Mercurial > hg > xemacs-beta
annotate src/alloc.c @ 1891:402bf23dd28f
[xemacs-hg @ 2004-01-29 05:22:37 by stephent]
fix regexps in japanese.el <87ektjz5wy.fsf@tleepslib.sk.tsukuba.ac.jp>
| author | stephent |
|---|---|
| date | Thu, 29 Jan 2004 05:22:40 +0000 |
| parents | aa0db78e67c4 |
| children | 59e1bbea04fe |
| rev | line source |
|---|---|
| 428 | 1 /* Storage allocation and gc for XEmacs Lisp interpreter. |
| 2 Copyright (C) 1985-1998 Free Software Foundation, Inc. | |
| 3 Copyright (C) 1995 Sun Microsystems, Inc. | |
| 1265 | 4 Copyright (C) 1995, 1996, 2001, 2002, 2003 Ben Wing. |
| 428 | 5 |
| 6 This file is part of XEmacs. | |
| 7 | |
| 8 XEmacs is free software; you can redistribute it and/or modify it | |
| 9 under the terms of the GNU General Public License as published by the | |
| 10 Free Software Foundation; either version 2, or (at your option) any | |
| 11 later version. | |
| 12 | |
| 13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
| 14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
| 15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
| 16 for more details. | |
| 17 | |
| 18 You should have received a copy of the GNU General Public License | |
| 19 along with XEmacs; see the file COPYING. If not, write to | |
| 20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
| 21 Boston, MA 02111-1307, USA. */ | |
| 22 | |
| 23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from | |
| 24 FSF. */ | |
| 25 | |
| 26 /* Authorship: | |
| 27 | |
| 28 FSF: Original version; a long time ago. | |
| 29 Mly: Significantly rewritten to use new 3-bit tags and | |
| 30 nicely abstracted object definitions, for 19.8. | |
| 31 JWZ: Improved code to keep track of purespace usage and | |
| 32 issue nice purespace and GC stats. | |
| 33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking | |
| 34 and various changes for Mule, for 19.12. | |
| 35 Added bit vectors for 19.13. | |
| 36 Added lcrecord lists for 19.14. | |
| 37 slb: Lots of work on the purification and dump time code. | |
| 38 Synched Doug Lea malloc support from Emacs 20.2. | |
| 442 | 39 og: Killed the purespace. Portable dumper (moved to dumper.c) |
| 428 | 40 */ |
| 41 | |
| 42 #include <config.h> | |
| 43 #include "lisp.h" | |
| 44 | |
| 45 #include "backtrace.h" | |
| 46 #include "buffer.h" | |
| 47 #include "bytecode.h" | |
| 48 #include "chartab.h" | |
| 49 #include "device.h" | |
| 50 #include "elhash.h" | |
| 51 #include "events.h" | |
| 872 | 52 #include "extents-impl.h" |
| 1204 | 53 #include "file-coding.h" |
| 872 | 54 #include "frame-impl.h" |
| 428 | 55 #include "glyphs.h" |
| 56 #include "opaque.h" | |
| 1204 | 57 #include "lstream.h" |
| 872 | 58 #include "process.h" |
| 1292 | 59 #include "profile.h" |
| 428 | 60 #include "redisplay.h" |
| 61 #include "specifier.h" | |
| 62 #include "sysfile.h" | |
| 442 | 63 #include "sysdep.h" |
| 428 | 64 #include "window.h" |
| 65 #include "console-stream.h" | |
| 66 | |
| 67 #ifdef DOUG_LEA_MALLOC | |
| 68 #include <malloc.h> | |
| 69 #endif | |
| 70 | |
| 71 EXFUN (Fgarbage_collect, 0); | |
| 72 | |
| 814 | 73 static void recompute_need_to_garbage_collect (void); |
| 74 | |
| 428 | 75 #if 0 /* this is _way_ too slow to be part of the standard debug options */ |
| 76 #if defined(DEBUG_XEMACS) && defined(MULE) | |
| 77 #define VERIFY_STRING_CHARS_INTEGRITY | |
| 78 #endif | |
| 79 #endif | |
| 80 | |
| 81 /* Define this to use malloc/free with no freelist for all datatypes, | |
| 82 the hope being that some debugging tools may help detect | |
| 83 freed memory references */ | |
| 84 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */ | |
| 85 #include <dmalloc.h> | |
| 86 #define ALLOC_NO_POOLS | |
| 87 #endif | |
| 88 | |
| 89 #ifdef DEBUG_XEMACS | |
| 458 | 90 static Fixnum debug_allocation; |
| 91 static Fixnum debug_allocation_backtrace_length; | |
| 428 | 92 #endif |
| 93 | |
| 94 /* Number of bytes of consing done since the last gc */ | |
| 814 | 95 static EMACS_INT consing_since_gc; |
| 1292 | 96 EMACS_UINT total_consing; |
| 97 | |
| 814 | 98 int need_to_garbage_collect; |
| 851 | 99 int need_to_check_c_alloca; |
| 887 | 100 int need_to_signal_post_gc; |
| 851 | 101 int funcall_allocation_flag; |
| 102 Bytecount __temp_alloca_size__; | |
| 103 Bytecount funcall_alloca_count; | |
| 814 | 104 |
| 105 /* Determine now whether we need to garbage collect or not, to make | |
| 106 Ffuncall() faster */ | |
| 107 #define INCREMENT_CONS_COUNTER_1(size) \ | |
| 108 do \ | |
| 109 { \ | |
| 110 consing_since_gc += (size); \ | |
| 1292 | 111 total_consing += (size); \ |
| 112 if (profiling_active) \ | |
| 113 profile_record_consing (size); \ | |
| 814 | 114 recompute_need_to_garbage_collect (); \ |
| 115 } while (0) | |
| 428 | 116 |
| 117 #define debug_allocation_backtrace() \ | |
| 118 do { \ | |
| 119 if (debug_allocation_backtrace_length > 0) \ | |
| 120 debug_short_backtrace (debug_allocation_backtrace_length); \ | |
| 121 } while (0) | |
| 122 | |
| 123 #ifdef DEBUG_XEMACS | |
| 801 | 124 #define INCREMENT_CONS_COUNTER(foosize, type) \ |
| 125 do { \ | |
| 126 if (debug_allocation) \ | |
| 127 { \ | |
| 128 stderr_out ("allocating %s (size %ld)\n", type, \ | |
| 129 (long) foosize); \ | |
| 130 debug_allocation_backtrace (); \ | |
| 131 } \ | |
| 132 INCREMENT_CONS_COUNTER_1 (foosize); \ | |
| 428 | 133 } while (0) |
| 134 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \ | |
| 135 do { \ | |
| 136 if (debug_allocation > 1) \ | |
| 137 { \ | |
| 801 | 138 stderr_out ("allocating noseeum %s (size %ld)\n", type, \ |
| 139 (long) foosize); \ | |
| 428 | 140 debug_allocation_backtrace (); \ |
| 141 } \ | |
| 142 INCREMENT_CONS_COUNTER_1 (foosize); \ | |
| 143 } while (0) | |
| 144 #else | |
| 145 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size) | |
| 146 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \ | |
| 147 INCREMENT_CONS_COUNTER_1 (size) | |
| 148 #endif | |
| 149 | |
| 150 #define DECREMENT_CONS_COUNTER(size) do { \ | |
| 151 consing_since_gc -= (size); \ | |
| 1292 | 152 total_consing -= (size); \ |
| 153 if (profiling_active) \ | |
| 154 profile_record_unconsing (size); \ | |
| 428 | 155 if (consing_since_gc < 0) \ |
| 156 consing_since_gc = 0; \ | |
| 814 | 157 recompute_need_to_garbage_collect (); \ |
| 428 | 158 } while (0) |
| 159 | |
| 160 /* Number of bytes of consing since gc before another gc should be done. */ | |
| 801 | 161 static EMACS_INT gc_cons_threshold; |
| 162 | |
| 163 /* Percentage of consing of total data size before another GC. */ | |
| 164 static EMACS_INT gc_cons_percentage; | |
| 165 | |
| 166 #ifdef ERROR_CHECK_GC | |
| 853 | 167 int always_gc; /* Debugging hack; equivalent to |
| 168 (setq gc-cons-thresold -1) */ | |
| 801 | 169 #else |
| 170 #define always_gc 0 | |
| 171 #endif | |
| 428 | 172 |
| 173 /* Nonzero during gc */ | |
| 174 int gc_in_progress; | |
| 175 | |
| 1154 | 176 /* Nonzero means display messages at beginning and end of GC. */ |
| 177 | |
| 178 int garbage_collection_messages; | |
| 179 | |
| 428 | 180 /* Number of times GC has happened at this level or below. |
| 181 * Level 0 is most volatile, contrary to usual convention. | |
| 182 * (Of course, there's only one level at present) */ | |
| 183 EMACS_INT gc_generation_number[1]; | |
| 184 | |
| 185 /* This is just for use by the printer, to allow things to print uniquely */ | |
| 186 static int lrecord_uid_counter; | |
| 187 | |
| 188 /* Nonzero when calling certain hooks or doing other things where | |
| 189 a GC would be bad */ | |
| 1318 | 190 static int gc_currently_forbidden; |
| 428 | 191 |
| 192 /* Hooks. */ | |
| 193 Lisp_Object Vpre_gc_hook, Qpre_gc_hook; | |
| 194 Lisp_Object Vpost_gc_hook, Qpost_gc_hook; | |
| 195 | |
| 196 /* "Garbage collecting" */ | |
| 197 Lisp_Object Vgc_message; | |
| 198 Lisp_Object Vgc_pointer_glyph; | |
| 771 | 199 static const Char_ASCII gc_default_message[] = "Garbage collecting"; |
| 428 | 200 Lisp_Object Qgarbage_collecting; |
| 201 | |
| 1292 | 202 static Lisp_Object QSin_garbage_collection; |
| 203 | |
| 428 | 204 /* Non-zero means we're in the process of doing the dump */ |
| 205 int purify_flag; | |
| 206 | |
| 1204 | 207 /* Non-zero means we're pdumping out or in */ |
| 208 #ifdef PDUMP | |
| 209 int in_pdump; | |
| 210 #endif | |
| 211 | |
| 800 | 212 #ifdef ERROR_CHECK_TYPES |
| 428 | 213 |
| 793 | 214 Error_Behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN, ERROR_ME_DEBUG_WARN; |
| 428 | 215 |
| 216 #endif | |
| 217 | |
| 801 | 218 /* Very cheesy ways of figuring out how much memory is being used for |
| 219 data. #### Need better (system-dependent) ways. */ | |
| 220 void *minimum_address_seen; | |
| 221 void *maximum_address_seen; | |
| 222 | |
| 428 | 223 int |
| 224 c_readonly (Lisp_Object obj) | |
| 225 { | |
| 226 return POINTER_TYPE_P (XTYPE (obj)) && C_READONLY (obj); | |
| 227 } | |
| 228 | |
| 229 int | |
| 230 lisp_readonly (Lisp_Object obj) | |
| 231 { | |
| 232 return POINTER_TYPE_P (XTYPE (obj)) && LISP_READONLY (obj); | |
| 233 } | |
| 234 | |
| 235 | |
| 236 /* Maximum amount of C stack to save when a GC happens. */ | |
| 237 | |
| 238 #ifndef MAX_SAVE_STACK | |
| 239 #define MAX_SAVE_STACK 0 /* 16000 */ | |
| 240 #endif | |
| 241 | |
| 242 /* Non-zero means ignore malloc warnings. Set during initialization. */ | |
| 243 int ignore_malloc_warnings; | |
| 244 | |
| 245 | |
| 246 static void *breathing_space; | |
| 247 | |
| 248 void | |
| 249 release_breathing_space (void) | |
| 250 { | |
| 251 if (breathing_space) | |
| 252 { | |
| 253 void *tmp = breathing_space; | |
| 254 breathing_space = 0; | |
| 1726 | 255 xfree (tmp, void *); |
| 428 | 256 } |
| 257 } | |
| 258 | |
| 259 /* malloc calls this if it finds we are near exhausting storage */ | |
| 260 void | |
| 442 | 261 malloc_warning (const char *str) |
| 428 | 262 { |
| 263 if (ignore_malloc_warnings) | |
| 264 return; | |
| 265 | |
| 266 warn_when_safe | |
| 793 | 267 (Qmemory, Qemergency, |
| 428 | 268 "%s\n" |
| 269 "Killing some buffers may delay running out of memory.\n" | |
| 270 "However, certainly by the time you receive the 95%% warning,\n" | |
| 271 "you should clean up, kill this Emacs, and start a new one.", | |
| 272 str); | |
| 273 } | |
| 274 | |
| 275 /* Called if malloc returns zero */ | |
| 276 DOESNT_RETURN | |
| 277 memory_full (void) | |
| 278 { | |
| 279 /* Force a GC next time eval is called. | |
| 280 It's better to loop garbage-collecting (we might reclaim enough | |
| 281 to win) than to loop beeping and barfing "Memory exhausted" | |
| 282 */ | |
| 283 consing_since_gc = gc_cons_threshold + 1; | |
| 814 | 284 recompute_need_to_garbage_collect (); |
| 428 | 285 release_breathing_space (); |
| 286 | |
| 287 /* Flush some histories which might conceivably contain garbalogical | |
| 288 inhibitors. */ | |
| 289 if (!NILP (Fboundp (Qvalues))) | |
| 290 Fset (Qvalues, Qnil); | |
| 291 Vcommand_history = Qnil; | |
| 292 | |
| 563 | 293 out_of_memory ("Memory exhausted", Qunbound); |
| 428 | 294 } |
| 295 | |
| 801 | 296 static void |
| 297 set_alloc_mins_and_maxes (void *val, Bytecount size) | |
| 298 { | |
| 299 if (!val) | |
| 300 return; | |
| 301 if ((char *) val + size > (char *) maximum_address_seen) | |
| 302 maximum_address_seen = (char *) val + size; | |
| 303 if (!minimum_address_seen) | |
| 304 minimum_address_seen = | |
| 305 #if SIZEOF_VOID_P == 8 | |
| 306 (void *) 0xFFFFFFFFFFFFFFFF; | |
| 307 #else | |
| 308 (void *) 0xFFFFFFFF; | |
| 309 #endif | |
| 310 if ((char *) val < (char *) minimum_address_seen) | |
| 311 minimum_address_seen = (char *) val; | |
| 312 } | |
| 313 | |
| 314 /* like malloc and realloc but check for no memory left. */ | |
| 428 | 315 |
| 1315 | 316 #ifdef ERROR_CHECK_MALLOC |
| 1292 | 317 static int in_malloc; |
| 1333 | 318 extern int regex_malloc_disallowed; |
| 1315 | 319 #endif |
| 1292 | 320 |
| 428 | 321 #undef xmalloc |
| 322 void * | |
| 665 | 323 xmalloc (Bytecount size) |
| 428 | 324 { |
| 1292 | 325 void *val; |
| 326 #ifdef ERROR_CHECK_MALLOC | |
| 327 assert (!in_malloc); | |
| 1333 | 328 assert (!regex_malloc_disallowed); |
| 1292 | 329 in_malloc = 1; |
| 330 #endif | |
| 331 val = malloc (size); | |
| 332 #ifdef ERROR_CHECK_MALLOC | |
| 333 in_malloc = 0; | |
| 334 #endif | |
| 428 | 335 if (!val && (size != 0)) memory_full (); |
| 801 | 336 set_alloc_mins_and_maxes (val, size); |
| 428 | 337 return val; |
| 338 } | |
| 339 | |
| 340 #undef xcalloc | |
| 341 static void * | |
| 665 | 342 xcalloc (Elemcount nelem, Bytecount elsize) |
| 428 | 343 { |
| 1292 | 344 void *val; |
| 345 #ifdef ERROR_CHECK_MALLOC | |
| 346 assert (!in_malloc); | |
| 1333 | 347 assert (!regex_malloc_disallowed); |
| 1292 | 348 in_malloc = 1; |
| 349 #endif | |
| 350 val= calloc (nelem, elsize); | |
| 351 #ifdef ERROR_CHECK_MALLOC | |
| 352 in_malloc = 0; | |
| 353 #endif | |
| 428 | 354 |
| 355 if (!val && (nelem != 0)) memory_full (); | |
| 801 | 356 set_alloc_mins_and_maxes (val, nelem * elsize); |
| 428 | 357 return val; |
| 358 } | |
| 359 | |
| 360 void * | |
| 665 | 361 xmalloc_and_zero (Bytecount size) |
| 428 | 362 { |
| 363 return xcalloc (size, sizeof (char)); | |
| 364 } | |
| 365 | |
| 366 #undef xrealloc | |
| 367 void * | |
| 665 | 368 xrealloc (void *block, Bytecount size) |
| 428 | 369 { |
| 1292 | 370 #ifdef ERROR_CHECK_MALLOC |
| 371 assert (!in_malloc); | |
| 1333 | 372 assert (!regex_malloc_disallowed); |
| 1292 | 373 in_malloc = 1; |
| 374 #endif | |
| 551 | 375 block = realloc (block, size); |
| 1292 | 376 #ifdef ERROR_CHECK_MALLOC |
| 377 in_malloc = 0; | |
| 378 #endif | |
| 551 | 379 |
| 380 if (!block && (size != 0)) memory_full (); | |
| 801 | 381 set_alloc_mins_and_maxes (block, size); |
| 551 | 382 return block; |
| 428 | 383 } |
| 384 | |
| 385 void | |
| 386 xfree_1 (void *block) | |
| 387 { | |
| 388 #ifdef ERROR_CHECK_MALLOC | |
| 389 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an | |
| 390 error until much later on for many system mallocs, such as | |
| 391 the one that comes with Solaris 2.3. FMH!! */ | |
| 392 assert (block != (void *) 0xDEADBEEF); | |
| 393 assert (block); | |
| 1292 | 394 assert (!in_malloc); |
| 1333 | 395 assert (!regex_malloc_disallowed); |
| 1292 | 396 in_malloc = 1; |
| 428 | 397 #endif /* ERROR_CHECK_MALLOC */ |
| 398 free (block); | |
| 1292 | 399 #ifdef ERROR_CHECK_MALLOC |
| 400 in_malloc = 0; | |
| 401 #endif | |
| 428 | 402 } |
| 403 | |
| 404 #ifdef ERROR_CHECK_GC | |
| 405 | |
| 406 static void | |
| 665 | 407 deadbeef_memory (void *ptr, Bytecount size) |
| 428 | 408 { |
| 826 | 409 UINT_32_BIT *ptr4 = (UINT_32_BIT *) ptr; |
| 665 | 410 Bytecount beefs = size >> 2; |
| 428 | 411 |
| 412 /* In practice, size will always be a multiple of four. */ | |
| 413 while (beefs--) | |
| 1204 | 414 (*ptr4++) = 0xDEADBEEF; /* -559038737 base 10 */ |
| 428 | 415 } |
| 416 | |
| 417 #else /* !ERROR_CHECK_GC */ | |
| 418 | |
| 419 | |
| 420 #define deadbeef_memory(ptr, size) | |
| 421 | |
| 422 #endif /* !ERROR_CHECK_GC */ | |
| 423 | |
| 424 #undef xstrdup | |
| 425 char * | |
| 442 | 426 xstrdup (const char *str) |
| 428 | 427 { |
| 428 int len = strlen (str) + 1; /* for stupid terminating 0 */ | |
| 429 void *val = xmalloc (len); | |
| 771 | 430 |
| 428 | 431 if (val == 0) return 0; |
| 432 return (char *) memcpy (val, str, len); | |
| 433 } | |
| 434 | |
| 435 #ifdef NEED_STRDUP | |
| 436 char * | |
| 442 | 437 strdup (const char *s) |
| 428 | 438 { |
| 439 return xstrdup (s); | |
| 440 } | |
| 441 #endif /* NEED_STRDUP */ | |
| 442 | |
| 443 | |
| 444 static void * | |
| 665 | 445 allocate_lisp_storage (Bytecount size) |
| 428 | 446 { |
| 793 | 447 void *val = xmalloc (size); |
| 448 /* We don't increment the cons counter anymore. Calling functions do | |
| 449 that now because we have two different kinds of cons counters -- one | |
| 450 for normal objects, and one for no-see-um conses (and possibly others | |
| 451 similar) where the conses are used totally internally, never escape, | |
| 452 and are created and then freed and shouldn't logically increment the | |
| 453 cons counting. #### (Or perhaps, we should decrement it when an object | |
| 454 get freed?) */ | |
| 455 | |
| 456 /* But we do now (as of 3-27-02) go and zero out the memory. This is a | |
| 457 good thing, as it will guarantee we won't get any intermittent bugs | |
| 1204 | 458 coming from an uninitiated field. The speed loss is unnoticeable, |
| 459 esp. as the objects are not large -- large stuff like buffer text and | |
| 460 redisplay structures are allocated separately. */ | |
| 793 | 461 memset (val, 0, size); |
| 851 | 462 |
| 463 if (need_to_check_c_alloca) | |
| 464 xemacs_c_alloca (0); | |
| 465 | |
| 793 | 466 return val; |
| 428 | 467 } |
| 468 | |
| 469 | |
| 442 | 470 /* lcrecords are chained together through their "next" field. |
| 471 After doing the mark phase, GC will walk this linked list | |
| 472 and free any lcrecord which hasn't been marked. */ | |
| 428 | 473 static struct lcrecord_header *all_lcrecords; |
| 474 | |
| 1204 | 475 /* The most basic of the lcrecord allocation functions. Not usually called |
| 476 directly. Allocates an lrecord not managed by any lcrecord-list, of a | |
| 477 specified size. See lrecord.h. */ | |
| 478 | |
| 428 | 479 void * |
| 1204 | 480 basic_alloc_lcrecord (Bytecount size, |
| 481 const struct lrecord_implementation *implementation) | |
| 428 | 482 { |
| 483 struct lcrecord_header *lcheader; | |
| 484 | |
| 442 | 485 type_checking_assert |
| 486 ((implementation->static_size == 0 ? | |
| 487 implementation->size_in_bytes_method != NULL : | |
| 488 implementation->static_size == size) | |
| 489 && | |
| 490 (! implementation->basic_p) | |
| 491 && | |
| 492 (! (implementation->hash == NULL && implementation->equal != NULL))); | |
| 428 | 493 |
| 494 lcheader = (struct lcrecord_header *) allocate_lisp_storage (size); | |
| 442 | 495 set_lheader_implementation (&lcheader->lheader, implementation); |
| 428 | 496 lcheader->next = all_lcrecords; |
| 497 #if 1 /* mly prefers to see small ID numbers */ | |
| 498 lcheader->uid = lrecord_uid_counter++; | |
| 499 #else /* jwz prefers to see real addrs */ | |
| 500 lcheader->uid = (int) &lcheader; | |
| 501 #endif | |
| 502 lcheader->free = 0; | |
| 503 all_lcrecords = lcheader; | |
| 504 INCREMENT_CONS_COUNTER (size, implementation->name); | |
| 505 return lcheader; | |
| 506 } | |
| 507 | |
| 508 #if 0 /* Presently unused */ | |
| 509 /* Very, very poor man's EGC? | |
| 510 * This may be slow and thrash pages all over the place. | |
| 511 * Only call it if you really feel you must (and if the | |
| 512 * lrecord was fairly recently allocated). | |
| 513 * Otherwise, just let the GC do its job -- that's what it's there for | |
| 514 */ | |
| 515 void | |
| 771 | 516 very_old_free_lcrecord (struct lcrecord_header *lcrecord) |
| 428 | 517 { |
| 518 if (all_lcrecords == lcrecord) | |
| 519 { | |
| 520 all_lcrecords = lcrecord->next; | |
| 521 } | |
| 522 else | |
| 523 { | |
| 524 struct lrecord_header *header = all_lcrecords; | |
| 525 for (;;) | |
| 526 { | |
| 527 struct lrecord_header *next = header->next; | |
| 528 if (next == lcrecord) | |
| 529 { | |
| 530 header->next = lrecord->next; | |
| 531 break; | |
| 532 } | |
| 533 else if (next == 0) | |
| 534 abort (); | |
| 535 else | |
| 536 header = next; | |
| 537 } | |
| 538 } | |
| 539 if (lrecord->implementation->finalizer) | |
| 540 lrecord->implementation->finalizer (lrecord, 0); | |
| 541 xfree (lrecord); | |
| 542 return; | |
| 543 } | |
| 544 #endif /* Unused */ | |
| 545 | |
| 546 | |
| 547 static void | |
| 548 disksave_object_finalization_1 (void) | |
| 549 { | |
| 550 struct lcrecord_header *header; | |
| 551 | |
| 552 for (header = all_lcrecords; header; header = header->next) | |
| 553 { | |
| 442 | 554 if (LHEADER_IMPLEMENTATION (&header->lheader)->finalizer && |
| 428 | 555 !header->free) |
| 442 | 556 LHEADER_IMPLEMENTATION (&header->lheader)->finalizer (header, 1); |
| 428 | 557 } |
| 558 } | |
| 559 | |
| 1204 | 560 /* Bitwise copy all parts of a Lisp object other than the header */ |
| 561 | |
| 562 void | |
| 563 copy_lisp_object (Lisp_Object dst, Lisp_Object src) | |
| 564 { | |
| 565 const struct lrecord_implementation *imp = | |
| 566 XRECORD_LHEADER_IMPLEMENTATION (src); | |
| 567 Bytecount size = lisp_object_size (src); | |
| 568 | |
| 569 assert (imp == XRECORD_LHEADER_IMPLEMENTATION (dst)); | |
| 570 assert (size == lisp_object_size (dst)); | |
| 571 | |
| 572 if (imp->basic_p) | |
| 573 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lrecord_header), | |
| 574 (char *) XRECORD_LHEADER (src) + sizeof (struct lrecord_header), | |
| 575 size - sizeof (struct lrecord_header)); | |
| 576 else | |
| 577 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lcrecord_header), | |
| 578 (char *) XRECORD_LHEADER (src) + sizeof (struct lcrecord_header), | |
| 579 size - sizeof (struct lcrecord_header)); | |
| 580 } | |
| 581 | |
| 428 | 582 |
| 583 /************************************************************************/ | |
| 584 /* Debugger support */ | |
| 585 /************************************************************************/ | |
| 586 /* Give gdb/dbx enough information to decode Lisp Objects. We make | |
| 587 sure certain symbols are always defined, so gdb doesn't complain | |
| 438 | 588 about expressions in src/.gdbinit. See src/.gdbinit or src/.dbxrc |
| 589 to see how this is used. */ | |
| 428 | 590 |
| 458 | 591 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS; |
| 592 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1; | |
| 428 | 593 |
| 594 #ifdef USE_UNION_TYPE | |
| 458 | 595 unsigned char dbg_USE_UNION_TYPE = 1; |
| 428 | 596 #else |
| 458 | 597 unsigned char dbg_USE_UNION_TYPE = 0; |
| 428 | 598 #endif |
| 599 | |
| 458 | 600 unsigned char dbg_valbits = VALBITS; |
| 601 unsigned char dbg_gctypebits = GCTYPEBITS; | |
| 602 | |
| 603 /* On some systems, the above definitions will be optimized away by | |
| 604 the compiler or linker unless they are referenced in some function. */ | |
| 605 long dbg_inhibit_dbg_symbol_deletion (void); | |
| 606 long | |
| 607 dbg_inhibit_dbg_symbol_deletion (void) | |
| 608 { | |
| 609 return | |
| 610 (dbg_valmask + | |
| 611 dbg_typemask + | |
| 612 dbg_USE_UNION_TYPE + | |
| 613 dbg_valbits + | |
| 614 dbg_gctypebits); | |
| 615 } | |
| 428 | 616 |
| 617 /* Macros turned into functions for ease of debugging. | |
| 618 Debuggers don't know about macros! */ | |
| 619 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2); | |
| 620 int | |
| 621 dbg_eq (Lisp_Object obj1, Lisp_Object obj2) | |
| 622 { | |
| 623 return EQ (obj1, obj2); | |
| 624 } | |
| 625 | |
| 626 | |
| 627 /************************************************************************/ | |
| 628 /* Fixed-size type macros */ | |
| 629 /************************************************************************/ | |
| 630 | |
| 631 /* For fixed-size types that are commonly used, we malloc() large blocks | |
| 632 of memory at a time and subdivide them into chunks of the correct | |
| 633 size for an object of that type. This is more efficient than | |
| 634 malloc()ing each object separately because we save on malloc() time | |
| 635 and overhead due to the fewer number of malloc()ed blocks, and | |
| 636 also because we don't need any extra pointers within each object | |
| 637 to keep them threaded together for GC purposes. For less common | |
| 638 (and frequently large-size) types, we use lcrecords, which are | |
| 639 malloc()ed individually and chained together through a pointer | |
| 640 in the lcrecord header. lcrecords do not need to be fixed-size | |
| 641 (i.e. two objects of the same type need not have the same size; | |
| 642 however, the size of a particular object cannot vary dynamically). | |
| 643 It is also much easier to create a new lcrecord type because no | |
| 644 additional code needs to be added to alloc.c. Finally, lcrecords | |
| 645 may be more efficient when there are only a small number of them. | |
| 646 | |
| 647 The types that are stored in these large blocks (or "frob blocks") | |
| 648 are cons, float, compiled-function, symbol, marker, extent, event, | |
| 649 and string. | |
| 650 | |
| 651 Note that strings are special in that they are actually stored in | |
| 652 two parts: a structure containing information about the string, and | |
| 653 the actual data associated with the string. The former structure | |
| 654 (a struct Lisp_String) is a fixed-size structure and is managed the | |
| 655 same way as all the other such types. This structure contains a | |
| 656 pointer to the actual string data, which is stored in structures of | |
| 657 type struct string_chars_block. Each string_chars_block consists | |
| 658 of a pointer to a struct Lisp_String, followed by the data for that | |
| 440 | 659 string, followed by another pointer to a Lisp_String, followed by |
| 660 the data for that string, etc. At GC time, the data in these | |
| 661 blocks is compacted by searching sequentially through all the | |
| 428 | 662 blocks and compressing out any holes created by unmarked strings. |
| 663 Strings that are more than a certain size (bigger than the size of | |
| 664 a string_chars_block, although something like half as big might | |
| 665 make more sense) are malloc()ed separately and not stored in | |
| 666 string_chars_blocks. Furthermore, no one string stretches across | |
| 667 two string_chars_blocks. | |
| 668 | |
| 1204 | 669 Vectors are each malloc()ed separately as lcrecords. |
| 428 | 670 |
| 671 In the following discussion, we use conses, but it applies equally | |
| 672 well to the other fixed-size types. | |
| 673 | |
| 674 We store cons cells inside of cons_blocks, allocating a new | |
| 675 cons_block with malloc() whenever necessary. Cons cells reclaimed | |
| 676 by GC are put on a free list to be reallocated before allocating | |
| 677 any new cons cells from the latest cons_block. Each cons_block is | |
| 678 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least | |
| 679 the versions in malloc.c and gmalloc.c) really allocates in units | |
| 680 of powers of two and uses 4 bytes for its own overhead. | |
| 681 | |
| 682 What GC actually does is to search through all the cons_blocks, | |
| 683 from the most recently allocated to the oldest, and put all | |
| 684 cons cells that are not marked (whether or not they're already | |
| 685 free) on a cons_free_list. The cons_free_list is a stack, and | |
| 686 so the cons cells in the oldest-allocated cons_block end up | |
| 687 at the head of the stack and are the first to be reallocated. | |
| 688 If any cons_block is entirely free, it is freed with free() | |
| 689 and its cons cells removed from the cons_free_list. Because | |
| 690 the cons_free_list ends up basically in memory order, we have | |
| 691 a high locality of reference (assuming a reasonable turnover | |
| 692 of allocating and freeing) and have a reasonable probability | |
| 693 of entirely freeing up cons_blocks that have been more recently | |
| 694 allocated. This stage is called the "sweep stage" of GC, and | |
| 695 is executed after the "mark stage", which involves starting | |
| 696 from all places that are known to point to in-use Lisp objects | |
| 697 (e.g. the obarray, where are all symbols are stored; the | |
| 698 current catches and condition-cases; the backtrace list of | |
| 699 currently executing functions; the gcpro list; etc.) and | |
| 700 recursively marking all objects that are accessible. | |
| 701 | |
| 454 | 702 At the beginning of the sweep stage, the conses in the cons blocks |
| 703 are in one of three states: in use and marked, in use but not | |
| 704 marked, and not in use (already freed). Any conses that are marked | |
| 705 have been marked in the mark stage just executed, because as part | |
| 706 of the sweep stage we unmark any marked objects. The way we tell | |
| 707 whether or not a cons cell is in use is through the LRECORD_FREE_P | |
| 708 macro. This uses a special lrecord type `lrecord_type_free', | |
| 709 which is never associated with any valid object. | |
| 710 | |
| 711 Conses on the free_cons_list are threaded through a pointer stored | |
| 712 in the conses themselves. Because the cons is still in a | |
| 713 cons_block and needs to remain marked as not in use for the next | |
| 714 time that GC happens, we need room to store both the "free" | |
| 715 indicator and the chaining pointer. So this pointer is stored | |
| 716 after the lrecord header (actually where C places a pointer after | |
| 717 the lrecord header; they are not necessarily contiguous). This | |
| 718 implies that all fixed-size types must be big enough to contain at | |
| 719 least one pointer. This is true for all current fixed-size types, | |
| 720 with the possible exception of Lisp_Floats, for which we define the | |
| 721 meat of the struct using a union of a pointer and a double to | |
| 722 ensure adequate space for the free list chain pointer. | |
| 428 | 723 |
| 724 Some types of objects need additional "finalization" done | |
| 725 when an object is converted from in use to not in use; | |
| 726 this is the purpose of the ADDITIONAL_FREE_type macro. | |
| 727 For example, markers need to be removed from the chain | |
| 728 of markers that is kept in each buffer. This is because | |
| 729 markers in a buffer automatically disappear if the marker | |
| 730 is no longer referenced anywhere (the same does not | |
| 731 apply to extents, however). | |
| 732 | |
| 733 WARNING: Things are in an extremely bizarre state when | |
| 734 the ADDITIONAL_FREE_type macros are called, so beware! | |
| 735 | |
| 454 | 736 When ERROR_CHECK_GC is defined, we do things differently so as to |
| 737 maximize our chances of catching places where there is insufficient | |
| 738 GCPROing. The thing we want to avoid is having an object that | |
| 739 we're using but didn't GCPRO get freed by GC and then reallocated | |
| 740 while we're in the process of using it -- this will result in | |
| 741 something seemingly unrelated getting trashed, and is extremely | |
| 742 difficult to track down. If the object gets freed but not | |
| 743 reallocated, we can usually catch this because we set most of the | |
| 744 bytes of a freed object to 0xDEADBEEF. (The lisp object type is set | |
| 745 to the invalid type `lrecord_type_free', however, and a pointer | |
| 746 used to chain freed objects together is stored after the lrecord | |
| 747 header; we play some tricks with this pointer to make it more | |
| 428 | 748 bogus, so crashes are more likely to occur right away.) |
| 749 | |
| 750 We want freed objects to stay free as long as possible, | |
| 751 so instead of doing what we do above, we maintain the | |
| 752 free objects in a first-in first-out queue. We also | |
| 753 don't recompute the free list each GC, unlike above; | |
| 754 this ensures that the queue ordering is preserved. | |
| 755 [This means that we are likely to have worse locality | |
| 756 of reference, and that we can never free a frob block | |
| 757 once it's allocated. (Even if we know that all cells | |
| 758 in it are free, there's no easy way to remove all those | |
| 759 cells from the free list because the objects on the | |
| 760 free list are unlikely to be in memory order.)] | |
| 761 Furthermore, we never take objects off the free list | |
| 762 unless there's a large number (usually 1000, but | |
| 763 varies depending on type) of them already on the list. | |
| 764 This way, we ensure that an object that gets freed will | |
| 765 remain free for the next 1000 (or whatever) times that | |
| 440 | 766 an object of that type is allocated. */ |
| 428 | 767 |
| 768 #ifndef MALLOC_OVERHEAD | |
| 769 #ifdef GNU_MALLOC | |
| 770 #define MALLOC_OVERHEAD 0 | |
| 771 #elif defined (rcheck) | |
| 772 #define MALLOC_OVERHEAD 20 | |
| 773 #else | |
| 774 #define MALLOC_OVERHEAD 8 | |
| 775 #endif | |
| 776 #endif /* MALLOC_OVERHEAD */ | |
| 777 | |
| 778 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC) | |
| 779 /* If we released our reserve (due to running out of memory), | |
| 780 and we have a fair amount free once again, | |
| 781 try to set aside another reserve in case we run out once more. | |
| 782 | |
| 783 This is called when a relocatable block is freed in ralloc.c. */ | |
| 784 void refill_memory_reserve (void); | |
| 785 void | |
| 442 | 786 refill_memory_reserve (void) |
| 428 | 787 { |
| 788 if (breathing_space == 0) | |
| 789 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD); | |
| 790 } | |
| 791 #endif | |
| 792 | |
| 793 #ifdef ALLOC_NO_POOLS | |
| 794 # define TYPE_ALLOC_SIZE(type, structtype) 1 | |
| 795 #else | |
| 796 # define TYPE_ALLOC_SIZE(type, structtype) \ | |
| 797 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \ | |
| 798 / sizeof (structtype)) | |
| 799 #endif /* ALLOC_NO_POOLS */ | |
| 800 | |
| 801 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \ | |
| 802 \ | |
| 803 struct type##_block \ | |
| 804 { \ | |
| 805 struct type##_block *prev; \ | |
| 806 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \ | |
| 807 }; \ | |
| 808 \ | |
| 809 static struct type##_block *current_##type##_block; \ | |
| 810 static int current_##type##_block_index; \ | |
| 811 \ | |
| 454 | 812 static Lisp_Free *type##_free_list; \ |
| 813 static Lisp_Free *type##_free_list_tail; \ | |
| 428 | 814 \ |
| 815 static void \ | |
| 816 init_##type##_alloc (void) \ | |
| 817 { \ | |
| 818 current_##type##_block = 0; \ | |
| 819 current_##type##_block_index = \ | |
| 820 countof (current_##type##_block->block); \ | |
| 821 type##_free_list = 0; \ | |
| 822 type##_free_list_tail = 0; \ | |
| 823 } \ | |
| 824 \ | |
| 825 static int gc_count_num_##type##_in_use; \ | |
| 826 static int gc_count_num_##type##_freelist | |
| 827 | |
| 828 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \ | |
| 829 if (current_##type##_block_index \ | |
| 830 == countof (current_##type##_block->block)) \ | |
| 831 { \ | |
| 832 struct type##_block *AFTFB_new = (struct type##_block *) \ | |
| 833 allocate_lisp_storage (sizeof (struct type##_block)); \ | |
| 834 AFTFB_new->prev = current_##type##_block; \ | |
| 835 current_##type##_block = AFTFB_new; \ | |
| 836 current_##type##_block_index = 0; \ | |
| 837 } \ | |
| 838 (result) = \ | |
| 839 &(current_##type##_block->block[current_##type##_block_index++]); \ | |
| 840 } while (0) | |
| 841 | |
| 842 /* Allocate an instance of a type that is stored in blocks. | |
| 843 TYPE is the "name" of the type, STRUCTTYPE is the corresponding | |
| 844 structure type. */ | |
| 845 | |
| 846 #ifdef ERROR_CHECK_GC | |
| 847 | |
| 848 /* Note: if you get crashes in this function, suspect incorrect calls | |
| 849 to free_cons() and friends. This happened once because the cons | |
| 850 cell was not GC-protected and was getting collected before | |
| 851 free_cons() was called. */ | |
| 852 | |
| 454 | 853 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \ |
| 854 if (gc_count_num_##type##_freelist > \ | |
| 855 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \ | |
| 856 { \ | |
| 857 result = (structtype *) type##_free_list; \ | |
| 1204 | 858 assert (LRECORD_FREE_P (result)); \ |
| 859 /* Before actually using the chain pointer, we complement \ | |
| 860 all its bits; see PUT_FIXED_TYPE_ON_FREE_LIST(). */ \ | |
| 454 | 861 type##_free_list = (Lisp_Free *) \ |
| 862 (~ (EMACS_UINT) (type##_free_list->chain)); \ | |
| 863 gc_count_num_##type##_freelist--; \ | |
| 864 } \ | |
| 865 else \ | |
| 866 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ | |
| 867 MARK_LRECORD_AS_NOT_FREE (result); \ | |
| 428 | 868 } while (0) |
| 869 | |
| 870 #else /* !ERROR_CHECK_GC */ | |
| 871 | |
| 454 | 872 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \ |
| 428 | 873 if (type##_free_list) \ |
| 874 { \ | |
| 454 | 875 result = (structtype *) type##_free_list; \ |
| 876 type##_free_list = type##_free_list->chain; \ | |
| 428 | 877 } \ |
| 878 else \ | |
| 879 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ | |
| 454 | 880 MARK_LRECORD_AS_NOT_FREE (result); \ |
| 428 | 881 } while (0) |
| 882 | |
| 883 #endif /* !ERROR_CHECK_GC */ | |
| 884 | |
| 454 | 885 |
| 428 | 886 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \ |
| 887 do \ | |
| 888 { \ | |
| 889 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ | |
| 890 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ | |
| 891 } while (0) | |
| 892 | |
| 893 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \ | |
| 894 do \ | |
| 895 { \ | |
| 896 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ | |
| 897 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ | |
| 898 } while (0) | |
| 899 | |
| 454 | 900 |
| 901 /* Lisp_Free is the type to represent a free list member inside a frob | |
| 902 block of any lisp object type. */ | |
| 903 typedef struct Lisp_Free | |
| 904 { | |
| 905 struct lrecord_header lheader; | |
| 906 struct Lisp_Free *chain; | |
| 907 } Lisp_Free; | |
| 908 | |
| 909 #define LRECORD_FREE_P(ptr) \ | |
| 771 | 910 (((struct lrecord_header *) ptr)->type == lrecord_type_free) |
| 454 | 911 |
| 912 #define MARK_LRECORD_AS_FREE(ptr) \ | |
| 771 | 913 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_free)) |
| 454 | 914 |
| 915 #ifdef ERROR_CHECK_GC | |
| 916 #define MARK_LRECORD_AS_NOT_FREE(ptr) \ | |
| 771 | 917 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_undefined)) |
| 428 | 918 #else |
| 454 | 919 #define MARK_LRECORD_AS_NOT_FREE(ptr) DO_NOTHING |
| 428 | 920 #endif |
| 921 | |
| 922 #ifdef ERROR_CHECK_GC | |
| 923 | |
| 454 | 924 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \ |
| 925 if (type##_free_list_tail) \ | |
| 926 { \ | |
| 927 /* When we store the chain pointer, we complement all \ | |
| 928 its bits; this should significantly increase its \ | |
| 929 bogosity in case someone tries to use the value, and \ | |
| 930 should make us crash faster if someone overwrites the \ | |
| 931 pointer because when it gets un-complemented in \ | |
| 932 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \ | |
| 933 extremely bogus. */ \ | |
| 934 type##_free_list_tail->chain = \ | |
| 935 (Lisp_Free *) ~ (EMACS_UINT) (ptr); \ | |
| 936 } \ | |
| 937 else \ | |
| 938 type##_free_list = (Lisp_Free *) (ptr); \ | |
| 939 type##_free_list_tail = (Lisp_Free *) (ptr); \ | |
| 940 } while (0) | |
| 428 | 941 |
| 942 #else /* !ERROR_CHECK_GC */ | |
| 943 | |
| 454 | 944 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \ |
| 945 ((Lisp_Free *) (ptr))->chain = type##_free_list; \ | |
| 946 type##_free_list = (Lisp_Free *) (ptr); \ | |
| 947 } while (0) \ | |
| 428 | 948 |
| 949 #endif /* !ERROR_CHECK_GC */ | |
| 950 | |
| 951 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */ | |
| 952 | |
| 953 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \ | |
| 954 structtype *FFT_ptr = (ptr); \ | |
| 1204 | 955 gc_checking_assert (!LRECORD_FREE_P (FFT_ptr)); \ |
| 428 | 956 ADDITIONAL_FREE_##type (FFT_ptr); \ |
| 957 deadbeef_memory (FFT_ptr, sizeof (structtype)); \ | |
| 958 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \ | |
| 454 | 959 MARK_LRECORD_AS_FREE (FFT_ptr); \ |
| 428 | 960 } while (0) |
| 961 | |
| 962 /* Like FREE_FIXED_TYPE() but used when we are explicitly | |
| 963 freeing a structure through free_cons(), free_marker(), etc. | |
| 964 rather than through the normal process of sweeping. | |
| 965 We attempt to undo the changes made to the allocation counters | |
| 966 as a result of this structure being allocated. This is not | |
| 967 completely necessary but helps keep things saner: e.g. this way, | |
| 968 repeatedly allocating and freeing a cons will not result in | |
| 969 the consing-since-gc counter advancing, which would cause a GC | |
| 1204 | 970 and somewhat defeat the purpose of explicitly freeing. |
| 971 | |
| 972 We also disable this mechanism entirely when ALLOC_NO_POOLS is | |
| 973 set, which is used for Purify and the like. */ | |
| 974 | |
| 975 #ifndef ALLOC_NO_POOLS | |
| 428 | 976 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \ |
| 977 do { FREE_FIXED_TYPE (type, structtype, ptr); \ | |
| 978 DECREMENT_CONS_COUNTER (sizeof (structtype)); \ | |
| 979 gc_count_num_##type##_freelist++; \ | |
| 980 } while (0) | |
| 1204 | 981 #else |
| 982 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) | |
| 983 #endif | |
| 428 | 984 |
| 985 | |
| 986 | |
| 987 /************************************************************************/ | |
| 988 /* Cons allocation */ | |
| 989 /************************************************************************/ | |
| 990 | |
| 440 | 991 DECLARE_FIXED_TYPE_ALLOC (cons, Lisp_Cons); |
| 428 | 992 /* conses are used and freed so often that we set this really high */ |
| 993 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */ | |
| 994 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000 | |
| 995 | |
| 996 static Lisp_Object | |
| 997 mark_cons (Lisp_Object obj) | |
| 998 { | |
| 999 if (NILP (XCDR (obj))) | |
| 1000 return XCAR (obj); | |
| 1001 | |
| 1002 mark_object (XCAR (obj)); | |
| 1003 return XCDR (obj); | |
| 1004 } | |
| 1005 | |
| 1006 static int | |
| 1007 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth) | |
| 1008 { | |
| 442 | 1009 depth++; |
| 1010 while (internal_equal (XCAR (ob1), XCAR (ob2), depth)) | |
| 428 | 1011 { |
| 1012 ob1 = XCDR (ob1); | |
| 1013 ob2 = XCDR (ob2); | |
| 1014 if (! CONSP (ob1) || ! CONSP (ob2)) | |
| 442 | 1015 return internal_equal (ob1, ob2, depth); |
| 428 | 1016 } |
| 1017 return 0; | |
| 1018 } | |
| 1019 | |
| 1204 | 1020 static const struct memory_description cons_description[] = { |
| 853 | 1021 { XD_LISP_OBJECT, offsetof (Lisp_Cons, car_) }, |
| 1022 { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr_) }, | |
| 428 | 1023 { XD_END } |
| 1024 }; | |
| 1025 | |
| 934 | 1026 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons, |
| 1027 1, /*dumpable-flag*/ | |
| 1028 mark_cons, print_cons, 0, | |
| 1029 cons_equal, | |
| 1030 /* | |
| 1031 * No `hash' method needed. | |
| 1032 * internal_hash knows how to | |
| 1033 * handle conses. | |
| 1034 */ | |
| 1035 0, | |
| 1036 cons_description, | |
| 1037 Lisp_Cons); | |
| 428 | 1038 |
| 1039 DEFUN ("cons", Fcons, 2, 2, 0, /* | |
| 1040 Create a new cons, give it CAR and CDR as components, and return it. | |
| 1041 */ | |
| 1042 (car, cdr)) | |
| 1043 { | |
| 1044 /* This cannot GC. */ | |
| 1045 Lisp_Object val; | |
| 440 | 1046 Lisp_Cons *c; |
| 1047 | |
| 1048 ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c); | |
| 442 | 1049 set_lheader_implementation (&c->lheader, &lrecord_cons); |
| 793 | 1050 val = wrap_cons (c); |
| 853 | 1051 XSETCAR (val, car); |
| 1052 XSETCDR (val, cdr); | |
| 428 | 1053 return val; |
| 1054 } | |
| 1055 | |
| 1056 /* This is identical to Fcons() but it used for conses that we're | |
| 1057 going to free later, and is useful when trying to track down | |
| 1058 "real" consing. */ | |
| 1059 Lisp_Object | |
| 1060 noseeum_cons (Lisp_Object car, Lisp_Object cdr) | |
| 1061 { | |
| 1062 Lisp_Object val; | |
| 440 | 1063 Lisp_Cons *c; |
| 1064 | |
| 1065 NOSEEUM_ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c); | |
| 442 | 1066 set_lheader_implementation (&c->lheader, &lrecord_cons); |
| 793 | 1067 val = wrap_cons (c); |
| 428 | 1068 XCAR (val) = car; |
| 1069 XCDR (val) = cdr; | |
| 1070 return val; | |
| 1071 } | |
| 1072 | |
| 1073 DEFUN ("list", Flist, 0, MANY, 0, /* | |
| 1074 Return a newly created list with specified arguments as elements. | |
| 1075 Any number of arguments, even zero arguments, are allowed. | |
| 1076 */ | |
| 1077 (int nargs, Lisp_Object *args)) | |
| 1078 { | |
| 1079 Lisp_Object val = Qnil; | |
| 1080 Lisp_Object *argp = args + nargs; | |
| 1081 | |
| 1082 while (argp > args) | |
| 1083 val = Fcons (*--argp, val); | |
| 1084 return val; | |
| 1085 } | |
| 1086 | |
| 1087 Lisp_Object | |
| 1088 list1 (Lisp_Object obj0) | |
| 1089 { | |
| 1090 /* This cannot GC. */ | |
| 1091 return Fcons (obj0, Qnil); | |
| 1092 } | |
| 1093 | |
| 1094 Lisp_Object | |
| 1095 list2 (Lisp_Object obj0, Lisp_Object obj1) | |
| 1096 { | |
| 1097 /* This cannot GC. */ | |
| 1098 return Fcons (obj0, Fcons (obj1, Qnil)); | |
| 1099 } | |
| 1100 | |
| 1101 Lisp_Object | |
| 1102 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
| 1103 { | |
| 1104 /* This cannot GC. */ | |
| 1105 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil))); | |
| 1106 } | |
| 1107 | |
| 1108 Lisp_Object | |
| 1109 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
| 1110 { | |
| 1111 /* This cannot GC. */ | |
| 1112 return Fcons (obj0, Fcons (obj1, obj2)); | |
| 1113 } | |
| 1114 | |
| 1115 Lisp_Object | |
| 1116 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist) | |
| 1117 { | |
| 1118 return Fcons (Fcons (key, value), alist); | |
| 1119 } | |
| 1120 | |
| 1121 Lisp_Object | |
| 1122 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3) | |
| 1123 { | |
| 1124 /* This cannot GC. */ | |
| 1125 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil)))); | |
| 1126 } | |
| 1127 | |
| 1128 Lisp_Object | |
| 1129 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, | |
| 1130 Lisp_Object obj4) | |
| 1131 { | |
| 1132 /* This cannot GC. */ | |
| 1133 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil))))); | |
| 1134 } | |
| 1135 | |
| 1136 Lisp_Object | |
| 1137 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, | |
| 1138 Lisp_Object obj4, Lisp_Object obj5) | |
| 1139 { | |
| 1140 /* This cannot GC. */ | |
| 1141 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil)))))); | |
| 1142 } | |
| 1143 | |
| 1144 DEFUN ("make-list", Fmake_list, 2, 2, 0, /* | |
| 444 | 1145 Return a new list of length LENGTH, with each element being OBJECT. |
| 428 | 1146 */ |
| 444 | 1147 (length, object)) |
| 428 | 1148 { |
| 1149 CHECK_NATNUM (length); | |
| 1150 | |
| 1151 { | |
| 1152 Lisp_Object val = Qnil; | |
| 647 | 1153 EMACS_INT size = XINT (length); |
| 428 | 1154 |
| 1155 while (size--) | |
| 444 | 1156 val = Fcons (object, val); |
| 428 | 1157 return val; |
| 1158 } | |
| 1159 } | |
| 1160 | |
| 1161 | |
| 1162 /************************************************************************/ | |
| 1163 /* Float allocation */ | |
| 1164 /************************************************************************/ | |
| 1165 | |
| 440 | 1166 DECLARE_FIXED_TYPE_ALLOC (float, Lisp_Float); |
| 428 | 1167 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000 |
| 1168 | |
| 1169 Lisp_Object | |
| 1170 make_float (double float_value) | |
| 1171 { | |
| 440 | 1172 Lisp_Float *f; |
| 1173 | |
| 1174 ALLOCATE_FIXED_TYPE (float, Lisp_Float, f); | |
| 1175 | |
| 1176 /* Avoid dump-time `uninitialized memory read' purify warnings. */ | |
| 1177 if (sizeof (struct lrecord_header) + sizeof (double) != sizeof (*f)) | |
| 1178 xzero (*f); | |
| 1179 | |
| 442 | 1180 set_lheader_implementation (&f->lheader, &lrecord_float); |
| 428 | 1181 float_data (f) = float_value; |
| 793 | 1182 return wrap_float (f); |
| 428 | 1183 } |
| 1184 | |
| 1185 | |
| 1186 /************************************************************************/ | |
| 1187 /* Vector allocation */ | |
| 1188 /************************************************************************/ | |
| 1189 | |
| 1190 static Lisp_Object | |
| 1191 mark_vector (Lisp_Object obj) | |
| 1192 { | |
| 1193 Lisp_Vector *ptr = XVECTOR (obj); | |
| 1194 int len = vector_length (ptr); | |
| 1195 int i; | |
| 1196 | |
| 1197 for (i = 0; i < len - 1; i++) | |
| 1198 mark_object (ptr->contents[i]); | |
| 1199 return (len > 0) ? ptr->contents[len - 1] : Qnil; | |
| 1200 } | |
| 1201 | |
| 665 | 1202 static Bytecount |
| 442 | 1203 size_vector (const void *lheader) |
| 428 | 1204 { |
| 456 | 1205 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, contents, |
| 442 | 1206 ((Lisp_Vector *) lheader)->size); |
| 428 | 1207 } |
| 1208 | |
| 1209 static int | |
| 1210 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
| 1211 { | |
| 1212 int len = XVECTOR_LENGTH (obj1); | |
| 1213 if (len != XVECTOR_LENGTH (obj2)) | |
| 1214 return 0; | |
| 1215 | |
| 1216 { | |
| 1217 Lisp_Object *ptr1 = XVECTOR_DATA (obj1); | |
| 1218 Lisp_Object *ptr2 = XVECTOR_DATA (obj2); | |
| 1219 while (len--) | |
| 1220 if (!internal_equal (*ptr1++, *ptr2++, depth + 1)) | |
| 1221 return 0; | |
| 1222 } | |
| 1223 return 1; | |
| 1224 } | |
| 1225 | |
| 665 | 1226 static Hashcode |
| 442 | 1227 vector_hash (Lisp_Object obj, int depth) |
| 1228 { | |
| 1229 return HASH2 (XVECTOR_LENGTH (obj), | |
| 1230 internal_array_hash (XVECTOR_DATA (obj), | |
| 1231 XVECTOR_LENGTH (obj), | |
| 1232 depth + 1)); | |
| 1233 } | |
| 1234 | |
| 1204 | 1235 static const struct memory_description vector_description[] = { |
| 440 | 1236 { XD_LONG, offsetof (Lisp_Vector, size) }, |
| 1237 { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Vector, contents), XD_INDIRECT(0, 0) }, | |
| 428 | 1238 { XD_END } |
| 1239 }; | |
| 1240 | |
| 1204 | 1241 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION ("vector", vector, |
| 1242 1, /*dumpable-flag*/ | |
| 1243 mark_vector, print_vector, 0, | |
| 1244 vector_equal, | |
| 1245 vector_hash, | |
| 1246 vector_description, | |
| 1247 size_vector, Lisp_Vector); | |
| 428 | 1248 /* #### should allocate `small' vectors from a frob-block */ |
| 1249 static Lisp_Vector * | |
| 665 | 1250 make_vector_internal (Elemcount sizei) |
| 428 | 1251 { |
| 1204 | 1252 /* no `next' field; we use lcrecords */ |
| 665 | 1253 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, |
| 1204 | 1254 contents, sizei); |
| 1255 Lisp_Vector *p = | |
| 1256 (Lisp_Vector *) basic_alloc_lcrecord (sizem, &lrecord_vector); | |
| 428 | 1257 |
| 1258 p->size = sizei; | |
| 1259 return p; | |
| 1260 } | |
| 1261 | |
| 1262 Lisp_Object | |
| 665 | 1263 make_vector (Elemcount length, Lisp_Object object) |
| 428 | 1264 { |
| 1265 Lisp_Vector *vecp = make_vector_internal (length); | |
| 1266 Lisp_Object *p = vector_data (vecp); | |
| 1267 | |
| 1268 while (length--) | |
| 444 | 1269 *p++ = object; |
| 428 | 1270 |
| 793 | 1271 return wrap_vector (vecp); |
| 428 | 1272 } |
| 1273 | |
| 1274 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /* | |
| 444 | 1275 Return a new vector of length LENGTH, with each element being OBJECT. |
| 428 | 1276 See also the function `vector'. |
| 1277 */ | |
| 444 | 1278 (length, object)) |
| 428 | 1279 { |
| 1280 CONCHECK_NATNUM (length); | |
| 444 | 1281 return make_vector (XINT (length), object); |
| 428 | 1282 } |
| 1283 | |
| 1284 DEFUN ("vector", Fvector, 0, MANY, 0, /* | |
| 1285 Return a newly created vector with specified arguments as elements. | |
| 1286 Any number of arguments, even zero arguments, are allowed. | |
| 1287 */ | |
| 1288 (int nargs, Lisp_Object *args)) | |
| 1289 { | |
| 1290 Lisp_Vector *vecp = make_vector_internal (nargs); | |
| 1291 Lisp_Object *p = vector_data (vecp); | |
| 1292 | |
| 1293 while (nargs--) | |
| 1294 *p++ = *args++; | |
| 1295 | |
| 793 | 1296 return wrap_vector (vecp); |
| 428 | 1297 } |
| 1298 | |
| 1299 Lisp_Object | |
| 1300 vector1 (Lisp_Object obj0) | |
| 1301 { | |
| 1302 return Fvector (1, &obj0); | |
| 1303 } | |
| 1304 | |
| 1305 Lisp_Object | |
| 1306 vector2 (Lisp_Object obj0, Lisp_Object obj1) | |
| 1307 { | |
| 1308 Lisp_Object args[2]; | |
| 1309 args[0] = obj0; | |
| 1310 args[1] = obj1; | |
| 1311 return Fvector (2, args); | |
| 1312 } | |
| 1313 | |
| 1314 Lisp_Object | |
| 1315 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
| 1316 { | |
| 1317 Lisp_Object args[3]; | |
| 1318 args[0] = obj0; | |
| 1319 args[1] = obj1; | |
| 1320 args[2] = obj2; | |
| 1321 return Fvector (3, args); | |
| 1322 } | |
| 1323 | |
| 1324 #if 0 /* currently unused */ | |
| 1325 | |
| 1326 Lisp_Object | |
| 1327 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
| 1328 Lisp_Object obj3) | |
| 1329 { | |
| 1330 Lisp_Object args[4]; | |
| 1331 args[0] = obj0; | |
| 1332 args[1] = obj1; | |
| 1333 args[2] = obj2; | |
| 1334 args[3] = obj3; | |
| 1335 return Fvector (4, args); | |
| 1336 } | |
| 1337 | |
| 1338 Lisp_Object | |
| 1339 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
| 1340 Lisp_Object obj3, Lisp_Object obj4) | |
| 1341 { | |
| 1342 Lisp_Object args[5]; | |
| 1343 args[0] = obj0; | |
| 1344 args[1] = obj1; | |
| 1345 args[2] = obj2; | |
| 1346 args[3] = obj3; | |
| 1347 args[4] = obj4; | |
| 1348 return Fvector (5, args); | |
| 1349 } | |
| 1350 | |
| 1351 Lisp_Object | |
| 1352 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
| 1353 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5) | |
| 1354 { | |
| 1355 Lisp_Object args[6]; | |
| 1356 args[0] = obj0; | |
| 1357 args[1] = obj1; | |
| 1358 args[2] = obj2; | |
| 1359 args[3] = obj3; | |
| 1360 args[4] = obj4; | |
| 1361 args[5] = obj5; | |
| 1362 return Fvector (6, args); | |
| 1363 } | |
| 1364 | |
| 1365 Lisp_Object | |
| 1366 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
| 1367 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, | |
| 1368 Lisp_Object obj6) | |
| 1369 { | |
| 1370 Lisp_Object args[7]; | |
| 1371 args[0] = obj0; | |
| 1372 args[1] = obj1; | |
| 1373 args[2] = obj2; | |
| 1374 args[3] = obj3; | |
| 1375 args[4] = obj4; | |
| 1376 args[5] = obj5; | |
| 1377 args[6] = obj6; | |
| 1378 return Fvector (7, args); | |
| 1379 } | |
| 1380 | |
| 1381 Lisp_Object | |
| 1382 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
| 1383 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, | |
| 1384 Lisp_Object obj6, Lisp_Object obj7) | |
| 1385 { | |
| 1386 Lisp_Object args[8]; | |
| 1387 args[0] = obj0; | |
| 1388 args[1] = obj1; | |
| 1389 args[2] = obj2; | |
| 1390 args[3] = obj3; | |
| 1391 args[4] = obj4; | |
| 1392 args[5] = obj5; | |
| 1393 args[6] = obj6; | |
| 1394 args[7] = obj7; | |
| 1395 return Fvector (8, args); | |
| 1396 } | |
| 1397 #endif /* unused */ | |
| 1398 | |
| 1399 /************************************************************************/ | |
| 1400 /* Bit Vector allocation */ | |
| 1401 /************************************************************************/ | |
| 1402 | |
| 1403 /* #### should allocate `small' bit vectors from a frob-block */ | |
| 440 | 1404 static Lisp_Bit_Vector * |
| 665 | 1405 make_bit_vector_internal (Elemcount sizei) |
| 428 | 1406 { |
| 1204 | 1407 /* no `next' field; we use lcrecords */ |
| 665 | 1408 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (sizei); |
| 1409 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, | |
| 1204 | 1410 unsigned long, |
| 1411 bits, num_longs); | |
| 1412 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *) | |
| 1413 basic_alloc_lcrecord (sizem, &lrecord_bit_vector); | |
| 428 | 1414 |
| 1415 bit_vector_length (p) = sizei; | |
| 1416 return p; | |
| 1417 } | |
| 1418 | |
| 1419 Lisp_Object | |
| 665 | 1420 make_bit_vector (Elemcount length, Lisp_Object bit) |
| 428 | 1421 { |
| 440 | 1422 Lisp_Bit_Vector *p = make_bit_vector_internal (length); |
| 665 | 1423 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (length); |
| 428 | 1424 |
| 444 | 1425 CHECK_BIT (bit); |
| 1426 | |
| 1427 if (ZEROP (bit)) | |
| 428 | 1428 memset (p->bits, 0, num_longs * sizeof (long)); |
| 1429 else | |
| 1430 { | |
| 665 | 1431 Elemcount bits_in_last = length & (LONGBITS_POWER_OF_2 - 1); |
| 428 | 1432 memset (p->bits, ~0, num_longs * sizeof (long)); |
| 1433 /* But we have to make sure that the unused bits in the | |
| 1434 last long are 0, so that equal/hash is easy. */ | |
| 1435 if (bits_in_last) | |
| 1436 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1; | |
| 1437 } | |
| 1438 | |
| 793 | 1439 return wrap_bit_vector (p); |
| 428 | 1440 } |
| 1441 | |
| 1442 Lisp_Object | |
| 665 | 1443 make_bit_vector_from_byte_vector (unsigned char *bytevec, Elemcount length) |
| 428 | 1444 { |
| 665 | 1445 Elemcount i; |
| 428 | 1446 Lisp_Bit_Vector *p = make_bit_vector_internal (length); |
| 1447 | |
| 1448 for (i = 0; i < length; i++) | |
| 1449 set_bit_vector_bit (p, i, bytevec[i]); | |
| 1450 | |
| 793 | 1451 return wrap_bit_vector (p); |
| 428 | 1452 } |
| 1453 | |
| 1454 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /* | |
| 444 | 1455 Return a new bit vector of length LENGTH. with each bit set to BIT. |
| 1456 BIT must be one of the integers 0 or 1. See also the function `bit-vector'. | |
| 428 | 1457 */ |
| 444 | 1458 (length, bit)) |
| 428 | 1459 { |
| 1460 CONCHECK_NATNUM (length); | |
| 1461 | |
| 444 | 1462 return make_bit_vector (XINT (length), bit); |
| 428 | 1463 } |
| 1464 | |
| 1465 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /* | |
| 1466 Return a newly created bit vector with specified arguments as elements. | |
| 1467 Any number of arguments, even zero arguments, are allowed. | |
| 444 | 1468 Each argument must be one of the integers 0 or 1. |
| 428 | 1469 */ |
| 1470 (int nargs, Lisp_Object *args)) | |
| 1471 { | |
| 1472 int i; | |
| 1473 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs); | |
| 1474 | |
| 1475 for (i = 0; i < nargs; i++) | |
| 1476 { | |
| 1477 CHECK_BIT (args[i]); | |
| 1478 set_bit_vector_bit (p, i, !ZEROP (args[i])); | |
| 1479 } | |
| 1480 | |
| 793 | 1481 return wrap_bit_vector (p); |
| 428 | 1482 } |
| 1483 | |
| 1484 | |
| 1485 /************************************************************************/ | |
| 1486 /* Compiled-function allocation */ | |
| 1487 /************************************************************************/ | |
| 1488 | |
| 1489 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function); | |
| 1490 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000 | |
| 1491 | |
| 1492 static Lisp_Object | |
| 1493 make_compiled_function (void) | |
| 1494 { | |
| 1495 Lisp_Compiled_Function *f; | |
| 1496 | |
| 1497 ALLOCATE_FIXED_TYPE (compiled_function, Lisp_Compiled_Function, f); | |
| 442 | 1498 set_lheader_implementation (&f->lheader, &lrecord_compiled_function); |
| 428 | 1499 |
| 1500 f->stack_depth = 0; | |
| 1501 f->specpdl_depth = 0; | |
| 1502 f->flags.documentationp = 0; | |
| 1503 f->flags.interactivep = 0; | |
| 1504 f->flags.domainp = 0; /* I18N3 */ | |
| 1505 f->instructions = Qzero; | |
| 1506 f->constants = Qzero; | |
| 1507 f->arglist = Qnil; | |
| 1739 | 1508 f->args = NULL; |
| 1509 f->max_args = f->min_args = f->args_in_array = 0; | |
| 428 | 1510 f->doc_and_interactive = Qnil; |
| 1511 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK | |
| 1512 f->annotated = Qnil; | |
| 1513 #endif | |
| 793 | 1514 return wrap_compiled_function (f); |
| 428 | 1515 } |
| 1516 | |
| 1517 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /* | |
| 1518 Return a new compiled-function object. | |
| 1519 Usage: (arglist instructions constants stack-depth | |
| 1520 &optional doc-string interactive) | |
| 1521 Note that, unlike all other emacs-lisp functions, calling this with five | |
| 1522 arguments is NOT the same as calling it with six arguments, the last of | |
| 1523 which is nil. If the INTERACTIVE arg is specified as nil, then that means | |
| 1524 that this function was defined with `(interactive)'. If the arg is not | |
| 1525 specified, then that means the function is not interactive. | |
| 1526 This is terrible behavior which is retained for compatibility with old | |
| 1527 `.elc' files which expect these semantics. | |
| 1528 */ | |
| 1529 (int nargs, Lisp_Object *args)) | |
| 1530 { | |
| 1531 /* In a non-insane world this function would have this arglist... | |
| 1532 (arglist instructions constants stack_depth &optional doc_string interactive) | |
| 1533 */ | |
| 1534 Lisp_Object fun = make_compiled_function (); | |
| 1535 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun); | |
| 1536 | |
| 1537 Lisp_Object arglist = args[0]; | |
| 1538 Lisp_Object instructions = args[1]; | |
| 1539 Lisp_Object constants = args[2]; | |
| 1540 Lisp_Object stack_depth = args[3]; | |
| 1541 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil; | |
| 1542 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound; | |
| 1543 | |
| 1544 if (nargs < 4 || nargs > 6) | |
| 1545 return Fsignal (Qwrong_number_of_arguments, | |
| 1546 list2 (intern ("make-byte-code"), make_int (nargs))); | |
| 1547 | |
| 1548 /* Check for valid formal parameter list now, to allow us to use | |
| 1549 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */ | |
| 1550 { | |
| 814 | 1551 EXTERNAL_LIST_LOOP_2 (symbol, arglist) |
| 428 | 1552 { |
| 1553 CHECK_SYMBOL (symbol); | |
| 1554 if (EQ (symbol, Qt) || | |
| 1555 EQ (symbol, Qnil) || | |
| 1556 SYMBOL_IS_KEYWORD (symbol)) | |
| 563 | 1557 invalid_constant_2 |
| 428 | 1558 ("Invalid constant symbol in formal parameter list", |
| 1559 symbol, arglist); | |
| 1560 } | |
| 1561 } | |
| 1562 f->arglist = arglist; | |
| 1563 | |
| 1564 /* `instructions' is a string or a cons (string . int) for a | |
| 1565 lazy-loaded function. */ | |
| 1566 if (CONSP (instructions)) | |
| 1567 { | |
| 1568 CHECK_STRING (XCAR (instructions)); | |
| 1569 CHECK_INT (XCDR (instructions)); | |
| 1570 } | |
| 1571 else | |
| 1572 { | |
| 1573 CHECK_STRING (instructions); | |
| 1574 } | |
| 1575 f->instructions = instructions; | |
| 1576 | |
| 1577 if (!NILP (constants)) | |
| 1578 CHECK_VECTOR (constants); | |
| 1579 f->constants = constants; | |
| 1580 | |
| 1581 CHECK_NATNUM (stack_depth); | |
| 442 | 1582 f->stack_depth = (unsigned short) XINT (stack_depth); |
| 428 | 1583 |
| 1584 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK | |
| 1585 if (!NILP (Vcurrent_compiled_function_annotation)) | |
| 1586 f->annotated = Fcopy (Vcurrent_compiled_function_annotation); | |
| 1587 else if (!NILP (Vload_file_name_internal_the_purecopy)) | |
| 1588 f->annotated = Vload_file_name_internal_the_purecopy; | |
| 1589 else if (!NILP (Vload_file_name_internal)) | |
| 1590 { | |
| 1591 struct gcpro gcpro1; | |
| 1592 GCPRO1 (fun); /* don't let fun get reaped */ | |
| 1593 Vload_file_name_internal_the_purecopy = | |
| 1594 Ffile_name_nondirectory (Vload_file_name_internal); | |
| 1595 f->annotated = Vload_file_name_internal_the_purecopy; | |
| 1596 UNGCPRO; | |
| 1597 } | |
| 1598 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */ | |
| 1599 | |
| 1600 /* doc_string may be nil, string, int, or a cons (string . int). | |
| 1601 interactive may be list or string (or unbound). */ | |
| 1602 f->doc_and_interactive = Qunbound; | |
| 1603 #ifdef I18N3 | |
| 1604 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0) | |
| 1605 f->doc_and_interactive = Vfile_domain; | |
| 1606 #endif | |
| 1607 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0) | |
| 1608 { | |
| 1609 f->doc_and_interactive | |
| 1610 = (UNBOUNDP (f->doc_and_interactive) ? interactive : | |
| 1611 Fcons (interactive, f->doc_and_interactive)); | |
| 1612 } | |
| 1613 if ((f->flags.documentationp = !NILP (doc_string)) != 0) | |
| 1614 { | |
| 1615 f->doc_and_interactive | |
| 1616 = (UNBOUNDP (f->doc_and_interactive) ? doc_string : | |
| 1617 Fcons (doc_string, f->doc_and_interactive)); | |
| 1618 } | |
| 1619 if (UNBOUNDP (f->doc_and_interactive)) | |
| 1620 f->doc_and_interactive = Qnil; | |
| 1621 | |
| 1622 return fun; | |
| 1623 } | |
| 1624 | |
| 1625 | |
| 1626 /************************************************************************/ | |
| 1627 /* Symbol allocation */ | |
| 1628 /************************************************************************/ | |
| 1629 | |
| 440 | 1630 DECLARE_FIXED_TYPE_ALLOC (symbol, Lisp_Symbol); |
| 428 | 1631 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000 |
| 1632 | |
| 1633 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /* | |
| 1634 Return a newly allocated uninterned symbol whose name is NAME. | |
| 1635 Its value and function definition are void, and its property list is nil. | |
| 1636 */ | |
| 1637 (name)) | |
| 1638 { | |
| 440 | 1639 Lisp_Symbol *p; |
| 428 | 1640 |
| 1641 CHECK_STRING (name); | |
| 1642 | |
| 440 | 1643 ALLOCATE_FIXED_TYPE (symbol, Lisp_Symbol, p); |
| 442 | 1644 set_lheader_implementation (&p->lheader, &lrecord_symbol); |
| 793 | 1645 p->name = name; |
| 428 | 1646 p->plist = Qnil; |
| 1647 p->value = Qunbound; | |
| 1648 p->function = Qunbound; | |
| 1649 symbol_next (p) = 0; | |
| 793 | 1650 return wrap_symbol (p); |
| 428 | 1651 } |
| 1652 | |
| 1653 | |
| 1654 /************************************************************************/ | |
| 1655 /* Extent allocation */ | |
| 1656 /************************************************************************/ | |
| 1657 | |
| 1658 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent); | |
| 1659 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000 | |
| 1660 | |
| 1661 struct extent * | |
| 1662 allocate_extent (void) | |
| 1663 { | |
| 1664 struct extent *e; | |
| 1665 | |
| 1666 ALLOCATE_FIXED_TYPE (extent, struct extent, e); | |
| 442 | 1667 set_lheader_implementation (&e->lheader, &lrecord_extent); |
| 428 | 1668 extent_object (e) = Qnil; |
| 1669 set_extent_start (e, -1); | |
| 1670 set_extent_end (e, -1); | |
| 1671 e->plist = Qnil; | |
| 1672 | |
| 1673 xzero (e->flags); | |
| 1674 | |
| 1675 extent_face (e) = Qnil; | |
| 1676 e->flags.end_open = 1; /* default is for endpoints to behave like markers */ | |
| 1677 e->flags.detachable = 1; | |
| 1678 | |
| 1679 return e; | |
| 1680 } | |
| 1681 | |
| 1682 | |
| 1683 /************************************************************************/ | |
| 1684 /* Event allocation */ | |
| 1685 /************************************************************************/ | |
| 1686 | |
| 440 | 1687 DECLARE_FIXED_TYPE_ALLOC (event, Lisp_Event); |
| 428 | 1688 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000 |
| 1689 | |
| 1690 Lisp_Object | |
| 1691 allocate_event (void) | |
| 1692 { | |
| 440 | 1693 Lisp_Event *e; |
| 1694 | |
| 1695 ALLOCATE_FIXED_TYPE (event, Lisp_Event, e); | |
| 442 | 1696 set_lheader_implementation (&e->lheader, &lrecord_event); |
| 428 | 1697 |
| 793 | 1698 return wrap_event (e); |
| 428 | 1699 } |
| 1700 | |
| 1204 | 1701 #ifdef EVENT_DATA_AS_OBJECTS |
| 934 | 1702 DECLARE_FIXED_TYPE_ALLOC (key_data, Lisp_Key_Data); |
| 1703 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_key_data 1000 | |
| 1704 | |
| 1705 Lisp_Object | |
| 1204 | 1706 make_key_data (void) |
| 934 | 1707 { |
| 1708 Lisp_Key_Data *d; | |
| 1709 | |
| 1710 ALLOCATE_FIXED_TYPE (key_data, Lisp_Key_Data, d); | |
| 1204 | 1711 xzero (*d); |
| 934 | 1712 set_lheader_implementation (&d->lheader, &lrecord_key_data); |
| 1204 | 1713 d->keysym = Qnil; |
| 1714 | |
| 1715 return wrap_key_data (d); | |
| 934 | 1716 } |
| 1717 | |
| 1718 DECLARE_FIXED_TYPE_ALLOC (button_data, Lisp_Button_Data); | |
| 1719 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_button_data 1000 | |
| 1720 | |
| 1721 Lisp_Object | |
| 1204 | 1722 make_button_data (void) |
| 934 | 1723 { |
| 1724 Lisp_Button_Data *d; | |
| 1725 | |
| 1726 ALLOCATE_FIXED_TYPE (button_data, Lisp_Button_Data, d); | |
| 1204 | 1727 xzero (*d); |
| 934 | 1728 set_lheader_implementation (&d->lheader, &lrecord_button_data); |
| 1729 | |
| 1204 | 1730 return wrap_button_data (d); |
| 934 | 1731 } |
| 1732 | |
| 1733 DECLARE_FIXED_TYPE_ALLOC (motion_data, Lisp_Motion_Data); | |
| 1734 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_motion_data 1000 | |
| 1735 | |
| 1736 Lisp_Object | |
| 1204 | 1737 make_motion_data (void) |
| 934 | 1738 { |
| 1739 Lisp_Motion_Data *d; | |
| 1740 | |
| 1741 ALLOCATE_FIXED_TYPE (motion_data, Lisp_Motion_Data, d); | |
| 1204 | 1742 xzero (*d); |
| 934 | 1743 set_lheader_implementation (&d->lheader, &lrecord_motion_data); |
| 1744 | |
| 1204 | 1745 return wrap_motion_data (d); |
| 934 | 1746 } |
| 1747 | |
| 1748 DECLARE_FIXED_TYPE_ALLOC (process_data, Lisp_Process_Data); | |
| 1749 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_process_data 1000 | |
| 1750 | |
| 1751 Lisp_Object | |
| 1204 | 1752 make_process_data (void) |
| 934 | 1753 { |
| 1754 Lisp_Process_Data *d; | |
| 1755 | |
| 1756 ALLOCATE_FIXED_TYPE (process_data, Lisp_Process_Data, d); | |
| 1204 | 1757 xzero (*d); |
| 934 | 1758 set_lheader_implementation (&d->lheader, &lrecord_process_data); |
| 1204 | 1759 d->process = Qnil; |
| 1760 | |
| 1761 return wrap_process_data (d); | |
| 934 | 1762 } |
| 1763 | |
| 1764 DECLARE_FIXED_TYPE_ALLOC (timeout_data, Lisp_Timeout_Data); | |
| 1765 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_timeout_data 1000 | |
| 1766 | |
| 1767 Lisp_Object | |
| 1204 | 1768 make_timeout_data (void) |
| 934 | 1769 { |
| 1770 Lisp_Timeout_Data *d; | |
| 1771 | |
| 1772 ALLOCATE_FIXED_TYPE (timeout_data, Lisp_Timeout_Data, d); | |
| 1204 | 1773 xzero (*d); |
| 934 | 1774 set_lheader_implementation (&d->lheader, &lrecord_timeout_data); |
| 1204 | 1775 d->function = Qnil; |
| 1776 d->object = Qnil; | |
| 1777 | |
| 1778 return wrap_timeout_data (d); | |
| 934 | 1779 } |
| 1780 | |
| 1781 DECLARE_FIXED_TYPE_ALLOC (magic_data, Lisp_Magic_Data); | |
| 1782 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_data 1000 | |
| 1783 | |
| 1784 Lisp_Object | |
| 1204 | 1785 make_magic_data (void) |
| 934 | 1786 { |
| 1787 Lisp_Magic_Data *d; | |
| 1788 | |
| 1789 ALLOCATE_FIXED_TYPE (magic_data, Lisp_Magic_Data, d); | |
| 1204 | 1790 xzero (*d); |
| 934 | 1791 set_lheader_implementation (&d->lheader, &lrecord_magic_data); |
| 1792 | |
| 1204 | 1793 return wrap_magic_data (d); |
| 934 | 1794 } |
| 1795 | |
| 1796 DECLARE_FIXED_TYPE_ALLOC (magic_eval_data, Lisp_Magic_Eval_Data); | |
| 1797 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_eval_data 1000 | |
| 1798 | |
| 1799 Lisp_Object | |
| 1204 | 1800 make_magic_eval_data (void) |
| 934 | 1801 { |
| 1802 Lisp_Magic_Eval_Data *d; | |
| 1803 | |
| 1804 ALLOCATE_FIXED_TYPE (magic_eval_data, Lisp_Magic_Eval_Data, d); | |
| 1204 | 1805 xzero (*d); |
| 934 | 1806 set_lheader_implementation (&d->lheader, &lrecord_magic_eval_data); |
| 1204 | 1807 d->object = Qnil; |
| 1808 | |
| 1809 return wrap_magic_eval_data (d); | |
| 934 | 1810 } |
| 1811 | |
| 1812 DECLARE_FIXED_TYPE_ALLOC (eval_data, Lisp_Eval_Data); | |
| 1813 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_eval_data 1000 | |
| 1814 | |
| 1815 Lisp_Object | |
| 1204 | 1816 make_eval_data (void) |
| 934 | 1817 { |
| 1818 Lisp_Eval_Data *d; | |
| 1819 | |
| 1820 ALLOCATE_FIXED_TYPE (eval_data, Lisp_Eval_Data, d); | |
| 1204 | 1821 xzero (*d); |
| 934 | 1822 set_lheader_implementation (&d->lheader, &lrecord_eval_data); |
| 1204 | 1823 d->function = Qnil; |
| 1824 d->object = Qnil; | |
| 1825 | |
| 1826 return wrap_eval_data (d); | |
| 934 | 1827 } |
| 1828 | |
| 1829 DECLARE_FIXED_TYPE_ALLOC (misc_user_data, Lisp_Misc_User_Data); | |
| 1830 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_misc_user_data 1000 | |
| 1831 | |
| 1832 Lisp_Object | |
| 1204 | 1833 make_misc_user_data (void) |
| 934 | 1834 { |
| 1835 Lisp_Misc_User_Data *d; | |
| 1836 | |
| 1837 ALLOCATE_FIXED_TYPE (misc_user_data, Lisp_Misc_User_Data, d); | |
| 1204 | 1838 xzero (*d); |
| 934 | 1839 set_lheader_implementation (&d->lheader, &lrecord_misc_user_data); |
| 1204 | 1840 d->function = Qnil; |
| 1841 d->object = Qnil; | |
| 1842 | |
| 1843 return wrap_misc_user_data (d); | |
| 934 | 1844 } |
| 1204 | 1845 |
| 1846 #endif /* EVENT_DATA_AS_OBJECTS */ | |
| 428 | 1847 |
| 1848 /************************************************************************/ | |
| 1849 /* Marker allocation */ | |
| 1850 /************************************************************************/ | |
| 1851 | |
| 440 | 1852 DECLARE_FIXED_TYPE_ALLOC (marker, Lisp_Marker); |
| 428 | 1853 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000 |
| 1854 | |
| 1855 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /* | |
| 1856 Return a new marker which does not point at any place. | |
| 1857 */ | |
| 1858 ()) | |
| 1859 { | |
| 440 | 1860 Lisp_Marker *p; |
| 1861 | |
| 1862 ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p); | |
| 442 | 1863 set_lheader_implementation (&p->lheader, &lrecord_marker); |
| 428 | 1864 p->buffer = 0; |
| 665 | 1865 p->membpos = 0; |
| 428 | 1866 marker_next (p) = 0; |
| 1867 marker_prev (p) = 0; | |
| 1868 p->insertion_type = 0; | |
| 793 | 1869 return wrap_marker (p); |
| 428 | 1870 } |
| 1871 | |
| 1872 Lisp_Object | |
| 1873 noseeum_make_marker (void) | |
| 1874 { | |
| 440 | 1875 Lisp_Marker *p; |
| 1876 | |
| 1877 NOSEEUM_ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p); | |
| 442 | 1878 set_lheader_implementation (&p->lheader, &lrecord_marker); |
| 428 | 1879 p->buffer = 0; |
| 665 | 1880 p->membpos = 0; |
| 428 | 1881 marker_next (p) = 0; |
| 1882 marker_prev (p) = 0; | |
| 1883 p->insertion_type = 0; | |
| 793 | 1884 return wrap_marker (p); |
| 428 | 1885 } |
| 1886 | |
| 1887 | |
| 1888 /************************************************************************/ | |
| 1889 /* String allocation */ | |
| 1890 /************************************************************************/ | |
| 1891 | |
| 1892 /* The data for "short" strings generally resides inside of structs of type | |
| 1893 string_chars_block. The Lisp_String structure is allocated just like any | |
| 1204 | 1894 other basic lrecord, and these are freelisted when they get garbage |
| 1895 collected. The data for short strings get compacted, but the data for | |
| 1896 large strings do not. | |
| 428 | 1897 |
| 1898 Previously Lisp_String structures were relocated, but this caused a lot | |
| 1899 of bus-errors because the C code didn't include enough GCPRO's for | |
| 1900 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so | |
| 1901 that the reference would get relocated). | |
| 1902 | |
| 1903 This new method makes things somewhat bigger, but it is MUCH safer. */ | |
| 1904 | |
| 438 | 1905 DECLARE_FIXED_TYPE_ALLOC (string, Lisp_String); |
| 428 | 1906 /* strings are used and freed quite often */ |
| 1907 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */ | |
| 1908 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000 | |
| 1909 | |
| 1910 static Lisp_Object | |
| 1911 mark_string (Lisp_Object obj) | |
| 1912 { | |
| 793 | 1913 if (CONSP (XSTRING_PLIST (obj)) && EXTENT_INFOP (XCAR (XSTRING_PLIST (obj)))) |
| 1914 flush_cached_extent_info (XCAR (XSTRING_PLIST (obj))); | |
| 1915 return XSTRING_PLIST (obj); | |
| 428 | 1916 } |
| 1917 | |
| 1918 static int | |
| 1919 string_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
| 1920 { | |
| 1921 Bytecount len; | |
| 1922 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) && | |
| 1923 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len)); | |
| 1924 } | |
| 1925 | |
| 1204 | 1926 static const struct memory_description string_description[] = { |
| 793 | 1927 { XD_BYTECOUNT, offsetof (Lisp_String, size_) }, |
| 1928 { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data_), XD_INDIRECT(0, 1) }, | |
| 440 | 1929 { XD_LISP_OBJECT, offsetof (Lisp_String, plist) }, |
| 428 | 1930 { XD_END } |
| 1931 }; | |
| 1932 | |
| 442 | 1933 /* We store the string's extent info as the first element of the string's |
| 1934 property list; and the string's MODIFF as the first or second element | |
| 1935 of the string's property list (depending on whether the extent info | |
| 1936 is present), but only if the string has been modified. This is ugly | |
| 1937 but it reduces the memory allocated for the string in the vast | |
| 1938 majority of cases, where the string is never modified and has no | |
| 1939 extent info. | |
| 1940 | |
| 1941 #### This means you can't use an int as a key in a string's plist. */ | |
| 1942 | |
| 1943 static Lisp_Object * | |
| 1944 string_plist_ptr (Lisp_Object string) | |
| 1945 { | |
| 793 | 1946 Lisp_Object *ptr = &XSTRING_PLIST (string); |
| 442 | 1947 |
| 1948 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr))) | |
| 1949 ptr = &XCDR (*ptr); | |
| 1950 if (CONSP (*ptr) && INTP (XCAR (*ptr))) | |
| 1951 ptr = &XCDR (*ptr); | |
| 1952 return ptr; | |
| 1953 } | |
| 1954 | |
| 1955 static Lisp_Object | |
| 1956 string_getprop (Lisp_Object string, Lisp_Object property) | |
| 1957 { | |
| 1958 return external_plist_get (string_plist_ptr (string), property, 0, ERROR_ME); | |
| 1959 } | |
| 1960 | |
| 1961 static int | |
| 1962 string_putprop (Lisp_Object string, Lisp_Object property, Lisp_Object value) | |
| 1963 { | |
| 1964 external_plist_put (string_plist_ptr (string), property, value, 0, ERROR_ME); | |
| 1965 return 1; | |
| 1966 } | |
| 1967 | |
| 1968 static int | |
| 1969 string_remprop (Lisp_Object string, Lisp_Object property) | |
| 1970 { | |
| 1971 return external_remprop (string_plist_ptr (string), property, 0, ERROR_ME); | |
| 1972 } | |
| 1973 | |
| 1974 static Lisp_Object | |
| 1975 string_plist (Lisp_Object string) | |
| 1976 { | |
| 1977 return *string_plist_ptr (string); | |
| 1978 } | |
| 1979 | |
| 1980 /* No `finalize', or `hash' methods. | |
| 1981 internal_hash() already knows how to hash strings and finalization | |
| 1982 is done with the ADDITIONAL_FREE_string macro, which is the | |
| 1983 standard way to do finalization when using | |
| 1984 SWEEP_FIXED_TYPE_BLOCK(). */ | |
| 934 | 1985 DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS ("string", string, |
| 1986 1, /*dumpable-flag*/ | |
| 1987 mark_string, print_string, | |
| 1988 0, string_equal, 0, | |
| 1989 string_description, | |
| 1990 string_getprop, | |
| 1991 string_putprop, | |
| 1992 string_remprop, | |
| 1993 string_plist, | |
| 1994 Lisp_String); | |
| 428 | 1995 /* String blocks contain this many useful bytes. */ |
| 1996 #define STRING_CHARS_BLOCK_SIZE \ | |
| 814 | 1997 ((Bytecount) (8192 - MALLOC_OVERHEAD - \ |
| 1998 ((2 * sizeof (struct string_chars_block *)) \ | |
| 1999 + sizeof (EMACS_INT)))) | |
| 428 | 2000 /* Block header for small strings. */ |
| 2001 struct string_chars_block | |
| 2002 { | |
| 2003 EMACS_INT pos; | |
| 2004 struct string_chars_block *next; | |
| 2005 struct string_chars_block *prev; | |
| 2006 /* Contents of string_chars_block->string_chars are interleaved | |
| 2007 string_chars structures (see below) and the actual string data */ | |
| 2008 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE]; | |
| 2009 }; | |
| 2010 | |
| 2011 static struct string_chars_block *first_string_chars_block; | |
| 2012 static struct string_chars_block *current_string_chars_block; | |
| 2013 | |
| 2014 /* If SIZE is the length of a string, this returns how many bytes | |
| 2015 * the string occupies in string_chars_block->string_chars | |
| 2016 * (including alignment padding). | |
| 2017 */ | |
| 438 | 2018 #define STRING_FULLSIZE(size) \ |
| 826 | 2019 ALIGN_FOR_TYPE (((size) + 1 + sizeof (Lisp_String *)), Lisp_String *) |
| 428 | 2020 |
| 2021 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE) | |
| 2022 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size))) | |
| 2023 | |
| 454 | 2024 #define STRING_CHARS_FREE_P(ptr) ((ptr)->string == NULL) |
| 2025 #define MARK_STRING_CHARS_AS_FREE(ptr) ((void) ((ptr)->string = NULL)) | |
| 2026 | |
| 428 | 2027 struct string_chars |
| 2028 { | |
| 438 | 2029 Lisp_String *string; |
| 428 | 2030 unsigned char chars[1]; |
| 2031 }; | |
| 2032 | |
| 2033 struct unused_string_chars | |
| 2034 { | |
| 438 | 2035 Lisp_String *string; |
| 428 | 2036 EMACS_INT fullsize; |
| 2037 }; | |
| 2038 | |
| 2039 static void | |
| 2040 init_string_chars_alloc (void) | |
| 2041 { | |
| 2042 first_string_chars_block = xnew (struct string_chars_block); | |
| 2043 first_string_chars_block->prev = 0; | |
| 2044 first_string_chars_block->next = 0; | |
| 2045 first_string_chars_block->pos = 0; | |
| 2046 current_string_chars_block = first_string_chars_block; | |
| 2047 } | |
| 2048 | |
| 1550 | 2049 static Ibyte * |
| 2050 allocate_big_string_chars (Bytecount length) | |
| 2051 { | |
| 2052 Ibyte *p = xnew_array (Ibyte, length); | |
| 2053 INCREMENT_CONS_COUNTER (length, "string chars"); | |
| 2054 return p; | |
| 2055 } | |
| 2056 | |
| 428 | 2057 static struct string_chars * |
| 793 | 2058 allocate_string_chars_struct (Lisp_Object string_it_goes_with, |
| 814 | 2059 Bytecount fullsize) |
| 428 | 2060 { |
| 2061 struct string_chars *s_chars; | |
| 2062 | |
| 438 | 2063 if (fullsize <= |
| 2064 (countof (current_string_chars_block->string_chars) | |
| 2065 - current_string_chars_block->pos)) | |
| 428 | 2066 { |
| 2067 /* This string can fit in the current string chars block */ | |
| 2068 s_chars = (struct string_chars *) | |
| 2069 (current_string_chars_block->string_chars | |
| 2070 + current_string_chars_block->pos); | |
| 2071 current_string_chars_block->pos += fullsize; | |
| 2072 } | |
| 2073 else | |
| 2074 { | |
| 2075 /* Make a new current string chars block */ | |
| 2076 struct string_chars_block *new_scb = xnew (struct string_chars_block); | |
| 2077 | |
| 2078 current_string_chars_block->next = new_scb; | |
| 2079 new_scb->prev = current_string_chars_block; | |
| 2080 new_scb->next = 0; | |
| 2081 current_string_chars_block = new_scb; | |
| 2082 new_scb->pos = fullsize; | |
| 2083 s_chars = (struct string_chars *) | |
| 2084 current_string_chars_block->string_chars; | |
| 2085 } | |
| 2086 | |
| 793 | 2087 s_chars->string = XSTRING (string_it_goes_with); |
| 428 | 2088 |
| 2089 INCREMENT_CONS_COUNTER (fullsize, "string chars"); | |
| 2090 | |
| 2091 return s_chars; | |
| 2092 } | |
| 2093 | |
| 771 | 2094 #ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN |
| 2095 void | |
| 2096 sledgehammer_check_ascii_begin (Lisp_Object str) | |
| 2097 { | |
| 2098 Bytecount i; | |
| 2099 | |
| 2100 for (i = 0; i < XSTRING_LENGTH (str); i++) | |
| 2101 { | |
| 826 | 2102 if (!byte_ascii_p (string_byte (str, i))) |
| 771 | 2103 break; |
| 2104 } | |
| 2105 | |
| 2106 assert (i == (Bytecount) XSTRING_ASCII_BEGIN (str) || | |
| 2107 (i > MAX_STRING_ASCII_BEGIN && | |
| 2108 (Bytecount) XSTRING_ASCII_BEGIN (str) == | |
| 2109 (Bytecount) MAX_STRING_ASCII_BEGIN)); | |
| 2110 } | |
| 2111 #endif | |
| 2112 | |
| 2113 /* You do NOT want to be calling this! (And if you do, you must call | |
| 851 | 2114 XSET_STRING_ASCII_BEGIN() after modifying the string.) Use ALLOCA () |
| 771 | 2115 instead and then call make_string() like the rest of the world. */ |
| 2116 | |
| 428 | 2117 Lisp_Object |
| 2118 make_uninit_string (Bytecount length) | |
| 2119 { | |
| 438 | 2120 Lisp_String *s; |
| 814 | 2121 Bytecount fullsize = STRING_FULLSIZE (length); |
| 428 | 2122 |
| 438 | 2123 assert (length >= 0 && fullsize > 0); |
| 428 | 2124 |
| 2125 /* Allocate the string header */ | |
| 438 | 2126 ALLOCATE_FIXED_TYPE (string, Lisp_String, s); |
| 793 | 2127 xzero (*s); |
| 771 | 2128 set_lheader_implementation (&s->u.lheader, &lrecord_string); |
| 793 | 2129 |
| 826 | 2130 set_lispstringp_data (s, BIG_STRING_FULLSIZE_P (fullsize) |
| 1550 | 2131 ? allocate_big_string_chars (length + 1) |
| 793 | 2132 : allocate_string_chars_struct (wrap_string (s), |
| 2133 fullsize)->chars); | |
| 438 | 2134 |
| 826 | 2135 set_lispstringp_length (s, length); |
| 428 | 2136 s->plist = Qnil; |
| 793 | 2137 set_string_byte (wrap_string (s), length, 0); |
| 2138 | |
| 2139 return wrap_string (s); | |
| 428 | 2140 } |
| 2141 | |
| 2142 #ifdef VERIFY_STRING_CHARS_INTEGRITY | |
| 2143 static void verify_string_chars_integrity (void); | |
| 2144 #endif | |
| 2145 | |
| 2146 /* Resize the string S so that DELTA bytes can be inserted starting | |
| 2147 at POS. If DELTA < 0, it means deletion starting at POS. If | |
| 2148 POS < 0, resize the string but don't copy any characters. Use | |
| 2149 this if you're planning on completely overwriting the string. | |
| 2150 */ | |
| 2151 | |
| 2152 void | |
| 793 | 2153 resize_string (Lisp_Object s, Bytecount pos, Bytecount delta) |
| 428 | 2154 { |
| 438 | 2155 Bytecount oldfullsize, newfullsize; |
| 428 | 2156 #ifdef VERIFY_STRING_CHARS_INTEGRITY |
| 2157 verify_string_chars_integrity (); | |
| 2158 #endif | |
| 2159 | |
| 800 | 2160 #ifdef ERROR_CHECK_TEXT |
| 428 | 2161 if (pos >= 0) |
| 2162 { | |
| 793 | 2163 assert (pos <= XSTRING_LENGTH (s)); |
| 428 | 2164 if (delta < 0) |
| 793 | 2165 assert (pos + (-delta) <= XSTRING_LENGTH (s)); |
| 428 | 2166 } |
| 2167 else | |
| 2168 { | |
| 2169 if (delta < 0) | |
| 793 | 2170 assert ((-delta) <= XSTRING_LENGTH (s)); |
| 428 | 2171 } |
| 800 | 2172 #endif /* ERROR_CHECK_TEXT */ |
| 428 | 2173 |
| 2174 if (delta == 0) | |
| 2175 /* simplest case: no size change. */ | |
| 2176 return; | |
| 438 | 2177 |
| 2178 if (pos >= 0 && delta < 0) | |
| 2179 /* If DELTA < 0, the functions below will delete the characters | |
| 2180 before POS. We want to delete characters *after* POS, however, | |
| 2181 so convert this to the appropriate form. */ | |
| 2182 pos += -delta; | |
| 2183 | |
| 793 | 2184 oldfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s)); |
| 2185 newfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s) + delta); | |
| 438 | 2186 |
| 2187 if (BIG_STRING_FULLSIZE_P (oldfullsize)) | |
| 428 | 2188 { |
| 438 | 2189 if (BIG_STRING_FULLSIZE_P (newfullsize)) |
| 428 | 2190 { |
| 440 | 2191 /* Both strings are big. We can just realloc(). |
| 2192 But careful! If the string is shrinking, we have to | |
| 2193 memmove() _before_ realloc(), and if growing, we have to | |
| 2194 memmove() _after_ realloc() - otherwise the access is | |
| 2195 illegal, and we might crash. */ | |
| 793 | 2196 Bytecount len = XSTRING_LENGTH (s) + 1 - pos; |
| 440 | 2197 |
| 2198 if (delta < 0 && pos >= 0) | |
| 793 | 2199 memmove (XSTRING_DATA (s) + pos + delta, |
| 2200 XSTRING_DATA (s) + pos, len); | |
| 2201 XSET_STRING_DATA | |
| 867 | 2202 (s, (Ibyte *) xrealloc (XSTRING_DATA (s), |
| 793 | 2203 XSTRING_LENGTH (s) + delta + 1)); |
| 440 | 2204 if (delta > 0 && pos >= 0) |
| 793 | 2205 memmove (XSTRING_DATA (s) + pos + delta, XSTRING_DATA (s) + pos, |
| 2206 len); | |
| 1550 | 2207 /* Bump the cons counter. |
| 2208 Conservative; Martin let the increment be delta. */ | |
| 2209 INCREMENT_CONS_COUNTER (newfullsize, "string chars"); | |
| 428 | 2210 } |
| 438 | 2211 else /* String has been demoted from BIG_STRING. */ |
| 428 | 2212 { |
| 867 | 2213 Ibyte *new_data = |
| 438 | 2214 allocate_string_chars_struct (s, newfullsize)->chars; |
| 867 | 2215 Ibyte *old_data = XSTRING_DATA (s); |
| 438 | 2216 |
| 2217 if (pos >= 0) | |
| 2218 { | |
| 2219 memcpy (new_data, old_data, pos); | |
| 2220 memcpy (new_data + pos + delta, old_data + pos, | |
| 793 | 2221 XSTRING_LENGTH (s) + 1 - pos); |
| 438 | 2222 } |
| 793 | 2223 XSET_STRING_DATA (s, new_data); |
| 1726 | 2224 xfree (old_data, Ibyte *); |
| 438 | 2225 } |
| 2226 } | |
| 2227 else /* old string is small */ | |
| 2228 { | |
| 2229 if (oldfullsize == newfullsize) | |
| 2230 { | |
| 2231 /* special case; size change but the necessary | |
| 2232 allocation size won't change (up or down; code | |
| 2233 somewhere depends on there not being any unused | |
| 2234 allocation space, modulo any alignment | |
| 2235 constraints). */ | |
| 428 | 2236 if (pos >= 0) |
| 2237 { | |
| 867 | 2238 Ibyte *addroff = pos + XSTRING_DATA (s); |
| 428 | 2239 |
| 2240 memmove (addroff + delta, addroff, | |
| 2241 /* +1 due to zero-termination. */ | |
| 793 | 2242 XSTRING_LENGTH (s) + 1 - pos); |
| 428 | 2243 } |
| 2244 } | |
| 2245 else | |
| 2246 { | |
| 867 | 2247 Ibyte *old_data = XSTRING_DATA (s); |
| 2248 Ibyte *new_data = | |
| 438 | 2249 BIG_STRING_FULLSIZE_P (newfullsize) |
| 1550 | 2250 ? allocate_big_string_chars (XSTRING_LENGTH (s) + delta + 1) |
| 438 | 2251 : allocate_string_chars_struct (s, newfullsize)->chars; |
| 2252 | |
| 428 | 2253 if (pos >= 0) |
| 2254 { | |
| 438 | 2255 memcpy (new_data, old_data, pos); |
| 2256 memcpy (new_data + pos + delta, old_data + pos, | |
| 793 | 2257 XSTRING_LENGTH (s) + 1 - pos); |
| 428 | 2258 } |
| 793 | 2259 XSET_STRING_DATA (s, new_data); |
| 438 | 2260 |
| 2261 { | |
| 2262 /* We need to mark this chunk of the string_chars_block | |
| 2263 as unused so that compact_string_chars() doesn't | |
| 2264 freak. */ | |
| 2265 struct string_chars *old_s_chars = (struct string_chars *) | |
| 2266 ((char *) old_data - offsetof (struct string_chars, chars)); | |
| 2267 /* Sanity check to make sure we aren't hosed by strange | |
| 2268 alignment/padding. */ | |
| 793 | 2269 assert (old_s_chars->string == XSTRING (s)); |
| 454 | 2270 MARK_STRING_CHARS_AS_FREE (old_s_chars); |
| 438 | 2271 ((struct unused_string_chars *) old_s_chars)->fullsize = |
| 2272 oldfullsize; | |
| 2273 } | |
| 428 | 2274 } |
| 438 | 2275 } |
| 2276 | |
| 793 | 2277 XSET_STRING_LENGTH (s, XSTRING_LENGTH (s) + delta); |
| 438 | 2278 /* If pos < 0, the string won't be zero-terminated. |
| 2279 Terminate now just to make sure. */ | |
| 793 | 2280 XSTRING_DATA (s)[XSTRING_LENGTH (s)] = '\0'; |
| 438 | 2281 |
| 2282 if (pos >= 0) | |
| 793 | 2283 /* We also have to adjust all of the extent indices after the |
| 2284 place we did the change. We say "pos - 1" because | |
| 2285 adjust_extents() is exclusive of the starting position | |
| 2286 passed to it. */ | |
| 2287 adjust_extents (s, pos - 1, XSTRING_LENGTH (s), delta); | |
| 428 | 2288 |
| 2289 #ifdef VERIFY_STRING_CHARS_INTEGRITY | |
| 2290 verify_string_chars_integrity (); | |
| 2291 #endif | |
| 2292 } | |
| 2293 | |
| 2294 #ifdef MULE | |
| 2295 | |
| 771 | 2296 /* WARNING: If you modify an existing string, you must call |
| 2297 CHECK_LISP_WRITEABLE() before and bump_string_modiff() afterwards. */ | |
| 428 | 2298 void |
| 867 | 2299 set_string_char (Lisp_Object s, Charcount i, Ichar c) |
| 428 | 2300 { |
| 867 | 2301 Ibyte newstr[MAX_ICHAR_LEN]; |
| 771 | 2302 Bytecount bytoff = string_index_char_to_byte (s, i); |
| 867 | 2303 Bytecount oldlen = itext_ichar_len (XSTRING_DATA (s) + bytoff); |
| 2304 Bytecount newlen = set_itext_ichar (newstr, c); | |
| 428 | 2305 |
| 793 | 2306 sledgehammer_check_ascii_begin (s); |
| 428 | 2307 if (oldlen != newlen) |
| 2308 resize_string (s, bytoff, newlen - oldlen); | |
| 793 | 2309 /* Remember, XSTRING_DATA (s) might have changed so we can't cache it. */ |
| 2310 memcpy (XSTRING_DATA (s) + bytoff, newstr, newlen); | |
| 771 | 2311 if (oldlen != newlen) |
| 2312 { | |
| 793 | 2313 if (newlen > 1 && i <= (Charcount) XSTRING_ASCII_BEGIN (s)) |
| 771 | 2314 /* Everything starting with the new char is no longer part of |
| 2315 ascii_begin */ | |
| 793 | 2316 XSET_STRING_ASCII_BEGIN (s, i); |
| 2317 else if (newlen == 1 && i == (Charcount) XSTRING_ASCII_BEGIN (s)) | |
| 771 | 2318 /* We've extended ascii_begin, and we have to figure out how much by */ |
| 2319 { | |
| 2320 Bytecount j; | |
| 814 | 2321 for (j = (Bytecount) i + 1; j < XSTRING_LENGTH (s); j++) |
| 771 | 2322 { |
| 826 | 2323 if (!byte_ascii_p (XSTRING_DATA (s)[j])) |
| 771 | 2324 break; |
| 2325 } | |
| 814 | 2326 XSET_STRING_ASCII_BEGIN (s, min (j, (Bytecount) MAX_STRING_ASCII_BEGIN)); |
| 771 | 2327 } |
| 2328 } | |
| 793 | 2329 sledgehammer_check_ascii_begin (s); |
| 428 | 2330 } |
| 2331 | |
| 2332 #endif /* MULE */ | |
| 2333 | |
| 2334 DEFUN ("make-string", Fmake_string, 2, 2, 0, /* | |
| 444 | 2335 Return a new string consisting of LENGTH copies of CHARACTER. |
| 2336 LENGTH must be a non-negative integer. | |
| 428 | 2337 */ |
| 444 | 2338 (length, character)) |
| 428 | 2339 { |
| 2340 CHECK_NATNUM (length); | |
| 444 | 2341 CHECK_CHAR_COERCE_INT (character); |
| 428 | 2342 { |
| 867 | 2343 Ibyte init_str[MAX_ICHAR_LEN]; |
| 2344 int len = set_itext_ichar (init_str, XCHAR (character)); | |
| 428 | 2345 Lisp_Object val = make_uninit_string (len * XINT (length)); |
| 2346 | |
| 2347 if (len == 1) | |
| 771 | 2348 { |
| 2349 /* Optimize the single-byte case */ | |
| 2350 memset (XSTRING_DATA (val), XCHAR (character), XSTRING_LENGTH (val)); | |
| 793 | 2351 XSET_STRING_ASCII_BEGIN (val, min (MAX_STRING_ASCII_BEGIN, |
| 2352 len * XINT (length))); | |
| 771 | 2353 } |
| 428 | 2354 else |
| 2355 { | |
| 647 | 2356 EMACS_INT i; |
| 867 | 2357 Ibyte *ptr = XSTRING_DATA (val); |
| 428 | 2358 |
| 2359 for (i = XINT (length); i; i--) | |
| 2360 { | |
| 867 | 2361 Ibyte *init_ptr = init_str; |
| 428 | 2362 switch (len) |
| 2363 { | |
| 2364 case 4: *ptr++ = *init_ptr++; | |
| 2365 case 3: *ptr++ = *init_ptr++; | |
| 2366 case 2: *ptr++ = *init_ptr++; | |
| 2367 case 1: *ptr++ = *init_ptr++; | |
| 2368 } | |
| 2369 } | |
| 2370 } | |
| 771 | 2371 sledgehammer_check_ascii_begin (val); |
| 428 | 2372 return val; |
| 2373 } | |
| 2374 } | |
| 2375 | |
| 2376 DEFUN ("string", Fstring, 0, MANY, 0, /* | |
| 2377 Concatenate all the argument characters and make the result a string. | |
| 2378 */ | |
| 2379 (int nargs, Lisp_Object *args)) | |
| 2380 { | |
| 867 | 2381 Ibyte *storage = alloca_array (Ibyte, nargs * MAX_ICHAR_LEN); |
| 2382 Ibyte *p = storage; | |
| 428 | 2383 |
| 2384 for (; nargs; nargs--, args++) | |
| 2385 { | |
| 2386 Lisp_Object lisp_char = *args; | |
| 2387 CHECK_CHAR_COERCE_INT (lisp_char); | |
| 867 | 2388 p += set_itext_ichar (p, XCHAR (lisp_char)); |
| 428 | 2389 } |
| 2390 return make_string (storage, p - storage); | |
| 2391 } | |
| 2392 | |
| 771 | 2393 /* Initialize the ascii_begin member of a string to the correct value. */ |
| 2394 | |
| 2395 void | |
| 2396 init_string_ascii_begin (Lisp_Object string) | |
| 2397 { | |
| 2398 #ifdef MULE | |
| 2399 int i; | |
| 2400 Bytecount length = XSTRING_LENGTH (string); | |
| 867 | 2401 Ibyte *contents = XSTRING_DATA (string); |
| 771 | 2402 |
| 2403 for (i = 0; i < length; i++) | |
| 2404 { | |
| 826 | 2405 if (!byte_ascii_p (contents[i])) |
| 771 | 2406 break; |
| 2407 } | |
| 793 | 2408 XSET_STRING_ASCII_BEGIN (string, min (i, MAX_STRING_ASCII_BEGIN)); |
| 771 | 2409 #else |
| 793 | 2410 XSET_STRING_ASCII_BEGIN (string, min (XSTRING_LENGTH (string), |
| 2411 MAX_STRING_ASCII_BEGIN)); | |
| 771 | 2412 #endif |
| 2413 sledgehammer_check_ascii_begin (string); | |
| 2414 } | |
| 428 | 2415 |
| 2416 /* Take some raw memory, which MUST already be in internal format, | |
| 2417 and package it up into a Lisp string. */ | |
| 2418 Lisp_Object | |
| 867 | 2419 make_string (const Ibyte *contents, Bytecount length) |
| 428 | 2420 { |
| 2421 Lisp_Object val; | |
| 2422 | |
| 2423 /* Make sure we find out about bad make_string's when they happen */ | |
| 800 | 2424 #if defined (ERROR_CHECK_TEXT) && defined (MULE) |
| 428 | 2425 bytecount_to_charcount (contents, length); /* Just for the assertions */ |
| 2426 #endif | |
| 2427 | |
| 2428 val = make_uninit_string (length); | |
| 2429 memcpy (XSTRING_DATA (val), contents, length); | |
| 771 | 2430 init_string_ascii_begin (val); |
| 2431 sledgehammer_check_ascii_begin (val); | |
| 428 | 2432 return val; |
| 2433 } | |
| 2434 | |
| 2435 /* Take some raw memory, encoded in some external data format, | |
| 2436 and convert it into a Lisp string. */ | |
| 2437 Lisp_Object | |
| 442 | 2438 make_ext_string (const Extbyte *contents, EMACS_INT length, |
| 440 | 2439 Lisp_Object coding_system) |
| 428 | 2440 { |
| 440 | 2441 Lisp_Object string; |
| 2442 TO_INTERNAL_FORMAT (DATA, (contents, length), | |
| 2443 LISP_STRING, string, | |
| 2444 coding_system); | |
| 2445 return string; | |
| 428 | 2446 } |
| 2447 | |
| 2448 Lisp_Object | |
| 867 | 2449 build_intstring (const Ibyte *str) |
| 771 | 2450 { |
| 2451 /* Some strlen's crash and burn if passed null. */ | |
| 814 | 2452 return make_string (str, (str ? qxestrlen (str) : (Bytecount) 0)); |
| 771 | 2453 } |
| 2454 | |
| 2455 Lisp_Object | |
| 867 | 2456 build_string (const CIbyte *str) |
| 428 | 2457 { |
| 2458 /* Some strlen's crash and burn if passed null. */ | |
| 867 | 2459 return make_string ((const Ibyte *) str, (str ? strlen (str) : 0)); |
| 428 | 2460 } |
| 2461 | |
| 2462 Lisp_Object | |
| 593 | 2463 build_ext_string (const Extbyte *str, Lisp_Object coding_system) |
| 428 | 2464 { |
| 2465 /* Some strlen's crash and burn if passed null. */ | |
| 442 | 2466 return make_ext_string ((const Extbyte *) str, (str ? strlen(str) : 0), |
| 440 | 2467 coding_system); |
| 428 | 2468 } |
| 2469 | |
| 2470 Lisp_Object | |
| 867 | 2471 build_msg_intstring (const Ibyte *str) |
| 428 | 2472 { |
| 771 | 2473 return build_intstring (GETTEXT (str)); |
| 2474 } | |
| 2475 | |
| 2476 Lisp_Object | |
| 867 | 2477 build_msg_string (const CIbyte *str) |
| 771 | 2478 { |
| 2479 return build_string (CGETTEXT (str)); | |
| 428 | 2480 } |
| 2481 | |
| 2482 Lisp_Object | |
| 867 | 2483 make_string_nocopy (const Ibyte *contents, Bytecount length) |
| 428 | 2484 { |
| 438 | 2485 Lisp_String *s; |
| 428 | 2486 Lisp_Object val; |
| 2487 | |
| 2488 /* Make sure we find out about bad make_string_nocopy's when they happen */ | |
| 800 | 2489 #if defined (ERROR_CHECK_TEXT) && defined (MULE) |
| 428 | 2490 bytecount_to_charcount (contents, length); /* Just for the assertions */ |
| 2491 #endif | |
| 2492 | |
| 2493 /* Allocate the string header */ | |
| 438 | 2494 ALLOCATE_FIXED_TYPE (string, Lisp_String, s); |
| 771 | 2495 set_lheader_implementation (&s->u.lheader, &lrecord_string); |
| 2496 SET_C_READONLY_RECORD_HEADER (&s->u.lheader); | |
| 428 | 2497 s->plist = Qnil; |
| 867 | 2498 set_lispstringp_data (s, (Ibyte *) contents); |
| 826 | 2499 set_lispstringp_length (s, length); |
| 793 | 2500 val = wrap_string (s); |
| 771 | 2501 init_string_ascii_begin (val); |
| 2502 sledgehammer_check_ascii_begin (val); | |
| 2503 | |
| 428 | 2504 return val; |
| 2505 } | |
| 2506 | |
| 2507 | |
| 2508 /************************************************************************/ | |
| 2509 /* lcrecord lists */ | |
| 2510 /************************************************************************/ | |
| 2511 | |
| 2512 /* Lcrecord lists are used to manage the allocation of particular | |
| 1204 | 2513 sorts of lcrecords, to avoid calling basic_alloc_lcrecord() (and thus |
| 428 | 2514 malloc() and garbage-collection junk) as much as possible. |
| 2515 It is similar to the Blocktype class. | |
| 2516 | |
| 1204 | 2517 See detailed comment in lcrecord.h. |
| 2518 */ | |
| 2519 | |
| 2520 const struct memory_description free_description[] = { | |
| 2521 { XD_LISP_OBJECT, offsetof (struct free_lcrecord_header, chain), 0, 0, | |
| 2522 XD_FLAG_FREE_LISP_OBJECT }, | |
| 2523 { XD_END } | |
| 2524 }; | |
| 2525 | |
| 2526 DEFINE_LRECORD_IMPLEMENTATION ("free", free, | |
| 2527 0, /*dumpable-flag*/ | |
| 2528 0, internal_object_printer, | |
| 2529 0, 0, 0, free_description, | |
| 2530 struct free_lcrecord_header); | |
| 2531 | |
| 2532 const struct memory_description lcrecord_list_description[] = { | |
| 2533 { XD_LISP_OBJECT, offsetof (struct lcrecord_list, free), 0, 0, | |
| 2534 XD_FLAG_FREE_LISP_OBJECT }, | |
| 2535 { XD_END } | |
| 2536 }; | |
| 428 | 2537 |
| 2538 static Lisp_Object | |
| 2539 mark_lcrecord_list (Lisp_Object obj) | |
| 2540 { | |
| 2541 struct lcrecord_list *list = XLCRECORD_LIST (obj); | |
| 2542 Lisp_Object chain = list->free; | |
| 2543 | |
| 2544 while (!NILP (chain)) | |
| 2545 { | |
| 2546 struct lrecord_header *lheader = XRECORD_LHEADER (chain); | |
| 2547 struct free_lcrecord_header *free_header = | |
| 2548 (struct free_lcrecord_header *) lheader; | |
| 2549 | |
| 442 | 2550 gc_checking_assert |
| 2551 (/* There should be no other pointers to the free list. */ | |
| 2552 ! MARKED_RECORD_HEADER_P (lheader) | |
| 2553 && | |
| 2554 /* Only lcrecords should be here. */ | |
| 1204 | 2555 ! list->implementation->basic_p |
| 442 | 2556 && |
| 2557 /* Only free lcrecords should be here. */ | |
| 2558 free_header->lcheader.free | |
| 2559 && | |
| 2560 /* The type of the lcrecord must be right. */ | |
| 1204 | 2561 lheader->type == lrecord_type_free |
| 442 | 2562 && |
| 2563 /* So must the size. */ | |
| 1204 | 2564 (list->implementation->static_size == 0 || |
| 2565 list->implementation->static_size == list->size) | |
| 442 | 2566 ); |
| 428 | 2567 |
| 2568 MARK_RECORD_HEADER (lheader); | |
| 2569 chain = free_header->chain; | |
| 2570 } | |
| 2571 | |
| 2572 return Qnil; | |
| 2573 } | |
| 2574 | |
| 934 | 2575 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list, |
| 2576 0, /*dumpable-flag*/ | |
| 2577 mark_lcrecord_list, internal_object_printer, | |
| 1204 | 2578 0, 0, 0, lcrecord_list_description, |
| 2579 struct lcrecord_list); | |
| 934 | 2580 |
| 428 | 2581 Lisp_Object |
| 665 | 2582 make_lcrecord_list (Elemcount size, |
| 442 | 2583 const struct lrecord_implementation *implementation) |
| 428 | 2584 { |
| 1204 | 2585 /* Don't use alloc_lcrecord_type() avoid infinite recursion |
| 2586 allocating this, */ | |
| 2587 struct lcrecord_list *p = (struct lcrecord_list *) | |
| 2588 basic_alloc_lcrecord (sizeof (struct lcrecord_list), | |
| 2589 &lrecord_lcrecord_list); | |
| 428 | 2590 |
| 2591 p->implementation = implementation; | |
| 2592 p->size = size; | |
| 2593 p->free = Qnil; | |
| 793 | 2594 return wrap_lcrecord_list (p); |
| 428 | 2595 } |
| 2596 | |
| 2597 Lisp_Object | |
| 1204 | 2598 alloc_managed_lcrecord (Lisp_Object lcrecord_list) |
| 428 | 2599 { |
| 2600 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); | |
| 2601 if (!NILP (list->free)) | |
| 2602 { | |
| 2603 Lisp_Object val = list->free; | |
| 2604 struct free_lcrecord_header *free_header = | |
| 2605 (struct free_lcrecord_header *) XPNTR (val); | |
| 1204 | 2606 struct lrecord_header *lheader = &free_header->lcheader.lheader; |
| 428 | 2607 |
| 2608 #ifdef ERROR_CHECK_GC | |
| 1204 | 2609 /* Major overkill here. */ |
| 428 | 2610 /* There should be no other pointers to the free list. */ |
| 442 | 2611 assert (! MARKED_RECORD_HEADER_P (lheader)); |
| 428 | 2612 /* Only free lcrecords should be here. */ |
| 2613 assert (free_header->lcheader.free); | |
| 1204 | 2614 assert (lheader->type == lrecord_type_free); |
| 2615 /* Only lcrecords should be here. */ | |
| 2616 assert (! (list->implementation->basic_p)); | |
| 2617 #if 0 /* Not used anymore, now that we set the type of the header to | |
| 2618 lrecord_type_free. */ | |
| 428 | 2619 /* The type of the lcrecord must be right. */ |
| 442 | 2620 assert (LHEADER_IMPLEMENTATION (lheader) == list->implementation); |
| 1204 | 2621 #endif /* 0 */ |
| 428 | 2622 /* So must the size. */ |
| 1204 | 2623 assert (list->implementation->static_size == 0 || |
| 2624 list->implementation->static_size == list->size); | |
| 428 | 2625 #endif /* ERROR_CHECK_GC */ |
| 442 | 2626 |
| 428 | 2627 list->free = free_header->chain; |
| 2628 free_header->lcheader.free = 0; | |
| 1204 | 2629 /* Put back the correct type, as we set it to lrecord_type_free. */ |
| 2630 lheader->type = list->implementation->lrecord_type_index; | |
| 2631 zero_sized_lcrecord (free_header, list->size); | |
| 428 | 2632 return val; |
| 2633 } | |
| 2634 else | |
| 1204 | 2635 return wrap_pointer_1 (basic_alloc_lcrecord (list->size, |
| 2636 list->implementation)); | |
| 428 | 2637 } |
| 2638 | |
| 771 | 2639 /* "Free" a Lisp object LCRECORD by placing it on its associated free list |
| 1204 | 2640 LCRECORD_LIST; next time alloc_managed_lcrecord() is called with the |
| 771 | 2641 same LCRECORD_LIST as its parameter, it will return an object from the |
| 2642 free list, which may be this one. Be VERY VERY SURE there are no | |
| 2643 pointers to this object hanging around anywhere where they might be | |
| 2644 used! | |
| 2645 | |
| 2646 The first thing this does before making any global state change is to | |
| 2647 call the finalize method of the object, if it exists. */ | |
| 2648 | |
| 428 | 2649 void |
| 2650 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord) | |
| 2651 { | |
| 2652 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); | |
| 2653 struct free_lcrecord_header *free_header = | |
| 2654 (struct free_lcrecord_header *) XPNTR (lcrecord); | |
| 442 | 2655 struct lrecord_header *lheader = &free_header->lcheader.lheader; |
| 2656 const struct lrecord_implementation *implementation | |
| 428 | 2657 = LHEADER_IMPLEMENTATION (lheader); |
| 2658 | |
| 771 | 2659 /* Finalizer methods may try to free objects within them, which typically |
| 2660 won't be marked and thus are scheduled for demolition. Putting them | |
| 2661 on the free list would be very bad, as we'd have xfree()d memory in | |
| 2662 the list. Even if for some reason the objects are still live | |
| 2663 (generally a logic error!), we still will have problems putting such | |
| 2664 an object on the free list right now (e.g. we'd have to avoid calling | |
| 2665 the finalizer twice, etc.). So basically, those finalizers should not | |
| 2666 be freeing any objects if during GC. Abort now to catch those | |
| 2667 problems. */ | |
| 2668 gc_checking_assert (!gc_in_progress); | |
| 2669 | |
| 428 | 2670 /* Make sure the size is correct. This will catch, for example, |
| 2671 putting a window configuration on the wrong free list. */ | |
| 1204 | 2672 gc_checking_assert (detagged_lisp_object_size (lheader) == list->size); |
| 771 | 2673 /* Make sure the object isn't already freed. */ |
| 2674 gc_checking_assert (!free_header->lcheader.free); | |
| 2675 | |
| 428 | 2676 if (implementation->finalizer) |
| 2677 implementation->finalizer (lheader, 0); | |
| 1204 | 2678 /* Yes, there are two ways to indicate freeness -- the type is |
| 2679 lrecord_type_free or the ->free flag is set. We used to do only the | |
| 2680 latter; now we do the former as well for KKCC purposes. Probably | |
| 2681 safer in any case, as we will lose quicker this way than keeping | |
| 2682 around an lrecord of apparently correct type but bogus junk in it. */ | |
| 2683 MARK_LRECORD_AS_FREE (lheader); | |
| 428 | 2684 free_header->chain = list->free; |
| 2685 free_header->lcheader.free = 1; | |
| 2686 list->free = lcrecord; | |
| 2687 } | |
| 2688 | |
| 771 | 2689 static Lisp_Object all_lcrecord_lists[countof (lrecord_implementations_table)]; |
| 2690 | |
| 2691 void * | |
| 2692 alloc_automanaged_lcrecord (Bytecount size, | |
| 2693 const struct lrecord_implementation *imp) | |
| 2694 { | |
| 2695 if (EQ (all_lcrecord_lists[imp->lrecord_type_index], Qzero)) | |
| 2696 all_lcrecord_lists[imp->lrecord_type_index] = | |
| 2697 make_lcrecord_list (size, imp); | |
| 2698 | |
| 1204 | 2699 return XPNTR (alloc_managed_lcrecord |
| 771 | 2700 (all_lcrecord_lists[imp->lrecord_type_index])); |
| 2701 } | |
| 2702 | |
| 2703 void | |
| 2704 free_lcrecord (Lisp_Object rec) | |
| 2705 { | |
| 2706 int type = XRECORD_LHEADER (rec)->type; | |
| 2707 | |
| 2708 assert (!EQ (all_lcrecord_lists[type], Qzero)); | |
| 2709 | |
| 2710 free_managed_lcrecord (all_lcrecord_lists[type], rec); | |
| 2711 } | |
| 428 | 2712 |
| 2713 | |
| 2714 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /* | |
| 2715 Kept for compatibility, returns its argument. | |
| 2716 Old: | |
| 2717 Make a copy of OBJECT in pure storage. | |
| 2718 Recursively copies contents of vectors and cons cells. | |
| 2719 Does not copy symbols. | |
| 2720 */ | |
| 444 | 2721 (object)) |
| 428 | 2722 { |
| 444 | 2723 return object; |
| 428 | 2724 } |
| 2725 | |
| 2726 | |
| 2727 /************************************************************************/ | |
| 2728 /* Garbage Collection */ | |
| 2729 /************************************************************************/ | |
| 2730 | |
| 442 | 2731 /* All the built-in lisp object types are enumerated in `enum lrecord_type'. |
| 2732 Additional ones may be defined by a module (none yet). We leave some | |
| 2733 room in `lrecord_implementations_table' for such new lisp object types. */ | |
| 647 | 2734 const struct lrecord_implementation *lrecord_implementations_table[(int)lrecord_type_last_built_in_type + MODULE_DEFINABLE_TYPE_COUNT]; |
| 2735 int lrecord_type_count = lrecord_type_last_built_in_type; | |
| 1676 | 2736 #ifndef USE_KKCC |
| 442 | 2737 /* Object marker functions are in the lrecord_implementation structure. |
| 2738 But copying them to a parallel array is much more cache-friendly. | |
| 2739 This hack speeds up (garbage-collect) by about 5%. */ | |
| 2740 Lisp_Object (*lrecord_markers[countof (lrecord_implementations_table)]) (Lisp_Object); | |
| 1676 | 2741 #endif /* not USE_KKCC */ |
| 428 | 2742 |
| 2743 struct gcpro *gcprolist; | |
| 2744 | |
| 771 | 2745 /* We want the staticpro list relocated, but not the pointers found |
| 2746 therein, because they refer to locations in the global data segment, not | |
| 2747 in the heap; we only dump heap objects. Hence we use a trivial | |
| 2748 description, as for pointerless objects. (Note that the data segment | |
| 2749 objects, which are global variables like Qfoo or Vbar, themselves are | |
| 2750 pointers to heap objects. Each needs to be described to pdump as a | |
| 2751 "root pointer"; this happens in the call to staticpro(). */ | |
| 1204 | 2752 static const struct memory_description staticpro_description_1[] = { |
| 452 | 2753 { XD_END } |
| 2754 }; | |
| 2755 | |
| 1204 | 2756 static const struct sized_memory_description staticpro_description = { |
| 452 | 2757 sizeof (Lisp_Object *), |
| 2758 staticpro_description_1 | |
| 2759 }; | |
| 2760 | |
| 1204 | 2761 static const struct memory_description staticpros_description_1[] = { |
| 452 | 2762 XD_DYNARR_DESC (Lisp_Object_ptr_dynarr, &staticpro_description), |
| 2763 { XD_END } | |
| 2764 }; | |
| 2765 | |
| 1204 | 2766 static const struct sized_memory_description staticpros_description = { |
| 452 | 2767 sizeof (Lisp_Object_ptr_dynarr), |
| 2768 staticpros_description_1 | |
| 2769 }; | |
| 2770 | |
| 771 | 2771 #ifdef DEBUG_XEMACS |
| 2772 | |
| 1204 | 2773 static const struct memory_description staticpro_one_name_description_1[] = { |
| 771 | 2774 { XD_C_STRING, 0 }, |
| 2775 { XD_END } | |
| 2776 }; | |
| 2777 | |
| 1204 | 2778 static const struct sized_memory_description staticpro_one_name_description = { |
| 771 | 2779 sizeof (char *), |
| 2780 staticpro_one_name_description_1 | |
| 2781 }; | |
| 2782 | |
| 1204 | 2783 static const struct memory_description staticpro_names_description_1[] = { |
| 771 | 2784 XD_DYNARR_DESC (char_ptr_dynarr, &staticpro_one_name_description), |
| 2785 { XD_END } | |
| 2786 }; | |
| 2787 | |
| 1204 | 2788 |
| 2789 extern const struct sized_memory_description staticpro_names_description; | |
| 2790 | |
| 2791 const struct sized_memory_description staticpro_names_description = { | |
| 771 | 2792 sizeof (char_ptr_dynarr), |
| 2793 staticpro_names_description_1 | |
| 2794 }; | |
| 2795 | |
| 2796 /* Help debug crashes gc-marking a staticpro'ed object. */ | |
| 2797 | |
| 2798 Lisp_Object_ptr_dynarr *staticpros; | |
| 2799 char_ptr_dynarr *staticpro_names; | |
| 2800 | |
| 2801 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
| 2802 garbage collection, and for dumping. */ | |
| 2803 void | |
| 2804 staticpro_1 (Lisp_Object *varaddress, char *varname) | |
| 2805 { | |
| 2806 Dynarr_add (staticpros, varaddress); | |
| 2807 Dynarr_add (staticpro_names, varname); | |
| 1204 | 2808 dump_add_root_lisp_object (varaddress); |
| 771 | 2809 } |
| 2810 | |
| 2811 | |
| 2812 Lisp_Object_ptr_dynarr *staticpros_nodump; | |
| 2813 char_ptr_dynarr *staticpro_nodump_names; | |
| 2814 | |
| 2815 /* Mark the Lisp_Object at heap VARADDRESS as a root object for | |
| 2816 garbage collection, but not for dumping. (See below.) */ | |
| 2817 void | |
| 2818 staticpro_nodump_1 (Lisp_Object *varaddress, char *varname) | |
| 2819 { | |
| 2820 Dynarr_add (staticpros_nodump, varaddress); | |
| 2821 Dynarr_add (staticpro_nodump_names, varname); | |
| 2822 } | |
| 2823 | |
| 996 | 2824 #ifdef HAVE_SHLIB |
| 2825 /* Stop treating the Lisp_Object at non-heap VARADDRESS as a root object | |
| 2826 for garbage collection, but not for dumping. */ | |
| 2827 void | |
| 2828 unstaticpro_nodump_1 (Lisp_Object *varaddress, char *varname) | |
| 2829 { | |
| 2830 Dynarr_delete_object (staticpros, varaddress); | |
| 2831 Dynarr_delete_object (staticpro_names, varname); | |
| 2832 } | |
| 2833 #endif | |
| 2834 | |
| 771 | 2835 #else /* not DEBUG_XEMACS */ |
| 2836 | |
| 452 | 2837 Lisp_Object_ptr_dynarr *staticpros; |
| 2838 | |
| 2839 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
| 2840 garbage collection, and for dumping. */ | |
| 428 | 2841 void |
| 2842 staticpro (Lisp_Object *varaddress) | |
| 2843 { | |
| 452 | 2844 Dynarr_add (staticpros, varaddress); |
| 1204 | 2845 dump_add_root_lisp_object (varaddress); |
| 428 | 2846 } |
| 2847 | |
| 442 | 2848 |
| 452 | 2849 Lisp_Object_ptr_dynarr *staticpros_nodump; |
| 2850 | |
| 771 | 2851 /* Mark the Lisp_Object at heap VARADDRESS as a root object for garbage |
| 2852 collection, but not for dumping. This is used for objects where the | |
| 2853 only sure pointer is in the heap (rather than in the global data | |
| 2854 segment, as must be the case for pdump root pointers), but not inside of | |
| 2855 another Lisp object (where it will be marked as a result of that Lisp | |
| 2856 object's mark method). The call to staticpro_nodump() must occur *BOTH* | |
| 2857 at initialization time and at "reinitialization" time (startup, after | |
| 2858 pdump load.) (For example, this is the case with the predicate symbols | |
| 2859 for specifier and coding system types. The pointer to this symbol is | |
| 2860 inside of a methods structure, which is allocated on the heap. The | |
| 2861 methods structure will be written out to the pdump data file, and may be | |
| 2862 reloaded at a different address.) | |
| 2863 | |
| 2864 #### The necessity for reinitialization is a bug in pdump. Pdump should | |
| 2865 automatically regenerate the staticpro()s for these symbols when it | |
| 2866 loads the data in. */ | |
| 2867 | |
| 428 | 2868 void |
| 2869 staticpro_nodump (Lisp_Object *varaddress) | |
| 2870 { | |
| 452 | 2871 Dynarr_add (staticpros_nodump, varaddress); |
| 428 | 2872 } |
| 2873 | |
| 996 | 2874 #ifdef HAVE_SHLIB |
| 2875 /* Unmark the Lisp_Object at non-heap VARADDRESS as a root object for | |
| 2876 garbage collection, but not for dumping. */ | |
| 2877 void | |
| 2878 unstaticpro_nodump (Lisp_Object *varaddress) | |
| 2879 { | |
| 2880 Dynarr_delete_object (staticpros, varaddress); | |
| 2881 } | |
| 2882 #endif | |
| 2883 | |
| 771 | 2884 #endif /* not DEBUG_XEMACS */ |
| 2885 | |
| 442 | 2886 #ifdef ERROR_CHECK_GC |
| 2887 #define GC_CHECK_LHEADER_INVARIANTS(lheader) do { \ | |
| 2888 struct lrecord_header * GCLI_lh = (lheader); \ | |
| 2889 assert (GCLI_lh != 0); \ | |
| 647 | 2890 assert (GCLI_lh->type < (unsigned int) lrecord_type_count); \ |
| 442 | 2891 assert (! C_READONLY_RECORD_HEADER_P (GCLI_lh) || \ |
| 2892 (MARKED_RECORD_HEADER_P (GCLI_lh) && \ | |
| 2893 LISP_READONLY_RECORD_HEADER_P (GCLI_lh))); \ | |
| 2894 } while (0) | |
| 2895 #else | |
| 2896 #define GC_CHECK_LHEADER_INVARIANTS(lheader) | |
| 2897 #endif | |
| 2898 | |
| 934 | 2899 |
| 1204 | 2900 static const struct memory_description lisp_object_description_1[] = { |
| 2901 { XD_LISP_OBJECT, 0 }, | |
| 2902 { XD_END } | |
| 2903 }; | |
| 2904 | |
| 2905 const struct sized_memory_description lisp_object_description = { | |
| 2906 sizeof (Lisp_Object), | |
| 2907 lisp_object_description_1 | |
| 2908 }; | |
| 2909 | |
| 2910 #if defined (USE_KKCC) || defined (PDUMP) | |
| 934 | 2911 |
| 2912 /* This function extracts the value of a count variable described somewhere | |
| 2913 else in the description. It is converted corresponding to the type */ | |
| 1204 | 2914 EMACS_INT |
| 2915 lispdesc_indirect_count_1 (EMACS_INT code, | |
| 2916 const struct memory_description *idesc, | |
| 2917 const void *idata) | |
| 934 | 2918 { |
| 2919 EMACS_INT count; | |
| 2920 const void *irdata; | |
| 2921 | |
| 2922 int line = XD_INDIRECT_VAL (code); | |
| 2923 int delta = XD_INDIRECT_DELTA (code); | |
| 2924 | |
| 1204 | 2925 irdata = ((char *) idata) + |
| 2926 lispdesc_indirect_count (idesc[line].offset, idesc, idata); | |
| 934 | 2927 switch (idesc[line].type) |
| 2928 { | |
| 2929 case XD_BYTECOUNT: | |
| 1204 | 2930 count = * (Bytecount *) irdata; |
| 934 | 2931 break; |
| 2932 case XD_ELEMCOUNT: | |
| 1204 | 2933 count = * (Elemcount *) irdata; |
| 934 | 2934 break; |
| 2935 case XD_HASHCODE: | |
| 1204 | 2936 count = * (Hashcode *) irdata; |
| 934 | 2937 break; |
| 2938 case XD_INT: | |
| 1204 | 2939 count = * (int *) irdata; |
| 934 | 2940 break; |
| 2941 case XD_LONG: | |
| 1204 | 2942 count = * (long *) irdata; |
| 934 | 2943 break; |
| 2944 default: | |
| 2945 stderr_out ("Unsupported count type : %d (line = %d, code = %ld)\n", | |
| 1204 | 2946 idesc[line].type, line, (long) code); |
| 2947 #ifdef PDUMP | |
| 2948 if (in_pdump) | |
| 2949 pdump_backtrace (); | |
| 2950 #endif | |
| 934 | 2951 count = 0; /* warning suppression */ |
| 2952 abort (); | |
| 2953 } | |
| 2954 count += delta; | |
| 2955 return count; | |
| 2956 } | |
| 2957 | |
| 1204 | 2958 /* SDESC is a "description map" (basically, a list of offsets used for |
| 2959 successive indirections) and OBJ is the first object to indirect off of. | |
| 2960 Return the description ultimately found. */ | |
| 2961 | |
| 2962 const struct sized_memory_description * | |
| 2963 lispdesc_indirect_description_1 (const void *obj, | |
| 2964 const struct sized_memory_description *sdesc) | |
| 934 | 2965 { |
| 2966 int pos; | |
| 2967 | |
| 1204 | 2968 for (pos = 0; sdesc[pos].size >= 0; pos++) |
| 2969 obj = * (const void **) ((const char *) obj + sdesc[pos].size); | |
| 2970 | |
| 2971 return (const struct sized_memory_description *) obj; | |
| 2972 } | |
| 2973 | |
| 2974 /* Compute the size of the data at RDATA, described by a single entry | |
| 2975 DESC1 in a description array. OBJ and DESC are used for | |
| 2976 XD_INDIRECT references. */ | |
| 2977 | |
| 2978 static Bytecount | |
| 2979 lispdesc_one_description_line_size (void *rdata, | |
| 2980 const struct memory_description *desc1, | |
| 2981 const void *obj, | |
| 2982 const struct memory_description *desc) | |
| 2983 { | |
| 2984 union_switcheroo: | |
| 2985 switch (desc1->type) | |
| 934 | 2986 { |
| 1204 | 2987 case XD_LISP_OBJECT_ARRAY: |
| 2988 { | |
| 2989 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
| 2990 return (val * sizeof (Lisp_Object)); | |
| 2991 } | |
| 2992 case XD_LISP_OBJECT: | |
| 2993 case XD_LO_LINK: | |
| 2994 return sizeof (Lisp_Object); | |
| 2995 case XD_OPAQUE_PTR: | |
| 2996 return sizeof (void *); | |
| 2997 case XD_STRUCT_PTR: | |
| 2998 { | |
| 2999 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
| 3000 return val * sizeof (void *); | |
| 3001 } | |
| 3002 case XD_STRUCT_ARRAY: | |
| 3003 { | |
| 3004 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
| 3005 | |
| 3006 return (val * | |
| 3007 lispdesc_structure_size | |
| 3008 (rdata, lispdesc_indirect_description (obj, desc1->data2))); | |
| 3009 } | |
| 3010 case XD_OPAQUE_DATA_PTR: | |
| 3011 return sizeof (void *); | |
| 3012 case XD_UNION_DYNAMIC_SIZE: | |
| 3013 { | |
| 3014 /* If an explicit size was given in the first-level structure | |
| 3015 description, use it; else compute size based on current union | |
| 3016 constant. */ | |
| 3017 const struct sized_memory_description *sdesc = | |
| 3018 lispdesc_indirect_description (obj, desc1->data2); | |
| 3019 if (sdesc->size) | |
| 3020 return sdesc->size; | |
| 3021 else | |
| 3022 { | |
| 3023 desc1 = lispdesc_process_xd_union (desc1, desc, obj); | |
| 3024 if (desc1) | |
| 3025 goto union_switcheroo; | |
| 934 | 3026 break; |
| 1204 | 3027 } |
| 3028 } | |
| 3029 case XD_UNION: | |
| 3030 { | |
| 3031 /* If an explicit size was given in the first-level structure | |
| 3032 description, use it; else compute size based on maximum of all | |
| 3033 possible structures. */ | |
| 3034 const struct sized_memory_description *sdesc = | |
| 3035 lispdesc_indirect_description (obj, desc1->data2); | |
| 3036 if (sdesc->size) | |
| 3037 return sdesc->size; | |
| 3038 else | |
| 3039 { | |
| 3040 int count; | |
| 3041 Bytecount max_size = -1, size; | |
| 3042 | |
| 3043 desc1 = sdesc->description; | |
| 3044 | |
| 3045 for (count = 0; desc1[count].type != XD_END; count++) | |
| 3046 { | |
| 3047 size = lispdesc_one_description_line_size (rdata, | |
| 3048 &desc1[count], | |
| 3049 obj, desc); | |
| 3050 if (size > max_size) | |
| 3051 max_size = size; | |
| 3052 } | |
| 3053 return max_size; | |
| 3054 } | |
| 934 | 3055 } |
| 1204 | 3056 case XD_C_STRING: |
| 3057 return sizeof (void *); | |
| 3058 case XD_DOC_STRING: | |
| 3059 return sizeof (void *); | |
| 3060 case XD_INT_RESET: | |
| 3061 return sizeof (int); | |
| 3062 case XD_BYTECOUNT: | |
| 3063 return sizeof (Bytecount); | |
| 3064 case XD_ELEMCOUNT: | |
| 3065 return sizeof (Elemcount); | |
| 3066 case XD_HASHCODE: | |
| 3067 return sizeof (Hashcode); | |
| 3068 case XD_INT: | |
| 3069 return sizeof (int); | |
| 3070 case XD_LONG: | |
| 3071 return sizeof (long); | |
| 3072 default: | |
| 3073 stderr_out ("Unsupported dump type : %d\n", desc1->type); | |
| 3074 abort (); | |
| 934 | 3075 } |
| 3076 | |
| 1204 | 3077 return 0; |
| 934 | 3078 } |
| 3079 | |
| 3080 | |
| 1204 | 3081 /* Return the size of the memory block (NOT necessarily a structure!) |
| 3082 described by SDESC and pointed to by OBJ. If SDESC records an | |
| 3083 explicit size (i.e. non-zero), it is simply returned; otherwise, | |
| 3084 the size is calculated by the maximum offset and the size of the | |
| 3085 object at that offset, rounded up to the maximum alignment. In | |
| 3086 this case, we may need the object, for example when retrieving an | |
| 3087 "indirect count" of an inlined array (the count is not constant, | |
| 3088 but is specified by one of the elements of the memory block). (It | |
| 3089 is generally not a problem if we return an overly large size -- we | |
| 3090 will simply end up reserving more space than necessary; but if the | |
| 3091 size is too small we could be in serious trouble, in particular | |
| 3092 with nested inlined structures, where there may be alignment | |
| 3093 padding in the middle of a block. #### In fact there is an (at | |
| 3094 least theoretical) problem with an overly large size -- we may | |
| 3095 trigger a protection fault when reading from invalid memory. We | |
| 3096 need to handle this -- perhaps in a stupid but dependable way, | |
| 3097 i.e. by trapping SIGSEGV and SIGBUS.) */ | |
| 3098 | |
| 3099 Bytecount | |
| 3100 lispdesc_structure_size (const void *obj, | |
| 3101 const struct sized_memory_description *sdesc) | |
| 934 | 3102 { |
| 1204 | 3103 EMACS_INT max_offset = -1; |
| 934 | 3104 int max_offset_pos = -1; |
| 3105 int pos; | |
| 1204 | 3106 const struct memory_description *desc; |
| 934 | 3107 |
| 3108 if (sdesc->size) | |
| 3109 return sdesc->size; | |
| 3110 | |
| 3111 desc = sdesc->description; | |
| 3112 | |
| 3113 for (pos = 0; desc[pos].type != XD_END; pos++) | |
| 3114 { | |
| 1204 | 3115 EMACS_INT offset = lispdesc_indirect_count (desc[pos].offset, desc, obj); |
| 3116 if (offset == max_offset) | |
| 934 | 3117 { |
| 3118 stderr_out ("Two relocatable elements at same offset?\n"); | |
| 3119 abort (); | |
| 3120 } | |
| 1204 | 3121 else if (offset > max_offset) |
| 934 | 3122 { |
| 1204 | 3123 max_offset = offset; |
| 934 | 3124 max_offset_pos = pos; |
| 3125 } | |
| 3126 } | |
| 3127 | |
| 3128 if (max_offset_pos < 0) | |
| 3129 return 0; | |
| 3130 | |
| 1204 | 3131 { |
| 3132 Bytecount size_at_max; | |
| 3133 size_at_max = | |
| 3134 lispdesc_one_description_line_size ((char *) obj + max_offset, | |
| 3135 &desc[max_offset_pos], obj, desc); | |
| 3136 | |
| 3137 /* We have no way of knowing the required alignment for this structure, | |
| 3138 so just make it maximally aligned. */ | |
| 3139 return MAX_ALIGN_SIZE (max_offset + size_at_max); | |
| 3140 } | |
| 3141 } | |
| 3142 | |
| 3143 #endif /* defined (USE_KKCC) || defined (PDUMP) */ | |
| 3144 | |
| 1276 | 3145 #define GC_CHECK_NOT_FREE(lheader) \ |
| 3146 gc_checking_assert (LHEADER_IMPLEMENTATION (lheader)->basic_p || \ | |
| 3147 ! ((struct lcrecord_header *) lheader)->free) | |
| 3148 | |
| 1204 | 3149 #ifdef USE_KKCC |
| 3150 /* The following functions implement the new mark algorithm. | |
| 3151 They mark objects according to their descriptions. They | |
| 3152 are modeled on the corresponding pdumper procedures. */ | |
| 3153 | |
| 1676 | 3154 /* Object memory descriptions are in the lrecord_implementation structure. |
| 3155 But copying them to a parallel array is much more cache-friendly. */ | |
| 3156 const struct memory_description *lrecord_memory_descriptions[countof (lrecord_implementations_table)]; | |
| 3157 | |
| 3158 /* the initial stack size in kkcc_gc_stack_entries */ | |
| 3159 #define KKCC_INIT_GC_STACK_SIZE 16384 | |
| 3160 | |
| 3161 typedef struct | |
| 3162 { | |
| 3163 void *data; | |
| 3164 const struct memory_description *desc; | |
| 3165 } kkcc_gc_stack_entry; | |
| 3166 | |
| 3167 static kkcc_gc_stack_entry *kkcc_gc_stack_ptr; | |
| 3168 static kkcc_gc_stack_entry *kkcc_gc_stack_top; | |
| 3169 static kkcc_gc_stack_entry *kkcc_gc_stack_last_entry; | |
| 3170 static int kkcc_gc_stack_size; | |
| 3171 | |
| 3172 static void | |
| 3173 kkcc_gc_stack_init (void) | |
| 3174 { | |
| 3175 kkcc_gc_stack_size = KKCC_INIT_GC_STACK_SIZE; | |
| 3176 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *) | |
| 3177 malloc (kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry)); | |
| 3178 if (!kkcc_gc_stack_ptr) | |
| 3179 { | |
| 3180 stderr_out ("stack init failed for size %d\n", kkcc_gc_stack_size); | |
| 3181 exit(23); | |
| 3182 } | |
| 3183 kkcc_gc_stack_top = kkcc_gc_stack_ptr - 1; | |
| 3184 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1; | |
| 3185 } | |
| 3186 | |
| 3187 static void | |
| 3188 kkcc_gc_stack_free (void) | |
| 3189 { | |
| 3190 free (kkcc_gc_stack_ptr); | |
| 3191 kkcc_gc_stack_ptr = 0; | |
| 3192 kkcc_gc_stack_top = 0; | |
| 3193 kkcc_gc_stack_size = 0; | |
| 3194 } | |
| 3195 | |
| 3196 static void | |
| 3197 kkcc_gc_stack_realloc (void) | |
| 3198 { | |
| 3199 int current_offset = (int)(kkcc_gc_stack_top - kkcc_gc_stack_ptr); | |
| 3200 kkcc_gc_stack_size *= 2; | |
| 3201 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *) | |
| 3202 realloc (kkcc_gc_stack_ptr, | |
| 3203 kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry)); | |
| 3204 if (!kkcc_gc_stack_ptr) | |
| 3205 { | |
| 3206 stderr_out ("stack realloc failed for size %d\n", kkcc_gc_stack_size); | |
| 3207 exit(23); | |
| 3208 } | |
| 3209 kkcc_gc_stack_top = kkcc_gc_stack_ptr + current_offset; | |
| 3210 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1; | |
| 3211 } | |
| 3212 | |
| 3213 #define KKCC_GC_STACK_FULL (kkcc_gc_stack_top >= kkcc_gc_stack_last_entry) | |
| 3214 #define KKCC_GC_STACK_EMPTY (kkcc_gc_stack_top < kkcc_gc_stack_ptr) | |
| 3215 | |
| 3216 static void | |
| 3217 kkcc_gc_stack_push (void *data, const struct memory_description *desc) | |
| 3218 { | |
| 3219 if (KKCC_GC_STACK_FULL) | |
| 3220 kkcc_gc_stack_realloc(); | |
| 3221 kkcc_gc_stack_top++; | |
| 3222 kkcc_gc_stack_top->data = data; | |
| 3223 kkcc_gc_stack_top->desc = desc; | |
| 3224 } | |
| 3225 | |
| 3226 static kkcc_gc_stack_entry * | |
| 3227 kkcc_gc_stack_pop (void) | |
| 3228 { | |
| 3229 if (KKCC_GC_STACK_EMPTY) | |
| 3230 return 0; | |
| 3231 kkcc_gc_stack_top--; | |
| 3232 return kkcc_gc_stack_top + 1; | |
| 3233 } | |
| 3234 | |
| 3235 void | |
| 3236 kkcc_gc_stack_push_lisp_object (Lisp_Object obj) | |
| 3237 { | |
| 3238 if (XTYPE (obj) == Lisp_Type_Record) | |
| 3239 { | |
| 3240 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
| 3241 const struct memory_description *desc; | |
| 3242 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
| 3243 desc = RECORD_DESCRIPTION (lheader); | |
| 3244 if (! MARKED_RECORD_HEADER_P (lheader)) | |
| 3245 { | |
| 3246 MARK_RECORD_HEADER (lheader); | |
| 3247 kkcc_gc_stack_push((void*) lheader, desc); | |
| 3248 } | |
| 3249 } | |
| 3250 } | |
| 3251 | |
| 1265 | 3252 #ifdef ERROR_CHECK_GC |
| 3253 #define KKCC_DO_CHECK_FREE(obj, allow_free) \ | |
| 3254 do \ | |
| 3255 { \ | |
| 3256 if (!allow_free && XTYPE (obj) == Lisp_Type_Record) \ | |
| 3257 { \ | |
| 3258 struct lrecord_header *lheader = XRECORD_LHEADER (obj); \ | |
| 3259 GC_CHECK_NOT_FREE (lheader); \ | |
| 3260 } \ | |
| 3261 } while (0) | |
| 3262 #else | |
| 3263 #define KKCC_DO_CHECK_FREE(obj, allow_free) | |
| 3264 #endif | |
| 1204 | 3265 |
| 3266 #ifdef ERROR_CHECK_GC | |
| 1598 | 3267 static void |
| 1204 | 3268 mark_object_maybe_checking_free (Lisp_Object obj, int allow_free) |
| 3269 { | |
| 1265 | 3270 KKCC_DO_CHECK_FREE (obj, allow_free); |
| 1598 | 3271 kkcc_gc_stack_push_lisp_object (obj); |
| 1204 | 3272 } |
| 3273 #else | |
| 1643 | 3274 #define mark_object_maybe_checking_free(obj, allow_free) \ |
| 3275 kkcc_gc_stack_push_lisp_object (obj) | |
| 1204 | 3276 #endif /* ERROR_CHECK_GC */ |
| 3277 | |
| 934 | 3278 |
| 3279 /* This function loops all elements of a struct pointer and calls | |
| 3280 mark_with_description with each element. */ | |
| 3281 static void | |
| 3282 mark_struct_contents (const void *data, | |
| 1204 | 3283 const struct sized_memory_description *sdesc, |
| 3284 int count) | |
| 934 | 3285 { |
| 3286 int i; | |
| 3287 Bytecount elsize; | |
| 1204 | 3288 elsize = lispdesc_structure_size (data, sdesc); |
| 934 | 3289 |
| 3290 for (i = 0; i < count; i++) | |
| 3291 { | |
| 1598 | 3292 kkcc_gc_stack_push (((char *) data) + elsize * i, sdesc->description); |
| 934 | 3293 } |
| 3294 } | |
| 3295 | |
| 1598 | 3296 |
| 3297 /* This function implements the KKCC mark algorithm. | |
| 3298 Instead of calling mark_object, all the alive Lisp_Objects are pushed | |
| 3299 on the kkcc_gc_stack. This function processes all elements on the stack | |
| 3300 according to their descriptions. */ | |
| 3301 static void | |
| 3302 kkcc_marking (void) | |
| 3303 { | |
| 3304 kkcc_gc_stack_entry *stack_entry = 0; | |
| 3305 void *data = 0; | |
| 3306 const struct memory_description *desc = 0; | |
| 3307 int pos; | |
| 3308 | |
| 3309 while ((stack_entry = kkcc_gc_stack_pop ()) != 0) | |
| 3310 { | |
| 3311 data = stack_entry->data; | |
| 3312 desc = stack_entry->desc; | |
| 3313 | |
| 3314 for (pos = 0; desc[pos].type != XD_END; pos++) | |
| 3315 { | |
| 3316 const struct memory_description *desc1 = &desc[pos]; | |
| 3317 const void *rdata = | |
| 3318 (const char *) data + lispdesc_indirect_count (desc1->offset, | |
| 3319 desc, data); | |
| 3320 union_switcheroo: | |
| 3321 | |
| 3322 /* If the flag says don't mark, then don't mark. */ | |
| 3323 if ((desc1->flags) & XD_FLAG_NO_KKCC) | |
| 3324 continue; | |
| 3325 | |
| 3326 switch (desc1->type) | |
| 3327 { | |
| 3328 case XD_BYTECOUNT: | |
| 3329 case XD_ELEMCOUNT: | |
| 3330 case XD_HASHCODE: | |
| 3331 case XD_INT: | |
| 3332 case XD_LONG: | |
| 3333 case XD_INT_RESET: | |
| 3334 case XD_LO_LINK: | |
| 3335 case XD_OPAQUE_PTR: | |
| 3336 case XD_OPAQUE_DATA_PTR: | |
| 3337 case XD_C_STRING: | |
| 3338 case XD_DOC_STRING: | |
| 3339 break; | |
| 3340 case XD_LISP_OBJECT: | |
| 3341 { | |
| 3342 const Lisp_Object *stored_obj = (const Lisp_Object *) rdata; | |
| 3343 | |
| 3344 /* Because of the way that tagged objects work (pointers and | |
| 3345 Lisp_Objects have the same representation), XD_LISP_OBJECT | |
| 3346 can be used for untagged pointers. They might be NULL, | |
| 3347 though. */ | |
| 3348 if (EQ (*stored_obj, Qnull_pointer)) | |
| 3349 break; | |
| 3350 mark_object_maybe_checking_free | |
| 3351 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT); | |
| 3352 | |
| 3353 break; | |
| 3354 } | |
| 3355 case XD_LISP_OBJECT_ARRAY: | |
| 3356 { | |
| 3357 int i; | |
| 3358 EMACS_INT count = | |
| 3359 lispdesc_indirect_count (desc1->data1, desc, data); | |
| 3360 | |
| 3361 for (i = 0; i < count; i++) | |
| 3362 { | |
| 3363 const Lisp_Object *stored_obj = | |
| 3364 (const Lisp_Object *) rdata + i; | |
| 3365 | |
| 3366 if (EQ (*stored_obj, Qnull_pointer)) | |
| 3367 break; | |
| 3368 | |
| 3369 mark_object_maybe_checking_free | |
| 3370 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT); | |
| 3371 } | |
| 3372 break; | |
| 3373 } | |
| 3374 case XD_STRUCT_PTR: | |
| 3375 { | |
| 3376 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
| 3377 data); | |
| 3378 const struct sized_memory_description *sdesc = | |
| 3379 lispdesc_indirect_description (data, desc1->data2); | |
| 3380 const char *dobj = * (const char **) rdata; | |
| 3381 if (dobj) | |
| 3382 mark_struct_contents (dobj, sdesc, count); | |
| 3383 break; | |
| 3384 } | |
| 3385 case XD_STRUCT_ARRAY: | |
| 3386 { | |
| 3387 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
| 3388 data); | |
| 3389 const struct sized_memory_description *sdesc = | |
| 3390 lispdesc_indirect_description (data, desc1->data2); | |
| 3391 | |
| 3392 mark_struct_contents (rdata, sdesc, count); | |
| 3393 break; | |
| 3394 } | |
| 3395 case XD_UNION: | |
| 3396 case XD_UNION_DYNAMIC_SIZE: | |
| 3397 desc1 = lispdesc_process_xd_union (desc1, desc, data); | |
| 3398 if (desc1) | |
| 3399 goto union_switcheroo; | |
| 3400 break; | |
| 3401 | |
| 3402 default: | |
| 3403 stderr_out ("Unsupported description type : %d\n", desc1->type); | |
| 3404 abort (); | |
| 3405 } | |
| 3406 } | |
| 3407 } | |
| 3408 } | |
| 934 | 3409 #endif /* USE_KKCC */ |
| 3410 | |
| 428 | 3411 /* Mark reference to a Lisp_Object. If the object referred to has not been |
| 3412 seen yet, recursively mark all the references contained in it. */ | |
| 3413 | |
| 3414 void | |
| 3415 mark_object (Lisp_Object obj) | |
| 3416 { | |
| 1598 | 3417 #ifdef USE_KKCC |
| 3418 /* this code should never be reached when configured for KKCC */ | |
| 3419 stderr_out ("KKCC: Invalid mark_object call.\n"); | |
| 3420 stderr_out ("Replace mark_object with kkcc_gc_stack_push_lisp_object.\n"); | |
| 3421 abort (); | |
| 1676 | 3422 #else /* not USE_KKCC */ |
| 1598 | 3423 |
| 428 | 3424 tail_recurse: |
| 3425 | |
| 3426 /* Checks we used to perform */ | |
| 3427 /* if (EQ (obj, Qnull_pointer)) return; */ | |
| 3428 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */ | |
| 3429 /* if (PURIFIED (XPNTR (obj))) return; */ | |
| 3430 | |
| 3431 if (XTYPE (obj) == Lisp_Type_Record) | |
| 3432 { | |
| 3433 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
| 442 | 3434 |
| 3435 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
| 3436 | |
| 1204 | 3437 /* We handle this separately, above, so we can mark free objects */ |
| 1265 | 3438 GC_CHECK_NOT_FREE (lheader); |
| 1204 | 3439 |
| 442 | 3440 /* All c_readonly objects have their mark bit set, |
| 3441 so that we only need to check the mark bit here. */ | |
| 3442 if (! MARKED_RECORD_HEADER_P (lheader)) | |
| 428 | 3443 { |
| 3444 MARK_RECORD_HEADER (lheader); | |
| 442 | 3445 |
| 1598 | 3446 if (RECORD_MARKER (lheader)) |
| 3447 { | |
| 3448 obj = RECORD_MARKER (lheader) (obj); | |
| 3449 if (!NILP (obj)) goto tail_recurse; | |
| 3450 } | |
| 428 | 3451 } |
| 3452 } | |
| 1676 | 3453 #endif /* not KKCC */ |
| 428 | 3454 } |
| 3455 | |
| 3456 | |
| 3457 static int gc_count_num_short_string_in_use; | |
| 647 | 3458 static Bytecount gc_count_string_total_size; |
| 3459 static Bytecount gc_count_short_string_total_size; | |
| 428 | 3460 |
| 3461 /* static int gc_count_total_records_used, gc_count_records_total_size; */ | |
| 3462 | |
| 3463 | |
| 3464 /* stats on lcrecords in use - kinda kludgy */ | |
| 3465 | |
| 3466 static struct | |
| 3467 { | |
| 3468 int instances_in_use; | |
| 3469 int bytes_in_use; | |
| 3470 int instances_freed; | |
| 3471 int bytes_freed; | |
| 3472 int instances_on_free_list; | |
| 707 | 3473 } lcrecord_stats [countof (lrecord_implementations_table) |
| 3474 + MODULE_DEFINABLE_TYPE_COUNT]; | |
| 428 | 3475 |
| 3476 static void | |
| 442 | 3477 tick_lcrecord_stats (const struct lrecord_header *h, int free_p) |
| 428 | 3478 { |
| 647 | 3479 int type_index = h->type; |
| 428 | 3480 |
| 3481 if (((struct lcrecord_header *) h)->free) | |
| 3482 { | |
| 442 | 3483 gc_checking_assert (!free_p); |
| 428 | 3484 lcrecord_stats[type_index].instances_on_free_list++; |
| 3485 } | |
| 3486 else | |
| 3487 { | |
| 1204 | 3488 Bytecount sz = detagged_lisp_object_size (h); |
| 3489 | |
| 428 | 3490 if (free_p) |
| 3491 { | |
| 3492 lcrecord_stats[type_index].instances_freed++; | |
| 3493 lcrecord_stats[type_index].bytes_freed += sz; | |
| 3494 } | |
| 3495 else | |
| 3496 { | |
| 3497 lcrecord_stats[type_index].instances_in_use++; | |
| 3498 lcrecord_stats[type_index].bytes_in_use += sz; | |
| 3499 } | |
| 3500 } | |
| 3501 } | |
| 3502 | |
| 3503 | |
| 3504 /* Free all unmarked records */ | |
| 3505 static void | |
| 3506 sweep_lcrecords_1 (struct lcrecord_header **prev, int *used) | |
| 3507 { | |
| 3508 struct lcrecord_header *header; | |
| 3509 int num_used = 0; | |
| 3510 /* int total_size = 0; */ | |
| 3511 | |
| 3512 xzero (lcrecord_stats); /* Reset all statistics to 0. */ | |
| 3513 | |
| 3514 /* First go through and call all the finalize methods. | |
| 3515 Then go through and free the objects. There used to | |
| 3516 be only one loop here, with the call to the finalizer | |
| 3517 occurring directly before the xfree() below. That | |
| 3518 is marginally faster but much less safe -- if the | |
| 3519 finalize method for an object needs to reference any | |
| 3520 other objects contained within it (and many do), | |
| 3521 we could easily be screwed by having already freed that | |
| 3522 other object. */ | |
| 3523 | |
| 3524 for (header = *prev; header; header = header->next) | |
| 3525 { | |
| 3526 struct lrecord_header *h = &(header->lheader); | |
| 442 | 3527 |
| 3528 GC_CHECK_LHEADER_INVARIANTS (h); | |
| 3529 | |
| 3530 if (! MARKED_RECORD_HEADER_P (h) && ! header->free) | |
| 428 | 3531 { |
| 3532 if (LHEADER_IMPLEMENTATION (h)->finalizer) | |
| 3533 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0); | |
| 3534 } | |
| 3535 } | |
| 3536 | |
| 3537 for (header = *prev; header; ) | |
| 3538 { | |
| 3539 struct lrecord_header *h = &(header->lheader); | |
| 442 | 3540 if (MARKED_RECORD_HEADER_P (h)) |
| 428 | 3541 { |
| 442 | 3542 if (! C_READONLY_RECORD_HEADER_P (h)) |
| 428 | 3543 UNMARK_RECORD_HEADER (h); |
| 3544 num_used++; | |
| 3545 /* total_size += n->implementation->size_in_bytes (h);*/ | |
| 440 | 3546 /* #### May modify header->next on a C_READONLY lcrecord */ |
| 428 | 3547 prev = &(header->next); |
| 3548 header = *prev; | |
| 3549 tick_lcrecord_stats (h, 0); | |
| 3550 } | |
| 3551 else | |
| 3552 { | |
| 3553 struct lcrecord_header *next = header->next; | |
| 3554 *prev = next; | |
| 3555 tick_lcrecord_stats (h, 1); | |
| 3556 /* used to call finalizer right here. */ | |
| 1726 | 3557 xfree (header, struct lcrecord_header *); |
| 428 | 3558 header = next; |
| 3559 } | |
| 3560 } | |
| 3561 *used = num_used; | |
| 3562 /* *total = total_size; */ | |
| 3563 } | |
| 3564 | |
| 3565 /* And the Lord said: Thou shalt use the `c-backslash-region' command | |
| 3566 to make macros prettier. */ | |
| 3567 | |
| 3568 #ifdef ERROR_CHECK_GC | |
| 3569 | |
| 771 | 3570 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \ |
| 428 | 3571 do { \ |
| 3572 struct typename##_block *SFTB_current; \ | |
| 3573 int SFTB_limit; \ | |
| 3574 int num_free = 0, num_used = 0; \ | |
| 3575 \ | |
| 444 | 3576 for (SFTB_current = current_##typename##_block, \ |
| 428 | 3577 SFTB_limit = current_##typename##_block_index; \ |
| 3578 SFTB_current; \ | |
| 3579 ) \ | |
| 3580 { \ | |
| 3581 int SFTB_iii; \ | |
| 3582 \ | |
| 3583 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ | |
| 3584 { \ | |
| 3585 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ | |
| 3586 \ | |
| 454 | 3587 if (LRECORD_FREE_P (SFTB_victim)) \ |
| 428 | 3588 { \ |
| 3589 num_free++; \ | |
| 3590 } \ | |
| 3591 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
| 3592 { \ | |
| 3593 num_used++; \ | |
| 3594 } \ | |
| 442 | 3595 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ |
| 428 | 3596 { \ |
| 3597 num_free++; \ | |
| 3598 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ | |
| 3599 } \ | |
| 3600 else \ | |
| 3601 { \ | |
| 3602 num_used++; \ | |
| 3603 UNMARK_##typename (SFTB_victim); \ | |
| 3604 } \ | |
| 3605 } \ | |
| 3606 SFTB_current = SFTB_current->prev; \ | |
| 3607 SFTB_limit = countof (current_##typename##_block->block); \ | |
| 3608 } \ | |
| 3609 \ | |
| 3610 gc_count_num_##typename##_in_use = num_used; \ | |
| 3611 gc_count_num_##typename##_freelist = num_free; \ | |
| 3612 } while (0) | |
| 3613 | |
| 3614 #else /* !ERROR_CHECK_GC */ | |
| 3615 | |
| 771 | 3616 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \ |
| 3617 do { \ | |
| 3618 struct typename##_block *SFTB_current; \ | |
| 3619 struct typename##_block **SFTB_prev; \ | |
| 3620 int SFTB_limit; \ | |
| 3621 int num_free = 0, num_used = 0; \ | |
| 3622 \ | |
| 3623 typename##_free_list = 0; \ | |
| 3624 \ | |
| 3625 for (SFTB_prev = ¤t_##typename##_block, \ | |
| 3626 SFTB_current = current_##typename##_block, \ | |
| 3627 SFTB_limit = current_##typename##_block_index; \ | |
| 3628 SFTB_current; \ | |
| 3629 ) \ | |
| 3630 { \ | |
| 3631 int SFTB_iii; \ | |
| 3632 int SFTB_empty = 1; \ | |
| 3633 Lisp_Free *SFTB_old_free_list = typename##_free_list; \ | |
| 3634 \ | |
| 3635 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ | |
| 3636 { \ | |
| 3637 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ | |
| 3638 \ | |
| 3639 if (LRECORD_FREE_P (SFTB_victim)) \ | |
| 3640 { \ | |
| 3641 num_free++; \ | |
| 3642 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \ | |
| 3643 } \ | |
| 3644 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
| 3645 { \ | |
| 3646 SFTB_empty = 0; \ | |
| 3647 num_used++; \ | |
| 3648 } \ | |
| 3649 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
| 3650 { \ | |
| 3651 num_free++; \ | |
| 3652 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ | |
| 3653 } \ | |
| 3654 else \ | |
| 3655 { \ | |
| 3656 SFTB_empty = 0; \ | |
| 3657 num_used++; \ | |
| 3658 UNMARK_##typename (SFTB_victim); \ | |
| 3659 } \ | |
| 3660 } \ | |
| 3661 if (!SFTB_empty) \ | |
| 3662 { \ | |
| 3663 SFTB_prev = &(SFTB_current->prev); \ | |
| 3664 SFTB_current = SFTB_current->prev; \ | |
| 3665 } \ | |
| 3666 else if (SFTB_current == current_##typename##_block \ | |
| 3667 && !SFTB_current->prev) \ | |
| 3668 { \ | |
| 3669 /* No real point in freeing sole allocation block */ \ | |
| 3670 break; \ | |
| 3671 } \ | |
| 3672 else \ | |
| 3673 { \ | |
| 3674 struct typename##_block *SFTB_victim_block = SFTB_current; \ | |
| 3675 if (SFTB_victim_block == current_##typename##_block) \ | |
| 3676 current_##typename##_block_index \ | |
| 3677 = countof (current_##typename##_block->block); \ | |
| 3678 SFTB_current = SFTB_current->prev; \ | |
| 3679 { \ | |
| 3680 *SFTB_prev = SFTB_current; \ | |
| 1726 | 3681 xfree (SFTB_victim_block, struct typename##_block *); \ |
| 771 | 3682 /* Restore free list to what it was before victim was swept */ \ |
| 3683 typename##_free_list = SFTB_old_free_list; \ | |
| 3684 num_free -= SFTB_limit; \ | |
| 3685 } \ | |
| 3686 } \ | |
| 3687 SFTB_limit = countof (current_##typename##_block->block); \ | |
| 3688 } \ | |
| 3689 \ | |
| 3690 gc_count_num_##typename##_in_use = num_used; \ | |
| 3691 gc_count_num_##typename##_freelist = num_free; \ | |
| 428 | 3692 } while (0) |
| 3693 | |
| 3694 #endif /* !ERROR_CHECK_GC */ | |
| 3695 | |
| 771 | 3696 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \ |
| 3697 SWEEP_FIXED_TYPE_BLOCK_1 (typename, obj_type, lheader) | |
| 3698 | |
| 428 | 3699 |
| 3700 | |
| 3701 | |
| 3702 static void | |
| 3703 sweep_conses (void) | |
| 3704 { | |
| 3705 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3706 #define ADDITIONAL_FREE_cons(ptr) | |
| 3707 | |
| 440 | 3708 SWEEP_FIXED_TYPE_BLOCK (cons, Lisp_Cons); |
| 428 | 3709 } |
| 3710 | |
| 3711 /* Explicitly free a cons cell. */ | |
| 3712 void | |
| 853 | 3713 free_cons (Lisp_Object cons) |
| 428 | 3714 { |
| 853 | 3715 Lisp_Cons *ptr = XCONS (cons); |
| 3716 | |
| 428 | 3717 #ifdef ERROR_CHECK_GC |
| 3718 /* If the CAR is not an int, then it will be a pointer, which will | |
| 3719 always be four-byte aligned. If this cons cell has already been | |
| 3720 placed on the free list, however, its car will probably contain | |
| 3721 a chain pointer to the next cons on the list, which has cleverly | |
| 3722 had all its 0's and 1's inverted. This allows for a quick | |
| 1204 | 3723 check to make sure we're not freeing something already freed. |
| 3724 | |
| 3725 NOTE: This check may not be necessary. Freeing an object sets its | |
| 3726 type to lrecord_type_free, which will trip up the XCONS() above -- as | |
| 3727 well as a check in FREE_FIXED_TYPE(). */ | |
| 853 | 3728 if (POINTER_TYPE_P (XTYPE (cons_car (ptr)))) |
| 3729 ASSERT_VALID_POINTER (XPNTR (cons_car (ptr))); | |
| 428 | 3730 #endif /* ERROR_CHECK_GC */ |
| 3731 | |
| 440 | 3732 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, Lisp_Cons, ptr); |
| 428 | 3733 } |
| 3734 | |
| 3735 /* explicitly free a list. You **must make sure** that you have | |
| 3736 created all the cons cells that make up this list and that there | |
| 3737 are no pointers to any of these cons cells anywhere else. If there | |
| 3738 are, you will lose. */ | |
| 3739 | |
| 3740 void | |
| 3741 free_list (Lisp_Object list) | |
| 3742 { | |
| 3743 Lisp_Object rest, next; | |
| 3744 | |
| 3745 for (rest = list; !NILP (rest); rest = next) | |
| 3746 { | |
| 3747 next = XCDR (rest); | |
| 853 | 3748 free_cons (rest); |
| 428 | 3749 } |
| 3750 } | |
| 3751 | |
| 3752 /* explicitly free an alist. You **must make sure** that you have | |
| 3753 created all the cons cells that make up this alist and that there | |
| 3754 are no pointers to any of these cons cells anywhere else. If there | |
| 3755 are, you will lose. */ | |
| 3756 | |
| 3757 void | |
| 3758 free_alist (Lisp_Object alist) | |
| 3759 { | |
| 3760 Lisp_Object rest, next; | |
| 3761 | |
| 3762 for (rest = alist; !NILP (rest); rest = next) | |
| 3763 { | |
| 3764 next = XCDR (rest); | |
| 853 | 3765 free_cons (XCAR (rest)); |
| 3766 free_cons (rest); | |
| 428 | 3767 } |
| 3768 } | |
| 3769 | |
| 3770 static void | |
| 3771 sweep_compiled_functions (void) | |
| 3772 { | |
| 3773 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 945 | 3774 #define ADDITIONAL_FREE_compiled_function(ptr) \ |
| 1726 | 3775 if (ptr->args_in_array) xfree (ptr->args, Lisp_Object *) |
| 428 | 3776 |
| 3777 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function); | |
| 3778 } | |
| 3779 | |
| 3780 static void | |
| 3781 sweep_floats (void) | |
| 3782 { | |
| 3783 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3784 #define ADDITIONAL_FREE_float(ptr) | |
| 3785 | |
| 440 | 3786 SWEEP_FIXED_TYPE_BLOCK (float, Lisp_Float); |
| 428 | 3787 } |
| 3788 | |
| 3789 static void | |
| 3790 sweep_symbols (void) | |
| 3791 { | |
| 3792 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3793 #define ADDITIONAL_FREE_symbol(ptr) | |
| 3794 | |
| 440 | 3795 SWEEP_FIXED_TYPE_BLOCK (symbol, Lisp_Symbol); |
| 428 | 3796 } |
| 3797 | |
| 3798 static void | |
| 3799 sweep_extents (void) | |
| 3800 { | |
| 3801 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3802 #define ADDITIONAL_FREE_extent(ptr) | |
| 3803 | |
| 3804 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent); | |
| 3805 } | |
| 3806 | |
| 3807 static void | |
| 3808 sweep_events (void) | |
| 3809 { | |
| 3810 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3811 #define ADDITIONAL_FREE_event(ptr) | |
| 3812 | |
| 440 | 3813 SWEEP_FIXED_TYPE_BLOCK (event, Lisp_Event); |
| 428 | 3814 } |
| 3815 | |
| 1204 | 3816 #ifdef EVENT_DATA_AS_OBJECTS |
| 934 | 3817 |
| 3818 static void | |
| 3819 sweep_key_data (void) | |
| 3820 { | |
| 3821 #define UNMARK_key_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3822 #define ADDITIONAL_FREE_key_data(ptr) | |
| 3823 | |
| 3824 SWEEP_FIXED_TYPE_BLOCK (key_data, Lisp_Key_Data); | |
| 3825 } | |
| 3826 | |
| 1204 | 3827 void |
| 3828 free_key_data (Lisp_Object ptr) | |
| 3829 { | |
| 3830 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (key_data, Lisp_Key_Data, XKEY_DATA (ptr)); | |
| 3831 } | |
| 3832 | |
| 934 | 3833 static void |
| 3834 sweep_button_data (void) | |
| 3835 { | |
| 3836 #define UNMARK_button_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3837 #define ADDITIONAL_FREE_button_data(ptr) | |
| 3838 | |
| 3839 SWEEP_FIXED_TYPE_BLOCK (button_data, Lisp_Button_Data); | |
| 3840 } | |
| 3841 | |
| 1204 | 3842 void |
| 3843 free_button_data (Lisp_Object ptr) | |
| 3844 { | |
| 3845 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (button_data, Lisp_Button_Data, XBUTTON_DATA (ptr)); | |
| 3846 } | |
| 3847 | |
| 934 | 3848 static void |
| 3849 sweep_motion_data (void) | |
| 3850 { | |
| 3851 #define UNMARK_motion_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3852 #define ADDITIONAL_FREE_motion_data(ptr) | |
| 3853 | |
| 3854 SWEEP_FIXED_TYPE_BLOCK (motion_data, Lisp_Motion_Data); | |
| 3855 } | |
| 3856 | |
| 1204 | 3857 void |
| 3858 free_motion_data (Lisp_Object ptr) | |
| 3859 { | |
| 3860 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (motion_data, Lisp_Motion_Data, XMOTION_DATA (ptr)); | |
| 3861 } | |
| 3862 | |
| 934 | 3863 static void |
| 3864 sweep_process_data (void) | |
| 3865 { | |
| 3866 #define UNMARK_process_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3867 #define ADDITIONAL_FREE_process_data(ptr) | |
| 3868 | |
| 3869 SWEEP_FIXED_TYPE_BLOCK (process_data, Lisp_Process_Data); | |
| 3870 } | |
| 3871 | |
| 1204 | 3872 void |
| 3873 free_process_data (Lisp_Object ptr) | |
| 3874 { | |
| 3875 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (process_data, Lisp_Process_Data, XPROCESS_DATA (ptr)); | |
| 3876 } | |
| 3877 | |
| 934 | 3878 static void |
| 3879 sweep_timeout_data (void) | |
| 3880 { | |
| 3881 #define UNMARK_timeout_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3882 #define ADDITIONAL_FREE_timeout_data(ptr) | |
| 3883 | |
| 3884 SWEEP_FIXED_TYPE_BLOCK (timeout_data, Lisp_Timeout_Data); | |
| 3885 } | |
| 3886 | |
| 1204 | 3887 void |
| 3888 free_timeout_data (Lisp_Object ptr) | |
| 3889 { | |
| 3890 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (timeout_data, Lisp_Timeout_Data, XTIMEOUT_DATA (ptr)); | |
| 3891 } | |
| 3892 | |
| 934 | 3893 static void |
| 3894 sweep_magic_data (void) | |
| 3895 { | |
| 3896 #define UNMARK_magic_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3897 #define ADDITIONAL_FREE_magic_data(ptr) | |
| 3898 | |
| 3899 SWEEP_FIXED_TYPE_BLOCK (magic_data, Lisp_Magic_Data); | |
| 3900 } | |
| 3901 | |
| 1204 | 3902 void |
| 3903 free_magic_data (Lisp_Object ptr) | |
| 3904 { | |
| 3905 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_data, Lisp_Magic_Data, XMAGIC_DATA (ptr)); | |
| 3906 } | |
| 3907 | |
| 934 | 3908 static void |
| 3909 sweep_magic_eval_data (void) | |
| 3910 { | |
| 3911 #define UNMARK_magic_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3912 #define ADDITIONAL_FREE_magic_eval_data(ptr) | |
| 3913 | |
| 3914 SWEEP_FIXED_TYPE_BLOCK (magic_eval_data, Lisp_Magic_Eval_Data); | |
| 3915 } | |
| 3916 | |
| 1204 | 3917 void |
| 3918 free_magic_eval_data (Lisp_Object ptr) | |
| 3919 { | |
| 3920 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_eval_data, Lisp_Magic_Eval_Data, XMAGIC_EVAL_DATA (ptr)); | |
| 3921 } | |
| 3922 | |
| 934 | 3923 static void |
| 3924 sweep_eval_data (void) | |
| 3925 { | |
| 3926 #define UNMARK_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3927 #define ADDITIONAL_FREE_eval_data(ptr) | |
| 3928 | |
| 3929 SWEEP_FIXED_TYPE_BLOCK (eval_data, Lisp_Eval_Data); | |
| 3930 } | |
| 3931 | |
| 1204 | 3932 void |
| 3933 free_eval_data (Lisp_Object ptr) | |
| 3934 { | |
| 3935 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (eval_data, Lisp_Eval_Data, XEVAL_DATA (ptr)); | |
| 3936 } | |
| 3937 | |
| 934 | 3938 static void |
| 3939 sweep_misc_user_data (void) | |
| 3940 { | |
| 3941 #define UNMARK_misc_user_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3942 #define ADDITIONAL_FREE_misc_user_data(ptr) | |
| 3943 | |
| 3944 SWEEP_FIXED_TYPE_BLOCK (misc_user_data, Lisp_Misc_User_Data); | |
| 3945 } | |
| 3946 | |
| 1204 | 3947 void |
| 3948 free_misc_user_data (Lisp_Object ptr) | |
| 3949 { | |
| 3950 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (misc_user_data, Lisp_Misc_User_Data, XMISC_USER_DATA (ptr)); | |
| 3951 } | |
| 3952 | |
| 3953 #endif /* EVENT_DATA_AS_OBJECTS */ | |
| 934 | 3954 |
| 428 | 3955 static void |
| 3956 sweep_markers (void) | |
| 3957 { | |
| 3958 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
| 3959 #define ADDITIONAL_FREE_marker(ptr) \ | |
| 3960 do { Lisp_Object tem; \ | |
| 793 | 3961 tem = wrap_marker (ptr); \ |
| 428 | 3962 unchain_marker (tem); \ |
| 3963 } while (0) | |
| 3964 | |
| 440 | 3965 SWEEP_FIXED_TYPE_BLOCK (marker, Lisp_Marker); |
| 428 | 3966 } |
| 3967 | |
| 3968 /* Explicitly free a marker. */ | |
| 3969 void | |
| 1204 | 3970 free_marker (Lisp_Object ptr) |
| 428 | 3971 { |
| 1204 | 3972 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, Lisp_Marker, XMARKER (ptr)); |
| 428 | 3973 } |
| 3974 | |
| 3975 | |
| 3976 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) | |
| 3977 | |
| 3978 static void | |
| 3979 verify_string_chars_integrity (void) | |
| 3980 { | |
| 3981 struct string_chars_block *sb; | |
| 3982 | |
| 3983 /* Scan each existing string block sequentially, string by string. */ | |
| 3984 for (sb = first_string_chars_block; sb; sb = sb->next) | |
| 3985 { | |
| 3986 int pos = 0; | |
| 3987 /* POS is the index of the next string in the block. */ | |
| 3988 while (pos < sb->pos) | |
| 3989 { | |
| 3990 struct string_chars *s_chars = | |
| 3991 (struct string_chars *) &(sb->string_chars[pos]); | |
| 438 | 3992 Lisp_String *string; |
| 428 | 3993 int size; |
| 3994 int fullsize; | |
| 3995 | |
| 454 | 3996 /* If the string_chars struct is marked as free (i.e. the |
| 3997 STRING pointer is NULL) then this is an unused chunk of | |
| 3998 string storage. (See below.) */ | |
| 3999 | |
| 4000 if (STRING_CHARS_FREE_P (s_chars)) | |
| 428 | 4001 { |
| 4002 fullsize = ((struct unused_string_chars *) s_chars)->fullsize; | |
| 4003 pos += fullsize; | |
| 4004 continue; | |
| 4005 } | |
| 4006 | |
| 4007 string = s_chars->string; | |
| 4008 /* Must be 32-bit aligned. */ | |
| 4009 assert ((((int) string) & 3) == 0); | |
| 4010 | |
| 793 | 4011 size = string->size_; |
| 428 | 4012 fullsize = STRING_FULLSIZE (size); |
| 4013 | |
| 4014 assert (!BIG_STRING_FULLSIZE_P (fullsize)); | |
| 793 | 4015 assert (string->data_ == s_chars->chars); |
| 428 | 4016 pos += fullsize; |
| 4017 } | |
| 4018 assert (pos == sb->pos); | |
| 4019 } | |
| 4020 } | |
| 4021 | |
| 1204 | 4022 #endif /* defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) */ |
| 428 | 4023 |
| 4024 /* Compactify string chars, relocating the reference to each -- | |
| 4025 free any empty string_chars_block we see. */ | |
| 4026 static void | |
| 4027 compact_string_chars (void) | |
| 4028 { | |
| 4029 struct string_chars_block *to_sb = first_string_chars_block; | |
| 4030 int to_pos = 0; | |
| 4031 struct string_chars_block *from_sb; | |
| 4032 | |
| 4033 /* Scan each existing string block sequentially, string by string. */ | |
| 4034 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next) | |
| 4035 { | |
| 4036 int from_pos = 0; | |
| 4037 /* FROM_POS is the index of the next string in the block. */ | |
| 4038 while (from_pos < from_sb->pos) | |
| 4039 { | |
| 4040 struct string_chars *from_s_chars = | |
| 4041 (struct string_chars *) &(from_sb->string_chars[from_pos]); | |
| 4042 struct string_chars *to_s_chars; | |
| 438 | 4043 Lisp_String *string; |
| 428 | 4044 int size; |
| 4045 int fullsize; | |
| 4046 | |
| 454 | 4047 /* If the string_chars struct is marked as free (i.e. the |
| 4048 STRING pointer is NULL) then this is an unused chunk of | |
| 4049 string storage. This happens under Mule when a string's | |
| 4050 size changes in such a way that its fullsize changes. | |
| 4051 (Strings can change size because a different-length | |
| 4052 character can be substituted for another character.) | |
| 4053 In this case, after the bogus string pointer is the | |
| 4054 "fullsize" of this entry, i.e. how many bytes to skip. */ | |
| 4055 | |
| 4056 if (STRING_CHARS_FREE_P (from_s_chars)) | |
| 428 | 4057 { |
| 4058 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize; | |
| 4059 from_pos += fullsize; | |
| 4060 continue; | |
| 4061 } | |
| 4062 | |
| 4063 string = from_s_chars->string; | |
| 1204 | 4064 gc_checking_assert (!(LRECORD_FREE_P (string))); |
| 428 | 4065 |
| 793 | 4066 size = string->size_; |
| 428 | 4067 fullsize = STRING_FULLSIZE (size); |
| 4068 | |
| 442 | 4069 gc_checking_assert (! BIG_STRING_FULLSIZE_P (fullsize)); |
| 428 | 4070 |
| 4071 /* Just skip it if it isn't marked. */ | |
| 771 | 4072 if (! MARKED_RECORD_HEADER_P (&(string->u.lheader))) |
| 428 | 4073 { |
| 4074 from_pos += fullsize; | |
| 4075 continue; | |
| 4076 } | |
| 4077 | |
| 4078 /* If it won't fit in what's left of TO_SB, close TO_SB out | |
| 4079 and go on to the next string_chars_block. We know that TO_SB | |
| 4080 cannot advance past FROM_SB here since FROM_SB is large enough | |
| 4081 to currently contain this string. */ | |
| 4082 if ((to_pos + fullsize) > countof (to_sb->string_chars)) | |
| 4083 { | |
| 4084 to_sb->pos = to_pos; | |
| 4085 to_sb = to_sb->next; | |
| 4086 to_pos = 0; | |
| 4087 } | |
| 4088 | |
| 4089 /* Compute new address of this string | |
| 4090 and update TO_POS for the space being used. */ | |
| 4091 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]); | |
| 4092 | |
| 4093 /* Copy the string_chars to the new place. */ | |
| 4094 if (from_s_chars != to_s_chars) | |
| 4095 memmove (to_s_chars, from_s_chars, fullsize); | |
| 4096 | |
| 4097 /* Relocate FROM_S_CHARS's reference */ | |
| 826 | 4098 set_lispstringp_data (string, &(to_s_chars->chars[0])); |
| 428 | 4099 |
| 4100 from_pos += fullsize; | |
| 4101 to_pos += fullsize; | |
| 4102 } | |
| 4103 } | |
| 4104 | |
| 4105 /* Set current to the last string chars block still used and | |
| 4106 free any that follow. */ | |
| 4107 { | |
| 4108 struct string_chars_block *victim; | |
| 4109 | |
| 4110 for (victim = to_sb->next; victim; ) | |
| 4111 { | |
| 4112 struct string_chars_block *next = victim->next; | |
| 1726 | 4113 xfree (victim, struct string_chars_block *); |
| 428 | 4114 victim = next; |
| 4115 } | |
| 4116 | |
| 4117 current_string_chars_block = to_sb; | |
| 4118 current_string_chars_block->pos = to_pos; | |
| 4119 current_string_chars_block->next = 0; | |
| 4120 } | |
| 4121 } | |
| 4122 | |
| 4123 #if 1 /* Hack to debug missing purecopy's */ | |
| 4124 static int debug_string_purity; | |
| 4125 | |
| 4126 static void | |
| 793 | 4127 debug_string_purity_print (Lisp_Object p) |
| 428 | 4128 { |
| 4129 Charcount i; | |
| 826 | 4130 Charcount s = string_char_length (p); |
| 442 | 4131 stderr_out ("\""); |
| 428 | 4132 for (i = 0; i < s; i++) |
| 4133 { | |
| 867 | 4134 Ichar ch = string_ichar (p, i); |
| 428 | 4135 if (ch < 32 || ch >= 126) |
| 4136 stderr_out ("\\%03o", ch); | |
| 4137 else if (ch == '\\' || ch == '\"') | |
| 4138 stderr_out ("\\%c", ch); | |
| 4139 else | |
| 4140 stderr_out ("%c", ch); | |
| 4141 } | |
| 4142 stderr_out ("\"\n"); | |
| 4143 } | |
| 4144 #endif /* 1 */ | |
| 4145 | |
| 4146 | |
| 4147 static void | |
| 4148 sweep_strings (void) | |
| 4149 { | |
| 647 | 4150 int num_small_used = 0; |
| 4151 Bytecount num_small_bytes = 0, num_bytes = 0; | |
| 428 | 4152 int debug = debug_string_purity; |
| 4153 | |
| 793 | 4154 #define UNMARK_string(ptr) do { \ |
| 4155 Lisp_String *p = (ptr); \ | |
| 4156 Bytecount size = p->size_; \ | |
| 4157 UNMARK_RECORD_HEADER (&(p->u.lheader)); \ | |
| 4158 num_bytes += size; \ | |
| 4159 if (!BIG_STRING_SIZE_P (size)) \ | |
| 4160 { \ | |
| 4161 num_small_bytes += size; \ | |
| 4162 num_small_used++; \ | |
| 4163 } \ | |
| 4164 if (debug) \ | |
| 4165 debug_string_purity_print (wrap_string (p)); \ | |
| 438 | 4166 } while (0) |
| 4167 #define ADDITIONAL_FREE_string(ptr) do { \ | |
| 793 | 4168 Bytecount size = ptr->size_; \ |
| 438 | 4169 if (BIG_STRING_SIZE_P (size)) \ |
| 1726 | 4170 xfree (ptr->data_, Ibyte *); \ |
| 438 | 4171 } while (0) |
| 4172 | |
| 771 | 4173 SWEEP_FIXED_TYPE_BLOCK_1 (string, Lisp_String, u.lheader); |
| 428 | 4174 |
| 4175 gc_count_num_short_string_in_use = num_small_used; | |
| 4176 gc_count_string_total_size = num_bytes; | |
| 4177 gc_count_short_string_total_size = num_small_bytes; | |
| 4178 } | |
| 4179 | |
| 4180 | |
| 4181 /* I hate duplicating all this crap! */ | |
| 4182 int | |
| 4183 marked_p (Lisp_Object obj) | |
| 4184 { | |
| 4185 /* Checks we used to perform. */ | |
| 4186 /* if (EQ (obj, Qnull_pointer)) return 1; */ | |
| 4187 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */ | |
| 4188 /* if (PURIFIED (XPNTR (obj))) return 1; */ | |
| 4189 | |
| 4190 if (XTYPE (obj) == Lisp_Type_Record) | |
| 4191 { | |
| 4192 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
| 442 | 4193 |
| 4194 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
| 4195 | |
| 4196 return MARKED_RECORD_HEADER_P (lheader); | |
| 428 | 4197 } |
| 4198 return 1; | |
| 4199 } | |
| 4200 | |
| 4201 static void | |
| 4202 gc_sweep (void) | |
| 4203 { | |
| 4204 /* Free all unmarked records. Do this at the very beginning, | |
| 4205 before anything else, so that the finalize methods can safely | |
| 4206 examine items in the objects. sweep_lcrecords_1() makes | |
| 4207 sure to call all the finalize methods *before* freeing anything, | |
| 4208 to complete the safety. */ | |
| 4209 { | |
| 4210 int ignored; | |
| 4211 sweep_lcrecords_1 (&all_lcrecords, &ignored); | |
| 4212 } | |
| 4213 | |
| 4214 compact_string_chars (); | |
| 4215 | |
| 4216 /* Finalize methods below (called through the ADDITIONAL_FREE_foo | |
| 4217 macros) must be *extremely* careful to make sure they're not | |
| 4218 referencing freed objects. The only two existing finalize | |
| 4219 methods (for strings and markers) pass muster -- the string | |
| 4220 finalizer doesn't look at anything but its own specially- | |
| 4221 created block, and the marker finalizer only looks at live | |
| 4222 buffers (which will never be freed) and at the markers before | |
| 4223 and after it in the chain (which, by induction, will never be | |
| 4224 freed because if so, they would have already removed themselves | |
| 4225 from the chain). */ | |
| 4226 | |
| 4227 /* Put all unmarked strings on free list, free'ing the string chars | |
| 4228 of large unmarked strings */ | |
| 4229 sweep_strings (); | |
| 4230 | |
| 4231 /* Put all unmarked conses on free list */ | |
| 4232 sweep_conses (); | |
| 4233 | |
| 4234 /* Free all unmarked compiled-function objects */ | |
| 4235 sweep_compiled_functions (); | |
| 4236 | |
| 4237 /* Put all unmarked floats on free list */ | |
| 4238 sweep_floats (); | |
| 4239 | |
| 4240 /* Put all unmarked symbols on free list */ | |
| 4241 sweep_symbols (); | |
| 4242 | |
| 4243 /* Put all unmarked extents on free list */ | |
| 4244 sweep_extents (); | |
| 4245 | |
| 4246 /* Put all unmarked markers on free list. | |
| 4247 Dechain each one first from the buffer into which it points. */ | |
| 4248 sweep_markers (); | |
| 4249 | |
| 4250 sweep_events (); | |
| 4251 | |
| 1204 | 4252 #ifdef EVENT_DATA_AS_OBJECTS |
| 934 | 4253 sweep_key_data (); |
| 4254 sweep_button_data (); | |
| 4255 sweep_motion_data (); | |
| 4256 sweep_process_data (); | |
| 4257 sweep_timeout_data (); | |
| 4258 sweep_magic_data (); | |
| 4259 sweep_magic_eval_data (); | |
| 4260 sweep_eval_data (); | |
| 4261 sweep_misc_user_data (); | |
| 1204 | 4262 #endif /* EVENT_DATA_AS_OBJECTS */ |
| 934 | 4263 |
| 428 | 4264 #ifdef PDUMP |
| 442 | 4265 pdump_objects_unmark (); |
| 428 | 4266 #endif |
| 4267 } | |
| 4268 | |
| 4269 /* Clearing for disksave. */ | |
| 4270 | |
| 4271 void | |
| 4272 disksave_object_finalization (void) | |
| 4273 { | |
| 4274 /* It's important that certain information from the environment not get | |
| 4275 dumped with the executable (pathnames, environment variables, etc.). | |
| 4276 To make it easier to tell when this has happened with strings(1) we | |
| 4277 clear some known-to-be-garbage blocks of memory, so that leftover | |
| 4278 results of old evaluation don't look like potential problems. | |
| 4279 But first we set some notable variables to nil and do one more GC, | |
| 4280 to turn those strings into garbage. | |
| 440 | 4281 */ |
| 428 | 4282 |
| 4283 /* Yeah, this list is pretty ad-hoc... */ | |
| 4284 Vprocess_environment = Qnil; | |
| 771 | 4285 env_initted = 0; |
| 428 | 4286 Vexec_directory = Qnil; |
| 4287 Vdata_directory = Qnil; | |
| 4288 Vsite_directory = Qnil; | |
| 4289 Vdoc_directory = Qnil; | |
| 4290 Vexec_path = Qnil; | |
| 4291 Vload_path = Qnil; | |
| 4292 /* Vdump_load_path = Qnil; */ | |
| 4293 /* Release hash tables for locate_file */ | |
| 4294 Flocate_file_clear_hashing (Qt); | |
| 771 | 4295 uncache_home_directory (); |
| 776 | 4296 zero_out_command_line_status_vars (); |
| 872 | 4297 clear_default_devices (); |
| 428 | 4298 |
| 4299 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \ | |
| 4300 defined(LOADHIST_BUILTIN)) | |
| 4301 Vload_history = Qnil; | |
| 4302 #endif | |
| 4303 Vshell_file_name = Qnil; | |
| 4304 | |
| 4305 garbage_collect_1 (); | |
| 4306 | |
| 4307 /* Run the disksave finalization methods of all live objects. */ | |
| 4308 disksave_object_finalization_1 (); | |
| 4309 | |
| 4310 /* Zero out the uninitialized (really, unused) part of the containers | |
| 4311 for the live strings. */ | |
| 4312 { | |
| 4313 struct string_chars_block *scb; | |
| 4314 for (scb = first_string_chars_block; scb; scb = scb->next) | |
| 4315 { | |
| 4316 int count = sizeof (scb->string_chars) - scb->pos; | |
| 4317 | |
| 4318 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE); | |
| 440 | 4319 if (count != 0) |
| 4320 { | |
| 4321 /* from the block's fill ptr to the end */ | |
| 4322 memset ((scb->string_chars + scb->pos), 0, count); | |
| 4323 } | |
| 428 | 4324 } |
| 4325 } | |
| 4326 | |
| 4327 /* There, that ought to be enough... */ | |
| 4328 | |
| 4329 } | |
| 4330 | |
| 4331 | |
| 771 | 4332 int |
| 4333 begin_gc_forbidden (void) | |
| 4334 { | |
| 853 | 4335 return internal_bind_int (&gc_currently_forbidden, 1); |
| 771 | 4336 } |
| 4337 | |
| 4338 void | |
| 4339 end_gc_forbidden (int count) | |
| 4340 { | |
| 4341 unbind_to (count); | |
| 4342 } | |
| 4343 | |
| 428 | 4344 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */ |
| 4345 static int gc_hooks_inhibited; | |
| 4346 | |
| 611 | 4347 struct post_gc_action |
| 4348 { | |
| 4349 void (*fun) (void *); | |
| 4350 void *arg; | |
| 4351 }; | |
| 4352 | |
| 4353 typedef struct post_gc_action post_gc_action; | |
| 4354 | |
| 4355 typedef struct | |
| 4356 { | |
| 4357 Dynarr_declare (post_gc_action); | |
| 4358 } post_gc_action_dynarr; | |
| 4359 | |
| 4360 static post_gc_action_dynarr *post_gc_actions; | |
| 4361 | |
| 4362 /* Register an action to be called at the end of GC. | |
| 4363 gc_in_progress is 0 when this is called. | |
| 4364 This is used when it is discovered that an action needs to be taken, | |
| 4365 but it's during GC, so it's not safe. (e.g. in a finalize method.) | |
| 4366 | |
| 4367 As a general rule, do not use Lisp objects here. | |
| 4368 And NEVER signal an error. | |
| 4369 */ | |
| 4370 | |
| 4371 void | |
| 4372 register_post_gc_action (void (*fun) (void *), void *arg) | |
| 4373 { | |
| 4374 post_gc_action action; | |
| 4375 | |
| 4376 if (!post_gc_actions) | |
| 4377 post_gc_actions = Dynarr_new (post_gc_action); | |
| 4378 | |
| 4379 action.fun = fun; | |
| 4380 action.arg = arg; | |
| 4381 | |
| 4382 Dynarr_add (post_gc_actions, action); | |
| 4383 } | |
| 4384 | |
| 4385 static void | |
| 4386 run_post_gc_actions (void) | |
| 4387 { | |
| 4388 int i; | |
| 4389 | |
| 4390 if (post_gc_actions) | |
| 4391 { | |
| 4392 for (i = 0; i < Dynarr_length (post_gc_actions); i++) | |
| 4393 { | |
| 4394 post_gc_action action = Dynarr_at (post_gc_actions, i); | |
| 4395 (action.fun) (action.arg); | |
| 4396 } | |
| 4397 | |
| 4398 Dynarr_reset (post_gc_actions); | |
| 4399 } | |
| 4400 } | |
| 4401 | |
| 428 | 4402 |
| 4403 void | |
| 4404 garbage_collect_1 (void) | |
| 4405 { | |
| 4406 #if MAX_SAVE_STACK > 0 | |
| 4407 char stack_top_variable; | |
| 4408 extern char *stack_bottom; | |
| 4409 #endif | |
| 4410 struct frame *f; | |
| 4411 int speccount; | |
| 4412 int cursor_changed; | |
| 4413 Lisp_Object pre_gc_cursor; | |
| 4414 struct gcpro gcpro1; | |
| 1292 | 4415 PROFILE_DECLARE (); |
| 428 | 4416 |
| 1123 | 4417 assert (!in_display || gc_currently_forbidden); |
| 4418 | |
| 428 | 4419 if (gc_in_progress |
| 4420 || gc_currently_forbidden | |
| 4421 || in_display | |
| 4422 || preparing_for_armageddon) | |
| 4423 return; | |
| 4424 | |
| 1292 | 4425 PROFILE_RECORD_ENTERING_SECTION (QSin_garbage_collection); |
| 4426 | |
| 428 | 4427 /* We used to call selected_frame() here. |
| 4428 | |
| 4429 The following functions cannot be called inside GC | |
| 4430 so we move to after the above tests. */ | |
| 4431 { | |
| 4432 Lisp_Object frame; | |
| 4433 Lisp_Object device = Fselected_device (Qnil); | |
| 4434 if (NILP (device)) /* Could happen during startup, eg. if always_gc */ | |
| 4435 return; | |
| 872 | 4436 frame = Fselected_frame (device); |
| 428 | 4437 if (NILP (frame)) |
| 563 | 4438 invalid_state ("No frames exist on device", device); |
| 428 | 4439 f = XFRAME (frame); |
| 4440 } | |
| 4441 | |
| 4442 pre_gc_cursor = Qnil; | |
| 4443 cursor_changed = 0; | |
| 4444 | |
| 4445 GCPRO1 (pre_gc_cursor); | |
| 4446 | |
| 4447 /* Very important to prevent GC during any of the following | |
| 4448 stuff that might run Lisp code; otherwise, we'll likely | |
| 4449 have infinite GC recursion. */ | |
| 771 | 4450 speccount = begin_gc_forbidden (); |
| 428 | 4451 |
| 887 | 4452 need_to_signal_post_gc = 0; |
| 1318 | 4453 recompute_funcall_allocation_flag (); |
| 887 | 4454 |
| 428 | 4455 if (!gc_hooks_inhibited) |
| 853 | 4456 run_hook_trapping_problems |
| 1333 | 4457 (Qgarbage_collecting, Qpre_gc_hook, |
| 853 | 4458 INHIBIT_EXISTING_PERMANENT_DISPLAY_OBJECT_DELETION); |
| 428 | 4459 |
| 4460 /* Now show the GC cursor/message. */ | |
| 4461 if (!noninteractive) | |
| 4462 { | |
| 4463 if (FRAME_WIN_P (f)) | |
| 4464 { | |
| 771 | 4465 Lisp_Object frame = wrap_frame (f); |
| 428 | 4466 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph, |
| 4467 FRAME_SELECTED_WINDOW (f), | |
| 4468 ERROR_ME_NOT, 1); | |
| 4469 pre_gc_cursor = f->pointer; | |
| 4470 if (POINTER_IMAGE_INSTANCEP (cursor) | |
| 4471 /* don't change if we don't know how to change back. */ | |
| 4472 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor)) | |
| 4473 { | |
| 4474 cursor_changed = 1; | |
| 4475 Fset_frame_pointer (frame, cursor); | |
| 4476 } | |
| 4477 } | |
| 4478 | |
| 4479 /* Don't print messages to the stream device. */ | |
| 4480 if (!cursor_changed && !FRAME_STREAM_P (f)) | |
| 4481 { | |
| 1154 | 4482 if (garbage_collection_messages) |
| 4483 { | |
| 4484 Lisp_Object args[2], whole_msg; | |
| 4485 args[0] = (STRINGP (Vgc_message) ? Vgc_message : | |
| 4486 build_msg_string (gc_default_message)); | |
| 4487 args[1] = build_string ("..."); | |
| 4488 whole_msg = Fconcat (2, args); | |
| 4489 echo_area_message (f, (Ibyte *) 0, whole_msg, 0, -1, | |
| 4490 Qgarbage_collecting); | |
| 4491 } | |
| 428 | 4492 } |
| 4493 } | |
| 4494 | |
| 4495 /***** Now we actually start the garbage collection. */ | |
| 4496 | |
| 4497 gc_in_progress = 1; | |
| 771 | 4498 inhibit_non_essential_printing_operations = 1; |
| 428 | 4499 |
| 4500 gc_generation_number[0]++; | |
| 4501 | |
| 4502 #if MAX_SAVE_STACK > 0 | |
| 4503 | |
| 4504 /* Save a copy of the contents of the stack, for debugging. */ | |
| 4505 if (!purify_flag) | |
| 4506 { | |
| 4507 /* Static buffer in which we save a copy of the C stack at each GC. */ | |
| 4508 static char *stack_copy; | |
| 665 | 4509 static Bytecount stack_copy_size; |
| 428 | 4510 |
| 4511 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom; | |
| 665 | 4512 Bytecount stack_size = (stack_diff > 0 ? stack_diff : -stack_diff); |
| 428 | 4513 if (stack_size < MAX_SAVE_STACK) |
| 4514 { | |
| 4515 if (stack_copy_size < stack_size) | |
| 4516 { | |
| 4517 stack_copy = (char *) xrealloc (stack_copy, stack_size); | |
| 4518 stack_copy_size = stack_size; | |
| 4519 } | |
| 4520 | |
| 4521 memcpy (stack_copy, | |
| 4522 stack_diff > 0 ? stack_bottom : &stack_top_variable, | |
| 4523 stack_size); | |
| 4524 } | |
| 4525 } | |
| 4526 #endif /* MAX_SAVE_STACK > 0 */ | |
| 4527 | |
| 4528 /* Do some totally ad-hoc resource clearing. */ | |
| 4529 /* #### generalize this? */ | |
| 4530 clear_event_resource (); | |
| 4531 cleanup_specifiers (); | |
| 1204 | 4532 cleanup_buffer_undo_lists (); |
| 428 | 4533 |
| 4534 /* Mark all the special slots that serve as the roots of accessibility. */ | |
| 4535 | |
| 1598 | 4536 #ifdef USE_KKCC |
| 4537 /* initialize kkcc stack */ | |
| 4538 kkcc_gc_stack_init(); | |
| 1676 | 4539 #define mark_object kkcc_gc_stack_push_lisp_object |
| 1598 | 4540 #endif /* USE_KKCC */ |
| 4541 | |
| 428 | 4542 { /* staticpro() */ |
| 452 | 4543 Lisp_Object **p = Dynarr_begin (staticpros); |
| 665 | 4544 Elemcount count; |
| 452 | 4545 for (count = Dynarr_length (staticpros); count; count--) |
| 4546 mark_object (**p++); | |
| 4547 } | |
| 4548 | |
| 4549 { /* staticpro_nodump() */ | |
| 4550 Lisp_Object **p = Dynarr_begin (staticpros_nodump); | |
| 665 | 4551 Elemcount count; |
| 452 | 4552 for (count = Dynarr_length (staticpros_nodump); count; count--) |
| 4553 mark_object (**p++); | |
| 428 | 4554 } |
| 4555 | |
| 4556 { /* GCPRO() */ | |
| 4557 struct gcpro *tail; | |
| 4558 int i; | |
| 4559 for (tail = gcprolist; tail; tail = tail->next) | |
| 4560 for (i = 0; i < tail->nvars; i++) | |
| 4561 mark_object (tail->var[i]); | |
| 4562 } | |
| 4563 | |
| 4564 { /* specbind() */ | |
| 4565 struct specbinding *bind; | |
| 4566 for (bind = specpdl; bind != specpdl_ptr; bind++) | |
| 4567 { | |
| 4568 mark_object (bind->symbol); | |
| 4569 mark_object (bind->old_value); | |
| 4570 } | |
| 4571 } | |
| 4572 | |
| 4573 { | |
| 4574 struct catchtag *catch; | |
| 4575 for (catch = catchlist; catch; catch = catch->next) | |
| 4576 { | |
| 4577 mark_object (catch->tag); | |
| 4578 mark_object (catch->val); | |
| 853 | 4579 mark_object (catch->actual_tag); |
| 428 | 4580 } |
| 4581 } | |
| 4582 | |
| 4583 { | |
| 4584 struct backtrace *backlist; | |
| 4585 for (backlist = backtrace_list; backlist; backlist = backlist->next) | |
| 4586 { | |
| 4587 int nargs = backlist->nargs; | |
| 4588 int i; | |
| 4589 | |
| 4590 mark_object (*backlist->function); | |
| 1292 | 4591 if (nargs < 0 /* nargs == UNEVALLED || nargs == MANY */ |
| 4592 /* might be fake (internal profiling entry) */ | |
| 4593 && backlist->args) | |
| 428 | 4594 mark_object (backlist->args[0]); |
| 4595 else | |
| 4596 for (i = 0; i < nargs; i++) | |
| 4597 mark_object (backlist->args[i]); | |
| 4598 } | |
| 4599 } | |
| 4600 | |
| 4601 mark_profiling_info (); | |
| 4602 | |
| 4603 /* OK, now do the after-mark stuff. This is for things that | |
| 4604 are only marked when something else is marked (e.g. weak hash tables). | |
| 4605 There may be complex dependencies between such objects -- e.g. | |
| 4606 a weak hash table might be unmarked, but after processing a later | |
| 4607 weak hash table, the former one might get marked. So we have to | |
| 4608 iterate until nothing more gets marked. */ | |
| 1598 | 4609 #ifdef USE_KKCC |
| 4610 kkcc_marking (); | |
| 4611 #endif /* USE_KKCC */ | |
| 1590 | 4612 init_marking_ephemerons (); |
| 428 | 4613 while (finish_marking_weak_hash_tables () > 0 || |
| 887 | 4614 finish_marking_weak_lists () > 0 || |
| 1590 | 4615 continue_marking_ephemerons () > 0) |
|
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4616 #ifdef USE_KKCC |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4617 { |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4618 kkcc_marking (); |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4619 } |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4620 #else /* NOT USE_KKCC */ |
| 1590 | 4621 ; |
| 1598 | 4622 #endif /* USE_KKCC */ |
| 4623 | |
| 1590 | 4624 /* At this point, we know which objects need to be finalized: we |
| 4625 still need to resurrect them */ | |
| 4626 | |
| 4627 while (finish_marking_ephemerons () > 0 || | |
| 4628 finish_marking_weak_lists () > 0 || | |
| 4629 finish_marking_weak_hash_tables () > 0) | |
| 1643 | 4630 #ifdef USE_KKCC |
|
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4631 { |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4632 kkcc_marking (); |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4633 } |
| 1643 | 4634 kkcc_gc_stack_free (); |
| 1676 | 4635 #undef mark_object |
|
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4636 #else /* NOT USE_KKCC */ |
|
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
4637 ; |
| 1643 | 4638 #endif /* USE_KKCC */ |
| 4639 | |
| 428 | 4640 /* And prune (this needs to be called after everything else has been |
| 4641 marked and before we do any sweeping). */ | |
| 4642 /* #### this is somewhat ad-hoc and should probably be an object | |
| 4643 method */ | |
| 4644 prune_weak_hash_tables (); | |
| 4645 prune_weak_lists (); | |
| 4646 prune_specifiers (); | |
| 4647 prune_syntax_tables (); | |
| 4648 | |
| 887 | 4649 prune_ephemerons (); |
| 858 | 4650 prune_weak_boxes (); |
| 4651 | |
| 428 | 4652 gc_sweep (); |
| 4653 | |
| 4654 consing_since_gc = 0; | |
| 4655 #ifndef DEBUG_XEMACS | |
| 4656 /* Allow you to set it really fucking low if you really want ... */ | |
| 4657 if (gc_cons_threshold < 10000) | |
| 4658 gc_cons_threshold = 10000; | |
| 4659 #endif | |
| 814 | 4660 recompute_need_to_garbage_collect (); |
| 428 | 4661 |
| 771 | 4662 inhibit_non_essential_printing_operations = 0; |
| 428 | 4663 gc_in_progress = 0; |
| 4664 | |
| 611 | 4665 run_post_gc_actions (); |
| 4666 | |
| 428 | 4667 /******* End of garbage collection ********/ |
| 4668 | |
| 4669 /* Now remove the GC cursor/message */ | |
| 4670 if (!noninteractive) | |
| 4671 { | |
| 4672 if (cursor_changed) | |
| 771 | 4673 Fset_frame_pointer (wrap_frame (f), pre_gc_cursor); |
| 428 | 4674 else if (!FRAME_STREAM_P (f)) |
| 4675 { | |
| 4676 /* Show "...done" only if the echo area would otherwise be empty. */ | |
| 4677 if (NILP (clear_echo_area (selected_frame (), | |
| 4678 Qgarbage_collecting, 0))) | |
| 4679 { | |
| 1154 | 4680 if (garbage_collection_messages) |
| 4681 { | |
| 4682 Lisp_Object args[2], whole_msg; | |
| 4683 args[0] = (STRINGP (Vgc_message) ? Vgc_message : | |
| 4684 build_msg_string (gc_default_message)); | |
| 4685 args[1] = build_msg_string ("... done"); | |
| 4686 whole_msg = Fconcat (2, args); | |
| 4687 echo_area_message (selected_frame (), (Ibyte *) 0, | |
| 4688 whole_msg, 0, -1, | |
| 4689 Qgarbage_collecting); | |
| 4690 } | |
| 428 | 4691 } |
| 4692 } | |
| 4693 } | |
| 4694 | |
| 4695 /* now stop inhibiting GC */ | |
| 771 | 4696 unbind_to (speccount); |
| 428 | 4697 |
| 4698 if (!breathing_space) | |
| 4699 { | |
| 4700 breathing_space = malloc (4096 - MALLOC_OVERHEAD); | |
| 4701 } | |
| 4702 | |
| 4703 UNGCPRO; | |
| 887 | 4704 |
| 4705 need_to_signal_post_gc = 1; | |
| 4706 funcall_allocation_flag = 1; | |
| 4707 | |
| 1292 | 4708 PROFILE_RECORD_EXITING_SECTION (QSin_garbage_collection); |
| 4709 | |
| 428 | 4710 return; |
| 4711 } | |
| 4712 | |
| 4713 /* Debugging aids. */ | |
| 4714 | |
| 4715 static Lisp_Object | |
| 771 | 4716 gc_plist_hack (const Char_ASCII *name, int value, Lisp_Object tail) |
| 428 | 4717 { |
| 4718 /* C doesn't have local functions (or closures, or GC, or readable syntax, | |
| 4719 or portable numeric datatypes, or bit-vectors, or characters, or | |
| 4720 arrays, or exceptions, or ...) */ | |
| 4721 return cons3 (intern (name), make_int (value), tail); | |
| 4722 } | |
| 4723 | |
| 4724 #define HACK_O_MATIC(type, name, pl) do { \ | |
| 4725 int s = 0; \ | |
| 4726 struct type##_block *x = current_##type##_block; \ | |
| 4727 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \ | |
| 4728 (pl) = gc_plist_hack ((name), s, (pl)); \ | |
| 4729 } while (0) | |
| 4730 | |
| 4731 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /* | |
| 4732 Reclaim storage for Lisp objects no longer needed. | |
| 4733 Return info on amount of space in use: | |
| 4734 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS) | |
| 4735 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS | |
| 4736 PLIST) | |
| 4737 where `PLIST' is a list of alternating keyword/value pairs providing | |
| 4738 more detailed information. | |
| 4739 Garbage collection happens automatically if you cons more than | |
| 4740 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. | |
| 4741 */ | |
| 4742 ()) | |
| 4743 { | |
| 4744 Lisp_Object pl = Qnil; | |
| 647 | 4745 int i; |
| 428 | 4746 int gc_count_vector_total_size = 0; |
| 4747 garbage_collect_1 (); | |
| 4748 | |
| 442 | 4749 for (i = 0; i < lrecord_type_count; i++) |
| 428 | 4750 { |
| 4751 if (lcrecord_stats[i].bytes_in_use != 0 | |
| 4752 || lcrecord_stats[i].bytes_freed != 0 | |
| 4753 || lcrecord_stats[i].instances_on_free_list != 0) | |
| 4754 { | |
| 4755 char buf [255]; | |
| 442 | 4756 const char *name = lrecord_implementations_table[i]->name; |
| 428 | 4757 int len = strlen (name); |
| 4758 /* save this for the FSFmacs-compatible part of the summary */ | |
| 460 | 4759 if (i == lrecord_type_vector) |
| 428 | 4760 gc_count_vector_total_size = |
| 4761 lcrecord_stats[i].bytes_in_use + lcrecord_stats[i].bytes_freed; | |
| 4762 | |
| 4763 sprintf (buf, "%s-storage", name); | |
| 4764 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl); | |
| 4765 /* Okay, simple pluralization check for `symbol-value-varalias' */ | |
| 4766 if (name[len-1] == 's') | |
| 4767 sprintf (buf, "%ses-freed", name); | |
| 4768 else | |
| 4769 sprintf (buf, "%ss-freed", name); | |
| 4770 if (lcrecord_stats[i].instances_freed != 0) | |
| 4771 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl); | |
| 4772 if (name[len-1] == 's') | |
| 4773 sprintf (buf, "%ses-on-free-list", name); | |
| 4774 else | |
| 4775 sprintf (buf, "%ss-on-free-list", name); | |
| 4776 if (lcrecord_stats[i].instances_on_free_list != 0) | |
| 4777 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list, | |
| 4778 pl); | |
| 4779 if (name[len-1] == 's') | |
| 4780 sprintf (buf, "%ses-used", name); | |
| 4781 else | |
| 4782 sprintf (buf, "%ss-used", name); | |
| 4783 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl); | |
| 4784 } | |
| 4785 } | |
| 4786 | |
| 4787 HACK_O_MATIC (extent, "extent-storage", pl); | |
| 4788 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl); | |
| 4789 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl); | |
| 4790 HACK_O_MATIC (event, "event-storage", pl); | |
| 4791 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl); | |
| 4792 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl); | |
| 4793 HACK_O_MATIC (marker, "marker-storage", pl); | |
| 4794 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl); | |
| 4795 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl); | |
| 4796 HACK_O_MATIC (float, "float-storage", pl); | |
| 4797 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl); | |
| 4798 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl); | |
| 4799 HACK_O_MATIC (string, "string-header-storage", pl); | |
| 4800 pl = gc_plist_hack ("long-strings-total-length", | |
| 4801 gc_count_string_total_size | |
| 4802 - gc_count_short_string_total_size, pl); | |
| 4803 HACK_O_MATIC (string_chars, "short-string-storage", pl); | |
| 4804 pl = gc_plist_hack ("short-strings-total-length", | |
| 4805 gc_count_short_string_total_size, pl); | |
| 4806 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl); | |
| 4807 pl = gc_plist_hack ("long-strings-used", | |
| 4808 gc_count_num_string_in_use | |
| 4809 - gc_count_num_short_string_in_use, pl); | |
| 4810 pl = gc_plist_hack ("short-strings-used", | |
| 4811 gc_count_num_short_string_in_use, pl); | |
| 4812 | |
| 4813 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl); | |
| 4814 pl = gc_plist_hack ("compiled-functions-free", | |
| 4815 gc_count_num_compiled_function_freelist, pl); | |
| 4816 pl = gc_plist_hack ("compiled-functions-used", | |
| 4817 gc_count_num_compiled_function_in_use, pl); | |
| 4818 | |
| 4819 HACK_O_MATIC (symbol, "symbol-storage", pl); | |
| 4820 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl); | |
| 4821 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl); | |
| 4822 | |
| 4823 HACK_O_MATIC (cons, "cons-storage", pl); | |
| 4824 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl); | |
| 4825 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl); | |
| 4826 | |
| 4827 /* The things we do for backwards-compatibility */ | |
| 4828 return | |
| 4829 list6 (Fcons (make_int (gc_count_num_cons_in_use), | |
| 4830 make_int (gc_count_num_cons_freelist)), | |
| 4831 Fcons (make_int (gc_count_num_symbol_in_use), | |
| 4832 make_int (gc_count_num_symbol_freelist)), | |
| 4833 Fcons (make_int (gc_count_num_marker_in_use), | |
| 4834 make_int (gc_count_num_marker_freelist)), | |
| 4835 make_int (gc_count_string_total_size), | |
| 4836 make_int (gc_count_vector_total_size), | |
| 4837 pl); | |
| 4838 } | |
| 4839 #undef HACK_O_MATIC | |
| 4840 | |
| 4841 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /* | |
| 4842 Return the number of bytes consed since the last garbage collection. | |
| 4843 \"Consed\" is a misnomer in that this actually counts allocation | |
| 4844 of all different kinds of objects, not just conses. | |
| 4845 | |
| 4846 If this value exceeds `gc-cons-threshold', a garbage collection happens. | |
| 4847 */ | |
| 4848 ()) | |
| 4849 { | |
| 4850 return make_int (consing_since_gc); | |
| 4851 } | |
| 4852 | |
| 440 | 4853 #if 0 |
| 444 | 4854 DEFUN ("memory-limit", Fmemory_limit, 0, 0, 0, /* |
| 801 | 4855 Return the address of the last byte XEmacs has allocated, divided by 1024. |
| 4856 This may be helpful in debugging XEmacs's memory usage. | |
| 428 | 4857 The value is divided by 1024 to make sure it will fit in a lisp integer. |
| 4858 */ | |
| 4859 ()) | |
| 4860 { | |
| 4861 return make_int ((EMACS_INT) sbrk (0) / 1024); | |
| 4862 } | |
| 440 | 4863 #endif |
| 428 | 4864 |
| 801 | 4865 DEFUN ("memory-usage", Fmemory_usage, 0, 0, 0, /* |
| 4866 Return the total number of bytes used by the data segment in XEmacs. | |
| 4867 This may be helpful in debugging XEmacs's memory usage. | |
| 4868 */ | |
| 4869 ()) | |
| 4870 { | |
| 4871 return make_int (total_data_usage ()); | |
| 4872 } | |
| 4873 | |
| 851 | 4874 void |
| 4875 recompute_funcall_allocation_flag (void) | |
| 4876 { | |
| 887 | 4877 funcall_allocation_flag = |
| 4878 need_to_garbage_collect || | |
| 4879 need_to_check_c_alloca || | |
| 4880 need_to_signal_post_gc; | |
| 851 | 4881 } |
| 4882 | |
| 801 | 4883 /* True if it's time to garbage collect now. */ |
| 814 | 4884 static void |
| 4885 recompute_need_to_garbage_collect (void) | |
| 801 | 4886 { |
| 4887 if (always_gc) | |
| 814 | 4888 need_to_garbage_collect = 1; |
| 4889 else | |
| 4890 need_to_garbage_collect = | |
| 4891 (consing_since_gc > gc_cons_threshold | |
| 4892 #if 0 /* #### implement this better */ | |
| 4893 && | |
| 4894 (100 * consing_since_gc) / total_data_usage () >= | |
| 4895 gc_cons_percentage | |
| 4896 #endif /* 0 */ | |
| 4897 ); | |
| 851 | 4898 recompute_funcall_allocation_flag (); |
| 801 | 4899 } |
| 4900 | |
| 428 | 4901 |
| 4902 int | |
| 4903 object_dead_p (Lisp_Object obj) | |
| 4904 { | |
| 4905 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) || | |
| 4906 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) || | |
| 4907 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) || | |
| 4908 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) || | |
| 4909 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) || | |
| 4910 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) || | |
| 4911 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj)))); | |
| 4912 } | |
| 4913 | |
| 4914 #ifdef MEMORY_USAGE_STATS | |
| 4915 | |
| 4916 /* Attempt to determine the actual amount of space that is used for | |
| 4917 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE". | |
| 4918 | |
| 4919 It seems that the following holds: | |
| 4920 | |
| 4921 1. When using the old allocator (malloc.c): | |
| 4922 | |
| 4923 -- blocks are always allocated in chunks of powers of two. For | |
| 4924 each block, there is an overhead of 8 bytes if rcheck is not | |
| 4925 defined, 20 bytes if it is defined. In other words, a | |
| 4926 one-byte allocation needs 8 bytes of overhead for a total of | |
| 4927 9 bytes, and needs to have 16 bytes of memory chunked out for | |
| 4928 it. | |
| 4929 | |
| 4930 2. When using the new allocator (gmalloc.c): | |
| 4931 | |
| 4932 -- blocks are always allocated in chunks of powers of two up | |
| 4933 to 4096 bytes. Larger blocks are allocated in chunks of | |
| 4934 an integral multiple of 4096 bytes. The minimum block | |
| 4935 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG | |
| 4936 is defined. There is no per-block overhead, but there | |
| 4937 is an overhead of 3*sizeof (size_t) for each 4096 bytes | |
| 4938 allocated. | |
| 4939 | |
| 4940 3. When using the system malloc, anything goes, but they are | |
| 4941 generally slower and more space-efficient than the GNU | |
| 4942 allocators. One possibly reasonable assumption to make | |
| 4943 for want of better data is that sizeof (void *), or maybe | |
| 4944 2 * sizeof (void *), is required as overhead and that | |
| 4945 blocks are allocated in the minimum required size except | |
| 4946 that some minimum block size is imposed (e.g. 16 bytes). */ | |
| 4947 | |
| 665 | 4948 Bytecount |
| 4949 malloced_storage_size (void *ptr, Bytecount claimed_size, | |
| 428 | 4950 struct overhead_stats *stats) |
| 4951 { | |
| 665 | 4952 Bytecount orig_claimed_size = claimed_size; |
| 428 | 4953 |
| 4954 #ifdef GNU_MALLOC | |
| 665 | 4955 if (claimed_size < (Bytecount) (2 * sizeof (void *))) |
| 428 | 4956 claimed_size = 2 * sizeof (void *); |
| 4957 # ifdef SUNOS_LOCALTIME_BUG | |
| 4958 if (claimed_size < 16) | |
| 4959 claimed_size = 16; | |
| 4960 # endif | |
| 4961 if (claimed_size < 4096) | |
| 4962 { | |
| 4963 int log = 1; | |
| 4964 | |
| 4965 /* compute the log base two, more or less, then use it to compute | |
| 4966 the block size needed. */ | |
| 4967 claimed_size--; | |
| 4968 /* It's big, it's heavy, it's wood! */ | |
| 4969 while ((claimed_size /= 2) != 0) | |
| 4970 ++log; | |
| 4971 claimed_size = 1; | |
| 4972 /* It's better than bad, it's good! */ | |
| 4973 while (log > 0) | |
| 4974 { | |
| 4975 claimed_size *= 2; | |
| 4976 log--; | |
| 4977 } | |
| 4978 /* We have to come up with some average about the amount of | |
| 4979 blocks used. */ | |
| 665 | 4980 if ((Bytecount) (rand () & 4095) < claimed_size) |
| 428 | 4981 claimed_size += 3 * sizeof (void *); |
| 4982 } | |
| 4983 else | |
| 4984 { | |
| 4985 claimed_size += 4095; | |
| 4986 claimed_size &= ~4095; | |
| 4987 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t); | |
| 4988 } | |
| 4989 | |
| 4990 #elif defined (SYSTEM_MALLOC) | |
| 4991 | |
| 4992 if (claimed_size < 16) | |
| 4993 claimed_size = 16; | |
| 4994 claimed_size += 2 * sizeof (void *); | |
| 4995 | |
| 4996 #else /* old GNU allocator */ | |
| 4997 | |
| 4998 # ifdef rcheck /* #### may not be defined here */ | |
| 4999 claimed_size += 20; | |
| 5000 # else | |
| 5001 claimed_size += 8; | |
| 5002 # endif | |
| 5003 { | |
| 5004 int log = 1; | |
| 5005 | |
| 5006 /* compute the log base two, more or less, then use it to compute | |
| 5007 the block size needed. */ | |
| 5008 claimed_size--; | |
| 5009 /* It's big, it's heavy, it's wood! */ | |
| 5010 while ((claimed_size /= 2) != 0) | |
| 5011 ++log; | |
| 5012 claimed_size = 1; | |
| 5013 /* It's better than bad, it's good! */ | |
| 5014 while (log > 0) | |
| 5015 { | |
| 5016 claimed_size *= 2; | |
| 5017 log--; | |
| 5018 } | |
| 5019 } | |
| 5020 | |
| 5021 #endif /* old GNU allocator */ | |
| 5022 | |
| 5023 if (stats) | |
| 5024 { | |
| 5025 stats->was_requested += orig_claimed_size; | |
| 5026 stats->malloc_overhead += claimed_size - orig_claimed_size; | |
| 5027 } | |
| 5028 return claimed_size; | |
| 5029 } | |
| 5030 | |
| 665 | 5031 Bytecount |
| 5032 fixed_type_block_overhead (Bytecount size) | |
| 428 | 5033 { |
| 665 | 5034 Bytecount per_block = TYPE_ALLOC_SIZE (cons, unsigned char); |
| 5035 Bytecount overhead = 0; | |
| 5036 Bytecount storage_size = malloced_storage_size (0, per_block, 0); | |
| 428 | 5037 while (size >= per_block) |
| 5038 { | |
| 5039 size -= per_block; | |
| 5040 overhead += sizeof (void *) + per_block - storage_size; | |
| 5041 } | |
| 5042 if (rand () % per_block < size) | |
| 5043 overhead += sizeof (void *) + per_block - storage_size; | |
| 5044 return overhead; | |
| 5045 } | |
| 5046 | |
| 5047 #endif /* MEMORY_USAGE_STATS */ | |
| 5048 | |
| 5049 | |
| 5050 /* Initialization */ | |
| 771 | 5051 static void |
| 1204 | 5052 common_init_alloc_early (void) |
| 428 | 5053 { |
| 771 | 5054 #ifndef Qzero |
| 5055 Qzero = make_int (0); /* Only used if Lisp_Object is a union type */ | |
| 5056 #endif | |
| 5057 | |
| 5058 #ifndef Qnull_pointer | |
| 5059 /* C guarantees that Qnull_pointer will be initialized to all 0 bits, | |
| 5060 so the following is actually a no-op. */ | |
| 793 | 5061 Qnull_pointer = wrap_pointer_1 (0); |
| 771 | 5062 #endif |
| 5063 | |
| 428 | 5064 gc_generation_number[0] = 0; |
| 5065 breathing_space = 0; | |
| 771 | 5066 Vgc_message = Qzero; |
| 428 | 5067 all_lcrecords = 0; |
| 5068 ignore_malloc_warnings = 1; | |
| 5069 #ifdef DOUG_LEA_MALLOC | |
| 5070 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */ | |
| 5071 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */ | |
| 5072 #if 0 /* Moved to emacs.c */ | |
| 5073 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */ | |
| 5074 #endif | |
| 5075 #endif | |
| 5076 init_string_alloc (); | |
| 5077 init_string_chars_alloc (); | |
| 5078 init_cons_alloc (); | |
| 5079 init_symbol_alloc (); | |
| 5080 init_compiled_function_alloc (); | |
| 5081 init_float_alloc (); | |
| 5082 init_marker_alloc (); | |
| 5083 init_extent_alloc (); | |
| 5084 init_event_alloc (); | |
| 1204 | 5085 #ifdef EVENT_DATA_AS_OBJECTS |
| 934 | 5086 init_key_data_alloc (); |
| 5087 init_button_data_alloc (); | |
| 5088 init_motion_data_alloc (); | |
| 5089 init_process_data_alloc (); | |
| 5090 init_timeout_data_alloc (); | |
| 5091 init_magic_data_alloc (); | |
| 5092 init_magic_eval_data_alloc (); | |
| 5093 init_eval_data_alloc (); | |
| 5094 init_misc_user_data_alloc (); | |
| 1204 | 5095 #endif /* EVENT_DATA_AS_OBJECTS */ |
| 428 | 5096 |
| 5097 ignore_malloc_warnings = 0; | |
| 5098 | |
| 452 | 5099 if (staticpros_nodump) |
| 5100 Dynarr_free (staticpros_nodump); | |
| 5101 staticpros_nodump = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); | |
| 5102 Dynarr_resize (staticpros_nodump, 100); /* merely a small optimization */ | |
| 771 | 5103 #ifdef DEBUG_XEMACS |
| 5104 if (staticpro_nodump_names) | |
| 5105 Dynarr_free (staticpro_nodump_names); | |
| 5106 staticpro_nodump_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
| 5107 Dynarr_resize (staticpro_nodump_names, 100); /* ditto */ | |
| 5108 #endif | |
| 428 | 5109 |
| 5110 consing_since_gc = 0; | |
| 814 | 5111 need_to_garbage_collect = always_gc; |
| 851 | 5112 need_to_check_c_alloca = 0; |
| 5113 funcall_allocation_flag = 0; | |
| 5114 funcall_alloca_count = 0; | |
| 814 | 5115 |
| 428 | 5116 #if 1 |
| 5117 gc_cons_threshold = 500000; /* XEmacs change */ | |
| 5118 #else | |
| 5119 gc_cons_threshold = 15000; /* debugging */ | |
| 5120 #endif | |
| 801 | 5121 gc_cons_percentage = 0; /* #### 20; Don't have an accurate measure of |
| 5122 memory usage on Windows; not verified on other | |
| 5123 systems */ | |
| 428 | 5124 lrecord_uid_counter = 259; |
| 5125 debug_string_purity = 0; | |
| 5126 | |
| 5127 gc_currently_forbidden = 0; | |
| 5128 gc_hooks_inhibited = 0; | |
| 5129 | |
| 800 | 5130 #ifdef ERROR_CHECK_TYPES |
| 428 | 5131 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = |
| 5132 666; | |
| 5133 ERROR_ME_NOT. | |
| 5134 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42; | |
| 5135 ERROR_ME_WARN. | |
| 5136 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = | |
| 5137 3333632; | |
| 793 | 5138 ERROR_ME_DEBUG_WARN. |
| 5139 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = | |
| 5140 8675309; | |
| 800 | 5141 #endif /* ERROR_CHECK_TYPES */ |
| 428 | 5142 } |
| 5143 | |
| 771 | 5144 static void |
| 5145 init_lcrecord_lists (void) | |
| 5146 { | |
| 5147 int i; | |
| 5148 | |
| 5149 for (i = 0; i < countof (lrecord_implementations_table); i++) | |
| 5150 { | |
| 5151 all_lcrecord_lists[i] = Qzero; /* Qnil not yet set */ | |
| 5152 staticpro_nodump (&all_lcrecord_lists[i]); | |
| 5153 } | |
| 5154 } | |
| 5155 | |
| 5156 void | |
| 1204 | 5157 init_alloc_early (void) |
| 771 | 5158 { |
| 1204 | 5159 #if defined (__cplusplus) && defined (ERROR_CHECK_GC) |
| 5160 static struct gcpro initial_gcpro; | |
| 5161 | |
| 5162 initial_gcpro.next = 0; | |
| 5163 initial_gcpro.var = &Qnil; | |
| 5164 initial_gcpro.nvars = 1; | |
| 5165 gcprolist = &initial_gcpro; | |
| 5166 #else | |
| 5167 gcprolist = 0; | |
| 5168 #endif /* defined (__cplusplus) && defined (ERROR_CHECK_GC) */ | |
| 5169 } | |
| 5170 | |
| 5171 void | |
| 5172 reinit_alloc_early (void) | |
| 5173 { | |
| 5174 common_init_alloc_early (); | |
| 771 | 5175 init_lcrecord_lists (); |
| 5176 } | |
| 5177 | |
| 428 | 5178 void |
| 5179 init_alloc_once_early (void) | |
| 5180 { | |
| 1204 | 5181 common_init_alloc_early (); |
| 428 | 5182 |
| 442 | 5183 { |
| 5184 int i; | |
| 5185 for (i = 0; i < countof (lrecord_implementations_table); i++) | |
| 5186 lrecord_implementations_table[i] = 0; | |
| 5187 } | |
| 5188 | |
| 5189 INIT_LRECORD_IMPLEMENTATION (cons); | |
| 5190 INIT_LRECORD_IMPLEMENTATION (vector); | |
| 5191 INIT_LRECORD_IMPLEMENTATION (string); | |
| 5192 INIT_LRECORD_IMPLEMENTATION (lcrecord_list); | |
| 1204 | 5193 INIT_LRECORD_IMPLEMENTATION (free); |
| 428 | 5194 |
| 452 | 5195 staticpros = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); |
| 5196 Dynarr_resize (staticpros, 1410); /* merely a small optimization */ | |
| 5197 dump_add_root_struct_ptr (&staticpros, &staticpros_description); | |
| 771 | 5198 #ifdef DEBUG_XEMACS |
| 5199 staticpro_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
| 5200 Dynarr_resize (staticpro_names, 1410); /* merely a small optimization */ | |
| 5201 dump_add_root_struct_ptr (&staticpro_names, &staticpro_names_description); | |
| 5202 #endif | |
| 5203 | |
| 5204 init_lcrecord_lists (); | |
| 428 | 5205 } |
| 5206 | |
| 5207 void | |
| 5208 syms_of_alloc (void) | |
| 5209 { | |
| 442 | 5210 DEFSYMBOL (Qpre_gc_hook); |
| 5211 DEFSYMBOL (Qpost_gc_hook); | |
| 5212 DEFSYMBOL (Qgarbage_collecting); | |
| 428 | 5213 |
| 5214 DEFSUBR (Fcons); | |
| 5215 DEFSUBR (Flist); | |
| 5216 DEFSUBR (Fvector); | |
| 5217 DEFSUBR (Fbit_vector); | |
| 5218 DEFSUBR (Fmake_byte_code); | |
| 5219 DEFSUBR (Fmake_list); | |
| 5220 DEFSUBR (Fmake_vector); | |
| 5221 DEFSUBR (Fmake_bit_vector); | |
| 5222 DEFSUBR (Fmake_string); | |
| 5223 DEFSUBR (Fstring); | |
| 5224 DEFSUBR (Fmake_symbol); | |
| 5225 DEFSUBR (Fmake_marker); | |
| 5226 DEFSUBR (Fpurecopy); | |
| 5227 DEFSUBR (Fgarbage_collect); | |
| 440 | 5228 #if 0 |
| 428 | 5229 DEFSUBR (Fmemory_limit); |
| 440 | 5230 #endif |
| 801 | 5231 DEFSUBR (Fmemory_usage); |
| 428 | 5232 DEFSUBR (Fconsing_since_gc); |
| 5233 } | |
| 5234 | |
| 5235 void | |
| 5236 vars_of_alloc (void) | |
| 5237 { | |
| 1292 | 5238 QSin_garbage_collection = build_msg_string ("(in garbage collection)"); |
| 5239 staticpro (&QSin_garbage_collection); | |
| 5240 | |
| 428 | 5241 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /* |
| 5242 *Number of bytes of consing between garbage collections. | |
| 5243 \"Consing\" is a misnomer in that this actually counts allocation | |
| 5244 of all different kinds of objects, not just conses. | |
| 5245 Garbage collection can happen automatically once this many bytes have been | |
| 5246 allocated since the last garbage collection. All data types count. | |
| 5247 | |
| 5248 Garbage collection happens automatically when `eval' or `funcall' are | |
| 5249 called. (Note that `funcall' is called implicitly as part of evaluation.) | |
| 5250 By binding this temporarily to a large number, you can effectively | |
| 5251 prevent garbage collection during a part of the program. | |
| 5252 | |
| 853 | 5253 Normally, you cannot set this value less than 10,000 (if you do, it is |
| 5254 automatically reset during the next garbage collection). However, if | |
| 5255 XEmacs was compiled with DEBUG_XEMACS, this does not happen, allowing | |
| 5256 you to set this value very low to track down problems with insufficient | |
| 5257 GCPRO'ing. If you set this to a negative number, garbage collection will | |
| 5258 happen at *EVERY* call to `eval' or `funcall'. This is an extremely | |
| 5259 effective way to check GCPRO problems, but be warned that your XEmacs | |
| 5260 will be unusable! You almost certainly won't have the patience to wait | |
| 5261 long enough to be able to set it back. | |
| 5262 | |
| 428 | 5263 See also `consing-since-gc'. |
| 5264 */ ); | |
| 5265 | |
| 801 | 5266 DEFVAR_INT ("gc-cons-percentage", &gc_cons_percentage /* |
| 5267 *Percentage of memory allocated between garbage collections. | |
| 5268 | |
| 5269 Garbage collection will happen if this percentage of the total amount of | |
| 5270 memory used for data has been allocated since the last garbage collection. | |
| 5271 However, it will not happen if less than `gc-cons-threshold' bytes have | |
| 5272 been allocated -- this sets an absolute minimum in case very little data | |
| 5273 has been allocated or the percentage is set very low. Set this to 0 to | |
| 5274 have garbage collection always happen after `gc-cons-threshold' bytes have | |
| 5275 been allocated, regardless of current memory usage. | |
| 5276 | |
| 5277 Garbage collection happens automatically when `eval' or `funcall' are | |
| 5278 called. (Note that `funcall' is called implicitly as part of evaluation.) | |
| 5279 By binding this temporarily to a large number, you can effectively | |
| 5280 prevent garbage collection during a part of the program. | |
| 5281 | |
| 5282 See also `consing-since-gc'. | |
| 5283 */ ); | |
| 5284 | |
| 428 | 5285 #ifdef DEBUG_XEMACS |
| 5286 DEFVAR_INT ("debug-allocation", &debug_allocation /* | |
| 5287 If non-zero, print out information to stderr about all objects allocated. | |
| 5288 See also `debug-allocation-backtrace-length'. | |
| 5289 */ ); | |
| 5290 debug_allocation = 0; | |
| 5291 | |
| 5292 DEFVAR_INT ("debug-allocation-backtrace-length", | |
| 5293 &debug_allocation_backtrace_length /* | |
| 5294 Length (in stack frames) of short backtrace printed out by `debug-allocation'. | |
| 5295 */ ); | |
| 5296 debug_allocation_backtrace_length = 2; | |
| 5297 #endif | |
| 5298 | |
| 5299 DEFVAR_BOOL ("purify-flag", &purify_flag /* | |
| 5300 Non-nil means loading Lisp code in order to dump an executable. | |
| 5301 This means that certain objects should be allocated in readonly space. | |
| 5302 */ ); | |
| 5303 | |
| 1154 | 5304 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages /* |
| 5305 Non-nil means display messages at start and end of garbage collection. | |
| 5306 */ ); | |
| 5307 garbage_collection_messages = 0; | |
| 5308 | |
| 428 | 5309 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /* |
| 5310 Function or functions to be run just before each garbage collection. | |
| 5311 Interrupts, garbage collection, and errors are inhibited while this hook | |
| 5312 runs, so be extremely careful in what you add here. In particular, avoid | |
| 5313 consing, and do not interact with the user. | |
| 5314 */ ); | |
| 5315 Vpre_gc_hook = Qnil; | |
| 5316 | |
| 5317 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /* | |
| 5318 Function or functions to be run just after each garbage collection. | |
| 5319 Interrupts, garbage collection, and errors are inhibited while this hook | |
| 887 | 5320 runs. Each hook is called with one argument which is an alist with |
| 5321 finalization data. | |
| 428 | 5322 */ ); |
| 5323 Vpost_gc_hook = Qnil; | |
| 5324 | |
| 5325 DEFVAR_LISP ("gc-message", &Vgc_message /* | |
| 5326 String to print to indicate that a garbage collection is in progress. | |
| 5327 This is printed in the echo area. If the selected frame is on a | |
| 5328 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer | |
| 5329 image instance) in the domain of the selected frame, the mouse pointer | |
| 5330 will change instead of this message being printed. | |
| 5331 */ ); | |
| 5332 Vgc_message = build_string (gc_default_message); | |
| 5333 | |
| 5334 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /* | |
| 5335 Pointer glyph used to indicate that a garbage collection is in progress. | |
| 5336 If the selected window is on a window system and this glyph specifies a | |
| 5337 value (i.e. a pointer image instance) in the domain of the selected | |
| 5338 window, the pointer will be changed as specified during garbage collection. | |
| 5339 Otherwise, a message will be printed in the echo area, as controlled | |
| 5340 by `gc-message'. | |
| 5341 */ ); | |
| 5342 } | |
| 5343 | |
| 5344 void | |
| 5345 complex_vars_of_alloc (void) | |
| 5346 { | |
| 5347 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer); | |
| 5348 } |
