0
|
1 /* Random utility Lisp functions.
|
|
2 Copyright (C) 1985, 86, 87, 93, 94, 95 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995, 1996 Ben Wing.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: Mule 2.0, FSF 19.30. */
|
|
23
|
|
24 /* This file has been Mule-ized. */
|
|
25
|
|
26 /* Note: FSF 19.30 has bool vectors. We have bit vectors. */
|
|
27
|
|
28 /* Hacked on for Mule by Ben Wing, December 1994, January 1995. */
|
|
29
|
|
30 #include <config.h>
|
|
31
|
|
32 /* Note on some machines this defines `vector' as a typedef,
|
|
33 so make sure we don't use that name in this file. */
|
|
34 #undef vector
|
|
35 #define vector *****
|
|
36
|
|
37 #include "lisp.h"
|
|
38
|
412
|
39 #ifdef HAVE_UNISTD_H
|
|
40 #include <unistd.h>
|
|
41 #endif
|
|
42 #include <errno.h>
|
272
|
43
|
0
|
44 #include "buffer.h"
|
|
45 #include "bytecode.h"
|
|
46 #include "device.h"
|
|
47 #include "events.h"
|
|
48 #include "extents.h"
|
|
49 #include "frame.h"
|
|
50 #include "systime.h"
|
377
|
51 #include "insdel.h"
|
|
52 #include "lstream.h"
|
|
53 #include "opaque.h"
|
0
|
54
|
140
|
55 /* NOTE: This symbol is also used in lread.c */
|
|
56 #define FEATUREP_SYNTAX
|
|
57
|
0
|
58 Lisp_Object Qstring_lessp;
|
|
59 Lisp_Object Qidentity;
|
|
60
|
272
|
61 static int internal_old_equal (Lisp_Object, Lisp_Object, int);
|
0
|
62
|
|
63 static Lisp_Object
|
412
|
64 mark_bit_vector (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
0
|
65 {
|
149
|
66 return Qnil;
|
0
|
67 }
|
|
68
|
|
69 static void
|
|
70 print_bit_vector (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
|
|
71 {
|
412
|
72 int i;
|
|
73 struct Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
|
|
74 int len = bit_vector_length (v);
|
|
75 int last = len;
|
0
|
76
|
|
77 if (INTP (Vprint_length))
|
|
78 last = min (len, XINT (Vprint_length));
|
|
79 write_c_string ("#*", printcharfun);
|
|
80 for (i = 0; i < last; i++)
|
|
81 {
|
|
82 if (bit_vector_bit (v, i))
|
|
83 write_c_string ("1", printcharfun);
|
|
84 else
|
|
85 write_c_string ("0", printcharfun);
|
|
86 }
|
|
87
|
|
88 if (last != len)
|
|
89 write_c_string ("...", printcharfun);
|
|
90 }
|
|
91
|
|
92 static int
|
380
|
93 bit_vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
0
|
94 {
|
412
|
95 struct Lisp_Bit_Vector *v1 = XBIT_VECTOR (obj1);
|
|
96 struct Lisp_Bit_Vector *v2 = XBIT_VECTOR (obj2);
|
0
|
97
|
272
|
98 return ((bit_vector_length (v1) == bit_vector_length (v2)) &&
|
|
99 !memcmp (v1->bits, v2->bits,
|
|
100 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v1)) *
|
|
101 sizeof (long)));
|
0
|
102 }
|
|
103
|
|
104 static unsigned long
|
|
105 bit_vector_hash (Lisp_Object obj, int depth)
|
|
106 {
|
412
|
107 struct Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
|
0
|
108 return HASH2 (bit_vector_length (v),
|
|
109 memory_hash (v->bits,
|
|
110 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)) *
|
|
111 sizeof (long)));
|
|
112 }
|
|
113
|
412
|
114 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("bit-vector", bit_vector,
|
|
115 mark_bit_vector, print_bit_vector, 0,
|
|
116 bit_vector_equal, bit_vector_hash,
|
|
117 struct Lisp_Bit_Vector);
|
272
|
118
|
20
|
119 DEFUN ("identity", Fidentity, 1, 1, 0, /*
|
0
|
120 Return the argument unchanged.
|
20
|
121 */
|
|
122 (arg))
|
0
|
123 {
|
|
124 return arg;
|
|
125 }
|
|
126
|
|
127 extern long get_random (void);
|
|
128 extern void seed_random (long arg);
|
|
129
|
20
|
130 DEFUN ("random", Frandom, 0, 1, 0, /*
|
0
|
131 Return a pseudo-random number.
|
102
|
132 All integers representable in Lisp are equally likely.
|
|
133 On most systems, this is 28 bits' worth.
|
|
134 With positive integer argument N, return random number in interval [0,N).
|
0
|
135 With argument t, set the random number seed from the current time and pid.
|
20
|
136 */
|
|
137 (limit))
|
0
|
138 {
|
|
139 EMACS_INT val;
|
|
140 unsigned long denominator;
|
|
141
|
|
142 if (EQ (limit, Qt))
|
|
143 seed_random (getpid () + time (NULL));
|
|
144 if (NATNUMP (limit) && !ZEROP (limit))
|
|
145 {
|
|
146 /* Try to take our random number from the higher bits of VAL,
|
|
147 not the lower, since (says Gentzel) the low bits of `random'
|
|
148 are less random than the higher ones. We do this by using the
|
|
149 quotient rather than the remainder. At the high end of the RNG
|
|
150 it's possible to get a quotient larger than limit; discarding
|
|
151 these values eliminates the bias that would otherwise appear
|
|
152 when using a large limit. */
|
|
153 denominator = ((unsigned long)1 << VALBITS) / XINT (limit);
|
|
154 do
|
|
155 val = get_random () / denominator;
|
|
156 while (val >= XINT (limit));
|
|
157 }
|
|
158 else
|
|
159 val = get_random ();
|
272
|
160
|
|
161 return make_int (val);
|
0
|
162 }
|
|
163
|
|
164 /* Random data-structure functions */
|
|
165
|
|
166 #ifdef LOSING_BYTECODE
|
|
167
|
|
168 /* #### Delete this shit */
|
|
169
|
|
170 /* Charcount is a misnomer here as we might be dealing with the
|
|
171 length of a vector or list, but emphasizes that we're not dealing
|
|
172 with Bytecounts in strings */
|
|
173 static Charcount
|
|
174 length_with_bytecode_hack (Lisp_Object seq)
|
|
175 {
|
|
176 if (!COMPILED_FUNCTIONP (seq))
|
149
|
177 return XINT (Flength (seq));
|
0
|
178 else
|
|
179 {
|
412
|
180 struct Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (seq);
|
380
|
181
|
|
182 return (f->flags.interactivep ? COMPILED_INTERACTIVE :
|
|
183 f->flags.domainp ? COMPILED_DOMAIN :
|
149
|
184 COMPILED_DOC_STRING)
|
|
185 + 1;
|
0
|
186 }
|
|
187 }
|
|
188
|
|
189 #endif /* LOSING_BYTECODE */
|
|
190
|
|
191 void
|
412
|
192 check_losing_bytecode (CONST char *function, Lisp_Object seq)
|
0
|
193 {
|
|
194 if (COMPILED_FUNCTIONP (seq))
|
|
195 error_with_frob
|
|
196 (seq,
|
169
|
197 "As of 20.3, `%s' no longer works with compiled-function objects",
|
0
|
198 function);
|
|
199 }
|
|
200
|
20
|
201 DEFUN ("length", Flength, 1, 1, 0, /*
|
0
|
202 Return the length of vector, bit vector, list or string SEQUENCE.
|
20
|
203 */
|
272
|
204 (sequence))
|
0
|
205 {
|
|
206 retry:
|
272
|
207 if (STRINGP (sequence))
|
|
208 return make_int (XSTRING_CHAR_LENGTH (sequence));
|
|
209 else if (CONSP (sequence))
|
0
|
210 {
|
412
|
211 int len;
|
380
|
212 GET_EXTERNAL_LIST_LENGTH (sequence, len);
|
|
213 return make_int (len);
|
0
|
214 }
|
272
|
215 else if (VECTORP (sequence))
|
|
216 return make_int (XVECTOR_LENGTH (sequence));
|
|
217 else if (NILP (sequence))
|
|
218 return Qzero;
|
|
219 else if (BIT_VECTORP (sequence))
|
|
220 return make_int (bit_vector_length (XBIT_VECTOR (sequence)));
|
0
|
221 else
|
|
222 {
|
272
|
223 check_losing_bytecode ("length", sequence);
|
|
224 sequence = wrong_type_argument (Qsequencep, sequence);
|
0
|
225 goto retry;
|
|
226 }
|
|
227 }
|
|
228
|
20
|
229 DEFUN ("safe-length", Fsafe_length, 1, 1, 0, /*
|
0
|
230 Return the length of a list, but avoid error or infinite loop.
|
|
231 This function never gets an error. If LIST is not really a list,
|
|
232 it returns 0. If LIST is circular, it returns a finite value
|
|
233 which is at least the number of distinct elements.
|
20
|
234 */
|
|
235 (list))
|
0
|
236 {
|
380
|
237 Lisp_Object hare, tortoise;
|
412
|
238 int len;
|
380
|
239
|
|
240 for (hare = tortoise = list, len = 0;
|
|
241 CONSP (hare) && (! EQ (hare, tortoise) || len == 0);
|
|
242 hare = XCDR (hare), len++)
|
0
|
243 {
|
380
|
244 if (len & 1)
|
|
245 tortoise = XCDR (tortoise);
|
0
|
246 }
|
|
247
|
272
|
248 return make_int (len);
|
0
|
249 }
|
|
250
|
|
251 /*** string functions. ***/
|
|
252
|
20
|
253 DEFUN ("string-equal", Fstring_equal, 2, 2, 0, /*
|
272
|
254 Return t if two strings have identical contents.
|
0
|
255 Case is significant. Text properties are ignored.
|
241
|
256 \(Under XEmacs, `equal' also ignores text properties and extents in
|
|
257 strings, but this is not the case under FSF Emacs 19. In FSF Emacs 20
|
|
258 `equal' is the same as in XEmacs, in that respect.)
|
0
|
259 Symbols are also allowed; their print names are used instead.
|
20
|
260 */
|
241
|
261 (s1, s2))
|
0
|
262 {
|
272
|
263 Bytecount len;
|
412
|
264 struct Lisp_String *p1, *p2;
|
0
|
265
|
|
266 if (SYMBOLP (s1))
|
272
|
267 p1 = XSYMBOL (s1)->name;
|
|
268 else
|
|
269 {
|
|
270 CHECK_STRING (s1);
|
|
271 p1 = XSTRING (s1);
|
|
272 }
|
|
273
|
0
|
274 if (SYMBOLP (s2))
|
272
|
275 p2 = XSYMBOL (s2)->name;
|
|
276 else
|
|
277 {
|
|
278 CHECK_STRING (s2);
|
|
279 p2 = XSTRING (s2);
|
|
280 }
|
|
281
|
|
282 return (((len = string_length (p1)) == string_length (p2)) &&
|
|
283 !memcmp (string_data (p1), string_data (p2), len)) ? Qt : Qnil;
|
0
|
284 }
|
|
285
|
|
286
|
20
|
287 DEFUN ("string-lessp", Fstring_lessp, 2, 2, 0, /*
|
272
|
288 Return t if first arg string is less than second in lexicographic order.
|
70
|
289 If I18N2 support (but not Mule support) was compiled in, ordering is
|
|
290 determined by the locale. (Case is significant for the default C locale.)
|
|
291 In all other cases, comparison is simply done on a character-by-
|
|
292 character basis using the numeric value of a character. (Note that
|
|
293 this may not produce particularly meaningful results under Mule if
|
|
294 characters from different charsets are being compared.)
|
|
295
|
0
|
296 Symbols are also allowed; their print names are used instead.
|
70
|
297
|
|
298 The reason that the I18N2 locale-specific collation is not used under
|
|
299 Mule is that the locale model of internationalization does not handle
|
|
300 multiple charsets and thus has no hope of working properly under Mule.
|
|
301 What we really should do is create a collation table over all built-in
|
|
302 charsets. This is extremely difficult to do from scratch, however.
|
|
303
|
|
304 Unicode is a good first step towards solving this problem. In fact,
|
|
305 it is quite likely that a collation table exists (or will exist) for
|
|
306 Unicode. When Unicode support is added to XEmacs/Mule, this problem
|
|
307 may be solved.
|
20
|
308 */
|
|
309 (s1, s2))
|
0
|
310 {
|
412
|
311 struct Lisp_String *p1, *p2;
|
0
|
312 Charcount end, len2;
|
272
|
313 int i;
|
0
|
314
|
|
315 if (SYMBOLP (s1))
|
272
|
316 p1 = XSYMBOL (s1)->name;
|
|
317 else
|
|
318 {
|
|
319 CHECK_STRING (s1);
|
|
320 p1 = XSTRING (s1);
|
|
321 }
|
|
322
|
0
|
323 if (SYMBOLP (s2))
|
272
|
324 p2 = XSYMBOL (s2)->name;
|
|
325 else
|
|
326 {
|
|
327 CHECK_STRING (s2);
|
|
328 p2 = XSTRING (s2);
|
|
329 }
|
|
330
|
|
331 end = string_char_length (p1);
|
|
332 len2 = string_char_length (p2);
|
0
|
333 if (end > len2)
|
|
334 end = len2;
|
|
335
|
70
|
336 #if defined (I18N2) && !defined (MULE)
|
272
|
337 /* There is no hope of this working under Mule. Even if we converted
|
|
338 the data into an external format so that strcoll() processed it
|
|
339 properly, it would still not work because strcoll() does not
|
|
340 handle multiple locales. This is the fundamental flaw in the
|
|
341 locale model. */
|
412
|
342 Bytecount bcend = charcount_to_bytecount (string_data (p1), end);
|
|
343 /* Compare strings using collation order of locale. */
|
|
344 /* Need to be tricky to handle embedded nulls. */
|
|
345
|
|
346 for (i = 0; i < bcend; i += strlen((char *) string_data (p1) + i) + 1)
|
|
347 {
|
|
348 int val = strcoll ((char *) string_data (p1) + i,
|
|
349 (char *) string_data (p2) + i);
|
|
350 if (val < 0)
|
|
351 return Qt;
|
|
352 if (val > 0)
|
|
353 return Qnil;
|
|
354 }
|
70
|
355 #else /* not I18N2, or MULE */
|
412
|
356 /* #### It is not really necessary to do this: We could compare
|
|
357 byte-by-byte and still get a reasonable comparison, since this
|
|
358 would compare characters with a charset in the same way.
|
|
359 With a little rearrangement of the leading bytes, we could
|
|
360 make most inter-charset comparisons work out the same, too;
|
|
361 even if some don't, this is not a big deal because inter-charset
|
|
362 comparisons aren't really well-defined anyway. */
|
|
363 for (i = 0; i < end; i++)
|
|
364 {
|
|
365 if (string_char (p1, i) != string_char (p2, i))
|
|
366 return string_char (p1, i) < string_char (p2, i) ? Qt : Qnil;
|
|
367 }
|
70
|
368 #endif /* not I18N2, or MULE */
|
272
|
369 /* Can't do i < len2 because then comparison between "foo" and "foo^@"
|
|
370 won't work right in I18N2 case */
|
|
371 return end < len2 ? Qt : Qnil;
|
0
|
372 }
|
|
373
|
20
|
374 DEFUN ("string-modified-tick", Fstring_modified_tick, 1, 1, 0, /*
|
0
|
375 Return STRING's tick counter, incremented for each change to the string.
|
|
376 Each string has a tick counter which is incremented each time the contents
|
|
377 of the string are changed (e.g. with `aset'). It wraps around occasionally.
|
20
|
378 */
|
|
379 (string))
|
0
|
380 {
|
412
|
381 struct Lisp_String *s;
|
0
|
382
|
|
383 CHECK_STRING (string);
|
|
384 s = XSTRING (string);
|
|
385 if (CONSP (s->plist) && INTP (XCAR (s->plist)))
|
|
386 return XCAR (s->plist);
|
|
387 else
|
|
388 return Qzero;
|
|
389 }
|
|
390
|
|
391 void
|
|
392 bump_string_modiff (Lisp_Object str)
|
|
393 {
|
412
|
394 struct Lisp_String *s = XSTRING (str);
|
0
|
395 Lisp_Object *ptr = &s->plist;
|
|
396
|
|
397 #ifdef I18N3
|
|
398 /* #### remove the `string-translatable' property from the string,
|
|
399 if there is one. */
|
|
400 #endif
|
|
401 /* skip over extent info if it's there */
|
|
402 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
|
|
403 ptr = &XCDR (*ptr);
|
|
404 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
|
|
405 XSETINT (XCAR (*ptr), 1+XINT (XCAR (*ptr)));
|
|
406 else
|
|
407 *ptr = Fcons (make_int (1), *ptr);
|
|
408 }
|
|
409
|
|
410
|
|
411 enum concat_target_type { c_cons, c_string, c_vector, c_bit_vector };
|
|
412 static Lisp_Object concat (int nargs, Lisp_Object *args,
|
|
413 enum concat_target_type target_type,
|
|
414 int last_special);
|
|
415
|
|
416 Lisp_Object
|
|
417 concat2 (Lisp_Object s1, Lisp_Object s2)
|
|
418 {
|
|
419 Lisp_Object args[2];
|
|
420 args[0] = s1;
|
|
421 args[1] = s2;
|
|
422 return concat (2, args, c_string, 0);
|
|
423 }
|
|
424
|
|
425 Lisp_Object
|
|
426 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
|
|
427 {
|
|
428 Lisp_Object args[3];
|
|
429 args[0] = s1;
|
|
430 args[1] = s2;
|
|
431 args[2] = s3;
|
|
432 return concat (3, args, c_string, 0);
|
|
433 }
|
|
434
|
|
435 Lisp_Object
|
|
436 vconcat2 (Lisp_Object s1, Lisp_Object s2)
|
|
437 {
|
|
438 Lisp_Object args[2];
|
|
439 args[0] = s1;
|
|
440 args[1] = s2;
|
|
441 return concat (2, args, c_vector, 0);
|
|
442 }
|
|
443
|
|
444 Lisp_Object
|
|
445 vconcat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
|
|
446 {
|
|
447 Lisp_Object args[3];
|
|
448 args[0] = s1;
|
|
449 args[1] = s2;
|
|
450 args[2] = s3;
|
|
451 return concat (3, args, c_vector, 0);
|
|
452 }
|
|
453
|
20
|
454 DEFUN ("append", Fappend, 0, MANY, 0, /*
|
0
|
455 Concatenate all the arguments and make the result a list.
|
|
456 The result is a list whose elements are the elements of all the arguments.
|
|
457 Each argument may be a list, vector, bit vector, or string.
|
|
458 The last argument is not copied, just used as the tail of the new list.
|
201
|
459 Also see: `nconc'.
|
20
|
460 */
|
|
461 (int nargs, Lisp_Object *args))
|
0
|
462 {
|
|
463 return concat (nargs, args, c_cons, 1);
|
|
464 }
|
|
465
|
20
|
466 DEFUN ("concat", Fconcat, 0, MANY, 0, /*
|
0
|
467 Concatenate all the arguments and make the result a string.
|
|
468 The result is a string whose elements are the elements of all the arguments.
|
120
|
469 Each argument may be a string or a list or vector of characters.
|
0
|
470
|
290
|
471 As of XEmacs 21.0, this function does NOT accept individual integers
|
|
472 as arguments. Old code that relies on, for example, (concat "foo" 50)
|
|
473 returning "foo50" will fail. To fix such code, either apply
|
|
474 `int-to-string' to the integer argument, or use `format'.
|
20
|
475 */
|
|
476 (int nargs, Lisp_Object *args))
|
0
|
477 {
|
|
478 return concat (nargs, args, c_string, 0);
|
|
479 }
|
|
480
|
20
|
481 DEFUN ("vconcat", Fvconcat, 0, MANY, 0, /*
|
0
|
482 Concatenate all the arguments and make the result a vector.
|
|
483 The result is a vector whose elements are the elements of all the arguments.
|
|
484 Each argument may be a list, vector, bit vector, or string.
|
20
|
485 */
|
|
486 (int nargs, Lisp_Object *args))
|
0
|
487 {
|
|
488 return concat (nargs, args, c_vector, 0);
|
|
489 }
|
|
490
|
20
|
491 DEFUN ("bvconcat", Fbvconcat, 0, MANY, 0, /*
|
0
|
492 Concatenate all the arguments and make the result a bit vector.
|
|
493 The result is a bit vector whose elements are the elements of all the
|
|
494 arguments. Each argument may be a list, vector, bit vector, or string.
|
20
|
495 */
|
|
496 (int nargs, Lisp_Object *args))
|
0
|
497 {
|
|
498 return concat (nargs, args, c_bit_vector, 0);
|
|
499 }
|
|
500
|
380
|
501 /* Copy a (possibly dotted) list. LIST must be a cons.
|
|
502 Can't use concat (1, &alist, c_cons, 0) - doesn't handle dotted lists. */
|
|
503 static Lisp_Object
|
|
504 copy_list (Lisp_Object list)
|
|
505 {
|
|
506 Lisp_Object list_copy = Fcons (XCAR (list), XCDR (list));
|
|
507 Lisp_Object last = list_copy;
|
|
508 Lisp_Object hare, tortoise;
|
412
|
509 int len;
|
380
|
510
|
|
511 for (tortoise = hare = XCDR (list), len = 1;
|
|
512 CONSP (hare);
|
|
513 hare = XCDR (hare), len++)
|
|
514 {
|
|
515 XCDR (last) = Fcons (XCAR (hare), XCDR (hare));
|
|
516 last = XCDR (last);
|
|
517
|
|
518 if (len < CIRCULAR_LIST_SUSPICION_LENGTH)
|
|
519 continue;
|
|
520 if (len & 1)
|
|
521 tortoise = XCDR (tortoise);
|
|
522 if (EQ (tortoise, hare))
|
|
523 signal_circular_list_error (list);
|
|
524 }
|
|
525
|
|
526 return list_copy;
|
|
527 }
|
|
528
|
|
529 DEFUN ("copy-list", Fcopy_list, 1, 1, 0, /*
|
|
530 Return a copy of list LIST, which may be a dotted list.
|
|
531 The elements of LIST are not copied; they are shared
|
0
|
532 with the original.
|
20
|
533 */
|
380
|
534 (list))
|
0
|
535 {
|
|
536 again:
|
380
|
537 if (NILP (list)) return list;
|
|
538 if (CONSP (list)) return copy_list (list);
|
|
539
|
|
540 list = wrong_type_argument (Qlistp, list);
|
|
541 goto again;
|
|
542 }
|
|
543
|
|
544 DEFUN ("copy-sequence", Fcopy_sequence, 1, 1, 0, /*
|
|
545 Return a copy of list, vector, bit vector or string SEQUENCE.
|
|
546 The elements of a list or vector are not copied; they are shared
|
|
547 with the original. SEQUENCE may be a dotted list.
|
|
548 */
|
|
549 (sequence))
|
|
550 {
|
|
551 again:
|
|
552 if (NILP (sequence)) return sequence;
|
|
553 if (CONSP (sequence)) return copy_list (sequence);
|
|
554 if (STRINGP (sequence)) return concat (1, &sequence, c_string, 0);
|
|
555 if (VECTORP (sequence)) return concat (1, &sequence, c_vector, 0);
|
|
556 if (BIT_VECTORP (sequence)) return concat (1, &sequence, c_bit_vector, 0);
|
|
557
|
|
558 check_losing_bytecode ("copy-sequence", sequence);
|
|
559 sequence = wrong_type_argument (Qsequencep, sequence);
|
169
|
560 goto again;
|
0
|
561 }
|
|
562
|
|
563 struct merge_string_extents_struct
|
|
564 {
|
|
565 Lisp_Object string;
|
|
566 Bytecount entry_offset;
|
|
567 Bytecount entry_length;
|
|
568 };
|
|
569
|
|
570 static Lisp_Object
|
|
571 concat (int nargs, Lisp_Object *args,
|
|
572 enum concat_target_type target_type,
|
|
573 int last_special)
|
|
574 {
|
|
575 Lisp_Object val;
|
|
576 Lisp_Object tail = Qnil;
|
|
577 int toindex;
|
|
578 int argnum;
|
|
579 Lisp_Object last_tail;
|
|
580 Lisp_Object prev;
|
|
581 struct merge_string_extents_struct *args_mse = 0;
|
|
582 Bufbyte *string_result = 0;
|
|
583 Bufbyte *string_result_ptr = 0;
|
|
584 struct gcpro gcpro1;
|
|
585
|
|
586 /* The modus operandi in Emacs is "caller gc-protects args".
|
|
587 However, concat is called many times in Emacs on freshly
|
|
588 created stuff. So we help those callers out by protecting
|
|
589 the args ourselves to save them a lot of temporary-variable
|
|
590 grief. */
|
|
591
|
|
592 GCPRO1 (args[0]);
|
|
593 gcpro1.nvars = nargs;
|
|
594
|
|
595 #ifdef I18N3
|
|
596 /* #### if the result is a string and any of the strings have a string
|
|
597 for the `string-translatable' property, then concat should also
|
|
598 concat the args but use the `string-translatable' strings, and store
|
|
599 the result in the returned string's `string-translatable' property. */
|
|
600 #endif
|
|
601 if (target_type == c_string)
|
185
|
602 args_mse = alloca_array (struct merge_string_extents_struct, nargs);
|
0
|
603
|
|
604 /* In append, the last arg isn't treated like the others */
|
|
605 if (last_special && nargs > 0)
|
|
606 {
|
|
607 nargs--;
|
|
608 last_tail = args[nargs];
|
|
609 }
|
|
610 else
|
|
611 last_tail = Qnil;
|
|
612
|
|
613 /* Check and coerce the arguments. */
|
|
614 for (argnum = 0; argnum < nargs; argnum++)
|
|
615 {
|
|
616 Lisp_Object seq = args[argnum];
|
272
|
617 if (LISTP (seq))
|
0
|
618 ;
|
|
619 else if (VECTORP (seq) || STRINGP (seq) || BIT_VECTORP (seq))
|
|
620 ;
|
|
621 #ifdef LOSING_BYTECODE
|
|
622 else if (COMPILED_FUNCTIONP (seq))
|
|
623 /* Urk! We allow this, for "compatibility"... */
|
|
624 ;
|
|
625 #endif
|
284
|
626 #if 0 /* removed for XEmacs 21 */
|
0
|
627 else if (INTP (seq))
|
|
628 /* This is too revolting to think about but maintains
|
|
629 compatibility with FSF (and lots and lots of old code). */
|
|
630 args[argnum] = Fnumber_to_string (seq);
|
284
|
631 #endif
|
0
|
632 else
|
|
633 {
|
|
634 check_losing_bytecode ("concat", seq);
|
|
635 args[argnum] = wrong_type_argument (Qsequencep, seq);
|
|
636 }
|
173
|
637
|
0
|
638 if (args_mse)
|
|
639 {
|
|
640 if (STRINGP (seq))
|
|
641 args_mse[argnum].string = seq;
|
|
642 else
|
|
643 args_mse[argnum].string = Qnil;
|
|
644 }
|
|
645 }
|
|
646
|
|
647 {
|
|
648 /* Charcount is a misnomer here as we might be dealing with the
|
|
649 length of a vector or list, but emphasizes that we're not dealing
|
|
650 with Bytecounts in strings */
|
|
651 Charcount total_length;
|
|
652
|
|
653 for (argnum = 0, total_length = 0; argnum < nargs; argnum++)
|
|
654 {
|
|
655 #ifdef LOSING_BYTECODE
|
|
656 Charcount thislen = length_with_bytecode_hack (args[argnum]);
|
|
657 #else
|
|
658 Charcount thislen = XINT (Flength (args[argnum]));
|
|
659 #endif
|
|
660 total_length += thislen;
|
|
661 }
|
|
662
|
|
663 switch (target_type)
|
|
664 {
|
|
665 case c_cons:
|
|
666 if (total_length == 0)
|
|
667 /* In append, if all but last arg are nil, return last arg */
|
|
668 RETURN_UNGCPRO (last_tail);
|
|
669 val = Fmake_list (make_int (total_length), Qnil);
|
|
670 break;
|
|
671 case c_vector:
|
|
672 val = make_vector (total_length, Qnil);
|
|
673 break;
|
|
674 case c_bit_vector:
|
|
675 val = make_bit_vector (total_length, Qzero);
|
|
676 break;
|
|
677 case c_string:
|
|
678 /* We don't make the string yet because we don't know the
|
|
679 actual number of bytes. This loop was formerly written
|
|
680 to call Fmake_string() here and then call set_string_char()
|
|
681 for each char. This seems logical enough but is waaaaaaaay
|
|
682 slow -- set_string_char() has to scan the whole string up
|
|
683 to the place where the substitution is called for in order
|
|
684 to find the place to change, and may have to do some
|
|
685 realloc()ing in order to make the char fit properly.
|
|
686 O(N^2) yuckage. */
|
|
687 val = Qnil;
|
|
688 string_result = (Bufbyte *) alloca (total_length * MAX_EMCHAR_LEN);
|
|
689 string_result_ptr = string_result;
|
|
690 break;
|
|
691 default:
|
|
692 abort ();
|
|
693 }
|
|
694 }
|
|
695
|
|
696
|
|
697 if (CONSP (val))
|
|
698 tail = val, toindex = -1; /* -1 in toindex is flag we are
|
|
699 making a list */
|
|
700 else
|
|
701 toindex = 0;
|
|
702
|
|
703 prev = Qnil;
|
|
704
|
|
705 for (argnum = 0; argnum < nargs; argnum++)
|
|
706 {
|
|
707 Charcount thisleni = 0;
|
|
708 Charcount thisindex = 0;
|
|
709 Lisp_Object seq = args[argnum];
|
|
710 Bufbyte *string_source_ptr = 0;
|
|
711 Bufbyte *string_prev_result_ptr = string_result_ptr;
|
|
712
|
|
713 if (!CONSP (seq))
|
|
714 {
|
|
715 #ifdef LOSING_BYTECODE
|
|
716 thisleni = length_with_bytecode_hack (seq);
|
|
717 #else
|
|
718 thisleni = XINT (Flength (seq));
|
|
719 #endif
|
|
720 }
|
|
721 if (STRINGP (seq))
|
14
|
722 string_source_ptr = XSTRING_DATA (seq);
|
0
|
723
|
|
724 while (1)
|
|
725 {
|
|
726 Lisp_Object elt;
|
|
727
|
|
728 /* We've come to the end of this arg, so exit. */
|
|
729 if (NILP (seq))
|
|
730 break;
|
|
731
|
|
732 /* Fetch next element of `seq' arg into `elt' */
|
|
733 if (CONSP (seq))
|
|
734 {
|
165
|
735 elt = XCAR (seq);
|
|
736 seq = XCDR (seq);
|
0
|
737 }
|
|
738 else
|
|
739 {
|
|
740 if (thisindex >= thisleni)
|
|
741 break;
|
|
742
|
|
743 if (STRINGP (seq))
|
|
744 {
|
|
745 elt = make_char (charptr_emchar (string_source_ptr));
|
|
746 INC_CHARPTR (string_source_ptr);
|
|
747 }
|
|
748 else if (VECTORP (seq))
|
173
|
749 elt = XVECTOR_DATA (seq)[thisindex];
|
0
|
750 else if (BIT_VECTORP (seq))
|
|
751 elt = make_int (bit_vector_bit (XBIT_VECTOR (seq),
|
|
752 thisindex));
|
|
753 else
|
|
754 elt = Felt (seq, make_int (thisindex));
|
|
755 thisindex++;
|
|
756 }
|
|
757
|
|
758 /* Store into result */
|
|
759 if (toindex < 0)
|
|
760 {
|
|
761 /* toindex negative means we are making a list */
|
|
762 XCAR (tail) = elt;
|
|
763 prev = tail;
|
|
764 tail = XCDR (tail);
|
|
765 }
|
|
766 else if (VECTORP (val))
|
173
|
767 XVECTOR_DATA (val)[toindex++] = elt;
|
0
|
768 else if (BIT_VECTORP (val))
|
|
769 {
|
|
770 CHECK_BIT (elt);
|
|
771 set_bit_vector_bit (XBIT_VECTOR (val), toindex++, XINT (elt));
|
|
772 }
|
|
773 else
|
|
774 {
|
|
775 CHECK_CHAR_COERCE_INT (elt);
|
|
776 string_result_ptr += set_charptr_emchar (string_result_ptr,
|
|
777 XCHAR (elt));
|
|
778 }
|
|
779 }
|
|
780 if (args_mse)
|
|
781 {
|
|
782 args_mse[argnum].entry_offset =
|
|
783 string_prev_result_ptr - string_result;
|
|
784 args_mse[argnum].entry_length =
|
|
785 string_result_ptr - string_prev_result_ptr;
|
|
786 }
|
|
787 }
|
|
788
|
|
789 /* Now we finally make the string. */
|
|
790 if (target_type == c_string)
|
|
791 {
|
|
792 val = make_string (string_result, string_result_ptr - string_result);
|
|
793 for (argnum = 0; argnum < nargs; argnum++)
|
|
794 {
|
|
795 if (STRINGP (args_mse[argnum].string))
|
|
796 copy_string_extents (val, args_mse[argnum].string,
|
|
797 args_mse[argnum].entry_offset, 0,
|
|
798 args_mse[argnum].entry_length);
|
|
799 }
|
|
800 }
|
|
801
|
|
802 if (!NILP (prev))
|
|
803 XCDR (prev) = last_tail;
|
|
804
|
173
|
805 RETURN_UNGCPRO (val);
|
0
|
806 }
|
|
807
|
20
|
808 DEFUN ("copy-alist", Fcopy_alist, 1, 1, 0, /*
|
0
|
809 Return a copy of ALIST.
|
|
810 This is an alist which represents the same mapping from objects to objects,
|
|
811 but does not share the alist structure with ALIST.
|
|
812 The objects mapped (cars and cdrs of elements of the alist)
|
|
813 are shared, however.
|
|
814 Elements of ALIST that are not conses are also shared.
|
20
|
815 */
|
|
816 (alist))
|
0
|
817 {
|
272
|
818 Lisp_Object tail;
|
|
819
|
0
|
820 if (NILP (alist))
|
|
821 return alist;
|
272
|
822 CHECK_CONS (alist);
|
|
823
|
0
|
824 alist = concat (1, &alist, c_cons, 0);
|
272
|
825 for (tail = alist; CONSP (tail); tail = XCDR (tail))
|
0
|
826 {
|
272
|
827 Lisp_Object car = XCAR (tail);
|
0
|
828
|
|
829 if (CONSP (car))
|
272
|
830 XCAR (tail) = Fcons (XCAR (car), XCDR (car));
|
0
|
831 }
|
|
832 return alist;
|
|
833 }
|
|
834
|
20
|
835 DEFUN ("copy-tree", Fcopy_tree, 1, 2, 0, /*
|
0
|
836 Return a copy of a list and substructures.
|
|
837 The argument is copied, and any lists contained within it are copied
|
|
838 recursively. Circularities and shared substructures are not preserved.
|
|
839 Second arg VECP causes vectors to be copied, too. Strings and bit vectors
|
|
840 are not copied.
|
20
|
841 */
|
|
842 (arg, vecp))
|
0
|
843 {
|
|
844 if (CONSP (arg))
|
|
845 {
|
|
846 Lisp_Object rest;
|
|
847 rest = arg = Fcopy_sequence (arg);
|
|
848 while (CONSP (rest))
|
|
849 {
|
|
850 Lisp_Object elt = XCAR (rest);
|
|
851 QUIT;
|
|
852 if (CONSP (elt) || VECTORP (elt))
|
|
853 XCAR (rest) = Fcopy_tree (elt, vecp);
|
|
854 if (VECTORP (XCDR (rest))) /* hack for (a b . [c d]) */
|
|
855 XCDR (rest) = Fcopy_tree (XCDR (rest), vecp);
|
|
856 rest = XCDR (rest);
|
|
857 }
|
|
858 }
|
|
859 else if (VECTORP (arg) && ! NILP (vecp))
|
|
860 {
|
173
|
861 int i = XVECTOR_LENGTH (arg);
|
0
|
862 int j;
|
|
863 arg = Fcopy_sequence (arg);
|
|
864 for (j = 0; j < i; j++)
|
|
865 {
|
173
|
866 Lisp_Object elt = XVECTOR_DATA (arg) [j];
|
0
|
867 QUIT;
|
|
868 if (CONSP (elt) || VECTORP (elt))
|
173
|
869 XVECTOR_DATA (arg) [j] = Fcopy_tree (elt, vecp);
|
0
|
870 }
|
|
871 }
|
|
872 return arg;
|
|
873 }
|
|
874
|
20
|
875 DEFUN ("substring", Fsubstring, 2, 3, 0, /*
|
0
|
876 Return a substring of STRING, starting at index FROM and ending before TO.
|
|
877 TO may be nil or omitted; then the substring runs to the end of STRING.
|
|
878 If FROM or TO is negative, it counts from the end.
|
|
879 Relevant parts of the string-extent-data are copied in the new string.
|
20
|
880 */
|
|
881 (string, from, to))
|
0
|
882 {
|
|
883 Charcount ccfr, ccto;
|
412
|
884 Bytecount bfr, bto;
|
0
|
885 Lisp_Object val;
|
|
886
|
|
887 CHECK_STRING (string);
|
|
888 CHECK_INT (from);
|
|
889 get_string_range_char (string, from, to, &ccfr, &ccto,
|
|
890 GB_HISTORICAL_STRING_BEHAVIOR);
|
14
|
891 bfr = charcount_to_bytecount (XSTRING_DATA (string), ccfr);
|
412
|
892 bto = charcount_to_bytecount (XSTRING_DATA (string), ccto);
|
|
893 val = make_string (XSTRING_DATA (string) + bfr, bto - bfr);
|
0
|
894 /* Copy any applicable extent information into the new string: */
|
412
|
895 copy_string_extents (val, string, 0, bfr, bto - bfr);
|
173
|
896 return val;
|
0
|
897 }
|
|
898
|
20
|
899 DEFUN ("subseq", Fsubseq, 2, 3, 0, /*
|
412
|
900 Return a subsequence of SEQ, starting at index FROM and ending before TO.
|
|
901 TO may be nil or omitted; then the subsequence runs to the end of SEQ.
|
|
902 If FROM or TO is negative, it counts from the end.
|
|
903 The resulting subsequence is always the same type as the original
|
|
904 sequence.
|
|
905 If SEQ is a string, relevant parts of the string-extent-data are copied
|
|
906 to the new string.
|
20
|
907 */
|
412
|
908 (seq, from, to))
|
0
|
909 {
|
412
|
910 int len, f, t;
|
|
911
|
|
912 if (STRINGP (seq))
|
|
913 return Fsubstring (seq, from, to);
|
|
914
|
|
915 if (!LISTP (seq) && !VECTORP (seq) && !BIT_VECTORP (seq))
|
|
916 {
|
|
917 check_losing_bytecode ("subseq", seq);
|
|
918 seq = wrong_type_argument (Qsequencep, seq);
|
|
919 }
|
|
920
|
|
921 len = XINT (Flength (seq));
|
|
922
|
|
923 CHECK_INT (from);
|
|
924 f = XINT (from);
|
|
925 if (f < 0)
|
|
926 f = len + f;
|
|
927
|
|
928 if (NILP (to))
|
|
929 t = len;
|
0
|
930 else
|
|
931 {
|
412
|
932 CHECK_INT (to);
|
|
933 t = XINT (to);
|
|
934 if (t < 0)
|
|
935 t = len + t;
|
0
|
936 }
|
173
|
937
|
412
|
938 if (!(0 <= f && f <= t && t <= len))
|
|
939 args_out_of_range_3 (seq, make_int (f), make_int (t));
|
|
940
|
|
941 if (VECTORP (seq))
|
0
|
942 {
|
412
|
943 Lisp_Object result = make_vector (t - f, Qnil);
|
|
944 int i;
|
|
945 Lisp_Object *in_elts = XVECTOR_DATA (seq);
|
173
|
946 Lisp_Object *out_elts = XVECTOR_DATA (result);
|
0
|
947
|
412
|
948 for (i = f; i < t; i++)
|
|
949 out_elts[i - f] = in_elts[i];
|
0
|
950 return result;
|
|
951 }
|
412
|
952
|
|
953 if (LISTP (seq))
|
0
|
954 {
|
|
955 Lisp_Object result = Qnil;
|
412
|
956 int i;
|
|
957
|
|
958 seq = Fnthcdr (make_int (f), seq);
|
|
959
|
|
960 for (i = f; i < t; i++)
|
0
|
961 {
|
412
|
962 result = Fcons (Fcar (seq), result);
|
|
963 seq = Fcdr (seq);
|
0
|
964 }
|
|
965
|
|
966 return Fnreverse (result);
|
|
967 }
|
412
|
968
|
|
969 /* bit vector */
|
|
970 {
|
|
971 Lisp_Object result = make_bit_vector (t - f, Qzero);
|
|
972 int i;
|
|
973
|
|
974 for (i = f; i < t; i++)
|
|
975 set_bit_vector_bit (XBIT_VECTOR (result), i - f,
|
|
976 bit_vector_bit (XBIT_VECTOR (seq), i));
|
|
977 return result;
|
|
978 }
|
0
|
979 }
|
|
980
|
|
981
|
20
|
982 DEFUN ("nthcdr", Fnthcdr, 2, 2, 0, /*
|
272
|
983 Take cdr N times on LIST, and return the result.
|
20
|
984 */
|
|
985 (n, list))
|
0
|
986 {
|
412
|
987 REGISTER int i;
|
274
|
988 REGISTER Lisp_Object tail = list;
|
272
|
989 CHECK_NATNUM (n);
|
|
990 for (i = XINT (n); i; i--)
|
0
|
991 {
|
274
|
992 if (CONSP (tail))
|
|
993 tail = XCDR (tail);
|
|
994 else if (NILP (tail))
|
|
995 return Qnil;
|
|
996 else
|
|
997 {
|
|
998 tail = wrong_type_argument (Qlistp, tail);
|
|
999 i++;
|
|
1000 }
|
0
|
1001 }
|
274
|
1002 return tail;
|
0
|
1003 }
|
|
1004
|
20
|
1005 DEFUN ("nth", Fnth, 2, 2, 0, /*
|
0
|
1006 Return the Nth element of LIST.
|
|
1007 N counts from zero. If LIST is not that long, nil is returned.
|
20
|
1008 */
|
|
1009 (n, list))
|
0
|
1010 {
|
|
1011 return Fcar (Fnthcdr (n, list));
|
|
1012 }
|
|
1013
|
20
|
1014 DEFUN ("elt", Felt, 2, 2, 0, /*
|
0
|
1015 Return element of SEQUENCE at index N.
|
20
|
1016 */
|
272
|
1017 (sequence, n))
|
0
|
1018 {
|
|
1019 retry:
|
|
1020 CHECK_INT_COERCE_CHAR (n); /* yuck! */
|
272
|
1021 if (LISTP (sequence))
|
0
|
1022 {
|
272
|
1023 Lisp_Object tem = Fnthcdr (n, sequence);
|
0
|
1024 /* #### Utterly, completely, fucking disgusting.
|
|
1025 * #### The whole point of "elt" is that it operates on
|
|
1026 * #### sequences, and does error- (bounds-) checking.
|
|
1027 */
|
|
1028 if (CONSP (tem))
|
173
|
1029 return XCAR (tem);
|
0
|
1030 else
|
|
1031 #if 1
|
|
1032 /* This is The Way It Has Always Been. */
|
|
1033 return Qnil;
|
|
1034 #else
|
274
|
1035 /* This is The Way Mly and Cltl2 say It Should Be. */
|
272
|
1036 args_out_of_range (sequence, n);
|
0
|
1037 #endif
|
|
1038 }
|
380
|
1039 else if (STRINGP (sequence) ||
|
|
1040 VECTORP (sequence) ||
|
|
1041 BIT_VECTORP (sequence))
|
272
|
1042 return Faref (sequence, n);
|
0
|
1043 #ifdef LOSING_BYTECODE
|
272
|
1044 else if (COMPILED_FUNCTIONP (sequence))
|
0
|
1045 {
|
412
|
1046 int idx = XINT (n);
|
0
|
1047 if (idx < 0)
|
|
1048 {
|
|
1049 lose:
|
272
|
1050 args_out_of_range (sequence, n);
|
0
|
1051 }
|
|
1052 /* Utter perversity */
|
|
1053 {
|
380
|
1054 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (sequence);
|
0
|
1055 switch (idx)
|
|
1056 {
|
|
1057 case COMPILED_ARGLIST:
|
380
|
1058 return compiled_function_arglist (f);
|
|
1059 case COMPILED_INSTRUCTIONS:
|
|
1060 return compiled_function_instructions (f);
|
0
|
1061 case COMPILED_CONSTANTS:
|
380
|
1062 return compiled_function_constants (f);
|
0
|
1063 case COMPILED_STACK_DEPTH:
|
380
|
1064 return compiled_function_stack_depth (f);
|
0
|
1065 case COMPILED_DOC_STRING:
|
380
|
1066 return compiled_function_documentation (f);
|
0
|
1067 case COMPILED_DOMAIN:
|
380
|
1068 return compiled_function_domain (f);
|
0
|
1069 case COMPILED_INTERACTIVE:
|
380
|
1070 if (f->flags.interactivep)
|
|
1071 return compiled_function_interactive (f);
|
0
|
1072 /* if we return nil, can't tell interactive with no args
|
|
1073 from noninteractive. */
|
|
1074 goto lose;
|
|
1075 default:
|
|
1076 goto lose;
|
|
1077 }
|
|
1078 }
|
|
1079 }
|
|
1080 #endif /* LOSING_BYTECODE */
|
|
1081 else
|
|
1082 {
|
272
|
1083 check_losing_bytecode ("elt", sequence);
|
|
1084 sequence = wrong_type_argument (Qsequencep, sequence);
|
0
|
1085 goto retry;
|
|
1086 }
|
|
1087 }
|
|
1088
|
380
|
1089 DEFUN ("last", Flast, 1, 2, 0, /*
|
|
1090 Return the tail of list LIST, of length N (default 1).
|
|
1091 LIST may be a dotted list, but not a circular list.
|
|
1092 Optional argument N must be a non-negative integer.
|
|
1093 If N is zero, then the atom that terminates the list is returned.
|
|
1094 If N is greater than the length of LIST, then LIST itself is returned.
|
|
1095 */
|
|
1096 (list, n))
|
|
1097 {
|
412
|
1098 int int_n, count;
|
380
|
1099 Lisp_Object retval, tortoise, hare;
|
|
1100
|
|
1101 CHECK_LIST (list);
|
|
1102
|
|
1103 if (NILP (n))
|
|
1104 int_n = 1;
|
|
1105 else
|
|
1106 {
|
|
1107 CHECK_NATNUM (n);
|
|
1108 int_n = XINT (n);
|
|
1109 }
|
|
1110
|
|
1111 for (retval = tortoise = hare = list, count = 0;
|
|
1112 CONSP (hare);
|
|
1113 hare = XCDR (hare),
|
|
1114 (int_n-- <= 0 ? ((void) (retval = XCDR (retval))) : (void)0),
|
|
1115 count++)
|
|
1116 {
|
|
1117 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue;
|
|
1118
|
|
1119 if (count & 1)
|
|
1120 tortoise = XCDR (tortoise);
|
|
1121 if (EQ (hare, tortoise))
|
|
1122 signal_circular_list_error (list);
|
|
1123 }
|
|
1124
|
|
1125 return retval;
|
|
1126 }
|
|
1127
|
|
1128 DEFUN ("nbutlast", Fnbutlast, 1, 2, 0, /*
|
|
1129 Modify LIST to remove the last N (default 1) elements.
|
|
1130 If LIST has N or fewer elements, nil is returned and LIST is unmodified.
|
|
1131 */
|
|
1132 (list, n))
|
|
1133 {
|
412
|
1134 int int_n;
|
380
|
1135
|
|
1136 CHECK_LIST (list);
|
|
1137
|
|
1138 if (NILP (n))
|
|
1139 int_n = 1;
|
|
1140 else
|
|
1141 {
|
|
1142 CHECK_NATNUM (n);
|
|
1143 int_n = XINT (n);
|
|
1144 }
|
|
1145
|
|
1146 {
|
|
1147 Lisp_Object last_cons = list;
|
|
1148
|
|
1149 EXTERNAL_LIST_LOOP_1 (list)
|
|
1150 {
|
|
1151 if (int_n-- < 0)
|
|
1152 last_cons = XCDR (last_cons);
|
|
1153 }
|
|
1154
|
|
1155 if (int_n >= 0)
|
|
1156 return Qnil;
|
|
1157
|
|
1158 XCDR (last_cons) = Qnil;
|
|
1159 return list;
|
|
1160 }
|
|
1161 }
|
|
1162
|
|
1163 DEFUN ("butlast", Fbutlast, 1, 2, 0, /*
|
|
1164 Return a copy of LIST with the last N (default 1) elements removed.
|
|
1165 If LIST has N or fewer elements, nil is returned.
|
|
1166 */
|
|
1167 (list, n))
|
|
1168 {
|
|
1169 int int_n;
|
|
1170
|
|
1171 CHECK_LIST (list);
|
|
1172
|
|
1173 if (NILP (n))
|
|
1174 int_n = 1;
|
|
1175 else
|
|
1176 {
|
|
1177 CHECK_NATNUM (n);
|
|
1178 int_n = XINT (n);
|
|
1179 }
|
|
1180
|
|
1181 {
|
|
1182 Lisp_Object retval = Qnil;
|
|
1183 Lisp_Object tail = list;
|
|
1184
|
|
1185 EXTERNAL_LIST_LOOP_1 (list)
|
|
1186 {
|
|
1187 if (--int_n < 0)
|
|
1188 {
|
|
1189 retval = Fcons (XCAR (tail), retval);
|
|
1190 tail = XCDR (tail);
|
|
1191 }
|
|
1192 }
|
|
1193
|
|
1194 return Fnreverse (retval);
|
|
1195 }
|
|
1196 }
|
|
1197
|
20
|
1198 DEFUN ("member", Fmember, 2, 2, 0, /*
|
0
|
1199 Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
|
|
1200 The value is actually the tail of LIST whose car is ELT.
|
20
|
1201 */
|
|
1202 (elt, list))
|
0
|
1203 {
|
380
|
1204 Lisp_Object list_elt, tail;
|
|
1205 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
0
|
1206 {
|
380
|
1207 if (internal_equal (elt, list_elt, 0))
|
272
|
1208 return tail;
|
0
|
1209 }
|
|
1210 return Qnil;
|
|
1211 }
|
|
1212
|
70
|
1213 DEFUN ("old-member", Fold_member, 2, 2, 0, /*
|
|
1214 Return non-nil if ELT is an element of LIST. Comparison done with `old-equal'.
|
|
1215 The value is actually the tail of LIST whose car is ELT.
|
|
1216 This function is provided only for byte-code compatibility with v19.
|
|
1217 Do not use it.
|
|
1218 */
|
|
1219 (elt, list))
|
|
1220 {
|
380
|
1221 Lisp_Object list_elt, tail;
|
|
1222 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
70
|
1223 {
|
380
|
1224 if (internal_old_equal (elt, list_elt, 0))
|
272
|
1225 return tail;
|
70
|
1226 }
|
|
1227 return Qnil;
|
|
1228 }
|
|
1229
|
20
|
1230 DEFUN ("memq", Fmemq, 2, 2, 0, /*
|
0
|
1231 Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
|
|
1232 The value is actually the tail of LIST whose car is ELT.
|
20
|
1233 */
|
|
1234 (elt, list))
|
0
|
1235 {
|
380
|
1236 Lisp_Object list_elt, tail;
|
|
1237 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
0
|
1238 {
|
380
|
1239 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt))
|
272
|
1240 return tail;
|
70
|
1241 }
|
|
1242 return Qnil;
|
|
1243 }
|
|
1244
|
|
1245 DEFUN ("old-memq", Fold_memq, 2, 2, 0, /*
|
|
1246 Return non-nil if ELT is an element of LIST. Comparison done with `old-eq'.
|
|
1247 The value is actually the tail of LIST whose car is ELT.
|
|
1248 This function is provided only for byte-code compatibility with v19.
|
|
1249 Do not use it.
|
|
1250 */
|
|
1251 (elt, list))
|
|
1252 {
|
380
|
1253 Lisp_Object list_elt, tail;
|
|
1254 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
70
|
1255 {
|
380
|
1256 if (HACKEQ_UNSAFE (elt, list_elt))
|
272
|
1257 return tail;
|
0
|
1258 }
|
|
1259 return Qnil;
|
|
1260 }
|
|
1261
|
|
1262 Lisp_Object
|
|
1263 memq_no_quit (Lisp_Object elt, Lisp_Object list)
|
|
1264 {
|
380
|
1265 Lisp_Object list_elt, tail;
|
|
1266 LIST_LOOP_3 (list_elt, list, tail)
|
0
|
1267 {
|
380
|
1268 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt))
|
272
|
1269 return tail;
|
0
|
1270 }
|
|
1271 return Qnil;
|
|
1272 }
|
|
1273
|
20
|
1274 DEFUN ("assoc", Fassoc, 2, 2, 0, /*
|
0
|
1275 Return non-nil if KEY is `equal' to the car of an element of LIST.
|
|
1276 The value is actually the element of LIST whose car equals KEY.
|
20
|
1277 */
|
|
1278 (key, list))
|
0
|
1279 {
|
|
1280 /* This function can GC. */
|
380
|
1281 Lisp_Object elt, elt_car, elt_cdr;
|
|
1282 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
0
|
1283 {
|
380
|
1284 if (internal_equal (key, elt_car, 0))
|
195
|
1285 return elt;
|
0
|
1286 }
|
|
1287 return Qnil;
|
|
1288 }
|
|
1289
|
70
|
1290 DEFUN ("old-assoc", Fold_assoc, 2, 2, 0, /*
|
|
1291 Return non-nil if KEY is `old-equal' to the car of an element of LIST.
|
|
1292 The value is actually the element of LIST whose car equals KEY.
|
|
1293 */
|
|
1294 (key, list))
|
|
1295 {
|
|
1296 /* This function can GC. */
|
380
|
1297 Lisp_Object elt, elt_car, elt_cdr;
|
|
1298 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
70
|
1299 {
|
380
|
1300 if (internal_old_equal (key, elt_car, 0))
|
195
|
1301 return elt;
|
70
|
1302 }
|
|
1303 return Qnil;
|
|
1304 }
|
|
1305
|
0
|
1306 Lisp_Object
|
|
1307 assoc_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1308 {
|
|
1309 int speccount = specpdl_depth ();
|
|
1310 specbind (Qinhibit_quit, Qt);
|
149
|
1311 return unbind_to (speccount, Fassoc (key, list));
|
0
|
1312 }
|
|
1313
|
20
|
1314 DEFUN ("assq", Fassq, 2, 2, 0, /*
|
0
|
1315 Return non-nil if KEY is `eq' to the car of an element of LIST.
|
|
1316 The value is actually the element of LIST whose car is KEY.
|
|
1317 Elements of LIST that are not conses are ignored.
|
20
|
1318 */
|
|
1319 (key, list))
|
0
|
1320 {
|
380
|
1321 Lisp_Object elt, elt_car, elt_cdr;
|
|
1322 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
0
|
1323 {
|
380
|
1324 if (EQ_WITH_EBOLA_NOTICE (key, elt_car))
|
195
|
1325 return elt;
|
70
|
1326 }
|
|
1327 return Qnil;
|
|
1328 }
|
|
1329
|
|
1330 DEFUN ("old-assq", Fold_assq, 2, 2, 0, /*
|
|
1331 Return non-nil if KEY is `old-eq' to the car of an element of LIST.
|
|
1332 The value is actually the element of LIST whose car is KEY.
|
|
1333 Elements of LIST that are not conses are ignored.
|
|
1334 This function is provided only for byte-code compatibility with v19.
|
|
1335 Do not use it.
|
|
1336 */
|
|
1337 (key, list))
|
|
1338 {
|
380
|
1339 Lisp_Object elt, elt_car, elt_cdr;
|
|
1340 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
70
|
1341 {
|
380
|
1342 if (HACKEQ_UNSAFE (key, elt_car))
|
195
|
1343 return elt;
|
0
|
1344 }
|
|
1345 return Qnil;
|
|
1346 }
|
|
1347
|
|
1348 /* Like Fassq but never report an error and do not allow quits.
|
|
1349 Use only on lists known never to be circular. */
|
|
1350
|
|
1351 Lisp_Object
|
|
1352 assq_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1353 {
|
|
1354 /* This cannot GC. */
|
380
|
1355 Lisp_Object elt;
|
|
1356 LIST_LOOP_2 (elt, list)
|
0
|
1357 {
|
380
|
1358 Lisp_Object elt_car = XCAR (elt);
|
|
1359 if (EQ_WITH_EBOLA_NOTICE (key, elt_car))
|
|
1360 return elt;
|
0
|
1361 }
|
|
1362 return Qnil;
|
|
1363 }
|
|
1364
|
20
|
1365 DEFUN ("rassoc", Frassoc, 2, 2, 0, /*
|
0
|
1366 Return non-nil if KEY is `equal' to the cdr of an element of LIST.
|
|
1367 The value is actually the element of LIST whose cdr equals KEY.
|
20
|
1368 */
|
|
1369 (key, list))
|
0
|
1370 {
|
380
|
1371 Lisp_Object elt, elt_car, elt_cdr;
|
|
1372 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
0
|
1373 {
|
380
|
1374 if (internal_equal (key, elt_cdr, 0))
|
195
|
1375 return elt;
|
0
|
1376 }
|
|
1377 return Qnil;
|
|
1378 }
|
|
1379
|
70
|
1380 DEFUN ("old-rassoc", Fold_rassoc, 2, 2, 0, /*
|
|
1381 Return non-nil if KEY is `old-equal' to the cdr of an element of LIST.
|
|
1382 The value is actually the element of LIST whose cdr equals KEY.
|
|
1383 */
|
|
1384 (key, list))
|
|
1385 {
|
380
|
1386 Lisp_Object elt, elt_car, elt_cdr;
|
|
1387 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
70
|
1388 {
|
380
|
1389 if (internal_old_equal (key, elt_cdr, 0))
|
195
|
1390 return elt;
|
70
|
1391 }
|
|
1392 return Qnil;
|
|
1393 }
|
|
1394
|
20
|
1395 DEFUN ("rassq", Frassq, 2, 2, 0, /*
|
0
|
1396 Return non-nil if KEY is `eq' to the cdr of an element of LIST.
|
|
1397 The value is actually the element of LIST whose cdr is KEY.
|
20
|
1398 */
|
|
1399 (key, list))
|
0
|
1400 {
|
380
|
1401 Lisp_Object elt, elt_car, elt_cdr;
|
|
1402 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
0
|
1403 {
|
380
|
1404 if (EQ_WITH_EBOLA_NOTICE (key, elt_cdr))
|
195
|
1405 return elt;
|
70
|
1406 }
|
|
1407 return Qnil;
|
|
1408 }
|
|
1409
|
|
1410 DEFUN ("old-rassq", Fold_rassq, 2, 2, 0, /*
|
|
1411 Return non-nil if KEY is `old-eq' to the cdr of an element of LIST.
|
|
1412 The value is actually the element of LIST whose cdr is KEY.
|
|
1413 */
|
|
1414 (key, list))
|
|
1415 {
|
380
|
1416 Lisp_Object elt, elt_car, elt_cdr;
|
|
1417 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, list)
|
70
|
1418 {
|
380
|
1419 if (HACKEQ_UNSAFE (key, elt_cdr))
|
195
|
1420 return elt;
|
0
|
1421 }
|
|
1422 return Qnil;
|
|
1423 }
|
|
1424
|
380
|
1425 /* Like Frassq, but caller must ensure that LIST is properly
|
|
1426 nil-terminated and ebola-free. */
|
0
|
1427 Lisp_Object
|
|
1428 rassq_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1429 {
|
380
|
1430 Lisp_Object elt;
|
|
1431 LIST_LOOP_2 (elt, list)
|
0
|
1432 {
|
380
|
1433 Lisp_Object elt_cdr = XCDR (elt);
|
|
1434 if (EQ_WITH_EBOLA_NOTICE (key, elt_cdr))
|
272
|
1435 return elt;
|
0
|
1436 }
|
|
1437 return Qnil;
|
|
1438 }
|
|
1439
|
|
1440
|
20
|
1441 DEFUN ("delete", Fdelete, 2, 2, 0, /*
|
0
|
1442 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1443 The modified LIST is returned. Comparison is done with `equal'.
|
|
1444 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1445 effect; therefore, write `(setq foo (delete element foo))' to be sure
|
|
1446 of changing the value of `foo'.
|
201
|
1447 Also see: `remove'.
|
20
|
1448 */
|
|
1449 (elt, list))
|
0
|
1450 {
|
380
|
1451 Lisp_Object list_elt;
|
|
1452 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1453 (internal_equal (elt, list_elt, 0)));
|
0
|
1454 return list;
|
|
1455 }
|
|
1456
|
70
|
1457 DEFUN ("old-delete", Fold_delete, 2, 2, 0, /*
|
|
1458 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1459 The modified LIST is returned. Comparison is done with `old-equal'.
|
|
1460 If the first member of LIST is ELT, there is no way to remove it by side
|
272
|
1461 effect; therefore, write `(setq foo (old-delete element foo))' to be sure
|
70
|
1462 of changing the value of `foo'.
|
|
1463 */
|
|
1464 (elt, list))
|
|
1465 {
|
380
|
1466 Lisp_Object list_elt;
|
|
1467 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1468 (internal_old_equal (elt, list_elt, 0)));
|
70
|
1469 return list;
|
|
1470 }
|
|
1471
|
20
|
1472 DEFUN ("delq", Fdelq, 2, 2, 0, /*
|
0
|
1473 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1474 The modified LIST is returned. Comparison is done with `eq'.
|
|
1475 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1476 effect; therefore, write `(setq foo (delq element foo))' to be sure of
|
|
1477 changing the value of `foo'.
|
20
|
1478 */
|
|
1479 (elt, list))
|
0
|
1480 {
|
380
|
1481 Lisp_Object list_elt;
|
|
1482 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1483 (EQ_WITH_EBOLA_NOTICE (elt, list_elt)));
|
70
|
1484 return list;
|
|
1485 }
|
|
1486
|
|
1487 DEFUN ("old-delq", Fold_delq, 2, 2, 0, /*
|
|
1488 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1489 The modified LIST is returned. Comparison is done with `old-eq'.
|
|
1490 If the first member of LIST is ELT, there is no way to remove it by side
|
272
|
1491 effect; therefore, write `(setq foo (old-delq element foo))' to be sure of
|
70
|
1492 changing the value of `foo'.
|
|
1493 */
|
|
1494 (elt, list))
|
|
1495 {
|
380
|
1496 Lisp_Object list_elt;
|
|
1497 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1498 (HACKEQ_UNSAFE (elt, list_elt)));
|
0
|
1499 return list;
|
|
1500 }
|
|
1501
|
380
|
1502 /* Like Fdelq, but caller must ensure that LIST is properly
|
|
1503 nil-terminated and ebola-free. */
|
0
|
1504
|
|
1505 Lisp_Object
|
|
1506 delq_no_quit (Lisp_Object elt, Lisp_Object list)
|
|
1507 {
|
380
|
1508 Lisp_Object list_elt;
|
|
1509 LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1510 (EQ_WITH_EBOLA_NOTICE (elt, list_elt)));
|
0
|
1511 return list;
|
|
1512 }
|
|
1513
|
|
1514 /* Be VERY careful with this. This is like delq_no_quit() but
|
|
1515 also calls free_cons() on the removed conses. You must be SURE
|
|
1516 that no pointers to the freed conses remain around (e.g.
|
|
1517 someone else is pointing to part of the list). This function
|
|
1518 is useful on internal lists that are used frequently and where
|
|
1519 the actual list doesn't escape beyond known code bounds. */
|
|
1520
|
|
1521 Lisp_Object
|
|
1522 delq_no_quit_and_free_cons (Lisp_Object elt, Lisp_Object list)
|
|
1523 {
|
272
|
1524 REGISTER Lisp_Object tail = list;
|
|
1525 REGISTER Lisp_Object prev = Qnil;
|
380
|
1526
|
|
1527 while (!NILP (tail))
|
0
|
1528 {
|
380
|
1529 REGISTER Lisp_Object tem = XCAR (tail);
|
|
1530 if (EQ (elt, tem))
|
0
|
1531 {
|
380
|
1532 Lisp_Object cons_to_free = tail;
|
0
|
1533 if (NILP (prev))
|
|
1534 list = XCDR (tail);
|
|
1535 else
|
|
1536 XCDR (prev) = XCDR (tail);
|
380
|
1537 tail = XCDR (tail);
|
|
1538 free_cons (XCONS (cons_to_free));
|
0
|
1539 }
|
|
1540 else
|
272
|
1541 {
|
380
|
1542 prev = tail;
|
|
1543 tail = XCDR (tail);
|
272
|
1544 }
|
0
|
1545 }
|
|
1546 return list;
|
|
1547 }
|
|
1548
|
20
|
1549 DEFUN ("remassoc", Fremassoc, 2, 2, 0, /*
|
0
|
1550 Delete by side effect any elements of LIST whose car is `equal' to KEY.
|
|
1551 The modified LIST is returned. If the first member of LIST has a car
|
|
1552 that is `equal' to KEY, there is no way to remove it by side effect;
|
|
1553 therefore, write `(setq foo (remassoc key foo))' to be sure of changing
|
|
1554 the value of `foo'.
|
20
|
1555 */
|
|
1556 (key, list))
|
0
|
1557 {
|
380
|
1558 Lisp_Object elt;
|
|
1559 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list,
|
|
1560 (CONSP (elt) &&
|
|
1561 internal_equal (key, XCAR (elt), 0)));
|
0
|
1562 return list;
|
|
1563 }
|
|
1564
|
|
1565 Lisp_Object
|
|
1566 remassoc_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1567 {
|
|
1568 int speccount = specpdl_depth ();
|
|
1569 specbind (Qinhibit_quit, Qt);
|
149
|
1570 return unbind_to (speccount, Fremassoc (key, list));
|
0
|
1571 }
|
|
1572
|
20
|
1573 DEFUN ("remassq", Fremassq, 2, 2, 0, /*
|
0
|
1574 Delete by side effect any elements of LIST whose car is `eq' to KEY.
|
|
1575 The modified LIST is returned. If the first member of LIST has a car
|
|
1576 that is `eq' to KEY, there is no way to remove it by side effect;
|
|
1577 therefore, write `(setq foo (remassq key foo))' to be sure of changing
|
|
1578 the value of `foo'.
|
20
|
1579 */
|
|
1580 (key, list))
|
0
|
1581 {
|
380
|
1582 Lisp_Object elt;
|
|
1583 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list,
|
|
1584 (CONSP (elt) &&
|
|
1585 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt))));
|
0
|
1586 return list;
|
|
1587 }
|
|
1588
|
|
1589 /* no quit, no errors; be careful */
|
|
1590
|
|
1591 Lisp_Object
|
|
1592 remassq_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1593 {
|
380
|
1594 Lisp_Object elt;
|
|
1595 LIST_LOOP_DELETE_IF (elt, list,
|
|
1596 (CONSP (elt) &&
|
|
1597 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt))));
|
0
|
1598 return list;
|
|
1599 }
|
|
1600
|
20
|
1601 DEFUN ("remrassoc", Fremrassoc, 2, 2, 0, /*
|
0
|
1602 Delete by side effect any elements of LIST whose cdr is `equal' to VALUE.
|
|
1603 The modified LIST is returned. If the first member of LIST has a car
|
|
1604 that is `equal' to VALUE, there is no way to remove it by side effect;
|
|
1605 therefore, write `(setq foo (remrassoc value foo))' to be sure of changing
|
|
1606 the value of `foo'.
|
20
|
1607 */
|
|
1608 (value, list))
|
0
|
1609 {
|
380
|
1610 Lisp_Object elt;
|
|
1611 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list,
|
|
1612 (CONSP (elt) &&
|
|
1613 internal_equal (value, XCDR (elt), 0)));
|
0
|
1614 return list;
|
|
1615 }
|
|
1616
|
20
|
1617 DEFUN ("remrassq", Fremrassq, 2, 2, 0, /*
|
0
|
1618 Delete by side effect any elements of LIST whose cdr is `eq' to VALUE.
|
|
1619 The modified LIST is returned. If the first member of LIST has a car
|
|
1620 that is `eq' to VALUE, there is no way to remove it by side effect;
|
|
1621 therefore, write `(setq foo (remrassq value foo))' to be sure of changing
|
|
1622 the value of `foo'.
|
20
|
1623 */
|
|
1624 (value, list))
|
0
|
1625 {
|
380
|
1626 Lisp_Object elt;
|
|
1627 EXTERNAL_LIST_LOOP_DELETE_IF (elt, list,
|
|
1628 (CONSP (elt) &&
|
|
1629 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt))));
|
0
|
1630 return list;
|
|
1631 }
|
|
1632
|
380
|
1633 /* Like Fremrassq, fast and unsafe; be careful */
|
0
|
1634 Lisp_Object
|
|
1635 remrassq_no_quit (Lisp_Object value, Lisp_Object list)
|
|
1636 {
|
380
|
1637 Lisp_Object elt;
|
|
1638 LIST_LOOP_DELETE_IF (elt, list,
|
|
1639 (CONSP (elt) &&
|
|
1640 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt))));
|
0
|
1641 return list;
|
|
1642 }
|
|
1643
|
20
|
1644 DEFUN ("nreverse", Fnreverse, 1, 1, 0, /*
|
272
|
1645 Reverse LIST by destructively modifying cdr pointers.
|
|
1646 Return the beginning of the reversed list.
|
201
|
1647 Also see: `reverse'.
|
20
|
1648 */
|
|
1649 (list))
|
0
|
1650 {
|
|
1651 struct gcpro gcpro1, gcpro2;
|
272
|
1652 REGISTER Lisp_Object prev = Qnil;
|
|
1653 REGISTER Lisp_Object tail = list;
|
0
|
1654
|
|
1655 /* We gcpro our args; see `nconc' */
|
|
1656 GCPRO2 (prev, tail);
|
|
1657 while (!NILP (tail))
|
|
1658 {
|
272
|
1659 REGISTER Lisp_Object next;
|
|
1660 CONCHECK_CONS (tail);
|
165
|
1661 next = XCDR (tail);
|
|
1662 XCDR (tail) = prev;
|
0
|
1663 prev = tail;
|
|
1664 tail = next;
|
|
1665 }
|
|
1666 UNGCPRO;
|
|
1667 return prev;
|
|
1668 }
|
|
1669
|
20
|
1670 DEFUN ("reverse", Freverse, 1, 1, 0, /*
|
272
|
1671 Reverse LIST, copying. Return the beginning of the reversed list.
|
0
|
1672 See also the function `nreverse', which is used more often.
|
20
|
1673 */
|
|
1674 (list))
|
0
|
1675 {
|
380
|
1676 Lisp_Object reversed_list = Qnil;
|
|
1677 Lisp_Object elt;
|
|
1678 EXTERNAL_LIST_LOOP_2 (elt, list)
|
272
|
1679 {
|
380
|
1680 reversed_list = Fcons (elt, reversed_list);
|
272
|
1681 }
|
380
|
1682 return reversed_list;
|
0
|
1683 }
|
|
1684
|
173
|
1685 static Lisp_Object list_merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
|
1686 Lisp_Object lisp_arg,
|
0
|
1687 int (*pred_fn) (Lisp_Object, Lisp_Object,
|
|
1688 Lisp_Object lisp_arg));
|
|
1689
|
|
1690 Lisp_Object
|
|
1691 list_sort (Lisp_Object list,
|
173
|
1692 Lisp_Object lisp_arg,
|
0
|
1693 int (*pred_fn) (Lisp_Object, Lisp_Object,
|
|
1694 Lisp_Object lisp_arg))
|
|
1695 {
|
|
1696 struct gcpro gcpro1, gcpro2, gcpro3;
|
272
|
1697 Lisp_Object back, tem;
|
|
1698 Lisp_Object front = list;
|
|
1699 Lisp_Object len = Flength (list);
|
|
1700 int length = XINT (len);
|
|
1701
|
0
|
1702 if (length < 2)
|
|
1703 return list;
|
|
1704
|
|
1705 XSETINT (len, (length / 2) - 1);
|
|
1706 tem = Fnthcdr (len, list);
|
|
1707 back = Fcdr (tem);
|
|
1708 Fsetcdr (tem, Qnil);
|
|
1709
|
|
1710 GCPRO3 (front, back, lisp_arg);
|
|
1711 front = list_sort (front, lisp_arg, pred_fn);
|
|
1712 back = list_sort (back, lisp_arg, pred_fn);
|
|
1713 UNGCPRO;
|
|
1714 return list_merge (front, back, lisp_arg, pred_fn);
|
|
1715 }
|
|
1716
|
|
1717
|
|
1718 static int
|
173
|
1719 merge_pred_function (Lisp_Object obj1, Lisp_Object obj2,
|
0
|
1720 Lisp_Object pred)
|
|
1721 {
|
|
1722 Lisp_Object tmp;
|
|
1723
|
|
1724 /* prevents the GC from happening in call2 */
|
|
1725 int speccount = specpdl_depth ();
|
|
1726 /* Emacs' GC doesn't actually relocate pointers, so this probably
|
|
1727 isn't strictly necessary */
|
|
1728 record_unwind_protect (restore_gc_inhibit,
|
|
1729 make_int (gc_currently_forbidden));
|
|
1730 gc_currently_forbidden = 1;
|
|
1731 tmp = call2 (pred, obj1, obj2);
|
|
1732 unbind_to (speccount, Qnil);
|
|
1733
|
173
|
1734 if (NILP (tmp))
|
0
|
1735 return -1;
|
|
1736 else
|
|
1737 return 1;
|
|
1738 }
|
|
1739
|
20
|
1740 DEFUN ("sort", Fsort, 2, 2, 0, /*
|
0
|
1741 Sort LIST, stably, comparing elements using PREDICATE.
|
|
1742 Returns the sorted list. LIST is modified by side effects.
|
|
1743 PREDICATE is called with two elements of LIST, and should return T
|
185
|
1744 if the first element is "less" than the second.
|
20
|
1745 */
|
|
1746 (list, pred))
|
0
|
1747 {
|
|
1748 return list_sort (list, pred, merge_pred_function);
|
|
1749 }
|
|
1750
|
|
1751 Lisp_Object
|
173
|
1752 merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
0
|
1753 Lisp_Object pred)
|
|
1754 {
|
|
1755 return list_merge (org_l1, org_l2, pred, merge_pred_function);
|
|
1756 }
|
|
1757
|
|
1758
|
|
1759 static Lisp_Object
|
173
|
1760 list_merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
|
1761 Lisp_Object lisp_arg,
|
0
|
1762 int (*pred_fn) (Lisp_Object, Lisp_Object, Lisp_Object lisp_arg))
|
|
1763 {
|
|
1764 Lisp_Object value;
|
|
1765 Lisp_Object tail;
|
|
1766 Lisp_Object tem;
|
|
1767 Lisp_Object l1, l2;
|
|
1768 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
|
1769
|
|
1770 l1 = org_l1;
|
|
1771 l2 = org_l2;
|
|
1772 tail = Qnil;
|
|
1773 value = Qnil;
|
|
1774
|
|
1775 /* It is sufficient to protect org_l1 and org_l2.
|
|
1776 When l1 and l2 are updated, we copy the new values
|
|
1777 back into the org_ vars. */
|
173
|
1778
|
0
|
1779 GCPRO4 (org_l1, org_l2, lisp_arg, value);
|
|
1780
|
|
1781 while (1)
|
|
1782 {
|
|
1783 if (NILP (l1))
|
|
1784 {
|
|
1785 UNGCPRO;
|
|
1786 if (NILP (tail))
|
|
1787 return l2;
|
|
1788 Fsetcdr (tail, l2);
|
|
1789 return value;
|
|
1790 }
|
|
1791 if (NILP (l2))
|
|
1792 {
|
|
1793 UNGCPRO;
|
|
1794 if (NILP (tail))
|
|
1795 return l1;
|
|
1796 Fsetcdr (tail, l1);
|
|
1797 return value;
|
|
1798 }
|
|
1799
|
|
1800 if (((*pred_fn) (Fcar (l2), Fcar (l1), lisp_arg)) < 0)
|
|
1801 {
|
|
1802 tem = l1;
|
|
1803 l1 = Fcdr (l1);
|
|
1804 org_l1 = l1;
|
|
1805 }
|
|
1806 else
|
|
1807 {
|
|
1808 tem = l2;
|
|
1809 l2 = Fcdr (l2);
|
|
1810 org_l2 = l2;
|
|
1811 }
|
|
1812 if (NILP (tail))
|
|
1813 value = tem;
|
|
1814 else
|
|
1815 Fsetcdr (tail, tem);
|
|
1816 tail = tem;
|
|
1817 }
|
|
1818 }
|
|
1819
|
|
1820
|
|
1821 /************************************************************************/
|
|
1822 /* property-list functions */
|
|
1823 /************************************************************************/
|
|
1824
|
|
1825 /* For properties of text, we need to do order-insensitive comparison of
|
|
1826 plists. That is, we need to compare two plists such that they are the
|
|
1827 same if they have the same set of keys, and equivalent values.
|
|
1828 So (a 1 b 2) would be equal to (b 2 a 1).
|
|
1829
|
|
1830 NIL_MEANS_NOT_PRESENT is as in `plists-eq' etc.
|
|
1831 LAXP means use `equal' for comparisons.
|
|
1832 */
|
173
|
1833 int
|
0
|
1834 plists_differ (Lisp_Object a, Lisp_Object b, int nil_means_not_present,
|
|
1835 int laxp, int depth)
|
|
1836 {
|
412
|
1837 int eqp = (depth == -1); /* -1 as depth means us eq, not equal. */
|
0
|
1838 int la, lb, m, i, fill;
|
|
1839 Lisp_Object *keys, *vals;
|
|
1840 char *flags;
|
|
1841 Lisp_Object rest;
|
|
1842
|
|
1843 if (NILP (a) && NILP (b))
|
|
1844 return 0;
|
|
1845
|
|
1846 Fcheck_valid_plist (a);
|
|
1847 Fcheck_valid_plist (b);
|
|
1848
|
|
1849 la = XINT (Flength (a));
|
|
1850 lb = XINT (Flength (b));
|
|
1851 m = (la > lb ? la : lb);
|
|
1852 fill = 0;
|
185
|
1853 keys = alloca_array (Lisp_Object, m);
|
|
1854 vals = alloca_array (Lisp_Object, m);
|
|
1855 flags = alloca_array (char, m);
|
0
|
1856
|
|
1857 /* First extract the pairs from A. */
|
|
1858 for (rest = a; !NILP (rest); rest = XCDR (XCDR (rest)))
|
|
1859 {
|
|
1860 Lisp_Object k = XCAR (rest);
|
|
1861 Lisp_Object v = XCAR (XCDR (rest));
|
|
1862 /* Maybe be Ebolified. */
|
|
1863 if (nil_means_not_present && NILP (v)) continue;
|
|
1864 keys [fill] = k;
|
|
1865 vals [fill] = v;
|
|
1866 flags[fill] = 0;
|
|
1867 fill++;
|
|
1868 }
|
|
1869 /* Now iterate over B, and stop if we find something that's not in A,
|
|
1870 or that doesn't match. As we match, mark them. */
|
|
1871 for (rest = b; !NILP (rest); rest = XCDR (XCDR (rest)))
|
|
1872 {
|
|
1873 Lisp_Object k = XCAR (rest);
|
|
1874 Lisp_Object v = XCAR (XCDR (rest));
|
|
1875 /* Maybe be Ebolified. */
|
|
1876 if (nil_means_not_present && NILP (v)) continue;
|
|
1877 for (i = 0; i < fill; i++)
|
|
1878 {
|
|
1879 if (!laxp ? EQ (k, keys [i]) : internal_equal (k, keys [i], depth))
|
|
1880 {
|
412
|
1881 if ((eqp
|
|
1882 /* We narrowly escaped being Ebolified here. */
|
|
1883 ? !EQ_WITH_EBOLA_NOTICE (v, vals [i])
|
|
1884 : !internal_equal (v, vals [i], depth)))
|
0
|
1885 /* a property in B has a different value than in A */
|
|
1886 goto MISMATCH;
|
|
1887 flags [i] = 1;
|
|
1888 break;
|
|
1889 }
|
|
1890 }
|
|
1891 if (i == fill)
|
|
1892 /* there are some properties in B that are not in A */
|
|
1893 goto MISMATCH;
|
|
1894 }
|
|
1895 /* Now check to see that all the properties in A were also in B */
|
|
1896 for (i = 0; i < fill; i++)
|
|
1897 if (flags [i] == 0)
|
|
1898 goto MISMATCH;
|
|
1899
|
|
1900 /* Ok. */
|
|
1901 return 0;
|
|
1902
|
|
1903 MISMATCH:
|
|
1904 return 1;
|
|
1905 }
|
|
1906
|
20
|
1907 DEFUN ("plists-eq", Fplists_eq, 2, 3, 0, /*
|
0
|
1908 Return non-nil if property lists A and B are `eq'.
|
|
1909 A property list is an alternating list of keywords and values.
|
|
1910 This function does order-insensitive comparisons of the property lists:
|
|
1911 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1912 Comparison between values is done using `eq'. See also `plists-equal'.
|
|
1913 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1914 a nil value is ignored. This feature is a virus that has infected
|
16
|
1915 old Lisp implementations, but should not be used except for backward
|
|
1916 compatibility.
|
20
|
1917 */
|
|
1918 (a, b, nil_means_not_present))
|
0
|
1919 {
|
|
1920 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, -1)
|
|
1921 ? Qnil : Qt);
|
|
1922 }
|
|
1923
|
20
|
1924 DEFUN ("plists-equal", Fplists_equal, 2, 3, 0, /*
|
0
|
1925 Return non-nil if property lists A and B are `equal'.
|
|
1926 A property list is an alternating list of keywords and values. This
|
|
1927 function does order-insensitive comparisons of the property lists: For
|
|
1928 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1929 Comparison between values is done using `equal'. See also `plists-eq'.
|
|
1930 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1931 a nil value is ignored. This feature is a virus that has infected
|
16
|
1932 old Lisp implementations, but should not be used except for backward
|
|
1933 compatibility.
|
20
|
1934 */
|
|
1935 (a, b, nil_means_not_present))
|
0
|
1936 {
|
|
1937 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, 1)
|
|
1938 ? Qnil : Qt);
|
|
1939 }
|
|
1940
|
|
1941
|
20
|
1942 DEFUN ("lax-plists-eq", Flax_plists_eq, 2, 3, 0, /*
|
0
|
1943 Return non-nil if lax property lists A and B are `eq'.
|
|
1944 A property list is an alternating list of keywords and values.
|
|
1945 This function does order-insensitive comparisons of the property lists:
|
|
1946 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1947 Comparison between values is done using `eq'. See also `plists-equal'.
|
|
1948 A lax property list is like a regular one except that comparisons between
|
|
1949 keywords is done using `equal' instead of `eq'.
|
|
1950 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1951 a nil value is ignored. This feature is a virus that has infected
|
16
|
1952 old Lisp implementations, but should not be used except for backward
|
|
1953 compatibility.
|
20
|
1954 */
|
|
1955 (a, b, nil_means_not_present))
|
0
|
1956 {
|
|
1957 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, -1)
|
|
1958 ? Qnil : Qt);
|
|
1959 }
|
|
1960
|
20
|
1961 DEFUN ("lax-plists-equal", Flax_plists_equal, 2, 3, 0, /*
|
0
|
1962 Return non-nil if lax property lists A and B are `equal'.
|
|
1963 A property list is an alternating list of keywords and values. This
|
|
1964 function does order-insensitive comparisons of the property lists: For
|
|
1965 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1966 Comparison between values is done using `equal'. See also `plists-eq'.
|
|
1967 A lax property list is like a regular one except that comparisons between
|
|
1968 keywords is done using `equal' instead of `eq'.
|
|
1969 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1970 a nil value is ignored. This feature is a virus that has infected
|
16
|
1971 old Lisp implementations, but should not be used except for backward
|
|
1972 compatibility.
|
20
|
1973 */
|
|
1974 (a, b, nil_means_not_present))
|
0
|
1975 {
|
|
1976 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, 1)
|
|
1977 ? Qnil : Qt);
|
|
1978 }
|
|
1979
|
|
1980 /* Return the value associated with key PROPERTY in property list PLIST.
|
|
1981 Return nil if key not found. This function is used for internal
|
|
1982 property lists that cannot be directly manipulated by the user.
|
|
1983 */
|
|
1984
|
|
1985 Lisp_Object
|
|
1986 internal_plist_get (Lisp_Object plist, Lisp_Object property)
|
|
1987 {
|
380
|
1988 Lisp_Object tail;
|
|
1989
|
|
1990 for (tail = plist; !NILP (tail); tail = XCDR (XCDR (tail)))
|
0
|
1991 {
|
380
|
1992 if (EQ (XCAR (tail), property))
|
|
1993 return XCAR (XCDR (tail));
|
0
|
1994 }
|
|
1995
|
|
1996 return Qunbound;
|
|
1997 }
|
|
1998
|
|
1999 /* Set PLIST's value for PROPERTY to VALUE. Analogous to
|
|
2000 internal_plist_get(). */
|
|
2001
|
|
2002 void
|
|
2003 internal_plist_put (Lisp_Object *plist, Lisp_Object property,
|
|
2004 Lisp_Object value)
|
|
2005 {
|
272
|
2006 Lisp_Object tail;
|
|
2007
|
|
2008 for (tail = *plist; !NILP (tail); tail = XCDR (XCDR (tail)))
|
0
|
2009 {
|
272
|
2010 if (EQ (XCAR (tail), property))
|
0
|
2011 {
|
272
|
2012 XCAR (XCDR (tail)) = value;
|
0
|
2013 return;
|
|
2014 }
|
|
2015 }
|
|
2016
|
|
2017 *plist = Fcons (property, Fcons (value, *plist));
|
|
2018 }
|
|
2019
|
|
2020 int
|
|
2021 internal_remprop (Lisp_Object *plist, Lisp_Object property)
|
|
2022 {
|
380
|
2023 Lisp_Object tail, prev;
|
|
2024
|
|
2025 for (tail = *plist, prev = Qnil;
|
|
2026 !NILP (tail);
|
0
|
2027 tail = XCDR (XCDR (tail)))
|
|
2028 {
|
380
|
2029 if (EQ (XCAR (tail), property))
|
0
|
2030 {
|
380
|
2031 if (NILP (prev))
|
|
2032 *plist = XCDR (XCDR (tail));
|
|
2033 else
|
|
2034 XCDR (XCDR (prev)) = XCDR (XCDR (tail));
|
0
|
2035 return 1;
|
|
2036 }
|
380
|
2037 else
|
|
2038 prev = tail;
|
0
|
2039 }
|
|
2040
|
|
2041 return 0;
|
|
2042 }
|
|
2043
|
|
2044 /* Called on a malformed property list. BADPLACE should be some
|
|
2045 place where truncating will form a good list -- i.e. we shouldn't
|
|
2046 result in a list with an odd length. */
|
|
2047
|
|
2048 static Lisp_Object
|
|
2049 bad_bad_bunny (Lisp_Object *plist, Lisp_Object *badplace, Error_behavior errb)
|
|
2050 {
|
|
2051 if (ERRB_EQ (errb, ERROR_ME))
|
|
2052 return Fsignal (Qmalformed_property_list, list2 (*plist, *badplace));
|
|
2053 else
|
|
2054 {
|
|
2055 if (ERRB_EQ (errb, ERROR_ME_WARN))
|
|
2056 {
|
|
2057 warn_when_safe_lispobj
|
|
2058 (Qlist, Qwarning,
|
|
2059 list2 (build_string
|
|
2060 ("Malformed property list -- list has been truncated"),
|
|
2061 *plist));
|
|
2062 *badplace = Qnil;
|
|
2063 }
|
|
2064 return Qunbound;
|
|
2065 }
|
|
2066 }
|
|
2067
|
|
2068 /* Called on a circular property list. BADPLACE should be some place
|
|
2069 where truncating will result in an even-length list, as above.
|
|
2070 If doesn't particularly matter where we truncate -- anywhere we
|
|
2071 truncate along the entire list will break the circularity, because
|
|
2072 it will create a terminus and the list currently doesn't have one.
|
|
2073 */
|
|
2074
|
|
2075 static Lisp_Object
|
|
2076 bad_bad_turtle (Lisp_Object *plist, Lisp_Object *badplace, Error_behavior errb)
|
|
2077 {
|
|
2078 if (ERRB_EQ (errb, ERROR_ME))
|
|
2079 /* #### Eek, this will probably result in another error
|
|
2080 when PLIST is printed out */
|
|
2081 return Fsignal (Qcircular_property_list, list1 (*plist));
|
|
2082 else
|
|
2083 {
|
|
2084 if (ERRB_EQ (errb, ERROR_ME_WARN))
|
|
2085 {
|
|
2086 warn_when_safe_lispobj
|
|
2087 (Qlist, Qwarning,
|
|
2088 list2 (build_string
|
|
2089 ("Circular property list -- list has been truncated"),
|
|
2090 *plist));
|
|
2091 *badplace = Qnil;
|
|
2092 }
|
|
2093 return Qunbound;
|
|
2094 }
|
|
2095 }
|
|
2096
|
|
2097 /* Advance the tortoise pointer by two (one iteration of a property-list
|
|
2098 loop) and the hare pointer by four and verify that no malformations
|
|
2099 or circularities exist. If so, return zero and store a value into
|
|
2100 RETVAL that should be returned by the calling function. Otherwise,
|
|
2101 return 1. See external_plist_get().
|
|
2102 */
|
|
2103
|
|
2104 static int
|
|
2105 advance_plist_pointers (Lisp_Object *plist,
|
|
2106 Lisp_Object **tortoise, Lisp_Object **hare,
|
|
2107 Error_behavior errb, Lisp_Object *retval)
|
|
2108 {
|
|
2109 int i;
|
|
2110 Lisp_Object *tortsave = *tortoise;
|
|
2111
|
|
2112 /* Note that our "fixing" may be more brutal than necessary,
|
380
|
2113 but it's the user's own problem, not ours, if they went in and
|
0
|
2114 manually fucked up a plist. */
|
173
|
2115
|
0
|
2116 for (i = 0; i < 2; i++)
|
|
2117 {
|
|
2118 /* This is a standard iteration of a defensive-loop-checking
|
|
2119 loop. We just do it twice because we want to advance past
|
|
2120 both the property and its value.
|
|
2121
|
|
2122 If the pointer indirection is confusing you, remember that
|
|
2123 one level of indirection on the hare and tortoise pointers
|
|
2124 is only due to pass-by-reference for this function. The other
|
|
2125 level is so that the plist can be fixed in place. */
|
|
2126
|
|
2127 /* When we reach the end of a well-formed plist, **HARE is
|
|
2128 nil. In that case, we don't do anything at all except
|
|
2129 advance TORTOISE by one. Otherwise, we advance HARE
|
|
2130 by two (making sure it's OK to do so), then advance
|
|
2131 TORTOISE by one (it will always be OK to do so because
|
|
2132 the HARE is always ahead of the TORTOISE and will have
|
|
2133 already verified the path), then make sure TORTOISE and
|
|
2134 HARE don't contain the same non-nil object -- if the
|
|
2135 TORTOISE and the HARE ever meet, then obviously we're
|
|
2136 in a circularity, and if we're in a circularity, then
|
|
2137 the TORTOISE and the HARE can't cross paths without
|
|
2138 meeting, since the HARE only gains one step over the
|
|
2139 TORTOISE per iteration. */
|
|
2140
|
|
2141 if (!NILP (**hare))
|
|
2142 {
|
|
2143 Lisp_Object *haresave = *hare;
|
|
2144 if (!CONSP (**hare))
|
|
2145 {
|
|
2146 *retval = bad_bad_bunny (plist, haresave, errb);
|
|
2147 return 0;
|
|
2148 }
|
|
2149 *hare = &XCDR (**hare);
|
|
2150 /* In a non-plist, we'd check here for a nil value for
|
|
2151 **HARE, which is OK (it just means the list has an
|
|
2152 odd number of elements). In a plist, it's not OK
|
|
2153 for the list to have an odd number of elements. */
|
|
2154 if (!CONSP (**hare))
|
|
2155 {
|
|
2156 *retval = bad_bad_bunny (plist, haresave, errb);
|
|
2157 return 0;
|
|
2158 }
|
|
2159 *hare = &XCDR (**hare);
|
|
2160 }
|
|
2161
|
|
2162 *tortoise = &XCDR (**tortoise);
|
|
2163 if (!NILP (**hare) && EQ (**tortoise, **hare))
|
|
2164 {
|
|
2165 *retval = bad_bad_turtle (plist, tortsave, errb);
|
|
2166 return 0;
|
|
2167 }
|
|
2168 }
|
|
2169
|
|
2170 return 1;
|
|
2171 }
|
|
2172
|
|
2173 /* Return the value of PROPERTY from PLIST, or Qunbound if
|
|
2174 property is not on the list.
|
|
2175
|
|
2176 PLIST is a Lisp-accessible property list, meaning that it
|
|
2177 has to be checked for malformations and circularities.
|
|
2178
|
|
2179 If ERRB is ERROR_ME, an error will be signalled. Otherwise, the
|
|
2180 function will never signal an error; and if ERRB is ERROR_ME_WARN,
|
|
2181 on finding a malformation or a circularity, it issues a warning and
|
|
2182 attempts to silently fix the problem.
|
|
2183
|
|
2184 A pointer to PLIST is passed in so that PLIST can be successfully
|
|
2185 "fixed" even if the error is at the beginning of the plist. */
|
|
2186
|
|
2187 Lisp_Object
|
|
2188 external_plist_get (Lisp_Object *plist, Lisp_Object property,
|
|
2189 int laxp, Error_behavior errb)
|
|
2190 {
|
|
2191 Lisp_Object *tortoise = plist;
|
|
2192 Lisp_Object *hare = plist;
|
|
2193
|
|
2194 while (!NILP (*tortoise))
|
|
2195 {
|
|
2196 Lisp_Object *tortsave = tortoise;
|
|
2197 Lisp_Object retval;
|
|
2198
|
|
2199 /* We do the standard tortoise/hare march. We isolate the
|
|
2200 grungy stuff to do this in advance_plist_pointers(), though.
|
|
2201 To us, all this function does is advance the tortoise
|
|
2202 pointer by two and the hare pointer by four and make sure
|
|
2203 everything's OK. We first advance the pointers and then
|
|
2204 check if a property matched; this ensures that our
|
|
2205 check for a matching property is safe. */
|
|
2206
|
|
2207 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2208 return retval;
|
|
2209
|
|
2210 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2211 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2212 return XCAR (XCDR (*tortsave));
|
|
2213 }
|
|
2214
|
|
2215 return Qunbound;
|
|
2216 }
|
|
2217
|
|
2218 /* Set PLIST's value for PROPERTY to VALUE, given a possibly
|
|
2219 malformed or circular plist. Analogous to external_plist_get(). */
|
|
2220
|
|
2221 void
|
|
2222 external_plist_put (Lisp_Object *plist, Lisp_Object property,
|
|
2223 Lisp_Object value, int laxp, Error_behavior errb)
|
|
2224 {
|
|
2225 Lisp_Object *tortoise = plist;
|
|
2226 Lisp_Object *hare = plist;
|
|
2227
|
|
2228 while (!NILP (*tortoise))
|
|
2229 {
|
|
2230 Lisp_Object *tortsave = tortoise;
|
|
2231 Lisp_Object retval;
|
|
2232
|
|
2233 /* See above */
|
|
2234 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2235 return;
|
|
2236
|
|
2237 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2238 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2239 {
|
|
2240 XCAR (XCDR (*tortsave)) = value;
|
|
2241 return;
|
|
2242 }
|
|
2243 }
|
|
2244
|
|
2245 *plist = Fcons (property, Fcons (value, *plist));
|
|
2246 }
|
|
2247
|
|
2248 int
|
|
2249 external_remprop (Lisp_Object *plist, Lisp_Object property,
|
|
2250 int laxp, Error_behavior errb)
|
|
2251 {
|
|
2252 Lisp_Object *tortoise = plist;
|
|
2253 Lisp_Object *hare = plist;
|
|
2254
|
|
2255 while (!NILP (*tortoise))
|
|
2256 {
|
|
2257 Lisp_Object *tortsave = tortoise;
|
|
2258 Lisp_Object retval;
|
|
2259
|
|
2260 /* See above */
|
|
2261 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2262 return 0;
|
|
2263
|
|
2264 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2265 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2266 {
|
|
2267 /* Now you see why it's so convenient to have that level
|
|
2268 of indirection. */
|
|
2269 *tortsave = XCDR (XCDR (*tortsave));
|
|
2270 return 1;
|
|
2271 }
|
|
2272 }
|
|
2273
|
|
2274 return 0;
|
|
2275 }
|
|
2276
|
20
|
2277 DEFUN ("plist-get", Fplist_get, 2, 3, 0, /*
|
0
|
2278 Extract a value from a property list.
|
|
2279 PLIST is a property list, which is a list of the form
|
|
2280 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
|
|
2281 corresponding to the given PROP, or DEFAULT if PROP is not
|
|
2282 one of the properties on the list.
|
20
|
2283 */
|
173
|
2284 (plist, prop, default_))
|
0
|
2285 {
|
|
2286 Lisp_Object val = external_plist_get (&plist, prop, 0, ERROR_ME);
|
380
|
2287 return UNBOUNDP (val) ? default_ : val;
|
0
|
2288 }
|
|
2289
|
20
|
2290 DEFUN ("plist-put", Fplist_put, 3, 3, 0, /*
|
0
|
2291 Change value in PLIST of PROP to VAL.
|
|
2292 PLIST is a property list, which is a list of the form \(PROP1 VALUE1
|
|
2293 PROP2 VALUE2 ...). PROP is usually a symbol and VAL is any object.
|
|
2294 If PROP is already a property on the list, its value is set to VAL,
|
|
2295 otherwise the new PROP VAL pair is added. The new plist is returned;
|
|
2296 use `(setq x (plist-put x prop val))' to be sure to use the new value.
|
|
2297 The PLIST is modified by side effects.
|
20
|
2298 */
|
|
2299 (plist, prop, val))
|
0
|
2300 {
|
|
2301 external_plist_put (&plist, prop, val, 0, ERROR_ME);
|
|
2302 return plist;
|
|
2303 }
|
|
2304
|
20
|
2305 DEFUN ("plist-remprop", Fplist_remprop, 2, 2, 0, /*
|
0
|
2306 Remove from PLIST the property PROP and its value.
|
|
2307 PLIST is a property list, which is a list of the form \(PROP1 VALUE1
|
|
2308 PROP2 VALUE2 ...). PROP is usually a symbol. The new plist is
|
|
2309 returned; use `(setq x (plist-remprop x prop val))' to be sure to use
|
|
2310 the new value. The PLIST is modified by side effects.
|
20
|
2311 */
|
|
2312 (plist, prop))
|
0
|
2313 {
|
|
2314 external_remprop (&plist, prop, 0, ERROR_ME);
|
|
2315 return plist;
|
|
2316 }
|
|
2317
|
20
|
2318 DEFUN ("plist-member", Fplist_member, 2, 2, 0, /*
|
0
|
2319 Return t if PROP has a value specified in PLIST.
|
20
|
2320 */
|
|
2321 (plist, prop))
|
0
|
2322 {
|
380
|
2323 Lisp_Object val = Fplist_get (plist, prop, Qunbound);
|
|
2324 return UNBOUNDP (val) ? Qnil : Qt;
|
0
|
2325 }
|
|
2326
|
20
|
2327 DEFUN ("check-valid-plist", Fcheck_valid_plist, 1, 1, 0, /*
|
0
|
2328 Given a plist, signal an error if there is anything wrong with it.
|
|
2329 This means that it's a malformed or circular plist.
|
20
|
2330 */
|
|
2331 (plist))
|
0
|
2332 {
|
|
2333 Lisp_Object *tortoise;
|
|
2334 Lisp_Object *hare;
|
|
2335
|
|
2336 start_over:
|
|
2337 tortoise = &plist;
|
|
2338 hare = &plist;
|
|
2339 while (!NILP (*tortoise))
|
|
2340 {
|
|
2341 Lisp_Object retval;
|
|
2342
|
|
2343 /* See above */
|
|
2344 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME,
|
|
2345 &retval))
|
|
2346 goto start_over;
|
|
2347 }
|
|
2348
|
|
2349 return Qnil;
|
|
2350 }
|
173
|
2351
|
20
|
2352 DEFUN ("valid-plist-p", Fvalid_plist_p, 1, 1, 0, /*
|
0
|
2353 Given a plist, return non-nil if its format is correct.
|
|
2354 If it returns nil, `check-valid-plist' will signal an error when given
|
412
|
2355 the plist; that means it's a malformed or circular plist or has non-symbols
|
|
2356 as keywords.
|
20
|
2357 */
|
|
2358 (plist))
|
0
|
2359 {
|
|
2360 Lisp_Object *tortoise;
|
|
2361 Lisp_Object *hare;
|
|
2362
|
|
2363 tortoise = &plist;
|
|
2364 hare = &plist;
|
|
2365 while (!NILP (*tortoise))
|
|
2366 {
|
|
2367 Lisp_Object retval;
|
|
2368
|
|
2369 /* See above */
|
|
2370 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME_NOT,
|
|
2371 &retval))
|
|
2372 return Qnil;
|
|
2373 }
|
|
2374
|
|
2375 return Qt;
|
|
2376 }
|
|
2377
|
20
|
2378 DEFUN ("canonicalize-plist", Fcanonicalize_plist, 1, 2, 0, /*
|
0
|
2379 Destructively remove any duplicate entries from a plist.
|
|
2380 In such cases, the first entry applies.
|
|
2381
|
|
2382 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2383 a nil value is removed. This feature is a virus that has infected
|
16
|
2384 old Lisp implementations, but should not be used except for backward
|
|
2385 compatibility.
|
0
|
2386
|
|
2387 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the
|
|
2388 return value may not be EQ to the passed-in value, so make sure to
|
|
2389 `setq' the value back into where it came from.
|
20
|
2390 */
|
|
2391 (plist, nil_means_not_present))
|
0
|
2392 {
|
|
2393 Lisp_Object head = plist;
|
|
2394
|
|
2395 Fcheck_valid_plist (plist);
|
|
2396
|
|
2397 while (!NILP (plist))
|
|
2398 {
|
|
2399 Lisp_Object prop = Fcar (plist);
|
|
2400 Lisp_Object next = Fcdr (plist);
|
|
2401
|
|
2402 CHECK_CONS (next); /* just make doubly sure we catch any errors */
|
|
2403 if (!NILP (nil_means_not_present) && NILP (Fcar (next)))
|
|
2404 {
|
|
2405 if (EQ (head, plist))
|
|
2406 head = Fcdr (next);
|
|
2407 plist = Fcdr (next);
|
|
2408 continue;
|
|
2409 }
|
|
2410 /* external_remprop returns 1 if it removed any property.
|
|
2411 We have to loop till it didn't remove anything, in case
|
|
2412 the property occurs many times. */
|
380
|
2413 while (external_remprop (&XCDR (next), prop, 0, ERROR_ME))
|
|
2414 DO_NOTHING;
|
0
|
2415 plist = Fcdr (next);
|
|
2416 }
|
|
2417
|
|
2418 return head;
|
|
2419 }
|
|
2420
|
20
|
2421 DEFUN ("lax-plist-get", Flax_plist_get, 2, 3, 0, /*
|
0
|
2422 Extract a value from a lax property list.
|
|
2423
|
|
2424 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
380
|
2425 VALUE1 PROP2 VALUE2...), where comparisons between properties is done
|
0
|
2426 using `equal' instead of `eq'. This function returns the value
|
|
2427 corresponding to the given PROP, or DEFAULT if PROP is not one of the
|
|
2428 properties on the list.
|
20
|
2429 */
|
173
|
2430 (lax_plist, prop, default_))
|
0
|
2431 {
|
|
2432 Lisp_Object val = external_plist_get (&lax_plist, prop, 1, ERROR_ME);
|
412
|
2433 if (UNBOUNDP (val))
|
|
2434 return default_;
|
|
2435 return val;
|
0
|
2436 }
|
|
2437
|
20
|
2438 DEFUN ("lax-plist-put", Flax_plist_put, 3, 3, 0, /*
|
0
|
2439 Change value in LAX-PLIST of PROP to VAL.
|
|
2440 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
380
|
2441 VALUE1 PROP2 VALUE2...), where comparisons between properties is done
|
0
|
2442 using `equal' instead of `eq'. PROP is usually a symbol and VAL is
|
|
2443 any object. If PROP is already a property on the list, its value is
|
|
2444 set to VAL, otherwise the new PROP VAL pair is added. The new plist
|
|
2445 is returned; use `(setq x (lax-plist-put x prop val))' to be sure to
|
|
2446 use the new value. The LAX-PLIST is modified by side effects.
|
20
|
2447 */
|
|
2448 (lax_plist, prop, val))
|
0
|
2449 {
|
|
2450 external_plist_put (&lax_plist, prop, val, 1, ERROR_ME);
|
|
2451 return lax_plist;
|
|
2452 }
|
|
2453
|
20
|
2454 DEFUN ("lax-plist-remprop", Flax_plist_remprop, 2, 2, 0, /*
|
0
|
2455 Remove from LAX-PLIST the property PROP and its value.
|
|
2456 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
380
|
2457 VALUE1 PROP2 VALUE2...), where comparisons between properties is done
|
0
|
2458 using `equal' instead of `eq'. PROP is usually a symbol. The new
|
|
2459 plist is returned; use `(setq x (lax-plist-remprop x prop val))' to be
|
|
2460 sure to use the new value. The LAX-PLIST is modified by side effects.
|
20
|
2461 */
|
|
2462 (lax_plist, prop))
|
0
|
2463 {
|
|
2464 external_remprop (&lax_plist, prop, 1, ERROR_ME);
|
|
2465 return lax_plist;
|
|
2466 }
|
|
2467
|
20
|
2468 DEFUN ("lax-plist-member", Flax_plist_member, 2, 2, 0, /*
|
0
|
2469 Return t if PROP has a value specified in LAX-PLIST.
|
|
2470 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
380
|
2471 VALUE1 PROP2 VALUE2...), where comparisons between properties is done
|
0
|
2472 using `equal' instead of `eq'.
|
20
|
2473 */
|
|
2474 (lax_plist, prop))
|
0
|
2475 {
|
|
2476 return UNBOUNDP (Flax_plist_get (lax_plist, prop, Qunbound)) ? Qnil : Qt;
|
|
2477 }
|
|
2478
|
20
|
2479 DEFUN ("canonicalize-lax-plist", Fcanonicalize_lax_plist, 1, 2, 0, /*
|
0
|
2480 Destructively remove any duplicate entries from a lax plist.
|
|
2481 In such cases, the first entry applies.
|
|
2482
|
|
2483 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2484 a nil value is removed. This feature is a virus that has infected
|
16
|
2485 old Lisp implementations, but should not be used except for backward
|
|
2486 compatibility.
|
0
|
2487
|
|
2488 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the
|
|
2489 return value may not be EQ to the passed-in value, so make sure to
|
|
2490 `setq' the value back into where it came from.
|
20
|
2491 */
|
|
2492 (lax_plist, nil_means_not_present))
|
0
|
2493 {
|
|
2494 Lisp_Object head = lax_plist;
|
|
2495
|
|
2496 Fcheck_valid_plist (lax_plist);
|
|
2497
|
|
2498 while (!NILP (lax_plist))
|
|
2499 {
|
|
2500 Lisp_Object prop = Fcar (lax_plist);
|
|
2501 Lisp_Object next = Fcdr (lax_plist);
|
|
2502
|
|
2503 CHECK_CONS (next); /* just make doubly sure we catch any errors */
|
|
2504 if (!NILP (nil_means_not_present) && NILP (Fcar (next)))
|
|
2505 {
|
|
2506 if (EQ (head, lax_plist))
|
|
2507 head = Fcdr (next);
|
|
2508 lax_plist = Fcdr (next);
|
|
2509 continue;
|
|
2510 }
|
|
2511 /* external_remprop returns 1 if it removed any property.
|
|
2512 We have to loop till it didn't remove anything, in case
|
|
2513 the property occurs many times. */
|
380
|
2514 while (external_remprop (&XCDR (next), prop, 1, ERROR_ME))
|
|
2515 DO_NOTHING;
|
0
|
2516 lax_plist = Fcdr (next);
|
|
2517 }
|
|
2518
|
|
2519 return head;
|
|
2520 }
|
|
2521
|
|
2522 /* In C because the frame props stuff uses it */
|
|
2523
|
20
|
2524 DEFUN ("destructive-alist-to-plist", Fdestructive_alist_to_plist, 1, 1, 0, /*
|
0
|
2525 Convert association list ALIST into the equivalent property-list form.
|
|
2526 The plist is returned. This converts from
|
|
2527
|
|
2528 \((a . 1) (b . 2) (c . 3))
|
|
2529
|
|
2530 into
|
|
2531
|
|
2532 \(a 1 b 2 c 3)
|
|
2533
|
|
2534 The original alist is destroyed in the process of constructing the plist.
|
|
2535 See also `alist-to-plist'.
|
20
|
2536 */
|
|
2537 (alist))
|
0
|
2538 {
|
|
2539 Lisp_Object head = alist;
|
|
2540 while (!NILP (alist))
|
|
2541 {
|
|
2542 /* remember the alist element. */
|
|
2543 Lisp_Object el = Fcar (alist);
|
|
2544
|
|
2545 Fsetcar (alist, Fcar (el));
|
|
2546 Fsetcar (el, Fcdr (el));
|
|
2547 Fsetcdr (el, Fcdr (alist));
|
|
2548 Fsetcdr (alist, el);
|
|
2549 alist = Fcdr (Fcdr (alist));
|
|
2550 }
|
|
2551
|
|
2552 return head;
|
|
2553 }
|
|
2554
|
412
|
2555 /* Symbol plists are directly accessible, so we need to protect against
|
|
2556 invalid property list structure */
|
|
2557
|
|
2558 static Lisp_Object
|
|
2559 symbol_getprop (Lisp_Object sym, Lisp_Object propname, Lisp_Object default_)
|
|
2560 {
|
|
2561 Lisp_Object val = external_plist_get (&XSYMBOL (sym)->plist, propname,
|
|
2562 0, ERROR_ME);
|
|
2563 return UNBOUNDP (val) ? default_ : val;
|
|
2564 }
|
|
2565
|
|
2566 static void
|
|
2567 symbol_putprop (Lisp_Object sym, Lisp_Object propname, Lisp_Object value)
|
|
2568 {
|
|
2569 external_plist_put (&XSYMBOL (sym)->plist, propname, value, 0, ERROR_ME);
|
|
2570 }
|
|
2571
|
|
2572 static int
|
|
2573 symbol_remprop (Lisp_Object symbol, Lisp_Object propname)
|
|
2574 {
|
|
2575 return external_remprop (&XSYMBOL (symbol)->plist, propname, 0, ERROR_ME);
|
|
2576 }
|
|
2577
|
|
2578 /* We store the string's extent info as the first element of the string's
|
|
2579 property list; and the string's MODIFF as the first or second element
|
|
2580 of the string's property list (depending on whether the extent info
|
|
2581 is present), but only if the string has been modified. This is ugly
|
|
2582 but it reduces the memory allocated for the string in the vast
|
|
2583 majority of cases, where the string is never modified and has no
|
|
2584 extent info. */
|
|
2585
|
|
2586
|
|
2587 static Lisp_Object *
|
|
2588 string_plist_ptr (struct Lisp_String *s)
|
|
2589 {
|
|
2590 Lisp_Object *ptr = &s->plist;
|
|
2591
|
|
2592 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
|
|
2593 ptr = &XCDR (*ptr);
|
|
2594 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
|
|
2595 ptr = &XCDR (*ptr);
|
|
2596 return ptr;
|
|
2597 }
|
|
2598
|
|
2599 static Lisp_Object
|
|
2600 string_getprop (struct Lisp_String *s, Lisp_Object property,
|
|
2601 Lisp_Object default_)
|
|
2602 {
|
|
2603 Lisp_Object val = external_plist_get (string_plist_ptr (s), property, 0,
|
|
2604 ERROR_ME);
|
|
2605 return UNBOUNDP (val) ? default_ : val;
|
|
2606 }
|
|
2607
|
|
2608 static void
|
|
2609 string_putprop (struct Lisp_String *s, Lisp_Object property,
|
|
2610 Lisp_Object value)
|
|
2611 {
|
|
2612 external_plist_put (string_plist_ptr (s), property, value, 0, ERROR_ME);
|
|
2613 }
|
|
2614
|
|
2615 static int
|
|
2616 string_remprop (struct Lisp_String *s, Lisp_Object property)
|
|
2617 {
|
|
2618 return external_remprop (string_plist_ptr (s), property, 0, ERROR_ME);
|
|
2619 }
|
|
2620
|
|
2621 static Lisp_Object
|
|
2622 string_plist (struct Lisp_String *s)
|
|
2623 {
|
|
2624 return *string_plist_ptr (s);
|
|
2625 }
|
|
2626
|
20
|
2627 DEFUN ("get", Fget, 2, 3, 0, /*
|
412
|
2628 Return the value of OBJECT's PROPNAME property.
|
|
2629 This is the last VALUE stored with `(put OBJECT PROPNAME VALUE)'.
|
0
|
2630 If there is no such property, return optional third arg DEFAULT
|
412
|
2631 \(which defaults to `nil'). OBJECT can be a symbol, face, extent,
|
|
2632 or string. See also `put', `remprop', and `object-plist'.
|
20
|
2633 */
|
412
|
2634 (object, propname, default_))
|
0
|
2635 {
|
|
2636 /* Various places in emacs call Fget() and expect it not to quit,
|
|
2637 so don't quit. */
|
412
|
2638
|
|
2639 /* It's easiest to treat symbols specially because they may not
|
|
2640 be an lrecord */
|
|
2641 if (SYMBOLP (object))
|
|
2642 return symbol_getprop (object, propname, default_);
|
|
2643 else if (STRINGP (object))
|
|
2644 return string_getprop (XSTRING (object), propname, default_);
|
|
2645 else if (LRECORDP (object))
|
|
2646 {
|
|
2647 CONST struct lrecord_implementation *imp
|
|
2648 = XRECORD_LHEADER_IMPLEMENTATION (object);
|
|
2649 if (!imp->getprop)
|
|
2650 goto noprops;
|
|
2651
|
|
2652 {
|
|
2653 Lisp_Object val = (imp->getprop) (object, propname);
|
|
2654 if (UNBOUNDP (val))
|
|
2655 val = default_;
|
|
2656 return val;
|
|
2657 }
|
|
2658 }
|
0
|
2659 else
|
412
|
2660 {
|
|
2661 noprops:
|
|
2662 signal_simple_error ("Object type has no properties", object);
|
|
2663 return Qnil; /* Not reached */
|
|
2664 }
|
0
|
2665 }
|
|
2666
|
20
|
2667 DEFUN ("put", Fput, 3, 3, 0, /*
|
412
|
2668 Store OBJECT's PROPNAME property with value VALUE.
|
|
2669 It can be retrieved with `(get OBJECT PROPNAME)'. OBJECT can be a
|
|
2670 symbol, face, extent, or string.
|
|
2671
|
0
|
2672 For a string, no properties currently have predefined meanings.
|
|
2673 For the predefined properties for extents, see `set-extent-property'.
|
|
2674 For the predefined properties for faces, see `set-face-property'.
|
412
|
2675
|
0
|
2676 See also `get', `remprop', and `object-plist'.
|
20
|
2677 */
|
412
|
2678 (object, propname, value))
|
0
|
2679 {
|
412
|
2680 CHECK_SYMBOL (propname);
|
398
|
2681 CHECK_LISP_WRITEABLE (object);
|
|
2682
|
412
|
2683 if (SYMBOLP (object))
|
|
2684 symbol_putprop (object, propname, value);
|
|
2685 else if (STRINGP (object))
|
|
2686 string_putprop (XSTRING (object), propname, value);
|
|
2687 else if (LRECORDP (object))
|
0
|
2688 {
|
412
|
2689 CONST struct lrecord_implementation
|
|
2690 *imp = XRECORD_LHEADER_IMPLEMENTATION (object);
|
|
2691 if (imp->putprop)
|
|
2692 {
|
|
2693 if (! (imp->putprop) (object, propname, value))
|
|
2694 signal_simple_error ("Can't set property on object", propname);
|
|
2695 }
|
|
2696 else
|
|
2697 goto noprops;
|
0
|
2698 }
|
|
2699 else
|
412
|
2700 {
|
|
2701 noprops:
|
|
2702 signal_simple_error ("Object type has no settable properties", object);
|
|
2703 }
|
0
|
2704
|
|
2705 return value;
|
|
2706 }
|
|
2707
|
412
|
2708 void
|
|
2709 pure_put (Lisp_Object sym, Lisp_Object prop, Lisp_Object val)
|
|
2710 {
|
|
2711 Fput (sym, prop, Fpurecopy (val));
|
|
2712 }
|
|
2713
|
20
|
2714 DEFUN ("remprop", Fremprop, 2, 2, 0, /*
|
412
|
2715 Remove from OBJECT's property list the property PROPNAME and its
|
|
2716 value. OBJECT can be a symbol, face, extent, or string. Returns
|
|
2717 non-nil if the property list was actually changed (i.e. if PROPNAME
|
|
2718 was present in the property list). See also `get', `put', and
|
|
2719 `object-plist'.
|
20
|
2720 */
|
412
|
2721 (object, propname))
|
0
|
2722 {
|
412
|
2723 int retval = 0;
|
|
2724
|
|
2725 CHECK_SYMBOL (propname);
|
398
|
2726 CHECK_LISP_WRITEABLE (object);
|
|
2727
|
412
|
2728 if (SYMBOLP (object))
|
|
2729 retval = symbol_remprop (object, propname);
|
|
2730 else if (STRINGP (object))
|
|
2731 retval = string_remprop (XSTRING (object), propname);
|
|
2732 else if (LRECORDP (object))
|
0
|
2733 {
|
412
|
2734 CONST struct lrecord_implementation
|
|
2735 *imp = XRECORD_LHEADER_IMPLEMENTATION (object);
|
|
2736 if (imp->remprop)
|
|
2737 {
|
|
2738 retval = (imp->remprop) (object, propname);
|
|
2739 if (retval == -1)
|
|
2740 signal_simple_error ("Can't remove property from object",
|
|
2741 propname);
|
|
2742 }
|
|
2743 else
|
|
2744 goto noprops;
|
0
|
2745 }
|
|
2746 else
|
412
|
2747 {
|
|
2748 noprops:
|
|
2749 signal_simple_error ("Object type has no removable properties", object);
|
|
2750 }
|
|
2751
|
|
2752 return retval ? Qt : Qnil;
|
0
|
2753 }
|
|
2754
|
20
|
2755 DEFUN ("object-plist", Fobject_plist, 1, 1, 0, /*
|
412
|
2756 Return a property list of OBJECT's props.
|
|
2757 For a symbol this is equivalent to `symbol-plist'.
|
|
2758 Do not modify the property list directly; this may or may not have
|
|
2759 the desired effects. (In particular, for a property with a special
|
|
2760 interpretation, this will probably have no effect at all.)
|
20
|
2761 */
|
|
2762 (object))
|
0
|
2763 {
|
412
|
2764 if (SYMBOLP (object))
|
|
2765 return Fsymbol_plist (object);
|
|
2766 else if (STRINGP (object))
|
|
2767 return string_plist (XSTRING (object));
|
|
2768 else if (LRECORDP (object))
|
|
2769 {
|
|
2770 CONST struct lrecord_implementation
|
|
2771 *imp = XRECORD_LHEADER_IMPLEMENTATION (object);
|
|
2772 if (imp->plist)
|
|
2773 return (imp->plist) (object);
|
|
2774 else
|
|
2775 signal_simple_error ("Object type has no properties", object);
|
|
2776 }
|
0
|
2777 else
|
|
2778 signal_simple_error ("Object type has no properties", object);
|
|
2779
|
|
2780 return Qnil;
|
|
2781 }
|
|
2782
|
|
2783
|
|
2784 int
|
380
|
2785 internal_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
0
|
2786 {
|
|
2787 if (depth > 200)
|
|
2788 error ("Stack overflow in equal");
|
|
2789 QUIT;
|
380
|
2790 if (EQ_WITH_EBOLA_NOTICE (obj1, obj2))
|
149
|
2791 return 1;
|
0
|
2792 /* Note that (equal 20 20.0) should be nil */
|
380
|
2793 if (XTYPE (obj1) != XTYPE (obj2))
|
149
|
2794 return 0;
|
380
|
2795 if (LRECORDP (obj1))
|
0
|
2796 {
|
412
|
2797 CONST struct lrecord_implementation
|
380
|
2798 *imp1 = XRECORD_LHEADER_IMPLEMENTATION (obj1),
|
|
2799 *imp2 = XRECORD_LHEADER_IMPLEMENTATION (obj2);
|
|
2800
|
|
2801 return (imp1 == imp2) &&
|
0
|
2802 /* EQ-ness of the objects was noticed above */
|
380
|
2803 (imp1->equal && (imp1->equal) (obj1, obj2, depth));
|
0
|
2804 }
|
|
2805
|
149
|
2806 return 0;
|
0
|
2807 }
|
|
2808
|
70
|
2809 /* Note that we may be calling sub-objects that will use
|
|
2810 internal_equal() (instead of internal_old_equal()). Oh well.
|
|
2811 We will get an Ebola note if there's any possibility of confusion,
|
|
2812 but that seems unlikely. */
|
|
2813
|
|
2814 static int
|
380
|
2815 internal_old_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
70
|
2816 {
|
|
2817 if (depth > 200)
|
|
2818 error ("Stack overflow in equal");
|
|
2819 QUIT;
|
380
|
2820 if (HACKEQ_UNSAFE (obj1, obj2))
|
149
|
2821 return 1;
|
70
|
2822 /* Note that (equal 20 20.0) should be nil */
|
380
|
2823 if (XTYPE (obj1) != XTYPE (obj2))
|
149
|
2824 return 0;
|
380
|
2825
|
|
2826 return internal_equal (obj1, obj2, depth);
|
70
|
2827 }
|
|
2828
|
20
|
2829 DEFUN ("equal", Fequal, 2, 2, 0, /*
|
272
|
2830 Return t if two Lisp objects have similar structure and contents.
|
0
|
2831 They must have the same data type.
|
|
2832 Conses are compared by comparing the cars and the cdrs.
|
|
2833 Vectors and strings are compared element by element.
|
|
2834 Numbers are compared by value. Symbols must match exactly.
|
20
|
2835 */
|
380
|
2836 (obj1, obj2))
|
0
|
2837 {
|
380
|
2838 return internal_equal (obj1, obj2, 0) ? Qt : Qnil;
|
0
|
2839 }
|
|
2840
|
70
|
2841 DEFUN ("old-equal", Fold_equal, 2, 2, 0, /*
|
272
|
2842 Return t if two Lisp objects have similar structure and contents.
|
70
|
2843 They must have the same data type.
|
|
2844 \(Note, however, that an exception is made for characters and integers;
|
185
|
2845 this is known as the "char-int confoundance disease." See `eq' and
|
70
|
2846 `old-eq'.)
|
|
2847 This function is provided only for byte-code compatibility with v19.
|
|
2848 Do not use it.
|
|
2849 */
|
380
|
2850 (obj1, obj2))
|
70
|
2851 {
|
380
|
2852 return internal_old_equal (obj1, obj2, 0) ? Qt : Qnil;
|
70
|
2853 }
|
|
2854
|
0
|
2855
|
20
|
2856 DEFUN ("fillarray", Ffillarray, 2, 2, 0, /*
|
412
|
2857 Store each element of ARRAY with ITEM.
|
0
|
2858 ARRAY is a vector, bit vector, or string.
|
20
|
2859 */
|
|
2860 (array, item))
|
0
|
2861 {
|
|
2862 retry:
|
76
|
2863 if (STRINGP (array))
|
|
2864 {
|
412
|
2865 Emchar charval;
|
|
2866 struct Lisp_String *s = XSTRING (array);
|
|
2867 Charcount len = string_char_length (s);
|
|
2868 Charcount i;
|
76
|
2869 CHECK_CHAR_COERCE_INT (item);
|
398
|
2870 CHECK_LISP_WRITEABLE (array);
|
412
|
2871 charval = XCHAR (item);
|
|
2872 for (i = 0; i < len; i++)
|
|
2873 set_string_char (s, i, charval);
|
76
|
2874 bump_string_modiff (array);
|
|
2875 }
|
|
2876 else if (VECTORP (array))
|
10
|
2877 {
|
272
|
2878 Lisp_Object *p = XVECTOR_DATA (array);
|
|
2879 int len = XVECTOR_LENGTH (array);
|
398
|
2880 CHECK_LISP_WRITEABLE (array);
|
272
|
2881 while (len--)
|
|
2882 *p++ = item;
|
10
|
2883 }
|
76
|
2884 else if (BIT_VECTORP (array))
|
0
|
2885 {
|
412
|
2886 struct Lisp_Bit_Vector *v = XBIT_VECTOR (array);
|
272
|
2887 int len = bit_vector_length (v);
|
|
2888 int bit;
|
0
|
2889 CHECK_BIT (item);
|
398
|
2890 CHECK_LISP_WRITEABLE (array);
|
272
|
2891 bit = XINT (item);
|
|
2892 while (len--)
|
|
2893 set_bit_vector_bit (v, len, bit);
|
0
|
2894 }
|
|
2895 else
|
|
2896 {
|
|
2897 array = wrong_type_argument (Qarrayp, array);
|
|
2898 goto retry;
|
|
2899 }
|
|
2900 return array;
|
|
2901 }
|
|
2902
|
|
2903 Lisp_Object
|
380
|
2904 nconc2 (Lisp_Object arg1, Lisp_Object arg2)
|
0
|
2905 {
|
|
2906 Lisp_Object args[2];
|
380
|
2907 struct gcpro gcpro1;
|
|
2908 args[0] = arg1;
|
|
2909 args[1] = arg2;
|
|
2910
|
|
2911 GCPRO1 (args[0]);
|
|
2912 gcpro1.nvars = 2;
|
|
2913
|
|
2914 RETURN_UNGCPRO (bytecode_nconc2 (args));
|
|
2915 }
|
|
2916
|
|
2917 Lisp_Object
|
|
2918 bytecode_nconc2 (Lisp_Object *args)
|
|
2919 {
|
|
2920 retry:
|
|
2921
|
|
2922 if (CONSP (args[0]))
|
|
2923 {
|
|
2924 /* (setcdr (last args[0]) args[1]) */
|
|
2925 Lisp_Object tortoise, hare;
|
|
2926 int count;
|
|
2927
|
|
2928 for (hare = tortoise = args[0], count = 0;
|
|
2929 CONSP (XCDR (hare));
|
|
2930 hare = XCDR (hare), count++)
|
|
2931 {
|
|
2932 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue;
|
|
2933
|
|
2934 if (count & 1)
|
|
2935 tortoise = XCDR (tortoise);
|
|
2936 if (EQ (hare, tortoise))
|
|
2937 signal_circular_list_error (args[0]);
|
|
2938 }
|
|
2939 XCDR (hare) = args[1];
|
|
2940 return args[0];
|
|
2941 }
|
|
2942 else if (NILP (args[0]))
|
|
2943 {
|
|
2944 return args[1];
|
|
2945 }
|
|
2946 else
|
|
2947 {
|
|
2948 args[0] = wrong_type_argument (args[0], Qlistp);
|
|
2949 goto retry;
|
|
2950 }
|
0
|
2951 }
|
|
2952
|
20
|
2953 DEFUN ("nconc", Fnconc, 0, MANY, 0, /*
|
0
|
2954 Concatenate any number of lists by altering them.
|
|
2955 Only the last argument is not altered, and need not be a list.
|
201
|
2956 Also see: `append'.
|
272
|
2957 If the first argument is nil, there is no way to modify it by side
|
|
2958 effect; therefore, write `(setq foo (nconc foo list))' to be sure of
|
|
2959 changing the value of `foo'.
|
20
|
2960 */
|
|
2961 (int nargs, Lisp_Object *args))
|
0
|
2962 {
|
272
|
2963 int argnum = 0;
|
0
|
2964 struct gcpro gcpro1;
|
|
2965
|
|
2966 /* The modus operandi in Emacs is "caller gc-protects args".
|
|
2967 However, nconc (particularly nconc2 ()) is called many times
|
|
2968 in Emacs on freshly created stuff (e.g. you see the idiom
|
|
2969 nconc2 (Fcopy_sequence (foo), bar) a lot). So we help those
|
|
2970 callers out by protecting the args ourselves to save them
|
|
2971 a lot of temporary-variable grief. */
|
|
2972
|
|
2973 GCPRO1 (args[0]);
|
|
2974 gcpro1.nvars = nargs;
|
173
|
2975
|
272
|
2976 while (argnum < nargs)
|
0
|
2977 {
|
384
|
2978 Lisp_Object val;
|
|
2979 retry:
|
|
2980 val = args[argnum];
|
272
|
2981 if (CONSP (val))
|
173
|
2982 {
|
380
|
2983 /* `val' is the first cons, which will be our return value. */
|
|
2984 /* `last_cons' will be the cons cell to mutate. */
|
|
2985 Lisp_Object last_cons = val;
|
|
2986 Lisp_Object tortoise = val;
|
276
|
2987
|
272
|
2988 for (argnum++; argnum < nargs; argnum++)
|
|
2989 {
|
|
2990 Lisp_Object next = args[argnum];
|
384
|
2991 retry_next:
|
272
|
2992 if (CONSP (next) || argnum == nargs -1)
|
|
2993 {
|
|
2994 /* (setcdr (last val) next) */
|
380
|
2995 int count;
|
|
2996
|
|
2997 for (count = 0;
|
|
2998 CONSP (XCDR (last_cons));
|
|
2999 last_cons = XCDR (last_cons), count++)
|
272
|
3000 {
|
380
|
3001 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue;
|
|
3002
|
|
3003 if (count & 1)
|
|
3004 tortoise = XCDR (tortoise);
|
|
3005 if (EQ (last_cons, tortoise))
|
|
3006 signal_circular_list_error (args[argnum-1]);
|
272
|
3007 }
|
380
|
3008 XCDR (last_cons) = next;
|
272
|
3009 }
|
|
3010 else if (NILP (next))
|
|
3011 {
|
|
3012 continue;
|
|
3013 }
|
|
3014 else
|
|
3015 {
|
384
|
3016 next = wrong_type_argument (Qlistp, next);
|
|
3017 goto retry_next;
|
272
|
3018 }
|
|
3019 }
|
|
3020 RETURN_UNGCPRO (val);
|
|
3021 }
|
|
3022 else if (NILP (val))
|
|
3023 argnum++;
|
|
3024 else if (argnum == nargs - 1) /* last arg? */
|
|
3025 RETURN_UNGCPRO (val);
|
|
3026 else
|
384
|
3027 {
|
|
3028 args[argnum] = wrong_type_argument (Qlistp, val);
|
|
3029 goto retry;
|
|
3030 }
|
0
|
3031 }
|
272
|
3032 RETURN_UNGCPRO (Qnil); /* No non-nil args provided. */
|
0
|
3033 }
|
|
3034
|
|
3035
|
412
|
3036 /* This is the guts of all mapping functions.
|
|
3037 Apply fn to each element of seq, one by one,
|
|
3038 storing the results into elements of vals, a C vector of Lisp_Objects.
|
|
3039 leni is the length of vals, which should also be the length of seq.
|
384
|
3040
|
|
3041 If VALS is a null pointer, do not accumulate the results. */
|
0
|
3042
|
|
3043 static void
|
412
|
3044 mapcar1 (size_t leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
|
0
|
3045 {
|
384
|
3046 Lisp_Object result;
|
|
3047 Lisp_Object args[2];
|
0
|
3048 int i;
|
384
|
3049 struct gcpro gcpro1;
|
0
|
3050
|
|
3051 if (vals)
|
|
3052 {
|
384
|
3053 GCPRO1 (vals[0]);
|
|
3054 gcpro1.nvars = 0;
|
0
|
3055 }
|
|
3056
|
412
|
3057 args[0] = fn;
|
|
3058
|
|
3059 if (LISTP (seq))
|
0
|
3060 {
|
412
|
3061 for (i = 0; i < leni; i++)
|
0
|
3062 {
|
412
|
3063 args[1] = XCAR (seq);
|
|
3064 seq = XCDR (seq);
|
|
3065 result = Ffuncall (2, args);
|
|
3066 if (vals) vals[gcpro1.nvars++] = result;
|
384
|
3067 }
|
|
3068 }
|
412
|
3069 else if (VECTORP (seq))
|
384
|
3070 {
|
412
|
3071 Lisp_Object *objs = XVECTOR_DATA (seq);
|
384
|
3072 for (i = 0; i < leni; i++)
|
|
3073 {
|
|
3074 args[1] = *objs++;
|
|
3075 result = Ffuncall (2, args);
|
|
3076 if (vals) vals[gcpro1.nvars++] = result;
|
|
3077 }
|
|
3078 }
|
412
|
3079 else if (STRINGP (seq))
|
384
|
3080 {
|
412
|
3081 Bufbyte *p = XSTRING_DATA (seq);
|
|
3082 for (i = 0; i < leni; i++)
|
384
|
3083 {
|
|
3084 args[1] = make_char (charptr_emchar (p));
|
|
3085 INC_CHARPTR (p);
|
|
3086 result = Ffuncall (2, args);
|
|
3087 if (vals) vals[gcpro1.nvars++] = result;
|
0
|
3088 }
|
|
3089 }
|
412
|
3090 else if (BIT_VECTORP (seq))
|
0
|
3091 {
|
412
|
3092 struct Lisp_Bit_Vector *v = XBIT_VECTOR (seq);
|
0
|
3093 for (i = 0; i < leni; i++)
|
|
3094 {
|
384
|
3095 args[1] = make_int (bit_vector_bit (v, i));
|
|
3096 result = Ffuncall (2, args);
|
|
3097 if (vals) vals[gcpro1.nvars++] = result;
|
0
|
3098 }
|
|
3099 }
|
384
|
3100 else
|
412
|
3101 abort(); /* cannot get here since Flength(seq) did not get an error */
|
384
|
3102
|
|
3103 if (vals)
|
|
3104 UNGCPRO;
|
0
|
3105 }
|
|
3106
|
20
|
3107 DEFUN ("mapconcat", Fmapconcat, 3, 3, 0, /*
|
412
|
3108 Apply FN to each element of SEQ, and concat the results as strings.
|
|
3109 In between each pair of results, stick in SEP.
|
|
3110 Thus, " " as SEP results in spaces between the values returned by FN.
|
20
|
3111 */
|
412
|
3112 (fn, seq, sep))
|
0
|
3113 {
|
412
|
3114 size_t len = XINT (Flength (seq));
|
0
|
3115 Lisp_Object *args;
|
|
3116 int i;
|
412
|
3117 struct gcpro gcpro1;
|
272
|
3118 int nargs = len + len - 1;
|
|
3119
|
412
|
3120 if (nargs < 0) return build_string ("");
|
0
|
3121
|
185
|
3122 args = alloca_array (Lisp_Object, nargs);
|
0
|
3123
|
412
|
3124 GCPRO1 (sep);
|
|
3125 mapcar1 (len, args, fn, seq);
|
|
3126 UNGCPRO;
|
0
|
3127
|
16
|
3128 for (i = len - 1; i >= 0; i--)
|
0
|
3129 args[i + i] = args[i];
|
173
|
3130
|
0
|
3131 for (i = 1; i < nargs; i += 2)
|
412
|
3132 args[i] = sep;
|
0
|
3133
|
|
3134 return Fconcat (nargs, args);
|
|
3135 }
|
|
3136
|
20
|
3137 DEFUN ("mapcar", Fmapcar, 2, 2, 0, /*
|
412
|
3138 Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
|
|
3139 The result is a list just as long as SEQUENCE.
|
0
|
3140 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
20
|
3141 */
|
412
|
3142 (fn, seq))
|
0
|
3143 {
|
412
|
3144 size_t len = XINT (Flength (seq));
|
185
|
3145 Lisp_Object *args = alloca_array (Lisp_Object, len);
|
16
|
3146
|
412
|
3147 mapcar1 (len, args, fn, seq);
|
16
|
3148
|
|
3149 return Flist (len, args);
|
0
|
3150 }
|
|
3151
|
163
|
3152 DEFUN ("mapvector", Fmapvector, 2, 2, 0, /*
|
412
|
3153 Apply FUNCTION to each element of SEQUENCE, making a vector of the results.
|
163
|
3154 The result is a vector of the same length as SEQUENCE.
|
412
|
3155 SEQUENCE may be a list, a vector or a string.
|
163
|
3156 */
|
412
|
3157 (fn, seq))
|
163
|
3158 {
|
412
|
3159 size_t len = XINT (Flength (seq));
|
219
|
3160 Lisp_Object result = make_vector (len, Qnil);
|
|
3161 struct gcpro gcpro1;
|
|
3162
|
|
3163 GCPRO1 (result);
|
412
|
3164 mapcar1 (len, XVECTOR_DATA (result), fn, seq);
|
219
|
3165 UNGCPRO;
|
|
3166
|
|
3167 return result;
|
163
|
3168 }
|
|
3169
|
412
|
3170 DEFUN ("mapc", Fmapc, 2, 2, 0, /*
|
0
|
3171 Apply FUNCTION to each element of SEQUENCE.
|
|
3172 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
|
3173 This function is like `mapcar' but does not accumulate the results,
|
|
3174 which is more efficient if you do not use the results.
|
20
|
3175 */
|
412
|
3176 (fn, seq))
|
406
|
3177 {
|
412
|
3178 mapcar1 (XINT (Flength (seq)), 0, fn, seq);
|
|
3179
|
|
3180 return seq;
|
406
|
3181 }
|
|
3182
|
|
3183
|
0
|
3184 /* #### this function doesn't belong in this file! */
|
|
3185
|
278
|
3186 DEFUN ("load-average", Fload_average, 0, 1, 0, /*
|
0
|
3187 Return list of 1 minute, 5 minute and 15 minute load averages.
|
|
3188 Each of the three load averages is multiplied by 100,
|
|
3189 then converted to integer.
|
|
3190
|
278
|
3191 When USE-FLOATS is non-nil, floats will be used instead of integers.
|
|
3192 These floats are not multiplied by 100.
|
|
3193
|
0
|
3194 If the 5-minute or 15-minute load averages are not available, return a
|
|
3195 shortened list, containing only those averages which are available.
|
|
3196
|
272
|
3197 On some systems, this won't work due to permissions on /dev/kmem,
|
|
3198 in which case you can't use this.
|
20
|
3199 */
|
278
|
3200 (use_floats))
|
0
|
3201 {
|
272
|
3202 double load_ave[3];
|
|
3203 int loads = getloadavg (load_ave, countof (load_ave));
|
278
|
3204 Lisp_Object ret = Qnil;
|
0
|
3205
|
|
3206 if (loads == -2)
|
278
|
3207 error ("load-average not implemented for this operating system");
|
0
|
3208 else if (loads < 0)
|
278
|
3209 signal_simple_error ("Could not get load-average",
|
|
3210 lisp_strerror (errno));
|
|
3211
|
|
3212 while (loads-- > 0)
|
|
3213 {
|
|
3214 Lisp_Object load = (NILP (use_floats) ?
|
|
3215 make_int ((int) (100.0 * load_ave[loads]))
|
|
3216 : make_float (load_ave[loads]));
|
|
3217 ret = Fcons (load, ret);
|
|
3218 }
|
|
3219 return ret;
|
0
|
3220 }
|
|
3221
|
|
3222
|
|
3223 Lisp_Object Vfeatures;
|
|
3224
|
20
|
3225 DEFUN ("featurep", Ffeaturep, 1, 1, 0, /*
|
207
|
3226 Return non-nil if feature FEXP is present in this Emacs.
|
70
|
3227 Use this to conditionalize execution of lisp code based on the
|
207
|
3228 presence or absence of emacs or environment extensions.
|
|
3229 FEXP can be a symbol, a number, or a list.
|
209
|
3230 If it is a symbol, that symbol is looked up in the `features' variable,
|
|
3231 and non-nil will be returned if found.
|
|
3232 If it is a number, the function will return non-nil if this Emacs
|
207
|
3233 has an equal or greater version number than FEXP.
|
209
|
3234 If it is a list whose car is the symbol `and', it will return
|
207
|
3235 non-nil if all the features in its cdr are non-nil.
|
209
|
3236 If it is a list whose car is the symbol `or', it will return non-nil
|
207
|
3237 if any of the features in its cdr are non-nil.
|
209
|
3238 If it is a list whose car is the symbol `not', it will return
|
207
|
3239 non-nil if the feature is not present.
|
209
|
3240
|
|
3241 Examples:
|
|
3242
|
|
3243 (featurep 'xemacs)
|
|
3244 => ; Non-nil on XEmacs.
|
|
3245
|
|
3246 (featurep '(and xemacs gnus))
|
|
3247 => ; Non-nil on XEmacs with Gnus loaded.
|
|
3248
|
|
3249 (featurep '(or tty-frames (and emacs 19.30)))
|
|
3250 => ; Non-nil if this Emacs supports TTY frames.
|
|
3251
|
|
3252 (featurep '(or (and xemacs 19.15) (and emacs 19.34)))
|
|
3253 => ; Non-nil on XEmacs 19.15 and later, or FSF Emacs 19.34 and later.
|
|
3254
|
|
3255 NOTE: The advanced arguments of this function (anything other than a
|
|
3256 symbol) are not yet supported by FSF Emacs. If you feel they are useful
|
|
3257 for supporting multiple Emacs variants, lobby Richard Stallman at
|
412
|
3258 <bug-gnu-emacs@prep.ai.mit.edu>.
|
163
|
3259 */
|
|
3260 (fexp))
|
|
3261 {
|
207
|
3262 #ifndef FEATUREP_SYNTAX
|
|
3263 CHECK_SYMBOL (fexp);
|
|
3264 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt;
|
|
3265 #else /* FEATUREP_SYNTAX */
|
163
|
3266 static double featurep_emacs_version;
|
|
3267
|
|
3268 /* Brute force translation from Erik Naggum's lisp function. */
|
272
|
3269 if (SYMBOLP (fexp))
|
163
|
3270 {
|
|
3271 /* Original definition */
|
|
3272 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt;
|
|
3273 }
|
272
|
3274 else if (INTP (fexp) || FLOATP (fexp))
|
163
|
3275 {
|
272
|
3276 double d = extract_float (fexp);
|
163
|
3277
|
|
3278 if (featurep_emacs_version == 0.0)
|
|
3279 {
|
167
|
3280 featurep_emacs_version = XINT (Vemacs_major_version) +
|
|
3281 (XINT (Vemacs_minor_version) / 100.0);
|
163
|
3282 }
|
173
|
3283 return featurep_emacs_version >= d ? Qt : Qnil;
|
163
|
3284 }
|
272
|
3285 else if (CONSP (fexp))
|
163
|
3286 {
|
272
|
3287 Lisp_Object tem = XCAR (fexp);
|
|
3288 if (EQ (tem, Qnot))
|
163
|
3289 {
|
207
|
3290 Lisp_Object negate;
|
|
3291
|
|
3292 tem = XCDR (fexp);
|
|
3293 negate = Fcar (tem);
|
|
3294 if (!NILP (tem))
|
209
|
3295 return NILP (call1 (Qfeaturep, negate)) ? Qt : Qnil;
|
163
|
3296 else
|
207
|
3297 return Fsignal (Qinvalid_read_syntax, list1 (tem));
|
163
|
3298 }
|
272
|
3299 else if (EQ (tem, Qand))
|
163
|
3300 {
|
272
|
3301 tem = XCDR (fexp);
|
207
|
3302 /* Use Fcar/Fcdr for error-checking. */
|
209
|
3303 while (!NILP (tem) && !NILP (call1 (Qfeaturep, Fcar (tem))))
|
163
|
3304 {
|
207
|
3305 tem = Fcdr (tem);
|
163
|
3306 }
|
272
|
3307 return NILP (tem) ? Qt : Qnil;
|
163
|
3308 }
|
272
|
3309 else if (EQ (tem, Qor))
|
163
|
3310 {
|
207
|
3311 tem = XCDR (fexp);
|
|
3312 /* Use Fcar/Fcdr for error-checking. */
|
209
|
3313 while (!NILP (tem) && NILP (call1 (Qfeaturep, Fcar (tem))))
|
163
|
3314 {
|
207
|
3315 tem = Fcdr (tem);
|
163
|
3316 }
|
272
|
3317 return NILP (tem) ? Qnil : Qt;
|
163
|
3318 }
|
|
3319 else
|
|
3320 {
|
272
|
3321 return Fsignal (Qinvalid_read_syntax, list1 (XCDR (fexp)));
|
163
|
3322 }
|
|
3323 }
|
|
3324 else
|
|
3325 {
|
272
|
3326 return Fsignal (Qinvalid_read_syntax, list1 (fexp));
|
163
|
3327 }
|
|
3328 }
|
167
|
3329 #endif /* FEATUREP_SYNTAX */
|
0
|
3330
|
20
|
3331 DEFUN ("provide", Fprovide, 1, 1, 0, /*
|
0
|
3332 Announce that FEATURE is a feature of the current Emacs.
|
2
|
3333 This function updates the value of the variable `features'.
|
20
|
3334 */
|
|
3335 (feature))
|
0
|
3336 {
|
|
3337 Lisp_Object tem;
|
|
3338 CHECK_SYMBOL (feature);
|
|
3339 if (!NILP (Vautoload_queue))
|
|
3340 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
|
|
3341 tem = Fmemq (feature, Vfeatures);
|
|
3342 if (NILP (tem))
|
|
3343 Vfeatures = Fcons (feature, Vfeatures);
|
|
3344 LOADHIST_ATTACH (Fcons (Qprovide, feature));
|
|
3345 return feature;
|
|
3346 }
|
|
3347
|
20
|
3348 DEFUN ("require", Frequire, 1, 2, 0, /*
|
0
|
3349 If feature FEATURE is not loaded, load it from FILENAME.
|
|
3350 If FEATURE is not a member of the list `features', then the feature
|
|
3351 is not loaded; so load the file FILENAME.
|
|
3352 If FILENAME is omitted, the printname of FEATURE is used as the file name.
|
20
|
3353 */
|
|
3354 (feature, file_name))
|
0
|
3355 {
|
|
3356 Lisp_Object tem;
|
|
3357 CHECK_SYMBOL (feature);
|
|
3358 tem = Fmemq (feature, Vfeatures);
|
|
3359 LOADHIST_ATTACH (Fcons (Qrequire, feature));
|
|
3360 if (!NILP (tem))
|
149
|
3361 return feature;
|
0
|
3362 else
|
|
3363 {
|
|
3364 int speccount = specpdl_depth ();
|
|
3365
|
|
3366 /* Value saved here is to be restored into Vautoload_queue */
|
|
3367 record_unwind_protect (un_autoload, Vautoload_queue);
|
|
3368 Vautoload_queue = Qt;
|
|
3369
|
|
3370 call4 (Qload, NILP (file_name) ? Fsymbol_name (feature) : file_name,
|
177
|
3371 Qnil, Qt, Qnil);
|
0
|
3372
|
|
3373 tem = Fmemq (feature, Vfeatures);
|
|
3374 if (NILP (tem))
|
|
3375 error ("Required feature %s was not provided",
|
|
3376 string_data (XSYMBOL (feature)->name));
|
|
3377
|
|
3378 /* Once loading finishes, don't undo it. */
|
|
3379 Vautoload_queue = Qt;
|
149
|
3380 return unbind_to (speccount, feature);
|
0
|
3381 }
|
|
3382 }
|
377
|
3383
|
|
3384 /* base64 encode/decode functions.
|
412
|
3385 Based on code from GNU recode. */
|
|
3386
|
|
3387 #define MIME_LINE_LENGTH 76
|
377
|
3388
|
|
3389 #define IS_ASCII(Character) \
|
|
3390 ((Character) < 128)
|
|
3391 #define IS_BASE64(Character) \
|
|
3392 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
|
|
3393
|
|
3394 /* Table of characters coding the 64 values. */
|
|
3395 static char base64_value_to_char[64] =
|
|
3396 {
|
|
3397 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
|
|
3398 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
|
|
3399 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
|
|
3400 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
|
|
3401 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
|
|
3402 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
|
|
3403 '8', '9', '+', '/' /* 60-63 */
|
|
3404 };
|
|
3405
|
|
3406 /* Table of base64 values for first 128 characters. */
|
|
3407 static short base64_char_to_value[128] =
|
|
3408 {
|
|
3409 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
|
|
3410 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
|
|
3411 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
|
|
3412 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
|
|
3413 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
|
|
3414 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
|
|
3415 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
|
|
3416 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
|
|
3417 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
|
|
3418 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
|
|
3419 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
|
|
3420 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
|
|
3421 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
|
|
3422 };
|
|
3423
|
|
3424 /* The following diagram shows the logical steps by which three octets
|
|
3425 get transformed into four base64 characters.
|
|
3426
|
|
3427 .--------. .--------. .--------.
|
|
3428 |aaaaaabb| |bbbbcccc| |ccdddddd|
|
|
3429 `--------' `--------' `--------'
|
|
3430 6 2 4 4 2 6
|
|
3431 .--------+--------+--------+--------.
|
|
3432 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
|
|
3433 `--------+--------+--------+--------'
|
|
3434
|
|
3435 .--------+--------+--------+--------.
|
|
3436 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
|
|
3437 `--------+--------+--------+--------'
|
|
3438
|
|
3439 The octets are divided into 6 bit chunks, which are then encoded into
|
|
3440 base64 characters. */
|
|
3441
|
|
3442 #define ADVANCE_INPUT(c, stream) \
|
412
|
3443 (ec = Lstream_get_emchar (stream), \
|
|
3444 ec == -1 ? 0 : \
|
377
|
3445 ((ec > 255) ? \
|
412
|
3446 (error ("Non-ascii character detected in base64 input"), 0) \
|
|
3447 : (c = (Bufbyte)ec, 1)))
|
377
|
3448
|
|
3449 static Bytind
|
|
3450 base64_encode_1 (Lstream *istream, Bufbyte *to, int line_break)
|
|
3451 {
|
|
3452 EMACS_INT counter = 0;
|
|
3453 Bufbyte *e = to;
|
|
3454 Emchar ec;
|
|
3455 unsigned int value;
|
|
3456
|
|
3457 while (1)
|
|
3458 {
|
|
3459 Bufbyte c;
|
|
3460 if (!ADVANCE_INPUT (c, istream))
|
|
3461 break;
|
|
3462
|
|
3463 /* Wrap line every 76 characters. */
|
|
3464 if (line_break)
|
|
3465 {
|
|
3466 if (counter < MIME_LINE_LENGTH / 4)
|
|
3467 counter++;
|
|
3468 else
|
|
3469 {
|
|
3470 *e++ = '\n';
|
|
3471 counter = 1;
|
|
3472 }
|
|
3473 }
|
|
3474
|
|
3475 /* Process first byte of a triplet. */
|
|
3476 *e++ = base64_value_to_char[0x3f & c >> 2];
|
|
3477 value = (0x03 & c) << 4;
|
|
3478
|
|
3479 /* Process second byte of a triplet. */
|
|
3480 if (!ADVANCE_INPUT (c, istream))
|
|
3481 {
|
|
3482 *e++ = base64_value_to_char[value];
|
|
3483 *e++ = '=';
|
|
3484 *e++ = '=';
|
|
3485 break;
|
|
3486 }
|
|
3487
|
|
3488 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
|
|
3489 value = (0x0f & c) << 2;
|
|
3490
|
|
3491 /* Process third byte of a triplet. */
|
|
3492 if (!ADVANCE_INPUT (c, istream))
|
|
3493 {
|
|
3494 *e++ = base64_value_to_char[value];
|
|
3495 *e++ = '=';
|
|
3496 break;
|
|
3497 }
|
|
3498
|
|
3499 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
|
|
3500 *e++ = base64_value_to_char[0x3f & c];
|
|
3501 }
|
|
3502
|
|
3503 return e - to;
|
|
3504 }
|
|
3505 #undef ADVANCE_INPUT
|
|
3506
|
412
|
3507 #define ADVANCE_INPUT(c, stream) \
|
|
3508 (ec = Lstream_get_emchar (stream), \
|
|
3509 ec == -1 ? 0 : (c = (Bufbyte)ec, 1))
|
|
3510
|
|
3511 #define STORE_BYTE(pos, val) do { \
|
377
|
3512 pos += set_charptr_emchar (pos, (Emchar)((unsigned char)(val))); \
|
412
|
3513 ++*ccptr; \
|
377
|
3514 } while (0)
|
|
3515
|
|
3516 static Bytind
|
|
3517 base64_decode_1 (Lstream *istream, Bufbyte *to, Charcount *ccptr)
|
|
3518 {
|
412
|
3519 Emchar ec;
|
377
|
3520 Bufbyte *e = to;
|
412
|
3521 unsigned long value;
|
|
3522
|
|
3523 *ccptr = 0;
|
377
|
3524 while (1)
|
|
3525 {
|
412
|
3526 Bufbyte c;
|
|
3527
|
|
3528 if (!ADVANCE_INPUT (c, istream))
|
|
3529 break;
|
|
3530
|
|
3531 /* Accept wrapping lines. */
|
|
3532 if (c == '\r')
|
|
3533 {
|
|
3534 if (!ADVANCE_INPUT (c, istream)
|
|
3535 || c != '\n')
|
|
3536 return -1;
|
|
3537 }
|
|
3538 if (c == '\n')
|
|
3539 {
|
|
3540 if (!ADVANCE_INPUT (c, istream))
|
|
3541 break;
|
|
3542 /* FSF checks for end of text here, but that's wrong. */
|
|
3543 /* FSF checks for correct line length here; that's also
|
|
3544 wrong; some MIME encoders use different line lengths. */
|
|
3545 }
|
377
|
3546
|
|
3547 /* Process first byte of a quadruplet. */
|
412
|
3548 if (!IS_BASE64 (c))
|
|
3549 return -1;
|
|
3550 value = base64_char_to_value[c] << 18;
|
377
|
3551
|
|
3552 /* Process second byte of a quadruplet. */
|
412
|
3553 if (!ADVANCE_INPUT (c, istream))
|
|
3554 return -1;
|
|
3555
|
|
3556 if (!IS_BASE64 (c))
|
|
3557 return -1;
|
|
3558 value |= base64_char_to_value[c] << 12;
|
|
3559
|
|
3560 STORE_BYTE (e, value >> 16);
|
377
|
3561
|
|
3562 /* Process third byte of a quadruplet. */
|
412
|
3563 if (!ADVANCE_INPUT (c, istream))
|
|
3564 return -1;
|
|
3565
|
|
3566 if (c == '=')
|
377
|
3567 {
|
412
|
3568 if (!ADVANCE_INPUT (c, istream))
|
|
3569 return -1;
|
|
3570 if (c != '=')
|
|
3571 return -1;
|
377
|
3572 continue;
|
|
3573 }
|
|
3574
|
412
|
3575 if (!IS_BASE64 (c))
|
|
3576 return -1;
|
|
3577 value |= base64_char_to_value[c] << 6;
|
|
3578
|
|
3579 STORE_BYTE (e, 0xff & value >> 8);
|
377
|
3580
|
|
3581 /* Process fourth byte of a quadruplet. */
|
412
|
3582 if (!ADVANCE_INPUT (c, istream))
|
|
3583 return -1;
|
|
3584
|
|
3585 if (c == '=')
|
377
|
3586 continue;
|
|
3587
|
412
|
3588 if (!IS_BASE64 (c))
|
|
3589 return -1;
|
|
3590 value |= base64_char_to_value[c];
|
|
3591
|
|
3592 STORE_BYTE (e, 0xff & value);
|
377
|
3593 }
|
|
3594
|
|
3595 return e - to;
|
|
3596 }
|
|
3597 #undef ADVANCE_INPUT
|
412
|
3598 #undef INPUT_EOF_P
|
377
|
3599
|
|
3600 static Lisp_Object
|
|
3601 free_malloced_ptr (Lisp_Object unwind_obj)
|
|
3602 {
|
|
3603 void *ptr = (void *)get_opaque_ptr (unwind_obj);
|
|
3604 xfree (ptr);
|
|
3605 free_opaque_ptr (unwind_obj);
|
|
3606 return Qnil;
|
|
3607 }
|
|
3608
|
|
3609 /* Don't use alloca for regions larger than this, lest we overflow
|
|
3610 the stack. */
|
|
3611 #define MAX_ALLOCA 65536
|
|
3612
|
|
3613 /* We need to setup proper unwinding, because there is a number of
|
|
3614 ways these functions can blow up, and we don't want to have memory
|
|
3615 leaks in those cases. */
|
|
3616 #define XMALLOC_OR_ALLOCA(ptr, len, type) do { \
|
380
|
3617 size_t XOA_len = (len); \
|
|
3618 if (XOA_len > MAX_ALLOCA) \
|
377
|
3619 { \
|
380
|
3620 ptr = xnew_array (type, XOA_len); \
|
377
|
3621 record_unwind_protect (free_malloced_ptr, \
|
|
3622 make_opaque_ptr ((void *)ptr)); \
|
|
3623 } \
|
|
3624 else \
|
380
|
3625 ptr = alloca_array (type, XOA_len); \
|
377
|
3626 } while (0)
|
|
3627
|
380
|
3628 #define XMALLOC_UNBIND(ptr, len, speccount) do { \
|
|
3629 if ((len) > MAX_ALLOCA) \
|
|
3630 unbind_to (speccount, Qnil); \
|
377
|
3631 } while (0)
|
|
3632
|
|
3633 DEFUN ("base64-encode-region", Fbase64_encode_region, 2, 3, "r", /*
|
|
3634 Base64-encode the region between BEG and END.
|
|
3635 Return the length of the encoded text.
|
|
3636 Optional third argument NO-LINE-BREAK means do not break long lines
|
|
3637 into shorter lines.
|
|
3638 */
|
|
3639 (beg, end, no_line_break))
|
|
3640 {
|
|
3641 Bufbyte *encoded;
|
|
3642 Bytind encoded_length;
|
|
3643 Charcount allength, length;
|
|
3644 struct buffer *buf = current_buffer;
|
|
3645 Bufpos begv, zv, old_pt = BUF_PT (buf);
|
|
3646 Lisp_Object input;
|
380
|
3647 int speccount = specpdl_depth();
|
377
|
3648
|
|
3649 get_buffer_range_char (buf, beg, end, &begv, &zv, 0);
|
380
|
3650 barf_if_buffer_read_only (buf, begv, zv);
|
377
|
3651
|
|
3652 /* We need to allocate enough room for encoding the text.
|
|
3653 We need 33 1/3% more space, plus a newline every 76
|
|
3654 characters, and then we round up. */
|
|
3655 length = zv - begv;
|
|
3656 allength = length + length/3 + 1;
|
|
3657 allength += allength / MIME_LINE_LENGTH + 1 + 6;
|
|
3658
|
|
3659 input = make_lisp_buffer_input_stream (buf, begv, zv, 0);
|
|
3660 /* We needn't multiply allength with MAX_EMCHAR_LEN because all the
|
|
3661 base64 characters will be single-byte. */
|
|
3662 XMALLOC_OR_ALLOCA (encoded, allength, Bufbyte);
|
|
3663 encoded_length = base64_encode_1 (XLSTREAM (input), encoded,
|
|
3664 NILP (no_line_break));
|
|
3665 if (encoded_length > allength)
|
|
3666 abort ();
|
|
3667 Lstream_delete (XLSTREAM (input));
|
|
3668
|
|
3669 /* Now we have encoded the region, so we insert the new contents
|
|
3670 and delete the old. (Insert first in order to preserve markers.) */
|
|
3671 buffer_insert_raw_string_1 (buf, begv, encoded, encoded_length, 0);
|
380
|
3672 XMALLOC_UNBIND (encoded, allength, speccount);
|
377
|
3673 buffer_delete_range (buf, begv + encoded_length, zv + encoded_length, 0);
|
|
3674
|
412
|
3675 /* Simulate FSF Emacs: if point was in the region, place it at the
|
|
3676 beginning. */
|
377
|
3677 if (old_pt >= begv && old_pt < zv)
|
|
3678 BUF_SET_PT (buf, begv);
|
|
3679
|
|
3680 /* We return the length of the encoded text. */
|
|
3681 return make_int (encoded_length);
|
|
3682 }
|
|
3683
|
396
|
3684 DEFUN ("base64-encode-string", Fbase64_encode_string, 1, 2, 0, /*
|
377
|
3685 Base64 encode STRING and return the result.
|
|
3686 */
|
396
|
3687 (string, no_line_break))
|
377
|
3688 {
|
|
3689 Charcount allength, length;
|
|
3690 Bytind encoded_length;
|
|
3691 Bufbyte *encoded;
|
|
3692 Lisp_Object input, result;
|
380
|
3693 int speccount = specpdl_depth();
|
377
|
3694
|
|
3695 CHECK_STRING (string);
|
|
3696
|
|
3697 length = XSTRING_CHAR_LENGTH (string);
|
396
|
3698 allength = length + length/3 + 1;
|
|
3699 allength += allength / MIME_LINE_LENGTH + 1 + 6;
|
377
|
3700
|
|
3701 input = make_lisp_string_input_stream (string, 0, -1);
|
|
3702 XMALLOC_OR_ALLOCA (encoded, allength, Bufbyte);
|
396
|
3703 encoded_length = base64_encode_1 (XLSTREAM (input), encoded,
|
|
3704 NILP (no_line_break));
|
377
|
3705 if (encoded_length > allength)
|
|
3706 abort ();
|
|
3707 Lstream_delete (XLSTREAM (input));
|
|
3708 result = make_string (encoded, encoded_length);
|
380
|
3709 XMALLOC_UNBIND (encoded, allength, speccount);
|
377
|
3710 return result;
|
|
3711 }
|
|
3712
|
|
3713 DEFUN ("base64-decode-region", Fbase64_decode_region, 2, 2, "r", /*
|
|
3714 Base64-decode the region between BEG and END.
|
|
3715 Return the length of the decoded text.
|
|
3716 If the region can't be decoded, return nil and don't modify the buffer.
|
|
3717 */
|
|
3718 (beg, end))
|
|
3719 {
|
|
3720 struct buffer *buf = current_buffer;
|
|
3721 Bufpos begv, zv, old_pt = BUF_PT (buf);
|
|
3722 Bufbyte *decoded;
|
|
3723 Bytind decoded_length;
|
|
3724 Charcount length, cc_decoded_length;
|
|
3725 Lisp_Object input;
|
380
|
3726 int speccount = specpdl_depth();
|
377
|
3727
|
|
3728 get_buffer_range_char (buf, beg, end, &begv, &zv, 0);
|
380
|
3729 barf_if_buffer_read_only (buf, begv, zv);
|
|
3730
|
377
|
3731 length = zv - begv;
|
|
3732
|
|
3733 input = make_lisp_buffer_input_stream (buf, begv, zv, 0);
|
|
3734 /* We need to allocate enough room for decoding the text. */
|
|
3735 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Bufbyte);
|
|
3736 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, &cc_decoded_length);
|
|
3737 if (decoded_length > length * MAX_EMCHAR_LEN)
|
|
3738 abort ();
|
|
3739 Lstream_delete (XLSTREAM (input));
|
|
3740
|
412
|
3741 if (decoded_length < 0)
|
|
3742 {
|
|
3743 /* The decoding wasn't possible. */
|
|
3744 XMALLOC_UNBIND (decoded, length * MAX_EMCHAR_LEN, speccount);
|
|
3745 return Qnil;
|
|
3746 }
|
|
3747
|
377
|
3748 /* Now we have decoded the region, so we insert the new contents
|
|
3749 and delete the old. (Insert first in order to preserve markers.) */
|
|
3750 BUF_SET_PT (buf, begv);
|
|
3751 buffer_insert_raw_string_1 (buf, begv, decoded, decoded_length, 0);
|
380
|
3752 XMALLOC_UNBIND (decoded, length * MAX_EMCHAR_LEN, speccount);
|
377
|
3753 buffer_delete_range (buf, begv + cc_decoded_length,
|
|
3754 zv + cc_decoded_length, 0);
|
|
3755
|
412
|
3756 /* Simulate FSF Emacs: if point was in the region, place it at the
|
|
3757 beginning. */
|
377
|
3758 if (old_pt >= begv && old_pt < zv)
|
|
3759 BUF_SET_PT (buf, begv);
|
|
3760
|
|
3761 return make_int (cc_decoded_length);
|
|
3762 }
|
|
3763
|
|
3764 DEFUN ("base64-decode-string", Fbase64_decode_string, 1, 1, 0, /*
|
|
3765 Base64-decode STRING and return the result.
|
|
3766 */
|
|
3767 (string))
|
|
3768 {
|
|
3769 Bufbyte *decoded;
|
|
3770 Bytind decoded_length;
|
|
3771 Charcount length, cc_decoded_length;
|
|
3772 Lisp_Object input, result;
|
380
|
3773 int speccount = specpdl_depth();
|
377
|
3774
|
|
3775 CHECK_STRING (string);
|
|
3776
|
|
3777 length = XSTRING_CHAR_LENGTH (string);
|
|
3778 /* We need to allocate enough room for decoding the text. */
|
|
3779 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Bufbyte);
|
|
3780
|
|
3781 input = make_lisp_string_input_stream (string, 0, -1);
|
|
3782 decoded_length = base64_decode_1 (XLSTREAM (input), decoded,
|
|
3783 &cc_decoded_length);
|
|
3784 if (decoded_length > length * MAX_EMCHAR_LEN)
|
|
3785 abort ();
|
|
3786 Lstream_delete (XLSTREAM (input));
|
|
3787
|
412
|
3788 if (decoded_length < 0)
|
|
3789 {
|
|
3790 /* The decoding wasn't possible. */
|
|
3791 XMALLOC_UNBIND (decoded, length * MAX_EMCHAR_LEN, speccount);
|
|
3792 return Qnil;
|
|
3793 }
|
|
3794
|
377
|
3795 result = make_string (decoded, decoded_length);
|
380
|
3796 XMALLOC_UNBIND (decoded, length * MAX_EMCHAR_LEN, speccount);
|
377
|
3797 return result;
|
|
3798 }
|
0
|
3799
|
|
3800 Lisp_Object Qyes_or_no_p;
|
|
3801
|
|
3802 void
|
|
3803 syms_of_fns (void)
|
|
3804 {
|
|
3805 defsymbol (&Qstring_lessp, "string-lessp");
|
|
3806 defsymbol (&Qidentity, "identity");
|
|
3807 defsymbol (&Qyes_or_no_p, "yes-or-no-p");
|
|
3808
|
20
|
3809 DEFSUBR (Fidentity);
|
|
3810 DEFSUBR (Frandom);
|
|
3811 DEFSUBR (Flength);
|
|
3812 DEFSUBR (Fsafe_length);
|
|
3813 DEFSUBR (Fstring_equal);
|
|
3814 DEFSUBR (Fstring_lessp);
|
|
3815 DEFSUBR (Fstring_modified_tick);
|
|
3816 DEFSUBR (Fappend);
|
|
3817 DEFSUBR (Fconcat);
|
|
3818 DEFSUBR (Fvconcat);
|
|
3819 DEFSUBR (Fbvconcat);
|
380
|
3820 DEFSUBR (Fcopy_list);
|
20
|
3821 DEFSUBR (Fcopy_sequence);
|
|
3822 DEFSUBR (Fcopy_alist);
|
|
3823 DEFSUBR (Fcopy_tree);
|
|
3824 DEFSUBR (Fsubstring);
|
|
3825 DEFSUBR (Fsubseq);
|
|
3826 DEFSUBR (Fnthcdr);
|
|
3827 DEFSUBR (Fnth);
|
|
3828 DEFSUBR (Felt);
|
380
|
3829 DEFSUBR (Flast);
|
|
3830 DEFSUBR (Fbutlast);
|
|
3831 DEFSUBR (Fnbutlast);
|
20
|
3832 DEFSUBR (Fmember);
|
70
|
3833 DEFSUBR (Fold_member);
|
20
|
3834 DEFSUBR (Fmemq);
|
70
|
3835 DEFSUBR (Fold_memq);
|
20
|
3836 DEFSUBR (Fassoc);
|
70
|
3837 DEFSUBR (Fold_assoc);
|
20
|
3838 DEFSUBR (Fassq);
|
70
|
3839 DEFSUBR (Fold_assq);
|
20
|
3840 DEFSUBR (Frassoc);
|
70
|
3841 DEFSUBR (Fold_rassoc);
|
20
|
3842 DEFSUBR (Frassq);
|
70
|
3843 DEFSUBR (Fold_rassq);
|
20
|
3844 DEFSUBR (Fdelete);
|
70
|
3845 DEFSUBR (Fold_delete);
|
20
|
3846 DEFSUBR (Fdelq);
|
70
|
3847 DEFSUBR (Fold_delq);
|
20
|
3848 DEFSUBR (Fremassoc);
|
|
3849 DEFSUBR (Fremassq);
|
|
3850 DEFSUBR (Fremrassoc);
|
|
3851 DEFSUBR (Fremrassq);
|
|
3852 DEFSUBR (Fnreverse);
|
|
3853 DEFSUBR (Freverse);
|
|
3854 DEFSUBR (Fsort);
|
|
3855 DEFSUBR (Fplists_eq);
|
|
3856 DEFSUBR (Fplists_equal);
|
|
3857 DEFSUBR (Flax_plists_eq);
|
|
3858 DEFSUBR (Flax_plists_equal);
|
|
3859 DEFSUBR (Fplist_get);
|
|
3860 DEFSUBR (Fplist_put);
|
|
3861 DEFSUBR (Fplist_remprop);
|
|
3862 DEFSUBR (Fplist_member);
|
|
3863 DEFSUBR (Fcheck_valid_plist);
|
|
3864 DEFSUBR (Fvalid_plist_p);
|
|
3865 DEFSUBR (Fcanonicalize_plist);
|
|
3866 DEFSUBR (Flax_plist_get);
|
|
3867 DEFSUBR (Flax_plist_put);
|
|
3868 DEFSUBR (Flax_plist_remprop);
|
|
3869 DEFSUBR (Flax_plist_member);
|
|
3870 DEFSUBR (Fcanonicalize_lax_plist);
|
|
3871 DEFSUBR (Fdestructive_alist_to_plist);
|
|
3872 DEFSUBR (Fget);
|
|
3873 DEFSUBR (Fput);
|
|
3874 DEFSUBR (Fremprop);
|
|
3875 DEFSUBR (Fobject_plist);
|
|
3876 DEFSUBR (Fequal);
|
70
|
3877 DEFSUBR (Fold_equal);
|
20
|
3878 DEFSUBR (Ffillarray);
|
|
3879 DEFSUBR (Fnconc);
|
|
3880 DEFSUBR (Fmapcar);
|
163
|
3881 DEFSUBR (Fmapvector);
|
412
|
3882 DEFSUBR (Fmapc);
|
20
|
3883 DEFSUBR (Fmapconcat);
|
|
3884 DEFSUBR (Fload_average);
|
|
3885 DEFSUBR (Ffeaturep);
|
|
3886 DEFSUBR (Frequire);
|
|
3887 DEFSUBR (Fprovide);
|
377
|
3888 DEFSUBR (Fbase64_encode_region);
|
|
3889 DEFSUBR (Fbase64_encode_string);
|
|
3890 DEFSUBR (Fbase64_decode_region);
|
|
3891 DEFSUBR (Fbase64_decode_string);
|
0
|
3892 }
|
|
3893
|
|
3894 void
|
|
3895 init_provide_once (void)
|
|
3896 {
|
|
3897 DEFVAR_LISP ("features", &Vfeatures /*
|
|
3898 A list of symbols which are the features of the executing emacs.
|
|
3899 Used by `featurep' and `require', and altered by `provide'.
|
|
3900 */ );
|
|
3901 Vfeatures = Qnil;
|
398
|
3902
|
|
3903 Fprovide (intern ("base64"));
|
0
|
3904 }
|