Mercurial > hg > xemacs-beta
annotate src/fns.c @ 4966:48b63cd88a21
merge
author | Ben Wing <ben@xemacs.org> |
---|---|
date | Mon, 01 Feb 2010 14:11:36 -0600 |
parents | e813cf16c015 6bc1f3f6cf0d |
children | b46c89ccbed3 44d7bde26046 |
rev | line source |
---|---|
428 | 1 /* Random utility Lisp functions. |
2 Copyright (C) 1985, 86, 87, 93, 94, 95 Free Software Foundation, Inc. | |
1261 | 3 Copyright (C) 1995, 1996, 2000, 2001, 2002, 2003 Ben Wing. |
428 | 4 |
5 This file is part of XEmacs. | |
6 | |
7 XEmacs is free software; you can redistribute it and/or modify it | |
8 under the terms of the GNU General Public License as published by the | |
9 Free Software Foundation; either version 2, or (at your option) any | |
10 later version. | |
11 | |
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
15 for more details. | |
16 | |
17 You should have received a copy of the GNU General Public License | |
18 along with XEmacs; see the file COPYING. If not, write to | |
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
20 Boston, MA 02111-1307, USA. */ | |
21 | |
22 /* Synched up with: Mule 2.0, FSF 19.30. */ | |
23 | |
24 /* This file has been Mule-ized. */ | |
25 | |
26 /* Note: FSF 19.30 has bool vectors. We have bit vectors. */ | |
27 | |
28 /* Hacked on for Mule by Ben Wing, December 1994, January 1995. */ | |
29 | |
30 #include <config.h> | |
31 | |
32 /* Note on some machines this defines `vector' as a typedef, | |
33 so make sure we don't use that name in this file. */ | |
34 #undef vector | |
35 #define vector ***** | |
36 | |
37 #include "lisp.h" | |
38 | |
442 | 39 #include "sysfile.h" |
771 | 40 #include "sysproc.h" /* for qxe_getpid() */ |
428 | 41 |
42 #include "buffer.h" | |
43 #include "bytecode.h" | |
44 #include "device.h" | |
45 #include "events.h" | |
46 #include "extents.h" | |
47 #include "frame.h" | |
872 | 48 #include "process.h" |
428 | 49 #include "systime.h" |
50 #include "insdel.h" | |
51 #include "lstream.h" | |
52 #include "opaque.h" | |
53 | |
54 /* NOTE: This symbol is also used in lread.c */ | |
55 #define FEATUREP_SYNTAX | |
56 | |
57 Lisp_Object Qstring_lessp; | |
58 Lisp_Object Qidentity; | |
59 | |
563 | 60 Lisp_Object Qbase64_conversion_error; |
61 | |
771 | 62 Lisp_Object Vpath_separator; |
63 | |
428 | 64 static int internal_old_equal (Lisp_Object, Lisp_Object, int); |
454 | 65 Lisp_Object safe_copy_tree (Lisp_Object arg, Lisp_Object vecp, int depth); |
428 | 66 |
67 static Lisp_Object | |
2286 | 68 mark_bit_vector (Lisp_Object UNUSED (obj)) |
428 | 69 { |
70 return Qnil; | |
71 } | |
72 | |
73 static void | |
2286 | 74 print_bit_vector (Lisp_Object obj, Lisp_Object printcharfun, |
75 int UNUSED (escapeflag)) | |
428 | 76 { |
665 | 77 Elemcount i; |
440 | 78 Lisp_Bit_Vector *v = XBIT_VECTOR (obj); |
665 | 79 Elemcount len = bit_vector_length (v); |
80 Elemcount last = len; | |
428 | 81 |
82 if (INTP (Vprint_length)) | |
83 last = min (len, XINT (Vprint_length)); | |
4952
19a72041c5ed
Mule-izing, various fixes related to char * arguments
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
84 write_ascstring (printcharfun, "#*"); |
428 | 85 for (i = 0; i < last; i++) |
86 { | |
87 if (bit_vector_bit (v, i)) | |
4952
19a72041c5ed
Mule-izing, various fixes related to char * arguments
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
88 write_ascstring (printcharfun, "1"); |
428 | 89 else |
4952
19a72041c5ed
Mule-izing, various fixes related to char * arguments
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
90 write_ascstring (printcharfun, "0"); |
428 | 91 } |
92 | |
93 if (last != len) | |
4952
19a72041c5ed
Mule-izing, various fixes related to char * arguments
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
94 write_ascstring (printcharfun, "..."); |
428 | 95 } |
96 | |
97 static int | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
98 bit_vector_equal (Lisp_Object obj1, Lisp_Object obj2, int UNUSED (depth), |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
99 int UNUSED (foldcase)) |
428 | 100 { |
440 | 101 Lisp_Bit_Vector *v1 = XBIT_VECTOR (obj1); |
102 Lisp_Bit_Vector *v2 = XBIT_VECTOR (obj2); | |
428 | 103 |
104 return ((bit_vector_length (v1) == bit_vector_length (v2)) && | |
105 !memcmp (v1->bits, v2->bits, | |
106 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v1)) * | |
107 sizeof (long))); | |
108 } | |
109 | |
665 | 110 static Hashcode |
2286 | 111 bit_vector_hash (Lisp_Object obj, int UNUSED (depth)) |
428 | 112 { |
440 | 113 Lisp_Bit_Vector *v = XBIT_VECTOR (obj); |
428 | 114 return HASH2 (bit_vector_length (v), |
115 memory_hash (v->bits, | |
116 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)) * | |
117 sizeof (long))); | |
118 } | |
119 | |
665 | 120 static Bytecount |
442 | 121 size_bit_vector (const void *lheader) |
122 { | |
123 Lisp_Bit_Vector *v = (Lisp_Bit_Vector *) lheader; | |
456 | 124 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, unsigned long, bits, |
442 | 125 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v))); |
126 } | |
127 | |
1204 | 128 static const struct memory_description bit_vector_description[] = { |
428 | 129 { XD_END } |
130 }; | |
131 | |
132 | |
1204 | 133 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION ("bit-vector", bit_vector, |
134 1, /*dumpable-flag*/ | |
135 mark_bit_vector, | |
136 print_bit_vector, 0, | |
137 bit_vector_equal, | |
138 bit_vector_hash, | |
139 bit_vector_description, | |
140 size_bit_vector, | |
141 Lisp_Bit_Vector); | |
934 | 142 |
428 | 143 |
144 DEFUN ("identity", Fidentity, 1, 1, 0, /* | |
145 Return the argument unchanged. | |
146 */ | |
147 (arg)) | |
148 { | |
149 return arg; | |
150 } | |
151 | |
152 DEFUN ("random", Frandom, 0, 1, 0, /* | |
153 Return a pseudo-random number. | |
1983 | 154 All fixnums are equally likely. On most systems, this is 31 bits' worth. |
428 | 155 With positive integer argument N, return random number in interval [0,N). |
1983 | 156 N can be a bignum, in which case the range of possible values is extended. |
428 | 157 With argument t, set the random number seed from the current time and pid. |
158 */ | |
159 (limit)) | |
160 { | |
161 EMACS_INT val; | |
162 unsigned long denominator; | |
163 | |
164 if (EQ (limit, Qt)) | |
771 | 165 seed_random (qxe_getpid () + time (NULL)); |
428 | 166 if (NATNUMP (limit) && !ZEROP (limit)) |
167 { | |
168 /* Try to take our random number from the higher bits of VAL, | |
169 not the lower, since (says Gentzel) the low bits of `random' | |
170 are less random than the higher ones. We do this by using the | |
171 quotient rather than the remainder. At the high end of the RNG | |
172 it's possible to get a quotient larger than limit; discarding | |
173 these values eliminates the bias that would otherwise appear | |
174 when using a large limit. */ | |
2039 | 175 denominator = ((unsigned long)1 << INT_VALBITS) / XINT (limit); |
428 | 176 do |
177 val = get_random () / denominator; | |
178 while (val >= XINT (limit)); | |
179 } | |
1983 | 180 #ifdef HAVE_BIGNUM |
181 else if (BIGNUMP (limit)) | |
182 { | |
183 bignum_random (scratch_bignum, XBIGNUM_DATA (limit)); | |
184 return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); | |
185 } | |
186 #endif | |
428 | 187 else |
188 val = get_random (); | |
189 | |
190 return make_int (val); | |
191 } | |
192 | |
193 /* Random data-structure functions */ | |
194 | |
195 #ifdef LOSING_BYTECODE | |
196 | |
197 /* #### Delete this shit */ | |
198 | |
199 /* Charcount is a misnomer here as we might be dealing with the | |
200 length of a vector or list, but emphasizes that we're not dealing | |
201 with Bytecounts in strings */ | |
202 static Charcount | |
203 length_with_bytecode_hack (Lisp_Object seq) | |
204 { | |
205 if (!COMPILED_FUNCTIONP (seq)) | |
206 return XINT (Flength (seq)); | |
207 else | |
208 { | |
440 | 209 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (seq); |
428 | 210 |
211 return (f->flags.interactivep ? COMPILED_INTERACTIVE : | |
212 f->flags.domainp ? COMPILED_DOMAIN : | |
213 COMPILED_DOC_STRING) | |
214 + 1; | |
215 } | |
216 } | |
217 | |
218 #endif /* LOSING_BYTECODE */ | |
219 | |
220 void | |
442 | 221 check_losing_bytecode (const char *function, Lisp_Object seq) |
428 | 222 { |
223 if (COMPILED_FUNCTIONP (seq)) | |
563 | 224 signal_ferror_with_frob |
225 (Qinvalid_argument, seq, | |
428 | 226 "As of 20.3, `%s' no longer works with compiled-function objects", |
227 function); | |
228 } | |
229 | |
230 DEFUN ("length", Flength, 1, 1, 0, /* | |
231 Return the length of vector, bit vector, list or string SEQUENCE. | |
232 */ | |
233 (sequence)) | |
234 { | |
235 retry: | |
236 if (STRINGP (sequence)) | |
826 | 237 return make_int (string_char_length (sequence)); |
428 | 238 else if (CONSP (sequence)) |
239 { | |
665 | 240 Elemcount len; |
428 | 241 GET_EXTERNAL_LIST_LENGTH (sequence, len); |
242 return make_int (len); | |
243 } | |
244 else if (VECTORP (sequence)) | |
245 return make_int (XVECTOR_LENGTH (sequence)); | |
246 else if (NILP (sequence)) | |
247 return Qzero; | |
248 else if (BIT_VECTORP (sequence)) | |
249 return make_int (bit_vector_length (XBIT_VECTOR (sequence))); | |
250 else | |
251 { | |
252 check_losing_bytecode ("length", sequence); | |
253 sequence = wrong_type_argument (Qsequencep, sequence); | |
254 goto retry; | |
255 } | |
256 } | |
257 | |
258 DEFUN ("safe-length", Fsafe_length, 1, 1, 0, /* | |
259 Return the length of a list, but avoid error or infinite loop. | |
260 This function never gets an error. If LIST is not really a list, | |
261 it returns 0. If LIST is circular, it returns a finite value | |
262 which is at least the number of distinct elements. | |
263 */ | |
264 (list)) | |
265 { | |
266 Lisp_Object hare, tortoise; | |
665 | 267 Elemcount len; |
428 | 268 |
269 for (hare = tortoise = list, len = 0; | |
270 CONSP (hare) && (! EQ (hare, tortoise) || len == 0); | |
271 hare = XCDR (hare), len++) | |
272 { | |
273 if (len & 1) | |
274 tortoise = XCDR (tortoise); | |
275 } | |
276 | |
277 return make_int (len); | |
278 } | |
279 | |
280 /*** string functions. ***/ | |
281 | |
282 DEFUN ("string-equal", Fstring_equal, 2, 2, 0, /* | |
283 Return t if two strings have identical contents. | |
284 Case is significant. Text properties are ignored. | |
285 \(Under XEmacs, `equal' also ignores text properties and extents in | |
286 strings, but this is not the case under FSF Emacs 19. In FSF Emacs 20 | |
287 `equal' is the same as in XEmacs, in that respect.) | |
288 Symbols are also allowed; their print names are used instead. | |
289 */ | |
444 | 290 (string1, string2)) |
428 | 291 { |
292 Bytecount len; | |
793 | 293 Lisp_Object p1, p2; |
428 | 294 |
444 | 295 if (SYMBOLP (string1)) |
296 p1 = XSYMBOL (string1)->name; | |
428 | 297 else |
298 { | |
444 | 299 CHECK_STRING (string1); |
793 | 300 p1 = string1; |
428 | 301 } |
302 | |
444 | 303 if (SYMBOLP (string2)) |
304 p2 = XSYMBOL (string2)->name; | |
428 | 305 else |
306 { | |
444 | 307 CHECK_STRING (string2); |
793 | 308 p2 = string2; |
428 | 309 } |
310 | |
793 | 311 return (((len = XSTRING_LENGTH (p1)) == XSTRING_LENGTH (p2)) && |
312 !memcmp (XSTRING_DATA (p1), XSTRING_DATA (p2), len)) ? Qt : Qnil; | |
428 | 313 } |
314 | |
801 | 315 DEFUN ("compare-strings", Fcompare_strings, 6, 7, 0, /* |
316 Compare the contents of two strings, maybe ignoring case. | |
317 In string STR1, skip the first START1 characters and stop at END1. | |
318 In string STR2, skip the first START2 characters and stop at END2. | |
4796
c45fdd4e1858
Don't args-out-of-range in compare-strings.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4693
diff
changeset
|
319 END1 and END2 default to the full lengths of the respective strings, |
4797
a5eca70cf401
Fix typo in last patch.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4796
diff
changeset
|
320 and arguments that are outside the string (negative STARTi or ENDi |
4796
c45fdd4e1858
Don't args-out-of-range in compare-strings.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4693
diff
changeset
|
321 greater than length) are coerced to 0 or string length as appropriate. |
c45fdd4e1858
Don't args-out-of-range in compare-strings.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4693
diff
changeset
|
322 |
c45fdd4e1858
Don't args-out-of-range in compare-strings.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4693
diff
changeset
|
323 Optional IGNORE-CASE non-nil means use case-insensitive comparison. |
c45fdd4e1858
Don't args-out-of-range in compare-strings.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4693
diff
changeset
|
324 Case is significant by default. |
801 | 325 |
326 The value is t if the strings (or specified portions) match. | |
327 If string STR1 is less, the value is a negative number N; | |
328 - 1 - N is the number of characters that match at the beginning. | |
329 If string STR1 is greater, the value is a positive number N; | |
330 N - 1 is the number of characters that match at the beginning. | |
331 */ | |
332 (str1, start1, end1, str2, start2, end2, ignore_case)) | |
333 { | |
334 Charcount ccstart1, ccend1, ccstart2, ccend2; | |
335 Bytecount bstart1, blen1, bstart2, blen2; | |
336 Charcount matching; | |
337 int res; | |
338 | |
339 CHECK_STRING (str1); | |
340 CHECK_STRING (str2); | |
341 get_string_range_char (str1, start1, end1, &ccstart1, &ccend1, | |
4796
c45fdd4e1858
Don't args-out-of-range in compare-strings.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4693
diff
changeset
|
342 GB_HISTORICAL_STRING_BEHAVIOR|GB_COERCE_RANGE); |
801 | 343 get_string_range_char (str2, start2, end2, &ccstart2, &ccend2, |
4796
c45fdd4e1858
Don't args-out-of-range in compare-strings.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4693
diff
changeset
|
344 GB_HISTORICAL_STRING_BEHAVIOR|GB_COERCE_RANGE); |
801 | 345 |
346 bstart1 = string_index_char_to_byte (str1, ccstart1); | |
347 blen1 = string_offset_char_to_byte_len (str1, bstart1, ccend1 - ccstart1); | |
348 bstart2 = string_index_char_to_byte (str2, ccstart2); | |
349 blen2 = string_offset_char_to_byte_len (str2, bstart2, ccend2 - ccstart2); | |
350 | |
351 res = ((NILP (ignore_case) ? qxetextcmp_matching : qxetextcasecmp_matching) | |
352 (XSTRING_DATA (str1) + bstart1, blen1, | |
353 XSTRING_DATA (str2) + bstart2, blen2, | |
354 &matching)); | |
355 | |
356 if (!res) | |
357 return Qt; | |
358 else if (res > 0) | |
359 return make_int (1 + matching); | |
360 else | |
361 return make_int (-1 - matching); | |
362 } | |
363 | |
428 | 364 DEFUN ("string-lessp", Fstring_lessp, 2, 2, 0, /* |
365 Return t if first arg string is less than second in lexicographic order. | |
771 | 366 Comparison is simply done on a character-by-character basis using the |
367 numeric value of a character. (Note that this may not produce | |
368 particularly meaningful results under Mule if characters from | |
369 different charsets are being compared.) | |
428 | 370 |
371 Symbols are also allowed; their print names are used instead. | |
372 | |
771 | 373 Currently we don't do proper language-specific collation or handle |
374 multiple character sets. This may be changed when Unicode support | |
375 is implemented. | |
428 | 376 */ |
444 | 377 (string1, string2)) |
428 | 378 { |
793 | 379 Lisp_Object p1, p2; |
428 | 380 Charcount end, len2; |
381 int i; | |
382 | |
444 | 383 if (SYMBOLP (string1)) |
384 p1 = XSYMBOL (string1)->name; | |
793 | 385 else |
386 { | |
444 | 387 CHECK_STRING (string1); |
793 | 388 p1 = string1; |
428 | 389 } |
390 | |
444 | 391 if (SYMBOLP (string2)) |
392 p2 = XSYMBOL (string2)->name; | |
428 | 393 else |
394 { | |
444 | 395 CHECK_STRING (string2); |
793 | 396 p2 = string2; |
428 | 397 } |
398 | |
826 | 399 end = string_char_length (p1); |
400 len2 = string_char_length (p2); | |
428 | 401 if (end > len2) |
402 end = len2; | |
403 | |
404 { | |
867 | 405 Ibyte *ptr1 = XSTRING_DATA (p1); |
406 Ibyte *ptr2 = XSTRING_DATA (p2); | |
428 | 407 |
408 /* #### It is not really necessary to do this: We could compare | |
409 byte-by-byte and still get a reasonable comparison, since this | |
410 would compare characters with a charset in the same way. With | |
411 a little rearrangement of the leading bytes, we could make most | |
412 inter-charset comparisons work out the same, too; even if some | |
413 don't, this is not a big deal because inter-charset comparisons | |
414 aren't really well-defined anyway. */ | |
415 for (i = 0; i < end; i++) | |
416 { | |
867 | 417 if (itext_ichar (ptr1) != itext_ichar (ptr2)) |
418 return itext_ichar (ptr1) < itext_ichar (ptr2) ? Qt : Qnil; | |
419 INC_IBYTEPTR (ptr1); | |
420 INC_IBYTEPTR (ptr2); | |
428 | 421 } |
422 } | |
423 /* Can't do i < len2 because then comparison between "foo" and "foo^@" | |
424 won't work right in I18N2 case */ | |
425 return end < len2 ? Qt : Qnil; | |
426 } | |
427 | |
428 DEFUN ("string-modified-tick", Fstring_modified_tick, 1, 1, 0, /* | |
429 Return STRING's tick counter, incremented for each change to the string. | |
430 Each string has a tick counter which is incremented each time the contents | |
431 of the string are changed (e.g. with `aset'). It wraps around occasionally. | |
432 */ | |
433 (string)) | |
434 { | |
435 CHECK_STRING (string); | |
793 | 436 if (CONSP (XSTRING_PLIST (string)) && INTP (XCAR (XSTRING_PLIST (string)))) |
437 return XCAR (XSTRING_PLIST (string)); | |
428 | 438 else |
439 return Qzero; | |
440 } | |
441 | |
442 void | |
443 bump_string_modiff (Lisp_Object str) | |
444 { | |
793 | 445 Lisp_Object *ptr = &XSTRING_PLIST (str); |
428 | 446 |
447 #ifdef I18N3 | |
448 /* #### remove the `string-translatable' property from the string, | |
449 if there is one. */ | |
450 #endif | |
451 /* skip over extent info if it's there */ | |
452 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr))) | |
453 ptr = &XCDR (*ptr); | |
454 if (CONSP (*ptr) && INTP (XCAR (*ptr))) | |
793 | 455 XCAR (*ptr) = make_int (1+XINT (XCAR (*ptr))); |
428 | 456 else |
457 *ptr = Fcons (make_int (1), *ptr); | |
458 } | |
459 | |
460 | |
461 enum concat_target_type { c_cons, c_string, c_vector, c_bit_vector }; | |
462 static Lisp_Object concat (int nargs, Lisp_Object *args, | |
463 enum concat_target_type target_type, | |
464 int last_special); | |
465 | |
466 Lisp_Object | |
444 | 467 concat2 (Lisp_Object string1, Lisp_Object string2) |
428 | 468 { |
469 Lisp_Object args[2]; | |
444 | 470 args[0] = string1; |
471 args[1] = string2; | |
428 | 472 return concat (2, args, c_string, 0); |
473 } | |
474 | |
475 Lisp_Object | |
444 | 476 concat3 (Lisp_Object string1, Lisp_Object string2, Lisp_Object string3) |
428 | 477 { |
478 Lisp_Object args[3]; | |
444 | 479 args[0] = string1; |
480 args[1] = string2; | |
481 args[2] = string3; | |
428 | 482 return concat (3, args, c_string, 0); |
483 } | |
484 | |
485 Lisp_Object | |
444 | 486 vconcat2 (Lisp_Object vec1, Lisp_Object vec2) |
428 | 487 { |
488 Lisp_Object args[2]; | |
444 | 489 args[0] = vec1; |
490 args[1] = vec2; | |
428 | 491 return concat (2, args, c_vector, 0); |
492 } | |
493 | |
494 Lisp_Object | |
444 | 495 vconcat3 (Lisp_Object vec1, Lisp_Object vec2, Lisp_Object vec3) |
428 | 496 { |
497 Lisp_Object args[3]; | |
444 | 498 args[0] = vec1; |
499 args[1] = vec2; | |
500 args[2] = vec3; | |
428 | 501 return concat (3, args, c_vector, 0); |
502 } | |
503 | |
504 DEFUN ("append", Fappend, 0, MANY, 0, /* | |
505 Concatenate all the arguments and make the result a list. | |
506 The result is a list whose elements are the elements of all the arguments. | |
507 Each argument may be a list, vector, bit vector, or string. | |
508 The last argument is not copied, just used as the tail of the new list. | |
509 Also see: `nconc'. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
510 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
511 arguments: (&rest ARGS) |
428 | 512 */ |
513 (int nargs, Lisp_Object *args)) | |
514 { | |
515 return concat (nargs, args, c_cons, 1); | |
516 } | |
517 | |
518 DEFUN ("concat", Fconcat, 0, MANY, 0, /* | |
519 Concatenate all the arguments and make the result a string. | |
520 The result is a string whose elements are the elements of all the arguments. | |
521 Each argument may be a string or a list or vector of characters. | |
522 | |
523 As of XEmacs 21.0, this function does NOT accept individual integers | |
524 as arguments. Old code that relies on, for example, (concat "foo" 50) | |
525 returning "foo50" will fail. To fix such code, either apply | |
526 `int-to-string' to the integer argument, or use `format'. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
527 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
528 arguments: (&rest ARGS) |
428 | 529 */ |
530 (int nargs, Lisp_Object *args)) | |
531 { | |
532 return concat (nargs, args, c_string, 0); | |
533 } | |
534 | |
535 DEFUN ("vconcat", Fvconcat, 0, MANY, 0, /* | |
536 Concatenate all the arguments and make the result a vector. | |
537 The result is a vector whose elements are the elements of all the arguments. | |
538 Each argument may be a list, vector, bit vector, or string. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
539 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
540 arguments: (&rest ARGS) |
428 | 541 */ |
542 (int nargs, Lisp_Object *args)) | |
543 { | |
544 return concat (nargs, args, c_vector, 0); | |
545 } | |
546 | |
547 DEFUN ("bvconcat", Fbvconcat, 0, MANY, 0, /* | |
548 Concatenate all the arguments and make the result a bit vector. | |
549 The result is a bit vector whose elements are the elements of all the | |
550 arguments. Each argument may be a list, vector, bit vector, or string. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
551 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
552 arguments: (&rest ARGS) |
428 | 553 */ |
554 (int nargs, Lisp_Object *args)) | |
555 { | |
556 return concat (nargs, args, c_bit_vector, 0); | |
557 } | |
558 | |
559 /* Copy a (possibly dotted) list. LIST must be a cons. | |
560 Can't use concat (1, &alist, c_cons, 0) - doesn't handle dotted lists. */ | |
561 static Lisp_Object | |
562 copy_list (Lisp_Object list) | |
563 { | |
564 Lisp_Object list_copy = Fcons (XCAR (list), XCDR (list)); | |
565 Lisp_Object last = list_copy; | |
566 Lisp_Object hare, tortoise; | |
665 | 567 Elemcount len; |
428 | 568 |
569 for (tortoise = hare = XCDR (list), len = 1; | |
570 CONSP (hare); | |
571 hare = XCDR (hare), len++) | |
572 { | |
573 XCDR (last) = Fcons (XCAR (hare), XCDR (hare)); | |
574 last = XCDR (last); | |
575 | |
576 if (len < CIRCULAR_LIST_SUSPICION_LENGTH) | |
577 continue; | |
578 if (len & 1) | |
579 tortoise = XCDR (tortoise); | |
580 if (EQ (tortoise, hare)) | |
581 signal_circular_list_error (list); | |
582 } | |
583 | |
584 return list_copy; | |
585 } | |
586 | |
587 DEFUN ("copy-list", Fcopy_list, 1, 1, 0, /* | |
588 Return a copy of list LIST, which may be a dotted list. | |
589 The elements of LIST are not copied; they are shared | |
590 with the original. | |
591 */ | |
592 (list)) | |
593 { | |
594 again: | |
595 if (NILP (list)) return list; | |
596 if (CONSP (list)) return copy_list (list); | |
597 | |
598 list = wrong_type_argument (Qlistp, list); | |
599 goto again; | |
600 } | |
601 | |
602 DEFUN ("copy-sequence", Fcopy_sequence, 1, 1, 0, /* | |
603 Return a copy of list, vector, bit vector or string SEQUENCE. | |
604 The elements of a list or vector are not copied; they are shared | |
605 with the original. SEQUENCE may be a dotted list. | |
606 */ | |
607 (sequence)) | |
608 { | |
609 again: | |
610 if (NILP (sequence)) return sequence; | |
611 if (CONSP (sequence)) return copy_list (sequence); | |
612 if (STRINGP (sequence)) return concat (1, &sequence, c_string, 0); | |
613 if (VECTORP (sequence)) return concat (1, &sequence, c_vector, 0); | |
614 if (BIT_VECTORP (sequence)) return concat (1, &sequence, c_bit_vector, 0); | |
615 | |
616 check_losing_bytecode ("copy-sequence", sequence); | |
617 sequence = wrong_type_argument (Qsequencep, sequence); | |
618 goto again; | |
619 } | |
620 | |
621 struct merge_string_extents_struct | |
622 { | |
623 Lisp_Object string; | |
624 Bytecount entry_offset; | |
625 Bytecount entry_length; | |
626 }; | |
627 | |
628 static Lisp_Object | |
629 concat (int nargs, Lisp_Object *args, | |
630 enum concat_target_type target_type, | |
631 int last_special) | |
632 { | |
633 Lisp_Object val; | |
634 Lisp_Object tail = Qnil; | |
635 int toindex; | |
636 int argnum; | |
637 Lisp_Object last_tail; | |
638 Lisp_Object prev; | |
639 struct merge_string_extents_struct *args_mse = 0; | |
867 | 640 Ibyte *string_result = 0; |
641 Ibyte *string_result_ptr = 0; | |
428 | 642 struct gcpro gcpro1; |
851 | 643 int sdep = specpdl_depth (); |
428 | 644 |
645 /* The modus operandi in Emacs is "caller gc-protects args". | |
646 However, concat is called many times in Emacs on freshly | |
647 created stuff. So we help those callers out by protecting | |
648 the args ourselves to save them a lot of temporary-variable | |
649 grief. */ | |
650 | |
651 GCPRO1 (args[0]); | |
652 gcpro1.nvars = nargs; | |
653 | |
654 #ifdef I18N3 | |
655 /* #### if the result is a string and any of the strings have a string | |
656 for the `string-translatable' property, then concat should also | |
657 concat the args but use the `string-translatable' strings, and store | |
658 the result in the returned string's `string-translatable' property. */ | |
659 #endif | |
660 if (target_type == c_string) | |
661 args_mse = alloca_array (struct merge_string_extents_struct, nargs); | |
662 | |
663 /* In append, the last arg isn't treated like the others */ | |
664 if (last_special && nargs > 0) | |
665 { | |
666 nargs--; | |
667 last_tail = args[nargs]; | |
668 } | |
669 else | |
670 last_tail = Qnil; | |
671 | |
672 /* Check and coerce the arguments. */ | |
673 for (argnum = 0; argnum < nargs; argnum++) | |
674 { | |
675 Lisp_Object seq = args[argnum]; | |
676 if (LISTP (seq)) | |
677 ; | |
678 else if (VECTORP (seq) || STRINGP (seq) || BIT_VECTORP (seq)) | |
679 ; | |
680 #ifdef LOSING_BYTECODE | |
681 else if (COMPILED_FUNCTIONP (seq)) | |
682 /* Urk! We allow this, for "compatibility"... */ | |
683 ; | |
684 #endif | |
685 #if 0 /* removed for XEmacs 21 */ | |
686 else if (INTP (seq)) | |
687 /* This is too revolting to think about but maintains | |
688 compatibility with FSF (and lots and lots of old code). */ | |
689 args[argnum] = Fnumber_to_string (seq); | |
690 #endif | |
691 else | |
692 { | |
693 check_losing_bytecode ("concat", seq); | |
694 args[argnum] = wrong_type_argument (Qsequencep, seq); | |
695 } | |
696 | |
697 if (args_mse) | |
698 { | |
699 if (STRINGP (seq)) | |
700 args_mse[argnum].string = seq; | |
701 else | |
702 args_mse[argnum].string = Qnil; | |
703 } | |
704 } | |
705 | |
706 { | |
707 /* Charcount is a misnomer here as we might be dealing with the | |
708 length of a vector or list, but emphasizes that we're not dealing | |
709 with Bytecounts in strings */ | |
710 Charcount total_length; | |
711 | |
712 for (argnum = 0, total_length = 0; argnum < nargs; argnum++) | |
713 { | |
714 #ifdef LOSING_BYTECODE | |
715 Charcount thislen = length_with_bytecode_hack (args[argnum]); | |
716 #else | |
717 Charcount thislen = XINT (Flength (args[argnum])); | |
718 #endif | |
719 total_length += thislen; | |
720 } | |
721 | |
722 switch (target_type) | |
723 { | |
724 case c_cons: | |
725 if (total_length == 0) | |
851 | 726 { |
727 unbind_to (sdep); | |
728 /* In append, if all but last arg are nil, return last arg */ | |
729 RETURN_UNGCPRO (last_tail); | |
730 } | |
428 | 731 val = Fmake_list (make_int (total_length), Qnil); |
732 break; | |
733 case c_vector: | |
734 val = make_vector (total_length, Qnil); | |
735 break; | |
736 case c_bit_vector: | |
737 val = make_bit_vector (total_length, Qzero); | |
738 break; | |
739 case c_string: | |
740 /* We don't make the string yet because we don't know the | |
741 actual number of bytes. This loop was formerly written | |
742 to call Fmake_string() here and then call set_string_char() | |
743 for each char. This seems logical enough but is waaaaaaaay | |
744 slow -- set_string_char() has to scan the whole string up | |
745 to the place where the substitution is called for in order | |
746 to find the place to change, and may have to do some | |
747 realloc()ing in order to make the char fit properly. | |
748 O(N^2) yuckage. */ | |
749 val = Qnil; | |
851 | 750 string_result = |
867 | 751 (Ibyte *) MALLOC_OR_ALLOCA (total_length * MAX_ICHAR_LEN); |
428 | 752 string_result_ptr = string_result; |
753 break; | |
754 default: | |
442 | 755 val = Qnil; |
2500 | 756 ABORT (); |
428 | 757 } |
758 } | |
759 | |
760 | |
761 if (CONSP (val)) | |
762 tail = val, toindex = -1; /* -1 in toindex is flag we are | |
763 making a list */ | |
764 else | |
765 toindex = 0; | |
766 | |
767 prev = Qnil; | |
768 | |
769 for (argnum = 0; argnum < nargs; argnum++) | |
770 { | |
771 Charcount thisleni = 0; | |
772 Charcount thisindex = 0; | |
773 Lisp_Object seq = args[argnum]; | |
867 | 774 Ibyte *string_source_ptr = 0; |
775 Ibyte *string_prev_result_ptr = string_result_ptr; | |
428 | 776 |
777 if (!CONSP (seq)) | |
778 { | |
779 #ifdef LOSING_BYTECODE | |
780 thisleni = length_with_bytecode_hack (seq); | |
781 #else | |
782 thisleni = XINT (Flength (seq)); | |
783 #endif | |
784 } | |
785 if (STRINGP (seq)) | |
786 string_source_ptr = XSTRING_DATA (seq); | |
787 | |
788 while (1) | |
789 { | |
790 Lisp_Object elt; | |
791 | |
792 /* We've come to the end of this arg, so exit. */ | |
793 if (NILP (seq)) | |
794 break; | |
795 | |
796 /* Fetch next element of `seq' arg into `elt' */ | |
797 if (CONSP (seq)) | |
798 { | |
799 elt = XCAR (seq); | |
800 seq = XCDR (seq); | |
801 } | |
802 else | |
803 { | |
804 if (thisindex >= thisleni) | |
805 break; | |
806 | |
807 if (STRINGP (seq)) | |
808 { | |
867 | 809 elt = make_char (itext_ichar (string_source_ptr)); |
810 INC_IBYTEPTR (string_source_ptr); | |
428 | 811 } |
812 else if (VECTORP (seq)) | |
813 elt = XVECTOR_DATA (seq)[thisindex]; | |
814 else if (BIT_VECTORP (seq)) | |
815 elt = make_int (bit_vector_bit (XBIT_VECTOR (seq), | |
816 thisindex)); | |
817 else | |
818 elt = Felt (seq, make_int (thisindex)); | |
819 thisindex++; | |
820 } | |
821 | |
822 /* Store into result */ | |
823 if (toindex < 0) | |
824 { | |
825 /* toindex negative means we are making a list */ | |
826 XCAR (tail) = elt; | |
827 prev = tail; | |
828 tail = XCDR (tail); | |
829 } | |
830 else if (VECTORP (val)) | |
831 XVECTOR_DATA (val)[toindex++] = elt; | |
832 else if (BIT_VECTORP (val)) | |
833 { | |
834 CHECK_BIT (elt); | |
835 set_bit_vector_bit (XBIT_VECTOR (val), toindex++, XINT (elt)); | |
836 } | |
837 else | |
838 { | |
839 CHECK_CHAR_COERCE_INT (elt); | |
867 | 840 string_result_ptr += set_itext_ichar (string_result_ptr, |
428 | 841 XCHAR (elt)); |
842 } | |
843 } | |
844 if (args_mse) | |
845 { | |
846 args_mse[argnum].entry_offset = | |
847 string_prev_result_ptr - string_result; | |
848 args_mse[argnum].entry_length = | |
849 string_result_ptr - string_prev_result_ptr; | |
850 } | |
851 } | |
852 | |
853 /* Now we finally make the string. */ | |
854 if (target_type == c_string) | |
855 { | |
856 val = make_string (string_result, string_result_ptr - string_result); | |
857 for (argnum = 0; argnum < nargs; argnum++) | |
858 { | |
859 if (STRINGP (args_mse[argnum].string)) | |
860 copy_string_extents (val, args_mse[argnum].string, | |
861 args_mse[argnum].entry_offset, 0, | |
862 args_mse[argnum].entry_length); | |
863 } | |
864 } | |
865 | |
866 if (!NILP (prev)) | |
867 XCDR (prev) = last_tail; | |
868 | |
851 | 869 unbind_to (sdep); |
428 | 870 RETURN_UNGCPRO (val); |
871 } | |
872 | |
873 DEFUN ("copy-alist", Fcopy_alist, 1, 1, 0, /* | |
874 Return a copy of ALIST. | |
875 This is an alist which represents the same mapping from objects to objects, | |
876 but does not share the alist structure with ALIST. | |
877 The objects mapped (cars and cdrs of elements of the alist) | |
878 are shared, however. | |
879 Elements of ALIST that are not conses are also shared. | |
880 */ | |
881 (alist)) | |
882 { | |
883 Lisp_Object tail; | |
884 | |
885 if (NILP (alist)) | |
886 return alist; | |
887 CHECK_CONS (alist); | |
888 | |
889 alist = concat (1, &alist, c_cons, 0); | |
890 for (tail = alist; CONSP (tail); tail = XCDR (tail)) | |
891 { | |
892 Lisp_Object car = XCAR (tail); | |
893 | |
894 if (CONSP (car)) | |
895 XCAR (tail) = Fcons (XCAR (car), XCDR (car)); | |
896 } | |
897 return alist; | |
898 } | |
899 | |
900 DEFUN ("copy-tree", Fcopy_tree, 1, 2, 0, /* | |
901 Return a copy of a list and substructures. | |
902 The argument is copied, and any lists contained within it are copied | |
903 recursively. Circularities and shared substructures are not preserved. | |
904 Second arg VECP causes vectors to be copied, too. Strings and bit vectors | |
905 are not copied. | |
906 */ | |
907 (arg, vecp)) | |
908 { | |
454 | 909 return safe_copy_tree (arg, vecp, 0); |
910 } | |
911 | |
912 Lisp_Object | |
913 safe_copy_tree (Lisp_Object arg, Lisp_Object vecp, int depth) | |
914 { | |
915 if (depth > 200) | |
563 | 916 stack_overflow ("Stack overflow in copy-tree", arg); |
454 | 917 |
428 | 918 if (CONSP (arg)) |
919 { | |
920 Lisp_Object rest; | |
921 rest = arg = Fcopy_sequence (arg); | |
922 while (CONSP (rest)) | |
923 { | |
924 Lisp_Object elt = XCAR (rest); | |
925 QUIT; | |
926 if (CONSP (elt) || VECTORP (elt)) | |
454 | 927 XCAR (rest) = safe_copy_tree (elt, vecp, depth + 1); |
428 | 928 if (VECTORP (XCDR (rest))) /* hack for (a b . [c d]) */ |
454 | 929 XCDR (rest) = safe_copy_tree (XCDR (rest), vecp, depth +1); |
428 | 930 rest = XCDR (rest); |
931 } | |
932 } | |
933 else if (VECTORP (arg) && ! NILP (vecp)) | |
934 { | |
935 int i = XVECTOR_LENGTH (arg); | |
936 int j; | |
937 arg = Fcopy_sequence (arg); | |
938 for (j = 0; j < i; j++) | |
939 { | |
940 Lisp_Object elt = XVECTOR_DATA (arg) [j]; | |
941 QUIT; | |
942 if (CONSP (elt) || VECTORP (elt)) | |
454 | 943 XVECTOR_DATA (arg) [j] = safe_copy_tree (elt, vecp, depth + 1); |
428 | 944 } |
945 } | |
946 return arg; | |
947 } | |
948 | |
949 DEFUN ("substring", Fsubstring, 2, 3, 0, /* | |
444 | 950 Return the substring of STRING starting at START and ending before END. |
951 END may be nil or omitted; then the substring runs to the end of STRING. | |
952 If START or END is negative, it counts from the end. | |
953 Relevant parts of the string-extent-data are copied to the new string. | |
428 | 954 */ |
444 | 955 (string, start, end)) |
428 | 956 { |
444 | 957 Charcount ccstart, ccend; |
958 Bytecount bstart, blen; | |
428 | 959 Lisp_Object val; |
960 | |
961 CHECK_STRING (string); | |
444 | 962 CHECK_INT (start); |
963 get_string_range_char (string, start, end, &ccstart, &ccend, | |
428 | 964 GB_HISTORICAL_STRING_BEHAVIOR); |
793 | 965 bstart = string_index_char_to_byte (string, ccstart); |
966 blen = string_offset_char_to_byte_len (string, bstart, ccend - ccstart); | |
444 | 967 val = make_string (XSTRING_DATA (string) + bstart, blen); |
968 /* Copy any applicable extent information into the new string. */ | |
969 copy_string_extents (val, string, 0, bstart, blen); | |
428 | 970 return val; |
971 } | |
972 | |
973 DEFUN ("subseq", Fsubseq, 2, 3, 0, /* | |
442 | 974 Return the subsequence of SEQUENCE starting at START and ending before END. |
975 END may be omitted; then the subsequence runs to the end of SEQUENCE. | |
976 If START or END is negative, it counts from the end. | |
977 The returned subsequence is always of the same type as SEQUENCE. | |
978 If SEQUENCE is a string, relevant parts of the string-extent-data | |
979 are copied to the new string. | |
428 | 980 */ |
442 | 981 (sequence, start, end)) |
428 | 982 { |
442 | 983 EMACS_INT len, s, e; |
984 | |
985 if (STRINGP (sequence)) | |
986 return Fsubstring (sequence, start, end); | |
987 | |
988 len = XINT (Flength (sequence)); | |
989 | |
990 CHECK_INT (start); | |
991 s = XINT (start); | |
992 if (s < 0) | |
993 s = len + s; | |
994 | |
995 if (NILP (end)) | |
996 e = len; | |
428 | 997 else |
998 { | |
442 | 999 CHECK_INT (end); |
1000 e = XINT (end); | |
1001 if (e < 0) | |
1002 e = len + e; | |
428 | 1003 } |
1004 | |
442 | 1005 if (!(0 <= s && s <= e && e <= len)) |
1006 args_out_of_range_3 (sequence, make_int (s), make_int (e)); | |
1007 | |
1008 if (VECTORP (sequence)) | |
428 | 1009 { |
442 | 1010 Lisp_Object result = make_vector (e - s, Qnil); |
428 | 1011 EMACS_INT i; |
442 | 1012 Lisp_Object *in_elts = XVECTOR_DATA (sequence); |
428 | 1013 Lisp_Object *out_elts = XVECTOR_DATA (result); |
1014 | |
442 | 1015 for (i = s; i < e; i++) |
1016 out_elts[i - s] = in_elts[i]; | |
428 | 1017 return result; |
1018 } | |
442 | 1019 else if (LISTP (sequence)) |
428 | 1020 { |
1021 Lisp_Object result = Qnil; | |
1022 EMACS_INT i; | |
1023 | |
442 | 1024 sequence = Fnthcdr (make_int (s), sequence); |
1025 | |
1026 for (i = s; i < e; i++) | |
428 | 1027 { |
442 | 1028 result = Fcons (Fcar (sequence), result); |
1029 sequence = Fcdr (sequence); | |
428 | 1030 } |
1031 | |
1032 return Fnreverse (result); | |
1033 } | |
442 | 1034 else if (BIT_VECTORP (sequence)) |
1035 { | |
1036 Lisp_Object result = make_bit_vector (e - s, Qzero); | |
1037 EMACS_INT i; | |
1038 | |
1039 for (i = s; i < e; i++) | |
1040 set_bit_vector_bit (XBIT_VECTOR (result), i - s, | |
1041 bit_vector_bit (XBIT_VECTOR (sequence), i)); | |
1042 return result; | |
1043 } | |
1044 else | |
1045 { | |
2500 | 1046 ABORT (); /* unreachable, since Flength (sequence) did not get |
442 | 1047 an error */ |
1048 return Qnil; | |
1049 } | |
428 | 1050 } |
1051 | |
771 | 1052 /* Split STRING into a list of substrings. The substrings are the |
1053 parts of original STRING separated by SEPCHAR. */ | |
1054 static Lisp_Object | |
867 | 1055 split_string_by_ichar_1 (const Ibyte *string, Bytecount size, |
1056 Ichar sepchar) | |
771 | 1057 { |
1058 Lisp_Object result = Qnil; | |
867 | 1059 const Ibyte *end = string + size; |
771 | 1060 |
1061 while (1) | |
1062 { | |
867 | 1063 const Ibyte *p = string; |
771 | 1064 while (p < end) |
1065 { | |
867 | 1066 if (itext_ichar (p) == sepchar) |
771 | 1067 break; |
867 | 1068 INC_IBYTEPTR (p); |
771 | 1069 } |
1070 result = Fcons (make_string (string, p - string), result); | |
1071 if (p < end) | |
1072 { | |
1073 string = p; | |
867 | 1074 INC_IBYTEPTR (string); /* skip sepchar */ |
771 | 1075 } |
1076 else | |
1077 break; | |
1078 } | |
1079 return Fnreverse (result); | |
1080 } | |
1081 | |
1082 /* The same as the above, except PATH is an external C string (it is | |
1083 converted using Qfile_name), and sepchar is hardcoded to SEPCHAR | |
1084 (':' or whatever). */ | |
1085 Lisp_Object | |
1086 split_external_path (const Extbyte *path) | |
1087 { | |
1088 Bytecount newlen; | |
867 | 1089 Ibyte *newpath; |
771 | 1090 if (!path) |
1091 return Qnil; | |
1092 | |
1093 TO_INTERNAL_FORMAT (C_STRING, path, ALLOCA, (newpath, newlen), Qfile_name); | |
1094 | |
1095 /* #### Does this make sense? It certainly does for | |
1096 split_env_path(), but it looks dubious here. Does any code | |
1097 depend on split_external_path("") returning nil instead of an empty | |
1098 string? */ | |
1099 if (!newlen) | |
1100 return Qnil; | |
1101 | |
867 | 1102 return split_string_by_ichar_1 (newpath, newlen, SEPCHAR); |
771 | 1103 } |
1104 | |
1105 Lisp_Object | |
867 | 1106 split_env_path (const CIbyte *evarname, const Ibyte *default_) |
771 | 1107 { |
867 | 1108 const Ibyte *path = 0; |
771 | 1109 if (evarname) |
1110 path = egetenv (evarname); | |
1111 if (!path) | |
1112 path = default_; | |
1113 if (!path) | |
1114 return Qnil; | |
867 | 1115 return split_string_by_ichar_1 (path, qxestrlen (path), SEPCHAR); |
771 | 1116 } |
1117 | |
1118 /* Ben thinks this function should not exist or be exported to Lisp. | |
1119 We use it to define split-path-string in subr.el (not!). */ | |
1120 | |
949 | 1121 DEFUN ("split-string-by-char", Fsplit_string_by_char, 2, 2, 0, /* |
771 | 1122 Split STRING into a list of substrings originally separated by SEPCHAR. |
1123 */ | |
1124 (string, sepchar)) | |
1125 { | |
1126 CHECK_STRING (string); | |
1127 CHECK_CHAR (sepchar); | |
867 | 1128 return split_string_by_ichar_1 (XSTRING_DATA (string), |
771 | 1129 XSTRING_LENGTH (string), |
1130 XCHAR (sepchar)); | |
1131 } | |
1132 | |
1133 /* #### This was supposed to be in subr.el, but is used VERY early in | |
1134 the bootstrap process, so it goes here. Damn. */ | |
1135 | |
1136 DEFUN ("split-path", Fsplit_path, 1, 1, 0, /* | |
1137 Explode a search path into a list of strings. | |
1138 The path components are separated with the characters specified | |
1139 with `path-separator'. | |
1140 */ | |
1141 (path)) | |
1142 { | |
1143 CHECK_STRING (path); | |
1144 | |
1145 while (!STRINGP (Vpath_separator) | |
826 | 1146 || (string_char_length (Vpath_separator) != 1)) |
771 | 1147 Vpath_separator = signal_continuable_error |
1148 (Qinvalid_state, | |
1149 "`path-separator' should be set to a single-character string", | |
1150 Vpath_separator); | |
1151 | |
867 | 1152 return (split_string_by_ichar_1 |
771 | 1153 (XSTRING_DATA (path), XSTRING_LENGTH (path), |
867 | 1154 itext_ichar (XSTRING_DATA (Vpath_separator)))); |
771 | 1155 } |
1156 | |
428 | 1157 |
1158 DEFUN ("nthcdr", Fnthcdr, 2, 2, 0, /* | |
1159 Take cdr N times on LIST, and return the result. | |
1160 */ | |
1161 (n, list)) | |
1162 { | |
1920 | 1163 /* This function can GC */ |
647 | 1164 REGISTER EMACS_INT i; |
428 | 1165 REGISTER Lisp_Object tail = list; |
1166 CHECK_NATNUM (n); | |
1167 for (i = XINT (n); i; i--) | |
1168 { | |
1169 if (CONSP (tail)) | |
1170 tail = XCDR (tail); | |
1171 else if (NILP (tail)) | |
1172 return Qnil; | |
1173 else | |
1174 { | |
1175 tail = wrong_type_argument (Qlistp, tail); | |
1176 i++; | |
1177 } | |
1178 } | |
1179 return tail; | |
1180 } | |
1181 | |
1182 DEFUN ("nth", Fnth, 2, 2, 0, /* | |
1183 Return the Nth element of LIST. | |
1184 N counts from zero. If LIST is not that long, nil is returned. | |
1185 */ | |
1186 (n, list)) | |
1187 { | |
1920 | 1188 /* This function can GC */ |
428 | 1189 return Fcar (Fnthcdr (n, list)); |
1190 } | |
1191 | |
1192 DEFUN ("elt", Felt, 2, 2, 0, /* | |
1193 Return element of SEQUENCE at index N. | |
1194 */ | |
1195 (sequence, n)) | |
1196 { | |
1920 | 1197 /* This function can GC */ |
428 | 1198 retry: |
1199 CHECK_INT_COERCE_CHAR (n); /* yuck! */ | |
1200 if (LISTP (sequence)) | |
1201 { | |
1202 Lisp_Object tem = Fnthcdr (n, sequence); | |
1203 /* #### Utterly, completely, fucking disgusting. | |
1204 * #### The whole point of "elt" is that it operates on | |
1205 * #### sequences, and does error- (bounds-) checking. | |
1206 */ | |
1207 if (CONSP (tem)) | |
1208 return XCAR (tem); | |
1209 else | |
1210 #if 1 | |
1211 /* This is The Way It Has Always Been. */ | |
1212 return Qnil; | |
1213 #else | |
1214 /* This is The Way Mly and Cltl2 say It Should Be. */ | |
1215 args_out_of_range (sequence, n); | |
1216 #endif | |
1217 } | |
1218 else if (STRINGP (sequence) || | |
1219 VECTORP (sequence) || | |
1220 BIT_VECTORP (sequence)) | |
1221 return Faref (sequence, n); | |
1222 #ifdef LOSING_BYTECODE | |
1223 else if (COMPILED_FUNCTIONP (sequence)) | |
1224 { | |
1225 EMACS_INT idx = XINT (n); | |
1226 if (idx < 0) | |
1227 { | |
1228 lose: | |
1229 args_out_of_range (sequence, n); | |
1230 } | |
1231 /* Utter perversity */ | |
1232 { | |
1233 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (sequence); | |
1234 switch (idx) | |
1235 { | |
1236 case COMPILED_ARGLIST: | |
1237 return compiled_function_arglist (f); | |
1238 case COMPILED_INSTRUCTIONS: | |
1239 return compiled_function_instructions (f); | |
1240 case COMPILED_CONSTANTS: | |
1241 return compiled_function_constants (f); | |
1242 case COMPILED_STACK_DEPTH: | |
1243 return compiled_function_stack_depth (f); | |
1244 case COMPILED_DOC_STRING: | |
1245 return compiled_function_documentation (f); | |
1246 case COMPILED_DOMAIN: | |
1247 return compiled_function_domain (f); | |
1248 case COMPILED_INTERACTIVE: | |
1249 if (f->flags.interactivep) | |
1250 return compiled_function_interactive (f); | |
1251 /* if we return nil, can't tell interactive with no args | |
1252 from noninteractive. */ | |
1253 goto lose; | |
1254 default: | |
1255 goto lose; | |
1256 } | |
1257 } | |
1258 } | |
1259 #endif /* LOSING_BYTECODE */ | |
1260 else | |
1261 { | |
1262 check_losing_bytecode ("elt", sequence); | |
1263 sequence = wrong_type_argument (Qsequencep, sequence); | |
1264 goto retry; | |
1265 } | |
1266 } | |
1267 | |
1268 DEFUN ("last", Flast, 1, 2, 0, /* | |
1269 Return the tail of list LIST, of length N (default 1). | |
1270 LIST may be a dotted list, but not a circular list. | |
1271 Optional argument N must be a non-negative integer. | |
1272 If N is zero, then the atom that terminates the list is returned. | |
1273 If N is greater than the length of LIST, then LIST itself is returned. | |
1274 */ | |
1275 (list, n)) | |
1276 { | |
1277 EMACS_INT int_n, count; | |
1278 Lisp_Object retval, tortoise, hare; | |
1279 | |
1280 CHECK_LIST (list); | |
1281 | |
1282 if (NILP (n)) | |
1283 int_n = 1; | |
1284 else | |
1285 { | |
1286 CHECK_NATNUM (n); | |
1287 int_n = XINT (n); | |
1288 } | |
1289 | |
1290 for (retval = tortoise = hare = list, count = 0; | |
1291 CONSP (hare); | |
1292 hare = XCDR (hare), | |
1293 (int_n-- <= 0 ? ((void) (retval = XCDR (retval))) : (void)0), | |
1294 count++) | |
1295 { | |
1296 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue; | |
1297 | |
1298 if (count & 1) | |
1299 tortoise = XCDR (tortoise); | |
1300 if (EQ (hare, tortoise)) | |
1301 signal_circular_list_error (list); | |
1302 } | |
1303 | |
1304 return retval; | |
1305 } | |
1306 | |
1307 DEFUN ("nbutlast", Fnbutlast, 1, 2, 0, /* | |
1308 Modify LIST to remove the last N (default 1) elements. | |
1309 If LIST has N or fewer elements, nil is returned and LIST is unmodified. | |
1310 */ | |
1311 (list, n)) | |
1312 { | |
1313 EMACS_INT int_n; | |
1314 | |
1315 CHECK_LIST (list); | |
1316 | |
1317 if (NILP (n)) | |
1318 int_n = 1; | |
1319 else | |
1320 { | |
1321 CHECK_NATNUM (n); | |
1322 int_n = XINT (n); | |
1323 } | |
1324 | |
1325 { | |
1326 Lisp_Object last_cons = list; | |
1327 | |
1328 EXTERNAL_LIST_LOOP_1 (list) | |
1329 { | |
1330 if (int_n-- < 0) | |
1331 last_cons = XCDR (last_cons); | |
1332 } | |
1333 | |
1334 if (int_n >= 0) | |
1335 return Qnil; | |
1336 | |
1337 XCDR (last_cons) = Qnil; | |
1338 return list; | |
1339 } | |
1340 } | |
1341 | |
1342 DEFUN ("butlast", Fbutlast, 1, 2, 0, /* | |
1343 Return a copy of LIST with the last N (default 1) elements removed. | |
1344 If LIST has N or fewer elements, nil is returned. | |
1345 */ | |
1346 (list, n)) | |
1347 { | |
444 | 1348 EMACS_INT int_n; |
428 | 1349 |
1350 CHECK_LIST (list); | |
1351 | |
1352 if (NILP (n)) | |
1353 int_n = 1; | |
1354 else | |
1355 { | |
1356 CHECK_NATNUM (n); | |
1357 int_n = XINT (n); | |
1358 } | |
1359 | |
1360 { | |
1361 Lisp_Object retval = Qnil; | |
1362 Lisp_Object tail = list; | |
1363 | |
1364 EXTERNAL_LIST_LOOP_1 (list) | |
1365 { | |
1366 if (--int_n < 0) | |
1367 { | |
1368 retval = Fcons (XCAR (tail), retval); | |
1369 tail = XCDR (tail); | |
1370 } | |
1371 } | |
1372 | |
1373 return Fnreverse (retval); | |
1374 } | |
1375 } | |
1376 | |
1377 DEFUN ("member", Fmember, 2, 2, 0, /* | |
1378 Return non-nil if ELT is an element of LIST. Comparison done with `equal'. | |
1379 The value is actually the tail of LIST whose car is ELT. | |
1380 */ | |
1381 (elt, list)) | |
1382 { | |
1383 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1384 { | |
1385 if (internal_equal (elt, list_elt, 0)) | |
1386 return tail; | |
1387 } | |
1388 return Qnil; | |
1389 } | |
1390 | |
1391 DEFUN ("old-member", Fold_member, 2, 2, 0, /* | |
1392 Return non-nil if ELT is an element of LIST. Comparison done with `old-equal'. | |
1393 The value is actually the tail of LIST whose car is ELT. | |
1394 This function is provided only for byte-code compatibility with v19. | |
1395 Do not use it. | |
1396 */ | |
1397 (elt, list)) | |
1398 { | |
1399 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1400 { | |
1401 if (internal_old_equal (elt, list_elt, 0)) | |
1402 return tail; | |
1403 } | |
1404 return Qnil; | |
1405 } | |
1406 | |
1407 DEFUN ("memq", Fmemq, 2, 2, 0, /* | |
1408 Return non-nil if ELT is an element of LIST. Comparison done with `eq'. | |
1409 The value is actually the tail of LIST whose car is ELT. | |
1410 */ | |
1411 (elt, list)) | |
1412 { | |
1413 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1414 { | |
1415 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt)) | |
1416 return tail; | |
1417 } | |
1418 return Qnil; | |
1419 } | |
1420 | |
1421 DEFUN ("old-memq", Fold_memq, 2, 2, 0, /* | |
1422 Return non-nil if ELT is an element of LIST. Comparison done with `old-eq'. | |
1423 The value is actually the tail of LIST whose car is ELT. | |
1424 This function is provided only for byte-code compatibility with v19. | |
1425 Do not use it. | |
1426 */ | |
1427 (elt, list)) | |
1428 { | |
1429 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1430 { | |
1431 if (HACKEQ_UNSAFE (elt, list_elt)) | |
1432 return tail; | |
1433 } | |
1434 return Qnil; | |
1435 } | |
1436 | |
1437 Lisp_Object | |
1438 memq_no_quit (Lisp_Object elt, Lisp_Object list) | |
1439 { | |
1440 LIST_LOOP_3 (list_elt, list, tail) | |
1441 { | |
1442 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt)) | |
1443 return tail; | |
1444 } | |
1445 return Qnil; | |
1446 } | |
1447 | |
1448 DEFUN ("assoc", Fassoc, 2, 2, 0, /* | |
444 | 1449 Return non-nil if KEY is `equal' to the car of an element of ALIST. |
1450 The value is actually the element of ALIST whose car equals KEY. | |
428 | 1451 */ |
444 | 1452 (key, alist)) |
428 | 1453 { |
1454 /* This function can GC. */ | |
444 | 1455 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1456 { |
1457 if (internal_equal (key, elt_car, 0)) | |
1458 return elt; | |
1459 } | |
1460 return Qnil; | |
1461 } | |
1462 | |
1463 DEFUN ("old-assoc", Fold_assoc, 2, 2, 0, /* | |
444 | 1464 Return non-nil if KEY is `old-equal' to the car of an element of ALIST. |
1465 The value is actually the element of ALIST whose car equals KEY. | |
428 | 1466 */ |
444 | 1467 (key, alist)) |
428 | 1468 { |
1469 /* This function can GC. */ | |
444 | 1470 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1471 { |
1472 if (internal_old_equal (key, elt_car, 0)) | |
1473 return elt; | |
1474 } | |
1475 return Qnil; | |
1476 } | |
1477 | |
1478 Lisp_Object | |
444 | 1479 assoc_no_quit (Lisp_Object key, Lisp_Object alist) |
428 | 1480 { |
1481 int speccount = specpdl_depth (); | |
1482 specbind (Qinhibit_quit, Qt); | |
771 | 1483 return unbind_to_1 (speccount, Fassoc (key, alist)); |
428 | 1484 } |
1485 | |
1486 DEFUN ("assq", Fassq, 2, 2, 0, /* | |
444 | 1487 Return non-nil if KEY is `eq' to the car of an element of ALIST. |
1488 The value is actually the element of ALIST whose car is KEY. | |
1489 Elements of ALIST that are not conses are ignored. | |
428 | 1490 */ |
444 | 1491 (key, alist)) |
428 | 1492 { |
444 | 1493 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1494 { |
1495 if (EQ_WITH_EBOLA_NOTICE (key, elt_car)) | |
1496 return elt; | |
1497 } | |
1498 return Qnil; | |
1499 } | |
1500 | |
1501 DEFUN ("old-assq", Fold_assq, 2, 2, 0, /* | |
444 | 1502 Return non-nil if KEY is `old-eq' to the car of an element of ALIST. |
1503 The value is actually the element of ALIST whose car is KEY. | |
1504 Elements of ALIST that are not conses are ignored. | |
428 | 1505 This function is provided only for byte-code compatibility with v19. |
1506 Do not use it. | |
1507 */ | |
444 | 1508 (key, alist)) |
428 | 1509 { |
444 | 1510 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1511 { |
1512 if (HACKEQ_UNSAFE (key, elt_car)) | |
1513 return elt; | |
1514 } | |
1515 return Qnil; | |
1516 } | |
1517 | |
1518 /* Like Fassq but never report an error and do not allow quits. | |
1519 Use only on lists known never to be circular. */ | |
1520 | |
1521 Lisp_Object | |
444 | 1522 assq_no_quit (Lisp_Object key, Lisp_Object alist) |
428 | 1523 { |
1524 /* This cannot GC. */ | |
444 | 1525 LIST_LOOP_2 (elt, alist) |
428 | 1526 { |
1527 Lisp_Object elt_car = XCAR (elt); | |
1528 if (EQ_WITH_EBOLA_NOTICE (key, elt_car)) | |
1529 return elt; | |
1530 } | |
1531 return Qnil; | |
1532 } | |
1533 | |
1534 DEFUN ("rassoc", Frassoc, 2, 2, 0, /* | |
444 | 1535 Return non-nil if VALUE is `equal' to the cdr of an element of ALIST. |
1536 The value is actually the element of ALIST whose cdr equals VALUE. | |
428 | 1537 */ |
444 | 1538 (value, alist)) |
428 | 1539 { |
444 | 1540 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1541 { |
444 | 1542 if (internal_equal (value, elt_cdr, 0)) |
428 | 1543 return elt; |
1544 } | |
1545 return Qnil; | |
1546 } | |
1547 | |
1548 DEFUN ("old-rassoc", Fold_rassoc, 2, 2, 0, /* | |
444 | 1549 Return non-nil if VALUE is `old-equal' to the cdr of an element of ALIST. |
1550 The value is actually the element of ALIST whose cdr equals VALUE. | |
428 | 1551 */ |
444 | 1552 (value, alist)) |
428 | 1553 { |
444 | 1554 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1555 { |
444 | 1556 if (internal_old_equal (value, elt_cdr, 0)) |
428 | 1557 return elt; |
1558 } | |
1559 return Qnil; | |
1560 } | |
1561 | |
1562 DEFUN ("rassq", Frassq, 2, 2, 0, /* | |
444 | 1563 Return non-nil if VALUE is `eq' to the cdr of an element of ALIST. |
1564 The value is actually the element of ALIST whose cdr is VALUE. | |
428 | 1565 */ |
444 | 1566 (value, alist)) |
428 | 1567 { |
444 | 1568 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1569 { |
444 | 1570 if (EQ_WITH_EBOLA_NOTICE (value, elt_cdr)) |
428 | 1571 return elt; |
1572 } | |
1573 return Qnil; | |
1574 } | |
1575 | |
1576 DEFUN ("old-rassq", Fold_rassq, 2, 2, 0, /* | |
444 | 1577 Return non-nil if VALUE is `old-eq' to the cdr of an element of ALIST. |
1578 The value is actually the element of ALIST whose cdr is VALUE. | |
428 | 1579 */ |
444 | 1580 (value, alist)) |
428 | 1581 { |
444 | 1582 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1583 { |
444 | 1584 if (HACKEQ_UNSAFE (value, elt_cdr)) |
428 | 1585 return elt; |
1586 } | |
1587 return Qnil; | |
1588 } | |
1589 | |
444 | 1590 /* Like Frassq, but caller must ensure that ALIST is properly |
428 | 1591 nil-terminated and ebola-free. */ |
1592 Lisp_Object | |
444 | 1593 rassq_no_quit (Lisp_Object value, Lisp_Object alist) |
428 | 1594 { |
444 | 1595 LIST_LOOP_2 (elt, alist) |
428 | 1596 { |
1597 Lisp_Object elt_cdr = XCDR (elt); | |
444 | 1598 if (EQ_WITH_EBOLA_NOTICE (value, elt_cdr)) |
428 | 1599 return elt; |
1600 } | |
1601 return Qnil; | |
1602 } | |
1603 | |
1604 | |
1605 DEFUN ("delete", Fdelete, 2, 2, 0, /* | |
1606 Delete by side effect any occurrences of ELT as a member of LIST. | |
1607 The modified LIST is returned. Comparison is done with `equal'. | |
1608 If the first member of LIST is ELT, there is no way to remove it by side | |
1609 effect; therefore, write `(setq foo (delete element foo))' to be sure | |
1610 of changing the value of `foo'. | |
1611 Also see: `remove'. | |
1612 */ | |
1613 (elt, list)) | |
1614 { | |
1615 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1616 (internal_equal (elt, list_elt, 0))); | |
1617 return list; | |
1618 } | |
1619 | |
1620 DEFUN ("old-delete", Fold_delete, 2, 2, 0, /* | |
1621 Delete by side effect any occurrences of ELT as a member of LIST. | |
1622 The modified LIST is returned. Comparison is done with `old-equal'. | |
1623 If the first member of LIST is ELT, there is no way to remove it by side | |
1624 effect; therefore, write `(setq foo (old-delete element foo))' to be sure | |
1625 of changing the value of `foo'. | |
1626 */ | |
1627 (elt, list)) | |
1628 { | |
1629 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1630 (internal_old_equal (elt, list_elt, 0))); | |
1631 return list; | |
1632 } | |
1633 | |
1634 DEFUN ("delq", Fdelq, 2, 2, 0, /* | |
1635 Delete by side effect any occurrences of ELT as a member of LIST. | |
1636 The modified LIST is returned. Comparison is done with `eq'. | |
1637 If the first member of LIST is ELT, there is no way to remove it by side | |
1638 effect; therefore, write `(setq foo (delq element foo))' to be sure of | |
1639 changing the value of `foo'. | |
1640 */ | |
1641 (elt, list)) | |
1642 { | |
1643 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1644 (EQ_WITH_EBOLA_NOTICE (elt, list_elt))); | |
1645 return list; | |
1646 } | |
1647 | |
1648 DEFUN ("old-delq", Fold_delq, 2, 2, 0, /* | |
1649 Delete by side effect any occurrences of ELT as a member of LIST. | |
1650 The modified LIST is returned. Comparison is done with `old-eq'. | |
1651 If the first member of LIST is ELT, there is no way to remove it by side | |
1652 effect; therefore, write `(setq foo (old-delq element foo))' to be sure of | |
1653 changing the value of `foo'. | |
1654 */ | |
1655 (elt, list)) | |
1656 { | |
1657 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1658 (HACKEQ_UNSAFE (elt, list_elt))); | |
1659 return list; | |
1660 } | |
1661 | |
1662 /* Like Fdelq, but caller must ensure that LIST is properly | |
1663 nil-terminated and ebola-free. */ | |
1664 | |
1665 Lisp_Object | |
1666 delq_no_quit (Lisp_Object elt, Lisp_Object list) | |
1667 { | |
1668 LIST_LOOP_DELETE_IF (list_elt, list, | |
1669 (EQ_WITH_EBOLA_NOTICE (elt, list_elt))); | |
1670 return list; | |
1671 } | |
1672 | |
1673 /* Be VERY careful with this. This is like delq_no_quit() but | |
1674 also calls free_cons() on the removed conses. You must be SURE | |
1675 that no pointers to the freed conses remain around (e.g. | |
1676 someone else is pointing to part of the list). This function | |
1677 is useful on internal lists that are used frequently and where | |
1678 the actual list doesn't escape beyond known code bounds. */ | |
1679 | |
1680 Lisp_Object | |
1681 delq_no_quit_and_free_cons (Lisp_Object elt, Lisp_Object list) | |
1682 { | |
1683 REGISTER Lisp_Object tail = list; | |
1684 REGISTER Lisp_Object prev = Qnil; | |
1685 | |
1686 while (!NILP (tail)) | |
1687 { | |
1688 REGISTER Lisp_Object tem = XCAR (tail); | |
1689 if (EQ (elt, tem)) | |
1690 { | |
1691 Lisp_Object cons_to_free = tail; | |
1692 if (NILP (prev)) | |
1693 list = XCDR (tail); | |
1694 else | |
1695 XCDR (prev) = XCDR (tail); | |
1696 tail = XCDR (tail); | |
853 | 1697 free_cons (cons_to_free); |
428 | 1698 } |
1699 else | |
1700 { | |
1701 prev = tail; | |
1702 tail = XCDR (tail); | |
1703 } | |
1704 } | |
1705 return list; | |
1706 } | |
1707 | |
1708 DEFUN ("remassoc", Fremassoc, 2, 2, 0, /* | |
444 | 1709 Delete by side effect any elements of ALIST whose car is `equal' to KEY. |
1710 The modified ALIST is returned. If the first member of ALIST has a car | |
428 | 1711 that is `equal' to KEY, there is no way to remove it by side effect; |
1712 therefore, write `(setq foo (remassoc key foo))' to be sure of changing | |
1713 the value of `foo'. | |
1714 */ | |
444 | 1715 (key, alist)) |
428 | 1716 { |
444 | 1717 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1718 (CONSP (elt) && |
1719 internal_equal (key, XCAR (elt), 0))); | |
444 | 1720 return alist; |
428 | 1721 } |
1722 | |
1723 Lisp_Object | |
444 | 1724 remassoc_no_quit (Lisp_Object key, Lisp_Object alist) |
428 | 1725 { |
1726 int speccount = specpdl_depth (); | |
1727 specbind (Qinhibit_quit, Qt); | |
771 | 1728 return unbind_to_1 (speccount, Fremassoc (key, alist)); |
428 | 1729 } |
1730 | |
1731 DEFUN ("remassq", Fremassq, 2, 2, 0, /* | |
444 | 1732 Delete by side effect any elements of ALIST whose car is `eq' to KEY. |
1733 The modified ALIST is returned. If the first member of ALIST has a car | |
428 | 1734 that is `eq' to KEY, there is no way to remove it by side effect; |
1735 therefore, write `(setq foo (remassq key foo))' to be sure of changing | |
1736 the value of `foo'. | |
1737 */ | |
444 | 1738 (key, alist)) |
428 | 1739 { |
444 | 1740 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1741 (CONSP (elt) && |
1742 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt)))); | |
444 | 1743 return alist; |
428 | 1744 } |
1745 | |
1746 /* no quit, no errors; be careful */ | |
1747 | |
1748 Lisp_Object | |
444 | 1749 remassq_no_quit (Lisp_Object key, Lisp_Object alist) |
428 | 1750 { |
444 | 1751 LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1752 (CONSP (elt) && |
1753 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt)))); | |
444 | 1754 return alist; |
428 | 1755 } |
1756 | |
1757 DEFUN ("remrassoc", Fremrassoc, 2, 2, 0, /* | |
444 | 1758 Delete by side effect any elements of ALIST whose cdr is `equal' to VALUE. |
1759 The modified ALIST is returned. If the first member of ALIST has a car | |
428 | 1760 that is `equal' to VALUE, there is no way to remove it by side effect; |
1761 therefore, write `(setq foo (remrassoc value foo))' to be sure of changing | |
1762 the value of `foo'. | |
1763 */ | |
444 | 1764 (value, alist)) |
428 | 1765 { |
444 | 1766 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1767 (CONSP (elt) && |
1768 internal_equal (value, XCDR (elt), 0))); | |
444 | 1769 return alist; |
428 | 1770 } |
1771 | |
1772 DEFUN ("remrassq", Fremrassq, 2, 2, 0, /* | |
444 | 1773 Delete by side effect any elements of ALIST whose cdr is `eq' to VALUE. |
1774 The modified ALIST is returned. If the first member of ALIST has a car | |
428 | 1775 that is `eq' to VALUE, there is no way to remove it by side effect; |
1776 therefore, write `(setq foo (remrassq value foo))' to be sure of changing | |
1777 the value of `foo'. | |
1778 */ | |
444 | 1779 (value, alist)) |
428 | 1780 { |
444 | 1781 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1782 (CONSP (elt) && |
1783 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt)))); | |
444 | 1784 return alist; |
428 | 1785 } |
1786 | |
1787 /* Like Fremrassq, fast and unsafe; be careful */ | |
1788 Lisp_Object | |
444 | 1789 remrassq_no_quit (Lisp_Object value, Lisp_Object alist) |
428 | 1790 { |
444 | 1791 LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1792 (CONSP (elt) && |
1793 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt)))); | |
444 | 1794 return alist; |
428 | 1795 } |
1796 | |
1797 DEFUN ("nreverse", Fnreverse, 1, 1, 0, /* | |
1798 Reverse LIST by destructively modifying cdr pointers. | |
1799 Return the beginning of the reversed list. | |
1800 Also see: `reverse'. | |
1801 */ | |
1802 (list)) | |
1803 { | |
1804 struct gcpro gcpro1, gcpro2; | |
1849 | 1805 Lisp_Object prev = Qnil; |
1806 Lisp_Object tail = list; | |
428 | 1807 |
1808 /* We gcpro our args; see `nconc' */ | |
1809 GCPRO2 (prev, tail); | |
1810 while (!NILP (tail)) | |
1811 { | |
1812 REGISTER Lisp_Object next; | |
1813 CONCHECK_CONS (tail); | |
1814 next = XCDR (tail); | |
1815 XCDR (tail) = prev; | |
1816 prev = tail; | |
1817 tail = next; | |
1818 } | |
1819 UNGCPRO; | |
1820 return prev; | |
1821 } | |
1822 | |
1823 DEFUN ("reverse", Freverse, 1, 1, 0, /* | |
1824 Reverse LIST, copying. Return the beginning of the reversed list. | |
1825 See also the function `nreverse', which is used more often. | |
1826 */ | |
1827 (list)) | |
1828 { | |
1829 Lisp_Object reversed_list = Qnil; | |
1830 EXTERNAL_LIST_LOOP_2 (elt, list) | |
1831 { | |
1832 reversed_list = Fcons (elt, reversed_list); | |
1833 } | |
1834 return reversed_list; | |
1835 } | |
1836 | |
1837 static Lisp_Object list_merge (Lisp_Object org_l1, Lisp_Object org_l2, | |
1838 Lisp_Object lisp_arg, | |
1839 int (*pred_fn) (Lisp_Object, Lisp_Object, | |
1840 Lisp_Object lisp_arg)); | |
1841 | |
872 | 1842 /* The sort function should return > 0 if OBJ1 < OBJ2, < 0 otherwise. |
1843 NOTE: This is backwards from the way qsort() works. */ | |
1844 | |
428 | 1845 Lisp_Object |
1846 list_sort (Lisp_Object list, | |
1847 Lisp_Object lisp_arg, | |
872 | 1848 int (*pred_fn) (Lisp_Object obj1, Lisp_Object obj2, |
428 | 1849 Lisp_Object lisp_arg)) |
1850 { | |
1851 struct gcpro gcpro1, gcpro2, gcpro3; | |
1852 Lisp_Object back, tem; | |
1853 Lisp_Object front = list; | |
1854 Lisp_Object len = Flength (list); | |
444 | 1855 |
1856 if (XINT (len) < 2) | |
428 | 1857 return list; |
1858 | |
444 | 1859 len = make_int (XINT (len) / 2 - 1); |
428 | 1860 tem = Fnthcdr (len, list); |
1861 back = Fcdr (tem); | |
1862 Fsetcdr (tem, Qnil); | |
1863 | |
1864 GCPRO3 (front, back, lisp_arg); | |
1865 front = list_sort (front, lisp_arg, pred_fn); | |
1866 back = list_sort (back, lisp_arg, pred_fn); | |
1867 UNGCPRO; | |
1868 return list_merge (front, back, lisp_arg, pred_fn); | |
1869 } | |
1870 | |
1871 | |
1872 static int | |
1873 merge_pred_function (Lisp_Object obj1, Lisp_Object obj2, | |
1874 Lisp_Object pred) | |
1875 { | |
1876 Lisp_Object tmp; | |
1877 | |
1878 /* prevents the GC from happening in call2 */ | |
853 | 1879 /* Emacs' GC doesn't actually relocate pointers, so this probably |
1880 isn't strictly necessary */ | |
771 | 1881 int speccount = begin_gc_forbidden (); |
428 | 1882 tmp = call2 (pred, obj1, obj2); |
771 | 1883 unbind_to (speccount); |
428 | 1884 |
1885 if (NILP (tmp)) | |
1886 return -1; | |
1887 else | |
1888 return 1; | |
1889 } | |
1890 | |
1891 DEFUN ("sort", Fsort, 2, 2, 0, /* | |
1892 Sort LIST, stably, comparing elements using PREDICATE. | |
1893 Returns the sorted list. LIST is modified by side effects. | |
1894 PREDICATE is called with two elements of LIST, and should return T | |
1895 if the first element is "less" than the second. | |
1896 */ | |
444 | 1897 (list, predicate)) |
428 | 1898 { |
444 | 1899 return list_sort (list, predicate, merge_pred_function); |
428 | 1900 } |
1901 | |
1902 Lisp_Object | |
1903 merge (Lisp_Object org_l1, Lisp_Object org_l2, | |
1904 Lisp_Object pred) | |
1905 { | |
1906 return list_merge (org_l1, org_l2, pred, merge_pred_function); | |
1907 } | |
1908 | |
1909 | |
1910 static Lisp_Object | |
1911 list_merge (Lisp_Object org_l1, Lisp_Object org_l2, | |
1912 Lisp_Object lisp_arg, | |
1913 int (*pred_fn) (Lisp_Object, Lisp_Object, Lisp_Object lisp_arg)) | |
1914 { | |
1915 Lisp_Object value; | |
1916 Lisp_Object tail; | |
1917 Lisp_Object tem; | |
1918 Lisp_Object l1, l2; | |
1919 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; | |
1920 | |
1921 l1 = org_l1; | |
1922 l2 = org_l2; | |
1923 tail = Qnil; | |
1924 value = Qnil; | |
1925 | |
1926 /* It is sufficient to protect org_l1 and org_l2. | |
1927 When l1 and l2 are updated, we copy the new values | |
1928 back into the org_ vars. */ | |
1929 | |
1930 GCPRO4 (org_l1, org_l2, lisp_arg, value); | |
1931 | |
1932 while (1) | |
1933 { | |
1934 if (NILP (l1)) | |
1935 { | |
1936 UNGCPRO; | |
1937 if (NILP (tail)) | |
1938 return l2; | |
1939 Fsetcdr (tail, l2); | |
1940 return value; | |
1941 } | |
1942 if (NILP (l2)) | |
1943 { | |
1944 UNGCPRO; | |
1945 if (NILP (tail)) | |
1946 return l1; | |
1947 Fsetcdr (tail, l1); | |
1948 return value; | |
1949 } | |
1950 | |
1951 if (((*pred_fn) (Fcar (l2), Fcar (l1), lisp_arg)) < 0) | |
1952 { | |
1953 tem = l1; | |
1954 l1 = Fcdr (l1); | |
1955 org_l1 = l1; | |
1956 } | |
1957 else | |
1958 { | |
1959 tem = l2; | |
1960 l2 = Fcdr (l2); | |
1961 org_l2 = l2; | |
1962 } | |
1963 if (NILP (tail)) | |
1964 value = tem; | |
1965 else | |
1966 Fsetcdr (tail, tem); | |
1967 tail = tem; | |
1968 } | |
1969 } | |
1970 | |
1971 | |
1972 /************************************************************************/ | |
1973 /* property-list functions */ | |
1974 /************************************************************************/ | |
1975 | |
1976 /* For properties of text, we need to do order-insensitive comparison of | |
1977 plists. That is, we need to compare two plists such that they are the | |
1978 same if they have the same set of keys, and equivalent values. | |
1979 So (a 1 b 2) would be equal to (b 2 a 1). | |
1980 | |
1981 NIL_MEANS_NOT_PRESENT is as in `plists-eq' etc. | |
1982 LAXP means use `equal' for comparisons. | |
1983 */ | |
1984 int | |
1985 plists_differ (Lisp_Object a, Lisp_Object b, int nil_means_not_present, | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
1986 int laxp, int depth, int foldcase) |
428 | 1987 { |
438 | 1988 int eqp = (depth == -1); /* -1 as depth means use eq, not equal. */ |
428 | 1989 int la, lb, m, i, fill; |
1990 Lisp_Object *keys, *vals; | |
1991 char *flags; | |
1992 Lisp_Object rest; | |
1993 | |
1994 if (NILP (a) && NILP (b)) | |
1995 return 0; | |
1996 | |
1997 Fcheck_valid_plist (a); | |
1998 Fcheck_valid_plist (b); | |
1999 | |
2000 la = XINT (Flength (a)); | |
2001 lb = XINT (Flength (b)); | |
2002 m = (la > lb ? la : lb); | |
2003 fill = 0; | |
2004 keys = alloca_array (Lisp_Object, m); | |
2005 vals = alloca_array (Lisp_Object, m); | |
2006 flags = alloca_array (char, m); | |
2007 | |
2008 /* First extract the pairs from A. */ | |
2009 for (rest = a; !NILP (rest); rest = XCDR (XCDR (rest))) | |
2010 { | |
2011 Lisp_Object k = XCAR (rest); | |
2012 Lisp_Object v = XCAR (XCDR (rest)); | |
2013 /* Maybe be Ebolified. */ | |
2014 if (nil_means_not_present && NILP (v)) continue; | |
2015 keys [fill] = k; | |
2016 vals [fill] = v; | |
2017 flags[fill] = 0; | |
2018 fill++; | |
2019 } | |
2020 /* Now iterate over B, and stop if we find something that's not in A, | |
2021 or that doesn't match. As we match, mark them. */ | |
2022 for (rest = b; !NILP (rest); rest = XCDR (XCDR (rest))) | |
2023 { | |
2024 Lisp_Object k = XCAR (rest); | |
2025 Lisp_Object v = XCAR (XCDR (rest)); | |
2026 /* Maybe be Ebolified. */ | |
2027 if (nil_means_not_present && NILP (v)) continue; | |
2028 for (i = 0; i < fill; i++) | |
2029 { | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2030 if (!laxp ? EQ (k, keys [i]) : |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2031 internal_equal_0 (k, keys [i], depth, foldcase)) |
428 | 2032 { |
434 | 2033 if (eqp |
2034 /* We narrowly escaped being Ebolified here. */ | |
2035 ? !EQ_WITH_EBOLA_NOTICE (v, vals [i]) | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2036 : !internal_equal_0 (v, vals [i], depth, foldcase)) |
428 | 2037 /* a property in B has a different value than in A */ |
2038 goto MISMATCH; | |
2039 flags [i] = 1; | |
2040 break; | |
2041 } | |
2042 } | |
2043 if (i == fill) | |
2044 /* there are some properties in B that are not in A */ | |
2045 goto MISMATCH; | |
2046 } | |
2047 /* Now check to see that all the properties in A were also in B */ | |
2048 for (i = 0; i < fill; i++) | |
2049 if (flags [i] == 0) | |
2050 goto MISMATCH; | |
2051 | |
2052 /* Ok. */ | |
2053 return 0; | |
2054 | |
2055 MISMATCH: | |
2056 return 1; | |
2057 } | |
2058 | |
2059 DEFUN ("plists-eq", Fplists_eq, 2, 3, 0, /* | |
2060 Return non-nil if property lists A and B are `eq'. | |
2061 A property list is an alternating list of keywords and values. | |
2062 This function does order-insensitive comparisons of the property lists: | |
2063 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
2064 Comparison between values is done using `eq'. See also `plists-equal'. | |
2065 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2066 a nil value is ignored. This feature is a virus that has infected | |
2067 old Lisp implementations, but should not be used except for backward | |
2068 compatibility. | |
2069 */ | |
2070 (a, b, nil_means_not_present)) | |
2071 { | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2072 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, -1, 0) |
428 | 2073 ? Qnil : Qt); |
2074 } | |
2075 | |
2076 DEFUN ("plists-equal", Fplists_equal, 2, 3, 0, /* | |
2077 Return non-nil if property lists A and B are `equal'. | |
2078 A property list is an alternating list of keywords and values. This | |
2079 function does order-insensitive comparisons of the property lists: For | |
2080 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
2081 Comparison between values is done using `equal'. See also `plists-eq'. | |
2082 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2083 a nil value is ignored. This feature is a virus that has infected | |
2084 old Lisp implementations, but should not be used except for backward | |
2085 compatibility. | |
2086 */ | |
2087 (a, b, nil_means_not_present)) | |
2088 { | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2089 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, 1, 0) |
428 | 2090 ? Qnil : Qt); |
2091 } | |
2092 | |
2093 | |
2094 DEFUN ("lax-plists-eq", Flax_plists_eq, 2, 3, 0, /* | |
2095 Return non-nil if lax property lists A and B are `eq'. | |
2096 A property list is an alternating list of keywords and values. | |
2097 This function does order-insensitive comparisons of the property lists: | |
2098 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
2099 Comparison between values is done using `eq'. See also `plists-equal'. | |
2100 A lax property list is like a regular one except that comparisons between | |
2101 keywords is done using `equal' instead of `eq'. | |
2102 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2103 a nil value is ignored. This feature is a virus that has infected | |
2104 old Lisp implementations, but should not be used except for backward | |
2105 compatibility. | |
2106 */ | |
2107 (a, b, nil_means_not_present)) | |
2108 { | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2109 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, -1, 0) |
428 | 2110 ? Qnil : Qt); |
2111 } | |
2112 | |
2113 DEFUN ("lax-plists-equal", Flax_plists_equal, 2, 3, 0, /* | |
2114 Return non-nil if lax property lists A and B are `equal'. | |
2115 A property list is an alternating list of keywords and values. This | |
2116 function does order-insensitive comparisons of the property lists: For | |
2117 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
2118 Comparison between values is done using `equal'. See also `plists-eq'. | |
2119 A lax property list is like a regular one except that comparisons between | |
2120 keywords is done using `equal' instead of `eq'. | |
2121 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2122 a nil value is ignored. This feature is a virus that has infected | |
2123 old Lisp implementations, but should not be used except for backward | |
2124 compatibility. | |
2125 */ | |
2126 (a, b, nil_means_not_present)) | |
2127 { | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2128 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, 1, 0) |
428 | 2129 ? Qnil : Qt); |
2130 } | |
2131 | |
2132 /* Return the value associated with key PROPERTY in property list PLIST. | |
2133 Return nil if key not found. This function is used for internal | |
2134 property lists that cannot be directly manipulated by the user. | |
2135 */ | |
2136 | |
2137 Lisp_Object | |
2138 internal_plist_get (Lisp_Object plist, Lisp_Object property) | |
2139 { | |
2140 Lisp_Object tail; | |
2141 | |
2142 for (tail = plist; !NILP (tail); tail = XCDR (XCDR (tail))) | |
2143 { | |
2144 if (EQ (XCAR (tail), property)) | |
2145 return XCAR (XCDR (tail)); | |
2146 } | |
2147 | |
2148 return Qunbound; | |
2149 } | |
2150 | |
2151 /* Set PLIST's value for PROPERTY to VALUE. Analogous to | |
2152 internal_plist_get(). */ | |
2153 | |
2154 void | |
2155 internal_plist_put (Lisp_Object *plist, Lisp_Object property, | |
2156 Lisp_Object value) | |
2157 { | |
2158 Lisp_Object tail; | |
2159 | |
2160 for (tail = *plist; !NILP (tail); tail = XCDR (XCDR (tail))) | |
2161 { | |
2162 if (EQ (XCAR (tail), property)) | |
2163 { | |
2164 XCAR (XCDR (tail)) = value; | |
2165 return; | |
2166 } | |
2167 } | |
2168 | |
2169 *plist = Fcons (property, Fcons (value, *plist)); | |
2170 } | |
2171 | |
2172 int | |
2173 internal_remprop (Lisp_Object *plist, Lisp_Object property) | |
2174 { | |
2175 Lisp_Object tail, prev; | |
2176 | |
2177 for (tail = *plist, prev = Qnil; | |
2178 !NILP (tail); | |
2179 tail = XCDR (XCDR (tail))) | |
2180 { | |
2181 if (EQ (XCAR (tail), property)) | |
2182 { | |
2183 if (NILP (prev)) | |
2184 *plist = XCDR (XCDR (tail)); | |
2185 else | |
2186 XCDR (XCDR (prev)) = XCDR (XCDR (tail)); | |
2187 return 1; | |
2188 } | |
2189 else | |
2190 prev = tail; | |
2191 } | |
2192 | |
2193 return 0; | |
2194 } | |
2195 | |
2196 /* Called on a malformed property list. BADPLACE should be some | |
2197 place where truncating will form a good list -- i.e. we shouldn't | |
2198 result in a list with an odd length. */ | |
2199 | |
2200 static Lisp_Object | |
578 | 2201 bad_bad_bunny (Lisp_Object *plist, Lisp_Object *badplace, Error_Behavior errb) |
428 | 2202 { |
2203 if (ERRB_EQ (errb, ERROR_ME)) | |
2204 return Fsignal (Qmalformed_property_list, list2 (*plist, *badplace)); | |
2205 else | |
2206 { | |
2207 if (ERRB_EQ (errb, ERROR_ME_WARN)) | |
2208 { | |
2209 warn_when_safe_lispobj | |
2210 (Qlist, Qwarning, | |
771 | 2211 list2 (build_msg_string |
428 | 2212 ("Malformed property list -- list has been truncated"), |
2213 *plist)); | |
793 | 2214 /* #### WARNING: This is more dangerous than it seems; perhaps |
2215 not a good idea. It also violates the principle of least | |
2216 surprise -- passing in ERROR_ME_WARN causes truncation, but | |
2217 ERROR_ME and ERROR_ME_NOT don't. */ | |
428 | 2218 *badplace = Qnil; |
2219 } | |
2220 return Qunbound; | |
2221 } | |
2222 } | |
2223 | |
2224 /* Called on a circular property list. BADPLACE should be some place | |
2225 where truncating will result in an even-length list, as above. | |
2226 If doesn't particularly matter where we truncate -- anywhere we | |
2227 truncate along the entire list will break the circularity, because | |
2228 it will create a terminus and the list currently doesn't have one. | |
2229 */ | |
2230 | |
2231 static Lisp_Object | |
578 | 2232 bad_bad_turtle (Lisp_Object *plist, Lisp_Object *badplace, Error_Behavior errb) |
428 | 2233 { |
2234 if (ERRB_EQ (errb, ERROR_ME)) | |
2235 return Fsignal (Qcircular_property_list, list1 (*plist)); | |
2236 else | |
2237 { | |
2238 if (ERRB_EQ (errb, ERROR_ME_WARN)) | |
2239 { | |
2240 warn_when_safe_lispobj | |
2241 (Qlist, Qwarning, | |
771 | 2242 list2 (build_msg_string |
428 | 2243 ("Circular property list -- list has been truncated"), |
2244 *plist)); | |
793 | 2245 /* #### WARNING: This is more dangerous than it seems; perhaps |
2246 not a good idea. It also violates the principle of least | |
2247 surprise -- passing in ERROR_ME_WARN causes truncation, but | |
2248 ERROR_ME and ERROR_ME_NOT don't. */ | |
428 | 2249 *badplace = Qnil; |
2250 } | |
2251 return Qunbound; | |
2252 } | |
2253 } | |
2254 | |
2255 /* Advance the tortoise pointer by two (one iteration of a property-list | |
2256 loop) and the hare pointer by four and verify that no malformations | |
2257 or circularities exist. If so, return zero and store a value into | |
2258 RETVAL that should be returned by the calling function. Otherwise, | |
2259 return 1. See external_plist_get(). | |
2260 */ | |
2261 | |
2262 static int | |
2263 advance_plist_pointers (Lisp_Object *plist, | |
2264 Lisp_Object **tortoise, Lisp_Object **hare, | |
578 | 2265 Error_Behavior errb, Lisp_Object *retval) |
428 | 2266 { |
2267 int i; | |
2268 Lisp_Object *tortsave = *tortoise; | |
2269 | |
2270 /* Note that our "fixing" may be more brutal than necessary, | |
2271 but it's the user's own problem, not ours, if they went in and | |
2272 manually fucked up a plist. */ | |
2273 | |
2274 for (i = 0; i < 2; i++) | |
2275 { | |
2276 /* This is a standard iteration of a defensive-loop-checking | |
2277 loop. We just do it twice because we want to advance past | |
2278 both the property and its value. | |
2279 | |
2280 If the pointer indirection is confusing you, remember that | |
2281 one level of indirection on the hare and tortoise pointers | |
2282 is only due to pass-by-reference for this function. The other | |
2283 level is so that the plist can be fixed in place. */ | |
2284 | |
2285 /* When we reach the end of a well-formed plist, **HARE is | |
2286 nil. In that case, we don't do anything at all except | |
2287 advance TORTOISE by one. Otherwise, we advance HARE | |
2288 by two (making sure it's OK to do so), then advance | |
2289 TORTOISE by one (it will always be OK to do so because | |
2290 the HARE is always ahead of the TORTOISE and will have | |
2291 already verified the path), then make sure TORTOISE and | |
2292 HARE don't contain the same non-nil object -- if the | |
2293 TORTOISE and the HARE ever meet, then obviously we're | |
2294 in a circularity, and if we're in a circularity, then | |
2295 the TORTOISE and the HARE can't cross paths without | |
2296 meeting, since the HARE only gains one step over the | |
2297 TORTOISE per iteration. */ | |
2298 | |
2299 if (!NILP (**hare)) | |
2300 { | |
2301 Lisp_Object *haresave = *hare; | |
2302 if (!CONSP (**hare)) | |
2303 { | |
2304 *retval = bad_bad_bunny (plist, haresave, errb); | |
2305 return 0; | |
2306 } | |
2307 *hare = &XCDR (**hare); | |
2308 /* In a non-plist, we'd check here for a nil value for | |
2309 **HARE, which is OK (it just means the list has an | |
2310 odd number of elements). In a plist, it's not OK | |
2311 for the list to have an odd number of elements. */ | |
2312 if (!CONSP (**hare)) | |
2313 { | |
2314 *retval = bad_bad_bunny (plist, haresave, errb); | |
2315 return 0; | |
2316 } | |
2317 *hare = &XCDR (**hare); | |
2318 } | |
2319 | |
2320 *tortoise = &XCDR (**tortoise); | |
2321 if (!NILP (**hare) && EQ (**tortoise, **hare)) | |
2322 { | |
2323 *retval = bad_bad_turtle (plist, tortsave, errb); | |
2324 return 0; | |
2325 } | |
2326 } | |
2327 | |
2328 return 1; | |
2329 } | |
2330 | |
2331 /* Return the value of PROPERTY from PLIST, or Qunbound if | |
2332 property is not on the list. | |
2333 | |
2334 PLIST is a Lisp-accessible property list, meaning that it | |
2335 has to be checked for malformations and circularities. | |
2336 | |
2337 If ERRB is ERROR_ME, an error will be signalled. Otherwise, the | |
2338 function will never signal an error; and if ERRB is ERROR_ME_WARN, | |
2339 on finding a malformation or a circularity, it issues a warning and | |
2340 attempts to silently fix the problem. | |
2341 | |
2342 A pointer to PLIST is passed in so that PLIST can be successfully | |
2343 "fixed" even if the error is at the beginning of the plist. */ | |
2344 | |
2345 Lisp_Object | |
2346 external_plist_get (Lisp_Object *plist, Lisp_Object property, | |
578 | 2347 int laxp, Error_Behavior errb) |
428 | 2348 { |
2349 Lisp_Object *tortoise = plist; | |
2350 Lisp_Object *hare = plist; | |
2351 | |
2352 while (!NILP (*tortoise)) | |
2353 { | |
2354 Lisp_Object *tortsave = tortoise; | |
2355 Lisp_Object retval; | |
2356 | |
2357 /* We do the standard tortoise/hare march. We isolate the | |
2358 grungy stuff to do this in advance_plist_pointers(), though. | |
2359 To us, all this function does is advance the tortoise | |
2360 pointer by two and the hare pointer by four and make sure | |
2361 everything's OK. We first advance the pointers and then | |
2362 check if a property matched; this ensures that our | |
2363 check for a matching property is safe. */ | |
2364 | |
2365 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval)) | |
2366 return retval; | |
2367 | |
2368 if (!laxp ? EQ (XCAR (*tortsave), property) | |
2369 : internal_equal (XCAR (*tortsave), property, 0)) | |
2370 return XCAR (XCDR (*tortsave)); | |
2371 } | |
2372 | |
2373 return Qunbound; | |
2374 } | |
2375 | |
2376 /* Set PLIST's value for PROPERTY to VALUE, given a possibly | |
2377 malformed or circular plist. Analogous to external_plist_get(). */ | |
2378 | |
2379 void | |
2380 external_plist_put (Lisp_Object *plist, Lisp_Object property, | |
578 | 2381 Lisp_Object value, int laxp, Error_Behavior errb) |
428 | 2382 { |
2383 Lisp_Object *tortoise = plist; | |
2384 Lisp_Object *hare = plist; | |
2385 | |
2386 while (!NILP (*tortoise)) | |
2387 { | |
2388 Lisp_Object *tortsave = tortoise; | |
2389 Lisp_Object retval; | |
2390 | |
2391 /* See above */ | |
2392 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval)) | |
2393 return; | |
2394 | |
2395 if (!laxp ? EQ (XCAR (*tortsave), property) | |
2396 : internal_equal (XCAR (*tortsave), property, 0)) | |
2397 { | |
2398 XCAR (XCDR (*tortsave)) = value; | |
2399 return; | |
2400 } | |
2401 } | |
2402 | |
2403 *plist = Fcons (property, Fcons (value, *plist)); | |
2404 } | |
2405 | |
2406 int | |
2407 external_remprop (Lisp_Object *plist, Lisp_Object property, | |
578 | 2408 int laxp, Error_Behavior errb) |
428 | 2409 { |
2410 Lisp_Object *tortoise = plist; | |
2411 Lisp_Object *hare = plist; | |
2412 | |
2413 while (!NILP (*tortoise)) | |
2414 { | |
2415 Lisp_Object *tortsave = tortoise; | |
2416 Lisp_Object retval; | |
2417 | |
2418 /* See above */ | |
2419 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval)) | |
2420 return 0; | |
2421 | |
2422 if (!laxp ? EQ (XCAR (*tortsave), property) | |
2423 : internal_equal (XCAR (*tortsave), property, 0)) | |
2424 { | |
2425 /* Now you see why it's so convenient to have that level | |
2426 of indirection. */ | |
2427 *tortsave = XCDR (XCDR (*tortsave)); | |
2428 return 1; | |
2429 } | |
2430 } | |
2431 | |
2432 return 0; | |
2433 } | |
2434 | |
2435 DEFUN ("plist-get", Fplist_get, 2, 3, 0, /* | |
2436 Extract a value from a property list. | |
2437 PLIST is a property list, which is a list of the form | |
444 | 2438 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...). |
2439 PROPERTY is usually a symbol. | |
2440 This function returns the value corresponding to the PROPERTY, | |
2441 or DEFAULT if PROPERTY is not one of the properties on the list. | |
428 | 2442 */ |
444 | 2443 (plist, property, default_)) |
428 | 2444 { |
444 | 2445 Lisp_Object value = external_plist_get (&plist, property, 0, ERROR_ME); |
2446 return UNBOUNDP (value) ? default_ : value; | |
428 | 2447 } |
2448 | |
2449 DEFUN ("plist-put", Fplist_put, 3, 3, 0, /* | |
444 | 2450 Change value in PLIST of PROPERTY to VALUE. |
2451 PLIST is a property list, which is a list of the form | |
2452 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2 ...). | |
2453 PROPERTY is usually a symbol and VALUE is any object. | |
2454 If PROPERTY is already a property on the list, its value is set to VALUE, | |
2455 otherwise the new PROPERTY VALUE pair is added. | |
2456 The new plist is returned; use `(setq x (plist-put x property value))' | |
2457 to be sure to use the new value. PLIST is modified by side effect. | |
428 | 2458 */ |
444 | 2459 (plist, property, value)) |
428 | 2460 { |
444 | 2461 external_plist_put (&plist, property, value, 0, ERROR_ME); |
428 | 2462 return plist; |
2463 } | |
2464 | |
2465 DEFUN ("plist-remprop", Fplist_remprop, 2, 2, 0, /* | |
444 | 2466 Remove from PLIST the property PROPERTY and its value. |
2467 PLIST is a property list, which is a list of the form | |
2468 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2 ...). | |
2469 PROPERTY is usually a symbol. | |
2470 The new plist is returned; use `(setq x (plist-remprop x property))' | |
2471 to be sure to use the new value. PLIST is modified by side effect. | |
428 | 2472 */ |
444 | 2473 (plist, property)) |
428 | 2474 { |
444 | 2475 external_remprop (&plist, property, 0, ERROR_ME); |
428 | 2476 return plist; |
2477 } | |
2478 | |
2479 DEFUN ("plist-member", Fplist_member, 2, 2, 0, /* | |
444 | 2480 Return t if PROPERTY has a value specified in PLIST. |
428 | 2481 */ |
444 | 2482 (plist, property)) |
428 | 2483 { |
444 | 2484 Lisp_Object value = Fplist_get (plist, property, Qunbound); |
2485 return UNBOUNDP (value) ? Qnil : Qt; | |
428 | 2486 } |
2487 | |
2488 DEFUN ("check-valid-plist", Fcheck_valid_plist, 1, 1, 0, /* | |
2489 Given a plist, signal an error if there is anything wrong with it. | |
2490 This means that it's a malformed or circular plist. | |
2491 */ | |
2492 (plist)) | |
2493 { | |
2494 Lisp_Object *tortoise; | |
2495 Lisp_Object *hare; | |
2496 | |
2497 start_over: | |
2498 tortoise = &plist; | |
2499 hare = &plist; | |
2500 while (!NILP (*tortoise)) | |
2501 { | |
2502 Lisp_Object retval; | |
2503 | |
2504 /* See above */ | |
2505 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME, | |
2506 &retval)) | |
2507 goto start_over; | |
2508 } | |
2509 | |
2510 return Qnil; | |
2511 } | |
2512 | |
2513 DEFUN ("valid-plist-p", Fvalid_plist_p, 1, 1, 0, /* | |
2514 Given a plist, return non-nil if its format is correct. | |
2515 If it returns nil, `check-valid-plist' will signal an error when given | |
442 | 2516 the plist; that means it's a malformed or circular plist. |
428 | 2517 */ |
2518 (plist)) | |
2519 { | |
2520 Lisp_Object *tortoise; | |
2521 Lisp_Object *hare; | |
2522 | |
2523 tortoise = &plist; | |
2524 hare = &plist; | |
2525 while (!NILP (*tortoise)) | |
2526 { | |
2527 Lisp_Object retval; | |
2528 | |
2529 /* See above */ | |
2530 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME_NOT, | |
2531 &retval)) | |
2532 return Qnil; | |
2533 } | |
2534 | |
2535 return Qt; | |
2536 } | |
2537 | |
2538 DEFUN ("canonicalize-plist", Fcanonicalize_plist, 1, 2, 0, /* | |
2539 Destructively remove any duplicate entries from a plist. | |
2540 In such cases, the first entry applies. | |
2541 | |
2542 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2543 a nil value is removed. This feature is a virus that has infected | |
2544 old Lisp implementations, but should not be used except for backward | |
2545 compatibility. | |
2546 | |
2547 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the | |
2548 return value may not be EQ to the passed-in value, so make sure to | |
2549 `setq' the value back into where it came from. | |
2550 */ | |
2551 (plist, nil_means_not_present)) | |
2552 { | |
2553 Lisp_Object head = plist; | |
2554 | |
2555 Fcheck_valid_plist (plist); | |
2556 | |
2557 while (!NILP (plist)) | |
2558 { | |
2559 Lisp_Object prop = Fcar (plist); | |
2560 Lisp_Object next = Fcdr (plist); | |
2561 | |
2562 CHECK_CONS (next); /* just make doubly sure we catch any errors */ | |
2563 if (!NILP (nil_means_not_present) && NILP (Fcar (next))) | |
2564 { | |
2565 if (EQ (head, plist)) | |
2566 head = Fcdr (next); | |
2567 plist = Fcdr (next); | |
2568 continue; | |
2569 } | |
2570 /* external_remprop returns 1 if it removed any property. | |
2571 We have to loop till it didn't remove anything, in case | |
2572 the property occurs many times. */ | |
2573 while (external_remprop (&XCDR (next), prop, 0, ERROR_ME)) | |
2574 DO_NOTHING; | |
2575 plist = Fcdr (next); | |
2576 } | |
2577 | |
2578 return head; | |
2579 } | |
2580 | |
2581 DEFUN ("lax-plist-get", Flax_plist_get, 2, 3, 0, /* | |
2582 Extract a value from a lax property list. | |
444 | 2583 LAX-PLIST is a lax property list, which is a list of the form |
2584 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between | |
2585 properties is done using `equal' instead of `eq'. | |
2586 PROPERTY is usually a symbol. | |
2587 This function returns the value corresponding to PROPERTY, | |
2588 or DEFAULT if PROPERTY is not one of the properties on the list. | |
428 | 2589 */ |
444 | 2590 (lax_plist, property, default_)) |
428 | 2591 { |
444 | 2592 Lisp_Object value = external_plist_get (&lax_plist, property, 1, ERROR_ME); |
2593 return UNBOUNDP (value) ? default_ : value; | |
428 | 2594 } |
2595 | |
2596 DEFUN ("lax-plist-put", Flax_plist_put, 3, 3, 0, /* | |
444 | 2597 Change value in LAX-PLIST of PROPERTY to VALUE. |
2598 LAX-PLIST is a lax property list, which is a list of the form | |
2599 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between | |
2600 properties is done using `equal' instead of `eq'. | |
2601 PROPERTY is usually a symbol and VALUE is any object. | |
2602 If PROPERTY is already a property on the list, its value is set to | |
2603 VALUE, otherwise the new PROPERTY VALUE pair is added. | |
2604 The new plist is returned; use `(setq x (lax-plist-put x property value))' | |
2605 to be sure to use the new value. LAX-PLIST is modified by side effect. | |
428 | 2606 */ |
444 | 2607 (lax_plist, property, value)) |
428 | 2608 { |
444 | 2609 external_plist_put (&lax_plist, property, value, 1, ERROR_ME); |
428 | 2610 return lax_plist; |
2611 } | |
2612 | |
2613 DEFUN ("lax-plist-remprop", Flax_plist_remprop, 2, 2, 0, /* | |
444 | 2614 Remove from LAX-PLIST the property PROPERTY and its value. |
2615 LAX-PLIST is a lax property list, which is a list of the form | |
2616 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between | |
2617 properties is done using `equal' instead of `eq'. | |
2618 PROPERTY is usually a symbol. | |
2619 The new plist is returned; use `(setq x (lax-plist-remprop x property))' | |
2620 to be sure to use the new value. LAX-PLIST is modified by side effect. | |
428 | 2621 */ |
444 | 2622 (lax_plist, property)) |
428 | 2623 { |
444 | 2624 external_remprop (&lax_plist, property, 1, ERROR_ME); |
428 | 2625 return lax_plist; |
2626 } | |
2627 | |
2628 DEFUN ("lax-plist-member", Flax_plist_member, 2, 2, 0, /* | |
444 | 2629 Return t if PROPERTY has a value specified in LAX-PLIST. |
2630 LAX-PLIST is a lax property list, which is a list of the form | |
2631 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between | |
2632 properties is done using `equal' instead of `eq'. | |
428 | 2633 */ |
444 | 2634 (lax_plist, property)) |
428 | 2635 { |
444 | 2636 return UNBOUNDP (Flax_plist_get (lax_plist, property, Qunbound)) ? Qnil : Qt; |
428 | 2637 } |
2638 | |
2639 DEFUN ("canonicalize-lax-plist", Fcanonicalize_lax_plist, 1, 2, 0, /* | |
2640 Destructively remove any duplicate entries from a lax plist. | |
2641 In such cases, the first entry applies. | |
2642 | |
2643 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2644 a nil value is removed. This feature is a virus that has infected | |
2645 old Lisp implementations, but should not be used except for backward | |
2646 compatibility. | |
2647 | |
2648 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the | |
2649 return value may not be EQ to the passed-in value, so make sure to | |
2650 `setq' the value back into where it came from. | |
2651 */ | |
2652 (lax_plist, nil_means_not_present)) | |
2653 { | |
2654 Lisp_Object head = lax_plist; | |
2655 | |
2656 Fcheck_valid_plist (lax_plist); | |
2657 | |
2658 while (!NILP (lax_plist)) | |
2659 { | |
2660 Lisp_Object prop = Fcar (lax_plist); | |
2661 Lisp_Object next = Fcdr (lax_plist); | |
2662 | |
2663 CHECK_CONS (next); /* just make doubly sure we catch any errors */ | |
2664 if (!NILP (nil_means_not_present) && NILP (Fcar (next))) | |
2665 { | |
2666 if (EQ (head, lax_plist)) | |
2667 head = Fcdr (next); | |
2668 lax_plist = Fcdr (next); | |
2669 continue; | |
2670 } | |
2671 /* external_remprop returns 1 if it removed any property. | |
2672 We have to loop till it didn't remove anything, in case | |
2673 the property occurs many times. */ | |
2674 while (external_remprop (&XCDR (next), prop, 1, ERROR_ME)) | |
2675 DO_NOTHING; | |
2676 lax_plist = Fcdr (next); | |
2677 } | |
2678 | |
2679 return head; | |
2680 } | |
2681 | |
2682 /* In C because the frame props stuff uses it */ | |
2683 | |
2684 DEFUN ("destructive-alist-to-plist", Fdestructive_alist_to_plist, 1, 1, 0, /* | |
2685 Convert association list ALIST into the equivalent property-list form. | |
2686 The plist is returned. This converts from | |
2687 | |
2688 \((a . 1) (b . 2) (c . 3)) | |
2689 | |
2690 into | |
2691 | |
2692 \(a 1 b 2 c 3) | |
2693 | |
2694 The original alist is destroyed in the process of constructing the plist. | |
2695 See also `alist-to-plist'. | |
2696 */ | |
2697 (alist)) | |
2698 { | |
2699 Lisp_Object head = alist; | |
2700 while (!NILP (alist)) | |
2701 { | |
2702 /* remember the alist element. */ | |
2703 Lisp_Object el = Fcar (alist); | |
2704 | |
2705 Fsetcar (alist, Fcar (el)); | |
2706 Fsetcar (el, Fcdr (el)); | |
2707 Fsetcdr (el, Fcdr (alist)); | |
2708 Fsetcdr (alist, el); | |
2709 alist = Fcdr (Fcdr (alist)); | |
2710 } | |
2711 | |
2712 return head; | |
2713 } | |
2714 | |
2715 DEFUN ("get", Fget, 2, 3, 0, /* | |
442 | 2716 Return the value of OBJECT's PROPERTY property. |
2717 This is the last VALUE stored with `(put OBJECT PROPERTY VALUE)'. | |
428 | 2718 If there is no such property, return optional third arg DEFAULT |
442 | 2719 \(which defaults to `nil'). OBJECT can be a symbol, string, extent, |
2720 face, or glyph. See also `put', `remprop', and `object-plist'. | |
428 | 2721 */ |
442 | 2722 (object, property, default_)) |
428 | 2723 { |
2724 /* Various places in emacs call Fget() and expect it not to quit, | |
2725 so don't quit. */ | |
442 | 2726 Lisp_Object val; |
2727 | |
2728 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->getprop) | |
2729 val = XRECORD_LHEADER_IMPLEMENTATION (object)->getprop (object, property); | |
428 | 2730 else |
563 | 2731 invalid_operation ("Object type has no properties", object); |
442 | 2732 |
2733 return UNBOUNDP (val) ? default_ : val; | |
428 | 2734 } |
2735 | |
2736 DEFUN ("put", Fput, 3, 3, 0, /* | |
442 | 2737 Set OBJECT's PROPERTY to VALUE. |
2738 It can be subsequently retrieved with `(get OBJECT PROPERTY)'. | |
2739 OBJECT can be a symbol, face, extent, or string. | |
428 | 2740 For a string, no properties currently have predefined meanings. |
2741 For the predefined properties for extents, see `set-extent-property'. | |
2742 For the predefined properties for faces, see `set-face-property'. | |
2743 See also `get', `remprop', and `object-plist'. | |
2744 */ | |
442 | 2745 (object, property, value)) |
428 | 2746 { |
1920 | 2747 /* This function cannot GC */ |
428 | 2748 CHECK_LISP_WRITEABLE (object); |
2749 | |
442 | 2750 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->putprop) |
428 | 2751 { |
442 | 2752 if (! XRECORD_LHEADER_IMPLEMENTATION (object)->putprop |
2753 (object, property, value)) | |
563 | 2754 invalid_change ("Can't set property on object", property); |
428 | 2755 } |
2756 else | |
563 | 2757 invalid_change ("Object type has no settable properties", object); |
428 | 2758 |
2759 return value; | |
2760 } | |
2761 | |
2762 DEFUN ("remprop", Fremprop, 2, 2, 0, /* | |
442 | 2763 Remove, from OBJECT's property list, PROPERTY and its corresponding value. |
2764 OBJECT can be a symbol, string, extent, face, or glyph. Return non-nil | |
2765 if the property list was actually modified (i.e. if PROPERTY was present | |
2766 in the property list). See also `get', `put', and `object-plist'. | |
428 | 2767 */ |
442 | 2768 (object, property)) |
428 | 2769 { |
442 | 2770 int ret = 0; |
2771 | |
428 | 2772 CHECK_LISP_WRITEABLE (object); |
2773 | |
442 | 2774 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->remprop) |
428 | 2775 { |
442 | 2776 ret = XRECORD_LHEADER_IMPLEMENTATION (object)->remprop (object, property); |
2777 if (ret == -1) | |
563 | 2778 invalid_change ("Can't remove property from object", property); |
428 | 2779 } |
2780 else | |
563 | 2781 invalid_change ("Object type has no removable properties", object); |
442 | 2782 |
2783 return ret ? Qt : Qnil; | |
428 | 2784 } |
2785 | |
2786 DEFUN ("object-plist", Fobject_plist, 1, 1, 0, /* | |
442 | 2787 Return a property list of OBJECT's properties. |
2788 For a symbol, this is equivalent to `symbol-plist'. | |
2789 OBJECT can be a symbol, string, extent, face, or glyph. | |
2790 Do not modify the returned property list directly; | |
2791 this may or may not have the desired effects. Use `put' instead. | |
428 | 2792 */ |
2793 (object)) | |
2794 { | |
442 | 2795 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->plist) |
2796 return XRECORD_LHEADER_IMPLEMENTATION (object)->plist (object); | |
428 | 2797 else |
563 | 2798 invalid_operation ("Object type has no properties", object); |
428 | 2799 |
2800 return Qnil; | |
2801 } | |
2802 | |
2803 | |
853 | 2804 static Lisp_Object |
2805 tweaked_internal_equal (Lisp_Object obj1, Lisp_Object obj2, | |
2806 Lisp_Object depth) | |
2807 { | |
2808 return make_int (internal_equal (obj1, obj2, XINT (depth))); | |
2809 } | |
2810 | |
2811 int | |
2812 internal_equal_trapping_problems (Lisp_Object warning_class, | |
2813 const char *warning_string, | |
2814 int flags, | |
2815 struct call_trapping_problems_result *p, | |
2816 int retval, | |
2817 Lisp_Object obj1, Lisp_Object obj2, | |
2818 int depth) | |
2819 { | |
2820 Lisp_Object glorp = | |
2821 va_call_trapping_problems (warning_class, warning_string, | |
2822 flags, p, | |
2823 (lisp_fn_t) tweaked_internal_equal, | |
2824 3, obj1, obj2, make_int (depth)); | |
2825 if (UNBOUNDP (glorp)) | |
2826 return retval; | |
2827 else | |
2828 return XINT (glorp); | |
2829 } | |
2830 | |
428 | 2831 int |
2832 internal_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
2833 { | |
2834 if (depth > 200) | |
563 | 2835 stack_overflow ("Stack overflow in equal", Qunbound); |
428 | 2836 QUIT; |
2837 if (EQ_WITH_EBOLA_NOTICE (obj1, obj2)) | |
2838 return 1; | |
2839 /* Note that (equal 20 20.0) should be nil */ | |
2840 if (XTYPE (obj1) != XTYPE (obj2)) | |
2841 return 0; | |
2842 if (LRECORDP (obj1)) | |
2843 { | |
442 | 2844 const struct lrecord_implementation |
428 | 2845 *imp1 = XRECORD_LHEADER_IMPLEMENTATION (obj1), |
2846 *imp2 = XRECORD_LHEADER_IMPLEMENTATION (obj2); | |
2847 | |
2848 return (imp1 == imp2) && | |
2849 /* EQ-ness of the objects was noticed above */ | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2850 (imp1->equal && (imp1->equal) (obj1, obj2, depth, 0)); |
428 | 2851 } |
2852 | |
2853 return 0; | |
2854 } | |
2855 | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2856 enum array_type |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2857 { |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2858 ARRAY_NONE = 0, |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2859 ARRAY_STRING, |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2860 ARRAY_VECTOR, |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2861 ARRAY_BIT_VECTOR |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2862 }; |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2863 |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2864 static enum array_type |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2865 array_type (Lisp_Object obj) |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2866 { |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2867 if (STRINGP (obj)) |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2868 return ARRAY_STRING; |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2869 if (VECTORP (obj)) |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2870 return ARRAY_VECTOR; |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2871 if (BIT_VECTORP (obj)) |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2872 return ARRAY_BIT_VECTOR; |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2873 return ARRAY_NONE; |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2874 } |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2875 |
801 | 2876 int |
2877 internal_equalp (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
2878 { | |
2879 if (depth > 200) | |
2880 stack_overflow ("Stack overflow in equalp", Qunbound); | |
2881 QUIT; | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2882 |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2883 /* 1. Objects that are `eq' are equal. This will catch the common case |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2884 of two equal fixnums or the same object seen twice. */ |
801 | 2885 if (EQ_WITH_EBOLA_NOTICE (obj1, obj2)) |
2886 return 1; | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2887 |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2888 /* 2. If both numbers, compare with `='. */ |
1983 | 2889 if (NUMBERP (obj1) && NUMBERP (obj2)) |
2890 { | |
4910
6bc1f3f6cf0d
Make canoncase visible to Lisp; use it with chars in internal_equalp.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4906
diff
changeset
|
2891 return (0 == bytecode_arithcompare (obj1, obj2)); |
1983 | 2892 } |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2893 |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2894 /* 3. If characters, compare case-insensitively. */ |
801 | 2895 if (CHARP (obj1) && CHARP (obj2)) |
4910
6bc1f3f6cf0d
Make canoncase visible to Lisp; use it with chars in internal_equalp.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4906
diff
changeset
|
2896 return CANONCASE (0, XCHAR (obj1)) == CANONCASE (0, XCHAR (obj2)); |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2897 |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2898 /* 4. If arrays of different types, compare their lengths, and |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2899 then compare element-by-element. */ |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2900 { |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2901 enum array_type artype1, artype2; |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2902 artype1 = array_type (obj1); |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2903 artype2 = array_type (obj2); |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2904 if (artype1 != artype2 && artype1 && artype2) |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2905 { |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2906 EMACS_INT i; |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2907 EMACS_INT l1 = XINT (Flength (obj1)); |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2908 EMACS_INT l2 = XINT (Flength (obj2)); |
4910
6bc1f3f6cf0d
Make canoncase visible to Lisp; use it with chars in internal_equalp.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4906
diff
changeset
|
2909 /* Both arrays, but of different lengths */ |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2910 if (l1 != l2) |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2911 return 0; |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2912 for (i = 0; i < l1; i++) |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2913 if (!internal_equalp (Faref (obj1, make_int (i)), |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2914 Faref (obj2, make_int (i)), depth + 1)) |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2915 return 0; |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2916 return 1; |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2917 } |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2918 } |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2919 /* 5. Else, they must be the same type. If so, call the equal() method, |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2920 telling it to fold case. For objects that care about case-folding |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2921 their contents, the equal() method will call internal_equal_0(). */ |
801 | 2922 if (XTYPE (obj1) != XTYPE (obj2)) |
2923 return 0; | |
2924 if (LRECORDP (obj1)) | |
2925 { | |
2926 const struct lrecord_implementation | |
2927 *imp1 = XRECORD_LHEADER_IMPLEMENTATION (obj1), | |
2928 *imp2 = XRECORD_LHEADER_IMPLEMENTATION (obj2); | |
2929 | |
2930 return (imp1 == imp2) && | |
2931 /* EQ-ness of the objects was noticed above */ | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2932 (imp1->equal && (imp1->equal) (obj1, obj2, depth, 1)); |
801 | 2933 } |
2934 | |
2935 return 0; | |
2936 } | |
2937 | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2938 int |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2939 internal_equal_0 (Lisp_Object obj1, Lisp_Object obj2, int depth, int foldcase) |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2940 { |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2941 if (foldcase) |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2942 return internal_equalp (obj1, obj2, depth); |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2943 else |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2944 return internal_equal (obj1, obj2, depth); |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2945 } |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2946 |
428 | 2947 /* Note that we may be calling sub-objects that will use |
2948 internal_equal() (instead of internal_old_equal()). Oh well. | |
2949 We will get an Ebola note if there's any possibility of confusion, | |
2950 but that seems unlikely. */ | |
2951 | |
2952 static int | |
2953 internal_old_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
2954 { | |
2955 if (depth > 200) | |
563 | 2956 stack_overflow ("Stack overflow in equal", Qunbound); |
428 | 2957 QUIT; |
2958 if (HACKEQ_UNSAFE (obj1, obj2)) | |
2959 return 1; | |
2960 /* Note that (equal 20 20.0) should be nil */ | |
2961 if (XTYPE (obj1) != XTYPE (obj2)) | |
2962 return 0; | |
2963 | |
2964 return internal_equal (obj1, obj2, depth); | |
2965 } | |
2966 | |
2967 DEFUN ("equal", Fequal, 2, 2, 0, /* | |
2968 Return t if two Lisp objects have similar structure and contents. | |
2969 They must have the same data type. | |
2970 Conses are compared by comparing the cars and the cdrs. | |
2971 Vectors and strings are compared element by element. | |
2972 Numbers are compared by value. Symbols must match exactly. | |
2973 */ | |
444 | 2974 (object1, object2)) |
428 | 2975 { |
444 | 2976 return internal_equal (object1, object2, 0) ? Qt : Qnil; |
428 | 2977 } |
2978 | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2979 DEFUN ("equalp", Fequalp, 2, 2, 0, /* |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2980 Return t if two Lisp objects have similar structure and contents. |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2981 |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2982 This is like `equal', except that it accepts numerically equal |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2983 numbers of different types (float, integer, bignum, bigfloat), and also |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2984 compares strings and characters case-insensitively. |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2985 |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2986 Type objects that are arrays (that is, strings, bit-vectors, and vectors) |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2987 of the same length and with contents that are `equalp' are themselves |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2988 `equalp', regardless of whether the two objects have the same type. |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2989 |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2990 Other objects whose primary purpose is as containers of other objects are |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2991 `equalp' if they would otherwise be equal (same length, type, etc.) and |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2992 their contents are `equalp'. This goes for conses, weak lists, |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2993 weak boxes, ephemerons, specifiers, hash tables, char tables and range |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2994 tables. However, objects that happen to contain other objects but are not |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2995 primarily designed for this purpose (e.g. compiled functions, events or |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2996 display-related objects such as glyphs, faces or extents) are currently |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2997 compared using `equalp' the same way as using `equal'. |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2998 |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
2999 More specifically, two hash tables are `equalp' if they have the same test |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
3000 (see `hash-table-test'), the same number of entries, and the same value for |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
3001 `hash-table-weakness', and if, for each entry in one hash table, its key is |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
3002 equivalent to a key in the other hash table using the hash table test, and |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
3003 its value is `equalp' to the other hash table's value for that key. |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
3004 */ |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
3005 (object1, object2)) |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
3006 { |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
3007 return internal_equalp (object1, object2, 0) ? Qt : Qnil; |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
3008 } |
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
3009 |
428 | 3010 DEFUN ("old-equal", Fold_equal, 2, 2, 0, /* |
3011 Return t if two Lisp objects have similar structure and contents. | |
3012 They must have the same data type. | |
3013 \(Note, however, that an exception is made for characters and integers; | |
3014 this is known as the "char-int confoundance disease." See `eq' and | |
3015 `old-eq'.) | |
3016 This function is provided only for byte-code compatibility with v19. | |
3017 Do not use it. | |
3018 */ | |
444 | 3019 (object1, object2)) |
428 | 3020 { |
444 | 3021 return internal_old_equal (object1, object2, 0) ? Qt : Qnil; |
428 | 3022 } |
3023 | |
3024 | |
3025 DEFUN ("fillarray", Ffillarray, 2, 2, 0, /* | |
434 | 3026 Destructively modify ARRAY by replacing each element with ITEM. |
428 | 3027 ARRAY is a vector, bit vector, or string. |
3028 */ | |
3029 (array, item)) | |
3030 { | |
3031 retry: | |
3032 if (STRINGP (array)) | |
3033 { | |
793 | 3034 Bytecount old_bytecount = XSTRING_LENGTH (array); |
434 | 3035 Bytecount new_bytecount; |
3036 Bytecount item_bytecount; | |
867 | 3037 Ibyte item_buf[MAX_ICHAR_LEN]; |
3038 Ibyte *p; | |
3039 Ibyte *end; | |
434 | 3040 |
428 | 3041 CHECK_CHAR_COERCE_INT (item); |
2720 | 3042 |
428 | 3043 CHECK_LISP_WRITEABLE (array); |
771 | 3044 sledgehammer_check_ascii_begin (array); |
867 | 3045 item_bytecount = set_itext_ichar (item_buf, XCHAR (item)); |
826 | 3046 new_bytecount = item_bytecount * (Bytecount) string_char_length (array); |
793 | 3047 |
3048 resize_string (array, -1, new_bytecount - old_bytecount); | |
3049 | |
3050 for (p = XSTRING_DATA (array), end = p + new_bytecount; | |
434 | 3051 p < end; |
3052 p += item_bytecount) | |
3053 memcpy (p, item_buf, item_bytecount); | |
3054 *p = '\0'; | |
3055 | |
793 | 3056 XSET_STRING_ASCII_BEGIN (array, |
3057 item_bytecount == 1 ? | |
3058 min (new_bytecount, MAX_STRING_ASCII_BEGIN) : | |
3059 0); | |
428 | 3060 bump_string_modiff (array); |
771 | 3061 sledgehammer_check_ascii_begin (array); |
428 | 3062 } |
3063 else if (VECTORP (array)) | |
3064 { | |
3065 Lisp_Object *p = XVECTOR_DATA (array); | |
665 | 3066 Elemcount len = XVECTOR_LENGTH (array); |
428 | 3067 CHECK_LISP_WRITEABLE (array); |
3068 while (len--) | |
3069 *p++ = item; | |
3070 } | |
3071 else if (BIT_VECTORP (array)) | |
3072 { | |
440 | 3073 Lisp_Bit_Vector *v = XBIT_VECTOR (array); |
665 | 3074 Elemcount len = bit_vector_length (v); |
428 | 3075 int bit; |
3076 CHECK_BIT (item); | |
444 | 3077 bit = XINT (item); |
428 | 3078 CHECK_LISP_WRITEABLE (array); |
3079 while (len--) | |
3080 set_bit_vector_bit (v, len, bit); | |
3081 } | |
3082 else | |
3083 { | |
3084 array = wrong_type_argument (Qarrayp, array); | |
3085 goto retry; | |
3086 } | |
3087 return array; | |
3088 } | |
3089 | |
3090 Lisp_Object | |
3091 nconc2 (Lisp_Object arg1, Lisp_Object arg2) | |
3092 { | |
3093 Lisp_Object args[2]; | |
3094 struct gcpro gcpro1; | |
3095 args[0] = arg1; | |
3096 args[1] = arg2; | |
3097 | |
3098 GCPRO1 (args[0]); | |
3099 gcpro1.nvars = 2; | |
3100 | |
3101 RETURN_UNGCPRO (bytecode_nconc2 (args)); | |
3102 } | |
3103 | |
3104 Lisp_Object | |
3105 bytecode_nconc2 (Lisp_Object *args) | |
3106 { | |
3107 retry: | |
3108 | |
3109 if (CONSP (args[0])) | |
3110 { | |
3111 /* (setcdr (last args[0]) args[1]) */ | |
3112 Lisp_Object tortoise, hare; | |
665 | 3113 Elemcount count; |
428 | 3114 |
3115 for (hare = tortoise = args[0], count = 0; | |
3116 CONSP (XCDR (hare)); | |
3117 hare = XCDR (hare), count++) | |
3118 { | |
3119 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue; | |
3120 | |
3121 if (count & 1) | |
3122 tortoise = XCDR (tortoise); | |
3123 if (EQ (hare, tortoise)) | |
3124 signal_circular_list_error (args[0]); | |
3125 } | |
3126 XCDR (hare) = args[1]; | |
3127 return args[0]; | |
3128 } | |
3129 else if (NILP (args[0])) | |
3130 { | |
3131 return args[1]; | |
3132 } | |
3133 else | |
3134 { | |
3135 args[0] = wrong_type_argument (args[0], Qlistp); | |
3136 goto retry; | |
3137 } | |
3138 } | |
3139 | |
3140 DEFUN ("nconc", Fnconc, 0, MANY, 0, /* | |
3141 Concatenate any number of lists by altering them. | |
3142 Only the last argument is not altered, and need not be a list. | |
3143 Also see: `append'. | |
3144 If the first argument is nil, there is no way to modify it by side | |
3145 effect; therefore, write `(setq foo (nconc foo list))' to be sure of | |
3146 changing the value of `foo'. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
3147 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
3148 arguments: (&rest ARGS) |
428 | 3149 */ |
3150 (int nargs, Lisp_Object *args)) | |
3151 { | |
3152 int argnum = 0; | |
3153 struct gcpro gcpro1; | |
3154 | |
3155 /* The modus operandi in Emacs is "caller gc-protects args". | |
3156 However, nconc (particularly nconc2 ()) is called many times | |
3157 in Emacs on freshly created stuff (e.g. you see the idiom | |
3158 nconc2 (Fcopy_sequence (foo), bar) a lot). So we help those | |
3159 callers out by protecting the args ourselves to save them | |
3160 a lot of temporary-variable grief. */ | |
3161 | |
3162 GCPRO1 (args[0]); | |
3163 gcpro1.nvars = nargs; | |
3164 | |
3165 while (argnum < nargs) | |
3166 { | |
3167 Lisp_Object val; | |
3168 retry: | |
3169 val = args[argnum]; | |
3170 if (CONSP (val)) | |
3171 { | |
3172 /* `val' is the first cons, which will be our return value. */ | |
3173 /* `last_cons' will be the cons cell to mutate. */ | |
3174 Lisp_Object last_cons = val; | |
3175 Lisp_Object tortoise = val; | |
3176 | |
3177 for (argnum++; argnum < nargs; argnum++) | |
3178 { | |
3179 Lisp_Object next = args[argnum]; | |
3180 retry_next: | |
3181 if (CONSP (next) || argnum == nargs -1) | |
3182 { | |
3183 /* (setcdr (last val) next) */ | |
665 | 3184 Elemcount count; |
428 | 3185 |
3186 for (count = 0; | |
3187 CONSP (XCDR (last_cons)); | |
3188 last_cons = XCDR (last_cons), count++) | |
3189 { | |
3190 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue; | |
3191 | |
3192 if (count & 1) | |
3193 tortoise = XCDR (tortoise); | |
3194 if (EQ (last_cons, tortoise)) | |
3195 signal_circular_list_error (args[argnum-1]); | |
3196 } | |
3197 XCDR (last_cons) = next; | |
3198 } | |
3199 else if (NILP (next)) | |
3200 { | |
3201 continue; | |
3202 } | |
3203 else | |
3204 { | |
3205 next = wrong_type_argument (Qlistp, next); | |
3206 goto retry_next; | |
3207 } | |
3208 } | |
3209 RETURN_UNGCPRO (val); | |
3210 } | |
3211 else if (NILP (val)) | |
3212 argnum++; | |
3213 else if (argnum == nargs - 1) /* last arg? */ | |
3214 RETURN_UNGCPRO (val); | |
3215 else | |
3216 { | |
3217 args[argnum] = wrong_type_argument (Qlistp, val); | |
3218 goto retry; | |
3219 } | |
3220 } | |
3221 RETURN_UNGCPRO (Qnil); /* No non-nil args provided. */ | |
3222 } | |
3223 | |
3224 | |
434 | 3225 /* This is the guts of several mapping functions. |
3226 Apply FUNCTION to each element of SEQUENCE, one by one, | |
3227 storing the results into elements of VALS, a C vector of Lisp_Objects. | |
3228 LENI is the length of VALS, which should also be the length of SEQUENCE. | |
428 | 3229 |
3230 If VALS is a null pointer, do not accumulate the results. */ | |
3231 | |
3232 static void | |
665 | 3233 mapcar1 (Elemcount leni, Lisp_Object *vals, |
434 | 3234 Lisp_Object function, Lisp_Object sequence) |
428 | 3235 { |
3236 Lisp_Object result; | |
3237 Lisp_Object args[2]; | |
3238 struct gcpro gcpro1; | |
3239 | |
3240 if (vals) | |
3241 { | |
3242 GCPRO1 (vals[0]); | |
3243 gcpro1.nvars = 0; | |
3244 } | |
3245 | |
434 | 3246 args[0] = function; |
3247 | |
3248 if (LISTP (sequence)) | |
428 | 3249 { |
434 | 3250 /* A devious `function' could either: |
3251 - insert garbage into the list in front of us, causing XCDR to crash | |
3252 - amputate the list behind us using (setcdr), causing the remaining | |
3253 elts to lose their GCPRO status. | |
3254 | |
3255 if (vals != 0) we avoid this by copying the elts into the | |
3256 `vals' array. By a stroke of luck, `vals' is exactly large | |
3257 enough to hold the elts left to be traversed as well as the | |
3258 results computed so far. | |
3259 | |
3260 if (vals == 0) we don't have any free space available and | |
851 | 3261 don't want to eat up any more stack with ALLOCA (). |
442 | 3262 So we use EXTERNAL_LIST_LOOP_3_NO_DECLARE and GCPRO the tail. */ |
434 | 3263 |
3264 if (vals) | |
428 | 3265 { |
434 | 3266 Lisp_Object *val = vals; |
665 | 3267 Elemcount i; |
434 | 3268 |
3269 LIST_LOOP_2 (elt, sequence) | |
3270 *val++ = elt; | |
3271 | |
3272 gcpro1.nvars = leni; | |
3273 | |
3274 for (i = 0; i < leni; i++) | |
3275 { | |
3276 args[1] = vals[i]; | |
3277 vals[i] = Ffuncall (2, args); | |
3278 } | |
3279 } | |
3280 else | |
3281 { | |
3282 Lisp_Object elt, tail; | |
442 | 3283 EMACS_INT len_unused; |
434 | 3284 struct gcpro ngcpro1; |
3285 | |
3286 NGCPRO1 (tail); | |
3287 | |
3288 { | |
442 | 3289 EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, sequence, tail, len_unused) |
434 | 3290 { |
3291 args[1] = elt; | |
3292 Ffuncall (2, args); | |
3293 } | |
3294 } | |
3295 | |
3296 NUNGCPRO; | |
428 | 3297 } |
3298 } | |
434 | 3299 else if (VECTORP (sequence)) |
428 | 3300 { |
434 | 3301 Lisp_Object *objs = XVECTOR_DATA (sequence); |
665 | 3302 Elemcount i; |
428 | 3303 for (i = 0; i < leni; i++) |
3304 { | |
3305 args[1] = *objs++; | |
3306 result = Ffuncall (2, args); | |
3307 if (vals) vals[gcpro1.nvars++] = result; | |
3308 } | |
3309 } | |
434 | 3310 else if (STRINGP (sequence)) |
428 | 3311 { |
434 | 3312 /* The string data of `sequence' might be relocated during GC. */ |
3313 Bytecount slen = XSTRING_LENGTH (sequence); | |
2367 | 3314 Ibyte *p = alloca_ibytes (slen); |
867 | 3315 Ibyte *end = p + slen; |
434 | 3316 |
3317 memcpy (p, XSTRING_DATA (sequence), slen); | |
3318 | |
3319 while (p < end) | |
428 | 3320 { |
867 | 3321 args[1] = make_char (itext_ichar (p)); |
3322 INC_IBYTEPTR (p); | |
428 | 3323 result = Ffuncall (2, args); |
3324 if (vals) vals[gcpro1.nvars++] = result; | |
3325 } | |
3326 } | |
434 | 3327 else if (BIT_VECTORP (sequence)) |
428 | 3328 { |
440 | 3329 Lisp_Bit_Vector *v = XBIT_VECTOR (sequence); |
665 | 3330 Elemcount i; |
428 | 3331 for (i = 0; i < leni; i++) |
3332 { | |
3333 args[1] = make_int (bit_vector_bit (v, i)); | |
3334 result = Ffuncall (2, args); | |
3335 if (vals) vals[gcpro1.nvars++] = result; | |
3336 } | |
3337 } | |
3338 else | |
2500 | 3339 ABORT (); /* unreachable, since Flength (sequence) did not get an error */ |
428 | 3340 |
3341 if (vals) | |
3342 UNGCPRO; | |
3343 } | |
3344 | |
3345 DEFUN ("mapconcat", Fmapconcat, 3, 3, 0, /* | |
751 | 3346 Apply FUNCTION to each element of SEQUENCE, and concat the results to a string. |
3347 Between each pair of results, insert SEPARATOR. | |
3348 | |
3349 Each result, and SEPARATOR, should be strings. Thus, using " " as SEPARATOR | |
3350 results in spaces between the values returned by FUNCTION. SEQUENCE itself | |
3351 may be a list, a vector, a bit vector, or a string. | |
428 | 3352 */ |
434 | 3353 (function, sequence, separator)) |
428 | 3354 { |
444 | 3355 EMACS_INT len = XINT (Flength (sequence)); |
428 | 3356 Lisp_Object *args; |
444 | 3357 EMACS_INT i; |
3358 EMACS_INT nargs = len + len - 1; | |
428 | 3359 |
4952
19a72041c5ed
Mule-izing, various fixes related to char * arguments
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
3360 if (len == 0) return build_ascstring (""); |
428 | 3361 |
3362 args = alloca_array (Lisp_Object, nargs); | |
3363 | |
434 | 3364 mapcar1 (len, args, function, sequence); |
428 | 3365 |
3366 for (i = len - 1; i >= 0; i--) | |
3367 args[i + i] = args[i]; | |
3368 | |
3369 for (i = 1; i < nargs; i += 2) | |
434 | 3370 args[i] = separator; |
428 | 3371 |
3372 return Fconcat (nargs, args); | |
3373 } | |
3374 | |
3375 DEFUN ("mapcar", Fmapcar, 2, 2, 0, /* | |
434 | 3376 Apply FUNCTION to each element of SEQUENCE; return a list of the results. |
3377 The result is a list of the same length as SEQUENCE. | |
428 | 3378 SEQUENCE may be a list, a vector, a bit vector, or a string. |
3379 */ | |
434 | 3380 (function, sequence)) |
428 | 3381 { |
665 | 3382 Elemcount len = XINT (Flength (sequence)); |
428 | 3383 Lisp_Object *args = alloca_array (Lisp_Object, len); |
3384 | |
434 | 3385 mapcar1 (len, args, function, sequence); |
428 | 3386 |
647 | 3387 return Flist ((int) len, args); |
428 | 3388 } |
3389 | |
3390 DEFUN ("mapvector", Fmapvector, 2, 2, 0, /* | |
434 | 3391 Apply FUNCTION to each element of SEQUENCE; return a vector of the results. |
428 | 3392 The result is a vector of the same length as SEQUENCE. |
434 | 3393 SEQUENCE may be a list, a vector, a bit vector, or a string. |
428 | 3394 */ |
434 | 3395 (function, sequence)) |
428 | 3396 { |
665 | 3397 Elemcount len = XINT (Flength (sequence)); |
428 | 3398 Lisp_Object result = make_vector (len, Qnil); |
3399 struct gcpro gcpro1; | |
3400 | |
3401 GCPRO1 (result); | |
434 | 3402 mapcar1 (len, XVECTOR_DATA (result), function, sequence); |
428 | 3403 UNGCPRO; |
3404 | |
3405 return result; | |
3406 } | |
3407 | |
3408 DEFUN ("mapc-internal", Fmapc_internal, 2, 2, 0, /* | |
3409 Apply FUNCTION to each element of SEQUENCE. | |
3410 SEQUENCE may be a list, a vector, a bit vector, or a string. | |
3411 This function is like `mapcar' but does not accumulate the results, | |
3412 which is more efficient if you do not use the results. | |
3413 | |
3414 The difference between this and `mapc' is that `mapc' supports all | |
3415 the spiffy Common Lisp arguments. You should normally use `mapc'. | |
3416 */ | |
434 | 3417 (function, sequence)) |
428 | 3418 { |
434 | 3419 mapcar1 (XINT (Flength (sequence)), 0, function, sequence); |
3420 | |
3421 return sequence; | |
428 | 3422 } |
3423 | |
3424 | |
771 | 3425 /* Extra random functions */ |
442 | 3426 |
3427 DEFUN ("replace-list", Freplace_list, 2, 2, 0, /* | |
3428 Destructively replace the list OLD with NEW. | |
3429 This is like (copy-sequence NEW) except that it reuses the | |
3430 conses in OLD as much as possible. If OLD and NEW are the same | |
3431 length, no consing will take place. | |
3432 */ | |
3025 | 3433 (old, new_)) |
442 | 3434 { |
2367 | 3435 Lisp_Object oldtail = old, prevoldtail = Qnil; |
3436 | |
3025 | 3437 EXTERNAL_LIST_LOOP_2 (elt, new_) |
442 | 3438 { |
3439 if (!NILP (oldtail)) | |
3440 { | |
3441 CHECK_CONS (oldtail); | |
2367 | 3442 XCAR (oldtail) = elt; |
442 | 3443 } |
3444 else if (!NILP (prevoldtail)) | |
3445 { | |
2367 | 3446 XCDR (prevoldtail) = Fcons (elt, Qnil); |
442 | 3447 prevoldtail = XCDR (prevoldtail); |
3448 } | |
3449 else | |
2367 | 3450 old = oldtail = Fcons (elt, Qnil); |
442 | 3451 |
3452 if (!NILP (oldtail)) | |
3453 { | |
3454 prevoldtail = oldtail; | |
3455 oldtail = XCDR (oldtail); | |
3456 } | |
3457 } | |
3458 | |
3459 if (!NILP (prevoldtail)) | |
3460 XCDR (prevoldtail) = Qnil; | |
3461 else | |
3462 old = Qnil; | |
3463 | |
3464 return old; | |
3465 } | |
3466 | |
771 | 3467 Lisp_Object |
2367 | 3468 add_suffix_to_symbol (Lisp_Object symbol, const Ascbyte *ascii_string) |
771 | 3469 { |
3470 return Fintern (concat2 (Fsymbol_name (symbol), | |
4952
19a72041c5ed
Mule-izing, various fixes related to char * arguments
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
3471 build_ascstring (ascii_string)), |
771 | 3472 Qnil); |
3473 } | |
3474 | |
3475 Lisp_Object | |
2367 | 3476 add_prefix_to_symbol (const Ascbyte *ascii_string, Lisp_Object symbol) |
771 | 3477 { |
4952
19a72041c5ed
Mule-izing, various fixes related to char * arguments
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
3478 return Fintern (concat2 (build_ascstring (ascii_string), |
771 | 3479 Fsymbol_name (symbol)), |
3480 Qnil); | |
3481 } | |
3482 | |
442 | 3483 |
428 | 3484 /* #### this function doesn't belong in this file! */ |
3485 | |
442 | 3486 #ifdef HAVE_GETLOADAVG |
3487 #ifdef HAVE_SYS_LOADAVG_H | |
3488 #include <sys/loadavg.h> | |
3489 #endif | |
3490 #else | |
3491 int getloadavg (double loadavg[], int nelem); /* Defined in getloadavg.c */ | |
3492 #endif | |
3493 | |
428 | 3494 DEFUN ("load-average", Fload_average, 0, 1, 0, /* |
3495 Return list of 1 minute, 5 minute and 15 minute load averages. | |
3496 Each of the three load averages is multiplied by 100, | |
3497 then converted to integer. | |
3498 | |
3499 When USE-FLOATS is non-nil, floats will be used instead of integers. | |
3500 These floats are not multiplied by 100. | |
3501 | |
3502 If the 5-minute or 15-minute load averages are not available, return a | |
3503 shortened list, containing only those averages which are available. | |
3504 | |
3505 On some systems, this won't work due to permissions on /dev/kmem, | |
3506 in which case you can't use this. | |
3507 */ | |
3508 (use_floats)) | |
3509 { | |
3510 double load_ave[3]; | |
3511 int loads = getloadavg (load_ave, countof (load_ave)); | |
3512 Lisp_Object ret = Qnil; | |
3513 | |
3514 if (loads == -2) | |
563 | 3515 signal_error (Qunimplemented, |
3516 "load-average not implemented for this operating system", | |
3517 Qunbound); | |
428 | 3518 else if (loads < 0) |
563 | 3519 invalid_operation ("Could not get load-average", lisp_strerror (errno)); |
428 | 3520 |
3521 while (loads-- > 0) | |
3522 { | |
3523 Lisp_Object load = (NILP (use_floats) ? | |
3524 make_int ((int) (100.0 * load_ave[loads])) | |
3525 : make_float (load_ave[loads])); | |
3526 ret = Fcons (load, ret); | |
3527 } | |
3528 return ret; | |
3529 } | |
3530 | |
3531 | |
3532 Lisp_Object Vfeatures; | |
3533 | |
3534 DEFUN ("featurep", Ffeaturep, 1, 1, 0, /* | |
3535 Return non-nil if feature FEXP is present in this Emacs. | |
3536 Use this to conditionalize execution of lisp code based on the | |
3537 presence or absence of emacs or environment extensions. | |
3538 FEXP can be a symbol, a number, or a list. | |
3539 If it is a symbol, that symbol is looked up in the `features' variable, | |
3540 and non-nil will be returned if found. | |
3541 If it is a number, the function will return non-nil if this Emacs | |
3542 has an equal or greater version number than FEXP. | |
3543 If it is a list whose car is the symbol `and', it will return | |
3544 non-nil if all the features in its cdr are non-nil. | |
3545 If it is a list whose car is the symbol `or', it will return non-nil | |
3546 if any of the features in its cdr are non-nil. | |
3547 If it is a list whose car is the symbol `not', it will return | |
3548 non-nil if the feature is not present. | |
3549 | |
3550 Examples: | |
3551 | |
3552 (featurep 'xemacs) | |
3553 => ; Non-nil on XEmacs. | |
3554 | |
3555 (featurep '(and xemacs gnus)) | |
3556 => ; Non-nil on XEmacs with Gnus loaded. | |
3557 | |
3558 (featurep '(or tty-frames (and emacs 19.30))) | |
3559 => ; Non-nil if this Emacs supports TTY frames. | |
3560 | |
3561 (featurep '(or (and xemacs 19.15) (and emacs 19.34))) | |
3562 => ; Non-nil on XEmacs 19.15 and later, or FSF Emacs 19.34 and later. | |
3563 | |
442 | 3564 (featurep '(and xemacs 21.02)) |
3565 => ; Non-nil on XEmacs 21.2 and later. | |
3566 | |
428 | 3567 NOTE: The advanced arguments of this function (anything other than a |
3568 symbol) are not yet supported by FSF Emacs. If you feel they are useful | |
3569 for supporting multiple Emacs variants, lobby Richard Stallman at | |
442 | 3570 <bug-gnu-emacs@gnu.org>. |
428 | 3571 */ |
3572 (fexp)) | |
3573 { | |
3574 #ifndef FEATUREP_SYNTAX | |
3575 CHECK_SYMBOL (fexp); | |
3576 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt; | |
3577 #else /* FEATUREP_SYNTAX */ | |
3578 static double featurep_emacs_version; | |
3579 | |
3580 /* Brute force translation from Erik Naggum's lisp function. */ | |
3581 if (SYMBOLP (fexp)) | |
3582 { | |
3583 /* Original definition */ | |
3584 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt; | |
3585 } | |
3586 else if (INTP (fexp) || FLOATP (fexp)) | |
3587 { | |
3588 double d = extract_float (fexp); | |
3589 | |
3590 if (featurep_emacs_version == 0.0) | |
3591 { | |
3592 featurep_emacs_version = XINT (Vemacs_major_version) + | |
3593 (XINT (Vemacs_minor_version) / 100.0); | |
3594 } | |
3595 return featurep_emacs_version >= d ? Qt : Qnil; | |
3596 } | |
3597 else if (CONSP (fexp)) | |
3598 { | |
3599 Lisp_Object tem = XCAR (fexp); | |
3600 if (EQ (tem, Qnot)) | |
3601 { | |
3602 Lisp_Object negate; | |
3603 | |
3604 tem = XCDR (fexp); | |
3605 negate = Fcar (tem); | |
3606 if (!NILP (tem)) | |
3607 return NILP (call1 (Qfeaturep, negate)) ? Qt : Qnil; | |
3608 else | |
3609 return Fsignal (Qinvalid_read_syntax, list1 (tem)); | |
3610 } | |
3611 else if (EQ (tem, Qand)) | |
3612 { | |
3613 tem = XCDR (fexp); | |
3614 /* Use Fcar/Fcdr for error-checking. */ | |
3615 while (!NILP (tem) && !NILP (call1 (Qfeaturep, Fcar (tem)))) | |
3616 { | |
3617 tem = Fcdr (tem); | |
3618 } | |
3619 return NILP (tem) ? Qt : Qnil; | |
3620 } | |
3621 else if (EQ (tem, Qor)) | |
3622 { | |
3623 tem = XCDR (fexp); | |
3624 /* Use Fcar/Fcdr for error-checking. */ | |
3625 while (!NILP (tem) && NILP (call1 (Qfeaturep, Fcar (tem)))) | |
3626 { | |
3627 tem = Fcdr (tem); | |
3628 } | |
3629 return NILP (tem) ? Qnil : Qt; | |
3630 } | |
3631 else | |
3632 { | |
3633 return Fsignal (Qinvalid_read_syntax, list1 (XCDR (fexp))); | |
3634 } | |
3635 } | |
3636 else | |
3637 { | |
3638 return Fsignal (Qinvalid_read_syntax, list1 (fexp)); | |
3639 } | |
3640 } | |
3641 #endif /* FEATUREP_SYNTAX */ | |
3642 | |
3643 DEFUN ("provide", Fprovide, 1, 1, 0, /* | |
3644 Announce that FEATURE is a feature of the current Emacs. | |
3645 This function updates the value of the variable `features'. | |
3646 */ | |
3647 (feature)) | |
3648 { | |
3649 Lisp_Object tem; | |
3650 CHECK_SYMBOL (feature); | |
3651 if (!NILP (Vautoload_queue)) | |
3652 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue); | |
3653 tem = Fmemq (feature, Vfeatures); | |
3654 if (NILP (tem)) | |
3655 Vfeatures = Fcons (feature, Vfeatures); | |
3656 LOADHIST_ATTACH (Fcons (Qprovide, feature)); | |
3657 return feature; | |
3658 } | |
3659 | |
1067 | 3660 DEFUN ("require", Frequire, 1, 3, 0, /* |
3842 | 3661 Ensure that FEATURE is present in the Lisp environment. |
3662 FEATURE is a symbol naming a collection of resources (functions, etc). | |
3663 Optional FILENAME is a library from which to load resources; it defaults to | |
3664 the print name of FEATURE. | |
3665 Optional NOERROR, if non-nil, causes require to return nil rather than signal | |
3666 `file-error' if loading the library fails. | |
3667 | |
3668 If feature FEATURE is present in `features', update `load-history' to reflect | |
3669 the require and return FEATURE. Otherwise, try to load it from a library. | |
3670 The normal messages at start and end of loading are suppressed. | |
3671 If the library is successfully loaded and it calls `(provide FEATURE)', add | |
3672 FEATURE to `features', update `load-history' and return FEATURE. | |
3673 If the load succeeds but FEATURE is not provided by the library, signal | |
3674 `invalid-state'. | |
3675 | |
3676 The byte-compiler treats top-level calls to `require' specially, by evaluating | |
3677 them at compile time (and then compiling them normally). Thus a library may | |
3678 request that definitions that should be inlined such as macros and defsubsts | |
3679 be loaded into its compilation environment. Achieving this in other contexts | |
3680 requires an explicit \(eval-and-compile ...\) block. | |
428 | 3681 */ |
1067 | 3682 (feature, filename, noerror)) |
428 | 3683 { |
3684 Lisp_Object tem; | |
3685 CHECK_SYMBOL (feature); | |
3686 tem = Fmemq (feature, Vfeatures); | |
3687 LOADHIST_ATTACH (Fcons (Qrequire, feature)); | |
3688 if (!NILP (tem)) | |
3689 return feature; | |
3690 else | |
3691 { | |
3692 int speccount = specpdl_depth (); | |
3693 | |
3694 /* Value saved here is to be restored into Vautoload_queue */ | |
3695 record_unwind_protect (un_autoload, Vautoload_queue); | |
3696 Vautoload_queue = Qt; | |
3697 | |
1067 | 3698 tem = call4 (Qload, NILP (filename) ? Fsymbol_name (feature) : filename, |
1261 | 3699 noerror, Qrequire, Qnil); |
1067 | 3700 /* If load failed entirely, return nil. */ |
3701 if (NILP (tem)) | |
3702 return unbind_to_1 (speccount, Qnil); | |
428 | 3703 |
3704 tem = Fmemq (feature, Vfeatures); | |
3705 if (NILP (tem)) | |
563 | 3706 invalid_state ("Required feature was not provided", feature); |
428 | 3707 |
3708 /* Once loading finishes, don't undo it. */ | |
3709 Vautoload_queue = Qt; | |
771 | 3710 return unbind_to_1 (speccount, feature); |
428 | 3711 } |
3712 } | |
3713 | |
3714 /* base64 encode/decode functions. | |
3715 | |
3716 Originally based on code from GNU recode. Ported to FSF Emacs by | |
3717 Lars Magne Ingebrigtsen and Karl Heuer. Ported to XEmacs and | |
3718 subsequently heavily hacked by Hrvoje Niksic. */ | |
3719 | |
3720 #define MIME_LINE_LENGTH 72 | |
3721 | |
3722 #define IS_ASCII(Character) \ | |
3723 ((Character) < 128) | |
3724 #define IS_BASE64(Character) \ | |
3725 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0) | |
3726 | |
3727 /* Table of characters coding the 64 values. */ | |
3728 static char base64_value_to_char[64] = | |
3729 { | |
3730 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */ | |
3731 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */ | |
3732 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */ | |
3733 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */ | |
3734 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */ | |
3735 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */ | |
3736 '8', '9', '+', '/' /* 60-63 */ | |
3737 }; | |
3738 | |
3739 /* Table of base64 values for first 128 characters. */ | |
3740 static short base64_char_to_value[128] = | |
3741 { | |
3742 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */ | |
3743 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */ | |
3744 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */ | |
3745 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */ | |
3746 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */ | |
3747 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */ | |
3748 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */ | |
3749 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */ | |
3750 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */ | |
3751 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */ | |
3752 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */ | |
3753 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */ | |
3754 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */ | |
3755 }; | |
3756 | |
3757 /* The following diagram shows the logical steps by which three octets | |
3758 get transformed into four base64 characters. | |
3759 | |
3760 .--------. .--------. .--------. | |
3761 |aaaaaabb| |bbbbcccc| |ccdddddd| | |
3762 `--------' `--------' `--------' | |
3763 6 2 4 4 2 6 | |
3764 .--------+--------+--------+--------. | |
3765 |00aaaaaa|00bbbbbb|00cccccc|00dddddd| | |
3766 `--------+--------+--------+--------' | |
3767 | |
3768 .--------+--------+--------+--------. | |
3769 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD| | |
3770 `--------+--------+--------+--------' | |
3771 | |
3772 The octets are divided into 6 bit chunks, which are then encoded into | |
3773 base64 characters. */ | |
3774 | |
2268 | 3775 static DECLARE_DOESNT_RETURN (base64_conversion_error (const char *, |
3776 Lisp_Object)); | |
3777 | |
575 | 3778 static DOESNT_RETURN |
563 | 3779 base64_conversion_error (const char *reason, Lisp_Object frob) |
3780 { | |
3781 signal_error (Qbase64_conversion_error, reason, frob); | |
3782 } | |
3783 | |
3784 #define ADVANCE_INPUT(c, stream) \ | |
867 | 3785 ((ec = Lstream_get_ichar (stream)) == -1 ? 0 : \ |
563 | 3786 ((ec > 255) ? \ |
3787 (base64_conversion_error ("Non-ascii character in base64 input", \ | |
3788 make_char (ec)), 0) \ | |
867 | 3789 : (c = (Ibyte)ec), 1)) |
665 | 3790 |
3791 static Bytebpos | |
867 | 3792 base64_encode_1 (Lstream *istream, Ibyte *to, int line_break) |
428 | 3793 { |
3794 EMACS_INT counter = 0; | |
867 | 3795 Ibyte *e = to; |
3796 Ichar ec; | |
428 | 3797 unsigned int value; |
3798 | |
3799 while (1) | |
3800 { | |
1204 | 3801 Ibyte c = 0; |
428 | 3802 if (!ADVANCE_INPUT (c, istream)) |
3803 break; | |
3804 | |
3805 /* Wrap line every 76 characters. */ | |
3806 if (line_break) | |
3807 { | |
3808 if (counter < MIME_LINE_LENGTH / 4) | |
3809 counter++; | |
3810 else | |
3811 { | |
3812 *e++ = '\n'; | |
3813 counter = 1; | |
3814 } | |
3815 } | |
3816 | |
3817 /* Process first byte of a triplet. */ | |
3818 *e++ = base64_value_to_char[0x3f & c >> 2]; | |
3819 value = (0x03 & c) << 4; | |
3820 | |
3821 /* Process second byte of a triplet. */ | |
3822 if (!ADVANCE_INPUT (c, istream)) | |
3823 { | |
3824 *e++ = base64_value_to_char[value]; | |
3825 *e++ = '='; | |
3826 *e++ = '='; | |
3827 break; | |
3828 } | |
3829 | |
3830 *e++ = base64_value_to_char[value | (0x0f & c >> 4)]; | |
3831 value = (0x0f & c) << 2; | |
3832 | |
3833 /* Process third byte of a triplet. */ | |
3834 if (!ADVANCE_INPUT (c, istream)) | |
3835 { | |
3836 *e++ = base64_value_to_char[value]; | |
3837 *e++ = '='; | |
3838 break; | |
3839 } | |
3840 | |
3841 *e++ = base64_value_to_char[value | (0x03 & c >> 6)]; | |
3842 *e++ = base64_value_to_char[0x3f & c]; | |
3843 } | |
3844 | |
3845 return e - to; | |
3846 } | |
3847 #undef ADVANCE_INPUT | |
3848 | |
3849 /* Get next character from the stream, except that non-base64 | |
3850 characters are ignored. This is in accordance with rfc2045. EC | |
867 | 3851 should be an Ichar, so that it can hold -1 as the value for EOF. */ |
428 | 3852 #define ADVANCE_INPUT_IGNORE_NONBASE64(ec, stream, streampos) do { \ |
867 | 3853 ec = Lstream_get_ichar (stream); \ |
428 | 3854 ++streampos; \ |
3855 /* IS_BASE64 may not be called with negative arguments so check for \ | |
3856 EOF first. */ \ | |
3857 if (ec < 0 || IS_BASE64 (ec) || ec == '=') \ | |
3858 break; \ | |
3859 } while (1) | |
3860 | |
3861 #define STORE_BYTE(pos, val, ccnt) do { \ | |
867 | 3862 pos += set_itext_ichar (pos, (Ichar)((unsigned char)(val))); \ |
428 | 3863 ++ccnt; \ |
3864 } while (0) | |
3865 | |
665 | 3866 static Bytebpos |
867 | 3867 base64_decode_1 (Lstream *istream, Ibyte *to, Charcount *ccptr) |
428 | 3868 { |
3869 Charcount ccnt = 0; | |
867 | 3870 Ibyte *e = to; |
428 | 3871 EMACS_INT streampos = 0; |
3872 | |
3873 while (1) | |
3874 { | |
867 | 3875 Ichar ec; |
428 | 3876 unsigned long value; |
3877 | |
3878 /* Process first byte of a quadruplet. */ | |
3879 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3880 if (ec < 0) | |
3881 break; | |
3882 if (ec == '=') | |
563 | 3883 base64_conversion_error ("Illegal `=' character while decoding base64", |
3884 make_int (streampos)); | |
428 | 3885 value = base64_char_to_value[ec] << 18; |
3886 | |
3887 /* Process second byte of a quadruplet. */ | |
3888 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3889 if (ec < 0) | |
563 | 3890 base64_conversion_error ("Premature EOF while decoding base64", |
3891 Qunbound); | |
428 | 3892 if (ec == '=') |
563 | 3893 base64_conversion_error ("Illegal `=' character while decoding base64", |
3894 make_int (streampos)); | |
428 | 3895 value |= base64_char_to_value[ec] << 12; |
3896 STORE_BYTE (e, value >> 16, ccnt); | |
3897 | |
3898 /* Process third byte of a quadruplet. */ | |
3899 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3900 if (ec < 0) | |
563 | 3901 base64_conversion_error ("Premature EOF while decoding base64", |
3902 Qunbound); | |
428 | 3903 |
3904 if (ec == '=') | |
3905 { | |
3906 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3907 if (ec < 0) | |
563 | 3908 base64_conversion_error ("Premature EOF while decoding base64", |
3909 Qunbound); | |
428 | 3910 if (ec != '=') |
563 | 3911 base64_conversion_error |
3912 ("Padding `=' expected but not found while decoding base64", | |
3913 make_int (streampos)); | |
428 | 3914 continue; |
3915 } | |
3916 | |
3917 value |= base64_char_to_value[ec] << 6; | |
3918 STORE_BYTE (e, 0xff & value >> 8, ccnt); | |
3919 | |
3920 /* Process fourth byte of a quadruplet. */ | |
3921 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3922 if (ec < 0) | |
563 | 3923 base64_conversion_error ("Premature EOF while decoding base64", |
3924 Qunbound); | |
428 | 3925 if (ec == '=') |
3926 continue; | |
3927 | |
3928 value |= base64_char_to_value[ec]; | |
3929 STORE_BYTE (e, 0xff & value, ccnt); | |
3930 } | |
3931 | |
3932 *ccptr = ccnt; | |
3933 return e - to; | |
3934 } | |
3935 #undef ADVANCE_INPUT | |
3936 #undef ADVANCE_INPUT_IGNORE_NONBASE64 | |
3937 #undef STORE_BYTE | |
3938 | |
3939 DEFUN ("base64-encode-region", Fbase64_encode_region, 2, 3, "r", /* | |
444 | 3940 Base64-encode the region between START and END. |
428 | 3941 Return the length of the encoded text. |
3942 Optional third argument NO-LINE-BREAK means do not break long lines | |
3943 into shorter lines. | |
3944 */ | |
444 | 3945 (start, end, no_line_break)) |
428 | 3946 { |
867 | 3947 Ibyte *encoded; |
665 | 3948 Bytebpos encoded_length; |
428 | 3949 Charcount allength, length; |
3950 struct buffer *buf = current_buffer; | |
665 | 3951 Charbpos begv, zv, old_pt = BUF_PT (buf); |
428 | 3952 Lisp_Object input; |
851 | 3953 int speccount = specpdl_depth (); |
428 | 3954 |
444 | 3955 get_buffer_range_char (buf, start, end, &begv, &zv, 0); |
428 | 3956 barf_if_buffer_read_only (buf, begv, zv); |
3957 | |
3958 /* We need to allocate enough room for encoding the text. | |
3959 We need 33 1/3% more space, plus a newline every 76 | |
3960 characters, and then we round up. */ | |
3961 length = zv - begv; | |
3962 allength = length + length/3 + 1; | |
3963 allength += allength / MIME_LINE_LENGTH + 1 + 6; | |
3964 | |
3965 input = make_lisp_buffer_input_stream (buf, begv, zv, 0); | |
867 | 3966 /* We needn't multiply allength with MAX_ICHAR_LEN because all the |
428 | 3967 base64 characters will be single-byte. */ |
867 | 3968 encoded = (Ibyte *) MALLOC_OR_ALLOCA (allength); |
428 | 3969 encoded_length = base64_encode_1 (XLSTREAM (input), encoded, |
3970 NILP (no_line_break)); | |
3971 if (encoded_length > allength) | |
2500 | 3972 ABORT (); |
428 | 3973 Lstream_delete (XLSTREAM (input)); |
3974 | |
3975 /* Now we have encoded the region, so we insert the new contents | |
3976 and delete the old. (Insert first in order to preserve markers.) */ | |
3977 buffer_insert_raw_string_1 (buf, begv, encoded, encoded_length, 0); | |
851 | 3978 unbind_to (speccount); |
428 | 3979 buffer_delete_range (buf, begv + encoded_length, zv + encoded_length, 0); |
3980 | |
3981 /* Simulate FSF Emacs implementation of this function: if point was | |
3982 in the region, place it at the beginning. */ | |
3983 if (old_pt >= begv && old_pt < zv) | |
3984 BUF_SET_PT (buf, begv); | |
3985 | |
3986 /* We return the length of the encoded text. */ | |
3987 return make_int (encoded_length); | |
3988 } | |
3989 | |
3990 DEFUN ("base64-encode-string", Fbase64_encode_string, 1, 2, 0, /* | |
3991 Base64 encode STRING and return the result. | |
444 | 3992 Optional argument NO-LINE-BREAK means do not break long lines |
3993 into shorter lines. | |
428 | 3994 */ |
3995 (string, no_line_break)) | |
3996 { | |
3997 Charcount allength, length; | |
665 | 3998 Bytebpos encoded_length; |
867 | 3999 Ibyte *encoded; |
428 | 4000 Lisp_Object input, result; |
4001 int speccount = specpdl_depth(); | |
4002 | |
4003 CHECK_STRING (string); | |
4004 | |
826 | 4005 length = string_char_length (string); |
428 | 4006 allength = length + length/3 + 1; |
4007 allength += allength / MIME_LINE_LENGTH + 1 + 6; | |
4008 | |
4009 input = make_lisp_string_input_stream (string, 0, -1); | |
867 | 4010 encoded = (Ibyte *) MALLOC_OR_ALLOCA (allength); |
428 | 4011 encoded_length = base64_encode_1 (XLSTREAM (input), encoded, |
4012 NILP (no_line_break)); | |
4013 if (encoded_length > allength) | |
2500 | 4014 ABORT (); |
428 | 4015 Lstream_delete (XLSTREAM (input)); |
4016 result = make_string (encoded, encoded_length); | |
851 | 4017 unbind_to (speccount); |
428 | 4018 return result; |
4019 } | |
4020 | |
4021 DEFUN ("base64-decode-region", Fbase64_decode_region, 2, 2, "r", /* | |
444 | 4022 Base64-decode the region between START and END. |
428 | 4023 Return the length of the decoded text. |
4024 If the region can't be decoded, return nil and don't modify the buffer. | |
4025 Characters out of the base64 alphabet are ignored. | |
4026 */ | |
444 | 4027 (start, end)) |
428 | 4028 { |
4029 struct buffer *buf = current_buffer; | |
665 | 4030 Charbpos begv, zv, old_pt = BUF_PT (buf); |
867 | 4031 Ibyte *decoded; |
665 | 4032 Bytebpos decoded_length; |
428 | 4033 Charcount length, cc_decoded_length; |
4034 Lisp_Object input; | |
4035 int speccount = specpdl_depth(); | |
4036 | |
444 | 4037 get_buffer_range_char (buf, start, end, &begv, &zv, 0); |
428 | 4038 barf_if_buffer_read_only (buf, begv, zv); |
4039 | |
4040 length = zv - begv; | |
4041 | |
4042 input = make_lisp_buffer_input_stream (buf, begv, zv, 0); | |
4043 /* We need to allocate enough room for decoding the text. */ | |
867 | 4044 decoded = (Ibyte *) MALLOC_OR_ALLOCA (length * MAX_ICHAR_LEN); |
428 | 4045 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, &cc_decoded_length); |
867 | 4046 if (decoded_length > length * MAX_ICHAR_LEN) |
2500 | 4047 ABORT (); |
428 | 4048 Lstream_delete (XLSTREAM (input)); |
4049 | |
4050 /* Now we have decoded the region, so we insert the new contents | |
4051 and delete the old. (Insert first in order to preserve markers.) */ | |
4052 BUF_SET_PT (buf, begv); | |
4053 buffer_insert_raw_string_1 (buf, begv, decoded, decoded_length, 0); | |
851 | 4054 unbind_to (speccount); |
428 | 4055 buffer_delete_range (buf, begv + cc_decoded_length, |
4056 zv + cc_decoded_length, 0); | |
4057 | |
4058 /* Simulate FSF Emacs implementation of this function: if point was | |
4059 in the region, place it at the beginning. */ | |
4060 if (old_pt >= begv && old_pt < zv) | |
4061 BUF_SET_PT (buf, begv); | |
4062 | |
4063 return make_int (cc_decoded_length); | |
4064 } | |
4065 | |
4066 DEFUN ("base64-decode-string", Fbase64_decode_string, 1, 1, 0, /* | |
4067 Base64-decode STRING and return the result. | |
4068 Characters out of the base64 alphabet are ignored. | |
4069 */ | |
4070 (string)) | |
4071 { | |
867 | 4072 Ibyte *decoded; |
665 | 4073 Bytebpos decoded_length; |
428 | 4074 Charcount length, cc_decoded_length; |
4075 Lisp_Object input, result; | |
4076 int speccount = specpdl_depth(); | |
4077 | |
4078 CHECK_STRING (string); | |
4079 | |
826 | 4080 length = string_char_length (string); |
428 | 4081 /* We need to allocate enough room for decoding the text. */ |
867 | 4082 decoded = (Ibyte *) MALLOC_OR_ALLOCA (length * MAX_ICHAR_LEN); |
428 | 4083 |
4084 input = make_lisp_string_input_stream (string, 0, -1); | |
4085 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, | |
4086 &cc_decoded_length); | |
867 | 4087 if (decoded_length > length * MAX_ICHAR_LEN) |
2500 | 4088 ABORT (); |
428 | 4089 Lstream_delete (XLSTREAM (input)); |
4090 | |
4091 result = make_string (decoded, decoded_length); | |
851 | 4092 unbind_to (speccount); |
428 | 4093 return result; |
4094 } | |
4095 | |
4096 Lisp_Object Qyes_or_no_p; | |
4097 | |
4098 void | |
4099 syms_of_fns (void) | |
4100 { | |
442 | 4101 INIT_LRECORD_IMPLEMENTATION (bit_vector); |
4102 | |
563 | 4103 DEFSYMBOL (Qstring_lessp); |
4104 DEFSYMBOL (Qidentity); | |
4105 DEFSYMBOL (Qyes_or_no_p); | |
4106 | |
4107 DEFERROR_STANDARD (Qbase64_conversion_error, Qconversion_error); | |
428 | 4108 |
4109 DEFSUBR (Fidentity); | |
4110 DEFSUBR (Frandom); | |
4111 DEFSUBR (Flength); | |
4112 DEFSUBR (Fsafe_length); | |
4113 DEFSUBR (Fstring_equal); | |
801 | 4114 DEFSUBR (Fcompare_strings); |
428 | 4115 DEFSUBR (Fstring_lessp); |
4116 DEFSUBR (Fstring_modified_tick); | |
4117 DEFSUBR (Fappend); | |
4118 DEFSUBR (Fconcat); | |
4119 DEFSUBR (Fvconcat); | |
4120 DEFSUBR (Fbvconcat); | |
4121 DEFSUBR (Fcopy_list); | |
4122 DEFSUBR (Fcopy_sequence); | |
4123 DEFSUBR (Fcopy_alist); | |
4124 DEFSUBR (Fcopy_tree); | |
4125 DEFSUBR (Fsubstring); | |
4126 DEFSUBR (Fsubseq); | |
4127 DEFSUBR (Fnthcdr); | |
4128 DEFSUBR (Fnth); | |
4129 DEFSUBR (Felt); | |
4130 DEFSUBR (Flast); | |
4131 DEFSUBR (Fbutlast); | |
4132 DEFSUBR (Fnbutlast); | |
4133 DEFSUBR (Fmember); | |
4134 DEFSUBR (Fold_member); | |
4135 DEFSUBR (Fmemq); | |
4136 DEFSUBR (Fold_memq); | |
4137 DEFSUBR (Fassoc); | |
4138 DEFSUBR (Fold_assoc); | |
4139 DEFSUBR (Fassq); | |
4140 DEFSUBR (Fold_assq); | |
4141 DEFSUBR (Frassoc); | |
4142 DEFSUBR (Fold_rassoc); | |
4143 DEFSUBR (Frassq); | |
4144 DEFSUBR (Fold_rassq); | |
4145 DEFSUBR (Fdelete); | |
4146 DEFSUBR (Fold_delete); | |
4147 DEFSUBR (Fdelq); | |
4148 DEFSUBR (Fold_delq); | |
4149 DEFSUBR (Fremassoc); | |
4150 DEFSUBR (Fremassq); | |
4151 DEFSUBR (Fremrassoc); | |
4152 DEFSUBR (Fremrassq); | |
4153 DEFSUBR (Fnreverse); | |
4154 DEFSUBR (Freverse); | |
4155 DEFSUBR (Fsort); | |
4156 DEFSUBR (Fplists_eq); | |
4157 DEFSUBR (Fplists_equal); | |
4158 DEFSUBR (Flax_plists_eq); | |
4159 DEFSUBR (Flax_plists_equal); | |
4160 DEFSUBR (Fplist_get); | |
4161 DEFSUBR (Fplist_put); | |
4162 DEFSUBR (Fplist_remprop); | |
4163 DEFSUBR (Fplist_member); | |
4164 DEFSUBR (Fcheck_valid_plist); | |
4165 DEFSUBR (Fvalid_plist_p); | |
4166 DEFSUBR (Fcanonicalize_plist); | |
4167 DEFSUBR (Flax_plist_get); | |
4168 DEFSUBR (Flax_plist_put); | |
4169 DEFSUBR (Flax_plist_remprop); | |
4170 DEFSUBR (Flax_plist_member); | |
4171 DEFSUBR (Fcanonicalize_lax_plist); | |
4172 DEFSUBR (Fdestructive_alist_to_plist); | |
4173 DEFSUBR (Fget); | |
4174 DEFSUBR (Fput); | |
4175 DEFSUBR (Fremprop); | |
4176 DEFSUBR (Fobject_plist); | |
4177 DEFSUBR (Fequal); | |
4906
6ef8256a020a
implement equalp in C, fix case-folding, add equal() method for keymaps
Ben Wing <ben@xemacs.org>
parents:
4797
diff
changeset
|
4178 DEFSUBR (Fequalp); |
428 | 4179 DEFSUBR (Fold_equal); |
4180 DEFSUBR (Ffillarray); | |
4181 DEFSUBR (Fnconc); | |
4182 DEFSUBR (Fmapcar); | |
4183 DEFSUBR (Fmapvector); | |
4184 DEFSUBR (Fmapc_internal); | |
4185 DEFSUBR (Fmapconcat); | |
442 | 4186 DEFSUBR (Freplace_list); |
428 | 4187 DEFSUBR (Fload_average); |
4188 DEFSUBR (Ffeaturep); | |
4189 DEFSUBR (Frequire); | |
4190 DEFSUBR (Fprovide); | |
4191 DEFSUBR (Fbase64_encode_region); | |
4192 DEFSUBR (Fbase64_encode_string); | |
4193 DEFSUBR (Fbase64_decode_region); | |
4194 DEFSUBR (Fbase64_decode_string); | |
771 | 4195 |
4196 DEFSUBR (Fsplit_string_by_char); | |
4197 DEFSUBR (Fsplit_path); /* #### */ | |
4198 } | |
4199 | |
4200 void | |
4201 vars_of_fns (void) | |
4202 { | |
4203 DEFVAR_LISP ("path-separator", &Vpath_separator /* | |
4204 The directory separator in search paths, as a string. | |
4205 */ ); | |
4206 { | |
4207 char c = SEPCHAR; | |
867 | 4208 Vpath_separator = make_string ((Ibyte *) &c, 1); |
771 | 4209 } |
428 | 4210 } |
4211 | |
4212 void | |
4213 init_provide_once (void) | |
4214 { | |
4215 DEFVAR_LISP ("features", &Vfeatures /* | |
4216 A list of symbols which are the features of the executing emacs. | |
4217 Used by `featurep' and `require', and altered by `provide'. | |
4218 */ ); | |
4219 Vfeatures = Qnil; | |
4220 | |
4221 Fprovide (intern ("base64")); | |
4222 } |