Mercurial > hg > xemacs-beta
annotate src/fns.c @ 4797:a5eca70cf401
Fix typo in last patch.
author | Stephen J. Turnbull <stephen@xemacs.org> |
---|---|
date | Sat, 02 Jan 2010 03:14:09 +0900 |
parents | c45fdd4e1858 |
children | 6ef8256a020a 19a72041c5ed 8431b52e43b1 |
rev | line source |
---|---|
428 | 1 /* Random utility Lisp functions. |
2 Copyright (C) 1985, 86, 87, 93, 94, 95 Free Software Foundation, Inc. | |
1261 | 3 Copyright (C) 1995, 1996, 2000, 2001, 2002, 2003 Ben Wing. |
428 | 4 |
5 This file is part of XEmacs. | |
6 | |
7 XEmacs is free software; you can redistribute it and/or modify it | |
8 under the terms of the GNU General Public License as published by the | |
9 Free Software Foundation; either version 2, or (at your option) any | |
10 later version. | |
11 | |
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
15 for more details. | |
16 | |
17 You should have received a copy of the GNU General Public License | |
18 along with XEmacs; see the file COPYING. If not, write to | |
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
20 Boston, MA 02111-1307, USA. */ | |
21 | |
22 /* Synched up with: Mule 2.0, FSF 19.30. */ | |
23 | |
24 /* This file has been Mule-ized. */ | |
25 | |
26 /* Note: FSF 19.30 has bool vectors. We have bit vectors. */ | |
27 | |
28 /* Hacked on for Mule by Ben Wing, December 1994, January 1995. */ | |
29 | |
30 #include <config.h> | |
31 | |
32 /* Note on some machines this defines `vector' as a typedef, | |
33 so make sure we don't use that name in this file. */ | |
34 #undef vector | |
35 #define vector ***** | |
36 | |
37 #include "lisp.h" | |
38 | |
442 | 39 #include "sysfile.h" |
771 | 40 #include "sysproc.h" /* for qxe_getpid() */ |
428 | 41 |
42 #include "buffer.h" | |
43 #include "bytecode.h" | |
44 #include "device.h" | |
45 #include "events.h" | |
46 #include "extents.h" | |
47 #include "frame.h" | |
872 | 48 #include "process.h" |
428 | 49 #include "systime.h" |
50 #include "insdel.h" | |
51 #include "lstream.h" | |
52 #include "opaque.h" | |
53 | |
54 /* NOTE: This symbol is also used in lread.c */ | |
55 #define FEATUREP_SYNTAX | |
56 | |
57 Lisp_Object Qstring_lessp; | |
58 Lisp_Object Qidentity; | |
59 | |
563 | 60 Lisp_Object Qbase64_conversion_error; |
61 | |
771 | 62 Lisp_Object Vpath_separator; |
63 | |
428 | 64 static int internal_old_equal (Lisp_Object, Lisp_Object, int); |
454 | 65 Lisp_Object safe_copy_tree (Lisp_Object arg, Lisp_Object vecp, int depth); |
428 | 66 |
67 static Lisp_Object | |
2286 | 68 mark_bit_vector (Lisp_Object UNUSED (obj)) |
428 | 69 { |
70 return Qnil; | |
71 } | |
72 | |
73 static void | |
2286 | 74 print_bit_vector (Lisp_Object obj, Lisp_Object printcharfun, |
75 int UNUSED (escapeflag)) | |
428 | 76 { |
665 | 77 Elemcount i; |
440 | 78 Lisp_Bit_Vector *v = XBIT_VECTOR (obj); |
665 | 79 Elemcount len = bit_vector_length (v); |
80 Elemcount last = len; | |
428 | 81 |
82 if (INTP (Vprint_length)) | |
83 last = min (len, XINT (Vprint_length)); | |
826 | 84 write_c_string (printcharfun, "#*"); |
428 | 85 for (i = 0; i < last; i++) |
86 { | |
87 if (bit_vector_bit (v, i)) | |
826 | 88 write_c_string (printcharfun, "1"); |
428 | 89 else |
826 | 90 write_c_string (printcharfun, "0"); |
428 | 91 } |
92 | |
93 if (last != len) | |
826 | 94 write_c_string (printcharfun, "..."); |
428 | 95 } |
96 | |
97 static int | |
2286 | 98 bit_vector_equal (Lisp_Object obj1, Lisp_Object obj2, int UNUSED (depth)) |
428 | 99 { |
440 | 100 Lisp_Bit_Vector *v1 = XBIT_VECTOR (obj1); |
101 Lisp_Bit_Vector *v2 = XBIT_VECTOR (obj2); | |
428 | 102 |
103 return ((bit_vector_length (v1) == bit_vector_length (v2)) && | |
104 !memcmp (v1->bits, v2->bits, | |
105 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v1)) * | |
106 sizeof (long))); | |
107 } | |
108 | |
665 | 109 static Hashcode |
2286 | 110 bit_vector_hash (Lisp_Object obj, int UNUSED (depth)) |
428 | 111 { |
440 | 112 Lisp_Bit_Vector *v = XBIT_VECTOR (obj); |
428 | 113 return HASH2 (bit_vector_length (v), |
114 memory_hash (v->bits, | |
115 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)) * | |
116 sizeof (long))); | |
117 } | |
118 | |
665 | 119 static Bytecount |
442 | 120 size_bit_vector (const void *lheader) |
121 { | |
122 Lisp_Bit_Vector *v = (Lisp_Bit_Vector *) lheader; | |
456 | 123 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, unsigned long, bits, |
442 | 124 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v))); |
125 } | |
126 | |
1204 | 127 static const struct memory_description bit_vector_description[] = { |
428 | 128 { XD_END } |
129 }; | |
130 | |
131 | |
1204 | 132 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION ("bit-vector", bit_vector, |
133 1, /*dumpable-flag*/ | |
134 mark_bit_vector, | |
135 print_bit_vector, 0, | |
136 bit_vector_equal, | |
137 bit_vector_hash, | |
138 bit_vector_description, | |
139 size_bit_vector, | |
140 Lisp_Bit_Vector); | |
934 | 141 |
428 | 142 |
143 DEFUN ("identity", Fidentity, 1, 1, 0, /* | |
144 Return the argument unchanged. | |
145 */ | |
146 (arg)) | |
147 { | |
148 return arg; | |
149 } | |
150 | |
151 DEFUN ("random", Frandom, 0, 1, 0, /* | |
152 Return a pseudo-random number. | |
1983 | 153 All fixnums are equally likely. On most systems, this is 31 bits' worth. |
428 | 154 With positive integer argument N, return random number in interval [0,N). |
1983 | 155 N can be a bignum, in which case the range of possible values is extended. |
428 | 156 With argument t, set the random number seed from the current time and pid. |
157 */ | |
158 (limit)) | |
159 { | |
160 EMACS_INT val; | |
161 unsigned long denominator; | |
162 | |
163 if (EQ (limit, Qt)) | |
771 | 164 seed_random (qxe_getpid () + time (NULL)); |
428 | 165 if (NATNUMP (limit) && !ZEROP (limit)) |
166 { | |
167 /* Try to take our random number from the higher bits of VAL, | |
168 not the lower, since (says Gentzel) the low bits of `random' | |
169 are less random than the higher ones. We do this by using the | |
170 quotient rather than the remainder. At the high end of the RNG | |
171 it's possible to get a quotient larger than limit; discarding | |
172 these values eliminates the bias that would otherwise appear | |
173 when using a large limit. */ | |
2039 | 174 denominator = ((unsigned long)1 << INT_VALBITS) / XINT (limit); |
428 | 175 do |
176 val = get_random () / denominator; | |
177 while (val >= XINT (limit)); | |
178 } | |
1983 | 179 #ifdef HAVE_BIGNUM |
180 else if (BIGNUMP (limit)) | |
181 { | |
182 bignum_random (scratch_bignum, XBIGNUM_DATA (limit)); | |
183 return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); | |
184 } | |
185 #endif | |
428 | 186 else |
187 val = get_random (); | |
188 | |
189 return make_int (val); | |
190 } | |
191 | |
192 /* Random data-structure functions */ | |
193 | |
194 #ifdef LOSING_BYTECODE | |
195 | |
196 /* #### Delete this shit */ | |
197 | |
198 /* Charcount is a misnomer here as we might be dealing with the | |
199 length of a vector or list, but emphasizes that we're not dealing | |
200 with Bytecounts in strings */ | |
201 static Charcount | |
202 length_with_bytecode_hack (Lisp_Object seq) | |
203 { | |
204 if (!COMPILED_FUNCTIONP (seq)) | |
205 return XINT (Flength (seq)); | |
206 else | |
207 { | |
440 | 208 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (seq); |
428 | 209 |
210 return (f->flags.interactivep ? COMPILED_INTERACTIVE : | |
211 f->flags.domainp ? COMPILED_DOMAIN : | |
212 COMPILED_DOC_STRING) | |
213 + 1; | |
214 } | |
215 } | |
216 | |
217 #endif /* LOSING_BYTECODE */ | |
218 | |
219 void | |
442 | 220 check_losing_bytecode (const char *function, Lisp_Object seq) |
428 | 221 { |
222 if (COMPILED_FUNCTIONP (seq)) | |
563 | 223 signal_ferror_with_frob |
224 (Qinvalid_argument, seq, | |
428 | 225 "As of 20.3, `%s' no longer works with compiled-function objects", |
226 function); | |
227 } | |
228 | |
229 DEFUN ("length", Flength, 1, 1, 0, /* | |
230 Return the length of vector, bit vector, list or string SEQUENCE. | |
231 */ | |
232 (sequence)) | |
233 { | |
234 retry: | |
235 if (STRINGP (sequence)) | |
826 | 236 return make_int (string_char_length (sequence)); |
428 | 237 else if (CONSP (sequence)) |
238 { | |
665 | 239 Elemcount len; |
428 | 240 GET_EXTERNAL_LIST_LENGTH (sequence, len); |
241 return make_int (len); | |
242 } | |
243 else if (VECTORP (sequence)) | |
244 return make_int (XVECTOR_LENGTH (sequence)); | |
245 else if (NILP (sequence)) | |
246 return Qzero; | |
247 else if (BIT_VECTORP (sequence)) | |
248 return make_int (bit_vector_length (XBIT_VECTOR (sequence))); | |
249 else | |
250 { | |
251 check_losing_bytecode ("length", sequence); | |
252 sequence = wrong_type_argument (Qsequencep, sequence); | |
253 goto retry; | |
254 } | |
255 } | |
256 | |
257 DEFUN ("safe-length", Fsafe_length, 1, 1, 0, /* | |
258 Return the length of a list, but avoid error or infinite loop. | |
259 This function never gets an error. If LIST is not really a list, | |
260 it returns 0. If LIST is circular, it returns a finite value | |
261 which is at least the number of distinct elements. | |
262 */ | |
263 (list)) | |
264 { | |
265 Lisp_Object hare, tortoise; | |
665 | 266 Elemcount len; |
428 | 267 |
268 for (hare = tortoise = list, len = 0; | |
269 CONSP (hare) && (! EQ (hare, tortoise) || len == 0); | |
270 hare = XCDR (hare), len++) | |
271 { | |
272 if (len & 1) | |
273 tortoise = XCDR (tortoise); | |
274 } | |
275 | |
276 return make_int (len); | |
277 } | |
278 | |
279 /*** string functions. ***/ | |
280 | |
281 DEFUN ("string-equal", Fstring_equal, 2, 2, 0, /* | |
282 Return t if two strings have identical contents. | |
283 Case is significant. Text properties are ignored. | |
284 \(Under XEmacs, `equal' also ignores text properties and extents in | |
285 strings, but this is not the case under FSF Emacs 19. In FSF Emacs 20 | |
286 `equal' is the same as in XEmacs, in that respect.) | |
287 Symbols are also allowed; their print names are used instead. | |
288 */ | |
444 | 289 (string1, string2)) |
428 | 290 { |
291 Bytecount len; | |
793 | 292 Lisp_Object p1, p2; |
428 | 293 |
444 | 294 if (SYMBOLP (string1)) |
295 p1 = XSYMBOL (string1)->name; | |
428 | 296 else |
297 { | |
444 | 298 CHECK_STRING (string1); |
793 | 299 p1 = string1; |
428 | 300 } |
301 | |
444 | 302 if (SYMBOLP (string2)) |
303 p2 = XSYMBOL (string2)->name; | |
428 | 304 else |
305 { | |
444 | 306 CHECK_STRING (string2); |
793 | 307 p2 = string2; |
428 | 308 } |
309 | |
793 | 310 return (((len = XSTRING_LENGTH (p1)) == XSTRING_LENGTH (p2)) && |
311 !memcmp (XSTRING_DATA (p1), XSTRING_DATA (p2), len)) ? Qt : Qnil; | |
428 | 312 } |
313 | |
801 | 314 DEFUN ("compare-strings", Fcompare_strings, 6, 7, 0, /* |
315 Compare the contents of two strings, maybe ignoring case. | |
316 In string STR1, skip the first START1 characters and stop at END1. | |
317 In string STR2, skip the first START2 characters and stop at END2. | |
4796
c45fdd4e1858
Don't args-out-of-range in compare-strings.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4693
diff
changeset
|
318 END1 and END2 default to the full lengths of the respective strings, |
4797
a5eca70cf401
Fix typo in last patch.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4796
diff
changeset
|
319 and arguments that are outside the string (negative STARTi or ENDi |
4796
c45fdd4e1858
Don't args-out-of-range in compare-strings.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4693
diff
changeset
|
320 greater than length) are coerced to 0 or string length as appropriate. |
c45fdd4e1858
Don't args-out-of-range in compare-strings.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4693
diff
changeset
|
321 |
c45fdd4e1858
Don't args-out-of-range in compare-strings.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4693
diff
changeset
|
322 Optional IGNORE-CASE non-nil means use case-insensitive comparison. |
c45fdd4e1858
Don't args-out-of-range in compare-strings.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4693
diff
changeset
|
323 Case is significant by default. |
801 | 324 |
325 The value is t if the strings (or specified portions) match. | |
326 If string STR1 is less, the value is a negative number N; | |
327 - 1 - N is the number of characters that match at the beginning. | |
328 If string STR1 is greater, the value is a positive number N; | |
329 N - 1 is the number of characters that match at the beginning. | |
330 */ | |
331 (str1, start1, end1, str2, start2, end2, ignore_case)) | |
332 { | |
333 Charcount ccstart1, ccend1, ccstart2, ccend2; | |
334 Bytecount bstart1, blen1, bstart2, blen2; | |
335 Charcount matching; | |
336 int res; | |
337 | |
338 CHECK_STRING (str1); | |
339 CHECK_STRING (str2); | |
340 get_string_range_char (str1, start1, end1, &ccstart1, &ccend1, | |
4796
c45fdd4e1858
Don't args-out-of-range in compare-strings.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4693
diff
changeset
|
341 GB_HISTORICAL_STRING_BEHAVIOR|GB_COERCE_RANGE); |
801 | 342 get_string_range_char (str2, start2, end2, &ccstart2, &ccend2, |
4796
c45fdd4e1858
Don't args-out-of-range in compare-strings.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4693
diff
changeset
|
343 GB_HISTORICAL_STRING_BEHAVIOR|GB_COERCE_RANGE); |
801 | 344 |
345 bstart1 = string_index_char_to_byte (str1, ccstart1); | |
346 blen1 = string_offset_char_to_byte_len (str1, bstart1, ccend1 - ccstart1); | |
347 bstart2 = string_index_char_to_byte (str2, ccstart2); | |
348 blen2 = string_offset_char_to_byte_len (str2, bstart2, ccend2 - ccstart2); | |
349 | |
350 res = ((NILP (ignore_case) ? qxetextcmp_matching : qxetextcasecmp_matching) | |
351 (XSTRING_DATA (str1) + bstart1, blen1, | |
352 XSTRING_DATA (str2) + bstart2, blen2, | |
353 &matching)); | |
354 | |
355 if (!res) | |
356 return Qt; | |
357 else if (res > 0) | |
358 return make_int (1 + matching); | |
359 else | |
360 return make_int (-1 - matching); | |
361 } | |
362 | |
428 | 363 DEFUN ("string-lessp", Fstring_lessp, 2, 2, 0, /* |
364 Return t if first arg string is less than second in lexicographic order. | |
771 | 365 Comparison is simply done on a character-by-character basis using the |
366 numeric value of a character. (Note that this may not produce | |
367 particularly meaningful results under Mule if characters from | |
368 different charsets are being compared.) | |
428 | 369 |
370 Symbols are also allowed; their print names are used instead. | |
371 | |
771 | 372 Currently we don't do proper language-specific collation or handle |
373 multiple character sets. This may be changed when Unicode support | |
374 is implemented. | |
428 | 375 */ |
444 | 376 (string1, string2)) |
428 | 377 { |
793 | 378 Lisp_Object p1, p2; |
428 | 379 Charcount end, len2; |
380 int i; | |
381 | |
444 | 382 if (SYMBOLP (string1)) |
383 p1 = XSYMBOL (string1)->name; | |
793 | 384 else |
385 { | |
444 | 386 CHECK_STRING (string1); |
793 | 387 p1 = string1; |
428 | 388 } |
389 | |
444 | 390 if (SYMBOLP (string2)) |
391 p2 = XSYMBOL (string2)->name; | |
428 | 392 else |
393 { | |
444 | 394 CHECK_STRING (string2); |
793 | 395 p2 = string2; |
428 | 396 } |
397 | |
826 | 398 end = string_char_length (p1); |
399 len2 = string_char_length (p2); | |
428 | 400 if (end > len2) |
401 end = len2; | |
402 | |
403 { | |
867 | 404 Ibyte *ptr1 = XSTRING_DATA (p1); |
405 Ibyte *ptr2 = XSTRING_DATA (p2); | |
428 | 406 |
407 /* #### It is not really necessary to do this: We could compare | |
408 byte-by-byte and still get a reasonable comparison, since this | |
409 would compare characters with a charset in the same way. With | |
410 a little rearrangement of the leading bytes, we could make most | |
411 inter-charset comparisons work out the same, too; even if some | |
412 don't, this is not a big deal because inter-charset comparisons | |
413 aren't really well-defined anyway. */ | |
414 for (i = 0; i < end; i++) | |
415 { | |
867 | 416 if (itext_ichar (ptr1) != itext_ichar (ptr2)) |
417 return itext_ichar (ptr1) < itext_ichar (ptr2) ? Qt : Qnil; | |
418 INC_IBYTEPTR (ptr1); | |
419 INC_IBYTEPTR (ptr2); | |
428 | 420 } |
421 } | |
422 /* Can't do i < len2 because then comparison between "foo" and "foo^@" | |
423 won't work right in I18N2 case */ | |
424 return end < len2 ? Qt : Qnil; | |
425 } | |
426 | |
427 DEFUN ("string-modified-tick", Fstring_modified_tick, 1, 1, 0, /* | |
428 Return STRING's tick counter, incremented for each change to the string. | |
429 Each string has a tick counter which is incremented each time the contents | |
430 of the string are changed (e.g. with `aset'). It wraps around occasionally. | |
431 */ | |
432 (string)) | |
433 { | |
434 CHECK_STRING (string); | |
793 | 435 if (CONSP (XSTRING_PLIST (string)) && INTP (XCAR (XSTRING_PLIST (string)))) |
436 return XCAR (XSTRING_PLIST (string)); | |
428 | 437 else |
438 return Qzero; | |
439 } | |
440 | |
441 void | |
442 bump_string_modiff (Lisp_Object str) | |
443 { | |
793 | 444 Lisp_Object *ptr = &XSTRING_PLIST (str); |
428 | 445 |
446 #ifdef I18N3 | |
447 /* #### remove the `string-translatable' property from the string, | |
448 if there is one. */ | |
449 #endif | |
450 /* skip over extent info if it's there */ | |
451 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr))) | |
452 ptr = &XCDR (*ptr); | |
453 if (CONSP (*ptr) && INTP (XCAR (*ptr))) | |
793 | 454 XCAR (*ptr) = make_int (1+XINT (XCAR (*ptr))); |
428 | 455 else |
456 *ptr = Fcons (make_int (1), *ptr); | |
457 } | |
458 | |
459 | |
460 enum concat_target_type { c_cons, c_string, c_vector, c_bit_vector }; | |
461 static Lisp_Object concat (int nargs, Lisp_Object *args, | |
462 enum concat_target_type target_type, | |
463 int last_special); | |
464 | |
465 Lisp_Object | |
444 | 466 concat2 (Lisp_Object string1, Lisp_Object string2) |
428 | 467 { |
468 Lisp_Object args[2]; | |
444 | 469 args[0] = string1; |
470 args[1] = string2; | |
428 | 471 return concat (2, args, c_string, 0); |
472 } | |
473 | |
474 Lisp_Object | |
444 | 475 concat3 (Lisp_Object string1, Lisp_Object string2, Lisp_Object string3) |
428 | 476 { |
477 Lisp_Object args[3]; | |
444 | 478 args[0] = string1; |
479 args[1] = string2; | |
480 args[2] = string3; | |
428 | 481 return concat (3, args, c_string, 0); |
482 } | |
483 | |
484 Lisp_Object | |
444 | 485 vconcat2 (Lisp_Object vec1, Lisp_Object vec2) |
428 | 486 { |
487 Lisp_Object args[2]; | |
444 | 488 args[0] = vec1; |
489 args[1] = vec2; | |
428 | 490 return concat (2, args, c_vector, 0); |
491 } | |
492 | |
493 Lisp_Object | |
444 | 494 vconcat3 (Lisp_Object vec1, Lisp_Object vec2, Lisp_Object vec3) |
428 | 495 { |
496 Lisp_Object args[3]; | |
444 | 497 args[0] = vec1; |
498 args[1] = vec2; | |
499 args[2] = vec3; | |
428 | 500 return concat (3, args, c_vector, 0); |
501 } | |
502 | |
503 DEFUN ("append", Fappend, 0, MANY, 0, /* | |
504 Concatenate all the arguments and make the result a list. | |
505 The result is a list whose elements are the elements of all the arguments. | |
506 Each argument may be a list, vector, bit vector, or string. | |
507 The last argument is not copied, just used as the tail of the new list. | |
508 Also see: `nconc'. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
509 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
510 arguments: (&rest ARGS) |
428 | 511 */ |
512 (int nargs, Lisp_Object *args)) | |
513 { | |
514 return concat (nargs, args, c_cons, 1); | |
515 } | |
516 | |
517 DEFUN ("concat", Fconcat, 0, MANY, 0, /* | |
518 Concatenate all the arguments and make the result a string. | |
519 The result is a string whose elements are the elements of all the arguments. | |
520 Each argument may be a string or a list or vector of characters. | |
521 | |
522 As of XEmacs 21.0, this function does NOT accept individual integers | |
523 as arguments. Old code that relies on, for example, (concat "foo" 50) | |
524 returning "foo50" will fail. To fix such code, either apply | |
525 `int-to-string' to the integer argument, or use `format'. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
526 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
527 arguments: (&rest ARGS) |
428 | 528 */ |
529 (int nargs, Lisp_Object *args)) | |
530 { | |
531 return concat (nargs, args, c_string, 0); | |
532 } | |
533 | |
534 DEFUN ("vconcat", Fvconcat, 0, MANY, 0, /* | |
535 Concatenate all the arguments and make the result a vector. | |
536 The result is a vector whose elements are the elements of all the arguments. | |
537 Each argument may be a list, vector, bit vector, or string. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
538 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
539 arguments: (&rest ARGS) |
428 | 540 */ |
541 (int nargs, Lisp_Object *args)) | |
542 { | |
543 return concat (nargs, args, c_vector, 0); | |
544 } | |
545 | |
546 DEFUN ("bvconcat", Fbvconcat, 0, MANY, 0, /* | |
547 Concatenate all the arguments and make the result a bit vector. | |
548 The result is a bit vector whose elements are the elements of all the | |
549 arguments. Each argument may be a list, vector, bit vector, or string. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
550 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
551 arguments: (&rest ARGS) |
428 | 552 */ |
553 (int nargs, Lisp_Object *args)) | |
554 { | |
555 return concat (nargs, args, c_bit_vector, 0); | |
556 } | |
557 | |
558 /* Copy a (possibly dotted) list. LIST must be a cons. | |
559 Can't use concat (1, &alist, c_cons, 0) - doesn't handle dotted lists. */ | |
560 static Lisp_Object | |
561 copy_list (Lisp_Object list) | |
562 { | |
563 Lisp_Object list_copy = Fcons (XCAR (list), XCDR (list)); | |
564 Lisp_Object last = list_copy; | |
565 Lisp_Object hare, tortoise; | |
665 | 566 Elemcount len; |
428 | 567 |
568 for (tortoise = hare = XCDR (list), len = 1; | |
569 CONSP (hare); | |
570 hare = XCDR (hare), len++) | |
571 { | |
572 XCDR (last) = Fcons (XCAR (hare), XCDR (hare)); | |
573 last = XCDR (last); | |
574 | |
575 if (len < CIRCULAR_LIST_SUSPICION_LENGTH) | |
576 continue; | |
577 if (len & 1) | |
578 tortoise = XCDR (tortoise); | |
579 if (EQ (tortoise, hare)) | |
580 signal_circular_list_error (list); | |
581 } | |
582 | |
583 return list_copy; | |
584 } | |
585 | |
586 DEFUN ("copy-list", Fcopy_list, 1, 1, 0, /* | |
587 Return a copy of list LIST, which may be a dotted list. | |
588 The elements of LIST are not copied; they are shared | |
589 with the original. | |
590 */ | |
591 (list)) | |
592 { | |
593 again: | |
594 if (NILP (list)) return list; | |
595 if (CONSP (list)) return copy_list (list); | |
596 | |
597 list = wrong_type_argument (Qlistp, list); | |
598 goto again; | |
599 } | |
600 | |
601 DEFUN ("copy-sequence", Fcopy_sequence, 1, 1, 0, /* | |
602 Return a copy of list, vector, bit vector or string SEQUENCE. | |
603 The elements of a list or vector are not copied; they are shared | |
604 with the original. SEQUENCE may be a dotted list. | |
605 */ | |
606 (sequence)) | |
607 { | |
608 again: | |
609 if (NILP (sequence)) return sequence; | |
610 if (CONSP (sequence)) return copy_list (sequence); | |
611 if (STRINGP (sequence)) return concat (1, &sequence, c_string, 0); | |
612 if (VECTORP (sequence)) return concat (1, &sequence, c_vector, 0); | |
613 if (BIT_VECTORP (sequence)) return concat (1, &sequence, c_bit_vector, 0); | |
614 | |
615 check_losing_bytecode ("copy-sequence", sequence); | |
616 sequence = wrong_type_argument (Qsequencep, sequence); | |
617 goto again; | |
618 } | |
619 | |
620 struct merge_string_extents_struct | |
621 { | |
622 Lisp_Object string; | |
623 Bytecount entry_offset; | |
624 Bytecount entry_length; | |
625 }; | |
626 | |
627 static Lisp_Object | |
628 concat (int nargs, Lisp_Object *args, | |
629 enum concat_target_type target_type, | |
630 int last_special) | |
631 { | |
632 Lisp_Object val; | |
633 Lisp_Object tail = Qnil; | |
634 int toindex; | |
635 int argnum; | |
636 Lisp_Object last_tail; | |
637 Lisp_Object prev; | |
638 struct merge_string_extents_struct *args_mse = 0; | |
867 | 639 Ibyte *string_result = 0; |
640 Ibyte *string_result_ptr = 0; | |
428 | 641 struct gcpro gcpro1; |
851 | 642 int sdep = specpdl_depth (); |
428 | 643 |
644 /* The modus operandi in Emacs is "caller gc-protects args". | |
645 However, concat is called many times in Emacs on freshly | |
646 created stuff. So we help those callers out by protecting | |
647 the args ourselves to save them a lot of temporary-variable | |
648 grief. */ | |
649 | |
650 GCPRO1 (args[0]); | |
651 gcpro1.nvars = nargs; | |
652 | |
653 #ifdef I18N3 | |
654 /* #### if the result is a string and any of the strings have a string | |
655 for the `string-translatable' property, then concat should also | |
656 concat the args but use the `string-translatable' strings, and store | |
657 the result in the returned string's `string-translatable' property. */ | |
658 #endif | |
659 if (target_type == c_string) | |
660 args_mse = alloca_array (struct merge_string_extents_struct, nargs); | |
661 | |
662 /* In append, the last arg isn't treated like the others */ | |
663 if (last_special && nargs > 0) | |
664 { | |
665 nargs--; | |
666 last_tail = args[nargs]; | |
667 } | |
668 else | |
669 last_tail = Qnil; | |
670 | |
671 /* Check and coerce the arguments. */ | |
672 for (argnum = 0; argnum < nargs; argnum++) | |
673 { | |
674 Lisp_Object seq = args[argnum]; | |
675 if (LISTP (seq)) | |
676 ; | |
677 else if (VECTORP (seq) || STRINGP (seq) || BIT_VECTORP (seq)) | |
678 ; | |
679 #ifdef LOSING_BYTECODE | |
680 else if (COMPILED_FUNCTIONP (seq)) | |
681 /* Urk! We allow this, for "compatibility"... */ | |
682 ; | |
683 #endif | |
684 #if 0 /* removed for XEmacs 21 */ | |
685 else if (INTP (seq)) | |
686 /* This is too revolting to think about but maintains | |
687 compatibility with FSF (and lots and lots of old code). */ | |
688 args[argnum] = Fnumber_to_string (seq); | |
689 #endif | |
690 else | |
691 { | |
692 check_losing_bytecode ("concat", seq); | |
693 args[argnum] = wrong_type_argument (Qsequencep, seq); | |
694 } | |
695 | |
696 if (args_mse) | |
697 { | |
698 if (STRINGP (seq)) | |
699 args_mse[argnum].string = seq; | |
700 else | |
701 args_mse[argnum].string = Qnil; | |
702 } | |
703 } | |
704 | |
705 { | |
706 /* Charcount is a misnomer here as we might be dealing with the | |
707 length of a vector or list, but emphasizes that we're not dealing | |
708 with Bytecounts in strings */ | |
709 Charcount total_length; | |
710 | |
711 for (argnum = 0, total_length = 0; argnum < nargs; argnum++) | |
712 { | |
713 #ifdef LOSING_BYTECODE | |
714 Charcount thislen = length_with_bytecode_hack (args[argnum]); | |
715 #else | |
716 Charcount thislen = XINT (Flength (args[argnum])); | |
717 #endif | |
718 total_length += thislen; | |
719 } | |
720 | |
721 switch (target_type) | |
722 { | |
723 case c_cons: | |
724 if (total_length == 0) | |
851 | 725 { |
726 unbind_to (sdep); | |
727 /* In append, if all but last arg are nil, return last arg */ | |
728 RETURN_UNGCPRO (last_tail); | |
729 } | |
428 | 730 val = Fmake_list (make_int (total_length), Qnil); |
731 break; | |
732 case c_vector: | |
733 val = make_vector (total_length, Qnil); | |
734 break; | |
735 case c_bit_vector: | |
736 val = make_bit_vector (total_length, Qzero); | |
737 break; | |
738 case c_string: | |
739 /* We don't make the string yet because we don't know the | |
740 actual number of bytes. This loop was formerly written | |
741 to call Fmake_string() here and then call set_string_char() | |
742 for each char. This seems logical enough but is waaaaaaaay | |
743 slow -- set_string_char() has to scan the whole string up | |
744 to the place where the substitution is called for in order | |
745 to find the place to change, and may have to do some | |
746 realloc()ing in order to make the char fit properly. | |
747 O(N^2) yuckage. */ | |
748 val = Qnil; | |
851 | 749 string_result = |
867 | 750 (Ibyte *) MALLOC_OR_ALLOCA (total_length * MAX_ICHAR_LEN); |
428 | 751 string_result_ptr = string_result; |
752 break; | |
753 default: | |
442 | 754 val = Qnil; |
2500 | 755 ABORT (); |
428 | 756 } |
757 } | |
758 | |
759 | |
760 if (CONSP (val)) | |
761 tail = val, toindex = -1; /* -1 in toindex is flag we are | |
762 making a list */ | |
763 else | |
764 toindex = 0; | |
765 | |
766 prev = Qnil; | |
767 | |
768 for (argnum = 0; argnum < nargs; argnum++) | |
769 { | |
770 Charcount thisleni = 0; | |
771 Charcount thisindex = 0; | |
772 Lisp_Object seq = args[argnum]; | |
867 | 773 Ibyte *string_source_ptr = 0; |
774 Ibyte *string_prev_result_ptr = string_result_ptr; | |
428 | 775 |
776 if (!CONSP (seq)) | |
777 { | |
778 #ifdef LOSING_BYTECODE | |
779 thisleni = length_with_bytecode_hack (seq); | |
780 #else | |
781 thisleni = XINT (Flength (seq)); | |
782 #endif | |
783 } | |
784 if (STRINGP (seq)) | |
785 string_source_ptr = XSTRING_DATA (seq); | |
786 | |
787 while (1) | |
788 { | |
789 Lisp_Object elt; | |
790 | |
791 /* We've come to the end of this arg, so exit. */ | |
792 if (NILP (seq)) | |
793 break; | |
794 | |
795 /* Fetch next element of `seq' arg into `elt' */ | |
796 if (CONSP (seq)) | |
797 { | |
798 elt = XCAR (seq); | |
799 seq = XCDR (seq); | |
800 } | |
801 else | |
802 { | |
803 if (thisindex >= thisleni) | |
804 break; | |
805 | |
806 if (STRINGP (seq)) | |
807 { | |
867 | 808 elt = make_char (itext_ichar (string_source_ptr)); |
809 INC_IBYTEPTR (string_source_ptr); | |
428 | 810 } |
811 else if (VECTORP (seq)) | |
812 elt = XVECTOR_DATA (seq)[thisindex]; | |
813 else if (BIT_VECTORP (seq)) | |
814 elt = make_int (bit_vector_bit (XBIT_VECTOR (seq), | |
815 thisindex)); | |
816 else | |
817 elt = Felt (seq, make_int (thisindex)); | |
818 thisindex++; | |
819 } | |
820 | |
821 /* Store into result */ | |
822 if (toindex < 0) | |
823 { | |
824 /* toindex negative means we are making a list */ | |
825 XCAR (tail) = elt; | |
826 prev = tail; | |
827 tail = XCDR (tail); | |
828 } | |
829 else if (VECTORP (val)) | |
830 XVECTOR_DATA (val)[toindex++] = elt; | |
831 else if (BIT_VECTORP (val)) | |
832 { | |
833 CHECK_BIT (elt); | |
834 set_bit_vector_bit (XBIT_VECTOR (val), toindex++, XINT (elt)); | |
835 } | |
836 else | |
837 { | |
838 CHECK_CHAR_COERCE_INT (elt); | |
867 | 839 string_result_ptr += set_itext_ichar (string_result_ptr, |
428 | 840 XCHAR (elt)); |
841 } | |
842 } | |
843 if (args_mse) | |
844 { | |
845 args_mse[argnum].entry_offset = | |
846 string_prev_result_ptr - string_result; | |
847 args_mse[argnum].entry_length = | |
848 string_result_ptr - string_prev_result_ptr; | |
849 } | |
850 } | |
851 | |
852 /* Now we finally make the string. */ | |
853 if (target_type == c_string) | |
854 { | |
855 val = make_string (string_result, string_result_ptr - string_result); | |
856 for (argnum = 0; argnum < nargs; argnum++) | |
857 { | |
858 if (STRINGP (args_mse[argnum].string)) | |
859 copy_string_extents (val, args_mse[argnum].string, | |
860 args_mse[argnum].entry_offset, 0, | |
861 args_mse[argnum].entry_length); | |
862 } | |
863 } | |
864 | |
865 if (!NILP (prev)) | |
866 XCDR (prev) = last_tail; | |
867 | |
851 | 868 unbind_to (sdep); |
428 | 869 RETURN_UNGCPRO (val); |
870 } | |
871 | |
872 DEFUN ("copy-alist", Fcopy_alist, 1, 1, 0, /* | |
873 Return a copy of ALIST. | |
874 This is an alist which represents the same mapping from objects to objects, | |
875 but does not share the alist structure with ALIST. | |
876 The objects mapped (cars and cdrs of elements of the alist) | |
877 are shared, however. | |
878 Elements of ALIST that are not conses are also shared. | |
879 */ | |
880 (alist)) | |
881 { | |
882 Lisp_Object tail; | |
883 | |
884 if (NILP (alist)) | |
885 return alist; | |
886 CHECK_CONS (alist); | |
887 | |
888 alist = concat (1, &alist, c_cons, 0); | |
889 for (tail = alist; CONSP (tail); tail = XCDR (tail)) | |
890 { | |
891 Lisp_Object car = XCAR (tail); | |
892 | |
893 if (CONSP (car)) | |
894 XCAR (tail) = Fcons (XCAR (car), XCDR (car)); | |
895 } | |
896 return alist; | |
897 } | |
898 | |
899 DEFUN ("copy-tree", Fcopy_tree, 1, 2, 0, /* | |
900 Return a copy of a list and substructures. | |
901 The argument is copied, and any lists contained within it are copied | |
902 recursively. Circularities and shared substructures are not preserved. | |
903 Second arg VECP causes vectors to be copied, too. Strings and bit vectors | |
904 are not copied. | |
905 */ | |
906 (arg, vecp)) | |
907 { | |
454 | 908 return safe_copy_tree (arg, vecp, 0); |
909 } | |
910 | |
911 Lisp_Object | |
912 safe_copy_tree (Lisp_Object arg, Lisp_Object vecp, int depth) | |
913 { | |
914 if (depth > 200) | |
563 | 915 stack_overflow ("Stack overflow in copy-tree", arg); |
454 | 916 |
428 | 917 if (CONSP (arg)) |
918 { | |
919 Lisp_Object rest; | |
920 rest = arg = Fcopy_sequence (arg); | |
921 while (CONSP (rest)) | |
922 { | |
923 Lisp_Object elt = XCAR (rest); | |
924 QUIT; | |
925 if (CONSP (elt) || VECTORP (elt)) | |
454 | 926 XCAR (rest) = safe_copy_tree (elt, vecp, depth + 1); |
428 | 927 if (VECTORP (XCDR (rest))) /* hack for (a b . [c d]) */ |
454 | 928 XCDR (rest) = safe_copy_tree (XCDR (rest), vecp, depth +1); |
428 | 929 rest = XCDR (rest); |
930 } | |
931 } | |
932 else if (VECTORP (arg) && ! NILP (vecp)) | |
933 { | |
934 int i = XVECTOR_LENGTH (arg); | |
935 int j; | |
936 arg = Fcopy_sequence (arg); | |
937 for (j = 0; j < i; j++) | |
938 { | |
939 Lisp_Object elt = XVECTOR_DATA (arg) [j]; | |
940 QUIT; | |
941 if (CONSP (elt) || VECTORP (elt)) | |
454 | 942 XVECTOR_DATA (arg) [j] = safe_copy_tree (elt, vecp, depth + 1); |
428 | 943 } |
944 } | |
945 return arg; | |
946 } | |
947 | |
948 DEFUN ("substring", Fsubstring, 2, 3, 0, /* | |
444 | 949 Return the substring of STRING starting at START and ending before END. |
950 END may be nil or omitted; then the substring runs to the end of STRING. | |
951 If START or END is negative, it counts from the end. | |
952 Relevant parts of the string-extent-data are copied to the new string. | |
428 | 953 */ |
444 | 954 (string, start, end)) |
428 | 955 { |
444 | 956 Charcount ccstart, ccend; |
957 Bytecount bstart, blen; | |
428 | 958 Lisp_Object val; |
959 | |
960 CHECK_STRING (string); | |
444 | 961 CHECK_INT (start); |
962 get_string_range_char (string, start, end, &ccstart, &ccend, | |
428 | 963 GB_HISTORICAL_STRING_BEHAVIOR); |
793 | 964 bstart = string_index_char_to_byte (string, ccstart); |
965 blen = string_offset_char_to_byte_len (string, bstart, ccend - ccstart); | |
444 | 966 val = make_string (XSTRING_DATA (string) + bstart, blen); |
967 /* Copy any applicable extent information into the new string. */ | |
968 copy_string_extents (val, string, 0, bstart, blen); | |
428 | 969 return val; |
970 } | |
971 | |
972 DEFUN ("subseq", Fsubseq, 2, 3, 0, /* | |
442 | 973 Return the subsequence of SEQUENCE starting at START and ending before END. |
974 END may be omitted; then the subsequence runs to the end of SEQUENCE. | |
975 If START or END is negative, it counts from the end. | |
976 The returned subsequence is always of the same type as SEQUENCE. | |
977 If SEQUENCE is a string, relevant parts of the string-extent-data | |
978 are copied to the new string. | |
428 | 979 */ |
442 | 980 (sequence, start, end)) |
428 | 981 { |
442 | 982 EMACS_INT len, s, e; |
983 | |
984 if (STRINGP (sequence)) | |
985 return Fsubstring (sequence, start, end); | |
986 | |
987 len = XINT (Flength (sequence)); | |
988 | |
989 CHECK_INT (start); | |
990 s = XINT (start); | |
991 if (s < 0) | |
992 s = len + s; | |
993 | |
994 if (NILP (end)) | |
995 e = len; | |
428 | 996 else |
997 { | |
442 | 998 CHECK_INT (end); |
999 e = XINT (end); | |
1000 if (e < 0) | |
1001 e = len + e; | |
428 | 1002 } |
1003 | |
442 | 1004 if (!(0 <= s && s <= e && e <= len)) |
1005 args_out_of_range_3 (sequence, make_int (s), make_int (e)); | |
1006 | |
1007 if (VECTORP (sequence)) | |
428 | 1008 { |
442 | 1009 Lisp_Object result = make_vector (e - s, Qnil); |
428 | 1010 EMACS_INT i; |
442 | 1011 Lisp_Object *in_elts = XVECTOR_DATA (sequence); |
428 | 1012 Lisp_Object *out_elts = XVECTOR_DATA (result); |
1013 | |
442 | 1014 for (i = s; i < e; i++) |
1015 out_elts[i - s] = in_elts[i]; | |
428 | 1016 return result; |
1017 } | |
442 | 1018 else if (LISTP (sequence)) |
428 | 1019 { |
1020 Lisp_Object result = Qnil; | |
1021 EMACS_INT i; | |
1022 | |
442 | 1023 sequence = Fnthcdr (make_int (s), sequence); |
1024 | |
1025 for (i = s; i < e; i++) | |
428 | 1026 { |
442 | 1027 result = Fcons (Fcar (sequence), result); |
1028 sequence = Fcdr (sequence); | |
428 | 1029 } |
1030 | |
1031 return Fnreverse (result); | |
1032 } | |
442 | 1033 else if (BIT_VECTORP (sequence)) |
1034 { | |
1035 Lisp_Object result = make_bit_vector (e - s, Qzero); | |
1036 EMACS_INT i; | |
1037 | |
1038 for (i = s; i < e; i++) | |
1039 set_bit_vector_bit (XBIT_VECTOR (result), i - s, | |
1040 bit_vector_bit (XBIT_VECTOR (sequence), i)); | |
1041 return result; | |
1042 } | |
1043 else | |
1044 { | |
2500 | 1045 ABORT (); /* unreachable, since Flength (sequence) did not get |
442 | 1046 an error */ |
1047 return Qnil; | |
1048 } | |
428 | 1049 } |
1050 | |
771 | 1051 /* Split STRING into a list of substrings. The substrings are the |
1052 parts of original STRING separated by SEPCHAR. */ | |
1053 static Lisp_Object | |
867 | 1054 split_string_by_ichar_1 (const Ibyte *string, Bytecount size, |
1055 Ichar sepchar) | |
771 | 1056 { |
1057 Lisp_Object result = Qnil; | |
867 | 1058 const Ibyte *end = string + size; |
771 | 1059 |
1060 while (1) | |
1061 { | |
867 | 1062 const Ibyte *p = string; |
771 | 1063 while (p < end) |
1064 { | |
867 | 1065 if (itext_ichar (p) == sepchar) |
771 | 1066 break; |
867 | 1067 INC_IBYTEPTR (p); |
771 | 1068 } |
1069 result = Fcons (make_string (string, p - string), result); | |
1070 if (p < end) | |
1071 { | |
1072 string = p; | |
867 | 1073 INC_IBYTEPTR (string); /* skip sepchar */ |
771 | 1074 } |
1075 else | |
1076 break; | |
1077 } | |
1078 return Fnreverse (result); | |
1079 } | |
1080 | |
1081 /* The same as the above, except PATH is an external C string (it is | |
1082 converted using Qfile_name), and sepchar is hardcoded to SEPCHAR | |
1083 (':' or whatever). */ | |
1084 Lisp_Object | |
1085 split_external_path (const Extbyte *path) | |
1086 { | |
1087 Bytecount newlen; | |
867 | 1088 Ibyte *newpath; |
771 | 1089 if (!path) |
1090 return Qnil; | |
1091 | |
1092 TO_INTERNAL_FORMAT (C_STRING, path, ALLOCA, (newpath, newlen), Qfile_name); | |
1093 | |
1094 /* #### Does this make sense? It certainly does for | |
1095 split_env_path(), but it looks dubious here. Does any code | |
1096 depend on split_external_path("") returning nil instead of an empty | |
1097 string? */ | |
1098 if (!newlen) | |
1099 return Qnil; | |
1100 | |
867 | 1101 return split_string_by_ichar_1 (newpath, newlen, SEPCHAR); |
771 | 1102 } |
1103 | |
1104 Lisp_Object | |
867 | 1105 split_env_path (const CIbyte *evarname, const Ibyte *default_) |
771 | 1106 { |
867 | 1107 const Ibyte *path = 0; |
771 | 1108 if (evarname) |
1109 path = egetenv (evarname); | |
1110 if (!path) | |
1111 path = default_; | |
1112 if (!path) | |
1113 return Qnil; | |
867 | 1114 return split_string_by_ichar_1 (path, qxestrlen (path), SEPCHAR); |
771 | 1115 } |
1116 | |
1117 /* Ben thinks this function should not exist or be exported to Lisp. | |
1118 We use it to define split-path-string in subr.el (not!). */ | |
1119 | |
949 | 1120 DEFUN ("split-string-by-char", Fsplit_string_by_char, 2, 2, 0, /* |
771 | 1121 Split STRING into a list of substrings originally separated by SEPCHAR. |
1122 */ | |
1123 (string, sepchar)) | |
1124 { | |
1125 CHECK_STRING (string); | |
1126 CHECK_CHAR (sepchar); | |
867 | 1127 return split_string_by_ichar_1 (XSTRING_DATA (string), |
771 | 1128 XSTRING_LENGTH (string), |
1129 XCHAR (sepchar)); | |
1130 } | |
1131 | |
1132 /* #### This was supposed to be in subr.el, but is used VERY early in | |
1133 the bootstrap process, so it goes here. Damn. */ | |
1134 | |
1135 DEFUN ("split-path", Fsplit_path, 1, 1, 0, /* | |
1136 Explode a search path into a list of strings. | |
1137 The path components are separated with the characters specified | |
1138 with `path-separator'. | |
1139 */ | |
1140 (path)) | |
1141 { | |
1142 CHECK_STRING (path); | |
1143 | |
1144 while (!STRINGP (Vpath_separator) | |
826 | 1145 || (string_char_length (Vpath_separator) != 1)) |
771 | 1146 Vpath_separator = signal_continuable_error |
1147 (Qinvalid_state, | |
1148 "`path-separator' should be set to a single-character string", | |
1149 Vpath_separator); | |
1150 | |
867 | 1151 return (split_string_by_ichar_1 |
771 | 1152 (XSTRING_DATA (path), XSTRING_LENGTH (path), |
867 | 1153 itext_ichar (XSTRING_DATA (Vpath_separator)))); |
771 | 1154 } |
1155 | |
428 | 1156 |
1157 DEFUN ("nthcdr", Fnthcdr, 2, 2, 0, /* | |
1158 Take cdr N times on LIST, and return the result. | |
1159 */ | |
1160 (n, list)) | |
1161 { | |
1920 | 1162 /* This function can GC */ |
647 | 1163 REGISTER EMACS_INT i; |
428 | 1164 REGISTER Lisp_Object tail = list; |
1165 CHECK_NATNUM (n); | |
1166 for (i = XINT (n); i; i--) | |
1167 { | |
1168 if (CONSP (tail)) | |
1169 tail = XCDR (tail); | |
1170 else if (NILP (tail)) | |
1171 return Qnil; | |
1172 else | |
1173 { | |
1174 tail = wrong_type_argument (Qlistp, tail); | |
1175 i++; | |
1176 } | |
1177 } | |
1178 return tail; | |
1179 } | |
1180 | |
1181 DEFUN ("nth", Fnth, 2, 2, 0, /* | |
1182 Return the Nth element of LIST. | |
1183 N counts from zero. If LIST is not that long, nil is returned. | |
1184 */ | |
1185 (n, list)) | |
1186 { | |
1920 | 1187 /* This function can GC */ |
428 | 1188 return Fcar (Fnthcdr (n, list)); |
1189 } | |
1190 | |
1191 DEFUN ("elt", Felt, 2, 2, 0, /* | |
1192 Return element of SEQUENCE at index N. | |
1193 */ | |
1194 (sequence, n)) | |
1195 { | |
1920 | 1196 /* This function can GC */ |
428 | 1197 retry: |
1198 CHECK_INT_COERCE_CHAR (n); /* yuck! */ | |
1199 if (LISTP (sequence)) | |
1200 { | |
1201 Lisp_Object tem = Fnthcdr (n, sequence); | |
1202 /* #### Utterly, completely, fucking disgusting. | |
1203 * #### The whole point of "elt" is that it operates on | |
1204 * #### sequences, and does error- (bounds-) checking. | |
1205 */ | |
1206 if (CONSP (tem)) | |
1207 return XCAR (tem); | |
1208 else | |
1209 #if 1 | |
1210 /* This is The Way It Has Always Been. */ | |
1211 return Qnil; | |
1212 #else | |
1213 /* This is The Way Mly and Cltl2 say It Should Be. */ | |
1214 args_out_of_range (sequence, n); | |
1215 #endif | |
1216 } | |
1217 else if (STRINGP (sequence) || | |
1218 VECTORP (sequence) || | |
1219 BIT_VECTORP (sequence)) | |
1220 return Faref (sequence, n); | |
1221 #ifdef LOSING_BYTECODE | |
1222 else if (COMPILED_FUNCTIONP (sequence)) | |
1223 { | |
1224 EMACS_INT idx = XINT (n); | |
1225 if (idx < 0) | |
1226 { | |
1227 lose: | |
1228 args_out_of_range (sequence, n); | |
1229 } | |
1230 /* Utter perversity */ | |
1231 { | |
1232 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (sequence); | |
1233 switch (idx) | |
1234 { | |
1235 case COMPILED_ARGLIST: | |
1236 return compiled_function_arglist (f); | |
1237 case COMPILED_INSTRUCTIONS: | |
1238 return compiled_function_instructions (f); | |
1239 case COMPILED_CONSTANTS: | |
1240 return compiled_function_constants (f); | |
1241 case COMPILED_STACK_DEPTH: | |
1242 return compiled_function_stack_depth (f); | |
1243 case COMPILED_DOC_STRING: | |
1244 return compiled_function_documentation (f); | |
1245 case COMPILED_DOMAIN: | |
1246 return compiled_function_domain (f); | |
1247 case COMPILED_INTERACTIVE: | |
1248 if (f->flags.interactivep) | |
1249 return compiled_function_interactive (f); | |
1250 /* if we return nil, can't tell interactive with no args | |
1251 from noninteractive. */ | |
1252 goto lose; | |
1253 default: | |
1254 goto lose; | |
1255 } | |
1256 } | |
1257 } | |
1258 #endif /* LOSING_BYTECODE */ | |
1259 else | |
1260 { | |
1261 check_losing_bytecode ("elt", sequence); | |
1262 sequence = wrong_type_argument (Qsequencep, sequence); | |
1263 goto retry; | |
1264 } | |
1265 } | |
1266 | |
1267 DEFUN ("last", Flast, 1, 2, 0, /* | |
1268 Return the tail of list LIST, of length N (default 1). | |
1269 LIST may be a dotted list, but not a circular list. | |
1270 Optional argument N must be a non-negative integer. | |
1271 If N is zero, then the atom that terminates the list is returned. | |
1272 If N is greater than the length of LIST, then LIST itself is returned. | |
1273 */ | |
1274 (list, n)) | |
1275 { | |
1276 EMACS_INT int_n, count; | |
1277 Lisp_Object retval, tortoise, hare; | |
1278 | |
1279 CHECK_LIST (list); | |
1280 | |
1281 if (NILP (n)) | |
1282 int_n = 1; | |
1283 else | |
1284 { | |
1285 CHECK_NATNUM (n); | |
1286 int_n = XINT (n); | |
1287 } | |
1288 | |
1289 for (retval = tortoise = hare = list, count = 0; | |
1290 CONSP (hare); | |
1291 hare = XCDR (hare), | |
1292 (int_n-- <= 0 ? ((void) (retval = XCDR (retval))) : (void)0), | |
1293 count++) | |
1294 { | |
1295 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue; | |
1296 | |
1297 if (count & 1) | |
1298 tortoise = XCDR (tortoise); | |
1299 if (EQ (hare, tortoise)) | |
1300 signal_circular_list_error (list); | |
1301 } | |
1302 | |
1303 return retval; | |
1304 } | |
1305 | |
1306 DEFUN ("nbutlast", Fnbutlast, 1, 2, 0, /* | |
1307 Modify LIST to remove the last N (default 1) elements. | |
1308 If LIST has N or fewer elements, nil is returned and LIST is unmodified. | |
1309 */ | |
1310 (list, n)) | |
1311 { | |
1312 EMACS_INT int_n; | |
1313 | |
1314 CHECK_LIST (list); | |
1315 | |
1316 if (NILP (n)) | |
1317 int_n = 1; | |
1318 else | |
1319 { | |
1320 CHECK_NATNUM (n); | |
1321 int_n = XINT (n); | |
1322 } | |
1323 | |
1324 { | |
1325 Lisp_Object last_cons = list; | |
1326 | |
1327 EXTERNAL_LIST_LOOP_1 (list) | |
1328 { | |
1329 if (int_n-- < 0) | |
1330 last_cons = XCDR (last_cons); | |
1331 } | |
1332 | |
1333 if (int_n >= 0) | |
1334 return Qnil; | |
1335 | |
1336 XCDR (last_cons) = Qnil; | |
1337 return list; | |
1338 } | |
1339 } | |
1340 | |
1341 DEFUN ("butlast", Fbutlast, 1, 2, 0, /* | |
1342 Return a copy of LIST with the last N (default 1) elements removed. | |
1343 If LIST has N or fewer elements, nil is returned. | |
1344 */ | |
1345 (list, n)) | |
1346 { | |
444 | 1347 EMACS_INT int_n; |
428 | 1348 |
1349 CHECK_LIST (list); | |
1350 | |
1351 if (NILP (n)) | |
1352 int_n = 1; | |
1353 else | |
1354 { | |
1355 CHECK_NATNUM (n); | |
1356 int_n = XINT (n); | |
1357 } | |
1358 | |
1359 { | |
1360 Lisp_Object retval = Qnil; | |
1361 Lisp_Object tail = list; | |
1362 | |
1363 EXTERNAL_LIST_LOOP_1 (list) | |
1364 { | |
1365 if (--int_n < 0) | |
1366 { | |
1367 retval = Fcons (XCAR (tail), retval); | |
1368 tail = XCDR (tail); | |
1369 } | |
1370 } | |
1371 | |
1372 return Fnreverse (retval); | |
1373 } | |
1374 } | |
1375 | |
1376 DEFUN ("member", Fmember, 2, 2, 0, /* | |
1377 Return non-nil if ELT is an element of LIST. Comparison done with `equal'. | |
1378 The value is actually the tail of LIST whose car is ELT. | |
1379 */ | |
1380 (elt, list)) | |
1381 { | |
1382 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1383 { | |
1384 if (internal_equal (elt, list_elt, 0)) | |
1385 return tail; | |
1386 } | |
1387 return Qnil; | |
1388 } | |
1389 | |
1390 DEFUN ("old-member", Fold_member, 2, 2, 0, /* | |
1391 Return non-nil if ELT is an element of LIST. Comparison done with `old-equal'. | |
1392 The value is actually the tail of LIST whose car is ELT. | |
1393 This function is provided only for byte-code compatibility with v19. | |
1394 Do not use it. | |
1395 */ | |
1396 (elt, list)) | |
1397 { | |
1398 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1399 { | |
1400 if (internal_old_equal (elt, list_elt, 0)) | |
1401 return tail; | |
1402 } | |
1403 return Qnil; | |
1404 } | |
1405 | |
1406 DEFUN ("memq", Fmemq, 2, 2, 0, /* | |
1407 Return non-nil if ELT is an element of LIST. Comparison done with `eq'. | |
1408 The value is actually the tail of LIST whose car is ELT. | |
1409 */ | |
1410 (elt, list)) | |
1411 { | |
1412 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1413 { | |
1414 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt)) | |
1415 return tail; | |
1416 } | |
1417 return Qnil; | |
1418 } | |
1419 | |
1420 DEFUN ("old-memq", Fold_memq, 2, 2, 0, /* | |
1421 Return non-nil if ELT is an element of LIST. Comparison done with `old-eq'. | |
1422 The value is actually the tail of LIST whose car is ELT. | |
1423 This function is provided only for byte-code compatibility with v19. | |
1424 Do not use it. | |
1425 */ | |
1426 (elt, list)) | |
1427 { | |
1428 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1429 { | |
1430 if (HACKEQ_UNSAFE (elt, list_elt)) | |
1431 return tail; | |
1432 } | |
1433 return Qnil; | |
1434 } | |
1435 | |
1436 Lisp_Object | |
1437 memq_no_quit (Lisp_Object elt, Lisp_Object list) | |
1438 { | |
1439 LIST_LOOP_3 (list_elt, list, tail) | |
1440 { | |
1441 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt)) | |
1442 return tail; | |
1443 } | |
1444 return Qnil; | |
1445 } | |
1446 | |
1447 DEFUN ("assoc", Fassoc, 2, 2, 0, /* | |
444 | 1448 Return non-nil if KEY is `equal' to the car of an element of ALIST. |
1449 The value is actually the element of ALIST whose car equals KEY. | |
428 | 1450 */ |
444 | 1451 (key, alist)) |
428 | 1452 { |
1453 /* This function can GC. */ | |
444 | 1454 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1455 { |
1456 if (internal_equal (key, elt_car, 0)) | |
1457 return elt; | |
1458 } | |
1459 return Qnil; | |
1460 } | |
1461 | |
1462 DEFUN ("old-assoc", Fold_assoc, 2, 2, 0, /* | |
444 | 1463 Return non-nil if KEY is `old-equal' to the car of an element of ALIST. |
1464 The value is actually the element of ALIST whose car equals KEY. | |
428 | 1465 */ |
444 | 1466 (key, alist)) |
428 | 1467 { |
1468 /* This function can GC. */ | |
444 | 1469 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1470 { |
1471 if (internal_old_equal (key, elt_car, 0)) | |
1472 return elt; | |
1473 } | |
1474 return Qnil; | |
1475 } | |
1476 | |
1477 Lisp_Object | |
444 | 1478 assoc_no_quit (Lisp_Object key, Lisp_Object alist) |
428 | 1479 { |
1480 int speccount = specpdl_depth (); | |
1481 specbind (Qinhibit_quit, Qt); | |
771 | 1482 return unbind_to_1 (speccount, Fassoc (key, alist)); |
428 | 1483 } |
1484 | |
1485 DEFUN ("assq", Fassq, 2, 2, 0, /* | |
444 | 1486 Return non-nil if KEY is `eq' to the car of an element of ALIST. |
1487 The value is actually the element of ALIST whose car is KEY. | |
1488 Elements of ALIST that are not conses are ignored. | |
428 | 1489 */ |
444 | 1490 (key, alist)) |
428 | 1491 { |
444 | 1492 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1493 { |
1494 if (EQ_WITH_EBOLA_NOTICE (key, elt_car)) | |
1495 return elt; | |
1496 } | |
1497 return Qnil; | |
1498 } | |
1499 | |
1500 DEFUN ("old-assq", Fold_assq, 2, 2, 0, /* | |
444 | 1501 Return non-nil if KEY is `old-eq' to the car of an element of ALIST. |
1502 The value is actually the element of ALIST whose car is KEY. | |
1503 Elements of ALIST that are not conses are ignored. | |
428 | 1504 This function is provided only for byte-code compatibility with v19. |
1505 Do not use it. | |
1506 */ | |
444 | 1507 (key, alist)) |
428 | 1508 { |
444 | 1509 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1510 { |
1511 if (HACKEQ_UNSAFE (key, elt_car)) | |
1512 return elt; | |
1513 } | |
1514 return Qnil; | |
1515 } | |
1516 | |
1517 /* Like Fassq but never report an error and do not allow quits. | |
1518 Use only on lists known never to be circular. */ | |
1519 | |
1520 Lisp_Object | |
444 | 1521 assq_no_quit (Lisp_Object key, Lisp_Object alist) |
428 | 1522 { |
1523 /* This cannot GC. */ | |
444 | 1524 LIST_LOOP_2 (elt, alist) |
428 | 1525 { |
1526 Lisp_Object elt_car = XCAR (elt); | |
1527 if (EQ_WITH_EBOLA_NOTICE (key, elt_car)) | |
1528 return elt; | |
1529 } | |
1530 return Qnil; | |
1531 } | |
1532 | |
1533 DEFUN ("rassoc", Frassoc, 2, 2, 0, /* | |
444 | 1534 Return non-nil if VALUE is `equal' to the cdr of an element of ALIST. |
1535 The value is actually the element of ALIST whose cdr equals VALUE. | |
428 | 1536 */ |
444 | 1537 (value, alist)) |
428 | 1538 { |
444 | 1539 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1540 { |
444 | 1541 if (internal_equal (value, elt_cdr, 0)) |
428 | 1542 return elt; |
1543 } | |
1544 return Qnil; | |
1545 } | |
1546 | |
1547 DEFUN ("old-rassoc", Fold_rassoc, 2, 2, 0, /* | |
444 | 1548 Return non-nil if VALUE is `old-equal' to the cdr of an element of ALIST. |
1549 The value is actually the element of ALIST whose cdr equals VALUE. | |
428 | 1550 */ |
444 | 1551 (value, alist)) |
428 | 1552 { |
444 | 1553 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1554 { |
444 | 1555 if (internal_old_equal (value, elt_cdr, 0)) |
428 | 1556 return elt; |
1557 } | |
1558 return Qnil; | |
1559 } | |
1560 | |
1561 DEFUN ("rassq", Frassq, 2, 2, 0, /* | |
444 | 1562 Return non-nil if VALUE is `eq' to the cdr of an element of ALIST. |
1563 The value is actually the element of ALIST whose cdr is VALUE. | |
428 | 1564 */ |
444 | 1565 (value, alist)) |
428 | 1566 { |
444 | 1567 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1568 { |
444 | 1569 if (EQ_WITH_EBOLA_NOTICE (value, elt_cdr)) |
428 | 1570 return elt; |
1571 } | |
1572 return Qnil; | |
1573 } | |
1574 | |
1575 DEFUN ("old-rassq", Fold_rassq, 2, 2, 0, /* | |
444 | 1576 Return non-nil if VALUE is `old-eq' to the cdr of an element of ALIST. |
1577 The value is actually the element of ALIST whose cdr is VALUE. | |
428 | 1578 */ |
444 | 1579 (value, alist)) |
428 | 1580 { |
444 | 1581 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1582 { |
444 | 1583 if (HACKEQ_UNSAFE (value, elt_cdr)) |
428 | 1584 return elt; |
1585 } | |
1586 return Qnil; | |
1587 } | |
1588 | |
444 | 1589 /* Like Frassq, but caller must ensure that ALIST is properly |
428 | 1590 nil-terminated and ebola-free. */ |
1591 Lisp_Object | |
444 | 1592 rassq_no_quit (Lisp_Object value, Lisp_Object alist) |
428 | 1593 { |
444 | 1594 LIST_LOOP_2 (elt, alist) |
428 | 1595 { |
1596 Lisp_Object elt_cdr = XCDR (elt); | |
444 | 1597 if (EQ_WITH_EBOLA_NOTICE (value, elt_cdr)) |
428 | 1598 return elt; |
1599 } | |
1600 return Qnil; | |
1601 } | |
1602 | |
1603 | |
1604 DEFUN ("delete", Fdelete, 2, 2, 0, /* | |
1605 Delete by side effect any occurrences of ELT as a member of LIST. | |
1606 The modified LIST is returned. Comparison is done with `equal'. | |
1607 If the first member of LIST is ELT, there is no way to remove it by side | |
1608 effect; therefore, write `(setq foo (delete element foo))' to be sure | |
1609 of changing the value of `foo'. | |
1610 Also see: `remove'. | |
1611 */ | |
1612 (elt, list)) | |
1613 { | |
1614 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1615 (internal_equal (elt, list_elt, 0))); | |
1616 return list; | |
1617 } | |
1618 | |
1619 DEFUN ("old-delete", Fold_delete, 2, 2, 0, /* | |
1620 Delete by side effect any occurrences of ELT as a member of LIST. | |
1621 The modified LIST is returned. Comparison is done with `old-equal'. | |
1622 If the first member of LIST is ELT, there is no way to remove it by side | |
1623 effect; therefore, write `(setq foo (old-delete element foo))' to be sure | |
1624 of changing the value of `foo'. | |
1625 */ | |
1626 (elt, list)) | |
1627 { | |
1628 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1629 (internal_old_equal (elt, list_elt, 0))); | |
1630 return list; | |
1631 } | |
1632 | |
1633 DEFUN ("delq", Fdelq, 2, 2, 0, /* | |
1634 Delete by side effect any occurrences of ELT as a member of LIST. | |
1635 The modified LIST is returned. Comparison is done with `eq'. | |
1636 If the first member of LIST is ELT, there is no way to remove it by side | |
1637 effect; therefore, write `(setq foo (delq element foo))' to be sure of | |
1638 changing the value of `foo'. | |
1639 */ | |
1640 (elt, list)) | |
1641 { | |
1642 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1643 (EQ_WITH_EBOLA_NOTICE (elt, list_elt))); | |
1644 return list; | |
1645 } | |
1646 | |
1647 DEFUN ("old-delq", Fold_delq, 2, 2, 0, /* | |
1648 Delete by side effect any occurrences of ELT as a member of LIST. | |
1649 The modified LIST is returned. Comparison is done with `old-eq'. | |
1650 If the first member of LIST is ELT, there is no way to remove it by side | |
1651 effect; therefore, write `(setq foo (old-delq element foo))' to be sure of | |
1652 changing the value of `foo'. | |
1653 */ | |
1654 (elt, list)) | |
1655 { | |
1656 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1657 (HACKEQ_UNSAFE (elt, list_elt))); | |
1658 return list; | |
1659 } | |
1660 | |
1661 /* Like Fdelq, but caller must ensure that LIST is properly | |
1662 nil-terminated and ebola-free. */ | |
1663 | |
1664 Lisp_Object | |
1665 delq_no_quit (Lisp_Object elt, Lisp_Object list) | |
1666 { | |
1667 LIST_LOOP_DELETE_IF (list_elt, list, | |
1668 (EQ_WITH_EBOLA_NOTICE (elt, list_elt))); | |
1669 return list; | |
1670 } | |
1671 | |
1672 /* Be VERY careful with this. This is like delq_no_quit() but | |
1673 also calls free_cons() on the removed conses. You must be SURE | |
1674 that no pointers to the freed conses remain around (e.g. | |
1675 someone else is pointing to part of the list). This function | |
1676 is useful on internal lists that are used frequently and where | |
1677 the actual list doesn't escape beyond known code bounds. */ | |
1678 | |
1679 Lisp_Object | |
1680 delq_no_quit_and_free_cons (Lisp_Object elt, Lisp_Object list) | |
1681 { | |
1682 REGISTER Lisp_Object tail = list; | |
1683 REGISTER Lisp_Object prev = Qnil; | |
1684 | |
1685 while (!NILP (tail)) | |
1686 { | |
1687 REGISTER Lisp_Object tem = XCAR (tail); | |
1688 if (EQ (elt, tem)) | |
1689 { | |
1690 Lisp_Object cons_to_free = tail; | |
1691 if (NILP (prev)) | |
1692 list = XCDR (tail); | |
1693 else | |
1694 XCDR (prev) = XCDR (tail); | |
1695 tail = XCDR (tail); | |
853 | 1696 free_cons (cons_to_free); |
428 | 1697 } |
1698 else | |
1699 { | |
1700 prev = tail; | |
1701 tail = XCDR (tail); | |
1702 } | |
1703 } | |
1704 return list; | |
1705 } | |
1706 | |
1707 DEFUN ("remassoc", Fremassoc, 2, 2, 0, /* | |
444 | 1708 Delete by side effect any elements of ALIST whose car is `equal' to KEY. |
1709 The modified ALIST is returned. If the first member of ALIST has a car | |
428 | 1710 that is `equal' to KEY, there is no way to remove it by side effect; |
1711 therefore, write `(setq foo (remassoc key foo))' to be sure of changing | |
1712 the value of `foo'. | |
1713 */ | |
444 | 1714 (key, alist)) |
428 | 1715 { |
444 | 1716 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1717 (CONSP (elt) && |
1718 internal_equal (key, XCAR (elt), 0))); | |
444 | 1719 return alist; |
428 | 1720 } |
1721 | |
1722 Lisp_Object | |
444 | 1723 remassoc_no_quit (Lisp_Object key, Lisp_Object alist) |
428 | 1724 { |
1725 int speccount = specpdl_depth (); | |
1726 specbind (Qinhibit_quit, Qt); | |
771 | 1727 return unbind_to_1 (speccount, Fremassoc (key, alist)); |
428 | 1728 } |
1729 | |
1730 DEFUN ("remassq", Fremassq, 2, 2, 0, /* | |
444 | 1731 Delete by side effect any elements of ALIST whose car is `eq' to KEY. |
1732 The modified ALIST is returned. If the first member of ALIST has a car | |
428 | 1733 that is `eq' to KEY, there is no way to remove it by side effect; |
1734 therefore, write `(setq foo (remassq key foo))' to be sure of changing | |
1735 the value of `foo'. | |
1736 */ | |
444 | 1737 (key, alist)) |
428 | 1738 { |
444 | 1739 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1740 (CONSP (elt) && |
1741 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt)))); | |
444 | 1742 return alist; |
428 | 1743 } |
1744 | |
1745 /* no quit, no errors; be careful */ | |
1746 | |
1747 Lisp_Object | |
444 | 1748 remassq_no_quit (Lisp_Object key, Lisp_Object alist) |
428 | 1749 { |
444 | 1750 LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1751 (CONSP (elt) && |
1752 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt)))); | |
444 | 1753 return alist; |
428 | 1754 } |
1755 | |
1756 DEFUN ("remrassoc", Fremrassoc, 2, 2, 0, /* | |
444 | 1757 Delete by side effect any elements of ALIST whose cdr is `equal' to VALUE. |
1758 The modified ALIST is returned. If the first member of ALIST has a car | |
428 | 1759 that is `equal' to VALUE, there is no way to remove it by side effect; |
1760 therefore, write `(setq foo (remrassoc value foo))' to be sure of changing | |
1761 the value of `foo'. | |
1762 */ | |
444 | 1763 (value, alist)) |
428 | 1764 { |
444 | 1765 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1766 (CONSP (elt) && |
1767 internal_equal (value, XCDR (elt), 0))); | |
444 | 1768 return alist; |
428 | 1769 } |
1770 | |
1771 DEFUN ("remrassq", Fremrassq, 2, 2, 0, /* | |
444 | 1772 Delete by side effect any elements of ALIST whose cdr is `eq' to VALUE. |
1773 The modified ALIST is returned. If the first member of ALIST has a car | |
428 | 1774 that is `eq' to VALUE, there is no way to remove it by side effect; |
1775 therefore, write `(setq foo (remrassq value foo))' to be sure of changing | |
1776 the value of `foo'. | |
1777 */ | |
444 | 1778 (value, alist)) |
428 | 1779 { |
444 | 1780 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1781 (CONSP (elt) && |
1782 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt)))); | |
444 | 1783 return alist; |
428 | 1784 } |
1785 | |
1786 /* Like Fremrassq, fast and unsafe; be careful */ | |
1787 Lisp_Object | |
444 | 1788 remrassq_no_quit (Lisp_Object value, Lisp_Object alist) |
428 | 1789 { |
444 | 1790 LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1791 (CONSP (elt) && |
1792 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt)))); | |
444 | 1793 return alist; |
428 | 1794 } |
1795 | |
1796 DEFUN ("nreverse", Fnreverse, 1, 1, 0, /* | |
1797 Reverse LIST by destructively modifying cdr pointers. | |
1798 Return the beginning of the reversed list. | |
1799 Also see: `reverse'. | |
1800 */ | |
1801 (list)) | |
1802 { | |
1803 struct gcpro gcpro1, gcpro2; | |
1849 | 1804 Lisp_Object prev = Qnil; |
1805 Lisp_Object tail = list; | |
428 | 1806 |
1807 /* We gcpro our args; see `nconc' */ | |
1808 GCPRO2 (prev, tail); | |
1809 while (!NILP (tail)) | |
1810 { | |
1811 REGISTER Lisp_Object next; | |
1812 CONCHECK_CONS (tail); | |
1813 next = XCDR (tail); | |
1814 XCDR (tail) = prev; | |
1815 prev = tail; | |
1816 tail = next; | |
1817 } | |
1818 UNGCPRO; | |
1819 return prev; | |
1820 } | |
1821 | |
1822 DEFUN ("reverse", Freverse, 1, 1, 0, /* | |
1823 Reverse LIST, copying. Return the beginning of the reversed list. | |
1824 See also the function `nreverse', which is used more often. | |
1825 */ | |
1826 (list)) | |
1827 { | |
1828 Lisp_Object reversed_list = Qnil; | |
1829 EXTERNAL_LIST_LOOP_2 (elt, list) | |
1830 { | |
1831 reversed_list = Fcons (elt, reversed_list); | |
1832 } | |
1833 return reversed_list; | |
1834 } | |
1835 | |
1836 static Lisp_Object list_merge (Lisp_Object org_l1, Lisp_Object org_l2, | |
1837 Lisp_Object lisp_arg, | |
1838 int (*pred_fn) (Lisp_Object, Lisp_Object, | |
1839 Lisp_Object lisp_arg)); | |
1840 | |
872 | 1841 /* The sort function should return > 0 if OBJ1 < OBJ2, < 0 otherwise. |
1842 NOTE: This is backwards from the way qsort() works. */ | |
1843 | |
428 | 1844 Lisp_Object |
1845 list_sort (Lisp_Object list, | |
1846 Lisp_Object lisp_arg, | |
872 | 1847 int (*pred_fn) (Lisp_Object obj1, Lisp_Object obj2, |
428 | 1848 Lisp_Object lisp_arg)) |
1849 { | |
1850 struct gcpro gcpro1, gcpro2, gcpro3; | |
1851 Lisp_Object back, tem; | |
1852 Lisp_Object front = list; | |
1853 Lisp_Object len = Flength (list); | |
444 | 1854 |
1855 if (XINT (len) < 2) | |
428 | 1856 return list; |
1857 | |
444 | 1858 len = make_int (XINT (len) / 2 - 1); |
428 | 1859 tem = Fnthcdr (len, list); |
1860 back = Fcdr (tem); | |
1861 Fsetcdr (tem, Qnil); | |
1862 | |
1863 GCPRO3 (front, back, lisp_arg); | |
1864 front = list_sort (front, lisp_arg, pred_fn); | |
1865 back = list_sort (back, lisp_arg, pred_fn); | |
1866 UNGCPRO; | |
1867 return list_merge (front, back, lisp_arg, pred_fn); | |
1868 } | |
1869 | |
1870 | |
1871 static int | |
1872 merge_pred_function (Lisp_Object obj1, Lisp_Object obj2, | |
1873 Lisp_Object pred) | |
1874 { | |
1875 Lisp_Object tmp; | |
1876 | |
1877 /* prevents the GC from happening in call2 */ | |
853 | 1878 /* Emacs' GC doesn't actually relocate pointers, so this probably |
1879 isn't strictly necessary */ | |
771 | 1880 int speccount = begin_gc_forbidden (); |
428 | 1881 tmp = call2 (pred, obj1, obj2); |
771 | 1882 unbind_to (speccount); |
428 | 1883 |
1884 if (NILP (tmp)) | |
1885 return -1; | |
1886 else | |
1887 return 1; | |
1888 } | |
1889 | |
1890 DEFUN ("sort", Fsort, 2, 2, 0, /* | |
1891 Sort LIST, stably, comparing elements using PREDICATE. | |
1892 Returns the sorted list. LIST is modified by side effects. | |
1893 PREDICATE is called with two elements of LIST, and should return T | |
1894 if the first element is "less" than the second. | |
1895 */ | |
444 | 1896 (list, predicate)) |
428 | 1897 { |
444 | 1898 return list_sort (list, predicate, merge_pred_function); |
428 | 1899 } |
1900 | |
1901 Lisp_Object | |
1902 merge (Lisp_Object org_l1, Lisp_Object org_l2, | |
1903 Lisp_Object pred) | |
1904 { | |
1905 return list_merge (org_l1, org_l2, pred, merge_pred_function); | |
1906 } | |
1907 | |
1908 | |
1909 static Lisp_Object | |
1910 list_merge (Lisp_Object org_l1, Lisp_Object org_l2, | |
1911 Lisp_Object lisp_arg, | |
1912 int (*pred_fn) (Lisp_Object, Lisp_Object, Lisp_Object lisp_arg)) | |
1913 { | |
1914 Lisp_Object value; | |
1915 Lisp_Object tail; | |
1916 Lisp_Object tem; | |
1917 Lisp_Object l1, l2; | |
1918 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; | |
1919 | |
1920 l1 = org_l1; | |
1921 l2 = org_l2; | |
1922 tail = Qnil; | |
1923 value = Qnil; | |
1924 | |
1925 /* It is sufficient to protect org_l1 and org_l2. | |
1926 When l1 and l2 are updated, we copy the new values | |
1927 back into the org_ vars. */ | |
1928 | |
1929 GCPRO4 (org_l1, org_l2, lisp_arg, value); | |
1930 | |
1931 while (1) | |
1932 { | |
1933 if (NILP (l1)) | |
1934 { | |
1935 UNGCPRO; | |
1936 if (NILP (tail)) | |
1937 return l2; | |
1938 Fsetcdr (tail, l2); | |
1939 return value; | |
1940 } | |
1941 if (NILP (l2)) | |
1942 { | |
1943 UNGCPRO; | |
1944 if (NILP (tail)) | |
1945 return l1; | |
1946 Fsetcdr (tail, l1); | |
1947 return value; | |
1948 } | |
1949 | |
1950 if (((*pred_fn) (Fcar (l2), Fcar (l1), lisp_arg)) < 0) | |
1951 { | |
1952 tem = l1; | |
1953 l1 = Fcdr (l1); | |
1954 org_l1 = l1; | |
1955 } | |
1956 else | |
1957 { | |
1958 tem = l2; | |
1959 l2 = Fcdr (l2); | |
1960 org_l2 = l2; | |
1961 } | |
1962 if (NILP (tail)) | |
1963 value = tem; | |
1964 else | |
1965 Fsetcdr (tail, tem); | |
1966 tail = tem; | |
1967 } | |
1968 } | |
1969 | |
1970 | |
1971 /************************************************************************/ | |
1972 /* property-list functions */ | |
1973 /************************************************************************/ | |
1974 | |
1975 /* For properties of text, we need to do order-insensitive comparison of | |
1976 plists. That is, we need to compare two plists such that they are the | |
1977 same if they have the same set of keys, and equivalent values. | |
1978 So (a 1 b 2) would be equal to (b 2 a 1). | |
1979 | |
1980 NIL_MEANS_NOT_PRESENT is as in `plists-eq' etc. | |
1981 LAXP means use `equal' for comparisons. | |
1982 */ | |
1983 int | |
1984 plists_differ (Lisp_Object a, Lisp_Object b, int nil_means_not_present, | |
1985 int laxp, int depth) | |
1986 { | |
438 | 1987 int eqp = (depth == -1); /* -1 as depth means use eq, not equal. */ |
428 | 1988 int la, lb, m, i, fill; |
1989 Lisp_Object *keys, *vals; | |
1990 char *flags; | |
1991 Lisp_Object rest; | |
1992 | |
1993 if (NILP (a) && NILP (b)) | |
1994 return 0; | |
1995 | |
1996 Fcheck_valid_plist (a); | |
1997 Fcheck_valid_plist (b); | |
1998 | |
1999 la = XINT (Flength (a)); | |
2000 lb = XINT (Flength (b)); | |
2001 m = (la > lb ? la : lb); | |
2002 fill = 0; | |
2003 keys = alloca_array (Lisp_Object, m); | |
2004 vals = alloca_array (Lisp_Object, m); | |
2005 flags = alloca_array (char, m); | |
2006 | |
2007 /* First extract the pairs from A. */ | |
2008 for (rest = a; !NILP (rest); rest = XCDR (XCDR (rest))) | |
2009 { | |
2010 Lisp_Object k = XCAR (rest); | |
2011 Lisp_Object v = XCAR (XCDR (rest)); | |
2012 /* Maybe be Ebolified. */ | |
2013 if (nil_means_not_present && NILP (v)) continue; | |
2014 keys [fill] = k; | |
2015 vals [fill] = v; | |
2016 flags[fill] = 0; | |
2017 fill++; | |
2018 } | |
2019 /* Now iterate over B, and stop if we find something that's not in A, | |
2020 or that doesn't match. As we match, mark them. */ | |
2021 for (rest = b; !NILP (rest); rest = XCDR (XCDR (rest))) | |
2022 { | |
2023 Lisp_Object k = XCAR (rest); | |
2024 Lisp_Object v = XCAR (XCDR (rest)); | |
2025 /* Maybe be Ebolified. */ | |
2026 if (nil_means_not_present && NILP (v)) continue; | |
2027 for (i = 0; i < fill; i++) | |
2028 { | |
2029 if (!laxp ? EQ (k, keys [i]) : internal_equal (k, keys [i], depth)) | |
2030 { | |
434 | 2031 if (eqp |
2032 /* We narrowly escaped being Ebolified here. */ | |
2033 ? !EQ_WITH_EBOLA_NOTICE (v, vals [i]) | |
2034 : !internal_equal (v, vals [i], depth)) | |
428 | 2035 /* a property in B has a different value than in A */ |
2036 goto MISMATCH; | |
2037 flags [i] = 1; | |
2038 break; | |
2039 } | |
2040 } | |
2041 if (i == fill) | |
2042 /* there are some properties in B that are not in A */ | |
2043 goto MISMATCH; | |
2044 } | |
2045 /* Now check to see that all the properties in A were also in B */ | |
2046 for (i = 0; i < fill; i++) | |
2047 if (flags [i] == 0) | |
2048 goto MISMATCH; | |
2049 | |
2050 /* Ok. */ | |
2051 return 0; | |
2052 | |
2053 MISMATCH: | |
2054 return 1; | |
2055 } | |
2056 | |
2057 DEFUN ("plists-eq", Fplists_eq, 2, 3, 0, /* | |
2058 Return non-nil if property lists A and B are `eq'. | |
2059 A property list is an alternating list of keywords and values. | |
2060 This function does order-insensitive comparisons of the property lists: | |
2061 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
2062 Comparison between values is done using `eq'. See also `plists-equal'. | |
2063 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2064 a nil value is ignored. This feature is a virus that has infected | |
2065 old Lisp implementations, but should not be used except for backward | |
2066 compatibility. | |
2067 */ | |
2068 (a, b, nil_means_not_present)) | |
2069 { | |
2070 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, -1) | |
2071 ? Qnil : Qt); | |
2072 } | |
2073 | |
2074 DEFUN ("plists-equal", Fplists_equal, 2, 3, 0, /* | |
2075 Return non-nil if property lists A and B are `equal'. | |
2076 A property list is an alternating list of keywords and values. This | |
2077 function does order-insensitive comparisons of the property lists: For | |
2078 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
2079 Comparison between values is done using `equal'. See also `plists-eq'. | |
2080 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2081 a nil value is ignored. This feature is a virus that has infected | |
2082 old Lisp implementations, but should not be used except for backward | |
2083 compatibility. | |
2084 */ | |
2085 (a, b, nil_means_not_present)) | |
2086 { | |
2087 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, 1) | |
2088 ? Qnil : Qt); | |
2089 } | |
2090 | |
2091 | |
2092 DEFUN ("lax-plists-eq", Flax_plists_eq, 2, 3, 0, /* | |
2093 Return non-nil if lax property lists A and B are `eq'. | |
2094 A property list is an alternating list of keywords and values. | |
2095 This function does order-insensitive comparisons of the property lists: | |
2096 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
2097 Comparison between values is done using `eq'. See also `plists-equal'. | |
2098 A lax property list is like a regular one except that comparisons between | |
2099 keywords is done using `equal' instead of `eq'. | |
2100 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2101 a nil value is ignored. This feature is a virus that has infected | |
2102 old Lisp implementations, but should not be used except for backward | |
2103 compatibility. | |
2104 */ | |
2105 (a, b, nil_means_not_present)) | |
2106 { | |
2107 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, -1) | |
2108 ? Qnil : Qt); | |
2109 } | |
2110 | |
2111 DEFUN ("lax-plists-equal", Flax_plists_equal, 2, 3, 0, /* | |
2112 Return non-nil if lax property lists A and B are `equal'. | |
2113 A property list is an alternating list of keywords and values. This | |
2114 function does order-insensitive comparisons of the property lists: For | |
2115 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
2116 Comparison between values is done using `equal'. See also `plists-eq'. | |
2117 A lax property list is like a regular one except that comparisons between | |
2118 keywords is done using `equal' instead of `eq'. | |
2119 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2120 a nil value is ignored. This feature is a virus that has infected | |
2121 old Lisp implementations, but should not be used except for backward | |
2122 compatibility. | |
2123 */ | |
2124 (a, b, nil_means_not_present)) | |
2125 { | |
2126 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, 1) | |
2127 ? Qnil : Qt); | |
2128 } | |
2129 | |
2130 /* Return the value associated with key PROPERTY in property list PLIST. | |
2131 Return nil if key not found. This function is used for internal | |
2132 property lists that cannot be directly manipulated by the user. | |
2133 */ | |
2134 | |
2135 Lisp_Object | |
2136 internal_plist_get (Lisp_Object plist, Lisp_Object property) | |
2137 { | |
2138 Lisp_Object tail; | |
2139 | |
2140 for (tail = plist; !NILP (tail); tail = XCDR (XCDR (tail))) | |
2141 { | |
2142 if (EQ (XCAR (tail), property)) | |
2143 return XCAR (XCDR (tail)); | |
2144 } | |
2145 | |
2146 return Qunbound; | |
2147 } | |
2148 | |
2149 /* Set PLIST's value for PROPERTY to VALUE. Analogous to | |
2150 internal_plist_get(). */ | |
2151 | |
2152 void | |
2153 internal_plist_put (Lisp_Object *plist, Lisp_Object property, | |
2154 Lisp_Object value) | |
2155 { | |
2156 Lisp_Object tail; | |
2157 | |
2158 for (tail = *plist; !NILP (tail); tail = XCDR (XCDR (tail))) | |
2159 { | |
2160 if (EQ (XCAR (tail), property)) | |
2161 { | |
2162 XCAR (XCDR (tail)) = value; | |
2163 return; | |
2164 } | |
2165 } | |
2166 | |
2167 *plist = Fcons (property, Fcons (value, *plist)); | |
2168 } | |
2169 | |
2170 int | |
2171 internal_remprop (Lisp_Object *plist, Lisp_Object property) | |
2172 { | |
2173 Lisp_Object tail, prev; | |
2174 | |
2175 for (tail = *plist, prev = Qnil; | |
2176 !NILP (tail); | |
2177 tail = XCDR (XCDR (tail))) | |
2178 { | |
2179 if (EQ (XCAR (tail), property)) | |
2180 { | |
2181 if (NILP (prev)) | |
2182 *plist = XCDR (XCDR (tail)); | |
2183 else | |
2184 XCDR (XCDR (prev)) = XCDR (XCDR (tail)); | |
2185 return 1; | |
2186 } | |
2187 else | |
2188 prev = tail; | |
2189 } | |
2190 | |
2191 return 0; | |
2192 } | |
2193 | |
2194 /* Called on a malformed property list. BADPLACE should be some | |
2195 place where truncating will form a good list -- i.e. we shouldn't | |
2196 result in a list with an odd length. */ | |
2197 | |
2198 static Lisp_Object | |
578 | 2199 bad_bad_bunny (Lisp_Object *plist, Lisp_Object *badplace, Error_Behavior errb) |
428 | 2200 { |
2201 if (ERRB_EQ (errb, ERROR_ME)) | |
2202 return Fsignal (Qmalformed_property_list, list2 (*plist, *badplace)); | |
2203 else | |
2204 { | |
2205 if (ERRB_EQ (errb, ERROR_ME_WARN)) | |
2206 { | |
2207 warn_when_safe_lispobj | |
2208 (Qlist, Qwarning, | |
771 | 2209 list2 (build_msg_string |
428 | 2210 ("Malformed property list -- list has been truncated"), |
2211 *plist)); | |
793 | 2212 /* #### WARNING: This is more dangerous than it seems; perhaps |
2213 not a good idea. It also violates the principle of least | |
2214 surprise -- passing in ERROR_ME_WARN causes truncation, but | |
2215 ERROR_ME and ERROR_ME_NOT don't. */ | |
428 | 2216 *badplace = Qnil; |
2217 } | |
2218 return Qunbound; | |
2219 } | |
2220 } | |
2221 | |
2222 /* Called on a circular property list. BADPLACE should be some place | |
2223 where truncating will result in an even-length list, as above. | |
2224 If doesn't particularly matter where we truncate -- anywhere we | |
2225 truncate along the entire list will break the circularity, because | |
2226 it will create a terminus and the list currently doesn't have one. | |
2227 */ | |
2228 | |
2229 static Lisp_Object | |
578 | 2230 bad_bad_turtle (Lisp_Object *plist, Lisp_Object *badplace, Error_Behavior errb) |
428 | 2231 { |
2232 if (ERRB_EQ (errb, ERROR_ME)) | |
2233 return Fsignal (Qcircular_property_list, list1 (*plist)); | |
2234 else | |
2235 { | |
2236 if (ERRB_EQ (errb, ERROR_ME_WARN)) | |
2237 { | |
2238 warn_when_safe_lispobj | |
2239 (Qlist, Qwarning, | |
771 | 2240 list2 (build_msg_string |
428 | 2241 ("Circular property list -- list has been truncated"), |
2242 *plist)); | |
793 | 2243 /* #### WARNING: This is more dangerous than it seems; perhaps |
2244 not a good idea. It also violates the principle of least | |
2245 surprise -- passing in ERROR_ME_WARN causes truncation, but | |
2246 ERROR_ME and ERROR_ME_NOT don't. */ | |
428 | 2247 *badplace = Qnil; |
2248 } | |
2249 return Qunbound; | |
2250 } | |
2251 } | |
2252 | |
2253 /* Advance the tortoise pointer by two (one iteration of a property-list | |
2254 loop) and the hare pointer by four and verify that no malformations | |
2255 or circularities exist. If so, return zero and store a value into | |
2256 RETVAL that should be returned by the calling function. Otherwise, | |
2257 return 1. See external_plist_get(). | |
2258 */ | |
2259 | |
2260 static int | |
2261 advance_plist_pointers (Lisp_Object *plist, | |
2262 Lisp_Object **tortoise, Lisp_Object **hare, | |
578 | 2263 Error_Behavior errb, Lisp_Object *retval) |
428 | 2264 { |
2265 int i; | |
2266 Lisp_Object *tortsave = *tortoise; | |
2267 | |
2268 /* Note that our "fixing" may be more brutal than necessary, | |
2269 but it's the user's own problem, not ours, if they went in and | |
2270 manually fucked up a plist. */ | |
2271 | |
2272 for (i = 0; i < 2; i++) | |
2273 { | |
2274 /* This is a standard iteration of a defensive-loop-checking | |
2275 loop. We just do it twice because we want to advance past | |
2276 both the property and its value. | |
2277 | |
2278 If the pointer indirection is confusing you, remember that | |
2279 one level of indirection on the hare and tortoise pointers | |
2280 is only due to pass-by-reference for this function. The other | |
2281 level is so that the plist can be fixed in place. */ | |
2282 | |
2283 /* When we reach the end of a well-formed plist, **HARE is | |
2284 nil. In that case, we don't do anything at all except | |
2285 advance TORTOISE by one. Otherwise, we advance HARE | |
2286 by two (making sure it's OK to do so), then advance | |
2287 TORTOISE by one (it will always be OK to do so because | |
2288 the HARE is always ahead of the TORTOISE and will have | |
2289 already verified the path), then make sure TORTOISE and | |
2290 HARE don't contain the same non-nil object -- if the | |
2291 TORTOISE and the HARE ever meet, then obviously we're | |
2292 in a circularity, and if we're in a circularity, then | |
2293 the TORTOISE and the HARE can't cross paths without | |
2294 meeting, since the HARE only gains one step over the | |
2295 TORTOISE per iteration. */ | |
2296 | |
2297 if (!NILP (**hare)) | |
2298 { | |
2299 Lisp_Object *haresave = *hare; | |
2300 if (!CONSP (**hare)) | |
2301 { | |
2302 *retval = bad_bad_bunny (plist, haresave, errb); | |
2303 return 0; | |
2304 } | |
2305 *hare = &XCDR (**hare); | |
2306 /* In a non-plist, we'd check here for a nil value for | |
2307 **HARE, which is OK (it just means the list has an | |
2308 odd number of elements). In a plist, it's not OK | |
2309 for the list to have an odd number of elements. */ | |
2310 if (!CONSP (**hare)) | |
2311 { | |
2312 *retval = bad_bad_bunny (plist, haresave, errb); | |
2313 return 0; | |
2314 } | |
2315 *hare = &XCDR (**hare); | |
2316 } | |
2317 | |
2318 *tortoise = &XCDR (**tortoise); | |
2319 if (!NILP (**hare) && EQ (**tortoise, **hare)) | |
2320 { | |
2321 *retval = bad_bad_turtle (plist, tortsave, errb); | |
2322 return 0; | |
2323 } | |
2324 } | |
2325 | |
2326 return 1; | |
2327 } | |
2328 | |
2329 /* Return the value of PROPERTY from PLIST, or Qunbound if | |
2330 property is not on the list. | |
2331 | |
2332 PLIST is a Lisp-accessible property list, meaning that it | |
2333 has to be checked for malformations and circularities. | |
2334 | |
2335 If ERRB is ERROR_ME, an error will be signalled. Otherwise, the | |
2336 function will never signal an error; and if ERRB is ERROR_ME_WARN, | |
2337 on finding a malformation or a circularity, it issues a warning and | |
2338 attempts to silently fix the problem. | |
2339 | |
2340 A pointer to PLIST is passed in so that PLIST can be successfully | |
2341 "fixed" even if the error is at the beginning of the plist. */ | |
2342 | |
2343 Lisp_Object | |
2344 external_plist_get (Lisp_Object *plist, Lisp_Object property, | |
578 | 2345 int laxp, Error_Behavior errb) |
428 | 2346 { |
2347 Lisp_Object *tortoise = plist; | |
2348 Lisp_Object *hare = plist; | |
2349 | |
2350 while (!NILP (*tortoise)) | |
2351 { | |
2352 Lisp_Object *tortsave = tortoise; | |
2353 Lisp_Object retval; | |
2354 | |
2355 /* We do the standard tortoise/hare march. We isolate the | |
2356 grungy stuff to do this in advance_plist_pointers(), though. | |
2357 To us, all this function does is advance the tortoise | |
2358 pointer by two and the hare pointer by four and make sure | |
2359 everything's OK. We first advance the pointers and then | |
2360 check if a property matched; this ensures that our | |
2361 check for a matching property is safe. */ | |
2362 | |
2363 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval)) | |
2364 return retval; | |
2365 | |
2366 if (!laxp ? EQ (XCAR (*tortsave), property) | |
2367 : internal_equal (XCAR (*tortsave), property, 0)) | |
2368 return XCAR (XCDR (*tortsave)); | |
2369 } | |
2370 | |
2371 return Qunbound; | |
2372 } | |
2373 | |
2374 /* Set PLIST's value for PROPERTY to VALUE, given a possibly | |
2375 malformed or circular plist. Analogous to external_plist_get(). */ | |
2376 | |
2377 void | |
2378 external_plist_put (Lisp_Object *plist, Lisp_Object property, | |
578 | 2379 Lisp_Object value, int laxp, Error_Behavior errb) |
428 | 2380 { |
2381 Lisp_Object *tortoise = plist; | |
2382 Lisp_Object *hare = plist; | |
2383 | |
2384 while (!NILP (*tortoise)) | |
2385 { | |
2386 Lisp_Object *tortsave = tortoise; | |
2387 Lisp_Object retval; | |
2388 | |
2389 /* See above */ | |
2390 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval)) | |
2391 return; | |
2392 | |
2393 if (!laxp ? EQ (XCAR (*tortsave), property) | |
2394 : internal_equal (XCAR (*tortsave), property, 0)) | |
2395 { | |
2396 XCAR (XCDR (*tortsave)) = value; | |
2397 return; | |
2398 } | |
2399 } | |
2400 | |
2401 *plist = Fcons (property, Fcons (value, *plist)); | |
2402 } | |
2403 | |
2404 int | |
2405 external_remprop (Lisp_Object *plist, Lisp_Object property, | |
578 | 2406 int laxp, Error_Behavior errb) |
428 | 2407 { |
2408 Lisp_Object *tortoise = plist; | |
2409 Lisp_Object *hare = plist; | |
2410 | |
2411 while (!NILP (*tortoise)) | |
2412 { | |
2413 Lisp_Object *tortsave = tortoise; | |
2414 Lisp_Object retval; | |
2415 | |
2416 /* See above */ | |
2417 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval)) | |
2418 return 0; | |
2419 | |
2420 if (!laxp ? EQ (XCAR (*tortsave), property) | |
2421 : internal_equal (XCAR (*tortsave), property, 0)) | |
2422 { | |
2423 /* Now you see why it's so convenient to have that level | |
2424 of indirection. */ | |
2425 *tortsave = XCDR (XCDR (*tortsave)); | |
2426 return 1; | |
2427 } | |
2428 } | |
2429 | |
2430 return 0; | |
2431 } | |
2432 | |
2433 DEFUN ("plist-get", Fplist_get, 2, 3, 0, /* | |
2434 Extract a value from a property list. | |
2435 PLIST is a property list, which is a list of the form | |
444 | 2436 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...). |
2437 PROPERTY is usually a symbol. | |
2438 This function returns the value corresponding to the PROPERTY, | |
2439 or DEFAULT if PROPERTY is not one of the properties on the list. | |
428 | 2440 */ |
444 | 2441 (plist, property, default_)) |
428 | 2442 { |
444 | 2443 Lisp_Object value = external_plist_get (&plist, property, 0, ERROR_ME); |
2444 return UNBOUNDP (value) ? default_ : value; | |
428 | 2445 } |
2446 | |
2447 DEFUN ("plist-put", Fplist_put, 3, 3, 0, /* | |
444 | 2448 Change value in PLIST of PROPERTY to VALUE. |
2449 PLIST is a property list, which is a list of the form | |
2450 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2 ...). | |
2451 PROPERTY is usually a symbol and VALUE is any object. | |
2452 If PROPERTY is already a property on the list, its value is set to VALUE, | |
2453 otherwise the new PROPERTY VALUE pair is added. | |
2454 The new plist is returned; use `(setq x (plist-put x property value))' | |
2455 to be sure to use the new value. PLIST is modified by side effect. | |
428 | 2456 */ |
444 | 2457 (plist, property, value)) |
428 | 2458 { |
444 | 2459 external_plist_put (&plist, property, value, 0, ERROR_ME); |
428 | 2460 return plist; |
2461 } | |
2462 | |
2463 DEFUN ("plist-remprop", Fplist_remprop, 2, 2, 0, /* | |
444 | 2464 Remove from PLIST the property PROPERTY and its value. |
2465 PLIST is a property list, which is a list of the form | |
2466 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2 ...). | |
2467 PROPERTY is usually a symbol. | |
2468 The new plist is returned; use `(setq x (plist-remprop x property))' | |
2469 to be sure to use the new value. PLIST is modified by side effect. | |
428 | 2470 */ |
444 | 2471 (plist, property)) |
428 | 2472 { |
444 | 2473 external_remprop (&plist, property, 0, ERROR_ME); |
428 | 2474 return plist; |
2475 } | |
2476 | |
2477 DEFUN ("plist-member", Fplist_member, 2, 2, 0, /* | |
444 | 2478 Return t if PROPERTY has a value specified in PLIST. |
428 | 2479 */ |
444 | 2480 (plist, property)) |
428 | 2481 { |
444 | 2482 Lisp_Object value = Fplist_get (plist, property, Qunbound); |
2483 return UNBOUNDP (value) ? Qnil : Qt; | |
428 | 2484 } |
2485 | |
2486 DEFUN ("check-valid-plist", Fcheck_valid_plist, 1, 1, 0, /* | |
2487 Given a plist, signal an error if there is anything wrong with it. | |
2488 This means that it's a malformed or circular plist. | |
2489 */ | |
2490 (plist)) | |
2491 { | |
2492 Lisp_Object *tortoise; | |
2493 Lisp_Object *hare; | |
2494 | |
2495 start_over: | |
2496 tortoise = &plist; | |
2497 hare = &plist; | |
2498 while (!NILP (*tortoise)) | |
2499 { | |
2500 Lisp_Object retval; | |
2501 | |
2502 /* See above */ | |
2503 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME, | |
2504 &retval)) | |
2505 goto start_over; | |
2506 } | |
2507 | |
2508 return Qnil; | |
2509 } | |
2510 | |
2511 DEFUN ("valid-plist-p", Fvalid_plist_p, 1, 1, 0, /* | |
2512 Given a plist, return non-nil if its format is correct. | |
2513 If it returns nil, `check-valid-plist' will signal an error when given | |
442 | 2514 the plist; that means it's a malformed or circular plist. |
428 | 2515 */ |
2516 (plist)) | |
2517 { | |
2518 Lisp_Object *tortoise; | |
2519 Lisp_Object *hare; | |
2520 | |
2521 tortoise = &plist; | |
2522 hare = &plist; | |
2523 while (!NILP (*tortoise)) | |
2524 { | |
2525 Lisp_Object retval; | |
2526 | |
2527 /* See above */ | |
2528 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME_NOT, | |
2529 &retval)) | |
2530 return Qnil; | |
2531 } | |
2532 | |
2533 return Qt; | |
2534 } | |
2535 | |
2536 DEFUN ("canonicalize-plist", Fcanonicalize_plist, 1, 2, 0, /* | |
2537 Destructively remove any duplicate entries from a plist. | |
2538 In such cases, the first entry applies. | |
2539 | |
2540 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2541 a nil value is removed. This feature is a virus that has infected | |
2542 old Lisp implementations, but should not be used except for backward | |
2543 compatibility. | |
2544 | |
2545 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the | |
2546 return value may not be EQ to the passed-in value, so make sure to | |
2547 `setq' the value back into where it came from. | |
2548 */ | |
2549 (plist, nil_means_not_present)) | |
2550 { | |
2551 Lisp_Object head = plist; | |
2552 | |
2553 Fcheck_valid_plist (plist); | |
2554 | |
2555 while (!NILP (plist)) | |
2556 { | |
2557 Lisp_Object prop = Fcar (plist); | |
2558 Lisp_Object next = Fcdr (plist); | |
2559 | |
2560 CHECK_CONS (next); /* just make doubly sure we catch any errors */ | |
2561 if (!NILP (nil_means_not_present) && NILP (Fcar (next))) | |
2562 { | |
2563 if (EQ (head, plist)) | |
2564 head = Fcdr (next); | |
2565 plist = Fcdr (next); | |
2566 continue; | |
2567 } | |
2568 /* external_remprop returns 1 if it removed any property. | |
2569 We have to loop till it didn't remove anything, in case | |
2570 the property occurs many times. */ | |
2571 while (external_remprop (&XCDR (next), prop, 0, ERROR_ME)) | |
2572 DO_NOTHING; | |
2573 plist = Fcdr (next); | |
2574 } | |
2575 | |
2576 return head; | |
2577 } | |
2578 | |
2579 DEFUN ("lax-plist-get", Flax_plist_get, 2, 3, 0, /* | |
2580 Extract a value from a lax property list. | |
444 | 2581 LAX-PLIST is a lax property list, which is a list of the form |
2582 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between | |
2583 properties is done using `equal' instead of `eq'. | |
2584 PROPERTY is usually a symbol. | |
2585 This function returns the value corresponding to PROPERTY, | |
2586 or DEFAULT if PROPERTY is not one of the properties on the list. | |
428 | 2587 */ |
444 | 2588 (lax_plist, property, default_)) |
428 | 2589 { |
444 | 2590 Lisp_Object value = external_plist_get (&lax_plist, property, 1, ERROR_ME); |
2591 return UNBOUNDP (value) ? default_ : value; | |
428 | 2592 } |
2593 | |
2594 DEFUN ("lax-plist-put", Flax_plist_put, 3, 3, 0, /* | |
444 | 2595 Change value in LAX-PLIST of PROPERTY to VALUE. |
2596 LAX-PLIST is a lax property list, which is a list of the form | |
2597 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between | |
2598 properties is done using `equal' instead of `eq'. | |
2599 PROPERTY is usually a symbol and VALUE is any object. | |
2600 If PROPERTY is already a property on the list, its value is set to | |
2601 VALUE, otherwise the new PROPERTY VALUE pair is added. | |
2602 The new plist is returned; use `(setq x (lax-plist-put x property value))' | |
2603 to be sure to use the new value. LAX-PLIST is modified by side effect. | |
428 | 2604 */ |
444 | 2605 (lax_plist, property, value)) |
428 | 2606 { |
444 | 2607 external_plist_put (&lax_plist, property, value, 1, ERROR_ME); |
428 | 2608 return lax_plist; |
2609 } | |
2610 | |
2611 DEFUN ("lax-plist-remprop", Flax_plist_remprop, 2, 2, 0, /* | |
444 | 2612 Remove from LAX-PLIST the property PROPERTY and its value. |
2613 LAX-PLIST is a lax property list, which is a list of the form | |
2614 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between | |
2615 properties is done using `equal' instead of `eq'. | |
2616 PROPERTY is usually a symbol. | |
2617 The new plist is returned; use `(setq x (lax-plist-remprop x property))' | |
2618 to be sure to use the new value. LAX-PLIST is modified by side effect. | |
428 | 2619 */ |
444 | 2620 (lax_plist, property)) |
428 | 2621 { |
444 | 2622 external_remprop (&lax_plist, property, 1, ERROR_ME); |
428 | 2623 return lax_plist; |
2624 } | |
2625 | |
2626 DEFUN ("lax-plist-member", Flax_plist_member, 2, 2, 0, /* | |
444 | 2627 Return t if PROPERTY has a value specified in LAX-PLIST. |
2628 LAX-PLIST is a lax property list, which is a list of the form | |
2629 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between | |
2630 properties is done using `equal' instead of `eq'. | |
428 | 2631 */ |
444 | 2632 (lax_plist, property)) |
428 | 2633 { |
444 | 2634 return UNBOUNDP (Flax_plist_get (lax_plist, property, Qunbound)) ? Qnil : Qt; |
428 | 2635 } |
2636 | |
2637 DEFUN ("canonicalize-lax-plist", Fcanonicalize_lax_plist, 1, 2, 0, /* | |
2638 Destructively remove any duplicate entries from a lax plist. | |
2639 In such cases, the first entry applies. | |
2640 | |
2641 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2642 a nil value is removed. This feature is a virus that has infected | |
2643 old Lisp implementations, but should not be used except for backward | |
2644 compatibility. | |
2645 | |
2646 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the | |
2647 return value may not be EQ to the passed-in value, so make sure to | |
2648 `setq' the value back into where it came from. | |
2649 */ | |
2650 (lax_plist, nil_means_not_present)) | |
2651 { | |
2652 Lisp_Object head = lax_plist; | |
2653 | |
2654 Fcheck_valid_plist (lax_plist); | |
2655 | |
2656 while (!NILP (lax_plist)) | |
2657 { | |
2658 Lisp_Object prop = Fcar (lax_plist); | |
2659 Lisp_Object next = Fcdr (lax_plist); | |
2660 | |
2661 CHECK_CONS (next); /* just make doubly sure we catch any errors */ | |
2662 if (!NILP (nil_means_not_present) && NILP (Fcar (next))) | |
2663 { | |
2664 if (EQ (head, lax_plist)) | |
2665 head = Fcdr (next); | |
2666 lax_plist = Fcdr (next); | |
2667 continue; | |
2668 } | |
2669 /* external_remprop returns 1 if it removed any property. | |
2670 We have to loop till it didn't remove anything, in case | |
2671 the property occurs many times. */ | |
2672 while (external_remprop (&XCDR (next), prop, 1, ERROR_ME)) | |
2673 DO_NOTHING; | |
2674 lax_plist = Fcdr (next); | |
2675 } | |
2676 | |
2677 return head; | |
2678 } | |
2679 | |
2680 /* In C because the frame props stuff uses it */ | |
2681 | |
2682 DEFUN ("destructive-alist-to-plist", Fdestructive_alist_to_plist, 1, 1, 0, /* | |
2683 Convert association list ALIST into the equivalent property-list form. | |
2684 The plist is returned. This converts from | |
2685 | |
2686 \((a . 1) (b . 2) (c . 3)) | |
2687 | |
2688 into | |
2689 | |
2690 \(a 1 b 2 c 3) | |
2691 | |
2692 The original alist is destroyed in the process of constructing the plist. | |
2693 See also `alist-to-plist'. | |
2694 */ | |
2695 (alist)) | |
2696 { | |
2697 Lisp_Object head = alist; | |
2698 while (!NILP (alist)) | |
2699 { | |
2700 /* remember the alist element. */ | |
2701 Lisp_Object el = Fcar (alist); | |
2702 | |
2703 Fsetcar (alist, Fcar (el)); | |
2704 Fsetcar (el, Fcdr (el)); | |
2705 Fsetcdr (el, Fcdr (alist)); | |
2706 Fsetcdr (alist, el); | |
2707 alist = Fcdr (Fcdr (alist)); | |
2708 } | |
2709 | |
2710 return head; | |
2711 } | |
2712 | |
2713 DEFUN ("get", Fget, 2, 3, 0, /* | |
442 | 2714 Return the value of OBJECT's PROPERTY property. |
2715 This is the last VALUE stored with `(put OBJECT PROPERTY VALUE)'. | |
428 | 2716 If there is no such property, return optional third arg DEFAULT |
442 | 2717 \(which defaults to `nil'). OBJECT can be a symbol, string, extent, |
2718 face, or glyph. See also `put', `remprop', and `object-plist'. | |
428 | 2719 */ |
442 | 2720 (object, property, default_)) |
428 | 2721 { |
2722 /* Various places in emacs call Fget() and expect it not to quit, | |
2723 so don't quit. */ | |
442 | 2724 Lisp_Object val; |
2725 | |
2726 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->getprop) | |
2727 val = XRECORD_LHEADER_IMPLEMENTATION (object)->getprop (object, property); | |
428 | 2728 else |
563 | 2729 invalid_operation ("Object type has no properties", object); |
442 | 2730 |
2731 return UNBOUNDP (val) ? default_ : val; | |
428 | 2732 } |
2733 | |
2734 DEFUN ("put", Fput, 3, 3, 0, /* | |
442 | 2735 Set OBJECT's PROPERTY to VALUE. |
2736 It can be subsequently retrieved with `(get OBJECT PROPERTY)'. | |
2737 OBJECT can be a symbol, face, extent, or string. | |
428 | 2738 For a string, no properties currently have predefined meanings. |
2739 For the predefined properties for extents, see `set-extent-property'. | |
2740 For the predefined properties for faces, see `set-face-property'. | |
2741 See also `get', `remprop', and `object-plist'. | |
2742 */ | |
442 | 2743 (object, property, value)) |
428 | 2744 { |
1920 | 2745 /* This function cannot GC */ |
428 | 2746 CHECK_LISP_WRITEABLE (object); |
2747 | |
442 | 2748 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->putprop) |
428 | 2749 { |
442 | 2750 if (! XRECORD_LHEADER_IMPLEMENTATION (object)->putprop |
2751 (object, property, value)) | |
563 | 2752 invalid_change ("Can't set property on object", property); |
428 | 2753 } |
2754 else | |
563 | 2755 invalid_change ("Object type has no settable properties", object); |
428 | 2756 |
2757 return value; | |
2758 } | |
2759 | |
2760 DEFUN ("remprop", Fremprop, 2, 2, 0, /* | |
442 | 2761 Remove, from OBJECT's property list, PROPERTY and its corresponding value. |
2762 OBJECT can be a symbol, string, extent, face, or glyph. Return non-nil | |
2763 if the property list was actually modified (i.e. if PROPERTY was present | |
2764 in the property list). See also `get', `put', and `object-plist'. | |
428 | 2765 */ |
442 | 2766 (object, property)) |
428 | 2767 { |
442 | 2768 int ret = 0; |
2769 | |
428 | 2770 CHECK_LISP_WRITEABLE (object); |
2771 | |
442 | 2772 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->remprop) |
428 | 2773 { |
442 | 2774 ret = XRECORD_LHEADER_IMPLEMENTATION (object)->remprop (object, property); |
2775 if (ret == -1) | |
563 | 2776 invalid_change ("Can't remove property from object", property); |
428 | 2777 } |
2778 else | |
563 | 2779 invalid_change ("Object type has no removable properties", object); |
442 | 2780 |
2781 return ret ? Qt : Qnil; | |
428 | 2782 } |
2783 | |
2784 DEFUN ("object-plist", Fobject_plist, 1, 1, 0, /* | |
442 | 2785 Return a property list of OBJECT's properties. |
2786 For a symbol, this is equivalent to `symbol-plist'. | |
2787 OBJECT can be a symbol, string, extent, face, or glyph. | |
2788 Do not modify the returned property list directly; | |
2789 this may or may not have the desired effects. Use `put' instead. | |
428 | 2790 */ |
2791 (object)) | |
2792 { | |
442 | 2793 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->plist) |
2794 return XRECORD_LHEADER_IMPLEMENTATION (object)->plist (object); | |
428 | 2795 else |
563 | 2796 invalid_operation ("Object type has no properties", object); |
428 | 2797 |
2798 return Qnil; | |
2799 } | |
2800 | |
2801 | |
853 | 2802 static Lisp_Object |
2803 tweaked_internal_equal (Lisp_Object obj1, Lisp_Object obj2, | |
2804 Lisp_Object depth) | |
2805 { | |
2806 return make_int (internal_equal (obj1, obj2, XINT (depth))); | |
2807 } | |
2808 | |
2809 int | |
2810 internal_equal_trapping_problems (Lisp_Object warning_class, | |
2811 const char *warning_string, | |
2812 int flags, | |
2813 struct call_trapping_problems_result *p, | |
2814 int retval, | |
2815 Lisp_Object obj1, Lisp_Object obj2, | |
2816 int depth) | |
2817 { | |
2818 Lisp_Object glorp = | |
2819 va_call_trapping_problems (warning_class, warning_string, | |
2820 flags, p, | |
2821 (lisp_fn_t) tweaked_internal_equal, | |
2822 3, obj1, obj2, make_int (depth)); | |
2823 if (UNBOUNDP (glorp)) | |
2824 return retval; | |
2825 else | |
2826 return XINT (glorp); | |
2827 } | |
2828 | |
428 | 2829 int |
2830 internal_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
2831 { | |
2832 if (depth > 200) | |
563 | 2833 stack_overflow ("Stack overflow in equal", Qunbound); |
428 | 2834 QUIT; |
2835 if (EQ_WITH_EBOLA_NOTICE (obj1, obj2)) | |
2836 return 1; | |
2837 /* Note that (equal 20 20.0) should be nil */ | |
2838 if (XTYPE (obj1) != XTYPE (obj2)) | |
2839 return 0; | |
2840 if (LRECORDP (obj1)) | |
2841 { | |
442 | 2842 const struct lrecord_implementation |
428 | 2843 *imp1 = XRECORD_LHEADER_IMPLEMENTATION (obj1), |
2844 *imp2 = XRECORD_LHEADER_IMPLEMENTATION (obj2); | |
2845 | |
2846 return (imp1 == imp2) && | |
2847 /* EQ-ness of the objects was noticed above */ | |
2848 (imp1->equal && (imp1->equal) (obj1, obj2, depth)); | |
2849 } | |
2850 | |
2851 return 0; | |
2852 } | |
2853 | |
801 | 2854 int |
2855 internal_equalp (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
2856 { | |
2857 if (depth > 200) | |
2858 stack_overflow ("Stack overflow in equalp", Qunbound); | |
2859 QUIT; | |
2860 if (EQ_WITH_EBOLA_NOTICE (obj1, obj2)) | |
2861 return 1; | |
1983 | 2862 #ifdef WITH_NUMBER_TYPES |
2863 if (NUMBERP (obj1) && NUMBERP (obj2)) | |
2864 { | |
2865 switch (promote_args (&obj1, &obj2)) | |
2866 { | |
2867 case FIXNUM_T: | |
2868 return XREALINT (obj1) == XREALINT (obj2); | |
2869 #ifdef HAVE_BIGNUM | |
2870 case BIGNUM_T: | |
2871 return bignum_eql (XBIGNUM_DATA (obj1), XBIGNUM_DATA (obj2)); | |
2872 #endif | |
2873 #ifdef HAVE_RATIO | |
2874 case RATIO_T: | |
2875 return ratio_eql (XRATIO_DATA (obj1), XRATIO_DATA (obj2)); | |
2876 #endif | |
2877 case FLOAT_T: | |
2878 return XFLOAT_DATA (obj1) == XFLOAT_DATA (obj2); | |
2879 #ifdef HAVE_BIGFLOAT | |
2880 case BIGFLOAT_T: | |
2881 return bigfloat_eql (XBIGFLOAT_DATA (obj1), XBIGFLOAT_DATA (obj2)); | |
2882 #endif | |
2883 } | |
2884 } | |
2885 #else | |
801 | 2886 if ((INTP (obj1) && FLOATP (obj2)) || (FLOATP (obj1) && INTP (obj2))) |
2887 return extract_float (obj1) == extract_float (obj2); | |
1983 | 2888 #endif |
801 | 2889 if (CHARP (obj1) && CHARP (obj2)) |
2890 return DOWNCASE (0, XCHAR (obj1)) == DOWNCASE (0, XCHAR (obj2)); | |
2891 if (XTYPE (obj1) != XTYPE (obj2)) | |
2892 return 0; | |
2893 if (LRECORDP (obj1)) | |
2894 { | |
2895 const struct lrecord_implementation | |
2896 *imp1 = XRECORD_LHEADER_IMPLEMENTATION (obj1), | |
2897 *imp2 = XRECORD_LHEADER_IMPLEMENTATION (obj2); | |
2898 | |
2899 /* #### not yet implemented properly, needs another flag to specify | |
2900 equalp-ness */ | |
2901 return (imp1 == imp2) && | |
2902 /* EQ-ness of the objects was noticed above */ | |
2903 (imp1->equal && (imp1->equal) (obj1, obj2, depth)); | |
2904 } | |
2905 | |
2906 return 0; | |
2907 } | |
2908 | |
428 | 2909 /* Note that we may be calling sub-objects that will use |
2910 internal_equal() (instead of internal_old_equal()). Oh well. | |
2911 We will get an Ebola note if there's any possibility of confusion, | |
2912 but that seems unlikely. */ | |
2913 | |
2914 static int | |
2915 internal_old_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
2916 { | |
2917 if (depth > 200) | |
563 | 2918 stack_overflow ("Stack overflow in equal", Qunbound); |
428 | 2919 QUIT; |
2920 if (HACKEQ_UNSAFE (obj1, obj2)) | |
2921 return 1; | |
2922 /* Note that (equal 20 20.0) should be nil */ | |
2923 if (XTYPE (obj1) != XTYPE (obj2)) | |
2924 return 0; | |
2925 | |
2926 return internal_equal (obj1, obj2, depth); | |
2927 } | |
2928 | |
2929 DEFUN ("equal", Fequal, 2, 2, 0, /* | |
2930 Return t if two Lisp objects have similar structure and contents. | |
2931 They must have the same data type. | |
2932 Conses are compared by comparing the cars and the cdrs. | |
2933 Vectors and strings are compared element by element. | |
2934 Numbers are compared by value. Symbols must match exactly. | |
2935 */ | |
444 | 2936 (object1, object2)) |
428 | 2937 { |
444 | 2938 return internal_equal (object1, object2, 0) ? Qt : Qnil; |
428 | 2939 } |
2940 | |
2941 DEFUN ("old-equal", Fold_equal, 2, 2, 0, /* | |
2942 Return t if two Lisp objects have similar structure and contents. | |
2943 They must have the same data type. | |
2944 \(Note, however, that an exception is made for characters and integers; | |
2945 this is known as the "char-int confoundance disease." See `eq' and | |
2946 `old-eq'.) | |
2947 This function is provided only for byte-code compatibility with v19. | |
2948 Do not use it. | |
2949 */ | |
444 | 2950 (object1, object2)) |
428 | 2951 { |
444 | 2952 return internal_old_equal (object1, object2, 0) ? Qt : Qnil; |
428 | 2953 } |
2954 | |
2955 | |
2956 DEFUN ("fillarray", Ffillarray, 2, 2, 0, /* | |
434 | 2957 Destructively modify ARRAY by replacing each element with ITEM. |
428 | 2958 ARRAY is a vector, bit vector, or string. |
2959 */ | |
2960 (array, item)) | |
2961 { | |
2962 retry: | |
2963 if (STRINGP (array)) | |
2964 { | |
793 | 2965 Bytecount old_bytecount = XSTRING_LENGTH (array); |
434 | 2966 Bytecount new_bytecount; |
2967 Bytecount item_bytecount; | |
867 | 2968 Ibyte item_buf[MAX_ICHAR_LEN]; |
2969 Ibyte *p; | |
2970 Ibyte *end; | |
434 | 2971 |
428 | 2972 CHECK_CHAR_COERCE_INT (item); |
2720 | 2973 |
428 | 2974 CHECK_LISP_WRITEABLE (array); |
771 | 2975 sledgehammer_check_ascii_begin (array); |
867 | 2976 item_bytecount = set_itext_ichar (item_buf, XCHAR (item)); |
826 | 2977 new_bytecount = item_bytecount * (Bytecount) string_char_length (array); |
793 | 2978 |
2979 resize_string (array, -1, new_bytecount - old_bytecount); | |
2980 | |
2981 for (p = XSTRING_DATA (array), end = p + new_bytecount; | |
434 | 2982 p < end; |
2983 p += item_bytecount) | |
2984 memcpy (p, item_buf, item_bytecount); | |
2985 *p = '\0'; | |
2986 | |
793 | 2987 XSET_STRING_ASCII_BEGIN (array, |
2988 item_bytecount == 1 ? | |
2989 min (new_bytecount, MAX_STRING_ASCII_BEGIN) : | |
2990 0); | |
428 | 2991 bump_string_modiff (array); |
771 | 2992 sledgehammer_check_ascii_begin (array); |
428 | 2993 } |
2994 else if (VECTORP (array)) | |
2995 { | |
2996 Lisp_Object *p = XVECTOR_DATA (array); | |
665 | 2997 Elemcount len = XVECTOR_LENGTH (array); |
428 | 2998 CHECK_LISP_WRITEABLE (array); |
2999 while (len--) | |
3000 *p++ = item; | |
3001 } | |
3002 else if (BIT_VECTORP (array)) | |
3003 { | |
440 | 3004 Lisp_Bit_Vector *v = XBIT_VECTOR (array); |
665 | 3005 Elemcount len = bit_vector_length (v); |
428 | 3006 int bit; |
3007 CHECK_BIT (item); | |
444 | 3008 bit = XINT (item); |
428 | 3009 CHECK_LISP_WRITEABLE (array); |
3010 while (len--) | |
3011 set_bit_vector_bit (v, len, bit); | |
3012 } | |
3013 else | |
3014 { | |
3015 array = wrong_type_argument (Qarrayp, array); | |
3016 goto retry; | |
3017 } | |
3018 return array; | |
3019 } | |
3020 | |
3021 Lisp_Object | |
3022 nconc2 (Lisp_Object arg1, Lisp_Object arg2) | |
3023 { | |
3024 Lisp_Object args[2]; | |
3025 struct gcpro gcpro1; | |
3026 args[0] = arg1; | |
3027 args[1] = arg2; | |
3028 | |
3029 GCPRO1 (args[0]); | |
3030 gcpro1.nvars = 2; | |
3031 | |
3032 RETURN_UNGCPRO (bytecode_nconc2 (args)); | |
3033 } | |
3034 | |
3035 Lisp_Object | |
3036 bytecode_nconc2 (Lisp_Object *args) | |
3037 { | |
3038 retry: | |
3039 | |
3040 if (CONSP (args[0])) | |
3041 { | |
3042 /* (setcdr (last args[0]) args[1]) */ | |
3043 Lisp_Object tortoise, hare; | |
665 | 3044 Elemcount count; |
428 | 3045 |
3046 for (hare = tortoise = args[0], count = 0; | |
3047 CONSP (XCDR (hare)); | |
3048 hare = XCDR (hare), count++) | |
3049 { | |
3050 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue; | |
3051 | |
3052 if (count & 1) | |
3053 tortoise = XCDR (tortoise); | |
3054 if (EQ (hare, tortoise)) | |
3055 signal_circular_list_error (args[0]); | |
3056 } | |
3057 XCDR (hare) = args[1]; | |
3058 return args[0]; | |
3059 } | |
3060 else if (NILP (args[0])) | |
3061 { | |
3062 return args[1]; | |
3063 } | |
3064 else | |
3065 { | |
3066 args[0] = wrong_type_argument (args[0], Qlistp); | |
3067 goto retry; | |
3068 } | |
3069 } | |
3070 | |
3071 DEFUN ("nconc", Fnconc, 0, MANY, 0, /* | |
3072 Concatenate any number of lists by altering them. | |
3073 Only the last argument is not altered, and need not be a list. | |
3074 Also see: `append'. | |
3075 If the first argument is nil, there is no way to modify it by side | |
3076 effect; therefore, write `(setq foo (nconc foo list))' to be sure of | |
3077 changing the value of `foo'. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
3078 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
3079 arguments: (&rest ARGS) |
428 | 3080 */ |
3081 (int nargs, Lisp_Object *args)) | |
3082 { | |
3083 int argnum = 0; | |
3084 struct gcpro gcpro1; | |
3085 | |
3086 /* The modus operandi in Emacs is "caller gc-protects args". | |
3087 However, nconc (particularly nconc2 ()) is called many times | |
3088 in Emacs on freshly created stuff (e.g. you see the idiom | |
3089 nconc2 (Fcopy_sequence (foo), bar) a lot). So we help those | |
3090 callers out by protecting the args ourselves to save them | |
3091 a lot of temporary-variable grief. */ | |
3092 | |
3093 GCPRO1 (args[0]); | |
3094 gcpro1.nvars = nargs; | |
3095 | |
3096 while (argnum < nargs) | |
3097 { | |
3098 Lisp_Object val; | |
3099 retry: | |
3100 val = args[argnum]; | |
3101 if (CONSP (val)) | |
3102 { | |
3103 /* `val' is the first cons, which will be our return value. */ | |
3104 /* `last_cons' will be the cons cell to mutate. */ | |
3105 Lisp_Object last_cons = val; | |
3106 Lisp_Object tortoise = val; | |
3107 | |
3108 for (argnum++; argnum < nargs; argnum++) | |
3109 { | |
3110 Lisp_Object next = args[argnum]; | |
3111 retry_next: | |
3112 if (CONSP (next) || argnum == nargs -1) | |
3113 { | |
3114 /* (setcdr (last val) next) */ | |
665 | 3115 Elemcount count; |
428 | 3116 |
3117 for (count = 0; | |
3118 CONSP (XCDR (last_cons)); | |
3119 last_cons = XCDR (last_cons), count++) | |
3120 { | |
3121 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue; | |
3122 | |
3123 if (count & 1) | |
3124 tortoise = XCDR (tortoise); | |
3125 if (EQ (last_cons, tortoise)) | |
3126 signal_circular_list_error (args[argnum-1]); | |
3127 } | |
3128 XCDR (last_cons) = next; | |
3129 } | |
3130 else if (NILP (next)) | |
3131 { | |
3132 continue; | |
3133 } | |
3134 else | |
3135 { | |
3136 next = wrong_type_argument (Qlistp, next); | |
3137 goto retry_next; | |
3138 } | |
3139 } | |
3140 RETURN_UNGCPRO (val); | |
3141 } | |
3142 else if (NILP (val)) | |
3143 argnum++; | |
3144 else if (argnum == nargs - 1) /* last arg? */ | |
3145 RETURN_UNGCPRO (val); | |
3146 else | |
3147 { | |
3148 args[argnum] = wrong_type_argument (Qlistp, val); | |
3149 goto retry; | |
3150 } | |
3151 } | |
3152 RETURN_UNGCPRO (Qnil); /* No non-nil args provided. */ | |
3153 } | |
3154 | |
3155 | |
434 | 3156 /* This is the guts of several mapping functions. |
3157 Apply FUNCTION to each element of SEQUENCE, one by one, | |
3158 storing the results into elements of VALS, a C vector of Lisp_Objects. | |
3159 LENI is the length of VALS, which should also be the length of SEQUENCE. | |
428 | 3160 |
3161 If VALS is a null pointer, do not accumulate the results. */ | |
3162 | |
3163 static void | |
665 | 3164 mapcar1 (Elemcount leni, Lisp_Object *vals, |
434 | 3165 Lisp_Object function, Lisp_Object sequence) |
428 | 3166 { |
3167 Lisp_Object result; | |
3168 Lisp_Object args[2]; | |
3169 struct gcpro gcpro1; | |
3170 | |
3171 if (vals) | |
3172 { | |
3173 GCPRO1 (vals[0]); | |
3174 gcpro1.nvars = 0; | |
3175 } | |
3176 | |
434 | 3177 args[0] = function; |
3178 | |
3179 if (LISTP (sequence)) | |
428 | 3180 { |
434 | 3181 /* A devious `function' could either: |
3182 - insert garbage into the list in front of us, causing XCDR to crash | |
3183 - amputate the list behind us using (setcdr), causing the remaining | |
3184 elts to lose their GCPRO status. | |
3185 | |
3186 if (vals != 0) we avoid this by copying the elts into the | |
3187 `vals' array. By a stroke of luck, `vals' is exactly large | |
3188 enough to hold the elts left to be traversed as well as the | |
3189 results computed so far. | |
3190 | |
3191 if (vals == 0) we don't have any free space available and | |
851 | 3192 don't want to eat up any more stack with ALLOCA (). |
442 | 3193 So we use EXTERNAL_LIST_LOOP_3_NO_DECLARE and GCPRO the tail. */ |
434 | 3194 |
3195 if (vals) | |
428 | 3196 { |
434 | 3197 Lisp_Object *val = vals; |
665 | 3198 Elemcount i; |
434 | 3199 |
3200 LIST_LOOP_2 (elt, sequence) | |
3201 *val++ = elt; | |
3202 | |
3203 gcpro1.nvars = leni; | |
3204 | |
3205 for (i = 0; i < leni; i++) | |
3206 { | |
3207 args[1] = vals[i]; | |
3208 vals[i] = Ffuncall (2, args); | |
3209 } | |
3210 } | |
3211 else | |
3212 { | |
3213 Lisp_Object elt, tail; | |
442 | 3214 EMACS_INT len_unused; |
434 | 3215 struct gcpro ngcpro1; |
3216 | |
3217 NGCPRO1 (tail); | |
3218 | |
3219 { | |
442 | 3220 EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, sequence, tail, len_unused) |
434 | 3221 { |
3222 args[1] = elt; | |
3223 Ffuncall (2, args); | |
3224 } | |
3225 } | |
3226 | |
3227 NUNGCPRO; | |
428 | 3228 } |
3229 } | |
434 | 3230 else if (VECTORP (sequence)) |
428 | 3231 { |
434 | 3232 Lisp_Object *objs = XVECTOR_DATA (sequence); |
665 | 3233 Elemcount i; |
428 | 3234 for (i = 0; i < leni; i++) |
3235 { | |
3236 args[1] = *objs++; | |
3237 result = Ffuncall (2, args); | |
3238 if (vals) vals[gcpro1.nvars++] = result; | |
3239 } | |
3240 } | |
434 | 3241 else if (STRINGP (sequence)) |
428 | 3242 { |
434 | 3243 /* The string data of `sequence' might be relocated during GC. */ |
3244 Bytecount slen = XSTRING_LENGTH (sequence); | |
2367 | 3245 Ibyte *p = alloca_ibytes (slen); |
867 | 3246 Ibyte *end = p + slen; |
434 | 3247 |
3248 memcpy (p, XSTRING_DATA (sequence), slen); | |
3249 | |
3250 while (p < end) | |
428 | 3251 { |
867 | 3252 args[1] = make_char (itext_ichar (p)); |
3253 INC_IBYTEPTR (p); | |
428 | 3254 result = Ffuncall (2, args); |
3255 if (vals) vals[gcpro1.nvars++] = result; | |
3256 } | |
3257 } | |
434 | 3258 else if (BIT_VECTORP (sequence)) |
428 | 3259 { |
440 | 3260 Lisp_Bit_Vector *v = XBIT_VECTOR (sequence); |
665 | 3261 Elemcount i; |
428 | 3262 for (i = 0; i < leni; i++) |
3263 { | |
3264 args[1] = make_int (bit_vector_bit (v, i)); | |
3265 result = Ffuncall (2, args); | |
3266 if (vals) vals[gcpro1.nvars++] = result; | |
3267 } | |
3268 } | |
3269 else | |
2500 | 3270 ABORT (); /* unreachable, since Flength (sequence) did not get an error */ |
428 | 3271 |
3272 if (vals) | |
3273 UNGCPRO; | |
3274 } | |
3275 | |
3276 DEFUN ("mapconcat", Fmapconcat, 3, 3, 0, /* | |
751 | 3277 Apply FUNCTION to each element of SEQUENCE, and concat the results to a string. |
3278 Between each pair of results, insert SEPARATOR. | |
3279 | |
3280 Each result, and SEPARATOR, should be strings. Thus, using " " as SEPARATOR | |
3281 results in spaces between the values returned by FUNCTION. SEQUENCE itself | |
3282 may be a list, a vector, a bit vector, or a string. | |
428 | 3283 */ |
434 | 3284 (function, sequence, separator)) |
428 | 3285 { |
444 | 3286 EMACS_INT len = XINT (Flength (sequence)); |
428 | 3287 Lisp_Object *args; |
444 | 3288 EMACS_INT i; |
3289 EMACS_INT nargs = len + len - 1; | |
428 | 3290 |
442 | 3291 if (len == 0) return build_string (""); |
428 | 3292 |
3293 args = alloca_array (Lisp_Object, nargs); | |
3294 | |
434 | 3295 mapcar1 (len, args, function, sequence); |
428 | 3296 |
3297 for (i = len - 1; i >= 0; i--) | |
3298 args[i + i] = args[i]; | |
3299 | |
3300 for (i = 1; i < nargs; i += 2) | |
434 | 3301 args[i] = separator; |
428 | 3302 |
3303 return Fconcat (nargs, args); | |
3304 } | |
3305 | |
3306 DEFUN ("mapcar", Fmapcar, 2, 2, 0, /* | |
434 | 3307 Apply FUNCTION to each element of SEQUENCE; return a list of the results. |
3308 The result is a list of the same length as SEQUENCE. | |
428 | 3309 SEQUENCE may be a list, a vector, a bit vector, or a string. |
3310 */ | |
434 | 3311 (function, sequence)) |
428 | 3312 { |
665 | 3313 Elemcount len = XINT (Flength (sequence)); |
428 | 3314 Lisp_Object *args = alloca_array (Lisp_Object, len); |
3315 | |
434 | 3316 mapcar1 (len, args, function, sequence); |
428 | 3317 |
647 | 3318 return Flist ((int) len, args); |
428 | 3319 } |
3320 | |
3321 DEFUN ("mapvector", Fmapvector, 2, 2, 0, /* | |
434 | 3322 Apply FUNCTION to each element of SEQUENCE; return a vector of the results. |
428 | 3323 The result is a vector of the same length as SEQUENCE. |
434 | 3324 SEQUENCE may be a list, a vector, a bit vector, or a string. |
428 | 3325 */ |
434 | 3326 (function, sequence)) |
428 | 3327 { |
665 | 3328 Elemcount len = XINT (Flength (sequence)); |
428 | 3329 Lisp_Object result = make_vector (len, Qnil); |
3330 struct gcpro gcpro1; | |
3331 | |
3332 GCPRO1 (result); | |
434 | 3333 mapcar1 (len, XVECTOR_DATA (result), function, sequence); |
428 | 3334 UNGCPRO; |
3335 | |
3336 return result; | |
3337 } | |
3338 | |
3339 DEFUN ("mapc-internal", Fmapc_internal, 2, 2, 0, /* | |
3340 Apply FUNCTION to each element of SEQUENCE. | |
3341 SEQUENCE may be a list, a vector, a bit vector, or a string. | |
3342 This function is like `mapcar' but does not accumulate the results, | |
3343 which is more efficient if you do not use the results. | |
3344 | |
3345 The difference between this and `mapc' is that `mapc' supports all | |
3346 the spiffy Common Lisp arguments. You should normally use `mapc'. | |
3347 */ | |
434 | 3348 (function, sequence)) |
428 | 3349 { |
434 | 3350 mapcar1 (XINT (Flength (sequence)), 0, function, sequence); |
3351 | |
3352 return sequence; | |
428 | 3353 } |
3354 | |
3355 | |
771 | 3356 /* Extra random functions */ |
442 | 3357 |
3358 DEFUN ("replace-list", Freplace_list, 2, 2, 0, /* | |
3359 Destructively replace the list OLD with NEW. | |
3360 This is like (copy-sequence NEW) except that it reuses the | |
3361 conses in OLD as much as possible. If OLD and NEW are the same | |
3362 length, no consing will take place. | |
3363 */ | |
3025 | 3364 (old, new_)) |
442 | 3365 { |
2367 | 3366 Lisp_Object oldtail = old, prevoldtail = Qnil; |
3367 | |
3025 | 3368 EXTERNAL_LIST_LOOP_2 (elt, new_) |
442 | 3369 { |
3370 if (!NILP (oldtail)) | |
3371 { | |
3372 CHECK_CONS (oldtail); | |
2367 | 3373 XCAR (oldtail) = elt; |
442 | 3374 } |
3375 else if (!NILP (prevoldtail)) | |
3376 { | |
2367 | 3377 XCDR (prevoldtail) = Fcons (elt, Qnil); |
442 | 3378 prevoldtail = XCDR (prevoldtail); |
3379 } | |
3380 else | |
2367 | 3381 old = oldtail = Fcons (elt, Qnil); |
442 | 3382 |
3383 if (!NILP (oldtail)) | |
3384 { | |
3385 prevoldtail = oldtail; | |
3386 oldtail = XCDR (oldtail); | |
3387 } | |
3388 } | |
3389 | |
3390 if (!NILP (prevoldtail)) | |
3391 XCDR (prevoldtail) = Qnil; | |
3392 else | |
3393 old = Qnil; | |
3394 | |
3395 return old; | |
3396 } | |
3397 | |
771 | 3398 Lisp_Object |
2367 | 3399 add_suffix_to_symbol (Lisp_Object symbol, const Ascbyte *ascii_string) |
771 | 3400 { |
3401 return Fintern (concat2 (Fsymbol_name (symbol), | |
3402 build_string (ascii_string)), | |
3403 Qnil); | |
3404 } | |
3405 | |
3406 Lisp_Object | |
2367 | 3407 add_prefix_to_symbol (const Ascbyte *ascii_string, Lisp_Object symbol) |
771 | 3408 { |
3409 return Fintern (concat2 (build_string (ascii_string), | |
3410 Fsymbol_name (symbol)), | |
3411 Qnil); | |
3412 } | |
3413 | |
442 | 3414 |
428 | 3415 /* #### this function doesn't belong in this file! */ |
3416 | |
442 | 3417 #ifdef HAVE_GETLOADAVG |
3418 #ifdef HAVE_SYS_LOADAVG_H | |
3419 #include <sys/loadavg.h> | |
3420 #endif | |
3421 #else | |
3422 int getloadavg (double loadavg[], int nelem); /* Defined in getloadavg.c */ | |
3423 #endif | |
3424 | |
428 | 3425 DEFUN ("load-average", Fload_average, 0, 1, 0, /* |
3426 Return list of 1 minute, 5 minute and 15 minute load averages. | |
3427 Each of the three load averages is multiplied by 100, | |
3428 then converted to integer. | |
3429 | |
3430 When USE-FLOATS is non-nil, floats will be used instead of integers. | |
3431 These floats are not multiplied by 100. | |
3432 | |
3433 If the 5-minute or 15-minute load averages are not available, return a | |
3434 shortened list, containing only those averages which are available. | |
3435 | |
3436 On some systems, this won't work due to permissions on /dev/kmem, | |
3437 in which case you can't use this. | |
3438 */ | |
3439 (use_floats)) | |
3440 { | |
3441 double load_ave[3]; | |
3442 int loads = getloadavg (load_ave, countof (load_ave)); | |
3443 Lisp_Object ret = Qnil; | |
3444 | |
3445 if (loads == -2) | |
563 | 3446 signal_error (Qunimplemented, |
3447 "load-average not implemented for this operating system", | |
3448 Qunbound); | |
428 | 3449 else if (loads < 0) |
563 | 3450 invalid_operation ("Could not get load-average", lisp_strerror (errno)); |
428 | 3451 |
3452 while (loads-- > 0) | |
3453 { | |
3454 Lisp_Object load = (NILP (use_floats) ? | |
3455 make_int ((int) (100.0 * load_ave[loads])) | |
3456 : make_float (load_ave[loads])); | |
3457 ret = Fcons (load, ret); | |
3458 } | |
3459 return ret; | |
3460 } | |
3461 | |
3462 | |
3463 Lisp_Object Vfeatures; | |
3464 | |
3465 DEFUN ("featurep", Ffeaturep, 1, 1, 0, /* | |
3466 Return non-nil if feature FEXP is present in this Emacs. | |
3467 Use this to conditionalize execution of lisp code based on the | |
3468 presence or absence of emacs or environment extensions. | |
3469 FEXP can be a symbol, a number, or a list. | |
3470 If it is a symbol, that symbol is looked up in the `features' variable, | |
3471 and non-nil will be returned if found. | |
3472 If it is a number, the function will return non-nil if this Emacs | |
3473 has an equal or greater version number than FEXP. | |
3474 If it is a list whose car is the symbol `and', it will return | |
3475 non-nil if all the features in its cdr are non-nil. | |
3476 If it is a list whose car is the symbol `or', it will return non-nil | |
3477 if any of the features in its cdr are non-nil. | |
3478 If it is a list whose car is the symbol `not', it will return | |
3479 non-nil if the feature is not present. | |
3480 | |
3481 Examples: | |
3482 | |
3483 (featurep 'xemacs) | |
3484 => ; Non-nil on XEmacs. | |
3485 | |
3486 (featurep '(and xemacs gnus)) | |
3487 => ; Non-nil on XEmacs with Gnus loaded. | |
3488 | |
3489 (featurep '(or tty-frames (and emacs 19.30))) | |
3490 => ; Non-nil if this Emacs supports TTY frames. | |
3491 | |
3492 (featurep '(or (and xemacs 19.15) (and emacs 19.34))) | |
3493 => ; Non-nil on XEmacs 19.15 and later, or FSF Emacs 19.34 and later. | |
3494 | |
442 | 3495 (featurep '(and xemacs 21.02)) |
3496 => ; Non-nil on XEmacs 21.2 and later. | |
3497 | |
428 | 3498 NOTE: The advanced arguments of this function (anything other than a |
3499 symbol) are not yet supported by FSF Emacs. If you feel they are useful | |
3500 for supporting multiple Emacs variants, lobby Richard Stallman at | |
442 | 3501 <bug-gnu-emacs@gnu.org>. |
428 | 3502 */ |
3503 (fexp)) | |
3504 { | |
3505 #ifndef FEATUREP_SYNTAX | |
3506 CHECK_SYMBOL (fexp); | |
3507 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt; | |
3508 #else /* FEATUREP_SYNTAX */ | |
3509 static double featurep_emacs_version; | |
3510 | |
3511 /* Brute force translation from Erik Naggum's lisp function. */ | |
3512 if (SYMBOLP (fexp)) | |
3513 { | |
3514 /* Original definition */ | |
3515 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt; | |
3516 } | |
3517 else if (INTP (fexp) || FLOATP (fexp)) | |
3518 { | |
3519 double d = extract_float (fexp); | |
3520 | |
3521 if (featurep_emacs_version == 0.0) | |
3522 { | |
3523 featurep_emacs_version = XINT (Vemacs_major_version) + | |
3524 (XINT (Vemacs_minor_version) / 100.0); | |
3525 } | |
3526 return featurep_emacs_version >= d ? Qt : Qnil; | |
3527 } | |
3528 else if (CONSP (fexp)) | |
3529 { | |
3530 Lisp_Object tem = XCAR (fexp); | |
3531 if (EQ (tem, Qnot)) | |
3532 { | |
3533 Lisp_Object negate; | |
3534 | |
3535 tem = XCDR (fexp); | |
3536 negate = Fcar (tem); | |
3537 if (!NILP (tem)) | |
3538 return NILP (call1 (Qfeaturep, negate)) ? Qt : Qnil; | |
3539 else | |
3540 return Fsignal (Qinvalid_read_syntax, list1 (tem)); | |
3541 } | |
3542 else if (EQ (tem, Qand)) | |
3543 { | |
3544 tem = XCDR (fexp); | |
3545 /* Use Fcar/Fcdr for error-checking. */ | |
3546 while (!NILP (tem) && !NILP (call1 (Qfeaturep, Fcar (tem)))) | |
3547 { | |
3548 tem = Fcdr (tem); | |
3549 } | |
3550 return NILP (tem) ? Qt : Qnil; | |
3551 } | |
3552 else if (EQ (tem, Qor)) | |
3553 { | |
3554 tem = XCDR (fexp); | |
3555 /* Use Fcar/Fcdr for error-checking. */ | |
3556 while (!NILP (tem) && NILP (call1 (Qfeaturep, Fcar (tem)))) | |
3557 { | |
3558 tem = Fcdr (tem); | |
3559 } | |
3560 return NILP (tem) ? Qnil : Qt; | |
3561 } | |
3562 else | |
3563 { | |
3564 return Fsignal (Qinvalid_read_syntax, list1 (XCDR (fexp))); | |
3565 } | |
3566 } | |
3567 else | |
3568 { | |
3569 return Fsignal (Qinvalid_read_syntax, list1 (fexp)); | |
3570 } | |
3571 } | |
3572 #endif /* FEATUREP_SYNTAX */ | |
3573 | |
3574 DEFUN ("provide", Fprovide, 1, 1, 0, /* | |
3575 Announce that FEATURE is a feature of the current Emacs. | |
3576 This function updates the value of the variable `features'. | |
3577 */ | |
3578 (feature)) | |
3579 { | |
3580 Lisp_Object tem; | |
3581 CHECK_SYMBOL (feature); | |
3582 if (!NILP (Vautoload_queue)) | |
3583 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue); | |
3584 tem = Fmemq (feature, Vfeatures); | |
3585 if (NILP (tem)) | |
3586 Vfeatures = Fcons (feature, Vfeatures); | |
3587 LOADHIST_ATTACH (Fcons (Qprovide, feature)); | |
3588 return feature; | |
3589 } | |
3590 | |
1067 | 3591 DEFUN ("require", Frequire, 1, 3, 0, /* |
3842 | 3592 Ensure that FEATURE is present in the Lisp environment. |
3593 FEATURE is a symbol naming a collection of resources (functions, etc). | |
3594 Optional FILENAME is a library from which to load resources; it defaults to | |
3595 the print name of FEATURE. | |
3596 Optional NOERROR, if non-nil, causes require to return nil rather than signal | |
3597 `file-error' if loading the library fails. | |
3598 | |
3599 If feature FEATURE is present in `features', update `load-history' to reflect | |
3600 the require and return FEATURE. Otherwise, try to load it from a library. | |
3601 The normal messages at start and end of loading are suppressed. | |
3602 If the library is successfully loaded and it calls `(provide FEATURE)', add | |
3603 FEATURE to `features', update `load-history' and return FEATURE. | |
3604 If the load succeeds but FEATURE is not provided by the library, signal | |
3605 `invalid-state'. | |
3606 | |
3607 The byte-compiler treats top-level calls to `require' specially, by evaluating | |
3608 them at compile time (and then compiling them normally). Thus a library may | |
3609 request that definitions that should be inlined such as macros and defsubsts | |
3610 be loaded into its compilation environment. Achieving this in other contexts | |
3611 requires an explicit \(eval-and-compile ...\) block. | |
428 | 3612 */ |
1067 | 3613 (feature, filename, noerror)) |
428 | 3614 { |
3615 Lisp_Object tem; | |
3616 CHECK_SYMBOL (feature); | |
3617 tem = Fmemq (feature, Vfeatures); | |
3618 LOADHIST_ATTACH (Fcons (Qrequire, feature)); | |
3619 if (!NILP (tem)) | |
3620 return feature; | |
3621 else | |
3622 { | |
3623 int speccount = specpdl_depth (); | |
3624 | |
3625 /* Value saved here is to be restored into Vautoload_queue */ | |
3626 record_unwind_protect (un_autoload, Vautoload_queue); | |
3627 Vautoload_queue = Qt; | |
3628 | |
1067 | 3629 tem = call4 (Qload, NILP (filename) ? Fsymbol_name (feature) : filename, |
1261 | 3630 noerror, Qrequire, Qnil); |
1067 | 3631 /* If load failed entirely, return nil. */ |
3632 if (NILP (tem)) | |
3633 return unbind_to_1 (speccount, Qnil); | |
428 | 3634 |
3635 tem = Fmemq (feature, Vfeatures); | |
3636 if (NILP (tem)) | |
563 | 3637 invalid_state ("Required feature was not provided", feature); |
428 | 3638 |
3639 /* Once loading finishes, don't undo it. */ | |
3640 Vautoload_queue = Qt; | |
771 | 3641 return unbind_to_1 (speccount, feature); |
428 | 3642 } |
3643 } | |
3644 | |
3645 /* base64 encode/decode functions. | |
3646 | |
3647 Originally based on code from GNU recode. Ported to FSF Emacs by | |
3648 Lars Magne Ingebrigtsen and Karl Heuer. Ported to XEmacs and | |
3649 subsequently heavily hacked by Hrvoje Niksic. */ | |
3650 | |
3651 #define MIME_LINE_LENGTH 72 | |
3652 | |
3653 #define IS_ASCII(Character) \ | |
3654 ((Character) < 128) | |
3655 #define IS_BASE64(Character) \ | |
3656 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0) | |
3657 | |
3658 /* Table of characters coding the 64 values. */ | |
3659 static char base64_value_to_char[64] = | |
3660 { | |
3661 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */ | |
3662 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */ | |
3663 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */ | |
3664 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */ | |
3665 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */ | |
3666 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */ | |
3667 '8', '9', '+', '/' /* 60-63 */ | |
3668 }; | |
3669 | |
3670 /* Table of base64 values for first 128 characters. */ | |
3671 static short base64_char_to_value[128] = | |
3672 { | |
3673 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */ | |
3674 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */ | |
3675 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */ | |
3676 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */ | |
3677 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */ | |
3678 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */ | |
3679 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */ | |
3680 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */ | |
3681 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */ | |
3682 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */ | |
3683 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */ | |
3684 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */ | |
3685 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */ | |
3686 }; | |
3687 | |
3688 /* The following diagram shows the logical steps by which three octets | |
3689 get transformed into four base64 characters. | |
3690 | |
3691 .--------. .--------. .--------. | |
3692 |aaaaaabb| |bbbbcccc| |ccdddddd| | |
3693 `--------' `--------' `--------' | |
3694 6 2 4 4 2 6 | |
3695 .--------+--------+--------+--------. | |
3696 |00aaaaaa|00bbbbbb|00cccccc|00dddddd| | |
3697 `--------+--------+--------+--------' | |
3698 | |
3699 .--------+--------+--------+--------. | |
3700 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD| | |
3701 `--------+--------+--------+--------' | |
3702 | |
3703 The octets are divided into 6 bit chunks, which are then encoded into | |
3704 base64 characters. */ | |
3705 | |
2268 | 3706 static DECLARE_DOESNT_RETURN (base64_conversion_error (const char *, |
3707 Lisp_Object)); | |
3708 | |
575 | 3709 static DOESNT_RETURN |
563 | 3710 base64_conversion_error (const char *reason, Lisp_Object frob) |
3711 { | |
3712 signal_error (Qbase64_conversion_error, reason, frob); | |
3713 } | |
3714 | |
3715 #define ADVANCE_INPUT(c, stream) \ | |
867 | 3716 ((ec = Lstream_get_ichar (stream)) == -1 ? 0 : \ |
563 | 3717 ((ec > 255) ? \ |
3718 (base64_conversion_error ("Non-ascii character in base64 input", \ | |
3719 make_char (ec)), 0) \ | |
867 | 3720 : (c = (Ibyte)ec), 1)) |
665 | 3721 |
3722 static Bytebpos | |
867 | 3723 base64_encode_1 (Lstream *istream, Ibyte *to, int line_break) |
428 | 3724 { |
3725 EMACS_INT counter = 0; | |
867 | 3726 Ibyte *e = to; |
3727 Ichar ec; | |
428 | 3728 unsigned int value; |
3729 | |
3730 while (1) | |
3731 { | |
1204 | 3732 Ibyte c = 0; |
428 | 3733 if (!ADVANCE_INPUT (c, istream)) |
3734 break; | |
3735 | |
3736 /* Wrap line every 76 characters. */ | |
3737 if (line_break) | |
3738 { | |
3739 if (counter < MIME_LINE_LENGTH / 4) | |
3740 counter++; | |
3741 else | |
3742 { | |
3743 *e++ = '\n'; | |
3744 counter = 1; | |
3745 } | |
3746 } | |
3747 | |
3748 /* Process first byte of a triplet. */ | |
3749 *e++ = base64_value_to_char[0x3f & c >> 2]; | |
3750 value = (0x03 & c) << 4; | |
3751 | |
3752 /* Process second byte of a triplet. */ | |
3753 if (!ADVANCE_INPUT (c, istream)) | |
3754 { | |
3755 *e++ = base64_value_to_char[value]; | |
3756 *e++ = '='; | |
3757 *e++ = '='; | |
3758 break; | |
3759 } | |
3760 | |
3761 *e++ = base64_value_to_char[value | (0x0f & c >> 4)]; | |
3762 value = (0x0f & c) << 2; | |
3763 | |
3764 /* Process third byte of a triplet. */ | |
3765 if (!ADVANCE_INPUT (c, istream)) | |
3766 { | |
3767 *e++ = base64_value_to_char[value]; | |
3768 *e++ = '='; | |
3769 break; | |
3770 } | |
3771 | |
3772 *e++ = base64_value_to_char[value | (0x03 & c >> 6)]; | |
3773 *e++ = base64_value_to_char[0x3f & c]; | |
3774 } | |
3775 | |
3776 return e - to; | |
3777 } | |
3778 #undef ADVANCE_INPUT | |
3779 | |
3780 /* Get next character from the stream, except that non-base64 | |
3781 characters are ignored. This is in accordance with rfc2045. EC | |
867 | 3782 should be an Ichar, so that it can hold -1 as the value for EOF. */ |
428 | 3783 #define ADVANCE_INPUT_IGNORE_NONBASE64(ec, stream, streampos) do { \ |
867 | 3784 ec = Lstream_get_ichar (stream); \ |
428 | 3785 ++streampos; \ |
3786 /* IS_BASE64 may not be called with negative arguments so check for \ | |
3787 EOF first. */ \ | |
3788 if (ec < 0 || IS_BASE64 (ec) || ec == '=') \ | |
3789 break; \ | |
3790 } while (1) | |
3791 | |
3792 #define STORE_BYTE(pos, val, ccnt) do { \ | |
867 | 3793 pos += set_itext_ichar (pos, (Ichar)((unsigned char)(val))); \ |
428 | 3794 ++ccnt; \ |
3795 } while (0) | |
3796 | |
665 | 3797 static Bytebpos |
867 | 3798 base64_decode_1 (Lstream *istream, Ibyte *to, Charcount *ccptr) |
428 | 3799 { |
3800 Charcount ccnt = 0; | |
867 | 3801 Ibyte *e = to; |
428 | 3802 EMACS_INT streampos = 0; |
3803 | |
3804 while (1) | |
3805 { | |
867 | 3806 Ichar ec; |
428 | 3807 unsigned long value; |
3808 | |
3809 /* Process first byte of a quadruplet. */ | |
3810 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3811 if (ec < 0) | |
3812 break; | |
3813 if (ec == '=') | |
563 | 3814 base64_conversion_error ("Illegal `=' character while decoding base64", |
3815 make_int (streampos)); | |
428 | 3816 value = base64_char_to_value[ec] << 18; |
3817 | |
3818 /* Process second byte of a quadruplet. */ | |
3819 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3820 if (ec < 0) | |
563 | 3821 base64_conversion_error ("Premature EOF while decoding base64", |
3822 Qunbound); | |
428 | 3823 if (ec == '=') |
563 | 3824 base64_conversion_error ("Illegal `=' character while decoding base64", |
3825 make_int (streampos)); | |
428 | 3826 value |= base64_char_to_value[ec] << 12; |
3827 STORE_BYTE (e, value >> 16, ccnt); | |
3828 | |
3829 /* Process third byte of a quadruplet. */ | |
3830 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3831 if (ec < 0) | |
563 | 3832 base64_conversion_error ("Premature EOF while decoding base64", |
3833 Qunbound); | |
428 | 3834 |
3835 if (ec == '=') | |
3836 { | |
3837 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3838 if (ec < 0) | |
563 | 3839 base64_conversion_error ("Premature EOF while decoding base64", |
3840 Qunbound); | |
428 | 3841 if (ec != '=') |
563 | 3842 base64_conversion_error |
3843 ("Padding `=' expected but not found while decoding base64", | |
3844 make_int (streampos)); | |
428 | 3845 continue; |
3846 } | |
3847 | |
3848 value |= base64_char_to_value[ec] << 6; | |
3849 STORE_BYTE (e, 0xff & value >> 8, ccnt); | |
3850 | |
3851 /* Process fourth byte of a quadruplet. */ | |
3852 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3853 if (ec < 0) | |
563 | 3854 base64_conversion_error ("Premature EOF while decoding base64", |
3855 Qunbound); | |
428 | 3856 if (ec == '=') |
3857 continue; | |
3858 | |
3859 value |= base64_char_to_value[ec]; | |
3860 STORE_BYTE (e, 0xff & value, ccnt); | |
3861 } | |
3862 | |
3863 *ccptr = ccnt; | |
3864 return e - to; | |
3865 } | |
3866 #undef ADVANCE_INPUT | |
3867 #undef ADVANCE_INPUT_IGNORE_NONBASE64 | |
3868 #undef STORE_BYTE | |
3869 | |
3870 DEFUN ("base64-encode-region", Fbase64_encode_region, 2, 3, "r", /* | |
444 | 3871 Base64-encode the region between START and END. |
428 | 3872 Return the length of the encoded text. |
3873 Optional third argument NO-LINE-BREAK means do not break long lines | |
3874 into shorter lines. | |
3875 */ | |
444 | 3876 (start, end, no_line_break)) |
428 | 3877 { |
867 | 3878 Ibyte *encoded; |
665 | 3879 Bytebpos encoded_length; |
428 | 3880 Charcount allength, length; |
3881 struct buffer *buf = current_buffer; | |
665 | 3882 Charbpos begv, zv, old_pt = BUF_PT (buf); |
428 | 3883 Lisp_Object input; |
851 | 3884 int speccount = specpdl_depth (); |
428 | 3885 |
444 | 3886 get_buffer_range_char (buf, start, end, &begv, &zv, 0); |
428 | 3887 barf_if_buffer_read_only (buf, begv, zv); |
3888 | |
3889 /* We need to allocate enough room for encoding the text. | |
3890 We need 33 1/3% more space, plus a newline every 76 | |
3891 characters, and then we round up. */ | |
3892 length = zv - begv; | |
3893 allength = length + length/3 + 1; | |
3894 allength += allength / MIME_LINE_LENGTH + 1 + 6; | |
3895 | |
3896 input = make_lisp_buffer_input_stream (buf, begv, zv, 0); | |
867 | 3897 /* We needn't multiply allength with MAX_ICHAR_LEN because all the |
428 | 3898 base64 characters will be single-byte. */ |
867 | 3899 encoded = (Ibyte *) MALLOC_OR_ALLOCA (allength); |
428 | 3900 encoded_length = base64_encode_1 (XLSTREAM (input), encoded, |
3901 NILP (no_line_break)); | |
3902 if (encoded_length > allength) | |
2500 | 3903 ABORT (); |
428 | 3904 Lstream_delete (XLSTREAM (input)); |
3905 | |
3906 /* Now we have encoded the region, so we insert the new contents | |
3907 and delete the old. (Insert first in order to preserve markers.) */ | |
3908 buffer_insert_raw_string_1 (buf, begv, encoded, encoded_length, 0); | |
851 | 3909 unbind_to (speccount); |
428 | 3910 buffer_delete_range (buf, begv + encoded_length, zv + encoded_length, 0); |
3911 | |
3912 /* Simulate FSF Emacs implementation of this function: if point was | |
3913 in the region, place it at the beginning. */ | |
3914 if (old_pt >= begv && old_pt < zv) | |
3915 BUF_SET_PT (buf, begv); | |
3916 | |
3917 /* We return the length of the encoded text. */ | |
3918 return make_int (encoded_length); | |
3919 } | |
3920 | |
3921 DEFUN ("base64-encode-string", Fbase64_encode_string, 1, 2, 0, /* | |
3922 Base64 encode STRING and return the result. | |
444 | 3923 Optional argument NO-LINE-BREAK means do not break long lines |
3924 into shorter lines. | |
428 | 3925 */ |
3926 (string, no_line_break)) | |
3927 { | |
3928 Charcount allength, length; | |
665 | 3929 Bytebpos encoded_length; |
867 | 3930 Ibyte *encoded; |
428 | 3931 Lisp_Object input, result; |
3932 int speccount = specpdl_depth(); | |
3933 | |
3934 CHECK_STRING (string); | |
3935 | |
826 | 3936 length = string_char_length (string); |
428 | 3937 allength = length + length/3 + 1; |
3938 allength += allength / MIME_LINE_LENGTH + 1 + 6; | |
3939 | |
3940 input = make_lisp_string_input_stream (string, 0, -1); | |
867 | 3941 encoded = (Ibyte *) MALLOC_OR_ALLOCA (allength); |
428 | 3942 encoded_length = base64_encode_1 (XLSTREAM (input), encoded, |
3943 NILP (no_line_break)); | |
3944 if (encoded_length > allength) | |
2500 | 3945 ABORT (); |
428 | 3946 Lstream_delete (XLSTREAM (input)); |
3947 result = make_string (encoded, encoded_length); | |
851 | 3948 unbind_to (speccount); |
428 | 3949 return result; |
3950 } | |
3951 | |
3952 DEFUN ("base64-decode-region", Fbase64_decode_region, 2, 2, "r", /* | |
444 | 3953 Base64-decode the region between START and END. |
428 | 3954 Return the length of the decoded text. |
3955 If the region can't be decoded, return nil and don't modify the buffer. | |
3956 Characters out of the base64 alphabet are ignored. | |
3957 */ | |
444 | 3958 (start, end)) |
428 | 3959 { |
3960 struct buffer *buf = current_buffer; | |
665 | 3961 Charbpos begv, zv, old_pt = BUF_PT (buf); |
867 | 3962 Ibyte *decoded; |
665 | 3963 Bytebpos decoded_length; |
428 | 3964 Charcount length, cc_decoded_length; |
3965 Lisp_Object input; | |
3966 int speccount = specpdl_depth(); | |
3967 | |
444 | 3968 get_buffer_range_char (buf, start, end, &begv, &zv, 0); |
428 | 3969 barf_if_buffer_read_only (buf, begv, zv); |
3970 | |
3971 length = zv - begv; | |
3972 | |
3973 input = make_lisp_buffer_input_stream (buf, begv, zv, 0); | |
3974 /* We need to allocate enough room for decoding the text. */ | |
867 | 3975 decoded = (Ibyte *) MALLOC_OR_ALLOCA (length * MAX_ICHAR_LEN); |
428 | 3976 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, &cc_decoded_length); |
867 | 3977 if (decoded_length > length * MAX_ICHAR_LEN) |
2500 | 3978 ABORT (); |
428 | 3979 Lstream_delete (XLSTREAM (input)); |
3980 | |
3981 /* Now we have decoded the region, so we insert the new contents | |
3982 and delete the old. (Insert first in order to preserve markers.) */ | |
3983 BUF_SET_PT (buf, begv); | |
3984 buffer_insert_raw_string_1 (buf, begv, decoded, decoded_length, 0); | |
851 | 3985 unbind_to (speccount); |
428 | 3986 buffer_delete_range (buf, begv + cc_decoded_length, |
3987 zv + cc_decoded_length, 0); | |
3988 | |
3989 /* Simulate FSF Emacs implementation of this function: if point was | |
3990 in the region, place it at the beginning. */ | |
3991 if (old_pt >= begv && old_pt < zv) | |
3992 BUF_SET_PT (buf, begv); | |
3993 | |
3994 return make_int (cc_decoded_length); | |
3995 } | |
3996 | |
3997 DEFUN ("base64-decode-string", Fbase64_decode_string, 1, 1, 0, /* | |
3998 Base64-decode STRING and return the result. | |
3999 Characters out of the base64 alphabet are ignored. | |
4000 */ | |
4001 (string)) | |
4002 { | |
867 | 4003 Ibyte *decoded; |
665 | 4004 Bytebpos decoded_length; |
428 | 4005 Charcount length, cc_decoded_length; |
4006 Lisp_Object input, result; | |
4007 int speccount = specpdl_depth(); | |
4008 | |
4009 CHECK_STRING (string); | |
4010 | |
826 | 4011 length = string_char_length (string); |
428 | 4012 /* We need to allocate enough room for decoding the text. */ |
867 | 4013 decoded = (Ibyte *) MALLOC_OR_ALLOCA (length * MAX_ICHAR_LEN); |
428 | 4014 |
4015 input = make_lisp_string_input_stream (string, 0, -1); | |
4016 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, | |
4017 &cc_decoded_length); | |
867 | 4018 if (decoded_length > length * MAX_ICHAR_LEN) |
2500 | 4019 ABORT (); |
428 | 4020 Lstream_delete (XLSTREAM (input)); |
4021 | |
4022 result = make_string (decoded, decoded_length); | |
851 | 4023 unbind_to (speccount); |
428 | 4024 return result; |
4025 } | |
4026 | |
4027 Lisp_Object Qyes_or_no_p; | |
4028 | |
4029 void | |
4030 syms_of_fns (void) | |
4031 { | |
442 | 4032 INIT_LRECORD_IMPLEMENTATION (bit_vector); |
4033 | |
563 | 4034 DEFSYMBOL (Qstring_lessp); |
4035 DEFSYMBOL (Qidentity); | |
4036 DEFSYMBOL (Qyes_or_no_p); | |
4037 | |
4038 DEFERROR_STANDARD (Qbase64_conversion_error, Qconversion_error); | |
428 | 4039 |
4040 DEFSUBR (Fidentity); | |
4041 DEFSUBR (Frandom); | |
4042 DEFSUBR (Flength); | |
4043 DEFSUBR (Fsafe_length); | |
4044 DEFSUBR (Fstring_equal); | |
801 | 4045 DEFSUBR (Fcompare_strings); |
428 | 4046 DEFSUBR (Fstring_lessp); |
4047 DEFSUBR (Fstring_modified_tick); | |
4048 DEFSUBR (Fappend); | |
4049 DEFSUBR (Fconcat); | |
4050 DEFSUBR (Fvconcat); | |
4051 DEFSUBR (Fbvconcat); | |
4052 DEFSUBR (Fcopy_list); | |
4053 DEFSUBR (Fcopy_sequence); | |
4054 DEFSUBR (Fcopy_alist); | |
4055 DEFSUBR (Fcopy_tree); | |
4056 DEFSUBR (Fsubstring); | |
4057 DEFSUBR (Fsubseq); | |
4058 DEFSUBR (Fnthcdr); | |
4059 DEFSUBR (Fnth); | |
4060 DEFSUBR (Felt); | |
4061 DEFSUBR (Flast); | |
4062 DEFSUBR (Fbutlast); | |
4063 DEFSUBR (Fnbutlast); | |
4064 DEFSUBR (Fmember); | |
4065 DEFSUBR (Fold_member); | |
4066 DEFSUBR (Fmemq); | |
4067 DEFSUBR (Fold_memq); | |
4068 DEFSUBR (Fassoc); | |
4069 DEFSUBR (Fold_assoc); | |
4070 DEFSUBR (Fassq); | |
4071 DEFSUBR (Fold_assq); | |
4072 DEFSUBR (Frassoc); | |
4073 DEFSUBR (Fold_rassoc); | |
4074 DEFSUBR (Frassq); | |
4075 DEFSUBR (Fold_rassq); | |
4076 DEFSUBR (Fdelete); | |
4077 DEFSUBR (Fold_delete); | |
4078 DEFSUBR (Fdelq); | |
4079 DEFSUBR (Fold_delq); | |
4080 DEFSUBR (Fremassoc); | |
4081 DEFSUBR (Fremassq); | |
4082 DEFSUBR (Fremrassoc); | |
4083 DEFSUBR (Fremrassq); | |
4084 DEFSUBR (Fnreverse); | |
4085 DEFSUBR (Freverse); | |
4086 DEFSUBR (Fsort); | |
4087 DEFSUBR (Fplists_eq); | |
4088 DEFSUBR (Fplists_equal); | |
4089 DEFSUBR (Flax_plists_eq); | |
4090 DEFSUBR (Flax_plists_equal); | |
4091 DEFSUBR (Fplist_get); | |
4092 DEFSUBR (Fplist_put); | |
4093 DEFSUBR (Fplist_remprop); | |
4094 DEFSUBR (Fplist_member); | |
4095 DEFSUBR (Fcheck_valid_plist); | |
4096 DEFSUBR (Fvalid_plist_p); | |
4097 DEFSUBR (Fcanonicalize_plist); | |
4098 DEFSUBR (Flax_plist_get); | |
4099 DEFSUBR (Flax_plist_put); | |
4100 DEFSUBR (Flax_plist_remprop); | |
4101 DEFSUBR (Flax_plist_member); | |
4102 DEFSUBR (Fcanonicalize_lax_plist); | |
4103 DEFSUBR (Fdestructive_alist_to_plist); | |
4104 DEFSUBR (Fget); | |
4105 DEFSUBR (Fput); | |
4106 DEFSUBR (Fremprop); | |
4107 DEFSUBR (Fobject_plist); | |
4108 DEFSUBR (Fequal); | |
4109 DEFSUBR (Fold_equal); | |
4110 DEFSUBR (Ffillarray); | |
4111 DEFSUBR (Fnconc); | |
4112 DEFSUBR (Fmapcar); | |
4113 DEFSUBR (Fmapvector); | |
4114 DEFSUBR (Fmapc_internal); | |
4115 DEFSUBR (Fmapconcat); | |
442 | 4116 DEFSUBR (Freplace_list); |
428 | 4117 DEFSUBR (Fload_average); |
4118 DEFSUBR (Ffeaturep); | |
4119 DEFSUBR (Frequire); | |
4120 DEFSUBR (Fprovide); | |
4121 DEFSUBR (Fbase64_encode_region); | |
4122 DEFSUBR (Fbase64_encode_string); | |
4123 DEFSUBR (Fbase64_decode_region); | |
4124 DEFSUBR (Fbase64_decode_string); | |
771 | 4125 |
4126 DEFSUBR (Fsplit_string_by_char); | |
4127 DEFSUBR (Fsplit_path); /* #### */ | |
4128 } | |
4129 | |
4130 void | |
4131 vars_of_fns (void) | |
4132 { | |
4133 DEFVAR_LISP ("path-separator", &Vpath_separator /* | |
4134 The directory separator in search paths, as a string. | |
4135 */ ); | |
4136 { | |
4137 char c = SEPCHAR; | |
867 | 4138 Vpath_separator = make_string ((Ibyte *) &c, 1); |
771 | 4139 } |
428 | 4140 } |
4141 | |
4142 void | |
4143 init_provide_once (void) | |
4144 { | |
4145 DEFVAR_LISP ("features", &Vfeatures /* | |
4146 A list of symbols which are the features of the executing emacs. | |
4147 Used by `featurep' and `require', and altered by `provide'. | |
4148 */ ); | |
4149 Vfeatures = Qnil; | |
4150 | |
4151 Fprovide (intern ("base64")); | |
4152 } |