 3842 desc = RECORD_DESCRIPTION (lheader); | |
| 3843 if (! MARKED_RECORD_HEADER_P (lheader)) | |
| 3844 { | |
| 3845 MARK_RECORD_HEADER (lheader); | |
| 2666 | 3846 kkcc_gc_stack_push ((void*) lheader, desc, level, pos); |
| 1676 | 3847 } |
| 3848 } | |
| 3849 } | |
| 3850 | |
| 2645 | 3851 #ifdef DEBUG_XEMACS |
| 3852 #define kkcc_gc_stack_push_lisp_object(obj, level, pos) \ | |
| 3853 kkcc_gc_stack_push_lisp_object_1 (obj, level, pos) | |
| 3854 #else | |
| 3855 #define kkcc_gc_stack_push_lisp_object(obj, level, pos) \ | |
| 3856 kkcc_gc_stack_push_lisp_object_1 (obj) | |
| 3857 #endif | |
| 3858 | |
| 1265 | 3859 #ifdef ERROR_CHECK_GC |
| 3860 #define KKCC_DO_CHECK_FREE(obj, allow_free) \ | |
| 3861 do \ | |
| 3862 { \ | |
| 3863 if (!allow_free && XTYPE (obj) == Lisp_Type_Record) \ | |
| 3864 { \ | |
| 3865 struct lrecord_header *lheader = XRECORD_LHEADER (obj); \ | |
| 3866 GC_CHECK_NOT_FREE (lheader); \ | |
| 3867 } \ | |
| 3868 } while (0) | |
| 3869 #else | |
| 3870 #define KKCC_DO_CHECK_FREE(obj, allow_free) | |
| 3871 #endif | |
| 1204 | 3872 |
| 3873 #ifdef ERROR_CHECK_GC | |
| 2645 | 3874 #ifdef DEBUG_XEMACS |
| 1598 | 3875 static void |
| 2645 | 3876 mark_object_maybe_checking_free_1 (Lisp_Object obj, int allow_free, |
| 3877 int level, int pos) | |
| 3878 #else | |
| 3879 static void | |
| 3880 mark_object_maybe_checking_free_1 (Lisp_Object obj, int allow_free) | |
| 3881 #endif | |
| 1204 | 3882 { |
| 1265 | 3883 KKCC_DO_CHECK_FREE (obj, allow_free); |
| 2645 | 3884 kkcc_gc_stack_push_lisp_object (obj, level, pos); |
| 3885 } | |
| 3886 | |
| 3887 #ifdef DEBUG_XEMACS | |
| 3888 #define mark_object_maybe_checking_free(obj, allow_free, level, pos) \ | |
| 3889 mark_object_maybe_checking_free_1 (obj, allow_free, level, pos) | |
| 1204 | 3890 #else |
| 2645 | 3891 #define mark_object_maybe_checking_free(obj, allow_free, level, pos) \ |
| 3892 mark_object_maybe_checking_free_1 (obj, allow_free) | |
| 3893 #endif | |
| 3894 #else /* not ERROR_CHECK_GC */ | |
| 3895 #define mark_object_maybe_checking_free(obj, allow_free, level, pos) \ | |
| 3896 kkcc_gc_stack_push_lisp_object (obj, level, pos) | |
| 3897 #endif /* not ERROR_CHECK_GC */ | |
| 1204 | 3898 |
| 934 | 3899 |
| 3900 /* This function loops all elements of a struct pointer and calls | |
| 3901 mark_with_description with each element. */ | |
| 3902 static void | |
| 2645 | 3903 #ifdef DEBUG_XEMACS |
| 3904 mark_struct_contents_1 (const void *data, | |
| 3905 const struct sized_memory_description *sdesc, | |
| 3906 int count, int level, int pos) | |
| 3907 #else | |
| 3908 mark_struct_contents_1 (const void *data, | |
| 1204 | 3909 const struct sized_memory_description *sdesc, |
| 3910 int count) | |
| 2645 | 3911 #endif |
| 934 | 3912 { |
| 3913 int i; | |
| 3914 Bytecount elsize; | |
| 2367 | 3915 elsize = lispdesc_block_size (data, sdesc); |
| 934 | 3916 |
| 3917 for (i = 0; i < count; i++) | |
| 3918 { | |
| 2645 | 3919 kkcc_gc_stack_push (((char *) data) + elsize * i, sdesc->description, |
| 3920 level, pos); | |
| 934 | 3921 } |
| 3922 } | |
| 3923 | |
| 2645 | 3924 #ifdef DEBUG_XEMACS |
| 3925 #define mark_struct_contents(data, sdesc, count, level, pos) \ | |
| 3926 mark_struct_contents_1 (data, sdesc, count, level, pos) | |
| 3927 #else | |
| 3928 #define mark_struct_contents(data, sdesc, count, level, pos) \ | |
| 3929 mark_struct_contents_1 (data, sdesc, count) | |
| 3930 #endif | |
| 1598 | 3931 |
| 3932 /* This function implements the KKCC mark algorithm. | |
| 3933 Instead of calling mark_object, all the alive Lisp_Objects are pushed | |
| 3934 on the kkcc_gc_stack. This function processes all elements on the stack | |
| 3935 according to their descriptions. */ | |
| 3936 static void | |
| 3937 kkcc_marking (void) | |
| 3938 { | |
| 3939 kkcc_gc_stack_entry *stack_entry = 0; | |
| 3940 void *data = 0; | |
| 3941 const struct memory_description *desc = 0; | |
| 3942 int pos; | |
| 2645 | 3943 #ifdef DEBUG_XEMACS |
| 3944 int level = 0; | |
| 2666 | 3945 kkcc_bt_init (); |
| 2645 | 3946 #endif |
| 1598 | 3947 |
| 3948 while ((stack_entry = kkcc_gc_stack_pop ()) != 0) | |
| 3949 { | |
| 3950 data = stack_entry->data; | |
| 3951 desc = stack_entry->desc; | |
| 2645 | 3952 #ifdef DEBUG_XEMACS |
| 3953 level = stack_entry->level + 1; | |
| 3954 #endif | |
| 3955 | |
| 3956 kkcc_bt_push (data, desc, stack_entry->level, stack_entry->pos); | |
| 1598 | 3957 |
| 2720 | 3958 gc_checking_assert (data); |
| 3959 gc_checking_assert (desc); | |
| 3960 | |
| 1598 | 3961 for (pos = 0; desc[pos].type != XD_END; pos++) |
| 3962 { | |
| 3963 const struct memory_description *desc1 = &desc[pos]; | |
| 3964 const void *rdata = | |
| 3965 (const char *) data + lispdesc_indirect_count (desc1->offset, | |
| 3966 desc, data); | |
| 3967 union_switcheroo: | |
| 3968 | |
| 3969 /* If the flag says don't mark, then don't mark. */ | |
| 3970 if ((desc1->flags) & XD_FLAG_NO_KKCC) | |
| 3971 continue; | |
| 3972 | |
| 3973 switch (desc1->type) | |
| 3974 { | |
| 3975 case XD_BYTECOUNT: | |
| 3976 case XD_ELEMCOUNT: | |
| 3977 case XD_HASHCODE: | |
| 3978 case XD_INT: | |
| 3979 case XD_LONG: | |
| 3980 case XD_INT_RESET: | |
| 3981 case XD_LO_LINK: | |
| 3982 case XD_OPAQUE_PTR: | |
| 3983 case XD_OPAQUE_DATA_PTR: | |
| 2367 | 3984 case XD_ASCII_STRING: |
| 1598 | 3985 case XD_DOC_STRING: |
| 3986 break; | |
| 3987 case XD_LISP_OBJECT: | |
| 3988 { | |
| 3989 const Lisp_Object *stored_obj = (const Lisp_Object *) rdata; | |
| 3990 | |
| 3991 /* Because of the way that tagged objects work (pointers and | |
| 3992 Lisp_Objects have the same representation), XD_LISP_OBJECT | |
| 3993 can be used for untagged pointers. They might be NULL, | |
| 3994 though. */ | |
| 3995 if (EQ (*stored_obj, Qnull_pointer)) | |
| 3996 break; | |
| 2720 | 3997 #ifdef MC_ALLOC |
| 3998 mark_object_maybe_checking_free (*stored_obj, 0, level, pos); | |
| 3999 #else /* not MC_ALLOC */ | |
| 1598 | 4000 mark_object_maybe_checking_free |
| 2645 | 4001 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT, |
| 4002 level, pos); | |
| 2775 | 4003 #endif /* not MC_ALLOC */ |
| 1598 | 4004 break; |
| 4005 } | |
| 4006 case XD_LISP_OBJECT_ARRAY: | |
| 4007 { | |
| 4008 int i; | |
| 4009 EMACS_INT count = | |
| 4010 lispdesc_indirect_count (desc1->data1, desc, data); | |
| 4011 | |
| 4012 for (i = 0; i < count; i++) | |
| 4013 { | |
| 4014 const Lisp_Object *stored_obj = | |
| 4015 (const Lisp_Object *) rdata + i; | |
| 4016 | |
| 4017 if (EQ (*stored_obj, Qnull_pointer)) | |
| 4018 break; | |
| 2720 | 4019 #ifdef MC_ALLOC |
| 4020 mark_object_maybe_checking_free (*stored_obj, 0, level, pos); | |
| 4021 #else /* not MC_ALLOC */ | |
| 1598 | 4022 mark_object_maybe_checking_free |
| 2645 | 4023 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT, |
| 4024 level, pos); | |
| 2720 | 4025 #endif /* not MC_ALLOC */ |
| 1598 | 4026 } |
| 4027 break; | |
| 4028 } | |
| 2367 | 4029 case XD_BLOCK_PTR: |
| 1598 | 4030 { |
| 4031 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
| 4032 data); | |
| 4033 const struct sized_memory_description *sdesc = | |
| 2551 | 4034 lispdesc_indirect_description (data, desc1->data2.descr); |
| 1598 | 4035 const char *dobj = * (const char **) rdata; |
| 4036 if (dobj) | |
| 2645 | 4037 mark_struct_contents (dobj, sdesc, count, level, pos); |
| 1598 | 4038 break; |
| 4039 } | |
| 2367 | 4040 case XD_BLOCK_ARRAY: |
| 1598 | 4041 { |
| 4042 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
| 4043 data); | |
| 4044 const struct sized_memory_description *sdesc = | |
| 2551 | 4045 lispdesc_indirect_description (data, desc1->data2.descr); |
| 1598 | 4046 |
| 2645 | 4047 mark_struct_contents (rdata, sdesc, count, level, pos); |
| 1598 | 4048 break; |
| 4049 } | |
| 4050 case XD_UNION: | |
| 4051 case XD_UNION_DYNAMIC_SIZE: | |
| 4052 desc1 = lispdesc_process_xd_union (desc1, desc, data); | |
| 4053 if (desc1) | |
| 4054 goto union_switcheroo; | |
| 4055 break; | |
| 4056 | |
| 4057 default: | |
| 4058 stderr_out ("Unsupported description type : %d\n", desc1->type); | |
| 2645 | 4059 kkcc_backtrace (); |
| 2500 | 4060 ABORT (); |
| 1598 | 4061 } |
| 4062 } | |
| 4063 } | |
| 2666 | 4064 #ifdef DEBUG_XEMACS |
| 4065 kkcc_bt_free (); | |
| 4066 #endif | |
| 1598 | 4067 } |
| 934 | 4068 #endif /* USE_KKCC */ |
| 4069 | |
| 428 | 4070 /* Mark reference to a Lisp_Object. If the object referred to has not been |
| 4071 seen yet, recursively mark all the references contained in it. */ | |
| 4072 | |
| 4073 void | |
| 2286 | 4074 mark_object ( |
| 4075 #ifdef USE_KKCC | |
| 4076 Lisp_Object UNUSED (obj) | |
| 4077 #else | |
| 4078 Lisp_Object obj | |
| 4079 #endif | |
| 4080 ) | |
| 428 | 4081 { |
| 1598 | 4082 #ifdef USE_KKCC |
| 4083 /* this code should never be reached when configured for KKCC */ | |
| 4084 stderr_out ("KKCC: Invalid mark_object call.\n"); | |
| 4085 stderr_out ("Replace mark_object with kkcc_gc_stack_push_lisp_object.\n"); | |
| 2500 | 4086 ABORT (); |
| 1676 | 4087 #else /* not USE_KKCC */ |
| 1598 | 4088 |
| 428 | 4089 tail_recurse: |
| 4090 | |
| 4091 /* Checks we used to perform */ | |
| 4092 /* if (EQ (obj, Qnull_pointer)) return; */ | |
| 4093 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */ | |
| 4094 /* if (PURIFIED (XPNTR (obj))) return; */ | |
| 4095 | |
| 4096 if (XTYPE (obj) == Lisp_Type_Record) | |
| 4097 { | |
| 4098 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
| 442 | 4099 |
| 4100 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
| 4101 | |
| 1204 | 4102 /* We handle this separately, above, so we can mark free objects */ |
| 1265 | 4103 GC_CHECK_NOT_FREE (lheader); |
| 1204 | 4104 |
| 442 | 4105 /* All c_readonly objects have their mark bit set, |
| 4106 so that we only need to check the mark bit here. */ | |
| 4107 if (! MARKED_RECORD_HEADER_P (lheader)) | |
| 428 | 4108 { |
| 4109 MARK_RECORD_HEADER (lheader); | |
| 442 | 4110 |
| 1598 | 4111 if (RECORD_MARKER (lheader)) |
| 4112 { | |
| 4113 obj = RECORD_MARKER (lheader) (obj); | |
| 4114 if (!NILP (obj)) goto tail_recurse; | |
| 4115 } | |
| 428 | 4116 } |
| 4117 } | |
| 1676 | 4118 #endif /* not KKCC */ |
| 428 | 4119 } |
| 4120 | |
| 4121 | |
| 2720 | 4122 #ifndef MC_ALLOC |
| 428 | 4123 static int gc_count_num_short_string_in_use; |
| 647 | 4124 static Bytecount gc_count_string_total_size; |
| 4125 static Bytecount gc_count_short_string_total_size; | |
| 428 | 4126 |
| 4127 /* static int gc_count_total_records_used, gc_count_records_total_size; */ | |
| 4128 | |
| 4129 | |
| 4130 /* stats on lcrecords in use - kinda kludgy */ | |
| 4131 | |
| 4132 static struct | |
| 4133 { | |
| 4134 int instances_in_use; | |
| 4135 int bytes_in_use; | |
| 4136 int instances_freed; | |
| 4137 int bytes_freed; | |
| 4138 int instances_on_free_list; | |
| 707 | 4139 } lcrecord_stats [countof (lrecord_implementations_table) |
| 4140 + MODULE_DEFINABLE_TYPE_COUNT]; | |
| 428 | 4141 |
| 4142 static void | |
| 442 | 4143 tick_lcrecord_stats (const struct lrecord_header *h, int free_p) |
| 428 | 4144 { |
| 647 | 4145 int type_index = h->type; |
| 428 | 4146 |
| 3024 | 4147 if (((struct old_lcrecord_header *) h)->free) |
| 428 | 4148 { |
| 442 | 4149 gc_checking_assert (!free_p); |
| 428 | 4150 lcrecord_stats[type_index].instances_on_free_list++; |
| 4151 } | |
| 4152 else | |
| 4153 { | |
| 1204 | 4154 Bytecount sz = detagged_lisp_object_size (h); |
| 4155 | |
| 428 | 4156 if (free_p) |
| 4157 { | |
| 4158 lcrecord_stats[type_index].instances_freed++; | |
| 4159 lcrecord_stats[type_index].bytes_freed += sz; | |
| 4160 } | |
| 4161 else | |
| 4162 { | |
| 4163 lcrecord_stats[type_index].instances_in_use++; | |
| 4164 lcrecord_stats[type_index].bytes_in_use += sz; | |
| 4165 } | |
| 4166 } | |
| 4167 } | |
| 2720 | 4168 #endif /* not MC_ALLOC */ |
| 428 | 4169 |
| 4170 | |
| 2720 | 4171 #ifndef MC_ALLOC |
| 428 | 4172 /* Free all unmarked records */ |
| 4173 static void | |
| 3024 | 4174 sweep_lcrecords_1 (struct old_lcrecord_header **prev, int *used) |
| 4175 { | |
| 4176 struct old_lcrecord_header *header; | |
| 428 | 4177 int num_used = 0; |
| 4178 /* int total_size = 0; */ | |
| 4179 | |
| 4180 xzero (lcrecord_stats); /* Reset all statistics to 0. */ | |
| 4181 | |
| 4182 /* First go through and call all the finalize methods. | |
| 4183 Then go through and free the objects. There used to | |
| 4184 be only one loop here, with the call to the finalizer | |
| 4185 occurring directly before the xfree() below. That | |
| 4186 is marginally faster but much less safe -- if the | |
| 4187 finalize method for an object needs to reference any | |
| 4188 other objects contained within it (and many do), | |
| 4189 we could easily be screwed by having already freed that | |
| 4190 other object. */ | |
| 4191 | |
| 4192 for (header = *prev; header; header = header->next) | |
| 4193 { | |
| 4194 struct lrecord_header *h = &(header->lheader); | |
| 442 | 4195 |
| 4196 GC_CHECK_LHEADER_INVARIANTS (h); | |
| 4197 | |
| 4198 if (! MARKED_RECORD_HEADER_P (h) && ! header->free) | |
| 428 | 4199 { |
| 4200 if (LHEADER_IMPLEMENTATION (h)->finalizer) | |
| 4201 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0); | |
| 4202 } | |
| 4203 } | |
| 4204 | |
| 4205 for (header = *prev; header; ) | |
| 4206 { | |
| 4207 struct lrecord_header *h = &(header->lheader); | |
| 442 | 4208 if (MARKED_RECORD_HEADER_P (h)) |
| 428 | 4209 { |
| 442 | 4210 if (! C_READONLY_RECORD_HEADER_P (h)) |
| 428 | 4211 UNMARK_RECORD_HEADER (h); |
| 4212 num_used++; | |
| 4213 /* total_size += n->implementation->size_in_bytes (h);*/ | |
| 440 | 4214 /* #### May modify header->next on a C_READONLY lcrecord */ |
| 428 | 4215 prev = &(header->next); |
| 4216 header = *prev; | |
| 4217 tick_lcrecord_stats (h, 0); | |
| 4218 } | |
| 4219 else | |
| 4220 { | |
| 3024 | 4221 struct old_lcrecord_header *next = header->next; |
| 428 | 4222 *prev = next; |
| 4223 tick_lcrecord_stats (h, 1); | |
| 4224 /* used to call finalizer right here. */ | |
| 3024 | 4225 xfree (header, struct old_lcrecord_header *); |
| 428 | 4226 header = next; |
| 4227 } | |
| 4228 } | |
| 4229 *used = num_used; | |
| 4230 /* *total = total_size; */ | |
| 4231 } | |
| 4232 | |
| 4233 /* And the Lord said: Thou shalt use the `c-backslash-region' command | |
| 4234 to make macros prettier. */ | |
| 4235 | |
| 4236 #ifdef ERROR_CHECK_GC | |
| 4237 | |
| 771 | 4238 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \ |
| 428 | 4239 do { \ |
| 4240 struct typename##_block *SFTB_current; \ | |
| 4241 int SFTB_limit; \ | |
| 4242 int num_free = 0, num_used = 0; \ | |
| 4243 \ | |
| 444 | 4244 for (SFTB_current = current_##typename##_block, \ |
| 428 | 4245 SFTB_limit = current_##typename##_block_index; \ |
| 4246 SFTB_current; \ | |
| 4247 ) \ | |
| 4248 { \ | |
| 4249 int SFTB_iii; \ | |
| 4250 \ | |
| 4251 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ | |
| 4252 { \ | |
| 4253 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ | |
| 4254 \ | |
| 454 | 4255 if (LRECORD_FREE_P (SFTB_victim)) \ |
| 428 | 4256 { \ |
| 4257 num_free++; \ | |
| 4258 } \ | |
| 4259 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
| 4260 { \ | |
| 4261 num_used++; \ | |
| 4262 } \ | |
| 442 | 4263 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ |
| 428 | 4264 { \ |
| 4265 num_free++; \ | |
| 4266 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ | |
| 4267 } \ | |
| 4268 else \ | |
| 4269 { \ | |
| 4270 num_used++; \ | |
| 4271 UNMARK_##typename (SFTB_victim); \ | |
| 4272 } \ | |
| 4273 } \ | |
| 4274 SFTB_current = SFTB_current->prev; \ | |
| 4275 SFTB_limit = countof (current_##typename##_block->block); \ | |
| 4276 } \ | |
| 4277 \ | |
| 4278 gc_count_num_##typename##_in_use = num_used; \ | |
| 4279 gc_count_num_##typename##_freelist = num_free; \ | |
| 4280 } while (0) | |
| 4281 | |
| 4282 #else /* !ERROR_CHECK_GC */ | |
| 4283 | |
| 771 | 4284 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \ |
| 4285 do { \ | |
| 4286 struct typename##_block *SFTB_current; \ | |
| 4287 struct typename##_block **SFTB_prev; \ | |
| 4288 int SFTB_limit; \ | |
| 4289 int num_free = 0, num_used = 0; \ | |
| 4290 \ | |
| 4291 typename##_free_list = 0; \ | |
| 4292 \ | |
| 4293 for (SFTB_prev = ¤t_##typename##_block, \ | |
| 4294 SFTB_current = current_##typename##_block, \ | |
| 4295 SFTB_limit = current_##typename##_block_index; \ | |
| 4296 SFTB_current; \ | |
| 4297 ) \ | |
| 4298 { \ | |
| 4299 int SFTB_iii; \ | |
| 4300 int SFTB_empty = 1; \ | |
| 4301 Lisp_Free *SFTB_old_free_list = typename##_free_list; \ | |
| 4302 \ | |
| 4303 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ | |
| 4304 { \ | |
| 4305 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ | |
| 4306 \ | |
| 4307 if (LRECORD_FREE_P (SFTB_victim)) \ | |
| 4308 { \ | |
| 4309 num_free++; \ | |
| 4310 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \ | |
| 4311 } \ | |
| 4312 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
| 4313 { \ | |
| 4314 SFTB_empty = 0; \ | |
| 4315 num_used++; \ | |
| 4316 } \ | |
| 4317 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
| 4318 { \ | |
| 4319 num_free++; \ | |
| 4320 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ | |
| 4321 } \ | |
| 4322 else \ | |
| 4323 { \ | |
| 4324 SFTB_empty = 0; \ | |
| 4325 num_used++; \ | |
| 4326 UNMARK_##typename (SFTB_victim); \ | |
| 4327 } \ | |
| 4328 } \ | |
| 4329 if (!SFTB_empty) \ | |
| 4330 { \ | |
| 4331 SFTB_prev = &(SFTB_current->prev); \ | |
| 4332 SFTB_current = SFTB_current->prev; \ | |
| 4333 } \ | |
| 4334 else if (SFTB_current == current_##typename##_block \ | |
| 4335 && !SFTB_current->prev) \ | |
| 4336 { \ | |
| 4337 /* No real point in freeing sole allocation block */ \ | |
| 4338 break; \ | |
| 4339 } \ | |
| 4340 else \ | |
| 4341 { \ | |
| 4342 struct typename##_block *SFTB_victim_block = SFTB_current; \ | |
| 4343 if (SFTB_victim_block == current_##typename##_block) \ | |
| 4344 current_##typename##_block_index \ | |
| 4345 = countof (current_##typename##_block->block); \ | |
| 4346 SFTB_current = SFTB_current->prev; \ | |
| 4347 { \ | |
| 4348 *SFTB_prev = SFTB_current; \ | |
| 1726 | 4349 xfree (SFTB_victim_block, struct typename##_block *); \ |
| 771 | 4350 /* Restore free list to what it was before victim was swept */ \ |
| 4351 typename##_free_list = SFTB_old_free_list; \ | |
| 4352 num_free -= SFTB_limit; \ | |
| 4353 } \ | |
| 4354 } \ | |
| 4355 SFTB_limit = countof (current_##typename##_block->block); \ | |
| 4356 } \ | |
| 4357 \ | |
| 4358 gc_count_num_##typename##_in_use = num_used; \ | |
| 4359 gc_count_num_##typename##_freelist = num_free; \ | |
| 428 | 4360 } while (0) |
| 4361 | |
| 4362 #endif /* !ERROR_CHECK_GC */ | |
| 4363 | |
| 771 | 4364 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \ |
| 4365 SWEEP_FIXED_TYPE_BLOCK_1 (typename, obj_type, lheader) | |
| 4366 | |
| 2720 | 4367 #endif /* not MC_ALLOC */ |
| 4368 | |
| 428 | 4369 |
| 2720 | 4370 #ifndef MC_ALLOC |
| 428 | 4371 static void |
| 4372 sweep_conses (void) | |
| 4373 { | |
| 4374 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4375 #define ADDITIONAL_FREE_cons(ptr) | |
| 4376 | |
| 440 | 4377 SWEEP_FIXED_TYPE_BLOCK (cons, Lisp_Cons); |
| 428 | 4378 } |
| 2720 | 4379 #endif /* not MC_ALLOC */ |
| 428 | 4380 |
| 4381 /* Explicitly free a cons cell. */ | |
| 4382 void | |
| 853 | 4383 free_cons (Lisp_Object cons) |
| 428 | 4384 { |
| 2720 | 4385 #ifndef MC_ALLOC /* to avoid compiler warning */ |
| 853 | 4386 Lisp_Cons *ptr = XCONS (cons); |
| 2720 | 4387 #endif /* MC_ALLOC */ |
| 853 | 4388 |
| 428 | 4389 #ifdef ERROR_CHECK_GC |
| 2720 | 4390 #ifdef MC_ALLOC |
| 4391 Lisp_Cons *ptr = XCONS (cons); | |
| 4392 #endif /* MC_ALLOC */ | |
| 428 | 4393 /* If the CAR is not an int, then it will be a pointer, which will |
| 4394 always be four-byte aligned. If this cons cell has already been | |
| 4395 placed on the free list, however, its car will probably contain | |
| 4396 a chain pointer to the next cons on the list, which has cleverly | |
| 4397 had all its 0's and 1's inverted. This allows for a quick | |
| 1204 | 4398 check to make sure we're not freeing something already freed. |
| 4399 | |
| 4400 NOTE: This check may not be necessary. Freeing an object sets its | |
| 4401 type to lrecord_type_free, which will trip up the XCONS() above -- as | |
| 4402 well as a check in FREE_FIXED_TYPE(). */ | |
| 853 | 4403 if (POINTER_TYPE_P (XTYPE (cons_car (ptr)))) |
| 4404 ASSERT_VALID_POINTER (XPNTR (cons_car (ptr))); | |
| 428 | 4405 #endif /* ERROR_CHECK_GC */ |
| 4406 | |
| 2720 | 4407 #ifdef MC_ALLOC |
| 4408 free_lrecord (cons); | |
| 4409 #else /* not MC_ALLOC */ | |
| 440 | 4410 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, Lisp_Cons, ptr); |
| 2720 | 4411 #endif /* not MC_ALLOC */ |
| 428 | 4412 } |
| 4413 | |
| 4414 /* explicitly free a list. You **must make sure** that you have | |
| 4415 created all the cons cells that make up this list and that there | |
| 4416 are no pointers to any of these cons cells anywhere else. If there | |
| 4417 are, you will lose. */ | |
| 4418 | |
| 4419 void | |
| 4420 free_list (Lisp_Object list) | |
| 4421 { | |
| 4422 Lisp_Object rest, next; | |
| 4423 | |
| 4424 for (rest = list; !NILP (rest); rest = next) | |
| 4425 { | |
| 4426 next = XCDR (rest); | |
| 853 | 4427 free_cons (rest); |
| 428 | 4428 } |
| 4429 } | |
| 4430 | |
| 4431 /* explicitly free an alist. You **must make sure** that you have | |
| 4432 created all the cons cells that make up this alist and that there | |
| 4433 are no pointers to any of these cons cells anywhere else. If there | |
| 4434 are, you will lose. */ | |
| 4435 | |
| 4436 void | |
| 4437 free_alist (Lisp_Object alist) | |
| 4438 { | |
| 4439 Lisp_Object rest, next; | |
| 4440 | |
| 4441 for (rest = alist; !NILP (rest); rest = next) | |
| 4442 { | |
| 4443 next = XCDR (rest); | |
| 853 | 4444 free_cons (XCAR (rest)); |
| 4445 free_cons (rest); | |
| 428 | 4446 } |
| 4447 } | |
| 4448 | |
| 2720 | 4449 #ifndef MC_ALLOC |
| 428 | 4450 static void |
| 4451 sweep_compiled_functions (void) | |
| 4452 { | |
| 4453 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 945 | 4454 #define ADDITIONAL_FREE_compiled_function(ptr) \ |
| 1726 | 4455 if (ptr->args_in_array) xfree (ptr->args, Lisp_Object *) |
| 428 | 4456 |
| 4457 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function); | |
| 4458 } | |
| 4459 | |
| 4460 static void | |
| 4461 sweep_floats (void) | |
| 4462 { | |
| 4463 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4464 #define ADDITIONAL_FREE_float(ptr) | |
| 4465 | |
| 440 | 4466 SWEEP_FIXED_TYPE_BLOCK (float, Lisp_Float); |
| 428 | 4467 } |
| 4468 | |
| 1983 | 4469 #ifdef HAVE_BIGNUM |
| 4470 static void | |
| 4471 sweep_bignums (void) | |
| 4472 { | |
| 4473 #define UNMARK_bignum(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4474 #define ADDITIONAL_FREE_bignum(ptr) bignum_fini (ptr->data) | |
| 4475 | |
| 4476 SWEEP_FIXED_TYPE_BLOCK (bignum, Lisp_Bignum); | |
| 4477 } | |
| 4478 #endif /* HAVE_BIGNUM */ | |
| 4479 | |
| 4480 #ifdef HAVE_RATIO | |
| 4481 static void | |
| 4482 sweep_ratios (void) | |
| 4483 { | |
| 4484 #define UNMARK_ratio(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4485 #define ADDITIONAL_FREE_ratio(ptr) ratio_fini (ptr->data) | |
| 4486 | |
| 4487 SWEEP_FIXED_TYPE_BLOCK (ratio, Lisp_Ratio); | |
| 4488 } | |
| 4489 #endif /* HAVE_RATIO */ | |
| 4490 | |
| 4491 #ifdef HAVE_BIGFLOAT | |
| 4492 static void | |
| 4493 sweep_bigfloats (void) | |
| 4494 { | |
| 4495 #define UNMARK_bigfloat(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4496 #define ADDITIONAL_FREE_bigfloat(ptr) bigfloat_fini (ptr->bf) | |
| 4497 | |
| 4498 SWEEP_FIXED_TYPE_BLOCK (bigfloat, Lisp_Bigfloat); | |
| 4499 } | |
| 4500 #endif | |
| 4501 | |
| 428 | 4502 static void |
| 4503 sweep_symbols (void) | |
| 4504 { | |
| 4505 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4506 #define ADDITIONAL_FREE_symbol(ptr) | |
| 4507 | |
| 440 | 4508 SWEEP_FIXED_TYPE_BLOCK (symbol, Lisp_Symbol); |
| 428 | 4509 } |
| 4510 | |
| 4511 static void | |
| 4512 sweep_extents (void) | |
| 4513 { | |
| 4514 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4515 #define ADDITIONAL_FREE_extent(ptr) | |
| 4516 | |
| 4517 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent); | |
| 4518 } | |
| 4519 | |
| 4520 static void | |
| 4521 sweep_events (void) | |
| 4522 { | |
| 4523 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4524 #define ADDITIONAL_FREE_event(ptr) | |
| 4525 | |
| 440 | 4526 SWEEP_FIXED_TYPE_BLOCK (event, Lisp_Event); |
| 428 | 4527 } |
| 2720 | 4528 #endif /* not MC_ALLOC */ |
| 428 | 4529 |
| 1204 | 4530 #ifdef EVENT_DATA_AS_OBJECTS |
| 934 | 4531 |
| 2720 | 4532 #ifndef MC_ALLOC |
| 934 | 4533 static void |
| 4534 sweep_key_data (void) | |
| 4535 { | |
| 4536 #define UNMARK_key_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4537 #define ADDITIONAL_FREE_key_data(ptr) | |
| 4538 | |
| 4539 SWEEP_FIXED_TYPE_BLOCK (key_data, Lisp_Key_Data); | |
| 4540 } | |
| 2720 | 4541 #endif /* not MC_ALLOC */ |
| 934 | 4542 |
| 1204 | 4543 void |
| 4544 free_key_data (Lisp_Object ptr) | |
| 4545 { | |
| 2720 | 4546 #ifdef MC_ALLOC |
| 4547 free_lrecord (ptr); | |
| 4548 #else /* not MC_ALLOC */ | |
| 1204 | 4549 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (key_data, Lisp_Key_Data, XKEY_DATA (ptr)); |
| 2720 | 4550 #endif /* not MC_ALLOC */ |
| 4551 } | |
| 4552 | |
| 4553 #ifndef MC_ALLOC | |
| 934 | 4554 static void |
| 4555 sweep_button_data (void) | |
| 4556 { | |
| 4557 #define UNMARK_button_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4558 #define ADDITIONAL_FREE_button_data(ptr) | |
| 4559 | |
| 4560 SWEEP_FIXED_TYPE_BLOCK (button_data, Lisp_Button_Data); | |
| 4561 } | |
| 2720 | 4562 #endif /* not MC_ALLOC */ |
| 934 | 4563 |
| 1204 | 4564 void |
| 4565 free_button_data (Lisp_Object ptr) | |
| 4566 { | |
| 2720 | 4567 #ifdef MC_ALLOC |
| 4568 free_lrecord (ptr); | |
| 4569 #else /* not MC_ALLOC */ | |
| 1204 | 4570 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (button_data, Lisp_Button_Data, XBUTTON_DATA (ptr)); |
| 2720 | 4571 #endif /* not MC_ALLOC */ |
| 4572 } | |
| 4573 | |
| 4574 #ifndef MC_ALLOC | |
| 934 | 4575 static void |
| 4576 sweep_motion_data (void) | |
| 4577 { | |
| 4578 #define UNMARK_motion_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4579 #define ADDITIONAL_FREE_motion_data(ptr) | |
| 4580 | |
| 4581 SWEEP_FIXED_TYPE_BLOCK (motion_data, Lisp_Motion_Data); | |
| 4582 } | |
| 2720 | 4583 #endif /* not MC_ALLOC */ |
| 934 | 4584 |
| 1204 | 4585 void |
| 4586 free_motion_data (Lisp_Object ptr) | |
| 4587 { | |
| 2720 | 4588 #ifdef MC_ALLOC |
| 4589 free_lrecord (ptr); | |
| 4590 #else /* not MC_ALLOC */ | |
| 1204 | 4591 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (motion_data, Lisp_Motion_Data, XMOTION_DATA (ptr)); |
| 2720 | 4592 #endif /* not MC_ALLOC */ |
| 4593 } | |
| 4594 | |
| 4595 #ifndef MC_ALLOC | |
| 934 | 4596 static void |
| 4597 sweep_process_data (void) | |
| 4598 { | |
| 4599 #define UNMARK_process_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4600 #define ADDITIONAL_FREE_process_data(ptr) | |
| 4601 | |
| 4602 SWEEP_FIXED_TYPE_BLOCK (process_data, Lisp_Process_Data); | |
| 4603 } | |
| 2720 | 4604 #endif /* not MC_ALLOC */ |
| 934 | 4605 |
| 1204 | 4606 void |
| 4607 free_process_data (Lisp_Object ptr) | |
| 4608 { | |
| 2720 | 4609 #ifdef MC_ALLOC |
| 4610 free_lrecord (ptr); | |
| 4611 #else /* not MC_ALLOC */ | |
| 1204 | 4612 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (process_data, Lisp_Process_Data, XPROCESS_DATA (ptr)); |
| 2720 | 4613 #endif /* not MC_ALLOC */ |
| 4614 } | |
| 4615 | |
| 4616 #ifndef MC_ALLOC | |
| 934 | 4617 static void |
| 4618 sweep_timeout_data (void) | |
| 4619 { | |
| 4620 #define UNMARK_timeout_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4621 #define ADDITIONAL_FREE_timeout_data(ptr) | |
| 4622 | |
| 4623 SWEEP_FIXED_TYPE_BLOCK (timeout_data, Lisp_Timeout_Data); | |
| 4624 } | |
| 2720 | 4625 #endif /* not MC_ALLOC */ |
| 934 | 4626 |
| 1204 | 4627 void |
| 4628 free_timeout_data (Lisp_Object ptr) | |
| 4629 { | |
| 2720 | 4630 #ifdef MC_ALLOC |
| 4631 free_lrecord (ptr); | |
| 4632 #else /* not MC_ALLOC */ | |
| 1204 | 4633 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (timeout_data, Lisp_Timeout_Data, XTIMEOUT_DATA (ptr)); |
| 2720 | 4634 #endif /* not MC_ALLOC */ |
| 4635 } | |
| 4636 | |
| 4637 #ifndef MC_ALLOC | |
| 934 | 4638 static void |
| 4639 sweep_magic_data (void) | |
| 4640 { | |
| 4641 #define UNMARK_magic_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4642 #define ADDITIONAL_FREE_magic_data(ptr) | |
| 4643 | |
| 4644 SWEEP_FIXED_TYPE_BLOCK (magic_data, Lisp_Magic_Data); | |
| 4645 } | |
| 2720 | 4646 #endif /* not MC_ALLOC */ |
| 934 | 4647 |
| 1204 | 4648 void |
| 4649 free_magic_data (Lisp_Object ptr) | |
| 4650 { | |
| 2720 | 4651 #ifdef MC_ALLOC |
| 4652 free_lrecord (ptr); | |
| 4653 #else /* not MC_ALLOC */ | |
| 1204 | 4654 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_data, Lisp_Magic_Data, XMAGIC_DATA (ptr)); |
| 2720 | 4655 #endif /* not MC_ALLOC */ |
| 4656 } | |
| 4657 | |
| 4658 #ifndef MC_ALLOC | |
| 934 | 4659 static void |
| 4660 sweep_magic_eval_data (void) | |
| 4661 { | |
| 4662 #define UNMARK_magic_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4663 #define ADDITIONAL_FREE_magic_eval_data(ptr) | |
| 4664 | |
| 4665 SWEEP_FIXED_TYPE_BLOCK (magic_eval_data, Lisp_Magic_Eval_Data); | |
| 4666 } | |
| 2720 | 4667 #endif /* not MC_ALLOC */ |
| 934 | 4668 |
| 1204 | 4669 void |
| 4670 free_magic_eval_data (Lisp_Object ptr) | |
| 4671 { | |
| 2720 | 4672 #ifdef MC_ALLOC |
| 4673 free_lrecord (ptr); | |
| 4674 #else /* not MC_ALLOC */ | |
| 1204 | 4675 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_eval_data, Lisp_Magic_Eval_Data, XMAGIC_EVAL_DATA (ptr)); |
| 2720 | 4676 #endif /* not MC_ALLOC */ |
| 4677 } | |
| 4678 | |
| 4679 #ifndef MC_ALLOC | |
| 934 | 4680 static void |
| 4681 sweep_eval_data (void) | |
| 4682 { | |
| 4683 #define UNMARK_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4684 #define ADDITIONAL_FREE_eval_data(ptr) | |
| 4685 | |
| 4686 SWEEP_FIXED_TYPE_BLOCK (eval_data, Lisp_Eval_Data); | |
| 4687 } | |
| 2720 | 4688 #endif /* not MC_ALLOC */ |
| 934 | 4689 |
| 1204 | 4690 void |
| 4691 free_eval_data (Lisp_Object ptr) | |
| 4692 { | |
| 2720 | 4693 #ifdef MC_ALLOC |
| 4694 free_lrecord (ptr); | |
| 4695 #else /* not MC_ALLOC */ | |
| 1204 | 4696 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (eval_data, Lisp_Eval_Data, XEVAL_DATA (ptr)); |
| 2720 | 4697 #endif /* not MC_ALLOC */ |
| 4698 } | |
| 4699 | |
| 4700 #ifndef MC_ALLOC | |
| 934 | 4701 static void |
| 4702 sweep_misc_user_data (void) | |
| 4703 { | |
| 4704 #define UNMARK_misc_user_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4705 #define ADDITIONAL_FREE_misc_user_data(ptr) | |
| 4706 | |
| 4707 SWEEP_FIXED_TYPE_BLOCK (misc_user_data, Lisp_Misc_User_Data); | |
| 4708 } | |
| 2720 | 4709 #endif /* not MC_ALLOC */ |
| 934 | 4710 |
| 1204 | 4711 void |
| 4712 free_misc_user_data (Lisp_Object ptr) | |
| 4713 { | |
| 2720 | 4714 #ifdef MC_ALLOC |
| 4715 free_lrecord (ptr); | |
| 4716 #else /* not MC_ALLOC */ | |
| 1204 | 4717 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (misc_user_data, Lisp_Misc_User_Data, XMISC_USER_DATA (ptr)); |
| 2720 | 4718 #endif /* not MC_ALLOC */ |
| 1204 | 4719 } |
| 4720 | |
| 4721 #endif /* EVENT_DATA_AS_OBJECTS */ | |
| 934 | 4722 |
| 2720 | 4723 #ifndef MC_ALLOC |
| 428 | 4724 static void |
| 4725 sweep_markers (void) | |
| 4726 { | |
| 4727 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 4728 #define ADDITIONAL_FREE_marker(ptr) \ | |
| 4729 do { Lisp_Object tem; \ | |
| 793 | 4730 tem = wrap_marker (ptr); \ |
| 428 | 4731 unchain_marker (tem); \ |
| 4732 } while (0) | |
| 4733 | |
| 440 | 4734 SWEEP_FIXED_TYPE_BLOCK (marker, Lisp_Marker); |
| 428 | 4735 } |
| 2720 | 4736 #endif /* not MC_ALLOC */ |
| 428 | 4737 |
| 4738 /* Explicitly free a marker. */ | |
| 4739 void | |
| 1204 | 4740 free_marker (Lisp_Object ptr) |
| 428 | 4741 { |
| 2720 | 4742 #ifdef MC_ALLOC |
| 4743 free_lrecord (ptr); | |
| 4744 #else /* not MC_ALLOC */ | |
| 1204 | 4745 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, Lisp_Marker, XMARKER (ptr)); |
| 2720 | 4746 #endif /* not MC_ALLOC */ |
| 428 | 4747 } |
| 4748 | |
| 4749 | |
| 4750 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) | |
| 4751 | |
| 4752 static void | |
| 4753 verify_string_chars_integrity (void) | |
| 4754 { | |
| 4755 struct string_chars_block *sb; | |
| 4756 | |
| 4757 /* Scan each existing string block sequentially, string by string. */ | |
| 4758 for (sb = first_string_chars_block; sb; sb = sb->next) | |
| 4759 { | |
| 4760 int pos = 0; | |
| 4761 /* POS is the index of the next string in the block. */ | |
| 4762 while (pos < sb->pos) | |
| 4763 { | |
| 4764 struct string_chars *s_chars = | |
| 4765 (struct string_chars *) &(sb->string_chars[pos]); | |
| 438 | 4766 Lisp_String *string; |
| 428 | 4767 int size; |
| 4768 int fullsize; | |
| 4769 | |
| 454 | 4770 /* If the string_chars struct is marked as free (i.e. the |
| 4771 STRING pointer is NULL) then this is an unused chunk of | |
| 4772 string storage. (See below.) */ | |
| 4773 | |
| 4774 if (STRING_CHARS_FREE_P (s_chars)) | |
| 428 | 4775 { |
| 4776 fullsize = ((struct unused_string_chars *) s_chars)->fullsize; | |
| 4777 pos += fullsize; | |
| 4778 continue; | |
| 4779 } | |
| 4780 | |
| 4781 string = s_chars->string; | |
| 4782 /* Must be 32-bit aligned. */ | |
| 4783 assert ((((int) string) & 3) == 0); | |
| 4784 | |
| 793 | 4785 size = string->size_; |
| 428 | 4786 fullsize = STRING_FULLSIZE (size); |
| 4787 | |
| 4788 assert (!BIG_STRING_FULLSIZE_P (fullsize)); | |
| 2720 | 4789 assert (XSTRING_DATA (string) == s_chars->chars); |
| 428 | 4790 pos += fullsize; |
| 4791 } | |
| 4792 assert (pos == sb->pos); | |
| 4793 } | |
| 4794 } | |
| 4795 | |
| 1204 | 4796 #endif /* defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) */ |
| 428 | 4797 |
| 4798 /* Compactify string chars, relocating the reference to each -- | |
| 4799 free any empty string_chars_block we see. */ | |
| 4800 static void | |
| 4801 compact_string_chars (void) | |
| 4802 { | |
| 4803 struct string_chars_block *to_sb = first_string_chars_block; | |
| 4804 int to_pos = 0; | |
| 4805 struct string_chars_block *from_sb; | |
| 4806 | |
| 4807 /* Scan each existing string block sequentially, string by string. */ | |
| 4808 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next) | |
| 4809 { | |
| 4810 int from_pos = 0; | |
| 4811 /* FROM_POS is the index of the next string in the block. */ | |
| 4812 while (from_pos < from_sb->pos) | |
| 4813 { | |
| 4814 struct string_chars *from_s_chars = | |
| 4815 (struct string_chars *) &(from_sb->string_chars[from_pos]); | |
| 4816 struct string_chars *to_s_chars; | |
| 438 | 4817 Lisp_String *string; |
| 428 | 4818 int size; |
| 4819 int fullsize; | |
| 4820 | |
| 454 | 4821 /* If the string_chars struct is marked as free (i.e. the |
| 4822 STRING pointer is NULL) then this is an unused chunk of | |
| 4823 string storage. This happens under Mule when a string's | |
| 4824 size changes in such a way that its fullsize changes. | |
| 4825 (Strings can change size because a different-length | |
| 4826 character can be substituted for another character.) | |
| 4827 In this case, after the bogus string pointer is the | |
| 4828 "fullsize" of this entry, i.e. how many bytes to skip. */ | |
| 4829 | |
| 4830 if (STRING_CHARS_FREE_P (from_s_chars)) | |
| 428 | 4831 { |
| 4832 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize; | |
| 4833 from_pos += fullsize; | |
| 4834 continue; | |
| 4835 } | |
| 4836 | |
| 4837 string = from_s_chars->string; | |
| 1204 | 4838 gc_checking_assert (!(LRECORD_FREE_P (string))); |
| 428 | 4839 |
| 793 | 4840 size = string->size_; |
| 428 | 4841 fullsize = STRING_FULLSIZE (size); |
| 4842 | |
| 442 | 4843 gc_checking_assert (! BIG_STRING_FULLSIZE_P (fullsize)); |
| 428 | 4844 |
| 4845 /* Just skip it if it isn't marked. */ | |
| 771 | 4846 if (! MARKED_RECORD_HEADER_P (&(string->u.lheader))) |
| 428 | 4847 { |
| 4848 from_pos += fullsize; | |
| 4849 continue; | |
| 4850 } | |
| 4851 | |
| 4852 /* If it won't fit in what's left of TO_SB, close TO_SB out | |
| 4853 and go on to the next string_chars_block. We know that TO_SB | |
| 4854 cannot advance past FROM_SB here since FROM_SB is large enough | |
| 4855 to currently contain this string. */ | |
| 4856 if ((to_pos + fullsize) > countof (to_sb->string_chars)) | |
| 4857 { | |
| 4858 to_sb->pos = to_pos; | |
| 4859 to_sb = to_sb->next; | |
| 4860 to_pos = 0; | |
| 4861 } | |
| 4862 | |
| 4863 /* Compute new address of this string | |
| 4864 and update TO_POS for the space being used. */ | |
| 4865 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]); | |
| 4866 | |
| 4867 /* Copy the string_chars to the new place. */ | |
| 4868 if (from_s_chars != to_s_chars) | |
| 4869 memmove (to_s_chars, from_s_chars, fullsize); | |
| 4870 | |
| 4871 /* Relocate FROM_S_CHARS's reference */ | |
| 826 | 4872 set_lispstringp_data (string, &(to_s_chars->chars[0])); |
| 428 | 4873 |
| 4874 from_pos += fullsize; | |
| 4875 to_pos += fullsize; | |
| 4876 } | |
| 4877 } | |
| 4878 | |
| 4879 /* Set current to the last string chars block still used and | |
| 4880 free any that follow. */ | |
| 4881 { | |
| 4882 struct string_chars_block *victim; | |
| 4883 | |
| 4884 for (victim = to_sb->next; victim; ) | |
| 4885 { | |
| 4886 struct string_chars_block *next = victim->next; | |
| 1726 | 4887 xfree (victim, struct string_chars_block *); |
| 428 | 4888 victim = next; |
| 4889 } | |
| 4890 | |
| 4891 current_string_chars_block = to_sb; | |
| 4892 current_string_chars_block->pos = to_pos; | |
| 4893 current_string_chars_block->next = 0; | |
| 4894 } | |
| 4895 } | |
| 4896 | |
| 2720 | 4897 #ifndef MC_ALLOC |
| 428 | 4898 #if 1 /* Hack to debug missing purecopy's */ |
| 4899 static int debug_string_purity; | |
| 4900 | |
| 4901 static void | |
| 793 | 4902 debug_string_purity_print (Lisp_Object p) |
| 428 | 4903 { |
| 4904 Charcount i; | |
| 826 | 4905 Charcount s = string_char_length (p); |
| 442 | 4906 stderr_out ("\""); |
| 428 | 4907 for (i = 0; i < s; i++) |
| 4908 { | |
| 867 | 4909 Ichar ch = string_ichar (p, i); |
| 428 | 4910 if (ch < 32 || ch >= 126) |
| 4911 stderr_out ("\\%03o", ch); | |
| 4912 else if (ch == '\\' || ch == '\"') | |
| 4913 stderr_out ("\\%c", ch); | |
| 4914 else | |
| 4915 stderr_out ("%c", ch); | |
| 4916 } | |
| 4917 stderr_out ("\"\n"); | |
| 4918 } | |
| 4919 #endif /* 1 */ | |
| 2720 | 4920 #endif /* not MC_ALLOC */ |
| 4921 | |
| 4922 #ifndef MC_ALLOC | |
| 428 | 4923 static void |
| 4924 sweep_strings (void) | |
| 4925 { | |
| 647 | 4926 int num_small_used = 0; |
| 4927 Bytecount num_small_bytes = 0, num_bytes = 0; | |
| 428 | 4928 int debug = debug_string_purity; |
| 4929 | |
| 793 | 4930 #define UNMARK_string(ptr) do { \ |
| 4931 Lisp_String *p = (ptr); \ | |
| 4932 Bytecount size = p->size_; \ | |
| 4933 UNMARK_RECORD_HEADER (&(p->u.lheader)); \ | |
| 4934 num_bytes += size; \ | |
| 4935 if (!BIG_STRING_SIZE_P (size)) \ | |
| 4936 { \ | |
| 4937 num_small_bytes += size; \ | |
| 4938 num_small_used++; \ | |
| 4939 } \ | |
| 4940 if (debug) \ | |
| 4941 debug_string_purity_print (wrap_string (p)); \ | |
| 438 | 4942 } while (0) |
| 4943 #define ADDITIONAL_FREE_string(ptr) do { \ | |
| 793 | 4944 Bytecount size = ptr->size_; \ |
| 438 | 4945 if (BIG_STRING_SIZE_P (size)) \ |
| 1726 | 4946 xfree (ptr->data_, Ibyte *); \ |
| 438 | 4947 } while (0) |
| 4948 | |
| 771 | 4949 SWEEP_FIXED_TYPE_BLOCK_1 (string, Lisp_String, u.lheader); |
| 428 | 4950 |
| 4951 gc_count_num_short_string_in_use = num_small_used; | |
| 4952 gc_count_string_total_size = num_bytes; | |
| 4953 gc_count_short_string_total_size = num_small_bytes; | |
| 4954 } | |
| 2720 | 4955 #endif /* not MC_ALLOC */ |
| 428 | 4956 |
| 4957 /* I hate duplicating all this crap! */ | |
| 4958 int | |
| 4959 marked_p (Lisp_Object obj) | |
| 4960 { | |
| 4961 /* Checks we used to perform. */ | |
| 4962 /* if (EQ (obj, Qnull_pointer)) return 1; */ | |
| 4963 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */ | |
| 4964 /* if (PURIFIED (XPNTR (obj))) return 1; */ | |
| 4965 | |
| 4966 if (XTYPE (obj) == Lisp_Type_Record) | |
| 4967 { | |
| 4968 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
| 442 | 4969 |
| 4970 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
| 4971 | |
| 4972 return MARKED_RECORD_HEADER_P (lheader); | |
| 428 | 4973 } |
| 4974 return 1; | |
| 4975 } | |
| 4976 | |
| 4977 static void | |
| 4978 gc_sweep (void) | |
| 4979 { | |
| 2720 | 4980 #ifdef MC_ALLOC |
| 4981 compact_string_chars (); | |
| 4982 mc_finalize (); | |
| 4983 mc_sweep (); | |
| 4984 #else /* not MC_ALLOC */ | |
| 428 | 4985 /* Free all unmarked records. Do this at the very beginning, |
| 4986 before anything else, so that the finalize methods can safely | |
| 4987 examine items in the objects. sweep_lcrecords_1() makes | |
| 4988 sure to call all the finalize methods *before* freeing anything, | |
| 4989 to complete the safety. */ | |
| 4990 { | |
| 4991 int ignored; | |
| 4992 sweep_lcrecords_1 (&all_lcrecords, &ignored); | |
| 4993 } | |
| 4994 | |
| 4995 compact_string_chars (); | |
| 4996 | |
| 4997 /* Finalize methods below (called through the ADDITIONAL_FREE_foo | |
| 4998 macros) must be *extremely* careful to make sure they're not | |
| 4999 referencing freed objects. The only two existing finalize | |
| 5000 methods (for strings and markers) pass muster -- the string | |
| 5001 finalizer doesn't look at anything but its own specially- | |
| 5002 created block, and the marker finalizer only looks at live | |
| 5003 buffers (which will never be freed) and at the markers before | |
| 5004 and after it in the chain (which, by induction, will never be | |
| 5005 freed because if so, they would have already removed themselves | |
| 5006 from the chain). */ | |
| 5007 | |
| 5008 /* Put all unmarked strings on free list, free'ing the string chars | |
| 5009 of large unmarked strings */ | |
| 5010 sweep_strings (); | |
| 5011 | |
| 5012 /* Put all unmarked conses on free list */ | |
| 5013 sweep_conses (); | |
| 5014 | |
| 5015 /* Free all unmarked compiled-function objects */ | |
| 5016 sweep_compiled_functions (); | |
| 5017 | |
| 5018 /* Put all unmarked floats on free list */ | |
| 5019 sweep_floats (); | |
| 5020 | |
| 1983 | 5021 #ifdef HAVE_BIGNUM |
| 5022 /* Put all unmarked bignums on free list */ | |
| 5023 sweep_bignums (); | |
| 5024 #endif | |
| 5025 | |
| 5026 #ifdef HAVE_RATIO | |
| 5027 /* Put all unmarked ratios on free list */ | |
| 5028 sweep_ratios (); | |
| 5029 #endif | |
| 5030 | |
| 5031 #ifdef HAVE_BIGFLOAT | |
| 5032 /* Put all unmarked bigfloats on free list */ | |
| 5033 sweep_bigfloats (); | |
| 5034 #endif | |
| 5035 | |
| 428 | 5036 /* Put all unmarked symbols on free list */ |
| 5037 sweep_symbols (); | |
| 5038 | |
| 5039 /* Put all unmarked extents on free list */ | |
| 5040 sweep_extents (); | |
| 5041 | |
| 5042 /* Put all unmarked markers on free list. | |
| 5043 Dechain each one first from the buffer into which it points. */ | |
| 5044 sweep_markers (); | |
| 5045 | |
| 5046 sweep_events (); | |
| 5047 | |
| 1204 | 5048 #ifdef EVENT_DATA_AS_OBJECTS |
| 934 | 5049 sweep_key_data (); |
| 5050 sweep_button_data (); | |
| 5051 sweep_motion_data (); | |
| 5052 sweep_process_data (); | |
| 5053 sweep_timeout_data (); | |
| 5054 sweep_magic_data (); | |
| 5055 sweep_magic_eval_data (); | |
| 5056 sweep_eval_data (); | |
| 5057 sweep_misc_user_data (); | |
| 1204 | 5058 #endif /* EVENT_DATA_AS_OBJECTS */ |
| 2720 | 5059 #endif /* not MC_ALLOC */ |
| 5060 | |
| 5061 #ifndef MC_ALLOC | |
| 428 | 5062 #ifdef PDUMP |
| 442 | 5063 pdump_objects_unmark (); |
| 428 | 5064 #endif |
| 2720 | 5065 #endif /* not MC_ALLOC */ |
| 428 | 5066 } |
| 5067 | |
| 5068 /* Clearing for disksave. */ | |
| 5069 | |
| 5070 void | |
| 5071 disksave_object_finalization (void) | |
| 5072 { | |
| 5073 /* It's important that certain information from the environment not get | |
| 5074 dumped with the executable (pathnames, environment variables, etc.). | |
| 5075 To make it easier to tell when this has happened with strings(1) we | |
| 5076 clear some known-to-be-garbage blocks of memory, so that leftover | |
| 5077 results of old evaluation don't look like potential problems. | |
| 5078 But first we set some notable variables to nil and do one more GC, | |
| 5079 to turn those strings into garbage. | |
| 440 | 5080 */ |
| 428 | 5081 |
| 5082 /* Yeah, this list is pretty ad-hoc... */ | |
| 5083 Vprocess_environment = Qnil; | |
| 771 | 5084 env_initted = 0; |
| 428 | 5085 Vexec_directory = Qnil; |
| 5086 Vdata_directory = Qnil; | |
| 5087 Vsite_directory = Qnil; | |
| 5088 Vdoc_directory = Qnil; | |
| 5089 Vexec_path = Qnil; | |
| 5090 Vload_path = Qnil; | |
| 5091 /* Vdump_load_path = Qnil; */ | |
| 5092 /* Release hash tables for locate_file */ | |
| 5093 Flocate_file_clear_hashing (Qt); | |
| 771 | 5094 uncache_home_directory (); |
| 776 | 5095 zero_out_command_line_status_vars (); |
| 872 | 5096 clear_default_devices (); |
| 428 | 5097 |
| 5098 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \ | |
| 5099 defined(LOADHIST_BUILTIN)) | |
| 5100 Vload_history = Qnil; | |
| 5101 #endif | |
| 5102 Vshell_file_name = Qnil; | |
| 5103 | |
| 5104 garbage_collect_1 (); | |
| 5105 | |
| 5106 /* Run the disksave finalization methods of all live objects. */ | |
| 5107 disksave_object_finalization_1 (); | |
| 5108 | |
| 5109 /* Zero out the uninitialized (really, unused) part of the containers | |
| 5110 for the live strings. */ | |
| 5111 { | |
| 5112 struct string_chars_block *scb; | |
| 5113 for (scb = first_string_chars_block; scb; scb = scb->next) | |
| 5114 { | |
| 5115 int count = sizeof (scb->string_chars) - scb->pos; | |
| 5116 | |
| 5117 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE); | |
| 440 | 5118 if (count != 0) |
| 5119 { | |
| 5120 /* from the block's fill ptr to the end */ | |
| 5121 memset ((scb->string_chars + scb->pos), 0, count); | |
| 5122 } | |
| 428 | 5123 } |
| 5124 } | |
| 5125 | |
| 5126 /* There, that ought to be enough... */ | |
| 5127 | |
| 5128 } | |
| 5129 | |
| 5130 | |
| 771 | 5131 int |
| 5132 begin_gc_forbidden (void) | |
| 5133 { | |
| 853 | 5134 return internal_bind_int (&gc_currently_forbidden, 1); |
| 771 | 5135 } |
| 5136 | |
| 5137 void | |
| 5138 end_gc_forbidden (int count) | |
| 5139 { | |
| 5140 unbind_to (count); | |
| 5141 } | |
| 5142 | |
| 428 | 5143 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */ |
| 5144 static int gc_hooks_inhibited; | |
| 5145 | |
| 611 | 5146 struct post_gc_action |
| 5147 { | |
| 5148 void (*fun) (void *); | |
| 5149 void *arg; | |
| 5150 }; | |
| 5151 | |
| 5152 typedef struct post_gc_action post_gc_action; | |
| 5153 | |
| 5154 typedef struct | |
| 5155 { | |
| 5156 Dynarr_declare (post_gc_action); | |
| 5157 } post_gc_action_dynarr; | |
| 5158 | |
| 5159 static post_gc_action_dynarr *post_gc_actions; | |
| 5160 | |
| 5161 /* Register an action to be called at the end of GC. | |
| 5162 gc_in_progress is 0 when this is called. | |
| 5163 This is used when it is discovered that an action needs to be taken, | |
| 5164 but it's during GC, so it's not safe. (e.g. in a finalize method.) | |
| 5165 | |
| 5166 As a general rule, do not use Lisp objects here. | |
| 5167 And NEVER signal an error. | |
| 5168 */ | |
| 5169 | |
| 5170 void | |
| 5171 register_post_gc_action (void (*fun) (void *), void *arg) | |
| 5172 { | |
| 5173 post_gc_action action; | |
| 5174 | |
| 5175 if (!post_gc_actions) | |
| 5176 post_gc_actions = Dynarr_new (post_gc_action); | |
| 5177 | |
| 5178 action.fun = fun; | |
| 5179 action.arg = arg; | |
| 5180 | |
| 5181 Dynarr_add (post_gc_actions, action); | |
| 5182 } | |
| 5183 | |
| 5184 static void | |
| 5185 run_post_gc_actions (void) | |
| 5186 { | |
| 5187 int i; | |
| 5188 | |
| 5189 if (post_gc_actions) | |
| 5190 { | |
| 5191 for (i = 0; i < Dynarr_length (post_gc_actions); i++) | |
| 5192 { | |
| 5193 post_gc_action action = Dynarr_at (post_gc_actions, i); | |
| 5194 (action.fun) (action.arg); | |
| 5195 } | |
| 5196 | |
| 5197 Dynarr_reset (post_gc_actions); | |
| 5198 } | |
| 5199 } | |
| 5200 | |
| 428 | 5201 |
| 5202 void | |
| 5203 garbage_collect_1 (void) | |
| 5204 { | |
| 5205 #if MAX_SAVE_STACK > 0 | |
| 5206 char stack_top_variable; | |
| 5207 extern char *stack_bottom; | |
| 5208 #endif | |
| 5209 struct frame *f; | |
| 5210 int speccount; | |
| 5211 int cursor_changed; | |
| 5212 Lisp_Object pre_gc_cursor; | |
| 5213 struct gcpro gcpro1; | |
| 1292 | 5214 PROFILE_DECLARE (); |
| 428 | 5215 |
| 1123 | 5216 assert (!in_display || gc_currently_forbidden); |
| 5217 | |
| 428 | 5218 if (gc_in_progress |
| 5219 || gc_currently_forbidden | |
| 5220 || in_display | |
| 5221 || preparing_for_armageddon) | |
| 5222 return; | |
| 5223 | |
| 1292 | 5224 PROFILE_RECORD_ENTERING_SECTION (QSin_garbage_collection); |
| 5225 | |
| 428 | 5226 /* We used to call selected_frame() here. |
| 5227 | |
| 5228 The following functions cannot be called inside GC | |
| 5229 so we move to after the above tests. */ | |
| 5230 { | |
| 5231 Lisp_Object frame; | |
| 5232 Lisp_Object device = Fselected_device (Qnil); | |
| 5233 if (NILP (device)) /* Could happen during startup, eg. if always_gc */ | |
| 5234 return; | |
| 872 | 5235 frame = Fselected_frame (device); |
| 428 | 5236 if (NILP (frame)) |
| 563 | 5237 invalid_state ("No frames exist on device", device); |
| 428 | 5238 f = XFRAME (frame); |
| 5239 } | |
| 5240 | |
| 5241 pre_gc_cursor = Qnil; | |
| 5242 cursor_changed = 0; | |
| 5243 | |
| 5244 GCPRO1 (pre_gc_cursor); | |
| 5245 | |
| 5246 /* Very important to prevent GC during any of the following | |
| 5247 stuff that might run Lisp code; otherwise, we'll likely | |
| 5248 have infinite GC recursion. */ | |
| 771 | 5249 speccount = begin_gc_forbidden (); |
| 428 | 5250 |
| 887 | 5251 need_to_signal_post_gc = 0; |
| 1318 | 5252 recompute_funcall_allocation_flag (); |
| 887 | 5253 |
| 428 | 5254 if (!gc_hooks_inhibited) |
| 853 | 5255 run_hook_trapping_problems |
| 1333 | 5256 (Qgarbage_collecting, Qpre_gc_hook, |
| 853 | 5257 INHIBIT_EXISTING_PERMANENT_DISPLAY_OBJECT_DELETION); |
| 428 | 5258 |
| 5259 /* Now show the GC cursor/message. */ | |
| 5260 if (!noninteractive) | |
| 5261 { | |
| 5262 if (FRAME_WIN_P (f)) | |
| 5263 { | |
| 771 | 5264 Lisp_Object frame = wrap_frame (f); |
| 428 | 5265 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph, |
| 5266 FRAME_SELECTED_WINDOW (f), | |
| 5267 ERROR_ME_NOT, 1); | |
| 5268 pre_gc_cursor = f->pointer; | |
| 5269 if (POINTER_IMAGE_INSTANCEP (cursor) | |
| 5270 /* don't change if we don't know how to change back. */ | |
| 5271 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor)) | |
| 5272 { | |
| 5273 cursor_changed = 1; | |
| 5274 Fset_frame_pointer (frame, cursor); | |
| 5275 } | |
| 5276 } | |
| 5277 | |
| 5278 /* Don't print messages to the stream device. */ | |
| 5279 if (!cursor_changed && !FRAME_STREAM_P (f)) | |
| 5280 { | |
| 1154 | 5281 if (garbage_collection_messages) |
| 5282 { | |
| 5283 Lisp_Object args[2], whole_msg; | |
| 5284 args[0] = (STRINGP (Vgc_message) ? Vgc_message : | |
| 5285 build_msg_string (gc_default_message)); | |
| 5286 args[1] = build_string ("..."); | |
| 5287 whole_msg = Fconcat (2, args); | |
| 5288 echo_area_message (f, (Ibyte *) 0, whole_msg, 0, -1, | |
| 5289 Qgarbage_collecting); | |
| 5290 } | |
| 428 | 5291 } |
| 5292 } | |
| 5293 | |
| 5294 /***** Now we actually start the garbage collection. */ | |
| 5295 | |
| 5296 gc_in_progress = 1; | |
| 2367 | 5297 inhibit_non_essential_conversion_operations = 1; |
| 428 | 5298 |
| 5299 gc_generation_number[0]++; | |
| 5300 | |
| 5301 #if MAX_SAVE_STACK > 0 | |
| 5302 | |
| 5303 /* Save a copy of the contents of the stack, for debugging. */ | |
| 5304 if (!purify_flag) | |
| 5305 { | |
| 5306 /* Static buffer in which we save a copy of the C stack at each GC. */ | |
| 5307 static char *stack_copy; | |
| 665 | 5308 static Bytecount stack_copy_size; |
| 428 | 5309 |
| 5310 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom; | |
| 665 | 5311 Bytecount stack_size = (stack_diff > 0 ? stack_diff : -stack_diff); |
| 428 | 5312 if (stack_size < MAX_SAVE_STACK) |
| 5313 { | |
| 5314 if (stack_copy_size < stack_size) | |
| 5315 { | |
| 5316 stack_copy = (char *) xrealloc (stack_copy, stack_size); | |
| 5317 stack_copy_size = stack_size; | |
| 5318 } | |
| 5319 | |
| 5320 memcpy (stack_copy, | |
| 5321 stack_diff > 0 ? stack_bottom : &stack_top_variable, | |
| 5322 stack_size); | |
| 5323 } | |
| 5324 } | |
| 5325 #endif /* MAX_SAVE_STACK > 0 */ | |
| 5326 | |
| 5327 /* Do some totally ad-hoc resource clearing. */ | |
| 5328 /* #### generalize this? */ | |
| 5329 clear_event_resource (); | |
| 5330 cleanup_specifiers (); | |
| 1204 | 5331 cleanup_buffer_undo_lists (); |
| 428 | 5332 |
| 5333 /* Mark all the special slots that serve as the roots of accessibility. */ | |
| 5334 | |
| 1598 | 5335 #ifdef USE_KKCC |
| 5336 /* initialize kkcc stack */ | |
| 5337 kkcc_gc_stack_init(); | |
| 2645 | 5338 #define mark_object(obj) kkcc_gc_stack_push_lisp_object (obj, 0, -1) |
| 1598 | 5339 #endif /* USE_KKCC */ |
| 5340 | |
| 428 | 5341 { /* staticpro() */ |
| 452 | 5342 Lisp_Object **p = Dynarr_begin (staticpros); |
| 665 | 5343 Elemcount count; |
| 452 | 5344 for (count = Dynarr_length (staticpros); count; count--) |
| 5345 mark_object (**p++); | |
| 5346 } | |
| 5347 | |
| 5348 { /* staticpro_nodump() */ | |
| 5349 Lisp_Object **p = Dynarr_begin (staticpros_nodump); | |
| 665 | 5350 Elemcount count; |
| 452 | 5351 for (count = Dynarr_length (staticpros_nodump); count; count--) |
| 5352 mark_object (**p++); | |
| 428 | 5353 } |
| 5354 | |
| 2720 | 5355 #ifdef MC_ALLOC |
| 5356 { /* mcpro () */ | |
| 5357 Lisp_Object *p = Dynarr_begin (mcpros); | |
| 5358 Elemcount count; | |
| 5359 for (count = Dynarr_length (mcpros); count; count--) | |
| 5360 mark_object (*p++); | |
| 5361 } | |
| 5362 #endif /* MC_ALLOC */ | |
| 5363 | |
| 428 | 5364 { /* GCPRO() */ |
| 5365 struct gcpro *tail; | |
| 5366 int i; | |
| 5367 for (tail = gcprolist; tail; tail = tail->next) | |
| 5368 for (i = 0; i < tail->nvars; i++) | |
| 5369 mark_object (tail->var[i]); | |
| 5370 } | |
| 5371 | |
| 5372 { /* specbind() */ | |
| 5373 struct specbinding *bind; | |
| 5374 for (bind = specpdl; bind != specpdl_ptr; bind++) | |
| 5375 { | |
| 5376 mark_object (bind->symbol); | |
| 5377 mark_object (bind->old_value); | |
| 5378 } | |
| 5379 } | |
| 5380 | |
| 5381 { | |
| 2994 | 5382 struct catchtag *c; |
| 5383 for (c = catchlist; c; c = c->next) | |
| 428 | 5384 { |
| 2994 | 5385 mark_object (c->tag); |
| 5386 mark_object (c->val); | |
| 5387 mark_object (c->actual_tag); | |
| 5388 mark_object (c->backtrace); | |
| 428 | 5389 } |
| 5390 } | |
| 5391 | |
| 5392 { | |
| 5393 struct backtrace *backlist; | |
| 5394 for (backlist = backtrace_list; backlist; backlist = backlist->next) | |
| 5395 { | |
| 5396 int nargs = backlist->nargs; | |
| 5397 int i; | |
| 5398 | |
| 5399 mark_object (*backlist->function); | |
| 1292 | 5400 if (nargs < 0 /* nargs == UNEVALLED || nargs == MANY */ |
| 5401 /* might be fake (internal profiling entry) */ | |
| 5402 && backlist->args) | |
| 428 | 5403 mark_object (backlist->args[0]); |
| 5404 else | |
| 5405 for (i = 0; i < nargs; i++) | |
| 5406 mark_object (backlist->args[i]); | |
| 5407 } | |
| 5408 } | |
| 5409 | |
| 5410 mark_profiling_info (); | |
| 5411 | |
| 5412 /* OK, now do the after-mark stuff. This is for things that | |
| 5413 are only marked when something else is marked (e.g. weak hash tables). | |
| 5414 There may be complex dependencies between such objects -- e.g. | |
| 5415 a weak hash table might be unmarked, but after processing a later | |
| 5416 weak hash table, the former one might get marked. So we have to | |
| 5417 iterate until nothing more gets marked. */ | |
| 1598 | 5418 #ifdef USE_KKCC |
| 5419 kkcc_marking (); | |
| 5420 #endif /* USE_KKCC */ | |
| 1590 | 5421 init_marking_ephemerons (); |
| 428 | 5422 while (finish_marking_weak_hash_tables () > 0 || |
| 887 | 5423 finish_marking_weak_lists () > 0 || |
| 1590 | 5424 continue_marking_ephemerons () > 0) |
|
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5425 #ifdef USE_KKCC |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5426 { |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5427 kkcc_marking (); |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5428 } |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5429 #else /* NOT USE_KKCC */ |
| 1590 | 5430 ; |
| 1598 | 5431 #endif /* USE_KKCC */ |
| 5432 | |
| 1590 | 5433 /* At this point, we know which objects need to be finalized: we |
| 5434 still need to resurrect them */ | |
| 5435 | |
| 5436 while (finish_marking_ephemerons () > 0 || | |
| 5437 finish_marking_weak_lists () > 0 || | |
| 5438 finish_marking_weak_hash_tables () > 0) | |
| 1643 | 5439 #ifdef USE_KKCC |
|
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5440 { |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5441 kkcc_marking (); |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5442 } |
| 1643 | 5443 kkcc_gc_stack_free (); |
| 1676 | 5444 #undef mark_object |
|
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5445 #else /* NOT USE_KKCC */ |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5446 ; |
| 1643 | 5447 #endif /* USE_KKCC */ |
| 5448 | |
| 428 | 5449 /* And prune (this needs to be called after everything else has been |
| 5450 marked and before we do any sweeping). */ | |
| 5451 /* #### this is somewhat ad-hoc and should probably be an object | |
| 5452 method */ | |
| 5453 prune_weak_hash_tables (); | |
| 5454 prune_weak_lists (); | |
| 5455 prune_specifiers (); | |
| 5456 prune_syntax_tables (); | |
| 5457 | |
| 887 | 5458 prune_ephemerons (); |
| 858 | 5459 prune_weak_boxes (); |
| 5460 | |
| 428 | 5461 gc_sweep (); |
| 5462 | |
| 5463 consing_since_gc = 0; | |
| 5464 #ifndef DEBUG_XEMACS | |
| 5465 /* Allow you to set it really fucking low if you really want ... */ | |
| 5466 if (gc_cons_threshold < 10000) | |
| 5467 gc_cons_threshold = 10000; | |
| 5468 #endif | |
| 814 | 5469 recompute_need_to_garbage_collect (); |
| 428 | 5470 |
| 2367 | 5471 inhibit_non_essential_conversion_operations = 0; |
| 428 | 5472 gc_in_progress = 0; |
| 5473 | |
| 611 | 5474 run_post_gc_actions (); |
| 5475 | |
| 428 | 5476 /******* End of garbage collection ********/ |
| 5477 | |
| 5478 /* Now remove the GC cursor/message */ | |
| 5479 if (!noninteractive) | |
| 5480 { | |
| 5481 if (cursor_changed) | |
| 771 | 5482 Fset_frame_pointer (wrap_frame (f), pre_gc_cursor); |
| 428 | 5483 else if (!FRAME_STREAM_P (f)) |
| 5484 { | |
| 5485 /* Show "...done" only if the echo area would otherwise be empty. */ | |
| 5486 if (NILP (clear_echo_area (selected_frame (), | |
| 5487 Qgarbage_collecting, 0))) | |
| 5488 { | |
| 1154 | 5489 if (garbage_collection_messages) |
| 5490 { | |
| 5491 Lisp_Object args[2], whole_msg; | |
| 5492 args[0] = (STRINGP (Vgc_message) ? Vgc_message : | |
| 5493 build_msg_string (gc_default_message)); | |
| 5494 args[1] = build_msg_string ("... done"); | |
| 5495 whole_msg = Fconcat (2, args); | |
| 5496 echo_area_message (selected_frame (), (Ibyte *) 0, | |
| 5497 whole_msg, 0, -1, | |
| 5498 Qgarbage_collecting); | |
| 5499 } | |
| 428 | 5500 } |
| 5501 } | |
| 5502 } | |
| 5503 | |
| 5504 /* now stop inhibiting GC */ | |
| 771 | 5505 unbind_to (speccount); |
| 428 | 5506 |
| 2720 | 5507 #ifndef MC_ALLOC |
| 428 | 5508 if (!breathing_space) |
| 5509 { | |
| 5510 breathing_space = malloc (4096 - MALLOC_OVERHEAD); | |
| 5511 } | |
| 2720 | 5512 #endif /* not MC_ALLOC */ |
| 428 | 5513 |
| 5514 UNGCPRO; | |
| 887 | 5515 |
| 5516 need_to_signal_post_gc = 1; | |
| 5517 funcall_allocation_flag = 1; | |
| 5518 | |
| 1292 | 5519 PROFILE_RECORD_EXITING_SECTION (QSin_garbage_collection); |
| 5520 | |
| 428 | 5521 return; |
| 5522 } | |
| 5523 | |
| 2994 | 5524 #ifdef ALLOC_TYPE_STATS |
| 5525 | |
| 2720 | 5526 static Lisp_Object |
| 2994 | 5527 gc_plist_hack (const Ascbyte *name, EMACS_INT value, Lisp_Object tail) |
| 2720 | 5528 { |
| 5529 /* C doesn't have local functions (or closures, or GC, or readable syntax, | |
| 5530 or portable numeric datatypes, or bit-vectors, or characters, or | |
| 5531 arrays, or exceptions, or ...) */ | |
| 5532 return cons3 (intern (name), make_int (value), tail); | |
| 5533 } | |
| 2775 | 5534 |
| 2994 | 5535 static Lisp_Object |
| 5536 object_memory_usage_stats (int set_total_gc_usage) | |
| 2720 | 5537 { |
| 5538 Lisp_Object pl = Qnil; | |
| 5539 int i; | |
| 2994 | 5540 EMACS_INT tgu_val = 0; |
| 5541 | |
| 5542 #ifdef MC_ALLOC | |
| 2775 | 5543 |
| 2720 | 5544 for (i = 0; i < (countof (lrecord_implementations_table) |
| 5545 + MODULE_DEFINABLE_TYPE_COUNT); i++) | |
| 5546 { | |
| 5547 if (lrecord_stats[i].instances_in_use != 0) | |
| 5548 { | |
| 5549 char buf [255]; | |
| 5550 const char *name = lrecord_implementations_table[i]->name; | |
| 5551 int len = strlen (name); | |
| 5552 | |
| 5553 if (lrecord_stats[i].bytes_in_use_including_overhead != | |
| 5554 lrecord_stats[i].bytes_in_use) | |
| 5555 { | |
| 5556 sprintf (buf, "%s-storage-including-overhead", name); | |
| 5557 pl = gc_plist_hack (buf, | |
| 5558 lrecord_stats[i] | |
| 5559 .bytes_in_use_including_overhead, | |
| 5560 pl); | |
| 5561 } | |
| 5562 | |
| 5563 sprintf (buf, "%s-storage", name); | |
| 5564 pl = gc_plist_hack (buf, | |
| 5565 lrecord_stats[i].bytes_in_use, | |
| 5566 pl); | |
| 2994 | 5567 tgu_val += lrecord_stats[i].bytes_in_use_including_overhead; |
| 2720 | 5568 |
| 5569 if (name[len-1] == 's') | |
| 5570 sprintf (buf, "%ses-used", name); | |
| 5571 else | |
| 5572 sprintf (buf, "%ss-used", name); | |
| 5573 pl = gc_plist_hack (buf, lrecord_stats[i].instances_in_use, pl); | |
| 5574 } | |
| 5575 } | |
| 2775 | 5576 pl = gc_plist_hack ("string-data-storage-including-overhead", |
| 5577 lrecord_string_data_bytes_in_use_including_overhead, pl); | |
| 5578 pl = gc_plist_hack ("string-data-storage-additional", | |
| 5579 lrecord_string_data_bytes_in_use, pl); | |
| 5580 pl = gc_plist_hack ("string-data-used", | |
| 5581 lrecord_string_data_instances_in_use, pl); | |
| 2994 | 5582 tgu_val += lrecord_string_data_bytes_in_use_including_overhead; |
| 5583 | |
| 2720 | 5584 #else /* not MC_ALLOC */ |
| 428 | 5585 |
| 5586 #define HACK_O_MATIC(type, name, pl) do { \ | |
| 2994 | 5587 EMACS_INT s = 0; \ |
| 428 | 5588 struct type##_block *x = current_##type##_block; \ |
| 5589 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \ | |
| 2994 | 5590 tgu_val += s; \ |
| 428 | 5591 (pl) = gc_plist_hack ((name), s, (pl)); \ |
| 5592 } while (0) | |
| 5593 | |
| 442 | 5594 for (i = 0; i < lrecord_type_count; i++) |
| 428 | 5595 { |
| 5596 if (lcrecord_stats[i].bytes_in_use != 0 | |
| 5597 || lcrecord_stats[i].bytes_freed != 0 | |
| 5598 || lcrecord_stats[i].instances_on_free_list != 0) | |
| 5599 { | |
| 5600 char buf [255]; | |
| 442 | 5601 const char *name = lrecord_implementations_table[i]->name; |
| 428 | 5602 int len = strlen (name); |
| 5603 | |
| 5604 sprintf (buf, "%s-storage", name); | |
| 5605 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl); | |
| 2994 | 5606 tgu_val += lcrecord_stats[i].bytes_in_use; |
| 428 | 5607 /* Okay, simple pluralization check for `symbol-value-varalias' */ |
| 5608 if (name[len-1] == 's') | |
| 5609 sprintf (buf, "%ses-freed", name); | |
| 5610 else | |
| 5611 sprintf (buf, "%ss-freed", name); | |
| 5612 if (lcrecord_stats[i].instances_freed != 0) | |
| 5613 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl); | |
| 5614 if (name[len-1] == 's') | |
| 5615 sprintf (buf, "%ses-on-free-list", name); | |
| 5616 else | |
| 5617 sprintf (buf, "%ss-on-free-list", name); | |
| 5618 if (lcrecord_stats[i].instances_on_free_list != 0) | |
| 5619 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list, | |
| 5620 pl); | |
| 5621 if (name[len-1] == 's') | |
| 5622 sprintf (buf, "%ses-used", name); | |
| 5623 else | |
| 5624 sprintf (buf, "%ss-used", name); | |
| 5625 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl); | |
| 5626 } | |
| 5627 } | |
| 5628 | |
| 5629 HACK_O_MATIC (extent, "extent-storage", pl); | |
| 5630 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl); | |
| 5631 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl); | |
| 5632 HACK_O_MATIC (event, "event-storage", pl); | |
| 5633 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl); | |
| 5634 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl); | |
| 5635 HACK_O_MATIC (marker, "marker-storage", pl); | |
| 5636 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl); | |
| 5637 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl); | |
| 5638 HACK_O_MATIC (float, "float-storage", pl); | |
| 5639 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl); | |
| 5640 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl); | |
| 1983 | 5641 #ifdef HAVE_BIGNUM |
| 5642 HACK_O_MATIC (bignum, "bignum-storage", pl); | |
| 5643 pl = gc_plist_hack ("bignums-free", gc_count_num_bignum_freelist, pl); | |
| 5644 pl = gc_plist_hack ("bignums-used", gc_count_num_bignum_in_use, pl); | |
| 5645 #endif /* HAVE_BIGNUM */ | |
| 5646 #ifdef HAVE_RATIO | |
| 5647 HACK_O_MATIC (ratio, "ratio-storage", pl); | |
| 5648 pl = gc_plist_hack ("ratios-free", gc_count_num_ratio_freelist, pl); | |
| 5649 pl = gc_plist_hack ("ratios-used", gc_count_num_ratio_in_use, pl); | |
| 5650 #endif /* HAVE_RATIO */ | |
| 5651 #ifdef HAVE_BIGFLOAT | |
| 5652 HACK_O_MATIC (bigfloat, "bigfloat-storage", pl); | |
| 5653 pl = gc_plist_hack ("bigfloats-free", gc_count_num_bigfloat_freelist, pl); | |
| 5654 pl = gc_plist_hack ("bigfloats-used", gc_count_num_bigfloat_in_use, pl); | |
| 5655 #endif /* HAVE_BIGFLOAT */ | |
| 428 | 5656 HACK_O_MATIC (string, "string-header-storage", pl); |
| 5657 pl = gc_plist_hack ("long-strings-total-length", | |
| 5658 gc_count_string_total_size | |
| 5659 - gc_count_short_string_total_size, pl); | |
| 5660 HACK_O_MATIC (string_chars, "short-string-storage", pl); | |
| 5661 pl = gc_plist_hack ("short-strings-total-length", | |
| 5662 gc_count_short_string_total_size, pl); | |
| 5663 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl); | |
| 5664 pl = gc_plist_hack ("long-strings-used", | |
| 5665 gc_count_num_string_in_use | |
| 5666 - gc_count_num_short_string_in_use, pl); | |
| 5667 pl = gc_plist_hack ("short-strings-used", | |
| 5668 gc_count_num_short_string_in_use, pl); | |
| 5669 | |
| 5670 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl); | |
| 5671 pl = gc_plist_hack ("compiled-functions-free", | |
| 5672 gc_count_num_compiled_function_freelist, pl); | |
| 5673 pl = gc_plist_hack ("compiled-functions-used", | |
| 5674 gc_count_num_compiled_function_in_use, pl); | |
| 5675 | |
| 5676 HACK_O_MATIC (symbol, "symbol-storage", pl); | |
| 5677 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl); | |
| 5678 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl); | |
| 5679 | |
| 5680 HACK_O_MATIC (cons, "cons-storage", pl); | |
| 5681 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl); | |
| 5682 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl); | |
| 5683 | |
| 2994 | 5684 #undef HACK_O_MATIC |
| 5685 | |
| 5686 #endif /* MC_ALLOC */ | |
| 5687 | |
| 5688 if (set_total_gc_usage) | |
| 5689 { | |
| 5690 total_gc_usage = tgu_val; | |
| 5691 total_gc_usage_set = 1; | |
| 5692 } | |
| 5693 | |
| 5694 return pl; | |
| 5695 } | |
| 5696 | |
| 5697 DEFUN("object-memory-usage-stats", Fobject_memory_usage_stats, 0, 0 ,"", /* | |
| 5698 Return statistics about memory usage of Lisp objects. | |
| 5699 */ | |
| 5700 ()) | |
| 5701 { | |
| 5702 return object_memory_usage_stats (0); | |
| 5703 } | |
| 5704 | |
| 5705 #endif /* ALLOC_TYPE_STATS */ | |
| 5706 | |
| 5707 /* Debugging aids. */ | |
| 5708 | |
| 5709 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /* | |
| 5710 Reclaim storage for Lisp objects no longer needed. | |
| 5711 Return info on amount of space in use: | |
| 5712 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS) | |
| 5713 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS | |
| 5714 PLIST) | |
| 5715 where `PLIST' is a list of alternating keyword/value pairs providing | |
| 5716 more detailed information. | |
| 5717 Garbage collection happens automatically if you cons more than | |
| 5718 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. | |
| 5719 */ | |
| 5720 ()) | |
| 5721 { | |
| 5722 /* Record total usage for purposes of determining next GC */ | |
| 5723 garbage_collect_1 (); | |
| 5724 | |
| 5725 /* This will get set to 1, and total_gc_usage computed, as part of the | |
| 5726 call to object_memory_usage_stats() -- if ALLOC_TYPE_STATS is enabled. */ | |
| 5727 total_gc_usage_set = 0; | |
| 5728 #ifdef ALLOC_TYPE_STATS | |
| 428 | 5729 /* The things we do for backwards-compatibility */ |
| 2994 | 5730 #ifdef MC_ALLOC |
| 5731 return | |
| 5732 list6 | |
| 5733 (Fcons (make_int (lrecord_stats[lrecord_type_cons].instances_in_use), | |
| 5734 make_int (lrecord_stats[lrecord_type_cons] | |
| 5735 .bytes_in_use_including_overhead)), | |
| 5736 Fcons (make_int (lrecord_stats[lrecord_type_symbol].instances_in_use), | |
| 5737 make_int (lrecord_stats[lrecord_type_symbol] | |
| 5738 .bytes_in_use_including_overhead)), | |
| 5739 Fcons (make_int (lrecord_stats[lrecord_type_marker].instances_in_use), | |
| 5740 make_int (lrecord_stats[lrecord_type_marker] | |
| 5741 .bytes_in_use_including_overhead)), | |
| 5742 make_int (lrecord_stats[lrecord_type_string] | |
| 5743 .bytes_in_use_including_overhead), | |
| 5744 make_int (lrecord_stats[lrecord_type_vector] | |
| 5745 .bytes_in_use_including_overhead), | |
| 5746 object_memory_usage_stats (1)); | |
| 5747 #else /* not MC_ALLOC */ | |
| 428 | 5748 return |
| 5749 list6 (Fcons (make_int (gc_count_num_cons_in_use), | |
| 5750 make_int (gc_count_num_cons_freelist)), | |
| 5751 Fcons (make_int (gc_count_num_symbol_in_use), | |
| 5752 make_int (gc_count_num_symbol_freelist)), | |
| 5753 Fcons (make_int (gc_count_num_marker_in_use), | |
| 5754 make_int (gc_count_num_marker_freelist)), | |
| 5755 make_int (gc_count_string_total_size), | |
| 2994 | 5756 make_int (lcrecord_stats[lrecord_type_vector].bytes_in_use + |
| 5757 lcrecord_stats[lrecord_type_vector].bytes_freed), | |
| 5758 object_memory_usage_stats (1)); | |
| 2720 | 5759 #endif /* not MC_ALLOC */ |
| 2994 | 5760 #else /* not ALLOC_TYPE_STATS */ |
| 5761 return Qnil; | |
| 5762 #endif /* ALLOC_TYPE_STATS */ | |
| 5763 } | |
| 428 | 5764 |
| 5765 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /* | |
| 5766 Return the number of bytes consed since the last garbage collection. | |
| 5767 \"Consed\" is a misnomer in that this actually counts allocation | |
| 5768 of all different kinds of objects, not just conses. | |
| 5769 | |
| 5770 If this value exceeds `gc-cons-threshold', a garbage collection happens. | |
| 5771 */ | |
| 5772 ()) | |
| 5773 { | |
| 5774 return make_int (consing_since_gc); | |
| 5775 } | |
| 5776 | |
| 440 | 5777 #if 0 |
| 444 | 5778 DEFUN ("memory-limit", Fmemory_limit, 0, 0, 0, /* |
| 801 | 5779 Return the address of the last byte XEmacs has allocated, divided by 1024. |
| 5780 This may be helpful in debugging XEmacs's memory usage. | |
| 428 | 5781 The value is divided by 1024 to make sure it will fit in a lisp integer. |
| 5782 */ | |
| 5783 ()) | |
| 5784 { | |
| 5785 return make_int ((EMACS_INT) sbrk (0) / 1024); | |
| 5786 } | |
| 440 | 5787 #endif |
| 428 | 5788 |
| 2994 | 5789 DEFUN ("total-memory-usage", Ftotal_memory_usage, 0, 0, 0, /* |
| 801 | 5790 Return the total number of bytes used by the data segment in XEmacs. |
| 5791 This may be helpful in debugging XEmacs's memory usage. | |
| 2994 | 5792 NOTE: This may or may not be accurate! It is hard to determine this |
| 5793 value in a system-independent fashion. On Windows, for example, the | |
| 5794 returned number tends to be much greater than reality. | |
| 801 | 5795 */ |
| 5796 ()) | |
| 5797 { | |
| 5798 return make_int (total_data_usage ()); | |
| 5799 } | |
| 5800 | |
| 2994 | 5801 #ifdef ALLOC_TYPE_STATS |
| 5802 DEFUN ("object-memory-usage", Fobject_memory_usage, 0, 0, 0, /* | |
| 5803 Return total number of bytes used for object storage in XEmacs. | |
| 5804 This may be helpful in debugging XEmacs's memory usage. | |
| 5805 See also `consing-since-gc' and `object-memory-usage-stats'. | |
| 5806 */ | |
| 5807 ()) | |
| 5808 { | |
| 5809 return make_int (total_gc_usage + consing_since_gc); | |
| 5810 } | |
| 5811 #endif /* ALLOC_TYPE_STATS */ | |
| 5812 | |
| 851 | 5813 void |
| 5814 recompute_funcall_allocation_flag (void) | |
| 5815 { | |
| 887 | 5816 funcall_allocation_flag = |
| 5817 need_to_garbage_collect || | |
| 5818 need_to_check_c_alloca || | |
| 5819 need_to_signal_post_gc; | |
| 851 | 5820 } |
| 5821 | |
| 801 | 5822 /* True if it's time to garbage collect now. */ |
| 814 | 5823 static void |
| 5824 recompute_need_to_garbage_collect (void) | |
| 801 | 5825 { |
| 5826 if (always_gc) | |
| 814 | 5827 need_to_garbage_collect = 1; |
| 5828 else | |
| 5829 need_to_garbage_collect = | |
| 5830 (consing_since_gc > gc_cons_threshold | |
| 2994 | 5831 && |
| 2971 | 5832 #if 0 /* #### implement this better */ |
| 814 | 5833 (100 * consing_since_gc) / total_data_usage () >= |
| 5834 gc_cons_percentage | |
| 2994 | 5835 #else |
| 5836 (!total_gc_usage_set || | |
| 5837 (100 * consing_since_gc) / total_gc_usage >= | |
| 5838 gc_cons_percentage) | |
| 5839 #endif | |
| 814 | 5840 ); |
| 851 | 5841 recompute_funcall_allocation_flag (); |
| 801 | 5842 } |
| 5843 | |
| 428 | 5844 |
| 5845 int | |
| 5846 object_dead_p (Lisp_Object obj) | |
| 5847 { | |
| 5848 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) || | |
| 5849 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) || | |
| 5850 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) || | |
| 5851 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) || | |
| 5852 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) || | |
| 5853 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) || | |
| 5854 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj)))); | |
| 5855 } | |
| 5856 | |
| 5857 #ifdef MEMORY_USAGE_STATS | |
| 5858 | |
| 5859 /* Attempt to determine the actual amount of space that is used for | |
| 5860 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE". | |
| 5861 | |
| 5862 It seems that the following holds: | |
| 5863 | |
| 5864 1. When using the old allocator (malloc.c): | |
| 5865 | |
| 5866 -- blocks are always allocated in chunks of powers of two. For | |
| 5867 each block, there is an overhead of 8 bytes if rcheck is not | |
| 5868 defined, 20 bytes if it is defined. In other words, a | |
| 5869 one-byte allocation needs 8 bytes of overhead for a total of | |
| 5870 9 bytes, and needs to have 16 bytes of memory chunked out for | |
| 5871 it. | |
| 5872 | |
| 5873 2. When using the new allocator (gmalloc.c): | |
| 5874 | |
| 5875 -- blocks are always allocated in chunks of powers of two up | |
| 5876 to 4096 bytes. Larger blocks are allocated in chunks of | |
| 5877 an integral multiple of 4096 bytes. The minimum block | |
| 5878 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG | |
| 5879 is defined. There is no per-block overhead, but there | |
| 5880 is an overhead of 3*sizeof (size_t) for each 4096 bytes | |
| 5881 allocated. | |
| 5882 | |
| 5883 3. When using the system malloc, anything goes, but they are | |
| 5884 generally slower and more space-efficient than the GNU | |
| 5885 allocators. One possibly reasonable assumption to make | |
| 5886 for want of better data is that sizeof (void *), or maybe | |
| 5887 2 * sizeof (void *), is required as overhead and that | |
| 5888 blocks are allocated in the minimum required size except | |
| 5889 that some minimum block size is imposed (e.g. 16 bytes). */ | |
| 5890 | |
| 665 | 5891 Bytecount |
| 2286 | 5892 malloced_storage_size (void *UNUSED (ptr), Bytecount claimed_size, |
| 428 | 5893 struct overhead_stats *stats) |
| 5894 { | |
| 665 | 5895 Bytecount orig_claimed_size = claimed_size; |
| 428 | 5896 |
| 5897 #ifdef GNU_MALLOC | |
| 665 | 5898 if (claimed_size < (Bytecount) (2 * sizeof (void *))) |
| 428 | 5899 claimed_size = 2 * sizeof (void *); |
| 5900 # ifdef SUNOS_LOCALTIME_BUG | |
| 5901 if (claimed_size < 16) | |
| 5902 claimed_size = 16; | |
| 5903 # endif | |
| 5904 if (claimed_size < 4096) | |
| 5905 { | |
| 2260 | 5906 /* fxg: rename log->log2 to supress gcc3 shadow warning */ |
| 5907 int log2 = 1; | |
| 428 | 5908 |
| 5909 /* compute the log base two, more or less, then use it to compute | |
| 5910 the block size needed. */ | |
| 5911 claimed_size--; | |
| 5912 /* It's big, it's heavy, it's wood! */ | |
| 5913 while ((claimed_size /= 2) != 0) | |
| 2260 | 5914 ++log2; |
| 428 | 5915 claimed_size = 1; |
| 5916 /* It's better than bad, it's good! */ | |
| 2260 | 5917 while (log2 > 0) |
| 428 | 5918 { |
| 5919 claimed_size *= 2; | |
| 2260 | 5920 log2--; |
| 428 | 5921 } |
| 5922 /* We have to come up with some average about the amount of | |
| 5923 blocks used. */ | |
| 665 | 5924 if ((Bytecount) (rand () & 4095) < claimed_size) |
| 428 | 5925 claimed_size += 3 * sizeof (void *); |
| 5926 } | |
| 5927 else | |
| 5928 { | |
| 5929 claimed_size += 4095; | |
| 5930 claimed_size &= ~4095; | |
| 5931 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t); | |
| 5932 } | |
| 5933 | |
| 5934 #elif defined (SYSTEM_MALLOC) | |
| 5935 | |
| 5936 if (claimed_size < 16) | |
| 5937 claimed_size = 16; | |
| 5938 claimed_size += 2 * sizeof (void *); | |
| 5939 | |
| 5940 #else /* old GNU allocator */ | |
| 5941 | |
| 5942 # ifdef rcheck /* #### may not be defined here */ | |
| 5943 claimed_size += 20; | |
| 5944 # else | |
| 5945 claimed_size += 8; | |
| 5946 # endif | |
| 5947 { | |
| 2260 | 5948 /* fxg: rename log->log2 to supress gcc3 shadow warning */ |
| 5949 int log2 = 1; | |
| 428 | 5950 |
| 5951 /* compute the log base two, more or less, then use it to compute | |
| 5952 the block size needed. */ | |
| 5953 claimed_size--; | |
| 5954 /* It's big, it's heavy, it's wood! */ | |
| 5955 while ((claimed_size /= 2) != 0) | |
| 2260 | 5956 ++log2; |
| 428 | 5957 claimed_size = 1; |
| 5958 /* It's better than bad, it's good! */ | |
| 2260 | 5959 while (log2 > 0) |
| 428 | 5960 { |
| 5961 claimed_size *= 2; | |
| 2260 | 5962 log2--; |
| 428 | 5963 } |
| 5964 } | |
| 5965 | |
| 5966 #endif /* old GNU allocator */ | |
| 5967 | |
| 5968 if (stats) | |
| 5969 { | |
| 5970 stats->was_requested += orig_claimed_size; | |
| 5971 stats->malloc_overhead += claimed_size - orig_claimed_size; | |
| 5972 } | |
| 5973 return claimed_size; | |
| 5974 } | |
| 5975 | |
| 2720 | 5976 #ifndef MC_ALLOC |
| 665 | 5977 Bytecount |
| 5978 fixed_type_block_overhead (Bytecount size) | |
| 428 | 5979 { |
| 665 | 5980 Bytecount per_block = TYPE_ALLOC_SIZE (cons, unsigned char); |
| 5981 Bytecount overhead = 0; | |
| 5982 Bytecount storage_size = malloced_storage_size (0, per_block, 0); | |
| 428 | 5983 while (size >= per_block) |
| 5984 { | |
| 5985 size -= per_block; | |
| 5986 overhead += sizeof (void *) + per_block - storage_size; | |
| 5987 } | |
| 5988 if (rand () % per_block < size) | |
| 5989 overhead += sizeof (void *) + per_block - storage_size; | |
| 5990 return overhead; | |
| 5991 } | |
| 2720 | 5992 #endif /* not MC_ALLOC */ |
| 428 | 5993 #endif /* MEMORY_USAGE_STATS */ |
| 5994 | |
| 5995 | |
| 5996 /* Initialization */ | |
| 771 | 5997 static void |
| 1204 | 5998 common_init_alloc_early (void) |
| 428 | 5999 { |
| 771 | 6000 #ifndef Qzero |
| 6001 Qzero = make_int (0); /* Only used if Lisp_Object is a union type */ | |
| 6002 #endif | |
| 6003 | |
| 6004 #ifndef Qnull_pointer | |
| 6005 /* C guarantees that Qnull_pointer will be initialized to all 0 bits, | |
| 6006 so the following is actually a no-op. */ | |
| 793 | 6007 Qnull_pointer = wrap_pointer_1 (0); |
| 771 | 6008 #endif |
| 6009 | |
| 428 | 6010 gc_generation_number[0] = 0; |
| 2720 | 6011 #ifndef MC_ALLOC |
| 428 | 6012 breathing_space = 0; |
| 2720 | 6013 #endif /* not MC_ALLOC */ |
| 771 | 6014 Vgc_message = Qzero; |
| 2720 | 6015 #ifndef MC_ALLOC |
| 428 | 6016 all_lcrecords = 0; |
| 2720 | 6017 #endif /* not MC_ALLOC */ |
| 428 | 6018 ignore_malloc_warnings = 1; |
| 6019 #ifdef DOUG_LEA_MALLOC | |
| 6020 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */ | |
| 6021 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */ | |
| 6022 #if 0 /* Moved to emacs.c */ | |
| 6023 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */ | |
| 6024 #endif | |
| 6025 #endif | |
| 2720 | 6026 init_string_chars_alloc (); |
| 6027 #ifndef MC_ALLOC | |
| 428 | 6028 init_string_alloc (); |
| 6029 init_string_chars_alloc (); | |
| 6030 init_cons_alloc (); | |
| 6031 init_symbol_alloc (); | |
| 6032 init_compiled_function_alloc (); | |
| 6033 init_float_alloc (); | |
| 1983 | 6034 #ifdef HAVE_BIGNUM |
| 6035 init_bignum_alloc (); | |
| 6036 #endif | |
| 6037 #ifdef HAVE_RATIO | |
| 6038 init_ratio_alloc (); | |
| 6039 #endif | |
| 6040 #ifdef HAVE_BIGFLOAT | |
| 6041 init_bigfloat_alloc (); | |
| 6042 #endif | |
| 428 | 6043 init_marker_alloc (); |
| 6044 init_extent_alloc (); | |
| 6045 init_event_alloc (); | |
| 1204 | 6046 #ifdef EVENT_DATA_AS_OBJECTS |
| 934 | 6047 init_key_data_alloc (); |
| 6048 init_button_data_alloc (); | |
| 6049 init_motion_data_alloc (); | |
| 6050 init_process_data_alloc (); | |
| 6051 init_timeout_data_alloc (); | |
| 6052 init_magic_data_alloc (); | |
| 6053 init_magic_eval_data_alloc (); | |
| 6054 init_eval_data_alloc (); | |
| 6055 init_misc_user_data_alloc (); | |
| 1204 | 6056 #endif /* EVENT_DATA_AS_OBJECTS */ |
| 2720 | 6057 #endif /* not MC_ALLOC */ |
| 428 | 6058 |
| 6059 ignore_malloc_warnings = 0; | |
| 6060 | |
| 452 | 6061 if (staticpros_nodump) |
| 6062 Dynarr_free (staticpros_nodump); | |
| 6063 staticpros_nodump = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); | |
| 6064 Dynarr_resize (staticpros_nodump, 100); /* merely a small optimization */ | |
| 771 | 6065 #ifdef DEBUG_XEMACS |
| 6066 if (staticpro_nodump_names) | |
| 6067 Dynarr_free (staticpro_nodump_names); | |
| 6068 staticpro_nodump_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
| 6069 Dynarr_resize (staticpro_nodump_names, 100); /* ditto */ | |
| 6070 #endif | |
| 428 | 6071 |
| 2720 | 6072 #ifdef MC_ALLOC |
| 6073 mcpros = Dynarr_new2 (Lisp_Object_dynarr, Lisp_Object); | |
| 6074 Dynarr_resize (mcpros, 1410); /* merely a small optimization */ | |
| 6075 dump_add_root_block_ptr (&mcpros, &mcpros_description); | |
| 6076 #ifdef DEBUG_XEMACS | |
| 6077 mcpro_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
| 6078 Dynarr_resize (mcpro_names, 1410); /* merely a small optimization */ | |
| 6079 dump_add_root_block_ptr (&mcpro_names, &mcpro_names_description); | |
| 6080 #endif | |
| 6081 #endif /* MC_ALLOC */ | |
| 6082 | |
| 428 | 6083 consing_since_gc = 0; |
| 814 | 6084 need_to_garbage_collect = always_gc; |
| 851 | 6085 need_to_check_c_alloca = 0; |
| 6086 funcall_allocation_flag = 0; | |
| 6087 funcall_alloca_count = 0; | |
| 814 | 6088 |
| 428 | 6089 #if 1 |
| 2994 | 6090 gc_cons_threshold = 2000000; /* XEmacs change */ |
| 428 | 6091 #else |
| 6092 gc_cons_threshold = 15000; /* debugging */ | |
| 6093 #endif | |
| 2994 | 6094 gc_cons_percentage = 40; /* #### what is optimal? */ |
| 6095 total_gc_usage_set = 0; | |
| 428 | 6096 lrecord_uid_counter = 259; |
| 2720 | 6097 #ifndef MC_ALLOC |
| 428 | 6098 debug_string_purity = 0; |
| 2720 | 6099 #endif /* not MC_ALLOC */ |
| 428 | 6100 |
| 6101 gc_currently_forbidden = 0; | |
| 6102 gc_hooks_inhibited = 0; | |
| 6103 | |
| 800 | 6104 #ifdef ERROR_CHECK_TYPES |
| 428 | 6105 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = |
| 6106 666; | |
| 6107 ERROR_ME_NOT. | |
| 6108 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42; | |
| 6109 ERROR_ME_WARN. | |
| 6110 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = | |
| 6111 3333632; | |
| 793 | 6112 ERROR_ME_DEBUG_WARN. |
| 6113 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = | |
| 6114 8675309; | |
| 800 | 6115 #endif /* ERROR_CHECK_TYPES */ |
| 428 | 6116 } |
| 6117 | |
| 2720 | 6118 #ifndef MC_ALLOC |
| 771 | 6119 static void |
| 6120 init_lcrecord_lists (void) | |
| 6121 { | |
| 6122 int i; | |
| 6123 | |
| 6124 for (i = 0; i < countof (lrecord_implementations_table); i++) | |
| 6125 { | |
| 6126 all_lcrecord_lists[i] = Qzero; /* Qnil not yet set */ | |
| 6127 staticpro_nodump (&all_lcrecord_lists[i]); | |
| 6128 } | |
| 6129 } | |
| 2720 | 6130 #endif /* not MC_ALLOC */ |
| 771 | 6131 |
| 6132 void | |
| 1204 | 6133 init_alloc_early (void) |
| 771 | 6134 { |
| 1204 | 6135 #if defined (__cplusplus) && defined (ERROR_CHECK_GC) |
| 6136 static struct gcpro initial_gcpro; | |
| 6137 | |
| 6138 initial_gcpro.next = 0; | |
| 6139 initial_gcpro.var = &Qnil; | |
| 6140 initial_gcpro.nvars = 1; | |
| 6141 gcprolist = &initial_gcpro; | |
| 6142 #else | |
| 6143 gcprolist = 0; | |
| 6144 #endif /* defined (__cplusplus) && defined (ERROR_CHECK_GC) */ | |
| 6145 } | |
| 6146 | |
| 6147 void | |
| 6148 reinit_alloc_early (void) | |
| 6149 { | |
| 6150 common_init_alloc_early (); | |
| 2720 | 6151 #ifndef MC_ALLOC |
| 771 | 6152 init_lcrecord_lists (); |
| 2720 | 6153 #endif /* not MC_ALLOC */ |
| 771 | 6154 } |
| 6155 | |
| 428 | 6156 void |
| 6157 init_alloc_once_early (void) | |
| 6158 { | |
| 1204 | 6159 common_init_alloc_early (); |
| 428 | 6160 |
| 442 | 6161 { |
| 6162 int i; | |
| 6163 for (i = 0; i < countof (lrecord_implementations_table); i++) | |
| 6164 lrecord_implementations_table[i] = 0; | |
| 6165 } | |
| 6166 | |
| 6167 INIT_LRECORD_IMPLEMENTATION (cons); | |
| 6168 INIT_LRECORD_IMPLEMENTATION (vector); | |
| 6169 INIT_LRECORD_IMPLEMENTATION (string); | |
| 2720 | 6170 #ifndef MC_ALLOC |
| 442 | 6171 INIT_LRECORD_IMPLEMENTATION (lcrecord_list); |
| 1204 | 6172 INIT_LRECORD_IMPLEMENTATION (free); |
| 2720 | 6173 #endif /* not MC_ALLOC */ |
| 428 | 6174 |
| 452 | 6175 staticpros = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); |
| 6176 Dynarr_resize (staticpros, 1410); /* merely a small optimization */ | |
| 2367 | 6177 dump_add_root_block_ptr (&staticpros, &staticpros_description); |
| 771 | 6178 #ifdef DEBUG_XEMACS |
| 6179 staticpro_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
| 6180 Dynarr_resize (staticpro_names, 1410); /* merely a small optimization */ | |
| 2367 | 6181 dump_add_root_block_ptr (&staticpro_names, &staticpro_names_description); |
| 771 | 6182 #endif |
| 6183 | |
| 2720 | 6184 #ifdef MC_ALLOC |
| 6185 mcpros = Dynarr_new2 (Lisp_Object_dynarr, Lisp_Object); | |
| 6186 Dynarr_resize (mcpros, 1410); /* merely a small optimization */ | |
| 6187 dump_add_root_block_ptr (&mcpros, &mcpros_description); | |
| 6188 #ifdef DEBUG_XEMACS | |
| 6189 mcpro_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
| 6190 Dynarr_resize (mcpro_names, 1410); /* merely a small optimization */ | |
| 6191 dump_add_root_block_ptr (&mcpro_names, &mcpro_names_description); | |
| 6192 #endif | |
| 6193 #endif /* MC_ALLOC */ | |
| 6194 | |
| 6195 #ifndef MC_ALLOC | |
| 771 | 6196 init_lcrecord_lists (); |
| 2720 | 6197 #endif /* not MC_ALLOC */ |
| 428 | 6198 } |
| 6199 | |
| 6200 void | |
| 6201 syms_of_alloc (void) | |
| 6202 { | |
| 442 | 6203 DEFSYMBOL (Qpre_gc_hook); |
| 6204 DEFSYMBOL (Qpost_gc_hook); | |
| 6205 DEFSYMBOL (Qgarbage_collecting); | |
| 428 | 6206 |
| 6207 DEFSUBR (Fcons); | |
| 6208 DEFSUBR (Flist); | |
| 6209 DEFSUBR (Fvector); | |
| 6210 DEFSUBR (Fbit_vector); | |
| 6211 DEFSUBR (Fmake_byte_code); | |
| 6212 DEFSUBR (Fmake_list); | |
| 6213 DEFSUBR (Fmake_vector); | |
| 6214 DEFSUBR (Fmake_bit_vector); | |
| 6215 DEFSUBR (Fmake_string); | |
| 6216 DEFSUBR (Fstring); | |
| 6217 DEFSUBR (Fmake_symbol); | |
| 6218 DEFSUBR (Fmake_marker); | |
| 6219 DEFSUBR (Fpurecopy); | |
| 2994 | 6220 #ifdef ALLOC_TYPE_STATS |
| 6221 DEFSUBR (Fobject_memory_usage_stats); | |
| 6222 DEFSUBR (Fobject_memory_usage); | |
| 6223 #endif /* ALLOC_TYPE_STATS */ | |
| 428 | 6224 DEFSUBR (Fgarbage_collect); |
| 440 | 6225 #if 0 |
| 428 | 6226 DEFSUBR (Fmemory_limit); |
| 440 | 6227 #endif |
| 2994 | 6228 DEFSUBR (Ftotal_memory_usage); |
| 428 | 6229 DEFSUBR (Fconsing_since_gc); |
| 6230 } | |
| 6231 | |
| 6232 void | |
| 6233 vars_of_alloc (void) | |
| 6234 { | |
| 1292 | 6235 QSin_garbage_collection = build_msg_string ("(in garbage collection)"); |
| 6236 staticpro (&QSin_garbage_collection); | |
| 6237 | |
| 428 | 6238 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /* |
| 6239 *Number of bytes of consing between garbage collections. | |
| 6240 \"Consing\" is a misnomer in that this actually counts allocation | |
| 6241 of all different kinds of objects, not just conses. | |
| 6242 Garbage collection can happen automatically once this many bytes have been | |
| 6243 allocated since the last garbage collection. All data types count. | |
| 6244 | |
| 6245 Garbage collection happens automatically when `eval' or `funcall' are | |
| 6246 called. (Note that `funcall' is called implicitly as part of evaluation.) | |
| 6247 By binding this temporarily to a large number, you can effectively | |
| 6248 prevent garbage collection during a part of the program. | |
| 6249 | |
| 853 | 6250 Normally, you cannot set this value less than 10,000 (if you do, it is |
| 6251 automatically reset during the next garbage collection). However, if | |
| 6252 XEmacs was compiled with DEBUG_XEMACS, this does not happen, allowing | |
| 6253 you to set this value very low to track down problems with insufficient | |
| 6254 GCPRO'ing. If you set this to a negative number, garbage collection will | |
| 6255 happen at *EVERY* call to `eval' or `funcall'. This is an extremely | |
| 6256 effective way to check GCPRO problems, but be warned that your XEmacs | |
| 6257 will be unusable! You almost certainly won't have the patience to wait | |
| 6258 long enough to be able to set it back. | |
| 6259 | |
| 2994 | 6260 See also `consing-since-gc' and `gc-cons-percentage'. |
| 428 | 6261 */ ); |
| 6262 | |
| 801 | 6263 DEFVAR_INT ("gc-cons-percentage", &gc_cons_percentage /* |
| 6264 *Percentage of memory allocated between garbage collections. | |
| 6265 | |
| 6266 Garbage collection will happen if this percentage of the total amount of | |
| 2994 | 6267 memory used for data (see `lisp-object-memory-usage') has been allocated |
| 6268 since the last garbage collection. However, it will not happen if less | |
| 6269 than `gc-cons-threshold' bytes have been allocated -- this sets an absolute | |
| 6270 minimum in case very little data has been allocated or the percentage is | |
| 6271 set very low. Set this to 0 to have garbage collection always happen after | |
| 6272 `gc-cons-threshold' bytes have been allocated, regardless of current memory | |
| 6273 usage. | |
| 6274 | |
| 6275 See also `consing-since-gc' and `gc-cons-threshold'. | |
| 801 | 6276 */ ); |
| 6277 | |
| 428 | 6278 #ifdef DEBUG_XEMACS |
| 6279 DEFVAR_INT ("debug-allocation", &debug_allocation /* | |
| 6280 If non-zero, print out information to stderr about all objects allocated. | |
| 6281 See also `debug-allocation-backtrace-length'. | |
| 6282 */ ); | |
| 6283 debug_allocation = 0; | |
| 6284 | |
| 6285 DEFVAR_INT ("debug-allocation-backtrace-length", | |
| 6286 &debug_allocation_backtrace_length /* | |
| 6287 Length (in stack frames) of short backtrace printed out by `debug-allocation'. | |
| 6288 */ ); | |
| 6289 debug_allocation_backtrace_length = 2; | |
| 6290 #endif | |
| 6291 | |
| 6292 DEFVAR_BOOL ("purify-flag", &purify_flag /* | |
| 6293 Non-nil means loading Lisp code in order to dump an executable. | |
| 6294 This means that certain objects should be allocated in readonly space. | |
| 6295 */ ); | |
| 6296 | |
| 1154 | 6297 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages /* |
| 6298 Non-nil means display messages at start and end of garbage collection. | |
| 6299 */ ); | |
| 6300 garbage_collection_messages = 0; | |
| 6301 | |
| 428 | 6302 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /* |
| 6303 Function or functions to be run just before each garbage collection. | |
| 6304 Interrupts, garbage collection, and errors are inhibited while this hook | |
| 6305 runs, so be extremely careful in what you add here. In particular, avoid | |
| 6306 consing, and do not interact with the user. | |
| 6307 */ ); | |
| 6308 Vpre_gc_hook = Qnil; | |
| 6309 | |
| 6310 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /* | |
| 6311 Function or functions to be run just after each garbage collection. | |
| 6312 Interrupts, garbage collection, and errors are inhibited while this hook | |
| 887 | 6313 runs. Each hook is called with one argument which is an alist with |
| 6314 finalization data. | |
| 428 | 6315 */ ); |
| 6316 Vpost_gc_hook = Qnil; | |
| 6317 | |
| 6318 DEFVAR_LISP ("gc-message", &Vgc_message /* | |
| 6319 String to print to indicate that a garbage collection is in progress. | |
| 6320 This is printed in the echo area. If the selected frame is on a | |
| 6321 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer | |
| 6322 image instance) in the domain of the selected frame, the mouse pointer | |
| 6323 will change instead of this message being printed. | |
| 6324 */ ); | |
| 6325 Vgc_message = build_string (gc_default_message); | |
| 6326 | |
| 6327 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /* | |
| 6328 Pointer glyph used to indicate that a garbage collection is in progress. | |
| 6329 If the selected window is on a window system and this glyph specifies a | |
| 6330 value (i.e. a pointer image instance) in the domain of the selected | |
| 6331 window, the pointer will be changed as specified during garbage collection. | |
| 6332 Otherwise, a message will be printed in the echo area, as controlled | |
| 6333 by `gc-message'. | |
| 6334 */ ); | |
| 6335 } | |
| 6336 | |
| 6337 void | |
| 6338 complex_vars_of_alloc (void) | |
| 6339 { | |
| 6340 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer); | |
| 6341 } |
