428
|
1 /* Random utility Lisp functions.
|
|
2 Copyright (C) 1985, 86, 87, 93, 94, 95 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995, 1996 Ben Wing.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: Mule 2.0, FSF 19.30. */
|
|
23
|
|
24 /* This file has been Mule-ized. */
|
|
25
|
|
26 /* Note: FSF 19.30 has bool vectors. We have bit vectors. */
|
|
27
|
|
28 /* Hacked on for Mule by Ben Wing, December 1994, January 1995. */
|
|
29
|
|
30 #include <config.h>
|
|
31
|
|
32 /* Note on some machines this defines `vector' as a typedef,
|
|
33 so make sure we don't use that name in this file. */
|
|
34 #undef vector
|
|
35 #define vector *****
|
|
36
|
|
37 #include "lisp.h"
|
|
38
|
|
39 #ifdef HAVE_UNISTD_H
|
|
40 #include <unistd.h>
|
|
41 #endif
|
|
42 #include <errno.h>
|
|
43
|
|
44 #include "buffer.h"
|
|
45 #include "bytecode.h"
|
|
46 #include "device.h"
|
|
47 #include "events.h"
|
|
48 #include "extents.h"
|
|
49 #include "frame.h"
|
|
50 #include "systime.h"
|
|
51 #include "insdel.h"
|
|
52 #include "lstream.h"
|
|
53 #include "opaque.h"
|
|
54
|
|
55 /* NOTE: This symbol is also used in lread.c */
|
|
56 #define FEATUREP_SYNTAX
|
|
57
|
|
58 Lisp_Object Qstring_lessp;
|
|
59 Lisp_Object Qidentity;
|
|
60
|
|
61 static int internal_old_equal (Lisp_Object, Lisp_Object, int);
|
|
62
|
|
63 static Lisp_Object
|
|
64 mark_bit_vector (Lisp_Object obj)
|
|
65 {
|
|
66 return Qnil;
|
|
67 }
|
|
68
|
|
69 static void
|
|
70 print_bit_vector (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
|
|
71 {
|
|
72 size_t i;
|
|
73 struct Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
|
|
74 size_t len = bit_vector_length (v);
|
|
75 size_t last = len;
|
|
76
|
|
77 if (INTP (Vprint_length))
|
|
78 last = min (len, XINT (Vprint_length));
|
|
79 write_c_string ("#*", printcharfun);
|
|
80 for (i = 0; i < last; i++)
|
|
81 {
|
|
82 if (bit_vector_bit (v, i))
|
|
83 write_c_string ("1", printcharfun);
|
|
84 else
|
|
85 write_c_string ("0", printcharfun);
|
|
86 }
|
|
87
|
|
88 if (last != len)
|
|
89 write_c_string ("...", printcharfun);
|
|
90 }
|
|
91
|
|
92 static int
|
|
93 bit_vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
94 {
|
|
95 struct Lisp_Bit_Vector *v1 = XBIT_VECTOR (obj1);
|
|
96 struct Lisp_Bit_Vector *v2 = XBIT_VECTOR (obj2);
|
|
97
|
|
98 return ((bit_vector_length (v1) == bit_vector_length (v2)) &&
|
|
99 !memcmp (v1->bits, v2->bits,
|
|
100 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v1)) *
|
|
101 sizeof (long)));
|
|
102 }
|
|
103
|
|
104 static unsigned long
|
|
105 bit_vector_hash (Lisp_Object obj, int depth)
|
|
106 {
|
|
107 struct Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
|
|
108 return HASH2 (bit_vector_length (v),
|
|
109 memory_hash (v->bits,
|
|
110 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)) *
|
|
111 sizeof (long)));
|
|
112 }
|
|
113
|
|
114 static const struct lrecord_description bit_vector_description[] = {
|
|
115 { XD_LISP_OBJECT, offsetof(Lisp_Bit_Vector, next), 1 },
|
|
116 { XD_END }
|
|
117 };
|
|
118
|
|
119
|
|
120 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("bit-vector", bit_vector,
|
|
121 mark_bit_vector, print_bit_vector, 0,
|
|
122 bit_vector_equal, bit_vector_hash,
|
|
123 bit_vector_description,
|
|
124 struct Lisp_Bit_Vector);
|
|
125
|
|
126 DEFUN ("identity", Fidentity, 1, 1, 0, /*
|
|
127 Return the argument unchanged.
|
|
128 */
|
|
129 (arg))
|
|
130 {
|
|
131 return arg;
|
|
132 }
|
|
133
|
|
134 extern long get_random (void);
|
|
135 extern void seed_random (long arg);
|
|
136
|
|
137 DEFUN ("random", Frandom, 0, 1, 0, /*
|
|
138 Return a pseudo-random number.
|
|
139 All integers representable in Lisp are equally likely.
|
|
140 On most systems, this is 28 bits' worth.
|
|
141 With positive integer argument N, return random number in interval [0,N).
|
|
142 With argument t, set the random number seed from the current time and pid.
|
|
143 */
|
|
144 (limit))
|
|
145 {
|
|
146 EMACS_INT val;
|
|
147 unsigned long denominator;
|
|
148
|
|
149 if (EQ (limit, Qt))
|
|
150 seed_random (getpid () + time (NULL));
|
|
151 if (NATNUMP (limit) && !ZEROP (limit))
|
|
152 {
|
|
153 /* Try to take our random number from the higher bits of VAL,
|
|
154 not the lower, since (says Gentzel) the low bits of `random'
|
|
155 are less random than the higher ones. We do this by using the
|
|
156 quotient rather than the remainder. At the high end of the RNG
|
|
157 it's possible to get a quotient larger than limit; discarding
|
|
158 these values eliminates the bias that would otherwise appear
|
|
159 when using a large limit. */
|
|
160 denominator = ((unsigned long)1 << VALBITS) / XINT (limit);
|
|
161 do
|
|
162 val = get_random () / denominator;
|
|
163 while (val >= XINT (limit));
|
|
164 }
|
|
165 else
|
|
166 val = get_random ();
|
|
167
|
|
168 return make_int (val);
|
|
169 }
|
|
170
|
|
171 /* Random data-structure functions */
|
|
172
|
|
173 #ifdef LOSING_BYTECODE
|
|
174
|
|
175 /* #### Delete this shit */
|
|
176
|
|
177 /* Charcount is a misnomer here as we might be dealing with the
|
|
178 length of a vector or list, but emphasizes that we're not dealing
|
|
179 with Bytecounts in strings */
|
|
180 static Charcount
|
|
181 length_with_bytecode_hack (Lisp_Object seq)
|
|
182 {
|
|
183 if (!COMPILED_FUNCTIONP (seq))
|
|
184 return XINT (Flength (seq));
|
|
185 else
|
|
186 {
|
|
187 struct Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (seq);
|
|
188
|
|
189 return (f->flags.interactivep ? COMPILED_INTERACTIVE :
|
|
190 f->flags.domainp ? COMPILED_DOMAIN :
|
|
191 COMPILED_DOC_STRING)
|
|
192 + 1;
|
|
193 }
|
|
194 }
|
|
195
|
|
196 #endif /* LOSING_BYTECODE */
|
|
197
|
|
198 void
|
|
199 check_losing_bytecode (CONST char *function, Lisp_Object seq)
|
|
200 {
|
|
201 if (COMPILED_FUNCTIONP (seq))
|
|
202 error_with_frob
|
|
203 (seq,
|
|
204 "As of 20.3, `%s' no longer works with compiled-function objects",
|
|
205 function);
|
|
206 }
|
|
207
|
|
208 DEFUN ("length", Flength, 1, 1, 0, /*
|
|
209 Return the length of vector, bit vector, list or string SEQUENCE.
|
|
210 */
|
|
211 (sequence))
|
|
212 {
|
|
213 retry:
|
|
214 if (STRINGP (sequence))
|
|
215 return make_int (XSTRING_CHAR_LENGTH (sequence));
|
|
216 else if (CONSP (sequence))
|
|
217 {
|
|
218 size_t len;
|
|
219 GET_EXTERNAL_LIST_LENGTH (sequence, len);
|
|
220 return make_int (len);
|
|
221 }
|
|
222 else if (VECTORP (sequence))
|
|
223 return make_int (XVECTOR_LENGTH (sequence));
|
|
224 else if (NILP (sequence))
|
|
225 return Qzero;
|
|
226 else if (BIT_VECTORP (sequence))
|
|
227 return make_int (bit_vector_length (XBIT_VECTOR (sequence)));
|
|
228 else
|
|
229 {
|
|
230 check_losing_bytecode ("length", sequence);
|
|
231 sequence = wrong_type_argument (Qsequencep, sequence);
|
|
232 goto retry;
|
|
233 }
|
|
234 }
|
|
235
|
|
236 DEFUN ("safe-length", Fsafe_length, 1, 1, 0, /*
|
|
237 Return the length of a list, but avoid error or infinite loop.
|
|
238 This function never gets an error. If LIST is not really a list,
|
|
239 it returns 0. If LIST is circular, it returns a finite value
|
|
240 which is at least the number of distinct elements.
|
|
241 */
|
|
242 (list))
|
|
243 {
|
|
244 Lisp_Object hare, tortoise;
|
|
245 size_t len;
|
|
246
|
|
247 for (hare = tortoise = list, len = 0;
|
|
248 CONSP (hare) && (! EQ (hare, tortoise) || len == 0);
|
|
249 hare = XCDR (hare), len++)
|
|
250 {
|
|
251 if (len & 1)
|
|
252 tortoise = XCDR (tortoise);
|
|
253 }
|
|
254
|
|
255 return make_int (len);
|
|
256 }
|
|
257
|
|
258 /*** string functions. ***/
|
|
259
|
|
260 DEFUN ("string-equal", Fstring_equal, 2, 2, 0, /*
|
|
261 Return t if two strings have identical contents.
|
|
262 Case is significant. Text properties are ignored.
|
|
263 \(Under XEmacs, `equal' also ignores text properties and extents in
|
|
264 strings, but this is not the case under FSF Emacs 19. In FSF Emacs 20
|
|
265 `equal' is the same as in XEmacs, in that respect.)
|
|
266 Symbols are also allowed; their print names are used instead.
|
|
267 */
|
|
268 (s1, s2))
|
|
269 {
|
|
270 Bytecount len;
|
|
271 struct Lisp_String *p1, *p2;
|
|
272
|
|
273 if (SYMBOLP (s1))
|
|
274 p1 = XSYMBOL (s1)->name;
|
|
275 else
|
|
276 {
|
|
277 CHECK_STRING (s1);
|
|
278 p1 = XSTRING (s1);
|
|
279 }
|
|
280
|
|
281 if (SYMBOLP (s2))
|
|
282 p2 = XSYMBOL (s2)->name;
|
|
283 else
|
|
284 {
|
|
285 CHECK_STRING (s2);
|
|
286 p2 = XSTRING (s2);
|
|
287 }
|
|
288
|
|
289 return (((len = string_length (p1)) == string_length (p2)) &&
|
|
290 !memcmp (string_data (p1), string_data (p2), len)) ? Qt : Qnil;
|
|
291 }
|
|
292
|
|
293
|
|
294 DEFUN ("string-lessp", Fstring_lessp, 2, 2, 0, /*
|
|
295 Return t if first arg string is less than second in lexicographic order.
|
|
296 If I18N2 support (but not Mule support) was compiled in, ordering is
|
|
297 determined by the locale. (Case is significant for the default C locale.)
|
|
298 In all other cases, comparison is simply done on a character-by-
|
|
299 character basis using the numeric value of a character. (Note that
|
|
300 this may not produce particularly meaningful results under Mule if
|
|
301 characters from different charsets are being compared.)
|
|
302
|
|
303 Symbols are also allowed; their print names are used instead.
|
|
304
|
|
305 The reason that the I18N2 locale-specific collation is not used under
|
|
306 Mule is that the locale model of internationalization does not handle
|
|
307 multiple charsets and thus has no hope of working properly under Mule.
|
|
308 What we really should do is create a collation table over all built-in
|
|
309 charsets. This is extremely difficult to do from scratch, however.
|
|
310
|
|
311 Unicode is a good first step towards solving this problem. In fact,
|
|
312 it is quite likely that a collation table exists (or will exist) for
|
|
313 Unicode. When Unicode support is added to XEmacs/Mule, this problem
|
|
314 may be solved.
|
|
315 */
|
|
316 (s1, s2))
|
|
317 {
|
|
318 struct Lisp_String *p1, *p2;
|
|
319 Charcount end, len2;
|
|
320 int i;
|
|
321
|
|
322 if (SYMBOLP (s1))
|
|
323 p1 = XSYMBOL (s1)->name;
|
|
324 else
|
|
325 {
|
|
326 CHECK_STRING (s1);
|
|
327 p1 = XSTRING (s1);
|
|
328 }
|
|
329
|
|
330 if (SYMBOLP (s2))
|
|
331 p2 = XSYMBOL (s2)->name;
|
|
332 else
|
|
333 {
|
|
334 CHECK_STRING (s2);
|
|
335 p2 = XSTRING (s2);
|
|
336 }
|
|
337
|
|
338 end = string_char_length (p1);
|
|
339 len2 = string_char_length (p2);
|
|
340 if (end > len2)
|
|
341 end = len2;
|
|
342
|
|
343 #if defined (I18N2) && !defined (MULE)
|
|
344 /* There is no hope of this working under Mule. Even if we converted
|
|
345 the data into an external format so that strcoll() processed it
|
|
346 properly, it would still not work because strcoll() does not
|
|
347 handle multiple locales. This is the fundamental flaw in the
|
|
348 locale model. */
|
|
349 {
|
|
350 Bytecount bcend = charcount_to_bytecount (string_data (p1), end);
|
|
351 /* Compare strings using collation order of locale. */
|
|
352 /* Need to be tricky to handle embedded nulls. */
|
|
353
|
|
354 for (i = 0; i < bcend; i += strlen((char *) string_data (p1) + i) + 1)
|
|
355 {
|
|
356 int val = strcoll ((char *) string_data (p1) + i,
|
|
357 (char *) string_data (p2) + i);
|
|
358 if (val < 0)
|
|
359 return Qt;
|
|
360 if (val > 0)
|
|
361 return Qnil;
|
|
362 }
|
|
363 }
|
|
364 #else /* not I18N2, or MULE */
|
|
365 {
|
|
366 Bufbyte *ptr1 = string_data (p1);
|
|
367 Bufbyte *ptr2 = string_data (p2);
|
|
368
|
|
369 /* #### It is not really necessary to do this: We could compare
|
|
370 byte-by-byte and still get a reasonable comparison, since this
|
|
371 would compare characters with a charset in the same way. With
|
|
372 a little rearrangement of the leading bytes, we could make most
|
|
373 inter-charset comparisons work out the same, too; even if some
|
|
374 don't, this is not a big deal because inter-charset comparisons
|
|
375 aren't really well-defined anyway. */
|
|
376 for (i = 0; i < end; i++)
|
|
377 {
|
|
378 if (charptr_emchar (ptr1) != charptr_emchar (ptr2))
|
|
379 return charptr_emchar (ptr1) < charptr_emchar (ptr2) ? Qt : Qnil;
|
|
380 INC_CHARPTR (ptr1);
|
|
381 INC_CHARPTR (ptr2);
|
|
382 }
|
|
383 }
|
|
384 #endif /* not I18N2, or MULE */
|
|
385 /* Can't do i < len2 because then comparison between "foo" and "foo^@"
|
|
386 won't work right in I18N2 case */
|
|
387 return end < len2 ? Qt : Qnil;
|
|
388 }
|
|
389
|
|
390 DEFUN ("string-modified-tick", Fstring_modified_tick, 1, 1, 0, /*
|
|
391 Return STRING's tick counter, incremented for each change to the string.
|
|
392 Each string has a tick counter which is incremented each time the contents
|
|
393 of the string are changed (e.g. with `aset'). It wraps around occasionally.
|
|
394 */
|
|
395 (string))
|
|
396 {
|
|
397 struct Lisp_String *s;
|
|
398
|
|
399 CHECK_STRING (string);
|
|
400 s = XSTRING (string);
|
|
401 if (CONSP (s->plist) && INTP (XCAR (s->plist)))
|
|
402 return XCAR (s->plist);
|
|
403 else
|
|
404 return Qzero;
|
|
405 }
|
|
406
|
|
407 void
|
|
408 bump_string_modiff (Lisp_Object str)
|
|
409 {
|
|
410 struct Lisp_String *s = XSTRING (str);
|
|
411 Lisp_Object *ptr = &s->plist;
|
|
412
|
|
413 #ifdef I18N3
|
|
414 /* #### remove the `string-translatable' property from the string,
|
|
415 if there is one. */
|
|
416 #endif
|
|
417 /* skip over extent info if it's there */
|
|
418 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
|
|
419 ptr = &XCDR (*ptr);
|
|
420 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
|
|
421 XSETINT (XCAR (*ptr), 1+XINT (XCAR (*ptr)));
|
|
422 else
|
|
423 *ptr = Fcons (make_int (1), *ptr);
|
|
424 }
|
|
425
|
|
426
|
|
427 enum concat_target_type { c_cons, c_string, c_vector, c_bit_vector };
|
|
428 static Lisp_Object concat (int nargs, Lisp_Object *args,
|
|
429 enum concat_target_type target_type,
|
|
430 int last_special);
|
|
431
|
|
432 Lisp_Object
|
|
433 concat2 (Lisp_Object s1, Lisp_Object s2)
|
|
434 {
|
|
435 Lisp_Object args[2];
|
|
436 args[0] = s1;
|
|
437 args[1] = s2;
|
|
438 return concat (2, args, c_string, 0);
|
|
439 }
|
|
440
|
|
441 Lisp_Object
|
|
442 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
|
|
443 {
|
|
444 Lisp_Object args[3];
|
|
445 args[0] = s1;
|
|
446 args[1] = s2;
|
|
447 args[2] = s3;
|
|
448 return concat (3, args, c_string, 0);
|
|
449 }
|
|
450
|
|
451 Lisp_Object
|
|
452 vconcat2 (Lisp_Object s1, Lisp_Object s2)
|
|
453 {
|
|
454 Lisp_Object args[2];
|
|
455 args[0] = s1;
|
|
456 args[1] = s2;
|
|
457 return concat (2, args, c_vector, 0);
|
|
458 }
|
|
459
|
|
460 Lisp_Object
|
|
461 vconcat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
|
|
462 {
|
|
463 Lisp_Object args[3];
|
|
464 args[0] = s1;
|
|
465 args[1] = s2;
|
|
466 args[2] = s3;
|
|
467 return concat (3, args, c_vector, 0);
|
|
468 }
|
|
469
|
|
470 DEFUN ("append", Fappend, 0, MANY, 0, /*
|
|
471 Concatenate all the arguments and make the result a list.
|
|
472 The result is a list whose elements are the elements of all the arguments.
|
|
473 Each argument may be a list, vector, bit vector, or string.
|
|
474 The last argument is not copied, just used as the tail of the new list.
|
|
475 Also see: `nconc'.
|
|
476 */
|
|
477 (int nargs, Lisp_Object *args))
|
|
478 {
|
|
479 return concat (nargs, args, c_cons, 1);
|
|
480 }
|
|
481
|
|
482 DEFUN ("concat", Fconcat, 0, MANY, 0, /*
|
|
483 Concatenate all the arguments and make the result a string.
|
|
484 The result is a string whose elements are the elements of all the arguments.
|
|
485 Each argument may be a string or a list or vector of characters.
|
|
486
|
|
487 As of XEmacs 21.0, this function does NOT accept individual integers
|
|
488 as arguments. Old code that relies on, for example, (concat "foo" 50)
|
|
489 returning "foo50" will fail. To fix such code, either apply
|
|
490 `int-to-string' to the integer argument, or use `format'.
|
|
491 */
|
|
492 (int nargs, Lisp_Object *args))
|
|
493 {
|
|
494 return concat (nargs, args, c_string, 0);
|
|
495 }
|
|
496
|
|
497 DEFUN ("vconcat", Fvconcat, 0, MANY, 0, /*
|
|
498 Concatenate all the arguments and make the result a vector.
|
|
499 The result is a vector whose elements are the elements of all the arguments.
|
|
500 Each argument may be a list, vector, bit vector, or string.
|
|
501 */
|
|
502 (int nargs, Lisp_Object *args))
|
|
503 {
|
|
504 return concat (nargs, args, c_vector, 0);
|
|
505 }
|
|
506
|
|
507 DEFUN ("bvconcat", Fbvconcat, 0, MANY, 0, /*
|
|
508 Concatenate all the arguments and make the result a bit vector.
|
|
509 The result is a bit vector whose elements are the elements of all the
|
|
510 arguments. Each argument may be a list, vector, bit vector, or string.
|
|
511 */
|
|
512 (int nargs, Lisp_Object *args))
|
|
513 {
|
|
514 return concat (nargs, args, c_bit_vector, 0);
|
|
515 }
|
|
516
|
|
517 /* Copy a (possibly dotted) list. LIST must be a cons.
|
|
518 Can't use concat (1, &alist, c_cons, 0) - doesn't handle dotted lists. */
|
|
519 static Lisp_Object
|
|
520 copy_list (Lisp_Object list)
|
|
521 {
|
|
522 Lisp_Object list_copy = Fcons (XCAR (list), XCDR (list));
|
|
523 Lisp_Object last = list_copy;
|
|
524 Lisp_Object hare, tortoise;
|
|
525 size_t len;
|
|
526
|
|
527 for (tortoise = hare = XCDR (list), len = 1;
|
|
528 CONSP (hare);
|
|
529 hare = XCDR (hare), len++)
|
|
530 {
|
|
531 XCDR (last) = Fcons (XCAR (hare), XCDR (hare));
|
|
532 last = XCDR (last);
|
|
533
|
|
534 if (len < CIRCULAR_LIST_SUSPICION_LENGTH)
|
|
535 continue;
|
|
536 if (len & 1)
|
|
537 tortoise = XCDR (tortoise);
|
|
538 if (EQ (tortoise, hare))
|
|
539 signal_circular_list_error (list);
|
|
540 }
|
|
541
|
|
542 return list_copy;
|
|
543 }
|
|
544
|
|
545 DEFUN ("copy-list", Fcopy_list, 1, 1, 0, /*
|
|
546 Return a copy of list LIST, which may be a dotted list.
|
|
547 The elements of LIST are not copied; they are shared
|
|
548 with the original.
|
|
549 */
|
|
550 (list))
|
|
551 {
|
|
552 again:
|
|
553 if (NILP (list)) return list;
|
|
554 if (CONSP (list)) return copy_list (list);
|
|
555
|
|
556 list = wrong_type_argument (Qlistp, list);
|
|
557 goto again;
|
|
558 }
|
|
559
|
|
560 DEFUN ("copy-sequence", Fcopy_sequence, 1, 1, 0, /*
|
|
561 Return a copy of list, vector, bit vector or string SEQUENCE.
|
|
562 The elements of a list or vector are not copied; they are shared
|
|
563 with the original. SEQUENCE may be a dotted list.
|
|
564 */
|
|
565 (sequence))
|
|
566 {
|
|
567 again:
|
|
568 if (NILP (sequence)) return sequence;
|
|
569 if (CONSP (sequence)) return copy_list (sequence);
|
|
570 if (STRINGP (sequence)) return concat (1, &sequence, c_string, 0);
|
|
571 if (VECTORP (sequence)) return concat (1, &sequence, c_vector, 0);
|
|
572 if (BIT_VECTORP (sequence)) return concat (1, &sequence, c_bit_vector, 0);
|
|
573
|
|
574 check_losing_bytecode ("copy-sequence", sequence);
|
|
575 sequence = wrong_type_argument (Qsequencep, sequence);
|
|
576 goto again;
|
|
577 }
|
|
578
|
|
579 struct merge_string_extents_struct
|
|
580 {
|
|
581 Lisp_Object string;
|
|
582 Bytecount entry_offset;
|
|
583 Bytecount entry_length;
|
|
584 };
|
|
585
|
|
586 static Lisp_Object
|
|
587 concat (int nargs, Lisp_Object *args,
|
|
588 enum concat_target_type target_type,
|
|
589 int last_special)
|
|
590 {
|
|
591 Lisp_Object val;
|
|
592 Lisp_Object tail = Qnil;
|
|
593 int toindex;
|
|
594 int argnum;
|
|
595 Lisp_Object last_tail;
|
|
596 Lisp_Object prev;
|
|
597 struct merge_string_extents_struct *args_mse = 0;
|
|
598 Bufbyte *string_result = 0;
|
|
599 Bufbyte *string_result_ptr = 0;
|
|
600 struct gcpro gcpro1;
|
|
601
|
|
602 /* The modus operandi in Emacs is "caller gc-protects args".
|
|
603 However, concat is called many times in Emacs on freshly
|
|
604 created stuff. So we help those callers out by protecting
|
|
605 the args ourselves to save them a lot of temporary-variable
|
|
606 grief. */
|
|
607
|
|
608 GCPRO1 (args[0]);
|
|
609 gcpro1.nvars = nargs;
|
|
610
|
|
611 #ifdef I18N3
|
|
612 /* #### if the result is a string and any of the strings have a string
|
|
613 for the `string-translatable' property, then concat should also
|
|
614 concat the args but use the `string-translatable' strings, and store
|
|
615 the result in the returned string's `string-translatable' property. */
|
|
616 #endif
|
|
617 if (target_type == c_string)
|
|
618 args_mse = alloca_array (struct merge_string_extents_struct, nargs);
|
|
619
|
|
620 /* In append, the last arg isn't treated like the others */
|
|
621 if (last_special && nargs > 0)
|
|
622 {
|
|
623 nargs--;
|
|
624 last_tail = args[nargs];
|
|
625 }
|
|
626 else
|
|
627 last_tail = Qnil;
|
|
628
|
|
629 /* Check and coerce the arguments. */
|
|
630 for (argnum = 0; argnum < nargs; argnum++)
|
|
631 {
|
|
632 Lisp_Object seq = args[argnum];
|
|
633 if (LISTP (seq))
|
|
634 ;
|
|
635 else if (VECTORP (seq) || STRINGP (seq) || BIT_VECTORP (seq))
|
|
636 ;
|
|
637 #ifdef LOSING_BYTECODE
|
|
638 else if (COMPILED_FUNCTIONP (seq))
|
|
639 /* Urk! We allow this, for "compatibility"... */
|
|
640 ;
|
|
641 #endif
|
|
642 #if 0 /* removed for XEmacs 21 */
|
|
643 else if (INTP (seq))
|
|
644 /* This is too revolting to think about but maintains
|
|
645 compatibility with FSF (and lots and lots of old code). */
|
|
646 args[argnum] = Fnumber_to_string (seq);
|
|
647 #endif
|
|
648 else
|
|
649 {
|
|
650 check_losing_bytecode ("concat", seq);
|
|
651 args[argnum] = wrong_type_argument (Qsequencep, seq);
|
|
652 }
|
|
653
|
|
654 if (args_mse)
|
|
655 {
|
|
656 if (STRINGP (seq))
|
|
657 args_mse[argnum].string = seq;
|
|
658 else
|
|
659 args_mse[argnum].string = Qnil;
|
|
660 }
|
|
661 }
|
|
662
|
|
663 {
|
|
664 /* Charcount is a misnomer here as we might be dealing with the
|
|
665 length of a vector or list, but emphasizes that we're not dealing
|
|
666 with Bytecounts in strings */
|
|
667 Charcount total_length;
|
|
668
|
|
669 for (argnum = 0, total_length = 0; argnum < nargs; argnum++)
|
|
670 {
|
|
671 #ifdef LOSING_BYTECODE
|
|
672 Charcount thislen = length_with_bytecode_hack (args[argnum]);
|
|
673 #else
|
|
674 Charcount thislen = XINT (Flength (args[argnum]));
|
|
675 #endif
|
|
676 total_length += thislen;
|
|
677 }
|
|
678
|
|
679 switch (target_type)
|
|
680 {
|
|
681 case c_cons:
|
|
682 if (total_length == 0)
|
|
683 /* In append, if all but last arg are nil, return last arg */
|
|
684 RETURN_UNGCPRO (last_tail);
|
|
685 val = Fmake_list (make_int (total_length), Qnil);
|
|
686 break;
|
|
687 case c_vector:
|
|
688 val = make_vector (total_length, Qnil);
|
|
689 break;
|
|
690 case c_bit_vector:
|
|
691 val = make_bit_vector (total_length, Qzero);
|
|
692 break;
|
|
693 case c_string:
|
|
694 /* We don't make the string yet because we don't know the
|
|
695 actual number of bytes. This loop was formerly written
|
|
696 to call Fmake_string() here and then call set_string_char()
|
|
697 for each char. This seems logical enough but is waaaaaaaay
|
|
698 slow -- set_string_char() has to scan the whole string up
|
|
699 to the place where the substitution is called for in order
|
|
700 to find the place to change, and may have to do some
|
|
701 realloc()ing in order to make the char fit properly.
|
|
702 O(N^2) yuckage. */
|
|
703 val = Qnil;
|
|
704 string_result = (Bufbyte *) alloca (total_length * MAX_EMCHAR_LEN);
|
|
705 string_result_ptr = string_result;
|
|
706 break;
|
|
707 default:
|
|
708 abort ();
|
|
709 }
|
|
710 }
|
|
711
|
|
712
|
|
713 if (CONSP (val))
|
|
714 tail = val, toindex = -1; /* -1 in toindex is flag we are
|
|
715 making a list */
|
|
716 else
|
|
717 toindex = 0;
|
|
718
|
|
719 prev = Qnil;
|
|
720
|
|
721 for (argnum = 0; argnum < nargs; argnum++)
|
|
722 {
|
|
723 Charcount thisleni = 0;
|
|
724 Charcount thisindex = 0;
|
|
725 Lisp_Object seq = args[argnum];
|
|
726 Bufbyte *string_source_ptr = 0;
|
|
727 Bufbyte *string_prev_result_ptr = string_result_ptr;
|
|
728
|
|
729 if (!CONSP (seq))
|
|
730 {
|
|
731 #ifdef LOSING_BYTECODE
|
|
732 thisleni = length_with_bytecode_hack (seq);
|
|
733 #else
|
|
734 thisleni = XINT (Flength (seq));
|
|
735 #endif
|
|
736 }
|
|
737 if (STRINGP (seq))
|
|
738 string_source_ptr = XSTRING_DATA (seq);
|
|
739
|
|
740 while (1)
|
|
741 {
|
|
742 Lisp_Object elt;
|
|
743
|
|
744 /* We've come to the end of this arg, so exit. */
|
|
745 if (NILP (seq))
|
|
746 break;
|
|
747
|
|
748 /* Fetch next element of `seq' arg into `elt' */
|
|
749 if (CONSP (seq))
|
|
750 {
|
|
751 elt = XCAR (seq);
|
|
752 seq = XCDR (seq);
|
|
753 }
|
|
754 else
|
|
755 {
|
|
756 if (thisindex >= thisleni)
|
|
757 break;
|
|
758
|
|
759 if (STRINGP (seq))
|
|
760 {
|
|
761 elt = make_char (charptr_emchar (string_source_ptr));
|
|
762 INC_CHARPTR (string_source_ptr);
|
|
763 }
|
|
764 else if (VECTORP (seq))
|
|
765 elt = XVECTOR_DATA (seq)[thisindex];
|
|
766 else if (BIT_VECTORP (seq))
|
|
767 elt = make_int (bit_vector_bit (XBIT_VECTOR (seq),
|
|
768 thisindex));
|
|
769 else
|
|
770 elt = Felt (seq, make_int (thisindex));
|
|
771 thisindex++;
|
|
772 }
|
|
773
|
|
774 /* Store into result */
|
|
775 if (toindex < 0)
|
|
776 {
|
|
777 /* toindex negative means we are making a list */
|
|
778 XCAR (tail) = elt;
|
|
779 prev = tail;
|
|
780 tail = XCDR (tail);
|
|
781 }
|
|
782 else if (VECTORP (val))
|
|
783 XVECTOR_DATA (val)[toindex++] = elt;
|
|
784 else if (BIT_VECTORP (val))
|
|
785 {
|
|
786 CHECK_BIT (elt);
|
|
787 set_bit_vector_bit (XBIT_VECTOR (val), toindex++, XINT (elt));
|
|
788 }
|
|
789 else
|
|
790 {
|
|
791 CHECK_CHAR_COERCE_INT (elt);
|
|
792 string_result_ptr += set_charptr_emchar (string_result_ptr,
|
|
793 XCHAR (elt));
|
|
794 }
|
|
795 }
|
|
796 if (args_mse)
|
|
797 {
|
|
798 args_mse[argnum].entry_offset =
|
|
799 string_prev_result_ptr - string_result;
|
|
800 args_mse[argnum].entry_length =
|
|
801 string_result_ptr - string_prev_result_ptr;
|
|
802 }
|
|
803 }
|
|
804
|
|
805 /* Now we finally make the string. */
|
|
806 if (target_type == c_string)
|
|
807 {
|
|
808 val = make_string (string_result, string_result_ptr - string_result);
|
|
809 for (argnum = 0; argnum < nargs; argnum++)
|
|
810 {
|
|
811 if (STRINGP (args_mse[argnum].string))
|
|
812 copy_string_extents (val, args_mse[argnum].string,
|
|
813 args_mse[argnum].entry_offset, 0,
|
|
814 args_mse[argnum].entry_length);
|
|
815 }
|
|
816 }
|
|
817
|
|
818 if (!NILP (prev))
|
|
819 XCDR (prev) = last_tail;
|
|
820
|
|
821 RETURN_UNGCPRO (val);
|
|
822 }
|
|
823
|
|
824 DEFUN ("copy-alist", Fcopy_alist, 1, 1, 0, /*
|
|
825 Return a copy of ALIST.
|
|
826 This is an alist which represents the same mapping from objects to objects,
|
|
827 but does not share the alist structure with ALIST.
|
|
828 The objects mapped (cars and cdrs of elements of the alist)
|
|
829 are shared, however.
|
|
830 Elements of ALIST that are not conses are also shared.
|
|
831 */
|
|
832 (alist))
|
|
833 {
|
|
834 Lisp_Object tail;
|
|
835
|
|
836 if (NILP (alist))
|
|
837 return alist;
|
|
838 CHECK_CONS (alist);
|
|
839
|
|
840 alist = concat (1, &alist, c_cons, 0);
|
|
841 for (tail = alist; CONSP (tail); tail = XCDR (tail))
|
|
842 {
|
|
843 Lisp_Object car = XCAR (tail);
|
|
844
|
|
845 if (CONSP (car))
|
|
846 XCAR (tail) = Fcons (XCAR (car), XCDR (car));
|
|
847 }
|
|
848 return alist;
|
|
849 }
|
|
850
|
|
851 DEFUN ("copy-tree", Fcopy_tree, 1, 2, 0, /*
|
|
852 Return a copy of a list and substructures.
|
|
853 The argument is copied, and any lists contained within it are copied
|
|
854 recursively. Circularities and shared substructures are not preserved.
|
|
855 Second arg VECP causes vectors to be copied, too. Strings and bit vectors
|
|
856 are not copied.
|
|
857 */
|
|
858 (arg, vecp))
|
|
859 {
|
|
860 if (CONSP (arg))
|
|
861 {
|
|
862 Lisp_Object rest;
|
|
863 rest = arg = Fcopy_sequence (arg);
|
|
864 while (CONSP (rest))
|
|
865 {
|
|
866 Lisp_Object elt = XCAR (rest);
|
|
867 QUIT;
|
|
868 if (CONSP (elt) || VECTORP (elt))
|
|
869 XCAR (rest) = Fcopy_tree (elt, vecp);
|
|
870 if (VECTORP (XCDR (rest))) /* hack for (a b . [c d]) */
|
|
871 XCDR (rest) = Fcopy_tree (XCDR (rest), vecp);
|
|
872 rest = XCDR (rest);
|
|
873 }
|
|
874 }
|
|
875 else if (VECTORP (arg) && ! NILP (vecp))
|
|
876 {
|
|
877 int i = XVECTOR_LENGTH (arg);
|
|
878 int j;
|
|
879 arg = Fcopy_sequence (arg);
|
|
880 for (j = 0; j < i; j++)
|
|
881 {
|
|
882 Lisp_Object elt = XVECTOR_DATA (arg) [j];
|
|
883 QUIT;
|
|
884 if (CONSP (elt) || VECTORP (elt))
|
|
885 XVECTOR_DATA (arg) [j] = Fcopy_tree (elt, vecp);
|
|
886 }
|
|
887 }
|
|
888 return arg;
|
|
889 }
|
|
890
|
|
891 DEFUN ("substring", Fsubstring, 2, 3, 0, /*
|
|
892 Return a substring of STRING, starting at index FROM and ending before TO.
|
|
893 TO may be nil or omitted; then the substring runs to the end of STRING.
|
|
894 If FROM or TO is negative, it counts from the end.
|
|
895 Relevant parts of the string-extent-data are copied in the new string.
|
|
896 */
|
|
897 (string, from, to))
|
|
898 {
|
|
899 Charcount ccfr, ccto;
|
|
900 Bytecount bfr, blen;
|
|
901 Lisp_Object val;
|
|
902
|
|
903 CHECK_STRING (string);
|
|
904 CHECK_INT (from);
|
|
905 get_string_range_char (string, from, to, &ccfr, &ccto,
|
|
906 GB_HISTORICAL_STRING_BEHAVIOR);
|
|
907 bfr = charcount_to_bytecount (XSTRING_DATA (string), ccfr);
|
|
908 blen = charcount_to_bytecount (XSTRING_DATA (string) + bfr, ccto - ccfr);
|
|
909 val = make_string (XSTRING_DATA (string) + bfr, blen);
|
|
910 /* Copy any applicable extent information into the new string: */
|
|
911 copy_string_extents (val, string, 0, bfr, blen);
|
|
912 return val;
|
|
913 }
|
|
914
|
|
915 DEFUN ("subseq", Fsubseq, 2, 3, 0, /*
|
|
916 Return a subsequence of SEQ, starting at index FROM and ending before TO.
|
|
917 TO may be nil or omitted; then the subsequence runs to the end of SEQ.
|
|
918 If FROM or TO is negative, it counts from the end.
|
|
919 The resulting subsequence is always the same type as the original
|
|
920 sequence.
|
|
921 If SEQ is a string, relevant parts of the string-extent-data are copied
|
|
922 to the new string.
|
|
923 */
|
|
924 (seq, from, to))
|
|
925 {
|
|
926 EMACS_INT len, f, t;
|
|
927
|
|
928 if (STRINGP (seq))
|
|
929 return Fsubstring (seq, from, to);
|
|
930
|
|
931 if (!LISTP (seq) && !VECTORP (seq) && !BIT_VECTORP (seq))
|
|
932 {
|
|
933 check_losing_bytecode ("subseq", seq);
|
|
934 seq = wrong_type_argument (Qsequencep, seq);
|
|
935 }
|
|
936
|
|
937 len = XINT (Flength (seq));
|
|
938
|
|
939 CHECK_INT (from);
|
|
940 f = XINT (from);
|
|
941 if (f < 0)
|
|
942 f = len + f;
|
|
943
|
|
944 if (NILP (to))
|
|
945 t = len;
|
|
946 else
|
|
947 {
|
|
948 CHECK_INT (to);
|
|
949 t = XINT (to);
|
|
950 if (t < 0)
|
|
951 t = len + t;
|
|
952 }
|
|
953
|
|
954 if (!(0 <= f && f <= t && t <= len))
|
|
955 args_out_of_range_3 (seq, make_int (f), make_int (t));
|
|
956
|
|
957 if (VECTORP (seq))
|
|
958 {
|
|
959 Lisp_Object result = make_vector (t - f, Qnil);
|
|
960 EMACS_INT i;
|
|
961 Lisp_Object *in_elts = XVECTOR_DATA (seq);
|
|
962 Lisp_Object *out_elts = XVECTOR_DATA (result);
|
|
963
|
|
964 for (i = f; i < t; i++)
|
|
965 out_elts[i - f] = in_elts[i];
|
|
966 return result;
|
|
967 }
|
|
968
|
|
969 if (LISTP (seq))
|
|
970 {
|
|
971 Lisp_Object result = Qnil;
|
|
972 EMACS_INT i;
|
|
973
|
|
974 seq = Fnthcdr (make_int (f), seq);
|
|
975
|
|
976 for (i = f; i < t; i++)
|
|
977 {
|
|
978 result = Fcons (Fcar (seq), result);
|
|
979 seq = Fcdr (seq);
|
|
980 }
|
|
981
|
|
982 return Fnreverse (result);
|
|
983 }
|
|
984
|
|
985 /* bit vector */
|
|
986 {
|
|
987 Lisp_Object result = make_bit_vector (t - f, Qzero);
|
|
988 EMACS_INT i;
|
|
989
|
|
990 for (i = f; i < t; i++)
|
|
991 set_bit_vector_bit (XBIT_VECTOR (result), i - f,
|
|
992 bit_vector_bit (XBIT_VECTOR (seq), i));
|
|
993 return result;
|
|
994 }
|
|
995 }
|
|
996
|
|
997
|
|
998 DEFUN ("nthcdr", Fnthcdr, 2, 2, 0, /*
|
|
999 Take cdr N times on LIST, and return the result.
|
|
1000 */
|
|
1001 (n, list))
|
|
1002 {
|
|
1003 REGISTER size_t i;
|
|
1004 REGISTER Lisp_Object tail = list;
|
|
1005 CHECK_NATNUM (n);
|
|
1006 for (i = XINT (n); i; i--)
|
|
1007 {
|
|
1008 if (CONSP (tail))
|
|
1009 tail = XCDR (tail);
|
|
1010 else if (NILP (tail))
|
|
1011 return Qnil;
|
|
1012 else
|
|
1013 {
|
|
1014 tail = wrong_type_argument (Qlistp, tail);
|
|
1015 i++;
|
|
1016 }
|
|
1017 }
|
|
1018 return tail;
|
|
1019 }
|
|
1020
|
|
1021 DEFUN ("nth", Fnth, 2, 2, 0, /*
|
|
1022 Return the Nth element of LIST.
|
|
1023 N counts from zero. If LIST is not that long, nil is returned.
|
|
1024 */
|
|
1025 (n, list))
|
|
1026 {
|
|
1027 return Fcar (Fnthcdr (n, list));
|
|
1028 }
|
|
1029
|
|
1030 DEFUN ("elt", Felt, 2, 2, 0, /*
|
|
1031 Return element of SEQUENCE at index N.
|
|
1032 */
|
|
1033 (sequence, n))
|
|
1034 {
|
|
1035 retry:
|
|
1036 CHECK_INT_COERCE_CHAR (n); /* yuck! */
|
|
1037 if (LISTP (sequence))
|
|
1038 {
|
|
1039 Lisp_Object tem = Fnthcdr (n, sequence);
|
|
1040 /* #### Utterly, completely, fucking disgusting.
|
|
1041 * #### The whole point of "elt" is that it operates on
|
|
1042 * #### sequences, and does error- (bounds-) checking.
|
|
1043 */
|
|
1044 if (CONSP (tem))
|
|
1045 return XCAR (tem);
|
|
1046 else
|
|
1047 #if 1
|
|
1048 /* This is The Way It Has Always Been. */
|
|
1049 return Qnil;
|
|
1050 #else
|
|
1051 /* This is The Way Mly and Cltl2 say It Should Be. */
|
|
1052 args_out_of_range (sequence, n);
|
|
1053 #endif
|
|
1054 }
|
|
1055 else if (STRINGP (sequence) ||
|
|
1056 VECTORP (sequence) ||
|
|
1057 BIT_VECTORP (sequence))
|
|
1058 return Faref (sequence, n);
|
|
1059 #ifdef LOSING_BYTECODE
|
|
1060 else if (COMPILED_FUNCTIONP (sequence))
|
|
1061 {
|
|
1062 EMACS_INT idx = XINT (n);
|
|
1063 if (idx < 0)
|
|
1064 {
|
|
1065 lose:
|
|
1066 args_out_of_range (sequence, n);
|
|
1067 }
|
|
1068 /* Utter perversity */
|
|
1069 {
|
|
1070 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (sequence);
|
|
1071 switch (idx)
|
|
1072 {
|
|
1073 case COMPILED_ARGLIST:
|
|
1074 return compiled_function_arglist (f);
|
|
1075 case COMPILED_INSTRUCTIONS:
|
|
1076 return compiled_function_instructions (f);
|
|
1077 case COMPILED_CONSTANTS:
|
|
1078 return compiled_function_constants (f);
|
|
1079 case COMPILED_STACK_DEPTH:
|
|
1080 return compiled_function_stack_depth (f);
|
|
1081 case COMPILED_DOC_STRING:
|
|
1082 return compiled_function_documentation (f);
|
|
1083 case COMPILED_DOMAIN:
|
|
1084 return compiled_function_domain (f);
|
|
1085 case COMPILED_INTERACTIVE:
|
|
1086 if (f->flags.interactivep)
|
|
1087 return compiled_function_interactive (f);
|
|
1088 /* if we return nil, can't tell interactive with no args
|
|
1089 from noninteractive. */
|
|
1090 goto lose;
|
|
1091 default:
|
|
1092 goto lose;
|
|
1093 }
|
|
1094 }
|
|
1095 }
|
|
1096 #endif /* LOSING_BYTECODE */
|
|
1097 else
|
|
1098 {
|
|
1099 check_losing_bytecode ("elt", sequence);
|
|
1100 sequence = wrong_type_argument (Qsequencep, sequence);
|
|
1101 goto retry;
|
|
1102 }
|
|
1103 }
|
|
1104
|
|
1105 DEFUN ("last", Flast, 1, 2, 0, /*
|
|
1106 Return the tail of list LIST, of length N (default 1).
|
|
1107 LIST may be a dotted list, but not a circular list.
|
|
1108 Optional argument N must be a non-negative integer.
|
|
1109 If N is zero, then the atom that terminates the list is returned.
|
|
1110 If N is greater than the length of LIST, then LIST itself is returned.
|
|
1111 */
|
|
1112 (list, n))
|
|
1113 {
|
|
1114 EMACS_INT int_n, count;
|
|
1115 Lisp_Object retval, tortoise, hare;
|
|
1116
|
|
1117 CHECK_LIST (list);
|
|
1118
|
|
1119 if (NILP (n))
|
|
1120 int_n = 1;
|
|
1121 else
|
|
1122 {
|
|
1123 CHECK_NATNUM (n);
|
|
1124 int_n = XINT (n);
|
|
1125 }
|
|
1126
|
|
1127 for (retval = tortoise = hare = list, count = 0;
|
|
1128 CONSP (hare);
|
|
1129 hare = XCDR (hare),
|
|
1130 (int_n-- <= 0 ? ((void) (retval = XCDR (retval))) : (void)0),
|
|
1131 count++)
|
|
1132 {
|
|
1133 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue;
|
|
1134
|
|
1135 if (count & 1)
|
|
1136 tortoise = XCDR (tortoise);
|
|
1137 if (EQ (hare, tortoise))
|
|
1138 signal_circular_list_error (list);
|
|
1139 }
|
|
1140
|
|
1141 return retval;
|
|
1142 }
|
|
1143
|
|
1144 DEFUN ("nbutlast", Fnbutlast, 1, 2, 0, /*
|
|
1145 Modify LIST to remove the last N (default 1) elements.
|
|
1146 If LIST has N or fewer elements, nil is returned and LIST is unmodified.
|
|
1147 */
|
|
1148 (list, n))
|
|
1149 {
|
|
1150 EMACS_INT int_n;
|
|
1151
|
|
1152 CHECK_LIST (list);
|
|
1153
|
|
1154 if (NILP (n))
|
|
1155 int_n = 1;
|
|
1156 else
|
|
1157 {
|
|
1158 CHECK_NATNUM (n);
|
|
1159 int_n = XINT (n);
|
|
1160 }
|
|
1161
|
|
1162 {
|
|
1163 Lisp_Object last_cons = list;
|
|
1164
|
|
1165 EXTERNAL_LIST_LOOP_1 (list)
|
|
1166 {
|
|
1167 if (int_n-- < 0)
|
|
1168 last_cons = XCDR (last_cons);
|
|
1169 }
|
|
1170
|
|
1171 if (int_n >= 0)
|
|
1172 return Qnil;
|
|
1173
|
|
1174 XCDR (last_cons) = Qnil;
|
|
1175 return list;
|
|
1176 }
|
|
1177 }
|
|
1178
|
|
1179 DEFUN ("butlast", Fbutlast, 1, 2, 0, /*
|
|
1180 Return a copy of LIST with the last N (default 1) elements removed.
|
|
1181 If LIST has N or fewer elements, nil is returned.
|
|
1182 */
|
|
1183 (list, n))
|
|
1184 {
|
|
1185 int int_n;
|
|
1186
|
|
1187 CHECK_LIST (list);
|
|
1188
|
|
1189 if (NILP (n))
|
|
1190 int_n = 1;
|
|
1191 else
|
|
1192 {
|
|
1193 CHECK_NATNUM (n);
|
|
1194 int_n = XINT (n);
|
|
1195 }
|
|
1196
|
|
1197 {
|
|
1198 Lisp_Object retval = Qnil;
|
|
1199 Lisp_Object tail = list;
|
|
1200
|
|
1201 EXTERNAL_LIST_LOOP_1 (list)
|
|
1202 {
|
|
1203 if (--int_n < 0)
|
|
1204 {
|
|
1205 retval = Fcons (XCAR (tail), retval);
|
|
1206 tail = XCDR (tail);
|
|
1207 }
|
|
1208 }
|
|
1209
|
|
1210 return Fnreverse (retval);
|
|
1211 }
|
|
1212 }
|
|
1213
|
|
1214 DEFUN ("member", Fmember, 2, 2, 0, /*
|
|
1215 Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
|
|
1216 The value is actually the tail of LIST whose car is ELT.
|
|
1217 */
|
|
1218 (elt, list))
|
|
1219 {
|
|
1220 Lisp_Object list_elt, tail;
|
|
1221 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
|
1222 {
|
|
1223 if (internal_equal (elt, list_elt, 0))
|
|
1224 return tail;
|
|
1225 }
|
|
1226 return Qnil;
|
|
1227 }
|
|
1228
|
|
1229 DEFUN ("old-member", Fold_member, 2, 2, 0, /*
|
|
1230 Return non-nil if ELT is an element of LIST. Comparison done with `old-equal'.
|
|
1231 The value is actually the tail of LIST whose car is ELT.
|
|
1232 This function is provided only for byte-code compatibility with v19.
|
|
1233 Do not use it.
|
|
1234 */
|
|
1235 (elt, list))
|
|
1236 {
|
|
1237 Lisp_Object list_elt, tail;
|
|
1238 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
|
1239 {
|
|
1240 if (internal_old_equal (elt, list_elt, 0))
|
|
1241 return tail;
|
|
1242 }
|
|
1243 return Qnil;
|
|
1244 }
|
|
1245
|
|
1246 DEFUN ("memq", Fmemq, 2, 2, 0, /*
|
|
1247 Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
|
|
1248 The value is actually the tail of LIST whose car is ELT.
|
|
1249 */
|
|
1250 (elt, list))
|
|
1251 {
|
|
1252 Lisp_Object list_elt, tail;
|
|
1253 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
|
1254 {
|
|
1255 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt))
|
|
1256 return tail;
|
|
1257 }
|
|
1258 return Qnil;
|
|
1259 }
|
|
1260
|
|
1261 DEFUN ("old-memq", Fold_memq, 2, 2, 0, /*
|
|
1262 Return non-nil if ELT is an element of LIST. Comparison done with `old-eq'.
|
|
1263 The value is actually the tail of LIST whose car is ELT.
|
|
1264 This function is provided only for byte-code compatibility with v19.
|
|
1265 Do not use it.
|
|
1266 */
|
|
1267 (elt, list))
|
|
1268 {
|
|
1269 Lisp_Object list_elt, tail;
|
|
1270 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
|
1271 {
|
|
1272 if (HACKEQ_UNSAFE (elt, list_elt))
|
|
1273 return tail;
|
|
1274 }
|
|
1275 return Qnil;
|
|
1276 }
|
|
1277
|
|
1278 Lisp_Object
|
|
1279 memq_no_quit (Lisp_Object elt, Lisp_Object list)
|
|
1280 {
|
|
1281 Lisp_Object list_elt, tail;
|
|
1282 LIST_LOOP_3 (list_elt, list, tail)
|
|
1283 {
|
|
1284 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt))
|
|
1285 return tail;
|
|
1286 }
|
|
1287 return Qnil;
|
|
1288 }
|
|
1289
|
|
1290 DEFUN ("assoc", Fassoc, 2, 2, 0, /*
|
|
1291 Return non-nil if KEY is `equal' to the car of an element of LIST.
|
|
1292 The value is actually the element of LIST whose car equals KEY.
|
|
1293 */
|
|
1294 (key, list))
|
|
1295 {
|
|
1296 /* This function can GC. */
|
|
1297 Lisp_Object elt, elt_car, elt_cdr;
|
|
1298 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
|
1299 {
|
|
1300 if (internal_equal (key, elt_car, 0))
|
|
1301 return elt;
|
|
1302 }
|
|
1303 return Qnil;
|
|
1304 }
|
|
1305
|
|
1306 DEFUN ("old-assoc", Fold_assoc, 2, 2, 0, /*
|
|
1307 Return non-nil if KEY is `old-equal' to the car of an element of LIST.
|
|
1308 The value is actually the element of LIST whose car equals KEY.
|
|
1309 */
|
|
1310 (key, list))
|
|
1311 {
|
|
1312 /* This function can GC. */
|
|
1313 Lisp_Object elt, elt_car, elt_cdr;
|
|
1314 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
|
1315 {
|
|
1316 if (internal_old_equal (key, elt_car, 0))
|
|
1317 return elt;
|
|
1318 }
|
|
1319 return Qnil;
|
|
1320 }
|
|
1321
|
|
1322 Lisp_Object
|
|
1323 assoc_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1324 {
|
|
1325 int speccount = specpdl_depth ();
|
|
1326 specbind (Qinhibit_quit, Qt);
|
|
1327 return unbind_to (speccount, Fassoc (key, list));
|
|
1328 }
|
|
1329
|
|
1330 DEFUN ("assq", Fassq, 2, 2, 0, /*
|
|
1331 Return non-nil if KEY is `eq' to the car of an element of LIST.
|
|
1332 The value is actually the element of LIST whose car is KEY.
|
|
1333 Elements of LIST that are not conses are ignored.
|
|
1334 */
|
|
1335 (key, list))
|
|
1336 {
|
|
1337 Lisp_Object elt, elt_car, elt_cdr;
|
|
1338 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
|
1339 {
|
|
1340 if (EQ_WITH_EBOLA_NOTICE (key, elt_car))
|
|
1341 return elt;
|
|
1342 }
|
|
1343 return Qnil;
|
|
1344 }
|
|
1345
|
|
1346 DEFUN ("old-assq", Fold_assq, 2, 2, 0, /*
|
|
1347 Return non-nil if KEY is `old-eq' to the car of an element of LIST.
|
|
1348 The value is actually the element of LIST whose car is KEY.
|
|
1349 Elements of LIST that are not conses are ignored.
|
|
1350 This function is provided only for byte-code compatibility with v19.
|
|
1351 Do not use it.
|
|
1352 */
|
|
1353 (key, list))
|
|
1354 {
|
|
1355 Lisp_Object elt, elt_car, elt_cdr;
|
|
1356 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
|
1357 {
|
|
1358 if (HACKEQ_UNSAFE (key, elt_car))
|
|
1359 return elt;
|
|
1360 }
|
|
1361 return Qnil;
|
|
1362 }
|
|
1363
|
|
1364 /* Like Fassq but never report an error and do not allow quits.
|
|
1365 Use only on lists known never to be circular. */
|
|
1366
|
|
1367 Lisp_Object
|
|
1368 assq_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1369 {
|
|
1370 /* This cannot GC. */
|
|
1371 Lisp_Object elt;
|
|
1372 LIST_LOOP_2 (elt, list)
|
|
1373 {
|
|
1374 Lisp_Object elt_car = XCAR (elt);
|
|
1375 if (EQ_WITH_EBOLA_NOTICE (key, elt_car))
|
|
1376 return elt;
|
|
1377 }
|
|
1378 return Qnil;
|
|
1379 }
|
|
1380
|
|
1381 DEFUN ("rassoc", Frassoc, 2, 2, 0, /*
|
|
1382 Return non-nil if KEY is `equal' to the cdr of an element of LIST.
|
|
1383 The value is actually the element of LIST whose cdr equals KEY.
|
|
1384 */
|
|
1385 (key, list))
|
|
1386 {
|
|
1387 Lisp_Object elt, elt_car, elt_cdr;
|
|
1388 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
|
1389 {
|
|
1390 if (internal_equal (key, elt_cdr, 0))
|
|
1391 return elt;
|
|
1392 }
|
|
1393 return Qnil;
|
|
1394 }
|
|
1395
|
|
1396 DEFUN ("old-rassoc", Fold_rassoc, 2, 2, 0, /*
|
|
1397 Return non-nil if KEY is `old-equal' to the cdr of an element of LIST.
|
|
1398 The value is actually the element of LIST whose cdr equals KEY.
|
|
1399 */
|
|
1400 (key, list))
|
|
1401 {
|
|
1402 Lisp_Object elt, elt_car, elt_cdr;
|
|
1403 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
|
1404 {
|
|
1405 if (internal_old_equal (key, elt_cdr, 0))
|
|
1406 return elt;
|
|
1407 }
|
|
1408 return Qnil;
|
|
1409 }
|
|
1410
|
|
1411 DEFUN ("rassq", Frassq, 2, 2, 0, /*
|
|
1412 Return non-nil if KEY is `eq' to the cdr of an element of LIST.
|
|
1413 The value is actually the element of LIST whose cdr is KEY.
|
|
1414 */
|
|
1415 (key, list))
|
|
1416 {
|
|
1417 Lisp_Object elt, elt_car, elt_cdr;
|
|
1418 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
|
1419 {
|
|
1420 if (EQ_WITH_EBOLA_NOTICE (key, elt_cdr))
|
|
1421 return elt;
|
|
1422 }
|
|
1423 return Qnil;
|
|
1424 }
|
|
1425
|
|
1426 DEFUN ("old-rassq", Fold_rassq, 2, 2, 0, /*
|
|
1427 Return non-nil if KEY is `old-eq' to the cdr of an element of LIST.
|
|
1428 The value is actually the element of LIST whose cdr is KEY.
|
|
1429 */
|
|
1430 (key, list))
|
|
1431 {
|
|
1432 Lisp_Object elt, elt_car, elt_cdr;
|
|
1433 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
|
1434 {
|
|
1435 if (HACKEQ_UNSAFE (key, elt_cdr))
|
|
1436 return elt;
|
|
1437 }
|
|
1438 return Qnil;
|
|
1439 }
|
|
1440
|
|
1441 /* Like Frassq, but caller must ensure that LIST is properly
|
|
1442 nil-terminated and ebola-free. */
|
|
1443 Lisp_Object
|
|
1444 rassq_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1445 {
|
|
1446 Lisp_Object elt;
|
|
1447 LIST_LOOP_2 (elt, list)
|
|
1448 {
|
|
1449 Lisp_Object elt_cdr = XCDR (elt);
|
|
1450 if (EQ_WITH_EBOLA_NOTICE (key, elt_cdr))
|
|
1451 return elt;
|
|
1452 }
|
|
1453 return Qnil;
|
|
1454 }
|
|
1455
|
|
1456
|
|
1457 DEFUN ("delete", Fdelete, 2, 2, 0, /*
|
|
1458 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1459 The modified LIST is returned. Comparison is done with `equal'.
|
|
1460 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1461 effect; therefore, write `(setq foo (delete element foo))' to be sure
|
|
1462 of changing the value of `foo'.
|
|
1463 Also see: `remove'.
|
|
1464 */
|
|
1465 (elt, list))
|
|
1466 {
|
|
1467 Lisp_Object list_elt;
|
|
1468 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1469 (internal_equal (elt, list_elt, 0)));
|
|
1470 return list;
|
|
1471 }
|
|
1472
|
|
1473 DEFUN ("old-delete", Fold_delete, 2, 2, 0, /*
|
|
1474 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1475 The modified LIST is returned. Comparison is done with `old-equal'.
|
|
1476 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1477 effect; therefore, write `(setq foo (old-delete element foo))' to be sure
|
|
1478 of changing the value of `foo'.
|
|
1479 */
|
|
1480 (elt, list))
|
|
1481 {
|
|
1482 Lisp_Object list_elt;
|
|
1483 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1484 (internal_old_equal (elt, list_elt, 0)));
|
|
1485 return list;
|
|
1486 }
|
|
1487
|
|
1488 DEFUN ("delq", Fdelq, 2, 2, 0, /*
|
|
1489 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1490 The modified LIST is returned. Comparison is done with `eq'.
|
|
1491 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1492 effect; therefore, write `(setq foo (delq element foo))' to be sure of
|
|
1493 changing the value of `foo'.
|
|
1494 */
|
|
1495 (elt, list))
|
|
1496 {
|
|
1497 Lisp_Object list_elt;
|
|
1498 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1499 (EQ_WITH_EBOLA_NOTICE (elt, list_elt)));
|
|
1500 return list;
|
|
1501 }
|
|
1502
|
|
1503 DEFUN ("old-delq", Fold_delq, 2, 2, 0, /*
|
|
1504 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1505 The modified LIST is returned. Comparison is done with `old-eq'.
|
|
1506 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1507 effect; therefore, write `(setq foo (old-delq element foo))' to be sure of
|
|
1508 changing the value of `foo'.
|
|
1509 */
|
|
1510 (elt, list))
|
|
1511 {
|
|
1512 Lisp_Object list_elt;
|
|
1513 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1514 (HACKEQ_UNSAFE (elt, list_elt)));
|
|
1515 return list;
|
|
1516 }
|
|
1517
|
|
1518 /* Like Fdelq, but caller must ensure that LIST is properly
|
|
1519 nil-terminated and ebola-free. */
|
|
1520
|
|
1521 Lisp_Object
|
|
1522 delq_no_quit (Lisp_Object elt, Lisp_Object list)
|
|
1523 {
|
|
1524 Lisp_Object list_elt;
|
|
1525 LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1526 (EQ_WITH_EBOLA_NOTICE (elt, list_elt)));
|
|
1527 return list;
|
|
1528 }
|
|
1529
|
|
1530 /* Be VERY careful with this. This is like delq_no_quit() but
|
|
1531 also calls free_cons() on the removed conses. You must be SURE
|
|
1532 that no pointers to the freed conses remain around (e.g.
|
|
1533 someone else is pointing to part of the list). This function
|
|
1534 is useful on internal lists that are used frequently and where
|
|
1535 the actual list doesn't escape beyond known code bounds. */
|
|
1536
|
|
1537 Lisp_Object
|
|
1538 delq_no_quit_and_free_cons (Lisp_Object elt, Lisp_Object list)
|
|
1539 {
|
|
1540 REGISTER Lisp_Object tail = list;
|
|
1541 REGISTER Lisp_Object prev = Qnil;
|
|
1542
|
|
1543 while (!NILP (tail))
|
|
1544 {
|
|
1545 REGISTER Lisp_Object tem = XCAR (tail);
|
|
1546 if (EQ (elt, tem))
|
|
1547 {
|
|
1548 Lisp_Object cons_to_free = tail;
|
|
1549 if (NILP (prev))
|
|
1550 list = XCDR (tail);
|
|
1551 else
|
|
1552 XCDR (prev) = XCDR (tail);
|
|
1553 tail = XCDR (tail);
|
|
1554 free_cons (XCONS (cons_to_free));
|
|
1555 }
|
|
1556 else
|
|
1557 {
|
|
1558 prev = tail;
|
|
1559 tail = XCDR (tail);
|
|
1560 }
|
|
1561 }
|
|
1562 return list;
|
|
1563 }
|
|
1564
|
|
1565 DEFUN ("remassoc", Fremassoc, 2, 2, 0, /*
|
|
1566 Delete by side effect any elements of LIST whose car is `equal' to KEY.
|
|
1567 The modified LIST is returned. If the first member of LIST has a car
|
|
1568 that is `equal' to KEY, there is no way to remove it by side effect;
|
|
1569 therefore, write `(setq foo (remassoc key foo))' to be sure of changing
|
|
1570 the value of `foo'.
|
|
1571 */
|
|
1572 (key, list))
|
|
1573 {
|
|
1574 Lisp_Object elt;
|
|
1575 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list,
|
|
1576 (CONSP (elt) &&
|
|
1577 internal_equal (key, XCAR (elt), 0)));
|
|
1578 return list;
|
|
1579 }
|
|
1580
|
|
1581 Lisp_Object
|
|
1582 remassoc_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1583 {
|
|
1584 int speccount = specpdl_depth ();
|
|
1585 specbind (Qinhibit_quit, Qt);
|
|
1586 return unbind_to (speccount, Fremassoc (key, list));
|
|
1587 }
|
|
1588
|
|
1589 DEFUN ("remassq", Fremassq, 2, 2, 0, /*
|
|
1590 Delete by side effect any elements of LIST whose car is `eq' to KEY.
|
|
1591 The modified LIST is returned. If the first member of LIST has a car
|
|
1592 that is `eq' to KEY, there is no way to remove it by side effect;
|
|
1593 therefore, write `(setq foo (remassq key foo))' to be sure of changing
|
|
1594 the value of `foo'.
|
|
1595 */
|
|
1596 (key, list))
|
|
1597 {
|
|
1598 Lisp_Object elt;
|
|
1599 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list,
|
|
1600 (CONSP (elt) &&
|
|
1601 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt))));
|
|
1602 return list;
|
|
1603 }
|
|
1604
|
|
1605 /* no quit, no errors; be careful */
|
|
1606
|
|
1607 Lisp_Object
|
|
1608 remassq_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1609 {
|
|
1610 Lisp_Object elt;
|
|
1611 LIST_LOOP_DELETE_IF (elt, list,
|
|
1612 (CONSP (elt) &&
|
|
1613 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt))));
|
|
1614 return list;
|
|
1615 }
|
|
1616
|
|
1617 DEFUN ("remrassoc", Fremrassoc, 2, 2, 0, /*
|
|
1618 Delete by side effect any elements of LIST whose cdr is `equal' to VALUE.
|
|
1619 The modified LIST is returned. If the first member of LIST has a car
|
|
1620 that is `equal' to VALUE, there is no way to remove it by side effect;
|
|
1621 therefore, write `(setq foo (remrassoc value foo))' to be sure of changing
|
|
1622 the value of `foo'.
|
|
1623 */
|
|
1624 (value, list))
|
|
1625 {
|
|
1626 Lisp_Object elt;
|
|
1627 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list,
|
|
1628 (CONSP (elt) &&
|
|
1629 internal_equal (value, XCDR (elt), 0)));
|
|
1630 return list;
|
|
1631 }
|
|
1632
|
|
1633 DEFUN ("remrassq", Fremrassq, 2, 2, 0, /*
|
|
1634 Delete by side effect any elements of LIST whose cdr is `eq' to VALUE.
|
|
1635 The modified LIST is returned. If the first member of LIST has a car
|
|
1636 that is `eq' to VALUE, there is no way to remove it by side effect;
|
|
1637 therefore, write `(setq foo (remrassq value foo))' to be sure of changing
|
|
1638 the value of `foo'.
|
|
1639 */
|
|
1640 (value, list))
|
|
1641 {
|
|
1642 Lisp_Object elt;
|
|
1643 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list,
|
|
1644 (CONSP (elt) &&
|
|
1645 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt))));
|
|
1646 return list;
|
|
1647 }
|
|
1648
|
|
1649 /* Like Fremrassq, fast and unsafe; be careful */
|
|
1650 Lisp_Object
|
|
1651 remrassq_no_quit (Lisp_Object value, Lisp_Object list)
|
|
1652 {
|
|
1653 Lisp_Object elt;
|
|
1654 LIST_LOOP_DELETE_IF (elt, list,
|
|
1655 (CONSP (elt) &&
|
|
1656 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt))));
|
|
1657 return list;
|
|
1658 }
|
|
1659
|
|
1660 DEFUN ("nreverse", Fnreverse, 1, 1, 0, /*
|
|
1661 Reverse LIST by destructively modifying cdr pointers.
|
|
1662 Return the beginning of the reversed list.
|
|
1663 Also see: `reverse'.
|
|
1664 */
|
|
1665 (list))
|
|
1666 {
|
|
1667 struct gcpro gcpro1, gcpro2;
|
|
1668 REGISTER Lisp_Object prev = Qnil;
|
|
1669 REGISTER Lisp_Object tail = list;
|
|
1670
|
|
1671 /* We gcpro our args; see `nconc' */
|
|
1672 GCPRO2 (prev, tail);
|
|
1673 while (!NILP (tail))
|
|
1674 {
|
|
1675 REGISTER Lisp_Object next;
|
|
1676 CONCHECK_CONS (tail);
|
|
1677 next = XCDR (tail);
|
|
1678 XCDR (tail) = prev;
|
|
1679 prev = tail;
|
|
1680 tail = next;
|
|
1681 }
|
|
1682 UNGCPRO;
|
|
1683 return prev;
|
|
1684 }
|
|
1685
|
|
1686 DEFUN ("reverse", Freverse, 1, 1, 0, /*
|
|
1687 Reverse LIST, copying. Return the beginning of the reversed list.
|
|
1688 See also the function `nreverse', which is used more often.
|
|
1689 */
|
|
1690 (list))
|
|
1691 {
|
|
1692 Lisp_Object reversed_list = Qnil;
|
|
1693 Lisp_Object elt;
|
|
1694 EXTERNAL_LIST_LOOP_2 (elt, list)
|
|
1695 {
|
|
1696 reversed_list = Fcons (elt, reversed_list);
|
|
1697 }
|
|
1698 return reversed_list;
|
|
1699 }
|
|
1700
|
|
1701 static Lisp_Object list_merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
|
1702 Lisp_Object lisp_arg,
|
|
1703 int (*pred_fn) (Lisp_Object, Lisp_Object,
|
|
1704 Lisp_Object lisp_arg));
|
|
1705
|
|
1706 Lisp_Object
|
|
1707 list_sort (Lisp_Object list,
|
|
1708 Lisp_Object lisp_arg,
|
|
1709 int (*pred_fn) (Lisp_Object, Lisp_Object,
|
|
1710 Lisp_Object lisp_arg))
|
|
1711 {
|
|
1712 struct gcpro gcpro1, gcpro2, gcpro3;
|
|
1713 Lisp_Object back, tem;
|
|
1714 Lisp_Object front = list;
|
|
1715 Lisp_Object len = Flength (list);
|
|
1716 int length = XINT (len);
|
|
1717
|
|
1718 if (length < 2)
|
|
1719 return list;
|
|
1720
|
|
1721 XSETINT (len, (length / 2) - 1);
|
|
1722 tem = Fnthcdr (len, list);
|
|
1723 back = Fcdr (tem);
|
|
1724 Fsetcdr (tem, Qnil);
|
|
1725
|
|
1726 GCPRO3 (front, back, lisp_arg);
|
|
1727 front = list_sort (front, lisp_arg, pred_fn);
|
|
1728 back = list_sort (back, lisp_arg, pred_fn);
|
|
1729 UNGCPRO;
|
|
1730 return list_merge (front, back, lisp_arg, pred_fn);
|
|
1731 }
|
|
1732
|
|
1733
|
|
1734 static int
|
|
1735 merge_pred_function (Lisp_Object obj1, Lisp_Object obj2,
|
|
1736 Lisp_Object pred)
|
|
1737 {
|
|
1738 Lisp_Object tmp;
|
|
1739
|
|
1740 /* prevents the GC from happening in call2 */
|
|
1741 int speccount = specpdl_depth ();
|
|
1742 /* Emacs' GC doesn't actually relocate pointers, so this probably
|
|
1743 isn't strictly necessary */
|
|
1744 record_unwind_protect (restore_gc_inhibit,
|
|
1745 make_int (gc_currently_forbidden));
|
|
1746 gc_currently_forbidden = 1;
|
|
1747 tmp = call2 (pred, obj1, obj2);
|
|
1748 unbind_to (speccount, Qnil);
|
|
1749
|
|
1750 if (NILP (tmp))
|
|
1751 return -1;
|
|
1752 else
|
|
1753 return 1;
|
|
1754 }
|
|
1755
|
|
1756 DEFUN ("sort", Fsort, 2, 2, 0, /*
|
|
1757 Sort LIST, stably, comparing elements using PREDICATE.
|
|
1758 Returns the sorted list. LIST is modified by side effects.
|
|
1759 PREDICATE is called with two elements of LIST, and should return T
|
|
1760 if the first element is "less" than the second.
|
|
1761 */
|
|
1762 (list, pred))
|
|
1763 {
|
|
1764 return list_sort (list, pred, merge_pred_function);
|
|
1765 }
|
|
1766
|
|
1767 Lisp_Object
|
|
1768 merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
|
1769 Lisp_Object pred)
|
|
1770 {
|
|
1771 return list_merge (org_l1, org_l2, pred, merge_pred_function);
|
|
1772 }
|
|
1773
|
|
1774
|
|
1775 static Lisp_Object
|
|
1776 list_merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
|
1777 Lisp_Object lisp_arg,
|
|
1778 int (*pred_fn) (Lisp_Object, Lisp_Object, Lisp_Object lisp_arg))
|
|
1779 {
|
|
1780 Lisp_Object value;
|
|
1781 Lisp_Object tail;
|
|
1782 Lisp_Object tem;
|
|
1783 Lisp_Object l1, l2;
|
|
1784 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
|
1785
|
|
1786 l1 = org_l1;
|
|
1787 l2 = org_l2;
|
|
1788 tail = Qnil;
|
|
1789 value = Qnil;
|
|
1790
|
|
1791 /* It is sufficient to protect org_l1 and org_l2.
|
|
1792 When l1 and l2 are updated, we copy the new values
|
|
1793 back into the org_ vars. */
|
|
1794
|
|
1795 GCPRO4 (org_l1, org_l2, lisp_arg, value);
|
|
1796
|
|
1797 while (1)
|
|
1798 {
|
|
1799 if (NILP (l1))
|
|
1800 {
|
|
1801 UNGCPRO;
|
|
1802 if (NILP (tail))
|
|
1803 return l2;
|
|
1804 Fsetcdr (tail, l2);
|
|
1805 return value;
|
|
1806 }
|
|
1807 if (NILP (l2))
|
|
1808 {
|
|
1809 UNGCPRO;
|
|
1810 if (NILP (tail))
|
|
1811 return l1;
|
|
1812 Fsetcdr (tail, l1);
|
|
1813 return value;
|
|
1814 }
|
|
1815
|
|
1816 if (((*pred_fn) (Fcar (l2), Fcar (l1), lisp_arg)) < 0)
|
|
1817 {
|
|
1818 tem = l1;
|
|
1819 l1 = Fcdr (l1);
|
|
1820 org_l1 = l1;
|
|
1821 }
|
|
1822 else
|
|
1823 {
|
|
1824 tem = l2;
|
|
1825 l2 = Fcdr (l2);
|
|
1826 org_l2 = l2;
|
|
1827 }
|
|
1828 if (NILP (tail))
|
|
1829 value = tem;
|
|
1830 else
|
|
1831 Fsetcdr (tail, tem);
|
|
1832 tail = tem;
|
|
1833 }
|
|
1834 }
|
|
1835
|
|
1836
|
|
1837 /************************************************************************/
|
|
1838 /* property-list functions */
|
|
1839 /************************************************************************/
|
|
1840
|
|
1841 /* For properties of text, we need to do order-insensitive comparison of
|
|
1842 plists. That is, we need to compare two plists such that they are the
|
|
1843 same if they have the same set of keys, and equivalent values.
|
|
1844 So (a 1 b 2) would be equal to (b 2 a 1).
|
|
1845
|
|
1846 NIL_MEANS_NOT_PRESENT is as in `plists-eq' etc.
|
|
1847 LAXP means use `equal' for comparisons.
|
|
1848 */
|
|
1849 int
|
|
1850 plists_differ (Lisp_Object a, Lisp_Object b, int nil_means_not_present,
|
|
1851 int laxp, int depth)
|
|
1852 {
|
|
1853 int eqp = (depth == -1); /* -1 as depth means us eq, not equal. */
|
|
1854 int la, lb, m, i, fill;
|
|
1855 Lisp_Object *keys, *vals;
|
|
1856 char *flags;
|
|
1857 Lisp_Object rest;
|
|
1858
|
|
1859 if (NILP (a) && NILP (b))
|
|
1860 return 0;
|
|
1861
|
|
1862 Fcheck_valid_plist (a);
|
|
1863 Fcheck_valid_plist (b);
|
|
1864
|
|
1865 la = XINT (Flength (a));
|
|
1866 lb = XINT (Flength (b));
|
|
1867 m = (la > lb ? la : lb);
|
|
1868 fill = 0;
|
|
1869 keys = alloca_array (Lisp_Object, m);
|
|
1870 vals = alloca_array (Lisp_Object, m);
|
|
1871 flags = alloca_array (char, m);
|
|
1872
|
|
1873 /* First extract the pairs from A. */
|
|
1874 for (rest = a; !NILP (rest); rest = XCDR (XCDR (rest)))
|
|
1875 {
|
|
1876 Lisp_Object k = XCAR (rest);
|
|
1877 Lisp_Object v = XCAR (XCDR (rest));
|
|
1878 /* Maybe be Ebolified. */
|
|
1879 if (nil_means_not_present && NILP (v)) continue;
|
|
1880 keys [fill] = k;
|
|
1881 vals [fill] = v;
|
|
1882 flags[fill] = 0;
|
|
1883 fill++;
|
|
1884 }
|
|
1885 /* Now iterate over B, and stop if we find something that's not in A,
|
|
1886 or that doesn't match. As we match, mark them. */
|
|
1887 for (rest = b; !NILP (rest); rest = XCDR (XCDR (rest)))
|
|
1888 {
|
|
1889 Lisp_Object k = XCAR (rest);
|
|
1890 Lisp_Object v = XCAR (XCDR (rest));
|
|
1891 /* Maybe be Ebolified. */
|
|
1892 if (nil_means_not_present && NILP (v)) continue;
|
|
1893 for (i = 0; i < fill; i++)
|
|
1894 {
|
|
1895 if (!laxp ? EQ (k, keys [i]) : internal_equal (k, keys [i], depth))
|
|
1896 {
|
434
|
1897 if (eqp
|
|
1898 /* We narrowly escaped being Ebolified here. */
|
|
1899 ? !EQ_WITH_EBOLA_NOTICE (v, vals [i])
|
|
1900 : !internal_equal (v, vals [i], depth))
|
428
|
1901 /* a property in B has a different value than in A */
|
|
1902 goto MISMATCH;
|
|
1903 flags [i] = 1;
|
|
1904 break;
|
|
1905 }
|
|
1906 }
|
|
1907 if (i == fill)
|
|
1908 /* there are some properties in B that are not in A */
|
|
1909 goto MISMATCH;
|
|
1910 }
|
|
1911 /* Now check to see that all the properties in A were also in B */
|
|
1912 for (i = 0; i < fill; i++)
|
|
1913 if (flags [i] == 0)
|
|
1914 goto MISMATCH;
|
|
1915
|
|
1916 /* Ok. */
|
|
1917 return 0;
|
|
1918
|
|
1919 MISMATCH:
|
|
1920 return 1;
|
|
1921 }
|
|
1922
|
|
1923 DEFUN ("plists-eq", Fplists_eq, 2, 3, 0, /*
|
|
1924 Return non-nil if property lists A and B are `eq'.
|
|
1925 A property list is an alternating list of keywords and values.
|
|
1926 This function does order-insensitive comparisons of the property lists:
|
|
1927 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1928 Comparison between values is done using `eq'. See also `plists-equal'.
|
|
1929 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1930 a nil value is ignored. This feature is a virus that has infected
|
|
1931 old Lisp implementations, but should not be used except for backward
|
|
1932 compatibility.
|
|
1933 */
|
|
1934 (a, b, nil_means_not_present))
|
|
1935 {
|
|
1936 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, -1)
|
|
1937 ? Qnil : Qt);
|
|
1938 }
|
|
1939
|
|
1940 DEFUN ("plists-equal", Fplists_equal, 2, 3, 0, /*
|
|
1941 Return non-nil if property lists A and B are `equal'.
|
|
1942 A property list is an alternating list of keywords and values. This
|
|
1943 function does order-insensitive comparisons of the property lists: For
|
|
1944 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1945 Comparison between values is done using `equal'. See also `plists-eq'.
|
|
1946 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1947 a nil value is ignored. This feature is a virus that has infected
|
|
1948 old Lisp implementations, but should not be used except for backward
|
|
1949 compatibility.
|
|
1950 */
|
|
1951 (a, b, nil_means_not_present))
|
|
1952 {
|
|
1953 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, 1)
|
|
1954 ? Qnil : Qt);
|
|
1955 }
|
|
1956
|
|
1957
|
|
1958 DEFUN ("lax-plists-eq", Flax_plists_eq, 2, 3, 0, /*
|
|
1959 Return non-nil if lax property lists A and B are `eq'.
|
|
1960 A property list is an alternating list of keywords and values.
|
|
1961 This function does order-insensitive comparisons of the property lists:
|
|
1962 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1963 Comparison between values is done using `eq'. See also `plists-equal'.
|
|
1964 A lax property list is like a regular one except that comparisons between
|
|
1965 keywords is done using `equal' instead of `eq'.
|
|
1966 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1967 a nil value is ignored. This feature is a virus that has infected
|
|
1968 old Lisp implementations, but should not be used except for backward
|
|
1969 compatibility.
|
|
1970 */
|
|
1971 (a, b, nil_means_not_present))
|
|
1972 {
|
|
1973 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, -1)
|
|
1974 ? Qnil : Qt);
|
|
1975 }
|
|
1976
|
|
1977 DEFUN ("lax-plists-equal", Flax_plists_equal, 2, 3, 0, /*
|
|
1978 Return non-nil if lax property lists A and B are `equal'.
|
|
1979 A property list is an alternating list of keywords and values. This
|
|
1980 function does order-insensitive comparisons of the property lists: For
|
|
1981 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1982 Comparison between values is done using `equal'. See also `plists-eq'.
|
|
1983 A lax property list is like a regular one except that comparisons between
|
|
1984 keywords is done using `equal' instead of `eq'.
|
|
1985 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1986 a nil value is ignored. This feature is a virus that has infected
|
|
1987 old Lisp implementations, but should not be used except for backward
|
|
1988 compatibility.
|
|
1989 */
|
|
1990 (a, b, nil_means_not_present))
|
|
1991 {
|
|
1992 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, 1)
|
|
1993 ? Qnil : Qt);
|
|
1994 }
|
|
1995
|
|
1996 /* Return the value associated with key PROPERTY in property list PLIST.
|
|
1997 Return nil if key not found. This function is used for internal
|
|
1998 property lists that cannot be directly manipulated by the user.
|
|
1999 */
|
|
2000
|
|
2001 Lisp_Object
|
|
2002 internal_plist_get (Lisp_Object plist, Lisp_Object property)
|
|
2003 {
|
|
2004 Lisp_Object tail;
|
|
2005
|
|
2006 for (tail = plist; !NILP (tail); tail = XCDR (XCDR (tail)))
|
|
2007 {
|
|
2008 if (EQ (XCAR (tail), property))
|
|
2009 return XCAR (XCDR (tail));
|
|
2010 }
|
|
2011
|
|
2012 return Qunbound;
|
|
2013 }
|
|
2014
|
|
2015 /* Set PLIST's value for PROPERTY to VALUE. Analogous to
|
|
2016 internal_plist_get(). */
|
|
2017
|
|
2018 void
|
|
2019 internal_plist_put (Lisp_Object *plist, Lisp_Object property,
|
|
2020 Lisp_Object value)
|
|
2021 {
|
|
2022 Lisp_Object tail;
|
|
2023
|
|
2024 for (tail = *plist; !NILP (tail); tail = XCDR (XCDR (tail)))
|
|
2025 {
|
|
2026 if (EQ (XCAR (tail), property))
|
|
2027 {
|
|
2028 XCAR (XCDR (tail)) = value;
|
|
2029 return;
|
|
2030 }
|
|
2031 }
|
|
2032
|
|
2033 *plist = Fcons (property, Fcons (value, *plist));
|
|
2034 }
|
|
2035
|
|
2036 int
|
|
2037 internal_remprop (Lisp_Object *plist, Lisp_Object property)
|
|
2038 {
|
|
2039 Lisp_Object tail, prev;
|
|
2040
|
|
2041 for (tail = *plist, prev = Qnil;
|
|
2042 !NILP (tail);
|
|
2043 tail = XCDR (XCDR (tail)))
|
|
2044 {
|
|
2045 if (EQ (XCAR (tail), property))
|
|
2046 {
|
|
2047 if (NILP (prev))
|
|
2048 *plist = XCDR (XCDR (tail));
|
|
2049 else
|
|
2050 XCDR (XCDR (prev)) = XCDR (XCDR (tail));
|
|
2051 return 1;
|
|
2052 }
|
|
2053 else
|
|
2054 prev = tail;
|
|
2055 }
|
|
2056
|
|
2057 return 0;
|
|
2058 }
|
|
2059
|
|
2060 /* Called on a malformed property list. BADPLACE should be some
|
|
2061 place where truncating will form a good list -- i.e. we shouldn't
|
|
2062 result in a list with an odd length. */
|
|
2063
|
|
2064 static Lisp_Object
|
|
2065 bad_bad_bunny (Lisp_Object *plist, Lisp_Object *badplace, Error_behavior errb)
|
|
2066 {
|
|
2067 if (ERRB_EQ (errb, ERROR_ME))
|
|
2068 return Fsignal (Qmalformed_property_list, list2 (*plist, *badplace));
|
|
2069 else
|
|
2070 {
|
|
2071 if (ERRB_EQ (errb, ERROR_ME_WARN))
|
|
2072 {
|
|
2073 warn_when_safe_lispobj
|
|
2074 (Qlist, Qwarning,
|
|
2075 list2 (build_string
|
|
2076 ("Malformed property list -- list has been truncated"),
|
|
2077 *plist));
|
|
2078 *badplace = Qnil;
|
|
2079 }
|
|
2080 return Qunbound;
|
|
2081 }
|
|
2082 }
|
|
2083
|
|
2084 /* Called on a circular property list. BADPLACE should be some place
|
|
2085 where truncating will result in an even-length list, as above.
|
|
2086 If doesn't particularly matter where we truncate -- anywhere we
|
|
2087 truncate along the entire list will break the circularity, because
|
|
2088 it will create a terminus and the list currently doesn't have one.
|
|
2089 */
|
|
2090
|
|
2091 static Lisp_Object
|
|
2092 bad_bad_turtle (Lisp_Object *plist, Lisp_Object *badplace, Error_behavior errb)
|
|
2093 {
|
|
2094 if (ERRB_EQ (errb, ERROR_ME))
|
|
2095 /* #### Eek, this will probably result in another error
|
|
2096 when PLIST is printed out */
|
|
2097 return Fsignal (Qcircular_property_list, list1 (*plist));
|
|
2098 else
|
|
2099 {
|
|
2100 if (ERRB_EQ (errb, ERROR_ME_WARN))
|
|
2101 {
|
|
2102 warn_when_safe_lispobj
|
|
2103 (Qlist, Qwarning,
|
|
2104 list2 (build_string
|
|
2105 ("Circular property list -- list has been truncated"),
|
|
2106 *plist));
|
|
2107 *badplace = Qnil;
|
|
2108 }
|
|
2109 return Qunbound;
|
|
2110 }
|
|
2111 }
|
|
2112
|
|
2113 /* Advance the tortoise pointer by two (one iteration of a property-list
|
|
2114 loop) and the hare pointer by four and verify that no malformations
|
|
2115 or circularities exist. If so, return zero and store a value into
|
|
2116 RETVAL that should be returned by the calling function. Otherwise,
|
|
2117 return 1. See external_plist_get().
|
|
2118 */
|
|
2119
|
|
2120 static int
|
|
2121 advance_plist_pointers (Lisp_Object *plist,
|
|
2122 Lisp_Object **tortoise, Lisp_Object **hare,
|
|
2123 Error_behavior errb, Lisp_Object *retval)
|
|
2124 {
|
|
2125 int i;
|
|
2126 Lisp_Object *tortsave = *tortoise;
|
|
2127
|
|
2128 /* Note that our "fixing" may be more brutal than necessary,
|
|
2129 but it's the user's own problem, not ours, if they went in and
|
|
2130 manually fucked up a plist. */
|
|
2131
|
|
2132 for (i = 0; i < 2; i++)
|
|
2133 {
|
|
2134 /* This is a standard iteration of a defensive-loop-checking
|
|
2135 loop. We just do it twice because we want to advance past
|
|
2136 both the property and its value.
|
|
2137
|
|
2138 If the pointer indirection is confusing you, remember that
|
|
2139 one level of indirection on the hare and tortoise pointers
|
|
2140 is only due to pass-by-reference for this function. The other
|
|
2141 level is so that the plist can be fixed in place. */
|
|
2142
|
|
2143 /* When we reach the end of a well-formed plist, **HARE is
|
|
2144 nil. In that case, we don't do anything at all except
|
|
2145 advance TORTOISE by one. Otherwise, we advance HARE
|
|
2146 by two (making sure it's OK to do so), then advance
|
|
2147 TORTOISE by one (it will always be OK to do so because
|
|
2148 the HARE is always ahead of the TORTOISE and will have
|
|
2149 already verified the path), then make sure TORTOISE and
|
|
2150 HARE don't contain the same non-nil object -- if the
|
|
2151 TORTOISE and the HARE ever meet, then obviously we're
|
|
2152 in a circularity, and if we're in a circularity, then
|
|
2153 the TORTOISE and the HARE can't cross paths without
|
|
2154 meeting, since the HARE only gains one step over the
|
|
2155 TORTOISE per iteration. */
|
|
2156
|
|
2157 if (!NILP (**hare))
|
|
2158 {
|
|
2159 Lisp_Object *haresave = *hare;
|
|
2160 if (!CONSP (**hare))
|
|
2161 {
|
|
2162 *retval = bad_bad_bunny (plist, haresave, errb);
|
|
2163 return 0;
|
|
2164 }
|
|
2165 *hare = &XCDR (**hare);
|
|
2166 /* In a non-plist, we'd check here for a nil value for
|
|
2167 **HARE, which is OK (it just means the list has an
|
|
2168 odd number of elements). In a plist, it's not OK
|
|
2169 for the list to have an odd number of elements. */
|
|
2170 if (!CONSP (**hare))
|
|
2171 {
|
|
2172 *retval = bad_bad_bunny (plist, haresave, errb);
|
|
2173 return 0;
|
|
2174 }
|
|
2175 *hare = &XCDR (**hare);
|
|
2176 }
|
|
2177
|
|
2178 *tortoise = &XCDR (**tortoise);
|
|
2179 if (!NILP (**hare) && EQ (**tortoise, **hare))
|
|
2180 {
|
|
2181 *retval = bad_bad_turtle (plist, tortsave, errb);
|
|
2182 return 0;
|
|
2183 }
|
|
2184 }
|
|
2185
|
|
2186 return 1;
|
|
2187 }
|
|
2188
|
|
2189 /* Return the value of PROPERTY from PLIST, or Qunbound if
|
|
2190 property is not on the list.
|
|
2191
|
|
2192 PLIST is a Lisp-accessible property list, meaning that it
|
|
2193 has to be checked for malformations and circularities.
|
|
2194
|
|
2195 If ERRB is ERROR_ME, an error will be signalled. Otherwise, the
|
|
2196 function will never signal an error; and if ERRB is ERROR_ME_WARN,
|
|
2197 on finding a malformation or a circularity, it issues a warning and
|
|
2198 attempts to silently fix the problem.
|
|
2199
|
|
2200 A pointer to PLIST is passed in so that PLIST can be successfully
|
|
2201 "fixed" even if the error is at the beginning of the plist. */
|
|
2202
|
|
2203 Lisp_Object
|
|
2204 external_plist_get (Lisp_Object *plist, Lisp_Object property,
|
|
2205 int laxp, Error_behavior errb)
|
|
2206 {
|
|
2207 Lisp_Object *tortoise = plist;
|
|
2208 Lisp_Object *hare = plist;
|
|
2209
|
|
2210 while (!NILP (*tortoise))
|
|
2211 {
|
|
2212 Lisp_Object *tortsave = tortoise;
|
|
2213 Lisp_Object retval;
|
|
2214
|
|
2215 /* We do the standard tortoise/hare march. We isolate the
|
|
2216 grungy stuff to do this in advance_plist_pointers(), though.
|
|
2217 To us, all this function does is advance the tortoise
|
|
2218 pointer by two and the hare pointer by four and make sure
|
|
2219 everything's OK. We first advance the pointers and then
|
|
2220 check if a property matched; this ensures that our
|
|
2221 check for a matching property is safe. */
|
|
2222
|
|
2223 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2224 return retval;
|
|
2225
|
|
2226 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2227 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2228 return XCAR (XCDR (*tortsave));
|
|
2229 }
|
|
2230
|
|
2231 return Qunbound;
|
|
2232 }
|
|
2233
|
|
2234 /* Set PLIST's value for PROPERTY to VALUE, given a possibly
|
|
2235 malformed or circular plist. Analogous to external_plist_get(). */
|
|
2236
|
|
2237 void
|
|
2238 external_plist_put (Lisp_Object *plist, Lisp_Object property,
|
|
2239 Lisp_Object value, int laxp, Error_behavior errb)
|
|
2240 {
|
|
2241 Lisp_Object *tortoise = plist;
|
|
2242 Lisp_Object *hare = plist;
|
|
2243
|
|
2244 while (!NILP (*tortoise))
|
|
2245 {
|
|
2246 Lisp_Object *tortsave = tortoise;
|
|
2247 Lisp_Object retval;
|
|
2248
|
|
2249 /* See above */
|
|
2250 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2251 return;
|
|
2252
|
|
2253 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2254 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2255 {
|
|
2256 XCAR (XCDR (*tortsave)) = value;
|
|
2257 return;
|
|
2258 }
|
|
2259 }
|
|
2260
|
|
2261 *plist = Fcons (property, Fcons (value, *plist));
|
|
2262 }
|
|
2263
|
|
2264 int
|
|
2265 external_remprop (Lisp_Object *plist, Lisp_Object property,
|
|
2266 int laxp, Error_behavior errb)
|
|
2267 {
|
|
2268 Lisp_Object *tortoise = plist;
|
|
2269 Lisp_Object *hare = plist;
|
|
2270
|
|
2271 while (!NILP (*tortoise))
|
|
2272 {
|
|
2273 Lisp_Object *tortsave = tortoise;
|
|
2274 Lisp_Object retval;
|
|
2275
|
|
2276 /* See above */
|
|
2277 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2278 return 0;
|
|
2279
|
|
2280 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2281 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2282 {
|
|
2283 /* Now you see why it's so convenient to have that level
|
|
2284 of indirection. */
|
|
2285 *tortsave = XCDR (XCDR (*tortsave));
|
|
2286 return 1;
|
|
2287 }
|
|
2288 }
|
|
2289
|
|
2290 return 0;
|
|
2291 }
|
|
2292
|
|
2293 DEFUN ("plist-get", Fplist_get, 2, 3, 0, /*
|
|
2294 Extract a value from a property list.
|
|
2295 PLIST is a property list, which is a list of the form
|
|
2296 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
|
|
2297 corresponding to the given PROP, or DEFAULT if PROP is not
|
|
2298 one of the properties on the list.
|
|
2299 */
|
|
2300 (plist, prop, default_))
|
|
2301 {
|
|
2302 Lisp_Object val = external_plist_get (&plist, prop, 0, ERROR_ME);
|
|
2303 return UNBOUNDP (val) ? default_ : val;
|
|
2304 }
|
|
2305
|
|
2306 DEFUN ("plist-put", Fplist_put, 3, 3, 0, /*
|
|
2307 Change value in PLIST of PROP to VAL.
|
|
2308 PLIST is a property list, which is a list of the form \(PROP1 VALUE1
|
|
2309 PROP2 VALUE2 ...). PROP is usually a symbol and VAL is any object.
|
|
2310 If PROP is already a property on the list, its value is set to VAL,
|
|
2311 otherwise the new PROP VAL pair is added. The new plist is returned;
|
|
2312 use `(setq x (plist-put x prop val))' to be sure to use the new value.
|
|
2313 The PLIST is modified by side effects.
|
|
2314 */
|
|
2315 (plist, prop, val))
|
|
2316 {
|
|
2317 external_plist_put (&plist, prop, val, 0, ERROR_ME);
|
|
2318 return plist;
|
|
2319 }
|
|
2320
|
|
2321 DEFUN ("plist-remprop", Fplist_remprop, 2, 2, 0, /*
|
|
2322 Remove from PLIST the property PROP and its value.
|
|
2323 PLIST is a property list, which is a list of the form \(PROP1 VALUE1
|
|
2324 PROP2 VALUE2 ...). PROP is usually a symbol. The new plist is
|
|
2325 returned; use `(setq x (plist-remprop x prop val))' to be sure to use
|
|
2326 the new value. The PLIST is modified by side effects.
|
|
2327 */
|
|
2328 (plist, prop))
|
|
2329 {
|
|
2330 external_remprop (&plist, prop, 0, ERROR_ME);
|
|
2331 return plist;
|
|
2332 }
|
|
2333
|
|
2334 DEFUN ("plist-member", Fplist_member, 2, 2, 0, /*
|
|
2335 Return t if PROP has a value specified in PLIST.
|
|
2336 */
|
|
2337 (plist, prop))
|
|
2338 {
|
|
2339 Lisp_Object val = Fplist_get (plist, prop, Qunbound);
|
|
2340 return UNBOUNDP (val) ? Qnil : Qt;
|
|
2341 }
|
|
2342
|
|
2343 DEFUN ("check-valid-plist", Fcheck_valid_plist, 1, 1, 0, /*
|
|
2344 Given a plist, signal an error if there is anything wrong with it.
|
|
2345 This means that it's a malformed or circular plist.
|
|
2346 */
|
|
2347 (plist))
|
|
2348 {
|
|
2349 Lisp_Object *tortoise;
|
|
2350 Lisp_Object *hare;
|
|
2351
|
|
2352 start_over:
|
|
2353 tortoise = &plist;
|
|
2354 hare = &plist;
|
|
2355 while (!NILP (*tortoise))
|
|
2356 {
|
|
2357 Lisp_Object retval;
|
|
2358
|
|
2359 /* See above */
|
|
2360 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME,
|
|
2361 &retval))
|
|
2362 goto start_over;
|
|
2363 }
|
|
2364
|
|
2365 return Qnil;
|
|
2366 }
|
|
2367
|
|
2368 DEFUN ("valid-plist-p", Fvalid_plist_p, 1, 1, 0, /*
|
|
2369 Given a plist, return non-nil if its format is correct.
|
|
2370 If it returns nil, `check-valid-plist' will signal an error when given
|
|
2371 the plist; that means it's a malformed or circular plist or has non-symbols
|
|
2372 as keywords.
|
|
2373 */
|
|
2374 (plist))
|
|
2375 {
|
|
2376 Lisp_Object *tortoise;
|
|
2377 Lisp_Object *hare;
|
|
2378
|
|
2379 tortoise = &plist;
|
|
2380 hare = &plist;
|
|
2381 while (!NILP (*tortoise))
|
|
2382 {
|
|
2383 Lisp_Object retval;
|
|
2384
|
|
2385 /* See above */
|
|
2386 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME_NOT,
|
|
2387 &retval))
|
|
2388 return Qnil;
|
|
2389 }
|
|
2390
|
|
2391 return Qt;
|
|
2392 }
|
|
2393
|
|
2394 DEFUN ("canonicalize-plist", Fcanonicalize_plist, 1, 2, 0, /*
|
|
2395 Destructively remove any duplicate entries from a plist.
|
|
2396 In such cases, the first entry applies.
|
|
2397
|
|
2398 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2399 a nil value is removed. This feature is a virus that has infected
|
|
2400 old Lisp implementations, but should not be used except for backward
|
|
2401 compatibility.
|
|
2402
|
|
2403 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the
|
|
2404 return value may not be EQ to the passed-in value, so make sure to
|
|
2405 `setq' the value back into where it came from.
|
|
2406 */
|
|
2407 (plist, nil_means_not_present))
|
|
2408 {
|
|
2409 Lisp_Object head = plist;
|
|
2410
|
|
2411 Fcheck_valid_plist (plist);
|
|
2412
|
|
2413 while (!NILP (plist))
|
|
2414 {
|
|
2415 Lisp_Object prop = Fcar (plist);
|
|
2416 Lisp_Object next = Fcdr (plist);
|
|
2417
|
|
2418 CHECK_CONS (next); /* just make doubly sure we catch any errors */
|
|
2419 if (!NILP (nil_means_not_present) && NILP (Fcar (next)))
|
|
2420 {
|
|
2421 if (EQ (head, plist))
|
|
2422 head = Fcdr (next);
|
|
2423 plist = Fcdr (next);
|
|
2424 continue;
|
|
2425 }
|
|
2426 /* external_remprop returns 1 if it removed any property.
|
|
2427 We have to loop till it didn't remove anything, in case
|
|
2428 the property occurs many times. */
|
|
2429 while (external_remprop (&XCDR (next), prop, 0, ERROR_ME))
|
|
2430 DO_NOTHING;
|
|
2431 plist = Fcdr (next);
|
|
2432 }
|
|
2433
|
|
2434 return head;
|
|
2435 }
|
|
2436
|
|
2437 DEFUN ("lax-plist-get", Flax_plist_get, 2, 3, 0, /*
|
|
2438 Extract a value from a lax property list.
|
|
2439
|
|
2440 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
|
2441 VALUE1 PROP2 VALUE2...), where comparisons between properties is done
|
|
2442 using `equal' instead of `eq'. This function returns the value
|
|
2443 corresponding to the given PROP, or DEFAULT if PROP is not one of the
|
|
2444 properties on the list.
|
|
2445 */
|
|
2446 (lax_plist, prop, default_))
|
|
2447 {
|
|
2448 Lisp_Object val = external_plist_get (&lax_plist, prop, 1, ERROR_ME);
|
|
2449 if (UNBOUNDP (val))
|
|
2450 return default_;
|
|
2451 return val;
|
|
2452 }
|
|
2453
|
|
2454 DEFUN ("lax-plist-put", Flax_plist_put, 3, 3, 0, /*
|
|
2455 Change value in LAX-PLIST of PROP to VAL.
|
|
2456 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
|
2457 VALUE1 PROP2 VALUE2...), where comparisons between properties is done
|
|
2458 using `equal' instead of `eq'. PROP is usually a symbol and VAL is
|
|
2459 any object. If PROP is already a property on the list, its value is
|
|
2460 set to VAL, otherwise the new PROP VAL pair is added. The new plist
|
|
2461 is returned; use `(setq x (lax-plist-put x prop val))' to be sure to
|
|
2462 use the new value. The LAX-PLIST is modified by side effects.
|
|
2463 */
|
|
2464 (lax_plist, prop, val))
|
|
2465 {
|
|
2466 external_plist_put (&lax_plist, prop, val, 1, ERROR_ME);
|
|
2467 return lax_plist;
|
|
2468 }
|
|
2469
|
|
2470 DEFUN ("lax-plist-remprop", Flax_plist_remprop, 2, 2, 0, /*
|
|
2471 Remove from LAX-PLIST the property PROP and its value.
|
|
2472 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
|
2473 VALUE1 PROP2 VALUE2...), where comparisons between properties is done
|
|
2474 using `equal' instead of `eq'. PROP is usually a symbol. The new
|
|
2475 plist is returned; use `(setq x (lax-plist-remprop x prop val))' to be
|
|
2476 sure to use the new value. The LAX-PLIST is modified by side effects.
|
|
2477 */
|
|
2478 (lax_plist, prop))
|
|
2479 {
|
|
2480 external_remprop (&lax_plist, prop, 1, ERROR_ME);
|
|
2481 return lax_plist;
|
|
2482 }
|
|
2483
|
|
2484 DEFUN ("lax-plist-member", Flax_plist_member, 2, 2, 0, /*
|
|
2485 Return t if PROP has a value specified in LAX-PLIST.
|
|
2486 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
|
2487 VALUE1 PROP2 VALUE2...), where comparisons between properties is done
|
|
2488 using `equal' instead of `eq'.
|
|
2489 */
|
|
2490 (lax_plist, prop))
|
|
2491 {
|
|
2492 return UNBOUNDP (Flax_plist_get (lax_plist, prop, Qunbound)) ? Qnil : Qt;
|
|
2493 }
|
|
2494
|
|
2495 DEFUN ("canonicalize-lax-plist", Fcanonicalize_lax_plist, 1, 2, 0, /*
|
|
2496 Destructively remove any duplicate entries from a lax plist.
|
|
2497 In such cases, the first entry applies.
|
|
2498
|
|
2499 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2500 a nil value is removed. This feature is a virus that has infected
|
|
2501 old Lisp implementations, but should not be used except for backward
|
|
2502 compatibility.
|
|
2503
|
|
2504 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the
|
|
2505 return value may not be EQ to the passed-in value, so make sure to
|
|
2506 `setq' the value back into where it came from.
|
|
2507 */
|
|
2508 (lax_plist, nil_means_not_present))
|
|
2509 {
|
|
2510 Lisp_Object head = lax_plist;
|
|
2511
|
|
2512 Fcheck_valid_plist (lax_plist);
|
|
2513
|
|
2514 while (!NILP (lax_plist))
|
|
2515 {
|
|
2516 Lisp_Object prop = Fcar (lax_plist);
|
|
2517 Lisp_Object next = Fcdr (lax_plist);
|
|
2518
|
|
2519 CHECK_CONS (next); /* just make doubly sure we catch any errors */
|
|
2520 if (!NILP (nil_means_not_present) && NILP (Fcar (next)))
|
|
2521 {
|
|
2522 if (EQ (head, lax_plist))
|
|
2523 head = Fcdr (next);
|
|
2524 lax_plist = Fcdr (next);
|
|
2525 continue;
|
|
2526 }
|
|
2527 /* external_remprop returns 1 if it removed any property.
|
|
2528 We have to loop till it didn't remove anything, in case
|
|
2529 the property occurs many times. */
|
|
2530 while (external_remprop (&XCDR (next), prop, 1, ERROR_ME))
|
|
2531 DO_NOTHING;
|
|
2532 lax_plist = Fcdr (next);
|
|
2533 }
|
|
2534
|
|
2535 return head;
|
|
2536 }
|
|
2537
|
|
2538 /* In C because the frame props stuff uses it */
|
|
2539
|
|
2540 DEFUN ("destructive-alist-to-plist", Fdestructive_alist_to_plist, 1, 1, 0, /*
|
|
2541 Convert association list ALIST into the equivalent property-list form.
|
|
2542 The plist is returned. This converts from
|
|
2543
|
|
2544 \((a . 1) (b . 2) (c . 3))
|
|
2545
|
|
2546 into
|
|
2547
|
|
2548 \(a 1 b 2 c 3)
|
|
2549
|
|
2550 The original alist is destroyed in the process of constructing the plist.
|
|
2551 See also `alist-to-plist'.
|
|
2552 */
|
|
2553 (alist))
|
|
2554 {
|
|
2555 Lisp_Object head = alist;
|
|
2556 while (!NILP (alist))
|
|
2557 {
|
|
2558 /* remember the alist element. */
|
|
2559 Lisp_Object el = Fcar (alist);
|
|
2560
|
|
2561 Fsetcar (alist, Fcar (el));
|
|
2562 Fsetcar (el, Fcdr (el));
|
|
2563 Fsetcdr (el, Fcdr (alist));
|
|
2564 Fsetcdr (alist, el);
|
|
2565 alist = Fcdr (Fcdr (alist));
|
|
2566 }
|
|
2567
|
|
2568 return head;
|
|
2569 }
|
|
2570
|
|
2571 /* Symbol plists are directly accessible, so we need to protect against
|
|
2572 invalid property list structure */
|
|
2573
|
|
2574 static Lisp_Object
|
|
2575 symbol_getprop (Lisp_Object sym, Lisp_Object propname, Lisp_Object default_)
|
|
2576 {
|
|
2577 Lisp_Object val = external_plist_get (&XSYMBOL (sym)->plist, propname,
|
|
2578 0, ERROR_ME);
|
|
2579 return UNBOUNDP (val) ? default_ : val;
|
|
2580 }
|
|
2581
|
|
2582 static void
|
|
2583 symbol_putprop (Lisp_Object sym, Lisp_Object propname, Lisp_Object value)
|
|
2584 {
|
|
2585 external_plist_put (&XSYMBOL (sym)->plist, propname, value, 0, ERROR_ME);
|
|
2586 }
|
|
2587
|
|
2588 static int
|
|
2589 symbol_remprop (Lisp_Object symbol, Lisp_Object propname)
|
|
2590 {
|
|
2591 return external_remprop (&XSYMBOL (symbol)->plist, propname, 0, ERROR_ME);
|
|
2592 }
|
|
2593
|
|
2594 /* We store the string's extent info as the first element of the string's
|
|
2595 property list; and the string's MODIFF as the first or second element
|
|
2596 of the string's property list (depending on whether the extent info
|
|
2597 is present), but only if the string has been modified. This is ugly
|
|
2598 but it reduces the memory allocated for the string in the vast
|
|
2599 majority of cases, where the string is never modified and has no
|
|
2600 extent info. */
|
|
2601
|
|
2602
|
|
2603 static Lisp_Object *
|
|
2604 string_plist_ptr (struct Lisp_String *s)
|
|
2605 {
|
|
2606 Lisp_Object *ptr = &s->plist;
|
|
2607
|
|
2608 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
|
|
2609 ptr = &XCDR (*ptr);
|
|
2610 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
|
|
2611 ptr = &XCDR (*ptr);
|
|
2612 return ptr;
|
|
2613 }
|
|
2614
|
|
2615 static Lisp_Object
|
|
2616 string_getprop (struct Lisp_String *s, Lisp_Object property,
|
|
2617 Lisp_Object default_)
|
|
2618 {
|
|
2619 Lisp_Object val = external_plist_get (string_plist_ptr (s), property, 0,
|
|
2620 ERROR_ME);
|
|
2621 return UNBOUNDP (val) ? default_ : val;
|
|
2622 }
|
|
2623
|
|
2624 static void
|
|
2625 string_putprop (struct Lisp_String *s, Lisp_Object property,
|
|
2626 Lisp_Object value)
|
|
2627 {
|
|
2628 external_plist_put (string_plist_ptr (s), property, value, 0, ERROR_ME);
|
|
2629 }
|
|
2630
|
|
2631 static int
|
|
2632 string_remprop (struct Lisp_String *s, Lisp_Object property)
|
|
2633 {
|
|
2634 return external_remprop (string_plist_ptr (s), property, 0, ERROR_ME);
|
|
2635 }
|
|
2636
|
|
2637 static Lisp_Object
|
|
2638 string_plist (struct Lisp_String *s)
|
|
2639 {
|
|
2640 return *string_plist_ptr (s);
|
|
2641 }
|
|
2642
|
|
2643 DEFUN ("get", Fget, 2, 3, 0, /*
|
|
2644 Return the value of OBJECT's PROPNAME property.
|
|
2645 This is the last VALUE stored with `(put OBJECT PROPNAME VALUE)'.
|
|
2646 If there is no such property, return optional third arg DEFAULT
|
|
2647 \(which defaults to `nil'). OBJECT can be a symbol, face, extent,
|
|
2648 or string. See also `put', `remprop', and `object-plist'.
|
|
2649 */
|
|
2650 (object, propname, default_))
|
|
2651 {
|
|
2652 /* Various places in emacs call Fget() and expect it not to quit,
|
|
2653 so don't quit. */
|
|
2654
|
|
2655 /* It's easiest to treat symbols specially because they may not
|
|
2656 be an lrecord */
|
|
2657 if (SYMBOLP (object))
|
|
2658 return symbol_getprop (object, propname, default_);
|
|
2659 else if (STRINGP (object))
|
|
2660 return string_getprop (XSTRING (object), propname, default_);
|
|
2661 else if (LRECORDP (object))
|
|
2662 {
|
|
2663 CONST struct lrecord_implementation *imp
|
|
2664 = XRECORD_LHEADER_IMPLEMENTATION (object);
|
|
2665 if (!imp->getprop)
|
|
2666 goto noprops;
|
|
2667
|
|
2668 {
|
|
2669 Lisp_Object val = (imp->getprop) (object, propname);
|
|
2670 if (UNBOUNDP (val))
|
|
2671 val = default_;
|
|
2672 return val;
|
|
2673 }
|
|
2674 }
|
|
2675 else
|
|
2676 {
|
|
2677 noprops:
|
|
2678 signal_simple_error ("Object type has no properties", object);
|
|
2679 return Qnil; /* Not reached */
|
|
2680 }
|
|
2681 }
|
|
2682
|
|
2683 DEFUN ("put", Fput, 3, 3, 0, /*
|
|
2684 Store OBJECT's PROPNAME property with value VALUE.
|
|
2685 It can be retrieved with `(get OBJECT PROPNAME)'. OBJECT can be a
|
|
2686 symbol, face, extent, or string.
|
|
2687
|
|
2688 For a string, no properties currently have predefined meanings.
|
|
2689 For the predefined properties for extents, see `set-extent-property'.
|
|
2690 For the predefined properties for faces, see `set-face-property'.
|
|
2691
|
|
2692 See also `get', `remprop', and `object-plist'.
|
|
2693 */
|
|
2694 (object, propname, value))
|
|
2695 {
|
|
2696 CHECK_SYMBOL (propname);
|
|
2697 CHECK_LISP_WRITEABLE (object);
|
|
2698
|
|
2699 if (SYMBOLP (object))
|
|
2700 symbol_putprop (object, propname, value);
|
|
2701 else if (STRINGP (object))
|
|
2702 string_putprop (XSTRING (object), propname, value);
|
|
2703 else if (LRECORDP (object))
|
|
2704 {
|
|
2705 CONST struct lrecord_implementation
|
|
2706 *imp = XRECORD_LHEADER_IMPLEMENTATION (object);
|
|
2707 if (imp->putprop)
|
|
2708 {
|
|
2709 if (! (imp->putprop) (object, propname, value))
|
|
2710 signal_simple_error ("Can't set property on object", propname);
|
|
2711 }
|
|
2712 else
|
|
2713 goto noprops;
|
|
2714 }
|
|
2715 else
|
|
2716 {
|
|
2717 noprops:
|
|
2718 signal_simple_error ("Object type has no settable properties", object);
|
|
2719 }
|
|
2720
|
|
2721 return value;
|
|
2722 }
|
|
2723
|
|
2724 DEFUN ("remprop", Fremprop, 2, 2, 0, /*
|
|
2725 Remove from OBJECT's property list the property PROPNAME and its
|
|
2726 value. OBJECT can be a symbol, face, extent, or string. Returns
|
|
2727 non-nil if the property list was actually changed (i.e. if PROPNAME
|
|
2728 was present in the property list). See also `get', `put', and
|
|
2729 `object-plist'.
|
|
2730 */
|
|
2731 (object, propname))
|
|
2732 {
|
|
2733 int retval = 0;
|
|
2734
|
|
2735 CHECK_SYMBOL (propname);
|
|
2736 CHECK_LISP_WRITEABLE (object);
|
|
2737
|
|
2738 if (SYMBOLP (object))
|
|
2739 retval = symbol_remprop (object, propname);
|
|
2740 else if (STRINGP (object))
|
|
2741 retval = string_remprop (XSTRING (object), propname);
|
|
2742 else if (LRECORDP (object))
|
|
2743 {
|
|
2744 CONST struct lrecord_implementation
|
|
2745 *imp = XRECORD_LHEADER_IMPLEMENTATION (object);
|
|
2746 if (imp->remprop)
|
|
2747 {
|
|
2748 retval = (imp->remprop) (object, propname);
|
|
2749 if (retval == -1)
|
|
2750 signal_simple_error ("Can't remove property from object",
|
|
2751 propname);
|
|
2752 }
|
|
2753 else
|
|
2754 goto noprops;
|
|
2755 }
|
|
2756 else
|
|
2757 {
|
|
2758 noprops:
|
|
2759 signal_simple_error ("Object type has no removable properties", object);
|
|
2760 }
|
|
2761
|
|
2762 return retval ? Qt : Qnil;
|
|
2763 }
|
|
2764
|
|
2765 DEFUN ("object-plist", Fobject_plist, 1, 1, 0, /*
|
|
2766 Return a property list of OBJECT's props.
|
|
2767 For a symbol this is equivalent to `symbol-plist'.
|
|
2768 Do not modify the property list directly; this may or may not have
|
|
2769 the desired effects. (In particular, for a property with a special
|
|
2770 interpretation, this will probably have no effect at all.)
|
|
2771 */
|
|
2772 (object))
|
|
2773 {
|
|
2774 if (SYMBOLP (object))
|
|
2775 return Fsymbol_plist (object);
|
|
2776 else if (STRINGP (object))
|
|
2777 return string_plist (XSTRING (object));
|
|
2778 else if (LRECORDP (object))
|
|
2779 {
|
|
2780 CONST struct lrecord_implementation
|
|
2781 *imp = XRECORD_LHEADER_IMPLEMENTATION (object);
|
|
2782 if (imp->plist)
|
|
2783 return (imp->plist) (object);
|
|
2784 else
|
|
2785 signal_simple_error ("Object type has no properties", object);
|
|
2786 }
|
|
2787 else
|
|
2788 signal_simple_error ("Object type has no properties", object);
|
|
2789
|
|
2790 return Qnil;
|
|
2791 }
|
|
2792
|
|
2793
|
|
2794 int
|
|
2795 internal_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
2796 {
|
|
2797 if (depth > 200)
|
|
2798 error ("Stack overflow in equal");
|
|
2799 QUIT;
|
|
2800 if (EQ_WITH_EBOLA_NOTICE (obj1, obj2))
|
|
2801 return 1;
|
|
2802 /* Note that (equal 20 20.0) should be nil */
|
|
2803 if (XTYPE (obj1) != XTYPE (obj2))
|
|
2804 return 0;
|
|
2805 if (LRECORDP (obj1))
|
|
2806 {
|
|
2807 CONST struct lrecord_implementation
|
|
2808 *imp1 = XRECORD_LHEADER_IMPLEMENTATION (obj1),
|
|
2809 *imp2 = XRECORD_LHEADER_IMPLEMENTATION (obj2);
|
|
2810
|
|
2811 return (imp1 == imp2) &&
|
|
2812 /* EQ-ness of the objects was noticed above */
|
|
2813 (imp1->equal && (imp1->equal) (obj1, obj2, depth));
|
|
2814 }
|
|
2815
|
|
2816 return 0;
|
|
2817 }
|
|
2818
|
|
2819 /* Note that we may be calling sub-objects that will use
|
|
2820 internal_equal() (instead of internal_old_equal()). Oh well.
|
|
2821 We will get an Ebola note if there's any possibility of confusion,
|
|
2822 but that seems unlikely. */
|
|
2823
|
|
2824 static int
|
|
2825 internal_old_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
2826 {
|
|
2827 if (depth > 200)
|
|
2828 error ("Stack overflow in equal");
|
|
2829 QUIT;
|
|
2830 if (HACKEQ_UNSAFE (obj1, obj2))
|
|
2831 return 1;
|
|
2832 /* Note that (equal 20 20.0) should be nil */
|
|
2833 if (XTYPE (obj1) != XTYPE (obj2))
|
|
2834 return 0;
|
|
2835
|
|
2836 return internal_equal (obj1, obj2, depth);
|
|
2837 }
|
|
2838
|
|
2839 DEFUN ("equal", Fequal, 2, 2, 0, /*
|
|
2840 Return t if two Lisp objects have similar structure and contents.
|
|
2841 They must have the same data type.
|
|
2842 Conses are compared by comparing the cars and the cdrs.
|
|
2843 Vectors and strings are compared element by element.
|
|
2844 Numbers are compared by value. Symbols must match exactly.
|
|
2845 */
|
|
2846 (obj1, obj2))
|
|
2847 {
|
|
2848 return internal_equal (obj1, obj2, 0) ? Qt : Qnil;
|
|
2849 }
|
|
2850
|
|
2851 DEFUN ("old-equal", Fold_equal, 2, 2, 0, /*
|
|
2852 Return t if two Lisp objects have similar structure and contents.
|
|
2853 They must have the same data type.
|
|
2854 \(Note, however, that an exception is made for characters and integers;
|
|
2855 this is known as the "char-int confoundance disease." See `eq' and
|
|
2856 `old-eq'.)
|
|
2857 This function is provided only for byte-code compatibility with v19.
|
|
2858 Do not use it.
|
|
2859 */
|
|
2860 (obj1, obj2))
|
|
2861 {
|
|
2862 return internal_old_equal (obj1, obj2, 0) ? Qt : Qnil;
|
|
2863 }
|
|
2864
|
|
2865
|
|
2866 DEFUN ("fillarray", Ffillarray, 2, 2, 0, /*
|
434
|
2867 Destructively modify ARRAY by replacing each element with ITEM.
|
428
|
2868 ARRAY is a vector, bit vector, or string.
|
|
2869 */
|
|
2870 (array, item))
|
|
2871 {
|
|
2872 retry:
|
|
2873 if (STRINGP (array))
|
|
2874 {
|
|
2875 struct Lisp_String *s = XSTRING (array);
|
434
|
2876 Bytecount old_bytecount = string_length (s);
|
|
2877 Bytecount new_bytecount;
|
|
2878 Bytecount item_bytecount;
|
|
2879 Bufbyte item_buf[MAX_EMCHAR_LEN];
|
|
2880 Bufbyte *p;
|
|
2881 Bufbyte *end;
|
|
2882
|
428
|
2883 CHECK_CHAR_COERCE_INT (item);
|
|
2884 CHECK_LISP_WRITEABLE (array);
|
434
|
2885
|
|
2886 item_bytecount = set_charptr_emchar (item_buf, XCHAR (item));
|
|
2887 new_bytecount = item_bytecount * string_char_length (s);
|
|
2888
|
|
2889 resize_string (s, -1, new_bytecount - old_bytecount);
|
|
2890
|
|
2891 for (p = string_data (s), end = p + new_bytecount;
|
|
2892 p < end;
|
|
2893 p += item_bytecount)
|
|
2894 memcpy (p, item_buf, item_bytecount);
|
|
2895 *p = '\0';
|
|
2896
|
428
|
2897 bump_string_modiff (array);
|
|
2898 }
|
|
2899 else if (VECTORP (array))
|
|
2900 {
|
|
2901 Lisp_Object *p = XVECTOR_DATA (array);
|
|
2902 int len = XVECTOR_LENGTH (array);
|
|
2903 CHECK_LISP_WRITEABLE (array);
|
|
2904 while (len--)
|
|
2905 *p++ = item;
|
|
2906 }
|
|
2907 else if (BIT_VECTORP (array))
|
|
2908 {
|
|
2909 struct Lisp_Bit_Vector *v = XBIT_VECTOR (array);
|
|
2910 int len = bit_vector_length (v);
|
|
2911 int bit;
|
|
2912 CHECK_BIT (item);
|
|
2913 CHECK_LISP_WRITEABLE (array);
|
|
2914 bit = XINT (item);
|
|
2915 while (len--)
|
|
2916 set_bit_vector_bit (v, len, bit);
|
|
2917 }
|
|
2918 else
|
|
2919 {
|
|
2920 array = wrong_type_argument (Qarrayp, array);
|
|
2921 goto retry;
|
|
2922 }
|
|
2923 return array;
|
|
2924 }
|
|
2925
|
|
2926 Lisp_Object
|
|
2927 nconc2 (Lisp_Object arg1, Lisp_Object arg2)
|
|
2928 {
|
|
2929 Lisp_Object args[2];
|
|
2930 struct gcpro gcpro1;
|
|
2931 args[0] = arg1;
|
|
2932 args[1] = arg2;
|
|
2933
|
|
2934 GCPRO1 (args[0]);
|
|
2935 gcpro1.nvars = 2;
|
|
2936
|
|
2937 RETURN_UNGCPRO (bytecode_nconc2 (args));
|
|
2938 }
|
|
2939
|
|
2940 Lisp_Object
|
|
2941 bytecode_nconc2 (Lisp_Object *args)
|
|
2942 {
|
|
2943 retry:
|
|
2944
|
|
2945 if (CONSP (args[0]))
|
|
2946 {
|
|
2947 /* (setcdr (last args[0]) args[1]) */
|
|
2948 Lisp_Object tortoise, hare;
|
|
2949 int count;
|
|
2950
|
|
2951 for (hare = tortoise = args[0], count = 0;
|
|
2952 CONSP (XCDR (hare));
|
|
2953 hare = XCDR (hare), count++)
|
|
2954 {
|
|
2955 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue;
|
|
2956
|
|
2957 if (count & 1)
|
|
2958 tortoise = XCDR (tortoise);
|
|
2959 if (EQ (hare, tortoise))
|
|
2960 signal_circular_list_error (args[0]);
|
|
2961 }
|
|
2962 XCDR (hare) = args[1];
|
|
2963 return args[0];
|
|
2964 }
|
|
2965 else if (NILP (args[0]))
|
|
2966 {
|
|
2967 return args[1];
|
|
2968 }
|
|
2969 else
|
|
2970 {
|
|
2971 args[0] = wrong_type_argument (args[0], Qlistp);
|
|
2972 goto retry;
|
|
2973 }
|
|
2974 }
|
|
2975
|
|
2976 DEFUN ("nconc", Fnconc, 0, MANY, 0, /*
|
|
2977 Concatenate any number of lists by altering them.
|
|
2978 Only the last argument is not altered, and need not be a list.
|
|
2979 Also see: `append'.
|
|
2980 If the first argument is nil, there is no way to modify it by side
|
|
2981 effect; therefore, write `(setq foo (nconc foo list))' to be sure of
|
|
2982 changing the value of `foo'.
|
|
2983 */
|
|
2984 (int nargs, Lisp_Object *args))
|
|
2985 {
|
|
2986 int argnum = 0;
|
|
2987 struct gcpro gcpro1;
|
|
2988
|
|
2989 /* The modus operandi in Emacs is "caller gc-protects args".
|
|
2990 However, nconc (particularly nconc2 ()) is called many times
|
|
2991 in Emacs on freshly created stuff (e.g. you see the idiom
|
|
2992 nconc2 (Fcopy_sequence (foo), bar) a lot). So we help those
|
|
2993 callers out by protecting the args ourselves to save them
|
|
2994 a lot of temporary-variable grief. */
|
|
2995
|
|
2996 GCPRO1 (args[0]);
|
|
2997 gcpro1.nvars = nargs;
|
|
2998
|
|
2999 while (argnum < nargs)
|
|
3000 {
|
|
3001 Lisp_Object val;
|
|
3002 retry:
|
|
3003 val = args[argnum];
|
|
3004 if (CONSP (val))
|
|
3005 {
|
|
3006 /* `val' is the first cons, which will be our return value. */
|
|
3007 /* `last_cons' will be the cons cell to mutate. */
|
|
3008 Lisp_Object last_cons = val;
|
|
3009 Lisp_Object tortoise = val;
|
|
3010
|
|
3011 for (argnum++; argnum < nargs; argnum++)
|
|
3012 {
|
|
3013 Lisp_Object next = args[argnum];
|
|
3014 retry_next:
|
|
3015 if (CONSP (next) || argnum == nargs -1)
|
|
3016 {
|
|
3017 /* (setcdr (last val) next) */
|
|
3018 int count;
|
|
3019
|
|
3020 for (count = 0;
|
|
3021 CONSP (XCDR (last_cons));
|
|
3022 last_cons = XCDR (last_cons), count++)
|
|
3023 {
|
|
3024 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue;
|
|
3025
|
|
3026 if (count & 1)
|
|
3027 tortoise = XCDR (tortoise);
|
|
3028 if (EQ (last_cons, tortoise))
|
|
3029 signal_circular_list_error (args[argnum-1]);
|
|
3030 }
|
|
3031 XCDR (last_cons) = next;
|
|
3032 }
|
|
3033 else if (NILP (next))
|
|
3034 {
|
|
3035 continue;
|
|
3036 }
|
|
3037 else
|
|
3038 {
|
|
3039 next = wrong_type_argument (Qlistp, next);
|
|
3040 goto retry_next;
|
|
3041 }
|
|
3042 }
|
|
3043 RETURN_UNGCPRO (val);
|
|
3044 }
|
|
3045 else if (NILP (val))
|
|
3046 argnum++;
|
|
3047 else if (argnum == nargs - 1) /* last arg? */
|
|
3048 RETURN_UNGCPRO (val);
|
|
3049 else
|
|
3050 {
|
|
3051 args[argnum] = wrong_type_argument (Qlistp, val);
|
|
3052 goto retry;
|
|
3053 }
|
|
3054 }
|
|
3055 RETURN_UNGCPRO (Qnil); /* No non-nil args provided. */
|
|
3056 }
|
|
3057
|
|
3058
|
434
|
3059 /* This is the guts of several mapping functions.
|
|
3060 Apply FUNCTION to each element of SEQUENCE, one by one,
|
|
3061 storing the results into elements of VALS, a C vector of Lisp_Objects.
|
|
3062 LENI is the length of VALS, which should also be the length of SEQUENCE.
|
428
|
3063
|
|
3064 If VALS is a null pointer, do not accumulate the results. */
|
|
3065
|
|
3066 static void
|
434
|
3067 mapcar1 (size_t leni, Lisp_Object *vals,
|
|
3068 Lisp_Object function, Lisp_Object sequence)
|
428
|
3069 {
|
|
3070 Lisp_Object result;
|
|
3071 Lisp_Object args[2];
|
|
3072 int i;
|
|
3073 struct gcpro gcpro1;
|
|
3074
|
|
3075 if (vals)
|
|
3076 {
|
|
3077 GCPRO1 (vals[0]);
|
|
3078 gcpro1.nvars = 0;
|
|
3079 }
|
|
3080
|
434
|
3081 args[0] = function;
|
|
3082
|
|
3083 if (LISTP (sequence))
|
428
|
3084 {
|
434
|
3085 /* A devious `function' could either:
|
|
3086 - insert garbage into the list in front of us, causing XCDR to crash
|
|
3087 - amputate the list behind us using (setcdr), causing the remaining
|
|
3088 elts to lose their GCPRO status.
|
|
3089
|
|
3090 if (vals != 0) we avoid this by copying the elts into the
|
|
3091 `vals' array. By a stroke of luck, `vals' is exactly large
|
|
3092 enough to hold the elts left to be traversed as well as the
|
|
3093 results computed so far.
|
|
3094
|
|
3095 if (vals == 0) we don't have any free space available and
|
|
3096 don't want to eat up any more stack with alloca().
|
|
3097 So we use EXTERNAL_LIST_LOOP_3 and GCPRO the tail. */
|
|
3098
|
|
3099 if (vals)
|
428
|
3100 {
|
434
|
3101 Lisp_Object *val = vals;
|
|
3102 Lisp_Object elt;
|
|
3103
|
|
3104 LIST_LOOP_2 (elt, sequence)
|
|
3105 *val++ = elt;
|
|
3106
|
|
3107 gcpro1.nvars = leni;
|
|
3108
|
|
3109 for (i = 0; i < leni; i++)
|
|
3110 {
|
|
3111 args[1] = vals[i];
|
|
3112 vals[i] = Ffuncall (2, args);
|
|
3113 }
|
|
3114 }
|
|
3115 else
|
|
3116 {
|
|
3117 Lisp_Object elt, tail;
|
|
3118 struct gcpro ngcpro1;
|
|
3119
|
|
3120 NGCPRO1 (tail);
|
|
3121
|
|
3122 {
|
|
3123 EXTERNAL_LIST_LOOP_3 (elt, sequence, tail)
|
|
3124 {
|
|
3125 args[1] = elt;
|
|
3126 Ffuncall (2, args);
|
|
3127 }
|
|
3128 }
|
|
3129
|
|
3130 NUNGCPRO;
|
428
|
3131 }
|
|
3132 }
|
434
|
3133 else if (VECTORP (sequence))
|
428
|
3134 {
|
434
|
3135 Lisp_Object *objs = XVECTOR_DATA (sequence);
|
428
|
3136 for (i = 0; i < leni; i++)
|
|
3137 {
|
|
3138 args[1] = *objs++;
|
|
3139 result = Ffuncall (2, args);
|
|
3140 if (vals) vals[gcpro1.nvars++] = result;
|
|
3141 }
|
|
3142 }
|
434
|
3143 else if (STRINGP (sequence))
|
428
|
3144 {
|
434
|
3145 /* The string data of `sequence' might be relocated during GC. */
|
|
3146 Bytecount slen = XSTRING_LENGTH (sequence);
|
|
3147 Bufbyte *p = alloca_array (Bufbyte, slen);
|
|
3148 Bufbyte *end = p + slen;
|
|
3149
|
|
3150 memcpy (p, XSTRING_DATA (sequence), slen);
|
|
3151
|
|
3152 while (p < end)
|
428
|
3153 {
|
|
3154 args[1] = make_char (charptr_emchar (p));
|
|
3155 INC_CHARPTR (p);
|
|
3156 result = Ffuncall (2, args);
|
|
3157 if (vals) vals[gcpro1.nvars++] = result;
|
|
3158 }
|
|
3159 }
|
434
|
3160 else if (BIT_VECTORP (sequence))
|
428
|
3161 {
|
434
|
3162 struct Lisp_Bit_Vector *v = XBIT_VECTOR (sequence);
|
428
|
3163 for (i = 0; i < leni; i++)
|
|
3164 {
|
|
3165 args[1] = make_int (bit_vector_bit (v, i));
|
|
3166 result = Ffuncall (2, args);
|
|
3167 if (vals) vals[gcpro1.nvars++] = result;
|
|
3168 }
|
|
3169 }
|
|
3170 else
|
434
|
3171 abort(); /* cannot get here since Flength(sequence) did not get an error */
|
428
|
3172
|
|
3173 if (vals)
|
|
3174 UNGCPRO;
|
|
3175 }
|
|
3176
|
|
3177 DEFUN ("mapconcat", Fmapconcat, 3, 3, 0, /*
|
434
|
3178 Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
|
|
3179 In between each pair of results, insert SEPARATOR. Thus, using " " as
|
|
3180 SEPARATOR results in spaces between the values returned by FUNCTION.
|
|
3181 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
428
|
3182 */
|
434
|
3183 (function, sequence, separator))
|
428
|
3184 {
|
434
|
3185 size_t len = XINT (Flength (sequence));
|
428
|
3186 Lisp_Object *args;
|
|
3187 int i;
|
|
3188 struct gcpro gcpro1;
|
|
3189 int nargs = len + len - 1;
|
|
3190
|
|
3191 if (nargs < 0) return build_string ("");
|
|
3192
|
|
3193 args = alloca_array (Lisp_Object, nargs);
|
|
3194
|
434
|
3195 GCPRO1 (separator);
|
|
3196 mapcar1 (len, args, function, sequence);
|
428
|
3197 UNGCPRO;
|
|
3198
|
|
3199 for (i = len - 1; i >= 0; i--)
|
|
3200 args[i + i] = args[i];
|
|
3201
|
|
3202 for (i = 1; i < nargs; i += 2)
|
434
|
3203 args[i] = separator;
|
428
|
3204
|
|
3205 return Fconcat (nargs, args);
|
|
3206 }
|
|
3207
|
|
3208 DEFUN ("mapcar", Fmapcar, 2, 2, 0, /*
|
434
|
3209 Apply FUNCTION to each element of SEQUENCE; return a list of the results.
|
|
3210 The result is a list of the same length as SEQUENCE.
|
428
|
3211 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
|
3212 */
|
434
|
3213 (function, sequence))
|
428
|
3214 {
|
434
|
3215 size_t len = XINT (Flength (sequence));
|
428
|
3216 Lisp_Object *args = alloca_array (Lisp_Object, len);
|
|
3217
|
434
|
3218 mapcar1 (len, args, function, sequence);
|
428
|
3219
|
|
3220 return Flist (len, args);
|
|
3221 }
|
|
3222
|
|
3223 DEFUN ("mapvector", Fmapvector, 2, 2, 0, /*
|
434
|
3224 Apply FUNCTION to each element of SEQUENCE; return a vector of the results.
|
428
|
3225 The result is a vector of the same length as SEQUENCE.
|
434
|
3226 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
428
|
3227 */
|
434
|
3228 (function, sequence))
|
428
|
3229 {
|
434
|
3230 size_t len = XINT (Flength (sequence));
|
428
|
3231 Lisp_Object result = make_vector (len, Qnil);
|
|
3232 struct gcpro gcpro1;
|
|
3233
|
|
3234 GCPRO1 (result);
|
434
|
3235 mapcar1 (len, XVECTOR_DATA (result), function, sequence);
|
428
|
3236 UNGCPRO;
|
|
3237
|
|
3238 return result;
|
|
3239 }
|
|
3240
|
|
3241 DEFUN ("mapc-internal", Fmapc_internal, 2, 2, 0, /*
|
|
3242 Apply FUNCTION to each element of SEQUENCE.
|
|
3243 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
|
3244 This function is like `mapcar' but does not accumulate the results,
|
|
3245 which is more efficient if you do not use the results.
|
|
3246
|
|
3247 The difference between this and `mapc' is that `mapc' supports all
|
|
3248 the spiffy Common Lisp arguments. You should normally use `mapc'.
|
|
3249 */
|
434
|
3250 (function, sequence))
|
428
|
3251 {
|
434
|
3252 mapcar1 (XINT (Flength (sequence)), 0, function, sequence);
|
|
3253
|
|
3254 return sequence;
|
428
|
3255 }
|
|
3256
|
|
3257
|
|
3258 /* #### this function doesn't belong in this file! */
|
|
3259
|
|
3260 DEFUN ("load-average", Fload_average, 0, 1, 0, /*
|
|
3261 Return list of 1 minute, 5 minute and 15 minute load averages.
|
|
3262 Each of the three load averages is multiplied by 100,
|
|
3263 then converted to integer.
|
|
3264
|
|
3265 When USE-FLOATS is non-nil, floats will be used instead of integers.
|
|
3266 These floats are not multiplied by 100.
|
|
3267
|
|
3268 If the 5-minute or 15-minute load averages are not available, return a
|
|
3269 shortened list, containing only those averages which are available.
|
|
3270
|
|
3271 On some systems, this won't work due to permissions on /dev/kmem,
|
|
3272 in which case you can't use this.
|
|
3273 */
|
|
3274 (use_floats))
|
|
3275 {
|
|
3276 double load_ave[3];
|
|
3277 int loads = getloadavg (load_ave, countof (load_ave));
|
|
3278 Lisp_Object ret = Qnil;
|
|
3279
|
|
3280 if (loads == -2)
|
|
3281 error ("load-average not implemented for this operating system");
|
|
3282 else if (loads < 0)
|
|
3283 signal_simple_error ("Could not get load-average",
|
|
3284 lisp_strerror (errno));
|
|
3285
|
|
3286 while (loads-- > 0)
|
|
3287 {
|
|
3288 Lisp_Object load = (NILP (use_floats) ?
|
|
3289 make_int ((int) (100.0 * load_ave[loads]))
|
|
3290 : make_float (load_ave[loads]));
|
|
3291 ret = Fcons (load, ret);
|
|
3292 }
|
|
3293 return ret;
|
|
3294 }
|
|
3295
|
|
3296
|
|
3297 Lisp_Object Vfeatures;
|
|
3298
|
|
3299 DEFUN ("featurep", Ffeaturep, 1, 1, 0, /*
|
|
3300 Return non-nil if feature FEXP is present in this Emacs.
|
|
3301 Use this to conditionalize execution of lisp code based on the
|
|
3302 presence or absence of emacs or environment extensions.
|
|
3303 FEXP can be a symbol, a number, or a list.
|
|
3304 If it is a symbol, that symbol is looked up in the `features' variable,
|
|
3305 and non-nil will be returned if found.
|
|
3306 If it is a number, the function will return non-nil if this Emacs
|
|
3307 has an equal or greater version number than FEXP.
|
|
3308 If it is a list whose car is the symbol `and', it will return
|
|
3309 non-nil if all the features in its cdr are non-nil.
|
|
3310 If it is a list whose car is the symbol `or', it will return non-nil
|
|
3311 if any of the features in its cdr are non-nil.
|
|
3312 If it is a list whose car is the symbol `not', it will return
|
|
3313 non-nil if the feature is not present.
|
|
3314
|
|
3315 Examples:
|
|
3316
|
|
3317 (featurep 'xemacs)
|
|
3318 => ; Non-nil on XEmacs.
|
|
3319
|
|
3320 (featurep '(and xemacs gnus))
|
|
3321 => ; Non-nil on XEmacs with Gnus loaded.
|
|
3322
|
|
3323 (featurep '(or tty-frames (and emacs 19.30)))
|
|
3324 => ; Non-nil if this Emacs supports TTY frames.
|
|
3325
|
|
3326 (featurep '(or (and xemacs 19.15) (and emacs 19.34)))
|
|
3327 => ; Non-nil on XEmacs 19.15 and later, or FSF Emacs 19.34 and later.
|
|
3328
|
|
3329 NOTE: The advanced arguments of this function (anything other than a
|
|
3330 symbol) are not yet supported by FSF Emacs. If you feel they are useful
|
|
3331 for supporting multiple Emacs variants, lobby Richard Stallman at
|
|
3332 <bug-gnu-emacs@prep.ai.mit.edu>.
|
|
3333 */
|
|
3334 (fexp))
|
|
3335 {
|
|
3336 #ifndef FEATUREP_SYNTAX
|
|
3337 CHECK_SYMBOL (fexp);
|
|
3338 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt;
|
|
3339 #else /* FEATUREP_SYNTAX */
|
|
3340 static double featurep_emacs_version;
|
|
3341
|
|
3342 /* Brute force translation from Erik Naggum's lisp function. */
|
|
3343 if (SYMBOLP (fexp))
|
|
3344 {
|
|
3345 /* Original definition */
|
|
3346 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt;
|
|
3347 }
|
|
3348 else if (INTP (fexp) || FLOATP (fexp))
|
|
3349 {
|
|
3350 double d = extract_float (fexp);
|
|
3351
|
|
3352 if (featurep_emacs_version == 0.0)
|
|
3353 {
|
|
3354 featurep_emacs_version = XINT (Vemacs_major_version) +
|
|
3355 (XINT (Vemacs_minor_version) / 100.0);
|
|
3356 }
|
|
3357 return featurep_emacs_version >= d ? Qt : Qnil;
|
|
3358 }
|
|
3359 else if (CONSP (fexp))
|
|
3360 {
|
|
3361 Lisp_Object tem = XCAR (fexp);
|
|
3362 if (EQ (tem, Qnot))
|
|
3363 {
|
|
3364 Lisp_Object negate;
|
|
3365
|
|
3366 tem = XCDR (fexp);
|
|
3367 negate = Fcar (tem);
|
|
3368 if (!NILP (tem))
|
|
3369 return NILP (call1 (Qfeaturep, negate)) ? Qt : Qnil;
|
|
3370 else
|
|
3371 return Fsignal (Qinvalid_read_syntax, list1 (tem));
|
|
3372 }
|
|
3373 else if (EQ (tem, Qand))
|
|
3374 {
|
|
3375 tem = XCDR (fexp);
|
|
3376 /* Use Fcar/Fcdr for error-checking. */
|
|
3377 while (!NILP (tem) && !NILP (call1 (Qfeaturep, Fcar (tem))))
|
|
3378 {
|
|
3379 tem = Fcdr (tem);
|
|
3380 }
|
|
3381 return NILP (tem) ? Qt : Qnil;
|
|
3382 }
|
|
3383 else if (EQ (tem, Qor))
|
|
3384 {
|
|
3385 tem = XCDR (fexp);
|
|
3386 /* Use Fcar/Fcdr for error-checking. */
|
|
3387 while (!NILP (tem) && NILP (call1 (Qfeaturep, Fcar (tem))))
|
|
3388 {
|
|
3389 tem = Fcdr (tem);
|
|
3390 }
|
|
3391 return NILP (tem) ? Qnil : Qt;
|
|
3392 }
|
|
3393 else
|
|
3394 {
|
|
3395 return Fsignal (Qinvalid_read_syntax, list1 (XCDR (fexp)));
|
|
3396 }
|
|
3397 }
|
|
3398 else
|
|
3399 {
|
|
3400 return Fsignal (Qinvalid_read_syntax, list1 (fexp));
|
|
3401 }
|
|
3402 }
|
|
3403 #endif /* FEATUREP_SYNTAX */
|
|
3404
|
|
3405 DEFUN ("provide", Fprovide, 1, 1, 0, /*
|
|
3406 Announce that FEATURE is a feature of the current Emacs.
|
|
3407 This function updates the value of the variable `features'.
|
|
3408 */
|
|
3409 (feature))
|
|
3410 {
|
|
3411 Lisp_Object tem;
|
|
3412 CHECK_SYMBOL (feature);
|
|
3413 if (!NILP (Vautoload_queue))
|
|
3414 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
|
|
3415 tem = Fmemq (feature, Vfeatures);
|
|
3416 if (NILP (tem))
|
|
3417 Vfeatures = Fcons (feature, Vfeatures);
|
|
3418 LOADHIST_ATTACH (Fcons (Qprovide, feature));
|
|
3419 return feature;
|
|
3420 }
|
|
3421
|
|
3422 DEFUN ("require", Frequire, 1, 2, 0, /*
|
|
3423 If feature FEATURE is not loaded, load it from FILENAME.
|
|
3424 If FEATURE is not a member of the list `features', then the feature
|
|
3425 is not loaded; so load the file FILENAME.
|
|
3426 If FILENAME is omitted, the printname of FEATURE is used as the file name.
|
|
3427 */
|
|
3428 (feature, file_name))
|
|
3429 {
|
|
3430 Lisp_Object tem;
|
|
3431 CHECK_SYMBOL (feature);
|
|
3432 tem = Fmemq (feature, Vfeatures);
|
|
3433 LOADHIST_ATTACH (Fcons (Qrequire, feature));
|
|
3434 if (!NILP (tem))
|
|
3435 return feature;
|
|
3436 else
|
|
3437 {
|
|
3438 int speccount = specpdl_depth ();
|
|
3439
|
|
3440 /* Value saved here is to be restored into Vautoload_queue */
|
|
3441 record_unwind_protect (un_autoload, Vautoload_queue);
|
|
3442 Vautoload_queue = Qt;
|
|
3443
|
|
3444 call4 (Qload, NILP (file_name) ? Fsymbol_name (feature) : file_name,
|
|
3445 Qnil, Qt, Qnil);
|
|
3446
|
|
3447 tem = Fmemq (feature, Vfeatures);
|
|
3448 if (NILP (tem))
|
|
3449 error ("Required feature %s was not provided",
|
|
3450 string_data (XSYMBOL (feature)->name));
|
|
3451
|
|
3452 /* Once loading finishes, don't undo it. */
|
|
3453 Vautoload_queue = Qt;
|
|
3454 return unbind_to (speccount, feature);
|
|
3455 }
|
|
3456 }
|
|
3457
|
|
3458 /* base64 encode/decode functions.
|
|
3459
|
|
3460 Originally based on code from GNU recode. Ported to FSF Emacs by
|
|
3461 Lars Magne Ingebrigtsen and Karl Heuer. Ported to XEmacs and
|
|
3462 subsequently heavily hacked by Hrvoje Niksic. */
|
|
3463
|
|
3464 #define MIME_LINE_LENGTH 72
|
|
3465
|
|
3466 #define IS_ASCII(Character) \
|
|
3467 ((Character) < 128)
|
|
3468 #define IS_BASE64(Character) \
|
|
3469 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
|
|
3470
|
|
3471 /* Table of characters coding the 64 values. */
|
|
3472 static char base64_value_to_char[64] =
|
|
3473 {
|
|
3474 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
|
|
3475 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
|
|
3476 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
|
|
3477 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
|
|
3478 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
|
|
3479 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
|
|
3480 '8', '9', '+', '/' /* 60-63 */
|
|
3481 };
|
|
3482
|
|
3483 /* Table of base64 values for first 128 characters. */
|
|
3484 static short base64_char_to_value[128] =
|
|
3485 {
|
|
3486 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
|
|
3487 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
|
|
3488 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
|
|
3489 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
|
|
3490 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
|
|
3491 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
|
|
3492 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
|
|
3493 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
|
|
3494 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
|
|
3495 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
|
|
3496 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
|
|
3497 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
|
|
3498 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
|
|
3499 };
|
|
3500
|
|
3501 /* The following diagram shows the logical steps by which three octets
|
|
3502 get transformed into four base64 characters.
|
|
3503
|
|
3504 .--------. .--------. .--------.
|
|
3505 |aaaaaabb| |bbbbcccc| |ccdddddd|
|
|
3506 `--------' `--------' `--------'
|
|
3507 6 2 4 4 2 6
|
|
3508 .--------+--------+--------+--------.
|
|
3509 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
|
|
3510 `--------+--------+--------+--------'
|
|
3511
|
|
3512 .--------+--------+--------+--------.
|
|
3513 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
|
|
3514 `--------+--------+--------+--------'
|
|
3515
|
|
3516 The octets are divided into 6 bit chunks, which are then encoded into
|
|
3517 base64 characters. */
|
|
3518
|
|
3519 #define ADVANCE_INPUT(c, stream) \
|
|
3520 ((ec = Lstream_get_emchar (stream)) == -1 ? 0 : \
|
|
3521 ((ec > 255) ? \
|
|
3522 (signal_simple_error ("Non-ascii character in base64 input", \
|
|
3523 make_char (ec)), 0) \
|
|
3524 : (c = (Bufbyte)ec), 1))
|
|
3525
|
|
3526 static Bytind
|
|
3527 base64_encode_1 (Lstream *istream, Bufbyte *to, int line_break)
|
|
3528 {
|
|
3529 EMACS_INT counter = 0;
|
|
3530 Bufbyte *e = to;
|
|
3531 Emchar ec;
|
|
3532 unsigned int value;
|
|
3533
|
|
3534 while (1)
|
|
3535 {
|
|
3536 Bufbyte c;
|
|
3537 if (!ADVANCE_INPUT (c, istream))
|
|
3538 break;
|
|
3539
|
|
3540 /* Wrap line every 76 characters. */
|
|
3541 if (line_break)
|
|
3542 {
|
|
3543 if (counter < MIME_LINE_LENGTH / 4)
|
|
3544 counter++;
|
|
3545 else
|
|
3546 {
|
|
3547 *e++ = '\n';
|
|
3548 counter = 1;
|
|
3549 }
|
|
3550 }
|
|
3551
|
|
3552 /* Process first byte of a triplet. */
|
|
3553 *e++ = base64_value_to_char[0x3f & c >> 2];
|
|
3554 value = (0x03 & c) << 4;
|
|
3555
|
|
3556 /* Process second byte of a triplet. */
|
|
3557 if (!ADVANCE_INPUT (c, istream))
|
|
3558 {
|
|
3559 *e++ = base64_value_to_char[value];
|
|
3560 *e++ = '=';
|
|
3561 *e++ = '=';
|
|
3562 break;
|
|
3563 }
|
|
3564
|
|
3565 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
|
|
3566 value = (0x0f & c) << 2;
|
|
3567
|
|
3568 /* Process third byte of a triplet. */
|
|
3569 if (!ADVANCE_INPUT (c, istream))
|
|
3570 {
|
|
3571 *e++ = base64_value_to_char[value];
|
|
3572 *e++ = '=';
|
|
3573 break;
|
|
3574 }
|
|
3575
|
|
3576 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
|
|
3577 *e++ = base64_value_to_char[0x3f & c];
|
|
3578 }
|
|
3579
|
|
3580 return e - to;
|
|
3581 }
|
|
3582 #undef ADVANCE_INPUT
|
|
3583
|
|
3584 /* Get next character from the stream, except that non-base64
|
|
3585 characters are ignored. This is in accordance with rfc2045. EC
|
|
3586 should be an Emchar, so that it can hold -1 as the value for EOF. */
|
|
3587 #define ADVANCE_INPUT_IGNORE_NONBASE64(ec, stream, streampos) do { \
|
|
3588 ec = Lstream_get_emchar (stream); \
|
|
3589 ++streampos; \
|
|
3590 /* IS_BASE64 may not be called with negative arguments so check for \
|
|
3591 EOF first. */ \
|
|
3592 if (ec < 0 || IS_BASE64 (ec) || ec == '=') \
|
|
3593 break; \
|
|
3594 } while (1)
|
|
3595
|
|
3596 #define STORE_BYTE(pos, val, ccnt) do { \
|
|
3597 pos += set_charptr_emchar (pos, (Emchar)((unsigned char)(val))); \
|
|
3598 ++ccnt; \
|
|
3599 } while (0)
|
|
3600
|
|
3601 static Bytind
|
|
3602 base64_decode_1 (Lstream *istream, Bufbyte *to, Charcount *ccptr)
|
|
3603 {
|
|
3604 Charcount ccnt = 0;
|
|
3605 Bufbyte *e = to;
|
|
3606 EMACS_INT streampos = 0;
|
|
3607
|
|
3608 while (1)
|
|
3609 {
|
|
3610 Emchar ec;
|
|
3611 unsigned long value;
|
|
3612
|
|
3613 /* Process first byte of a quadruplet. */
|
|
3614 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
|
|
3615 if (ec < 0)
|
|
3616 break;
|
|
3617 if (ec == '=')
|
|
3618 signal_simple_error ("Illegal `=' character while decoding base64",
|
|
3619 make_int (streampos));
|
|
3620 value = base64_char_to_value[ec] << 18;
|
|
3621
|
|
3622 /* Process second byte of a quadruplet. */
|
|
3623 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
|
|
3624 if (ec < 0)
|
|
3625 error ("Premature EOF while decoding base64");
|
|
3626 if (ec == '=')
|
|
3627 signal_simple_error ("Illegal `=' character while decoding base64",
|
|
3628 make_int (streampos));
|
|
3629 value |= base64_char_to_value[ec] << 12;
|
|
3630 STORE_BYTE (e, value >> 16, ccnt);
|
|
3631
|
|
3632 /* Process third byte of a quadruplet. */
|
|
3633 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
|
|
3634 if (ec < 0)
|
|
3635 error ("Premature EOF while decoding base64");
|
|
3636
|
|
3637 if (ec == '=')
|
|
3638 {
|
|
3639 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
|
|
3640 if (ec < 0)
|
|
3641 error ("Premature EOF while decoding base64");
|
|
3642 if (ec != '=')
|
|
3643 signal_simple_error ("Padding `=' expected but not found while decoding base64",
|
|
3644 make_int (streampos));
|
|
3645 continue;
|
|
3646 }
|
|
3647
|
|
3648 value |= base64_char_to_value[ec] << 6;
|
|
3649 STORE_BYTE (e, 0xff & value >> 8, ccnt);
|
|
3650
|
|
3651 /* Process fourth byte of a quadruplet. */
|
|
3652 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
|
|
3653 if (ec < 0)
|
|
3654 error ("Premature EOF while decoding base64");
|
|
3655 if (ec == '=')
|
|
3656 continue;
|
|
3657
|
|
3658 value |= base64_char_to_value[ec];
|
|
3659 STORE_BYTE (e, 0xff & value, ccnt);
|
|
3660 }
|
|
3661
|
|
3662 *ccptr = ccnt;
|
|
3663 return e - to;
|
|
3664 }
|
|
3665 #undef ADVANCE_INPUT
|
|
3666 #undef ADVANCE_INPUT_IGNORE_NONBASE64
|
|
3667 #undef STORE_BYTE
|
|
3668
|
|
3669 static Lisp_Object
|
|
3670 free_malloced_ptr (Lisp_Object unwind_obj)
|
|
3671 {
|
|
3672 void *ptr = (void *)get_opaque_ptr (unwind_obj);
|
|
3673 xfree (ptr);
|
|
3674 free_opaque_ptr (unwind_obj);
|
|
3675 return Qnil;
|
|
3676 }
|
|
3677
|
|
3678 /* Don't use alloca for regions larger than this, lest we overflow
|
|
3679 the stack. */
|
|
3680 #define MAX_ALLOCA 65536
|
|
3681
|
|
3682 /* We need to setup proper unwinding, because there is a number of
|
|
3683 ways these functions can blow up, and we don't want to have memory
|
|
3684 leaks in those cases. */
|
|
3685 #define XMALLOC_OR_ALLOCA(ptr, len, type) do { \
|
|
3686 size_t XOA_len = (len); \
|
|
3687 if (XOA_len > MAX_ALLOCA) \
|
|
3688 { \
|
|
3689 ptr = xnew_array (type, XOA_len); \
|
|
3690 record_unwind_protect (free_malloced_ptr, \
|
|
3691 make_opaque_ptr ((void *)ptr)); \
|
|
3692 } \
|
|
3693 else \
|
|
3694 ptr = alloca_array (type, XOA_len); \
|
|
3695 } while (0)
|
|
3696
|
|
3697 #define XMALLOC_UNBIND(ptr, len, speccount) do { \
|
|
3698 if ((len) > MAX_ALLOCA) \
|
|
3699 unbind_to (speccount, Qnil); \
|
|
3700 } while (0)
|
|
3701
|
|
3702 DEFUN ("base64-encode-region", Fbase64_encode_region, 2, 3, "r", /*
|
|
3703 Base64-encode the region between BEG and END.
|
|
3704 Return the length of the encoded text.
|
|
3705 Optional third argument NO-LINE-BREAK means do not break long lines
|
|
3706 into shorter lines.
|
|
3707 */
|
|
3708 (beg, end, no_line_break))
|
|
3709 {
|
|
3710 Bufbyte *encoded;
|
|
3711 Bytind encoded_length;
|
|
3712 Charcount allength, length;
|
|
3713 struct buffer *buf = current_buffer;
|
|
3714 Bufpos begv, zv, old_pt = BUF_PT (buf);
|
|
3715 Lisp_Object input;
|
|
3716 int speccount = specpdl_depth();
|
|
3717
|
|
3718 get_buffer_range_char (buf, beg, end, &begv, &zv, 0);
|
|
3719 barf_if_buffer_read_only (buf, begv, zv);
|
|
3720
|
|
3721 /* We need to allocate enough room for encoding the text.
|
|
3722 We need 33 1/3% more space, plus a newline every 76
|
|
3723 characters, and then we round up. */
|
|
3724 length = zv - begv;
|
|
3725 allength = length + length/3 + 1;
|
|
3726 allength += allength / MIME_LINE_LENGTH + 1 + 6;
|
|
3727
|
|
3728 input = make_lisp_buffer_input_stream (buf, begv, zv, 0);
|
|
3729 /* We needn't multiply allength with MAX_EMCHAR_LEN because all the
|
|
3730 base64 characters will be single-byte. */
|
|
3731 XMALLOC_OR_ALLOCA (encoded, allength, Bufbyte);
|
|
3732 encoded_length = base64_encode_1 (XLSTREAM (input), encoded,
|
|
3733 NILP (no_line_break));
|
|
3734 if (encoded_length > allength)
|
|
3735 abort ();
|
|
3736 Lstream_delete (XLSTREAM (input));
|
|
3737
|
|
3738 /* Now we have encoded the region, so we insert the new contents
|
|
3739 and delete the old. (Insert first in order to preserve markers.) */
|
|
3740 buffer_insert_raw_string_1 (buf, begv, encoded, encoded_length, 0);
|
|
3741 XMALLOC_UNBIND (encoded, allength, speccount);
|
|
3742 buffer_delete_range (buf, begv + encoded_length, zv + encoded_length, 0);
|
|
3743
|
|
3744 /* Simulate FSF Emacs implementation of this function: if point was
|
|
3745 in the region, place it at the beginning. */
|
|
3746 if (old_pt >= begv && old_pt < zv)
|
|
3747 BUF_SET_PT (buf, begv);
|
|
3748
|
|
3749 /* We return the length of the encoded text. */
|
|
3750 return make_int (encoded_length);
|
|
3751 }
|
|
3752
|
|
3753 DEFUN ("base64-encode-string", Fbase64_encode_string, 1, 2, 0, /*
|
|
3754 Base64 encode STRING and return the result.
|
|
3755 */
|
|
3756 (string, no_line_break))
|
|
3757 {
|
|
3758 Charcount allength, length;
|
|
3759 Bytind encoded_length;
|
|
3760 Bufbyte *encoded;
|
|
3761 Lisp_Object input, result;
|
|
3762 int speccount = specpdl_depth();
|
|
3763
|
|
3764 CHECK_STRING (string);
|
|
3765
|
|
3766 length = XSTRING_CHAR_LENGTH (string);
|
|
3767 allength = length + length/3 + 1;
|
|
3768 allength += allength / MIME_LINE_LENGTH + 1 + 6;
|
|
3769
|
|
3770 input = make_lisp_string_input_stream (string, 0, -1);
|
|
3771 XMALLOC_OR_ALLOCA (encoded, allength, Bufbyte);
|
|
3772 encoded_length = base64_encode_1 (XLSTREAM (input), encoded,
|
|
3773 NILP (no_line_break));
|
|
3774 if (encoded_length > allength)
|
|
3775 abort ();
|
|
3776 Lstream_delete (XLSTREAM (input));
|
|
3777 result = make_string (encoded, encoded_length);
|
|
3778 XMALLOC_UNBIND (encoded, allength, speccount);
|
|
3779 return result;
|
|
3780 }
|
|
3781
|
|
3782 DEFUN ("base64-decode-region", Fbase64_decode_region, 2, 2, "r", /*
|
|
3783 Base64-decode the region between BEG and END.
|
|
3784 Return the length of the decoded text.
|
|
3785 If the region can't be decoded, return nil and don't modify the buffer.
|
|
3786 Characters out of the base64 alphabet are ignored.
|
|
3787 */
|
|
3788 (beg, end))
|
|
3789 {
|
|
3790 struct buffer *buf = current_buffer;
|
|
3791 Bufpos begv, zv, old_pt = BUF_PT (buf);
|
|
3792 Bufbyte *decoded;
|
|
3793 Bytind decoded_length;
|
|
3794 Charcount length, cc_decoded_length;
|
|
3795 Lisp_Object input;
|
|
3796 int speccount = specpdl_depth();
|
|
3797
|
|
3798 get_buffer_range_char (buf, beg, end, &begv, &zv, 0);
|
|
3799 barf_if_buffer_read_only (buf, begv, zv);
|
|
3800
|
|
3801 length = zv - begv;
|
|
3802
|
|
3803 input = make_lisp_buffer_input_stream (buf, begv, zv, 0);
|
|
3804 /* We need to allocate enough room for decoding the text. */
|
|
3805 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Bufbyte);
|
|
3806 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, &cc_decoded_length);
|
|
3807 if (decoded_length > length * MAX_EMCHAR_LEN)
|
|
3808 abort ();
|
|
3809 Lstream_delete (XLSTREAM (input));
|
|
3810
|
|
3811 /* Now we have decoded the region, so we insert the new contents
|
|
3812 and delete the old. (Insert first in order to preserve markers.) */
|
|
3813 BUF_SET_PT (buf, begv);
|
|
3814 buffer_insert_raw_string_1 (buf, begv, decoded, decoded_length, 0);
|
|
3815 XMALLOC_UNBIND (decoded, length * MAX_EMCHAR_LEN, speccount);
|
|
3816 buffer_delete_range (buf, begv + cc_decoded_length,
|
|
3817 zv + cc_decoded_length, 0);
|
|
3818
|
|
3819 /* Simulate FSF Emacs implementation of this function: if point was
|
|
3820 in the region, place it at the beginning. */
|
|
3821 if (old_pt >= begv && old_pt < zv)
|
|
3822 BUF_SET_PT (buf, begv);
|
|
3823
|
|
3824 return make_int (cc_decoded_length);
|
|
3825 }
|
|
3826
|
|
3827 DEFUN ("base64-decode-string", Fbase64_decode_string, 1, 1, 0, /*
|
|
3828 Base64-decode STRING and return the result.
|
|
3829 Characters out of the base64 alphabet are ignored.
|
|
3830 */
|
|
3831 (string))
|
|
3832 {
|
|
3833 Bufbyte *decoded;
|
|
3834 Bytind decoded_length;
|
|
3835 Charcount length, cc_decoded_length;
|
|
3836 Lisp_Object input, result;
|
|
3837 int speccount = specpdl_depth();
|
|
3838
|
|
3839 CHECK_STRING (string);
|
|
3840
|
|
3841 length = XSTRING_CHAR_LENGTH (string);
|
|
3842 /* We need to allocate enough room for decoding the text. */
|
|
3843 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Bufbyte);
|
|
3844
|
|
3845 input = make_lisp_string_input_stream (string, 0, -1);
|
|
3846 decoded_length = base64_decode_1 (XLSTREAM (input), decoded,
|
|
3847 &cc_decoded_length);
|
|
3848 if (decoded_length > length * MAX_EMCHAR_LEN)
|
|
3849 abort ();
|
|
3850 Lstream_delete (XLSTREAM (input));
|
|
3851
|
|
3852 result = make_string (decoded, decoded_length);
|
|
3853 XMALLOC_UNBIND (decoded, length * MAX_EMCHAR_LEN, speccount);
|
|
3854 return result;
|
|
3855 }
|
|
3856
|
|
3857 Lisp_Object Qyes_or_no_p;
|
|
3858
|
|
3859 void
|
|
3860 syms_of_fns (void)
|
|
3861 {
|
|
3862 defsymbol (&Qstring_lessp, "string-lessp");
|
|
3863 defsymbol (&Qidentity, "identity");
|
|
3864 defsymbol (&Qyes_or_no_p, "yes-or-no-p");
|
|
3865
|
|
3866 DEFSUBR (Fidentity);
|
|
3867 DEFSUBR (Frandom);
|
|
3868 DEFSUBR (Flength);
|
|
3869 DEFSUBR (Fsafe_length);
|
|
3870 DEFSUBR (Fstring_equal);
|
|
3871 DEFSUBR (Fstring_lessp);
|
|
3872 DEFSUBR (Fstring_modified_tick);
|
|
3873 DEFSUBR (Fappend);
|
|
3874 DEFSUBR (Fconcat);
|
|
3875 DEFSUBR (Fvconcat);
|
|
3876 DEFSUBR (Fbvconcat);
|
|
3877 DEFSUBR (Fcopy_list);
|
|
3878 DEFSUBR (Fcopy_sequence);
|
|
3879 DEFSUBR (Fcopy_alist);
|
|
3880 DEFSUBR (Fcopy_tree);
|
|
3881 DEFSUBR (Fsubstring);
|
|
3882 DEFSUBR (Fsubseq);
|
|
3883 DEFSUBR (Fnthcdr);
|
|
3884 DEFSUBR (Fnth);
|
|
3885 DEFSUBR (Felt);
|
|
3886 DEFSUBR (Flast);
|
|
3887 DEFSUBR (Fbutlast);
|
|
3888 DEFSUBR (Fnbutlast);
|
|
3889 DEFSUBR (Fmember);
|
|
3890 DEFSUBR (Fold_member);
|
|
3891 DEFSUBR (Fmemq);
|
|
3892 DEFSUBR (Fold_memq);
|
|
3893 DEFSUBR (Fassoc);
|
|
3894 DEFSUBR (Fold_assoc);
|
|
3895 DEFSUBR (Fassq);
|
|
3896 DEFSUBR (Fold_assq);
|
|
3897 DEFSUBR (Frassoc);
|
|
3898 DEFSUBR (Fold_rassoc);
|
|
3899 DEFSUBR (Frassq);
|
|
3900 DEFSUBR (Fold_rassq);
|
|
3901 DEFSUBR (Fdelete);
|
|
3902 DEFSUBR (Fold_delete);
|
|
3903 DEFSUBR (Fdelq);
|
|
3904 DEFSUBR (Fold_delq);
|
|
3905 DEFSUBR (Fremassoc);
|
|
3906 DEFSUBR (Fremassq);
|
|
3907 DEFSUBR (Fremrassoc);
|
|
3908 DEFSUBR (Fremrassq);
|
|
3909 DEFSUBR (Fnreverse);
|
|
3910 DEFSUBR (Freverse);
|
|
3911 DEFSUBR (Fsort);
|
|
3912 DEFSUBR (Fplists_eq);
|
|
3913 DEFSUBR (Fplists_equal);
|
|
3914 DEFSUBR (Flax_plists_eq);
|
|
3915 DEFSUBR (Flax_plists_equal);
|
|
3916 DEFSUBR (Fplist_get);
|
|
3917 DEFSUBR (Fplist_put);
|
|
3918 DEFSUBR (Fplist_remprop);
|
|
3919 DEFSUBR (Fplist_member);
|
|
3920 DEFSUBR (Fcheck_valid_plist);
|
|
3921 DEFSUBR (Fvalid_plist_p);
|
|
3922 DEFSUBR (Fcanonicalize_plist);
|
|
3923 DEFSUBR (Flax_plist_get);
|
|
3924 DEFSUBR (Flax_plist_put);
|
|
3925 DEFSUBR (Flax_plist_remprop);
|
|
3926 DEFSUBR (Flax_plist_member);
|
|
3927 DEFSUBR (Fcanonicalize_lax_plist);
|
|
3928 DEFSUBR (Fdestructive_alist_to_plist);
|
|
3929 DEFSUBR (Fget);
|
|
3930 DEFSUBR (Fput);
|
|
3931 DEFSUBR (Fremprop);
|
|
3932 DEFSUBR (Fobject_plist);
|
|
3933 DEFSUBR (Fequal);
|
|
3934 DEFSUBR (Fold_equal);
|
|
3935 DEFSUBR (Ffillarray);
|
|
3936 DEFSUBR (Fnconc);
|
|
3937 DEFSUBR (Fmapcar);
|
|
3938 DEFSUBR (Fmapvector);
|
|
3939 DEFSUBR (Fmapc_internal);
|
|
3940 DEFSUBR (Fmapconcat);
|
|
3941 DEFSUBR (Fload_average);
|
|
3942 DEFSUBR (Ffeaturep);
|
|
3943 DEFSUBR (Frequire);
|
|
3944 DEFSUBR (Fprovide);
|
|
3945 DEFSUBR (Fbase64_encode_region);
|
|
3946 DEFSUBR (Fbase64_encode_string);
|
|
3947 DEFSUBR (Fbase64_decode_region);
|
|
3948 DEFSUBR (Fbase64_decode_string);
|
|
3949 }
|
|
3950
|
|
3951 void
|
|
3952 init_provide_once (void)
|
|
3953 {
|
|
3954 DEFVAR_LISP ("features", &Vfeatures /*
|
|
3955 A list of symbols which are the features of the executing emacs.
|
|
3956 Used by `featurep' and `require', and altered by `provide'.
|
|
3957 */ );
|
|
3958 Vfeatures = Qnil;
|
|
3959
|
|
3960 Fprovide (intern ("base64"));
|
|
3961 }
|