Mercurial > hg > xemacs-beta
annotate src/elhash.c @ 4938:299dce99bdad
(for main branch) when freeing check against DEADBEEF_CONSTANT since that's what we use elsewhere
| author | Ben Wing <ben@xemacs.org> |
|---|---|
| date | Tue, 19 Jan 2010 11:25:37 -0600 |
| parents | e6dec75ded0e |
| children | 6772ce4d982b 19a72041c5ed |
| rev | line source |
|---|---|
| 428 | 1 /* Implementation of the hash table lisp object type. |
| 2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc. | |
| 2421 | 3 Copyright (C) 1995, 1996, 2002, 2004 Ben Wing. |
| 428 | 4 Copyright (C) 1997 Free Software Foundation, Inc. |
| 5 | |
| 6 This file is part of XEmacs. | |
| 7 | |
| 8 XEmacs is free software; you can redistribute it and/or modify it | |
| 9 under the terms of the GNU General Public License as published by the | |
| 10 Free Software Foundation; either version 2, or (at your option) any | |
| 11 later version. | |
| 12 | |
| 13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
| 14 ANY WARRANTY; without even the implied warranty of MERCNTABILITY or | |
| 15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
| 16 for more details. | |
| 17 | |
| 18 You should have received a copy of the GNU General Public License | |
| 19 along with XEmacs; see the file COPYING. If not, write to | |
| 20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
| 21 Boston, MA 02111-1307, USA. */ | |
| 22 | |
| 23 /* Synched up with: Not in FSF. */ | |
| 24 | |
| 1292 | 25 /* Author: Lost in the mists of history. At least back to Lucid 19.3, |
| 26 circa Sep 1992. Early hash table implementation allowed only `eq' as a | |
| 27 test -- other tests possible only when these objects were created from | |
| 28 the C code. | |
| 29 | |
| 30 Expansion to allow general `equal'-test Lisp-creatable tables, and hash | |
| 31 methods for the various Lisp objects in existence at the time, added | |
| 32 during 19.12 I think (early 1995?), by Ben Wing. | |
| 33 | |
| 34 Weak hash tables added by Jamie (maybe?) early on, perhaps around 19.6, | |
| 35 maybe earlier; again, only possible through the C code, and only | |
| 36 supported fully weak hash tables. Expansion to other kinds of weakness, | |
| 37 and exporting of the interface to Lisp, by Ben Wing during 19.12 | |
| 38 (early-mid 1995) or maybe 19.13 cycle (mid 1995). | |
| 39 | |
| 40 Expansion to full Common Lisp spec and interface, redoing of the | |
| 41 implementation, by Martin Buchholz, 1997? (Former hash table | |
| 42 implementation used "double hashing", I'm pretty sure, and was weirdly | |
| 43 tied into the generic hash.c code. Martin completely separated them.) | |
| 44 */ | |
| 45 | |
| 489 | 46 /* This file implements the hash table lisp object type. |
| 47 | |
| 504 | 48 This implementation was mostly written by Martin Buchholz in 1997. |
| 49 | |
| 50 The Lisp-level API (derived from Common Lisp) is almost completely | |
| 51 compatible with GNU Emacs 21, even though the implementations are | |
| 52 totally independent. | |
| 53 | |
| 489 | 54 The hash table technique used is "linear probing". Collisions are |
| 55 resolved by putting the item in the next empty place in the array | |
| 56 following the collision. Finding a hash entry performs a linear | |
| 57 search in the cluster starting at the hash value. | |
| 58 | |
| 59 On deletions from the hash table, the entries immediately following | |
| 60 the deleted entry are re-entered in the hash table. We do not have | |
| 61 a special way to mark deleted entries (known as "tombstones"). | |
| 62 | |
| 63 At the end of the hash entries ("hentries"), we leave room for an | |
| 64 entry that is always empty (the "sentinel"). | |
| 65 | |
| 66 The traditional literature on hash table implementation | |
| 67 (e.g. Knuth) suggests that too much "primary clustering" occurs | |
| 68 with linear probing. However, this literature was written when | |
| 69 locality of reference was not a factor. The discrepancy between | |
| 70 CPU speeds and memory speeds is increasing, and the speed of access | |
| 71 to memory is highly dependent on memory caches which work best when | |
| 72 there is high locality of data reference. Random access to memory | |
| 73 is up to 20 times as expensive as access to the nearest address | |
| 74 (and getting worse). So linear probing makes sense. | |
| 75 | |
| 76 But the representation doesn't actually matter that much with the | |
| 77 current elisp engine. Funcall is sufficiently slow that the choice | |
| 78 of hash table implementation is noise. */ | |
| 79 | |
| 428 | 80 #include <config.h> |
| 81 #include "lisp.h" | |
| 82 #include "bytecode.h" | |
| 83 #include "elhash.h" | |
| 489 | 84 #include "opaque.h" |
| 428 | 85 |
| 86 Lisp_Object Qhash_tablep; | |
| 87 static Lisp_Object Qhashtable, Qhash_table; | |
| 442 | 88 static Lisp_Object Qweakness, Qvalue, Qkey_or_value, Qkey_and_value; |
| 428 | 89 static Lisp_Object Vall_weak_hash_tables; |
| 90 static Lisp_Object Qrehash_size, Qrehash_threshold; | |
| 91 static Lisp_Object Q_size, Q_test, Q_weakness, Q_rehash_size, Q_rehash_threshold; | |
| 92 | |
| 93 /* obsolete as of 19990901 in xemacs-21.2 */ | |
| 442 | 94 static Lisp_Object Qweak, Qkey_weak, Qvalue_weak, Qkey_or_value_weak; |
|
4820
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
95 static Lisp_Object Qnon_weak, Q_type, Q_data; |
| 428 | 96 |
| 97 struct Lisp_Hash_Table | |
| 98 { | |
| 3017 | 99 struct LCRECORD_HEADER header; |
| 665 | 100 Elemcount size; |
| 101 Elemcount count; | |
| 102 Elemcount rehash_count; | |
| 428 | 103 double rehash_size; |
| 104 double rehash_threshold; | |
| 665 | 105 Elemcount golden_ratio; |
| 428 | 106 hash_table_hash_function_t hash_function; |
| 107 hash_table_test_function_t test_function; | |
| 1204 | 108 htentry *hentries; |
| 428 | 109 enum hash_table_weakness weakness; |
| 110 Lisp_Object next_weak; /* Used to chain together all of the weak | |
| 111 hash tables. Don't mark through this. */ | |
| 112 }; | |
| 113 | |
| 1204 | 114 #define CLEAR_HTENTRY(htentry) \ |
| 115 ((*(EMACS_UINT*)(&((htentry)->key))) = 0, \ | |
| 116 (*(EMACS_UINT*)(&((htentry)->value))) = 0) | |
| 428 | 117 |
| 118 #define HASH_TABLE_DEFAULT_SIZE 16 | |
| 119 #define HASH_TABLE_DEFAULT_REHASH_SIZE 1.3 | |
| 120 #define HASH_TABLE_MIN_SIZE 10 | |
|
4778
0081fd36b783
Cast enumerations to int before comparing them for the sake of VC++.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4777
diff
changeset
|
121 #define HASH_TABLE_DEFAULT_REHASH_THRESHOLD(size, test_function) \ |
|
4779
fd98353950a4
Make my last change to elhash.c more kosher, comparing pointers not ints
Aidan Kehoe <kehoea@parhasard.net>
parents:
4778
diff
changeset
|
122 (((size) > 4096 && NULL == (test_function)) ? 0.7 : 0.6) |
| 428 | 123 |
| 665 | 124 #define HASHCODE(key, ht) \ |
| 444 | 125 ((((ht)->hash_function ? (ht)->hash_function (key) : LISP_HASH (key)) \ |
| 126 * (ht)->golden_ratio) \ | |
| 127 % (ht)->size) | |
| 428 | 128 |
| 129 #define KEYS_EQUAL_P(key1, key2, testfun) \ | |
| 434 | 130 (EQ (key1, key2) || ((testfun) && (testfun) (key1, key2))) |
| 428 | 131 |
| 132 #define LINEAR_PROBING_LOOP(probe, entries, size) \ | |
| 133 for (; \ | |
| 1204 | 134 !HTENTRY_CLEAR_P (probe) || \ |
| 428 | 135 (probe == entries + size ? \ |
| 1204 | 136 (probe = entries, !HTENTRY_CLEAR_P (probe)) : 0); \ |
| 428 | 137 probe++) |
| 138 | |
| 800 | 139 #ifdef ERROR_CHECK_STRUCTURES |
| 428 | 140 static void |
| 141 check_hash_table_invariants (Lisp_Hash_Table *ht) | |
| 142 { | |
| 143 assert (ht->count < ht->size); | |
| 144 assert (ht->count <= ht->rehash_count); | |
| 145 assert (ht->rehash_count < ht->size); | |
| 146 assert ((double) ht->count * ht->rehash_threshold - 1 <= (double) ht->rehash_count); | |
| 1204 | 147 assert (HTENTRY_CLEAR_P (ht->hentries + ht->size)); |
| 428 | 148 } |
| 149 #else | |
| 150 #define check_hash_table_invariants(ht) | |
| 151 #endif | |
| 152 | |
| 153 /* Return a suitable size for a hash table, with at least SIZE slots. */ | |
| 665 | 154 static Elemcount |
| 155 hash_table_size (Elemcount requested_size) | |
| 428 | 156 { |
| 157 /* Return some prime near, but greater than or equal to, SIZE. | |
| 158 Decades from the time of writing, someone will have a system large | |
| 159 enough that the list below will be too short... */ | |
| 665 | 160 static const Elemcount primes [] = |
| 428 | 161 { |
| 162 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031, | |
| 163 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783, | |
| 164 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941, | |
| 165 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519, | |
| 166 1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301, | |
| 167 10445899, 13579681, 17653589, 22949669, 29834603, 38784989, | |
| 168 50420551, 65546729, 85210757, 110774011, 144006217, 187208107, | |
| 169 243370577, 316381771, 411296309, 534685237, 695090819, 903618083, | |
| 647 | 170 1174703521, 1527114613, 1985248999 /* , 2580823717UL, 3355070839UL */ |
| 428 | 171 }; |
| 172 /* We've heard of binary search. */ | |
| 173 int low, high; | |
| 174 for (low = 0, high = countof (primes) - 1; high - low > 1;) | |
| 175 { | |
| 176 /* Loop Invariant: size < primes [high] */ | |
| 177 int mid = (low + high) / 2; | |
| 178 if (primes [mid] < requested_size) | |
| 179 low = mid; | |
| 180 else | |
| 181 high = mid; | |
| 182 } | |
| 183 return primes [high]; | |
| 184 } | |
| 185 | |
| 186 | |
| 187 #if 0 /* I don't think these are needed any more. | |
| 188 If using the general lisp_object_equal_*() functions | |
| 189 causes efficiency problems, these can be resurrected. --ben */ | |
| 190 /* equality and hash functions for Lisp strings */ | |
| 191 int | |
| 192 lisp_string_equal (Lisp_Object str1, Lisp_Object str2) | |
| 193 { | |
| 194 /* This is wrong anyway. You can't use strcmp() on Lisp strings, | |
| 195 because they can contain zero characters. */ | |
| 196 return !strcmp ((char *) XSTRING_DATA (str1), (char *) XSTRING_DATA (str2)); | |
| 197 } | |
| 198 | |
| 665 | 199 static Hashcode |
| 428 | 200 lisp_string_hash (Lisp_Object obj) |
| 201 { | |
| 202 return hash_string (XSTRING_DATA (str), XSTRING_LENGTH (str)); | |
| 203 } | |
| 204 | |
| 205 #endif /* 0 */ | |
| 206 | |
| 207 static int | |
| 208 lisp_object_eql_equal (Lisp_Object obj1, Lisp_Object obj2) | |
| 209 { | |
| 210 return EQ (obj1, obj2) || (FLOATP (obj1) && internal_equal (obj1, obj2, 0)); | |
| 211 } | |
| 212 | |
| 665 | 213 static Hashcode |
| 428 | 214 lisp_object_eql_hash (Lisp_Object obj) |
| 215 { | |
| 216 return FLOATP (obj) ? internal_hash (obj, 0) : LISP_HASH (obj); | |
| 217 } | |
| 218 | |
| 219 static int | |
| 220 lisp_object_equal_equal (Lisp_Object obj1, Lisp_Object obj2) | |
| 221 { | |
| 222 return internal_equal (obj1, obj2, 0); | |
| 223 } | |
| 224 | |
| 665 | 225 static Hashcode |
| 428 | 226 lisp_object_equal_hash (Lisp_Object obj) |
| 227 { | |
| 228 return internal_hash (obj, 0); | |
| 229 } | |
| 230 | |
| 231 | |
| 232 static Lisp_Object | |
| 233 mark_hash_table (Lisp_Object obj) | |
| 234 { | |
| 235 Lisp_Hash_Table *ht = XHASH_TABLE (obj); | |
| 236 | |
| 237 /* If the hash table is weak, we don't want to mark the keys and | |
| 238 values (we scan over them after everything else has been marked, | |
| 239 and mark or remove them as necessary). */ | |
| 240 if (ht->weakness == HASH_TABLE_NON_WEAK) | |
| 241 { | |
| 1204 | 242 htentry *e, *sentinel; |
| 428 | 243 |
| 244 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++) | |
| 1204 | 245 if (!HTENTRY_CLEAR_P (e)) |
| 428 | 246 { |
| 247 mark_object (e->key); | |
| 248 mark_object (e->value); | |
| 249 } | |
| 250 } | |
| 251 return Qnil; | |
| 252 } | |
| 253 | |
| 254 /* Equality of hash tables. Two hash tables are equal when they are of | |
| 255 the same weakness and test function, they have the same number of | |
| 256 elements, and for each key in the hash table, the values are `equal'. | |
| 257 | |
| 258 This is similar to Common Lisp `equalp' of hash tables, with the | |
| 259 difference that CL requires the keys to be compared with the test | |
| 260 function, which we don't do. Doing that would require consing, and | |
| 261 consing is a bad idea in `equal'. Anyway, our method should provide | |
| 262 the same result -- if the keys are not equal according to the test | |
| 263 function, then Fgethash() in hash_table_equal_mapper() will fail. */ | |
| 264 static int | |
| 265 hash_table_equal (Lisp_Object hash_table1, Lisp_Object hash_table2, int depth) | |
| 266 { | |
| 267 Lisp_Hash_Table *ht1 = XHASH_TABLE (hash_table1); | |
| 268 Lisp_Hash_Table *ht2 = XHASH_TABLE (hash_table2); | |
| 1204 | 269 htentry *e, *sentinel; |
| 428 | 270 |
| 271 if ((ht1->test_function != ht2->test_function) || | |
| 272 (ht1->weakness != ht2->weakness) || | |
| 273 (ht1->count != ht2->count)) | |
| 274 return 0; | |
| 275 | |
| 276 depth++; | |
| 277 | |
| 278 for (e = ht1->hentries, sentinel = e + ht1->size; e < sentinel; e++) | |
| 1204 | 279 if (!HTENTRY_CLEAR_P (e)) |
| 428 | 280 /* Look up the key in the other hash table, and compare the values. */ |
| 281 { | |
| 282 Lisp_Object value_in_other = Fgethash (e->key, hash_table2, Qunbound); | |
| 283 if (UNBOUNDP (value_in_other) || | |
| 284 !internal_equal (e->value, value_in_other, depth)) | |
| 285 return 0; /* Give up */ | |
| 286 } | |
| 287 | |
| 288 return 1; | |
| 289 } | |
| 442 | 290 |
| 291 /* This is not a great hash function, but it _is_ correct and fast. | |
| 292 Examining all entries is too expensive, and examining a random | |
| 293 subset does not yield a correct hash function. */ | |
| 665 | 294 static Hashcode |
| 2286 | 295 hash_table_hash (Lisp_Object hash_table, int UNUSED (depth)) |
| 442 | 296 { |
| 297 return XHASH_TABLE (hash_table)->count; | |
| 298 } | |
| 299 | |
| 428 | 300 |
| 301 /* Printing hash tables. | |
| 302 | |
| 303 This is non-trivial, because we use a readable structure-style | |
| 304 syntax for hash tables. This means that a typical hash table will be | |
| 305 readably printed in the form of: | |
| 306 | |
|
4820
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
307 #s(hash-table :size 2 :data (key1 value1 key2 value2)) |
| 428 | 308 |
| 309 The supported hash table structure keywords and their values are: | |
|
4820
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
310 `:test' (eql (or nil), eq or equal) |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
311 `:size' (a natnum or nil) |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
312 `:rehash-size' (a float) |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
313 `:rehash-threshold' (a float) |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
314 `:weakness' (nil, key, value, key-and-value, or key-or-value) |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
315 `:data' (a list) |
| 428 | 316 |
| 430 | 317 If `print-readably' is nil, then a simpler syntax is used, for example |
| 428 | 318 |
| 319 #<hash-table size 2/13 data (key1 value1 key2 value2) 0x874d> | |
| 320 | |
| 321 The data is truncated to four pairs, and the rest is shown with | |
| 322 `...'. This printer does not cons. */ | |
| 323 | |
| 324 | |
| 325 /* Print the data of the hash table. This maps through a Lisp | |
| 326 hash table and prints key/value pairs using PRINTCHARFUN. */ | |
| 327 static void | |
| 328 print_hash_table_data (Lisp_Hash_Table *ht, Lisp_Object printcharfun) | |
| 329 { | |
| 330 int count = 0; | |
| 1204 | 331 htentry *e, *sentinel; |
| 428 | 332 |
|
4820
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
333 write_c_string (printcharfun, " :data ("); |
| 428 | 334 |
| 335 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++) | |
| 1204 | 336 if (!HTENTRY_CLEAR_P (e)) |
| 428 | 337 { |
| 338 if (count > 0) | |
| 826 | 339 write_c_string (printcharfun, " "); |
| 428 | 340 if (!print_readably && count > 3) |
| 341 { | |
| 826 | 342 write_c_string (printcharfun, "..."); |
| 428 | 343 break; |
| 344 } | |
| 345 print_internal (e->key, printcharfun, 1); | |
| 800 | 346 write_fmt_string_lisp (printcharfun, " %S", 1, e->value); |
| 428 | 347 count++; |
| 348 } | |
| 349 | |
| 826 | 350 write_c_string (printcharfun, ")"); |
| 428 | 351 } |
| 352 | |
| 353 static void | |
| 2286 | 354 print_hash_table (Lisp_Object obj, Lisp_Object printcharfun, |
| 355 int UNUSED (escapeflag)) | |
| 428 | 356 { |
| 357 Lisp_Hash_Table *ht = XHASH_TABLE (obj); | |
|
4777
c69aeb86b2a3
Serialise non-default hash table rehash thresholds correctly; use this.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4693
diff
changeset
|
358 Ascbyte pigbuf[350]; |
| 428 | 359 |
| 826 | 360 write_c_string (printcharfun, |
| 361 print_readably ? "#s(hash-table" : "#<hash-table"); | |
| 428 | 362 |
| 363 /* These checks have a kludgy look to them, but they are safe. | |
| 364 Due to nature of hashing, you cannot use arbitrary | |
| 365 test functions anyway. */ | |
| 366 if (!ht->test_function) | |
|
4820
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
367 write_c_string (printcharfun, " :test eq"); |
| 428 | 368 else if (ht->test_function == lisp_object_equal_equal) |
|
4820
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
369 write_c_string (printcharfun, " :test equal"); |
| 428 | 370 else if (ht->test_function == lisp_object_eql_equal) |
| 371 DO_NOTHING; | |
| 372 else | |
| 2500 | 373 ABORT (); |
| 428 | 374 |
| 375 if (ht->count || !print_readably) | |
| 376 { | |
| 377 if (print_readably) | |
|
4820
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
378 write_fmt_string (printcharfun, " :size %ld", (long) ht->count); |
| 428 | 379 else |
|
4820
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
380 write_fmt_string (printcharfun, " :size %ld/%ld", (long) ht->count, |
| 800 | 381 (long) ht->size); |
| 428 | 382 } |
| 383 | |
| 384 if (ht->weakness != HASH_TABLE_NON_WEAK) | |
| 385 { | |
| 800 | 386 write_fmt_string |
|
4820
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
387 (printcharfun, " :weakness %s", |
| 800 | 388 (ht->weakness == HASH_TABLE_WEAK ? "key-and-value" : |
| 389 ht->weakness == HASH_TABLE_KEY_WEAK ? "key" : | |
| 390 ht->weakness == HASH_TABLE_VALUE_WEAK ? "value" : | |
| 391 ht->weakness == HASH_TABLE_KEY_VALUE_WEAK ? "key-or-value" : | |
| 392 "you-d-better-not-see-this")); | |
| 428 | 393 } |
| 394 | |
|
4777
c69aeb86b2a3
Serialise non-default hash table rehash thresholds correctly; use this.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4693
diff
changeset
|
395 if (ht->rehash_size != HASH_TABLE_DEFAULT_REHASH_SIZE) |
|
c69aeb86b2a3
Serialise non-default hash table rehash thresholds correctly; use this.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4693
diff
changeset
|
396 { |
|
c69aeb86b2a3
Serialise non-default hash table rehash thresholds correctly; use this.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4693
diff
changeset
|
397 float_to_string (pigbuf, ht->rehash_size); |
|
4820
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
398 write_fmt_string (printcharfun, " :rehash-size %s", pigbuf); |
|
4777
c69aeb86b2a3
Serialise non-default hash table rehash thresholds correctly; use this.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4693
diff
changeset
|
399 } |
|
c69aeb86b2a3
Serialise non-default hash table rehash thresholds correctly; use this.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4693
diff
changeset
|
400 |
|
c69aeb86b2a3
Serialise non-default hash table rehash thresholds correctly; use this.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4693
diff
changeset
|
401 if (ht->rehash_threshold |
|
c69aeb86b2a3
Serialise non-default hash table rehash thresholds correctly; use this.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4693
diff
changeset
|
402 != HASH_TABLE_DEFAULT_REHASH_THRESHOLD (ht->size, |
|
c69aeb86b2a3
Serialise non-default hash table rehash thresholds correctly; use this.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4693
diff
changeset
|
403 ht->test_function)) |
|
c69aeb86b2a3
Serialise non-default hash table rehash thresholds correctly; use this.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4693
diff
changeset
|
404 { |
|
c69aeb86b2a3
Serialise non-default hash table rehash thresholds correctly; use this.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4693
diff
changeset
|
405 float_to_string (pigbuf, ht->rehash_threshold); |
|
4820
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
406 write_fmt_string (printcharfun, " :rehash-threshold %s", pigbuf); |
|
4777
c69aeb86b2a3
Serialise non-default hash table rehash thresholds correctly; use this.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4693
diff
changeset
|
407 } |
|
c69aeb86b2a3
Serialise non-default hash table rehash thresholds correctly; use this.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4693
diff
changeset
|
408 |
| 428 | 409 if (ht->count) |
| 410 print_hash_table_data (ht, printcharfun); | |
| 411 | |
| 412 if (print_readably) | |
| 826 | 413 write_c_string (printcharfun, ")"); |
| 428 | 414 else |
| 2421 | 415 write_fmt_string (printcharfun, " 0x%x>", ht->header.uid); |
| 428 | 416 } |
| 417 | |
| 4117 | 418 #ifndef NEW_GC |
| 428 | 419 static void |
| 4117 | 420 free_hentries (htentry *hentries, |
| 2333 | 421 #ifdef ERROR_CHECK_STRUCTURES |
| 422 size_t size | |
| 4117 | 423 #else /* not ERROR_CHECK_STRUCTURES) */ |
| 2333 | 424 size_t UNUSED (size) |
| 4117 | 425 #endif /* not ERROR_CHECK_STRUCTURES) */ |
| 2333 | 426 ) |
| 489 | 427 { |
| 800 | 428 #ifdef ERROR_CHECK_STRUCTURES |
| 489 | 429 /* Ensure a crash if other code uses the discarded entries afterwards. */ |
| 1204 | 430 htentry *e, *sentinel; |
| 489 | 431 |
| 432 for (e = hentries, sentinel = e + size; e < sentinel; e++) | |
| 1204 | 433 * (unsigned long *) e = 0xdeadbeef; /* -559038737 base 10 */ |
| 489 | 434 #endif |
| 435 | |
| 436 if (!DUMPEDP (hentries)) | |
| 1726 | 437 xfree (hentries, htentry *); |
| 489 | 438 } |
| 439 | |
| 440 static void | |
| 428 | 441 finalize_hash_table (void *header, int for_disksave) |
| 442 { | |
| 443 if (!for_disksave) | |
| 444 { | |
| 445 Lisp_Hash_Table *ht = (Lisp_Hash_Table *) header; | |
| 489 | 446 free_hentries (ht->hentries, ht->size); |
| 428 | 447 ht->hentries = 0; |
| 448 } | |
| 449 } | |
| 3263 | 450 #endif /* not NEW_GC */ |
| 428 | 451 |
| 1204 | 452 static const struct memory_description htentry_description_1[] = { |
| 453 { XD_LISP_OBJECT, offsetof (htentry, key) }, | |
| 454 { XD_LISP_OBJECT, offsetof (htentry, value) }, | |
| 428 | 455 { XD_END } |
| 456 }; | |
| 457 | |
| 1204 | 458 static const struct sized_memory_description htentry_description = { |
| 459 sizeof (htentry), | |
| 460 htentry_description_1 | |
| 428 | 461 }; |
| 462 | |
| 3092 | 463 #ifdef NEW_GC |
| 464 static const struct memory_description htentry_weak_description_1[] = { | |
| 465 { XD_LISP_OBJECT, offsetof (htentry, key), 0, { 0 }, XD_FLAG_NO_KKCC}, | |
| 466 { XD_LISP_OBJECT, offsetof (htentry, value), 0, { 0 }, XD_FLAG_NO_KKCC}, | |
| 467 { XD_END } | |
| 468 }; | |
| 469 | |
| 470 static const struct sized_memory_description htentry_weak_description = { | |
| 471 sizeof (htentry), | |
| 472 htentry_weak_description_1 | |
| 473 }; | |
| 474 | |
| 475 DEFINE_LRECORD_IMPLEMENTATION ("hash-table-entry", hash_table_entry, | |
| 476 1, /*dumpable-flag*/ | |
| 477 0, 0, 0, 0, 0, | |
| 478 htentry_description_1, | |
| 479 Lisp_Hash_Table_Entry); | |
| 480 #endif /* NEW_GC */ | |
| 481 | |
| 1204 | 482 static const struct memory_description htentry_union_description_1[] = { |
| 483 /* Note: XD_INDIRECT in this table refers to the surrounding table, | |
| 484 and so this will work. */ | |
| 3092 | 485 #ifdef NEW_GC |
| 486 { XD_LISP_OBJECT_BLOCK_PTR, HASH_TABLE_NON_WEAK, | |
| 487 XD_INDIRECT (0, 1), { &htentry_description } }, | |
| 488 { XD_LISP_OBJECT_BLOCK_PTR, 0, XD_INDIRECT (0, 1), | |
| 489 { &htentry_weak_description }, XD_FLAG_UNION_DEFAULT_ENTRY }, | |
| 490 #else /* not NEW_GC */ | |
| 2367 | 491 { XD_BLOCK_PTR, HASH_TABLE_NON_WEAK, XD_INDIRECT (0, 1), |
| 2551 | 492 { &htentry_description } }, |
| 493 { XD_BLOCK_PTR, 0, XD_INDIRECT (0, 1), { &htentry_description }, | |
| 1204 | 494 XD_FLAG_UNION_DEFAULT_ENTRY | XD_FLAG_NO_KKCC }, |
| 3092 | 495 #endif /* not NEW_GC */ |
| 1204 | 496 { XD_END } |
| 497 }; | |
| 498 | |
| 499 static const struct sized_memory_description htentry_union_description = { | |
| 500 sizeof (htentry *), | |
| 501 htentry_union_description_1 | |
| 502 }; | |
| 503 | |
| 504 const struct memory_description hash_table_description[] = { | |
| 505 { XD_ELEMCOUNT, offsetof (Lisp_Hash_Table, size) }, | |
| 506 { XD_INT, offsetof (Lisp_Hash_Table, weakness) }, | |
| 507 { XD_UNION, offsetof (Lisp_Hash_Table, hentries), XD_INDIRECT (1, 0), | |
| 2551 | 508 { &htentry_union_description } }, |
| 440 | 509 { XD_LO_LINK, offsetof (Lisp_Hash_Table, next_weak) }, |
| 428 | 510 { XD_END } |
| 511 }; | |
| 512 | |
| 3263 | 513 #ifdef NEW_GC |
| 514 DEFINE_LRECORD_IMPLEMENTATION ("hash-table", hash_table, | |
| 515 1, /*dumpable-flag*/ | |
| 516 mark_hash_table, print_hash_table, | |
| 517 0, hash_table_equal, hash_table_hash, | |
| 518 hash_table_description, | |
| 519 Lisp_Hash_Table); | |
| 520 #else /* not NEW_GC */ | |
| 934 | 521 DEFINE_LRECORD_IMPLEMENTATION ("hash-table", hash_table, |
| 522 1, /*dumpable-flag*/ | |
| 523 mark_hash_table, print_hash_table, | |
| 524 finalize_hash_table, | |
| 525 hash_table_equal, hash_table_hash, | |
| 526 hash_table_description, | |
| 527 Lisp_Hash_Table); | |
| 3263 | 528 #endif /* not NEW_GC */ |
| 428 | 529 |
| 530 static Lisp_Hash_Table * | |
| 531 xhash_table (Lisp_Object hash_table) | |
| 532 { | |
| 1123 | 533 /* #### What's going on here? Why the gc_in_progress check? */ |
| 428 | 534 if (!gc_in_progress) |
| 535 CHECK_HASH_TABLE (hash_table); | |
| 536 check_hash_table_invariants (XHASH_TABLE (hash_table)); | |
| 537 return XHASH_TABLE (hash_table); | |
| 538 } | |
| 539 | |
| 540 | |
| 541 /************************************************************************/ | |
| 542 /* Creation of Hash Tables */ | |
| 543 /************************************************************************/ | |
| 544 | |
| 545 /* Creation of hash tables, without error-checking. */ | |
| 546 static void | |
| 547 compute_hash_table_derived_values (Lisp_Hash_Table *ht) | |
| 548 { | |
| 665 | 549 ht->rehash_count = (Elemcount) |
| 438 | 550 ((double) ht->size * ht->rehash_threshold); |
| 665 | 551 ht->golden_ratio = (Elemcount) |
| 428 | 552 ((double) ht->size * (.6180339887 / (double) sizeof (Lisp_Object))); |
| 553 } | |
| 554 | |
| 555 Lisp_Object | |
| 450 | 556 make_standard_lisp_hash_table (enum hash_table_test test, |
| 665 | 557 Elemcount size, |
| 450 | 558 double rehash_size, |
| 559 double rehash_threshold, | |
| 560 enum hash_table_weakness weakness) | |
| 561 { | |
| 462 | 562 hash_table_hash_function_t hash_function = 0; |
| 450 | 563 hash_table_test_function_t test_function = 0; |
| 564 | |
| 565 switch (test) | |
| 566 { | |
| 567 case HASH_TABLE_EQ: | |
| 568 test_function = 0; | |
| 569 hash_function = 0; | |
| 570 break; | |
| 571 | |
| 572 case HASH_TABLE_EQL: | |
| 573 test_function = lisp_object_eql_equal; | |
| 574 hash_function = lisp_object_eql_hash; | |
| 575 break; | |
| 576 | |
| 577 case HASH_TABLE_EQUAL: | |
| 578 test_function = lisp_object_equal_equal; | |
| 579 hash_function = lisp_object_equal_hash; | |
| 580 break; | |
| 581 | |
| 582 default: | |
| 2500 | 583 ABORT (); |
| 450 | 584 } |
| 585 | |
| 586 return make_general_lisp_hash_table (hash_function, test_function, | |
| 587 size, rehash_size, rehash_threshold, | |
| 588 weakness); | |
| 589 } | |
| 590 | |
| 591 Lisp_Object | |
| 592 make_general_lisp_hash_table (hash_table_hash_function_t hash_function, | |
| 593 hash_table_test_function_t test_function, | |
| 665 | 594 Elemcount size, |
| 428 | 595 double rehash_size, |
| 596 double rehash_threshold, | |
| 597 enum hash_table_weakness weakness) | |
| 598 { | |
| 599 Lisp_Object hash_table; | |
| 3017 | 600 Lisp_Hash_Table *ht = ALLOC_LCRECORD_TYPE (Lisp_Hash_Table, &lrecord_hash_table); |
| 428 | 601 |
| 450 | 602 ht->test_function = test_function; |
| 603 ht->hash_function = hash_function; | |
| 438 | 604 ht->weakness = weakness; |
| 605 | |
| 606 ht->rehash_size = | |
| 607 rehash_size > 1.0 ? rehash_size : HASH_TABLE_DEFAULT_REHASH_SIZE; | |
| 608 | |
| 609 ht->rehash_threshold = | |
| 610 rehash_threshold > 0.0 ? rehash_threshold : | |
|
4777
c69aeb86b2a3
Serialise non-default hash table rehash thresholds correctly; use this.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4693
diff
changeset
|
611 HASH_TABLE_DEFAULT_REHASH_THRESHOLD (size, ht->test_function); |
| 438 | 612 |
| 428 | 613 if (size < HASH_TABLE_MIN_SIZE) |
| 614 size = HASH_TABLE_MIN_SIZE; | |
| 665 | 615 ht->size = hash_table_size ((Elemcount) (((double) size / ht->rehash_threshold) |
| 438 | 616 + 1.0)); |
| 428 | 617 ht->count = 0; |
| 438 | 618 |
| 428 | 619 compute_hash_table_derived_values (ht); |
| 620 | |
| 1204 | 621 /* We leave room for one never-occupied sentinel htentry at the end. */ |
| 3092 | 622 #ifdef NEW_GC |
| 623 ht->hentries = (htentry *) alloc_lrecord_array (sizeof (htentry), | |
| 624 ht->size + 1, | |
| 625 &lrecord_hash_table_entry); | |
| 626 #else /* not NEW_GC */ | |
| 1204 | 627 ht->hentries = xnew_array_and_zero (htentry, ht->size + 1); |
| 3092 | 628 #endif /* not NEW_GC */ |
| 428 | 629 |
| 793 | 630 hash_table = wrap_hash_table (ht); |
| 428 | 631 |
| 632 if (weakness == HASH_TABLE_NON_WEAK) | |
| 633 ht->next_weak = Qunbound; | |
| 634 else | |
| 635 ht->next_weak = Vall_weak_hash_tables, Vall_weak_hash_tables = hash_table; | |
| 636 | |
| 637 return hash_table; | |
| 638 } | |
| 639 | |
| 640 Lisp_Object | |
| 665 | 641 make_lisp_hash_table (Elemcount size, |
| 428 | 642 enum hash_table_weakness weakness, |
| 643 enum hash_table_test test) | |
| 644 { | |
| 450 | 645 return make_standard_lisp_hash_table (test, size, -1.0, -1.0, weakness); |
| 428 | 646 } |
| 647 | |
| 648 /* Pretty reading of hash tables. | |
| 649 | |
| 650 Here we use the existing structures mechanism (which is, | |
| 651 unfortunately, pretty cumbersome) for validating and instantiating | |
| 652 the hash tables. The idea is that the side-effect of reading a | |
| 653 #s(hash-table PLIST) object is creation of a hash table with desired | |
| 654 properties, and that the hash table is returned. */ | |
| 655 | |
| 656 /* Validation functions: each keyword provides its own validation | |
| 657 function. The errors should maybe be continuable, but it is | |
| 658 unclear how this would cope with ERRB. */ | |
| 659 static int | |
| 2286 | 660 hash_table_size_validate (Lisp_Object UNUSED (keyword), Lisp_Object value, |
| 661 Error_Behavior errb) | |
| 428 | 662 { |
| 663 if (NATNUMP (value)) | |
| 664 return 1; | |
| 665 | |
| 563 | 666 maybe_signal_error_1 (Qwrong_type_argument, list2 (Qnatnump, value), |
| 2286 | 667 Qhash_table, errb); |
| 428 | 668 return 0; |
| 669 } | |
| 670 | |
| 665 | 671 static Elemcount |
| 428 | 672 decode_hash_table_size (Lisp_Object obj) |
| 673 { | |
| 674 return NILP (obj) ? HASH_TABLE_DEFAULT_SIZE : XINT (obj); | |
| 675 } | |
| 676 | |
| 677 static int | |
| 2286 | 678 hash_table_weakness_validate (Lisp_Object UNUSED (keyword), Lisp_Object value, |
| 578 | 679 Error_Behavior errb) |
| 428 | 680 { |
| 442 | 681 if (EQ (value, Qnil)) return 1; |
| 682 if (EQ (value, Qt)) return 1; | |
| 683 if (EQ (value, Qkey)) return 1; | |
| 684 if (EQ (value, Qkey_and_value)) return 1; | |
| 685 if (EQ (value, Qkey_or_value)) return 1; | |
| 686 if (EQ (value, Qvalue)) return 1; | |
| 428 | 687 |
| 688 /* Following values are obsolete as of 19990901 in xemacs-21.2 */ | |
| 442 | 689 if (EQ (value, Qnon_weak)) return 1; |
| 690 if (EQ (value, Qweak)) return 1; | |
| 691 if (EQ (value, Qkey_weak)) return 1; | |
| 692 if (EQ (value, Qkey_or_value_weak)) return 1; | |
| 693 if (EQ (value, Qvalue_weak)) return 1; | |
| 428 | 694 |
| 563 | 695 maybe_invalid_constant ("Invalid hash table weakness", |
| 428 | 696 value, Qhash_table, errb); |
| 697 return 0; | |
| 698 } | |
| 699 | |
| 700 static enum hash_table_weakness | |
| 701 decode_hash_table_weakness (Lisp_Object obj) | |
| 702 { | |
| 442 | 703 if (EQ (obj, Qnil)) return HASH_TABLE_NON_WEAK; |
| 704 if (EQ (obj, Qt)) return HASH_TABLE_WEAK; | |
| 705 if (EQ (obj, Qkey_and_value)) return HASH_TABLE_WEAK; | |
| 706 if (EQ (obj, Qkey)) return HASH_TABLE_KEY_WEAK; | |
| 707 if (EQ (obj, Qkey_or_value)) return HASH_TABLE_KEY_VALUE_WEAK; | |
| 708 if (EQ (obj, Qvalue)) return HASH_TABLE_VALUE_WEAK; | |
| 428 | 709 |
| 710 /* Following values are obsolete as of 19990901 in xemacs-21.2 */ | |
| 442 | 711 if (EQ (obj, Qnon_weak)) return HASH_TABLE_NON_WEAK; |
| 712 if (EQ (obj, Qweak)) return HASH_TABLE_WEAK; | |
| 713 if (EQ (obj, Qkey_weak)) return HASH_TABLE_KEY_WEAK; | |
| 714 if (EQ (obj, Qkey_or_value_weak)) return HASH_TABLE_KEY_VALUE_WEAK; | |
| 715 if (EQ (obj, Qvalue_weak)) return HASH_TABLE_VALUE_WEAK; | |
| 428 | 716 |
| 563 | 717 invalid_constant ("Invalid hash table weakness", obj); |
| 1204 | 718 RETURN_NOT_REACHED (HASH_TABLE_NON_WEAK); |
| 428 | 719 } |
| 720 | |
| 721 static int | |
| 2286 | 722 hash_table_test_validate (Lisp_Object UNUSED (keyword), Lisp_Object value, |
| 723 Error_Behavior errb) | |
| 428 | 724 { |
| 725 if (EQ (value, Qnil)) return 1; | |
| 726 if (EQ (value, Qeq)) return 1; | |
| 727 if (EQ (value, Qequal)) return 1; | |
| 728 if (EQ (value, Qeql)) return 1; | |
| 729 | |
| 563 | 730 maybe_invalid_constant ("Invalid hash table test", |
| 2286 | 731 value, Qhash_table, errb); |
| 428 | 732 return 0; |
| 733 } | |
| 734 | |
| 735 static enum hash_table_test | |
| 736 decode_hash_table_test (Lisp_Object obj) | |
| 737 { | |
| 738 if (EQ (obj, Qnil)) return HASH_TABLE_EQL; | |
| 739 if (EQ (obj, Qeq)) return HASH_TABLE_EQ; | |
| 740 if (EQ (obj, Qequal)) return HASH_TABLE_EQUAL; | |
| 741 if (EQ (obj, Qeql)) return HASH_TABLE_EQL; | |
| 742 | |
| 563 | 743 invalid_constant ("Invalid hash table test", obj); |
| 1204 | 744 RETURN_NOT_REACHED (HASH_TABLE_EQ); |
| 428 | 745 } |
| 746 | |
| 747 static int | |
| 2286 | 748 hash_table_rehash_size_validate (Lisp_Object UNUSED (keyword), |
| 749 Lisp_Object value, Error_Behavior errb) | |
| 428 | 750 { |
| 751 if (!FLOATP (value)) | |
| 752 { | |
| 563 | 753 maybe_signal_error_1 (Qwrong_type_argument, list2 (Qfloatp, value), |
| 428 | 754 Qhash_table, errb); |
| 755 return 0; | |
| 756 } | |
| 757 | |
| 758 { | |
| 759 double rehash_size = XFLOAT_DATA (value); | |
| 760 if (rehash_size <= 1.0) | |
| 761 { | |
| 563 | 762 maybe_invalid_argument |
| 428 | 763 ("Hash table rehash size must be greater than 1.0", |
| 764 value, Qhash_table, errb); | |
| 765 return 0; | |
| 766 } | |
| 767 } | |
| 768 | |
| 769 return 1; | |
| 770 } | |
| 771 | |
| 772 static double | |
| 773 decode_hash_table_rehash_size (Lisp_Object rehash_size) | |
| 774 { | |
|
4585
871eb054b34a
Document non-obvious usages.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4410
diff
changeset
|
775 /* -1.0 signals make_general_lisp_hash_table to use the default. */ |
| 428 | 776 return NILP (rehash_size) ? -1.0 : XFLOAT_DATA (rehash_size); |
| 777 } | |
| 778 | |
| 779 static int | |
| 2286 | 780 hash_table_rehash_threshold_validate (Lisp_Object UNUSED (keyword), |
| 781 Lisp_Object value, Error_Behavior errb) | |
| 428 | 782 { |
| 783 if (!FLOATP (value)) | |
| 784 { | |
| 563 | 785 maybe_signal_error_1 (Qwrong_type_argument, list2 (Qfloatp, value), |
| 428 | 786 Qhash_table, errb); |
| 787 return 0; | |
| 788 } | |
| 789 | |
| 790 { | |
| 791 double rehash_threshold = XFLOAT_DATA (value); | |
| 792 if (rehash_threshold <= 0.0 || rehash_threshold >= 1.0) | |
| 793 { | |
| 563 | 794 maybe_invalid_argument |
| 428 | 795 ("Hash table rehash threshold must be between 0.0 and 1.0", |
| 796 value, Qhash_table, errb); | |
| 797 return 0; | |
| 798 } | |
| 799 } | |
| 800 | |
| 801 return 1; | |
| 802 } | |
| 803 | |
| 804 static double | |
| 805 decode_hash_table_rehash_threshold (Lisp_Object rehash_threshold) | |
| 806 { | |
|
4585
871eb054b34a
Document non-obvious usages.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4410
diff
changeset
|
807 /* -1.0 signals make_general_lisp_hash_table to use the default. */ |
| 428 | 808 return NILP (rehash_threshold) ? -1.0 : XFLOAT_DATA (rehash_threshold); |
| 809 } | |
| 810 | |
| 811 static int | |
| 2286 | 812 hash_table_data_validate (Lisp_Object UNUSED (keyword), Lisp_Object value, |
| 813 Error_Behavior errb) | |
| 428 | 814 { |
| 815 int len; | |
| 816 | |
|
4585
871eb054b34a
Document non-obvious usages.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4410
diff
changeset
|
817 /* Check for improper lists while getting length. */ |
| 428 | 818 GET_EXTERNAL_LIST_LENGTH (value, len); |
| 819 | |
| 820 if (len & 1) | |
| 821 { | |
| 563 | 822 maybe_sferror |
| 428 | 823 ("Hash table data must have alternating key/value pairs", |
| 824 value, Qhash_table, errb); | |
| 825 return 0; | |
| 826 } | |
|
4585
871eb054b34a
Document non-obvious usages.
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4410
diff
changeset
|
827 |
| 428 | 828 return 1; |
| 829 } | |
| 830 | |
| 831 /* The actual instantiation of a hash table. This does practically no | |
| 832 error checking, because it relies on the fact that the paranoid | |
| 833 functions above have error-checked everything to the last details. | |
| 834 If this assumption is wrong, we will get a crash immediately (with | |
| 835 error-checking compiled in), and we'll know if there is a bug in | |
| 836 the structure mechanism. So there. */ | |
| 837 static Lisp_Object | |
| 838 hash_table_instantiate (Lisp_Object plist) | |
| 839 { | |
| 840 Lisp_Object hash_table; | |
| 841 Lisp_Object test = Qnil; | |
| 842 Lisp_Object size = Qnil; | |
| 843 Lisp_Object rehash_size = Qnil; | |
| 844 Lisp_Object rehash_threshold = Qnil; | |
| 845 Lisp_Object weakness = Qnil; | |
| 846 Lisp_Object data = Qnil; | |
| 847 | |
|
4820
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
848 if (KEYWORDP (Fcar (plist))) |
| 428 | 849 { |
|
4820
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
850 PROPERTY_LIST_LOOP_3 (key, value, plist) |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
851 { |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
852 if (EQ (key, Q_test)) test = value; |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
853 else if (EQ (key, Q_size)) size = value; |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
854 else if (EQ (key, Q_rehash_size)) rehash_size = value; |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
855 else if (EQ (key, Q_rehash_threshold)) rehash_threshold = value; |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
856 else if (EQ (key, Q_weakness)) weakness = value; |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
857 else if (EQ (key, Q_data)) data = value; |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
858 else if (!KEYWORDP (key)) |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
859 signal_error (Qinvalid_read_syntax, |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
860 "can't mix keyword and non-keyword hash table syntax", |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
861 key); |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
862 else ABORT(); |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
863 } |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
864 } |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
865 else |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
866 { |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
867 PROPERTY_LIST_LOOP_3 (key, value, plist) |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
868 { |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
869 if (EQ (key, Qtest)) test = value; |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
870 else if (EQ (key, Qsize)) size = value; |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
871 else if (EQ (key, Qrehash_size)) rehash_size = value; |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
872 else if (EQ (key, Qrehash_threshold)) rehash_threshold = value; |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
873 else if (EQ (key, Qweakness)) weakness = value; |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
874 else if (EQ (key, Qdata)) data = value; |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
875 else if (EQ (key, Qtype))/*obsolete*/ weakness = value; |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
876 else if (KEYWORDP (key)) |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
877 signal_error (Qinvalid_read_syntax, |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
878 "can't mix keyword and non-keyword hash table syntax", |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
879 key); |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
880 else ABORT(); |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
881 } |
| 428 | 882 } |
| 883 | |
| 884 /* Create the hash table. */ | |
| 450 | 885 hash_table = make_standard_lisp_hash_table |
| 428 | 886 (decode_hash_table_test (test), |
| 887 decode_hash_table_size (size), | |
| 888 decode_hash_table_rehash_size (rehash_size), | |
| 889 decode_hash_table_rehash_threshold (rehash_threshold), | |
| 890 decode_hash_table_weakness (weakness)); | |
| 891 | |
| 892 /* I'm not sure whether this can GC, but better safe than sorry. */ | |
| 893 { | |
| 894 struct gcpro gcpro1; | |
| 895 GCPRO1 (hash_table); | |
| 896 | |
| 897 /* And fill it with data. */ | |
| 898 while (!NILP (data)) | |
| 899 { | |
| 900 Lisp_Object key, value; | |
| 901 key = XCAR (data); data = XCDR (data); | |
| 902 value = XCAR (data); data = XCDR (data); | |
| 903 Fputhash (key, value, hash_table); | |
| 904 } | |
| 905 UNGCPRO; | |
| 906 } | |
| 907 | |
| 908 return hash_table; | |
| 909 } | |
| 910 | |
| 911 static void | |
| 912 structure_type_create_hash_table_structure_name (Lisp_Object structure_name) | |
| 913 { | |
| 914 struct structure_type *st; | |
| 915 | |
| 916 st = define_structure_type (structure_name, 0, hash_table_instantiate); | |
|
4820
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
917 |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
918 /* First the keyword syntax: */ |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
919 define_structure_type_keyword (st, Q_test, hash_table_test_validate); |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
920 define_structure_type_keyword (st, Q_size, hash_table_size_validate); |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
921 define_structure_type_keyword (st, Q_rehash_size, hash_table_rehash_size_validate); |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
922 define_structure_type_keyword (st, Q_rehash_threshold, hash_table_rehash_threshold_validate); |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
923 define_structure_type_keyword (st, Q_weakness, hash_table_weakness_validate); |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
924 define_structure_type_keyword (st, Q_data, hash_table_data_validate); |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
925 |
|
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
926 /* Next the mutually exclusive, older, non-keyword syntax: */ |
| 428 | 927 define_structure_type_keyword (st, Qtest, hash_table_test_validate); |
| 928 define_structure_type_keyword (st, Qsize, hash_table_size_validate); | |
| 929 define_structure_type_keyword (st, Qrehash_size, hash_table_rehash_size_validate); | |
| 930 define_structure_type_keyword (st, Qrehash_threshold, hash_table_rehash_threshold_validate); | |
| 931 define_structure_type_keyword (st, Qweakness, hash_table_weakness_validate); | |
| 932 define_structure_type_keyword (st, Qdata, hash_table_data_validate); | |
| 933 | |
| 934 /* obsolete as of 19990901 in xemacs-21.2 */ | |
| 935 define_structure_type_keyword (st, Qtype, hash_table_weakness_validate); | |
| 936 } | |
| 937 | |
| 938 /* Create a built-in Lisp structure type named `hash-table'. | |
| 939 We make #s(hashtable ...) equivalent to #s(hash-table ...), | |
| 940 for backward compatibility. | |
| 941 This is called from emacs.c. */ | |
| 942 void | |
| 943 structure_type_create_hash_table (void) | |
| 944 { | |
| 945 structure_type_create_hash_table_structure_name (Qhash_table); | |
| 946 structure_type_create_hash_table_structure_name (Qhashtable); /* compat */ | |
| 947 } | |
| 948 | |
| 949 | |
| 950 /************************************************************************/ | |
| 951 /* Definition of Lisp-visible methods */ | |
| 952 /************************************************************************/ | |
| 953 | |
| 954 DEFUN ("hash-table-p", Fhash_table_p, 1, 1, 0, /* | |
| 955 Return t if OBJECT is a hash table, else nil. | |
| 956 */ | |
| 957 (object)) | |
| 958 { | |
| 959 return HASH_TABLEP (object) ? Qt : Qnil; | |
| 960 } | |
| 961 | |
| 962 DEFUN ("make-hash-table", Fmake_hash_table, 0, MANY, 0, /* | |
| 963 Return a new empty hash table object. | |
| 964 Use Common Lisp style keywords to specify hash table properties. | |
| 965 | |
| 966 Keyword :test can be `eq', `eql' (default) or `equal'. | |
| 967 Comparison between keys is done using this function. | |
| 968 If speed is important, consider using `eq'. | |
| 969 When storing strings in the hash table, you will likely need to use `equal'. | |
| 970 | |
| 971 Keyword :size specifies the number of keys likely to be inserted. | |
| 972 This number of entries can be inserted without enlarging the hash table. | |
| 973 | |
| 974 Keyword :rehash-size must be a float greater than 1.0, and specifies | |
| 975 the factor by which to increase the size of the hash table when enlarging. | |
| 976 | |
| 977 Keyword :rehash-threshold must be a float between 0.0 and 1.0, | |
| 978 and specifies the load factor of the hash table which triggers enlarging. | |
| 979 | |
| 442 | 980 Non-standard keyword :weakness can be `nil' (default), `t', `key-and-value', |
| 981 `key', `value' or `key-or-value'. `t' is an alias for `key-and-value'. | |
| 428 | 982 |
| 442 | 983 A key-and-value-weak hash table, also known as a fully-weak or simply |
| 984 as a weak hash table, is one whose pointers do not count as GC | |
| 985 referents: for any key-value pair in the hash table, if the only | |
| 986 remaining pointer to either the key or the value is in a weak hash | |
| 987 table, then the pair will be removed from the hash table, and the key | |
| 988 and value collected. A non-weak hash table (or any other pointer) | |
| 989 would prevent the object from being collected. | |
| 428 | 990 |
| 991 A key-weak hash table is similar to a fully-weak hash table except that | |
| 992 a key-value pair will be removed only if the key remains unmarked | |
| 993 outside of weak hash tables. The pair will remain in the hash table if | |
| 994 the key is pointed to by something other than a weak hash table, even | |
| 995 if the value is not. | |
| 996 | |
| 997 A value-weak hash table is similar to a fully-weak hash table except | |
| 998 that a key-value pair will be removed only if the value remains | |
| 999 unmarked outside of weak hash tables. The pair will remain in the | |
| 1000 hash table if the value is pointed to by something other than a weak | |
| 1001 hash table, even if the key is not. | |
| 442 | 1002 |
| 1003 A key-or-value-weak hash table is similar to a fully-weak hash table except | |
| 1004 that a key-value pair will be removed only if the value and the key remain | |
| 1005 unmarked outside of weak hash tables. The pair will remain in the | |
| 1006 hash table if the value or key are pointed to by something other than a weak | |
| 1007 hash table, even if the other is not. | |
|
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4585
diff
changeset
|
1008 |
|
4777
c69aeb86b2a3
Serialise non-default hash table rehash thresholds correctly; use this.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4693
diff
changeset
|
1009 arguments: (&key TEST SIZE REHASH-SIZE REHASH-THRESHOLD WEAKNESS) |
| 428 | 1010 */ |
| 1011 (int nargs, Lisp_Object *args)) | |
| 1012 { | |
| 1013 int i = 0; | |
| 1014 Lisp_Object test = Qnil; | |
| 1015 Lisp_Object size = Qnil; | |
| 1016 Lisp_Object rehash_size = Qnil; | |
| 1017 Lisp_Object rehash_threshold = Qnil; | |
| 1018 Lisp_Object weakness = Qnil; | |
| 1019 | |
| 1020 while (i + 1 < nargs) | |
| 1021 { | |
| 1022 Lisp_Object keyword = args[i++]; | |
| 1023 Lisp_Object value = args[i++]; | |
| 1024 | |
| 1025 if (EQ (keyword, Q_test)) test = value; | |
| 1026 else if (EQ (keyword, Q_size)) size = value; | |
| 1027 else if (EQ (keyword, Q_rehash_size)) rehash_size = value; | |
| 1028 else if (EQ (keyword, Q_rehash_threshold)) rehash_threshold = value; | |
| 1029 else if (EQ (keyword, Q_weakness)) weakness = value; | |
| 1030 else if (EQ (keyword, Q_type))/*obsolete*/ weakness = value; | |
| 563 | 1031 else invalid_constant ("Invalid hash table property keyword", keyword); |
| 428 | 1032 } |
| 1033 | |
| 1034 if (i < nargs) | |
| 563 | 1035 sferror ("Hash table property requires a value", args[i]); |
| 428 | 1036 |
| 1037 #define VALIDATE_VAR(var) \ | |
| 1038 if (!NILP (var)) hash_table_##var##_validate (Q##var, var, ERROR_ME); | |
| 1039 | |
| 1040 VALIDATE_VAR (test); | |
| 1041 VALIDATE_VAR (size); | |
| 1042 VALIDATE_VAR (rehash_size); | |
| 1043 VALIDATE_VAR (rehash_threshold); | |
| 1044 VALIDATE_VAR (weakness); | |
| 1045 | |
| 450 | 1046 return make_standard_lisp_hash_table |
| 428 | 1047 (decode_hash_table_test (test), |
| 1048 decode_hash_table_size (size), | |
| 1049 decode_hash_table_rehash_size (rehash_size), | |
| 1050 decode_hash_table_rehash_threshold (rehash_threshold), | |
| 1051 decode_hash_table_weakness (weakness)); | |
| 1052 } | |
| 1053 | |
| 1054 DEFUN ("copy-hash-table", Fcopy_hash_table, 1, 1, 0, /* | |
| 1055 Return a new hash table containing the same keys and values as HASH-TABLE. | |
| 1056 The keys and values will not themselves be copied. | |
| 1057 */ | |
| 1058 (hash_table)) | |
| 1059 { | |
| 442 | 1060 const Lisp_Hash_Table *ht_old = xhash_table (hash_table); |
| 3017 | 1061 Lisp_Hash_Table *ht = ALLOC_LCRECORD_TYPE (Lisp_Hash_Table, &lrecord_hash_table); |
| 1062 COPY_LCRECORD (ht, ht_old); | |
| 428 | 1063 |
| 3092 | 1064 #ifdef NEW_GC |
| 1065 ht->hentries = (htentry *) alloc_lrecord_array (sizeof (htentry), | |
| 1066 ht_old->size + 1, | |
| 1067 &lrecord_hash_table_entry); | |
| 1068 #else /* not NEW_GC */ | |
| 1204 | 1069 ht->hentries = xnew_array (htentry, ht_old->size + 1); |
| 3092 | 1070 #endif /* not NEW_GC */ |
| 1204 | 1071 memcpy (ht->hentries, ht_old->hentries, (ht_old->size + 1) * sizeof (htentry)); |
| 428 | 1072 |
| 793 | 1073 hash_table = wrap_hash_table (ht); |
| 428 | 1074 |
| 1075 if (! EQ (ht->next_weak, Qunbound)) | |
| 1076 { | |
| 1077 ht->next_weak = Vall_weak_hash_tables; | |
| 1078 Vall_weak_hash_tables = hash_table; | |
| 1079 } | |
| 1080 | |
| 1081 return hash_table; | |
| 1082 } | |
| 1083 | |
| 1084 static void | |
| 665 | 1085 resize_hash_table (Lisp_Hash_Table *ht, Elemcount new_size) |
| 428 | 1086 { |
| 1204 | 1087 htentry *old_entries, *new_entries, *sentinel, *e; |
| 665 | 1088 Elemcount old_size; |
| 428 | 1089 |
| 1090 old_size = ht->size; | |
| 1091 ht->size = new_size; | |
| 1092 | |
| 1093 old_entries = ht->hentries; | |
| 1094 | |
| 3092 | 1095 #ifdef NEW_GC |
| 1096 ht->hentries = (htentry *) alloc_lrecord_array (sizeof (htentry), | |
| 1097 new_size + 1, | |
| 1098 &lrecord_hash_table_entry); | |
| 1099 #else /* not NEW_GC */ | |
| 1204 | 1100 ht->hentries = xnew_array_and_zero (htentry, new_size + 1); |
| 3092 | 1101 #endif /* not NEW_GC */ |
| 428 | 1102 new_entries = ht->hentries; |
| 1103 | |
| 1104 compute_hash_table_derived_values (ht); | |
| 1105 | |
| 440 | 1106 for (e = old_entries, sentinel = e + old_size; e < sentinel; e++) |
| 1204 | 1107 if (!HTENTRY_CLEAR_P (e)) |
| 428 | 1108 { |
| 1204 | 1109 htentry *probe = new_entries + HASHCODE (e->key, ht); |
| 428 | 1110 LINEAR_PROBING_LOOP (probe, new_entries, new_size) |
| 1111 ; | |
| 1112 *probe = *e; | |
| 1113 } | |
| 1114 | |
| 4117 | 1115 #ifndef NEW_GC |
| 489 | 1116 free_hentries (old_entries, old_size); |
| 4117 | 1117 #endif /* not NEW_GC */ |
| 428 | 1118 } |
| 1119 | |
| 440 | 1120 /* After a hash table has been saved to disk and later restored by the |
| 1121 portable dumper, it contains the same objects, but their addresses | |
| 665 | 1122 and thus their HASHCODEs have changed. */ |
| 428 | 1123 void |
| 440 | 1124 pdump_reorganize_hash_table (Lisp_Object hash_table) |
| 428 | 1125 { |
| 442 | 1126 const Lisp_Hash_Table *ht = xhash_table (hash_table); |
| 3092 | 1127 #ifdef NEW_GC |
| 1128 htentry *new_entries = | |
| 1129 (htentry *) alloc_lrecord_array (sizeof (htentry), ht->size + 1, | |
| 1130 &lrecord_hash_table_entry); | |
| 1131 #else /* not NEW_GC */ | |
| 1204 | 1132 htentry *new_entries = xnew_array_and_zero (htentry, ht->size + 1); |
| 3092 | 1133 #endif /* not NEW_GC */ |
| 1204 | 1134 htentry *e, *sentinel; |
| 440 | 1135 |
| 1136 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++) | |
| 1204 | 1137 if (!HTENTRY_CLEAR_P (e)) |
| 440 | 1138 { |
| 1204 | 1139 htentry *probe = new_entries + HASHCODE (e->key, ht); |
| 440 | 1140 LINEAR_PROBING_LOOP (probe, new_entries, ht->size) |
| 1141 ; | |
| 1142 *probe = *e; | |
| 1143 } | |
| 1144 | |
| 1204 | 1145 memcpy (ht->hentries, new_entries, ht->size * sizeof (htentry)); |
| 440 | 1146 |
| 4117 | 1147 #ifndef NEW_GC |
| 1726 | 1148 xfree (new_entries, htentry *); |
| 3092 | 1149 #endif /* not NEW_GC */ |
| 428 | 1150 } |
| 1151 | |
| 1152 static void | |
| 1153 enlarge_hash_table (Lisp_Hash_Table *ht) | |
| 1154 { | |
| 665 | 1155 Elemcount new_size = |
| 1156 hash_table_size ((Elemcount) ((double) ht->size * ht->rehash_size)); | |
| 428 | 1157 resize_hash_table (ht, new_size); |
| 1158 } | |
| 1159 | |
| 4072 | 1160 htentry * |
| 1204 | 1161 find_htentry (Lisp_Object key, const Lisp_Hash_Table *ht) |
| 428 | 1162 { |
| 1163 hash_table_test_function_t test_function = ht->test_function; | |
| 1204 | 1164 htentry *entries = ht->hentries; |
| 1165 htentry *probe = entries + HASHCODE (key, ht); | |
| 428 | 1166 |
| 1167 LINEAR_PROBING_LOOP (probe, entries, ht->size) | |
| 1168 if (KEYS_EQUAL_P (probe->key, key, test_function)) | |
| 1169 break; | |
| 1170 | |
| 1171 return probe; | |
| 1172 } | |
| 1173 | |
| 2421 | 1174 /* A version of Fputhash() that increments the value by the specified |
| 1175 amount and dispenses will all error checks. Assumes that tables does | |
| 1176 comparison using EQ. Used by the profiling routines to avoid | |
| 1177 overhead -- profiling overhead was being recorded at up to 15% of the | |
| 1178 total time. */ | |
| 1179 | |
| 1180 void | |
| 1181 inchash_eq (Lisp_Object key, Lisp_Object table, EMACS_INT offset) | |
| 1182 { | |
| 1183 Lisp_Hash_Table *ht = XHASH_TABLE (table); | |
| 1184 htentry *entries = ht->hentries; | |
| 1185 htentry *probe = entries + HASHCODE (key, ht); | |
| 1186 | |
| 1187 LINEAR_PROBING_LOOP (probe, entries, ht->size) | |
| 1188 if (EQ (probe->key, key)) | |
| 1189 break; | |
| 1190 | |
| 1191 if (!HTENTRY_CLEAR_P (probe)) | |
| 1192 probe->value = make_int (XINT (probe->value) + offset); | |
| 1193 else | |
| 1194 { | |
| 1195 probe->key = key; | |
| 1196 probe->value = make_int (offset); | |
| 1197 | |
| 1198 if (++ht->count >= ht->rehash_count) | |
| 1199 enlarge_hash_table (ht); | |
| 1200 } | |
| 1201 } | |
| 1202 | |
| 428 | 1203 DEFUN ("gethash", Fgethash, 2, 3, 0, /* |
| 1204 Find hash value for KEY in HASH-TABLE. | |
| 1205 If there is no corresponding value, return DEFAULT (which defaults to nil). | |
| 1206 */ | |
| 1207 (key, hash_table, default_)) | |
| 1208 { | |
| 442 | 1209 const Lisp_Hash_Table *ht = xhash_table (hash_table); |
| 1204 | 1210 htentry *e = find_htentry (key, ht); |
| 428 | 1211 |
| 1204 | 1212 return HTENTRY_CLEAR_P (e) ? default_ : e->value; |
| 428 | 1213 } |
| 1214 | |
| 1215 DEFUN ("puthash", Fputhash, 3, 3, 0, /* | |
|
4410
aae1994dfeec
Document return values for #'puthash, #'clrhash.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4398
diff
changeset
|
1216 Hash KEY to VALUE in HASH-TABLE, and return VALUE. |
| 428 | 1217 */ |
| 1218 (key, value, hash_table)) | |
| 1219 { | |
| 1220 Lisp_Hash_Table *ht = xhash_table (hash_table); | |
| 1204 | 1221 htentry *e = find_htentry (key, ht); |
| 428 | 1222 |
| 1204 | 1223 if (!HTENTRY_CLEAR_P (e)) |
| 428 | 1224 return e->value = value; |
| 1225 | |
| 1226 e->key = key; | |
| 1227 e->value = value; | |
| 1228 | |
| 1229 if (++ht->count >= ht->rehash_count) | |
| 1230 enlarge_hash_table (ht); | |
| 1231 | |
| 1232 return value; | |
| 1233 } | |
| 1234 | |
| 1204 | 1235 /* Remove htentry pointed at by PROBE. |
| 428 | 1236 Subsequent entries are removed and reinserted. |
| 1237 We don't use tombstones - too wasteful. */ | |
| 1238 static void | |
| 1204 | 1239 remhash_1 (Lisp_Hash_Table *ht, htentry *entries, htentry *probe) |
| 428 | 1240 { |
| 665 | 1241 Elemcount size = ht->size; |
| 1204 | 1242 CLEAR_HTENTRY (probe); |
| 428 | 1243 probe++; |
| 1244 ht->count--; | |
| 1245 | |
| 1246 LINEAR_PROBING_LOOP (probe, entries, size) | |
| 1247 { | |
| 1248 Lisp_Object key = probe->key; | |
| 1204 | 1249 htentry *probe2 = entries + HASHCODE (key, ht); |
| 428 | 1250 LINEAR_PROBING_LOOP (probe2, entries, size) |
| 1251 if (EQ (probe2->key, key)) | |
| 1204 | 1252 /* htentry at probe doesn't need to move. */ |
| 428 | 1253 goto continue_outer_loop; |
| 1204 | 1254 /* Move htentry from probe to new home at probe2. */ |
| 428 | 1255 *probe2 = *probe; |
| 1204 | 1256 CLEAR_HTENTRY (probe); |
| 428 | 1257 continue_outer_loop: continue; |
| 1258 } | |
| 1259 } | |
| 1260 | |
| 1261 DEFUN ("remhash", Fremhash, 2, 2, 0, /* | |
| 1262 Remove the entry for KEY from HASH-TABLE. | |
| 1263 Do nothing if there is no entry for KEY in HASH-TABLE. | |
| 617 | 1264 Return non-nil if an entry was removed. |
| 428 | 1265 */ |
| 1266 (key, hash_table)) | |
| 1267 { | |
| 1268 Lisp_Hash_Table *ht = xhash_table (hash_table); | |
| 1204 | 1269 htentry *e = find_htentry (key, ht); |
| 428 | 1270 |
| 1204 | 1271 if (HTENTRY_CLEAR_P (e)) |
| 428 | 1272 return Qnil; |
| 1273 | |
| 1274 remhash_1 (ht, ht->hentries, e); | |
| 1275 return Qt; | |
| 1276 } | |
| 1277 | |
| 1278 DEFUN ("clrhash", Fclrhash, 1, 1, 0, /* | |
| 1279 Remove all entries from HASH-TABLE, leaving it empty. | |
|
4410
aae1994dfeec
Document return values for #'puthash, #'clrhash.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4398
diff
changeset
|
1280 Return HASH-TABLE. |
| 428 | 1281 */ |
| 1282 (hash_table)) | |
| 1283 { | |
| 1284 Lisp_Hash_Table *ht = xhash_table (hash_table); | |
| 1204 | 1285 htentry *e, *sentinel; |
| 428 | 1286 |
| 1287 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++) | |
| 1204 | 1288 CLEAR_HTENTRY (e); |
| 428 | 1289 ht->count = 0; |
| 1290 | |
| 1291 return hash_table; | |
| 1292 } | |
| 1293 | |
| 1294 /************************************************************************/ | |
| 1295 /* Accessor Functions */ | |
| 1296 /************************************************************************/ | |
| 1297 | |
| 1298 DEFUN ("hash-table-count", Fhash_table_count, 1, 1, 0, /* | |
| 1299 Return the number of entries in HASH-TABLE. | |
| 1300 */ | |
| 1301 (hash_table)) | |
| 1302 { | |
| 1303 return make_int (xhash_table (hash_table)->count); | |
| 1304 } | |
| 1305 | |
| 1306 DEFUN ("hash-table-test", Fhash_table_test, 1, 1, 0, /* | |
| 1307 Return the test function of HASH-TABLE. | |
| 1308 This can be one of `eq', `eql' or `equal'. | |
| 1309 */ | |
| 1310 (hash_table)) | |
| 1311 { | |
| 1312 hash_table_test_function_t fun = xhash_table (hash_table)->test_function; | |
| 1313 | |
| 1314 return (fun == lisp_object_eql_equal ? Qeql : | |
| 1315 fun == lisp_object_equal_equal ? Qequal : | |
| 1316 Qeq); | |
| 1317 } | |
| 1318 | |
| 1319 DEFUN ("hash-table-size", Fhash_table_size, 1, 1, 0, /* | |
| 1320 Return the size of HASH-TABLE. | |
| 1321 This is the current number of slots in HASH-TABLE, whether occupied or not. | |
| 1322 */ | |
| 1323 (hash_table)) | |
| 1324 { | |
| 1325 return make_int (xhash_table (hash_table)->size); | |
| 1326 } | |
| 1327 | |
| 1328 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size, 1, 1, 0, /* | |
| 1329 Return the current rehash size of HASH-TABLE. | |
| 1330 This is a float greater than 1.0; the factor by which HASH-TABLE | |
| 1331 is enlarged when the rehash threshold is exceeded. | |
| 1332 */ | |
| 1333 (hash_table)) | |
| 1334 { | |
| 1335 return make_float (xhash_table (hash_table)->rehash_size); | |
| 1336 } | |
| 1337 | |
| 1338 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold, 1, 1, 0, /* | |
| 1339 Return the current rehash threshold of HASH-TABLE. | |
| 1340 This is a float between 0.0 and 1.0; the maximum `load factor' of HASH-TABLE, | |
| 1341 beyond which the HASH-TABLE is enlarged by rehashing. | |
| 1342 */ | |
| 1343 (hash_table)) | |
| 1344 { | |
| 438 | 1345 return make_float (xhash_table (hash_table)->rehash_threshold); |
| 428 | 1346 } |
| 1347 | |
| 1348 DEFUN ("hash-table-weakness", Fhash_table_weakness, 1, 1, 0, /* | |
| 1349 Return the weakness of HASH-TABLE. | |
| 442 | 1350 This can be one of `nil', `key-and-value', `key-or-value', `key' or `value'. |
| 428 | 1351 */ |
| 1352 (hash_table)) | |
| 1353 { | |
| 1354 switch (xhash_table (hash_table)->weakness) | |
| 1355 { | |
| 442 | 1356 case HASH_TABLE_WEAK: return Qkey_and_value; |
| 1357 case HASH_TABLE_KEY_WEAK: return Qkey; | |
| 1358 case HASH_TABLE_KEY_VALUE_WEAK: return Qkey_or_value; | |
| 1359 case HASH_TABLE_VALUE_WEAK: return Qvalue; | |
| 1360 default: return Qnil; | |
| 428 | 1361 } |
| 1362 } | |
| 1363 | |
| 1364 /* obsolete as of 19990901 in xemacs-21.2 */ | |
| 1365 DEFUN ("hash-table-type", Fhash_table_type, 1, 1, 0, /* | |
| 1366 Return the type of HASH-TABLE. | |
| 1367 This can be one of `non-weak', `weak', `key-weak' or `value-weak'. | |
| 1368 */ | |
| 1369 (hash_table)) | |
| 1370 { | |
| 1371 switch (xhash_table (hash_table)->weakness) | |
| 1372 { | |
| 442 | 1373 case HASH_TABLE_WEAK: return Qweak; |
| 1374 case HASH_TABLE_KEY_WEAK: return Qkey_weak; | |
| 1375 case HASH_TABLE_KEY_VALUE_WEAK: return Qkey_or_value_weak; | |
| 1376 case HASH_TABLE_VALUE_WEAK: return Qvalue_weak; | |
| 1377 default: return Qnon_weak; | |
| 428 | 1378 } |
| 1379 } | |
| 1380 | |
| 1381 /************************************************************************/ | |
| 1382 /* Mapping Functions */ | |
| 1383 /************************************************************************/ | |
| 489 | 1384 |
| 1385 /* We need to be careful when mapping over hash tables because the | |
| 1386 hash table might be modified during the mapping operation: | |
| 1387 - by the mapping function | |
| 1388 - by gc (if the hash table is weak) | |
| 1389 | |
| 1390 So we make a copy of the hentries at the beginning of the mapping | |
| 497 | 1391 operation, and iterate over the copy. Naturally, this is |
| 1392 expensive, but not as expensive as you might think, because no | |
| 1393 actual memory has to be collected by our notoriously inefficient | |
| 1394 GC; we use an unwind-protect instead to free the memory directly. | |
| 1395 | |
| 1396 We could avoid the copying by having the hash table modifiers | |
| 1397 puthash and remhash check for currently active mapping functions. | |
| 1398 Disadvantages: it's hard to get right, and IMO hash mapping | |
| 1399 functions are basically rare, and no extra space in the hash table | |
| 1400 object and no extra cpu in puthash or remhash should be wasted to | |
| 1401 make maphash 3% faster. From a design point of view, the basic | |
| 1402 functions gethash, puthash and remhash should be implementable | |
| 1403 without having to think about maphash. | |
| 1404 | |
| 1405 Note: We don't (yet) have Common Lisp's with-hash-table-iterator. | |
| 1406 If you implement this naively, you cannot have more than one | |
| 1407 concurrently active iterator over the same hash table. The `each' | |
| 1408 function in perl has this limitation. | |
| 1409 | |
| 1410 Note: We GCPRO memory on the heap, not on the stack. There is no | |
| 1411 obvious reason why this is bad, but as of this writing this is the | |
| 1412 only known occurrence of this technique in the code. | |
| 504 | 1413 |
| 1414 -- Martin | |
| 1415 */ | |
| 1416 | |
| 1417 /* Ben disagrees with the "copying hentries" design, and says: | |
| 1418 | |
| 1419 Another solution is the same as I've already proposed -- when | |
| 1420 mapping, mark the table as "change-unsafe", and in this case, use a | |
| 1421 secondary table to maintain changes. this could be basically a | |
| 1422 standard hash table, but with entries only for added or deleted | |
| 1423 entries in the primary table, and a marker like Qunbound to | |
| 1424 indicate a deleted entry. puthash, gethash and remhash need a | |
| 1425 single extra check for this secondary table -- totally | |
| 1426 insignificant speedwise. if you really cared about making | |
| 1427 recursive maphashes completely correct, you'd have to do a bit of | |
| 1428 extra work here -- when maphashing, if the secondary table exists, | |
| 1429 make a copy of it, and use the copy in conjunction with the primary | |
| 1430 table when mapping. the advantages of this are | |
| 1431 | |
| 1432 [a] easy to demonstrate correct, even with weak hashtables. | |
| 1433 | |
| 1434 [b] no extra overhead in the general maphash case -- only when you | |
| 1435 modify the table while maphashing, and even then the overhead is | |
| 1436 very small. | |
| 497 | 1437 */ |
| 1438 | |
| 489 | 1439 static Lisp_Object |
| 1440 maphash_unwind (Lisp_Object unwind_obj) | |
| 1441 { | |
| 1442 void *ptr = (void *) get_opaque_ptr (unwind_obj); | |
| 1726 | 1443 xfree (ptr, void *); |
| 489 | 1444 free_opaque_ptr (unwind_obj); |
| 1445 return Qnil; | |
| 1446 } | |
| 1447 | |
| 1448 /* Return a malloced array of alternating key/value pairs from HT. */ | |
| 1449 static Lisp_Object * | |
| 1450 copy_compress_hentries (const Lisp_Hash_Table *ht) | |
| 1451 { | |
| 1452 Lisp_Object * const objs = | |
| 1453 /* If the hash table is empty, ht->count could be 0. */ | |
| 1454 xnew_array (Lisp_Object, 2 * (ht->count > 0 ? ht->count : 1)); | |
| 1204 | 1455 const htentry *e, *sentinel; |
| 489 | 1456 Lisp_Object *pobj; |
| 1457 | |
| 1458 for (e = ht->hentries, sentinel = e + ht->size, pobj = objs; e < sentinel; e++) | |
| 1204 | 1459 if (!HTENTRY_CLEAR_P (e)) |
| 489 | 1460 { |
| 1461 *(pobj++) = e->key; | |
| 1462 *(pobj++) = e->value; | |
| 1463 } | |
| 1464 | |
| 1465 type_checking_assert (pobj == objs + 2 * ht->count); | |
| 1466 | |
| 1467 return objs; | |
| 1468 } | |
| 1469 | |
| 428 | 1470 DEFUN ("maphash", Fmaphash, 2, 2, 0, /* |
| 1471 Map FUNCTION over entries in HASH-TABLE, calling it with two args, | |
| 1472 each key and value in HASH-TABLE. | |
| 1473 | |
| 489 | 1474 FUNCTION must not modify HASH-TABLE, with the one exception that FUNCTION |
| 428 | 1475 may remhash or puthash the entry currently being processed by FUNCTION. |
| 1476 */ | |
| 1477 (function, hash_table)) | |
| 1478 { | |
| 489 | 1479 const Lisp_Hash_Table * const ht = xhash_table (hash_table); |
| 1480 Lisp_Object * const objs = copy_compress_hentries (ht); | |
| 1481 Lisp_Object args[3]; | |
| 1482 const Lisp_Object *pobj, *end; | |
| 1483 int speccount = specpdl_depth (); | |
| 1484 struct gcpro gcpro1; | |
| 1485 | |
| 1486 record_unwind_protect (maphash_unwind, make_opaque_ptr ((void *)objs)); | |
| 1487 GCPRO1 (objs[0]); | |
| 1488 gcpro1.nvars = 2 * ht->count; | |
| 428 | 1489 |
| 489 | 1490 args[0] = function; |
| 1491 | |
| 1492 for (pobj = objs, end = pobj + 2 * ht->count; pobj < end; pobj += 2) | |
| 1493 { | |
| 1494 args[1] = pobj[0]; | |
| 1495 args[2] = pobj[1]; | |
| 1496 Ffuncall (countof (args), args); | |
| 1497 } | |
| 1498 | |
| 771 | 1499 unbind_to (speccount); |
| 489 | 1500 UNGCPRO; |
| 428 | 1501 |
| 1502 return Qnil; | |
| 1503 } | |
| 1504 | |
| 489 | 1505 /* Map *C* function FUNCTION over the elements of a non-weak lisp hash table. |
| 1506 FUNCTION must not modify HASH-TABLE, with the one exception that FUNCTION | |
| 1507 may puthash the entry currently being processed by FUNCTION. | |
| 1508 Mapping terminates if FUNCTION returns something other than 0. */ | |
| 428 | 1509 void |
| 489 | 1510 elisp_maphash_unsafe (maphash_function_t function, |
| 428 | 1511 Lisp_Object hash_table, void *extra_arg) |
| 1512 { | |
| 442 | 1513 const Lisp_Hash_Table *ht = XHASH_TABLE (hash_table); |
| 1204 | 1514 const htentry *e, *sentinel; |
| 428 | 1515 |
| 1516 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++) | |
| 1204 | 1517 if (!HTENTRY_CLEAR_P (e)) |
| 489 | 1518 if (function (e->key, e->value, extra_arg)) |
| 1519 return; | |
| 428 | 1520 } |
| 1521 | |
| 489 | 1522 /* Map *C* function FUNCTION over the elements of a lisp hash table. |
| 1523 It is safe for FUNCTION to modify HASH-TABLE. | |
| 1524 Mapping terminates if FUNCTION returns something other than 0. */ | |
| 1525 void | |
| 1526 elisp_maphash (maphash_function_t function, | |
| 1527 Lisp_Object hash_table, void *extra_arg) | |
| 1528 { | |
| 1529 const Lisp_Hash_Table * const ht = xhash_table (hash_table); | |
| 1530 Lisp_Object * const objs = copy_compress_hentries (ht); | |
| 1531 const Lisp_Object *pobj, *end; | |
| 1532 int speccount = specpdl_depth (); | |
| 1533 struct gcpro gcpro1; | |
| 1534 | |
| 1535 record_unwind_protect (maphash_unwind, make_opaque_ptr ((void *)objs)); | |
| 1536 GCPRO1 (objs[0]); | |
| 1537 gcpro1.nvars = 2 * ht->count; | |
| 1538 | |
| 1539 for (pobj = objs, end = pobj + 2 * ht->count; pobj < end; pobj += 2) | |
| 1540 if (function (pobj[0], pobj[1], extra_arg)) | |
| 1541 break; | |
| 1542 | |
| 771 | 1543 unbind_to (speccount); |
| 489 | 1544 UNGCPRO; |
| 1545 } | |
| 1546 | |
| 1547 /* Remove all elements of a lisp hash table satisfying *C* predicate PREDICATE. | |
| 1548 PREDICATE must not modify HASH-TABLE. */ | |
| 428 | 1549 void |
| 1550 elisp_map_remhash (maphash_function_t predicate, | |
| 1551 Lisp_Object hash_table, void *extra_arg) | |
| 1552 { | |
| 489 | 1553 const Lisp_Hash_Table * const ht = xhash_table (hash_table); |
| 1554 Lisp_Object * const objs = copy_compress_hentries (ht); | |
| 1555 const Lisp_Object *pobj, *end; | |
| 1556 int speccount = specpdl_depth (); | |
| 1557 struct gcpro gcpro1; | |
| 428 | 1558 |
| 489 | 1559 record_unwind_protect (maphash_unwind, make_opaque_ptr ((void *)objs)); |
| 1560 GCPRO1 (objs[0]); | |
| 1561 gcpro1.nvars = 2 * ht->count; | |
| 1562 | |
| 1563 for (pobj = objs, end = pobj + 2 * ht->count; pobj < end; pobj += 2) | |
| 1564 if (predicate (pobj[0], pobj[1], extra_arg)) | |
| 1565 Fremhash (pobj[0], hash_table); | |
| 1566 | |
| 771 | 1567 unbind_to (speccount); |
| 489 | 1568 UNGCPRO; |
| 428 | 1569 } |
| 1570 | |
| 1571 | |
| 1572 /************************************************************************/ | |
| 1573 /* garbage collecting weak hash tables */ | |
| 1574 /************************************************************************/ | |
| 1598 | 1575 #ifdef USE_KKCC |
| 2645 | 1576 #define MARK_OBJ(obj) do { \ |
| 1577 Lisp_Object mo_obj = (obj); \ | |
| 1578 if (!marked_p (mo_obj)) \ | |
| 1579 { \ | |
| 1580 kkcc_gc_stack_push_lisp_object (mo_obj, 0, -1); \ | |
| 1581 did_mark = 1; \ | |
| 1582 } \ | |
| 1598 | 1583 } while (0) |
| 1584 | |
| 1585 #else /* NO USE_KKCC */ | |
| 1586 | |
| 442 | 1587 #define MARK_OBJ(obj) do { \ |
| 1588 Lisp_Object mo_obj = (obj); \ | |
| 1589 if (!marked_p (mo_obj)) \ | |
| 1590 { \ | |
| 1591 mark_object (mo_obj); \ | |
| 1592 did_mark = 1; \ | |
| 1593 } \ | |
| 1594 } while (0) | |
| 1598 | 1595 #endif /*NO USE_KKCC */ |
| 442 | 1596 |
| 428 | 1597 |
| 1598 /* Complete the marking for semi-weak hash tables. */ | |
| 1599 int | |
| 1600 finish_marking_weak_hash_tables (void) | |
| 1601 { | |
| 1602 Lisp_Object hash_table; | |
| 1603 int did_mark = 0; | |
| 1604 | |
| 1605 for (hash_table = Vall_weak_hash_tables; | |
| 1606 !NILP (hash_table); | |
| 1607 hash_table = XHASH_TABLE (hash_table)->next_weak) | |
| 1608 { | |
| 442 | 1609 const Lisp_Hash_Table *ht = XHASH_TABLE (hash_table); |
| 1204 | 1610 const htentry *e = ht->hentries; |
| 1611 const htentry *sentinel = e + ht->size; | |
| 428 | 1612 |
| 1613 if (! marked_p (hash_table)) | |
| 1614 /* The hash table is probably garbage. Ignore it. */ | |
| 1615 continue; | |
| 1616 | |
| 1617 /* Now, scan over all the pairs. For all pairs that are | |
| 1618 half-marked, we may need to mark the other half if we're | |
| 1619 keeping this pair. */ | |
| 1620 switch (ht->weakness) | |
| 1621 { | |
| 1622 case HASH_TABLE_KEY_WEAK: | |
| 1623 for (; e < sentinel; e++) | |
| 1204 | 1624 if (!HTENTRY_CLEAR_P (e)) |
| 428 | 1625 if (marked_p (e->key)) |
| 1626 MARK_OBJ (e->value); | |
| 1627 break; | |
| 1628 | |
| 1629 case HASH_TABLE_VALUE_WEAK: | |
| 1630 for (; e < sentinel; e++) | |
| 1204 | 1631 if (!HTENTRY_CLEAR_P (e)) |
| 428 | 1632 if (marked_p (e->value)) |
| 1633 MARK_OBJ (e->key); | |
| 1634 break; | |
| 1635 | |
| 442 | 1636 case HASH_TABLE_KEY_VALUE_WEAK: |
| 1637 for (; e < sentinel; e++) | |
| 1204 | 1638 if (!HTENTRY_CLEAR_P (e)) |
| 442 | 1639 { |
| 1640 if (marked_p (e->value)) | |
| 1641 MARK_OBJ (e->key); | |
| 1642 else if (marked_p (e->key)) | |
| 1643 MARK_OBJ (e->value); | |
| 1644 } | |
| 1645 break; | |
| 1646 | |
| 428 | 1647 case HASH_TABLE_KEY_CAR_WEAK: |
| 1648 for (; e < sentinel; e++) | |
| 1204 | 1649 if (!HTENTRY_CLEAR_P (e)) |
| 428 | 1650 if (!CONSP (e->key) || marked_p (XCAR (e->key))) |
| 1651 { | |
| 1652 MARK_OBJ (e->key); | |
| 1653 MARK_OBJ (e->value); | |
| 1654 } | |
| 1655 break; | |
| 1656 | |
| 450 | 1657 /* We seem to be sprouting new weakness types at an alarming |
| 1658 rate. At least this is not externally visible - and in | |
| 1659 fact all of these KEY_CAR_* types are only used by the | |
| 1660 glyph code. */ | |
| 1661 case HASH_TABLE_KEY_CAR_VALUE_WEAK: | |
| 1662 for (; e < sentinel; e++) | |
| 1204 | 1663 if (!HTENTRY_CLEAR_P (e)) |
| 450 | 1664 { |
| 1665 if (!CONSP (e->key) || marked_p (XCAR (e->key))) | |
| 1666 { | |
| 1667 MARK_OBJ (e->key); | |
| 1668 MARK_OBJ (e->value); | |
| 1669 } | |
| 1670 else if (marked_p (e->value)) | |
| 1671 MARK_OBJ (e->key); | |
| 1672 } | |
| 1673 break; | |
| 1674 | |
| 428 | 1675 case HASH_TABLE_VALUE_CAR_WEAK: |
| 1676 for (; e < sentinel; e++) | |
| 1204 | 1677 if (!HTENTRY_CLEAR_P (e)) |
| 428 | 1678 if (!CONSP (e->value) || marked_p (XCAR (e->value))) |
| 1679 { | |
| 1680 MARK_OBJ (e->key); | |
| 1681 MARK_OBJ (e->value); | |
| 1682 } | |
| 1683 break; | |
| 1684 | |
| 1685 default: | |
| 1686 break; | |
| 1687 } | |
| 1688 } | |
| 1689 | |
| 1690 return did_mark; | |
| 1691 } | |
| 1692 | |
| 1693 void | |
| 1694 prune_weak_hash_tables (void) | |
| 1695 { | |
| 1696 Lisp_Object hash_table, prev = Qnil; | |
| 1697 for (hash_table = Vall_weak_hash_tables; | |
| 1698 !NILP (hash_table); | |
| 1699 hash_table = XHASH_TABLE (hash_table)->next_weak) | |
| 1700 { | |
| 1701 if (! marked_p (hash_table)) | |
| 1702 { | |
| 1703 /* This hash table itself is garbage. Remove it from the list. */ | |
| 1704 if (NILP (prev)) | |
| 1705 Vall_weak_hash_tables = XHASH_TABLE (hash_table)->next_weak; | |
| 1706 else | |
| 1707 XHASH_TABLE (prev)->next_weak = XHASH_TABLE (hash_table)->next_weak; | |
| 1708 } | |
| 1709 else | |
| 1710 { | |
| 1711 /* Now, scan over all the pairs. Remove all of the pairs | |
| 1712 in which the key or value, or both, is unmarked | |
| 1713 (depending on the weakness of the hash table). */ | |
| 1714 Lisp_Hash_Table *ht = XHASH_TABLE (hash_table); | |
| 1204 | 1715 htentry *entries = ht->hentries; |
| 1716 htentry *sentinel = entries + ht->size; | |
| 1717 htentry *e; | |
| 428 | 1718 |
| 1719 for (e = entries; e < sentinel; e++) | |
| 1204 | 1720 if (!HTENTRY_CLEAR_P (e)) |
| 428 | 1721 { |
| 1722 again: | |
| 1723 if (!marked_p (e->key) || !marked_p (e->value)) | |
| 1724 { | |
| 1725 remhash_1 (ht, entries, e); | |
| 1204 | 1726 if (!HTENTRY_CLEAR_P (e)) |
| 428 | 1727 goto again; |
| 1728 } | |
| 1729 } | |
| 1730 | |
| 1731 prev = hash_table; | |
| 1732 } | |
| 1733 } | |
| 1734 } | |
| 1735 | |
| 1736 /* Return a hash value for an array of Lisp_Objects of size SIZE. */ | |
| 1737 | |
| 665 | 1738 Hashcode |
| 428 | 1739 internal_array_hash (Lisp_Object *arr, int size, int depth) |
| 1740 { | |
| 1741 int i; | |
| 665 | 1742 Hashcode hash = 0; |
| 442 | 1743 depth++; |
| 428 | 1744 |
| 1745 if (size <= 5) | |
| 1746 { | |
| 1747 for (i = 0; i < size; i++) | |
| 442 | 1748 hash = HASH2 (hash, internal_hash (arr[i], depth)); |
| 428 | 1749 return hash; |
| 1750 } | |
| 1751 | |
| 1752 /* just pick five elements scattered throughout the array. | |
| 1753 A slightly better approach would be to offset by some | |
| 1754 noise factor from the points chosen below. */ | |
| 1755 for (i = 0; i < 5; i++) | |
| 442 | 1756 hash = HASH2 (hash, internal_hash (arr[i*size/5], depth)); |
| 428 | 1757 |
| 1758 return hash; | |
| 1759 } | |
| 1760 | |
| 1761 /* Return a hash value for a Lisp_Object. This is for use when hashing | |
| 1762 objects with the comparison being `equal' (for `eq', you can just | |
| 1763 use the Lisp_Object itself as the hash value). You need to make a | |
| 1764 tradeoff between the speed of the hash function and how good the | |
| 1765 hashing is. In particular, the hash function needs to be FAST, | |
| 1766 so you can't just traipse down the whole tree hashing everything | |
| 1767 together. Most of the time, objects will differ in the first | |
| 1768 few elements you hash. Thus, we only go to a short depth (5) | |
| 1769 and only hash at most 5 elements out of a vector. Theoretically | |
| 1770 we could still take 5^5 time (a big big number) to compute a | |
| 1771 hash, but practically this won't ever happen. */ | |
| 1772 | |
| 665 | 1773 Hashcode |
| 428 | 1774 internal_hash (Lisp_Object obj, int depth) |
| 1775 { | |
| 1776 if (depth > 5) | |
| 1777 return 0; | |
|
4398
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1778 |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1779 if (CONSP(obj)) |
| 428 | 1780 { |
|
4398
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1781 Hashcode hash, h; |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1782 int s; |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1783 |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1784 depth += 1; |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1785 |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1786 if (!CONSP(XCDR(obj))) |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1787 { |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1788 /* special case for '(a . b) conses */ |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1789 return HASH2(internal_hash(XCAR(obj), depth), |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1790 internal_hash(XCDR(obj), depth)); |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1791 } |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1792 |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1793 /* Don't simply tail recurse; we want to hash lists with the |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1794 same contents in distinct orders differently. */ |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1795 hash = internal_hash(XCAR(obj), depth); |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1796 |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1797 obj = XCDR(obj); |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1798 for (s = 1; s < 6 && CONSP(obj); obj = XCDR(obj), s++) |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1799 { |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1800 h = internal_hash(XCAR(obj), depth); |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1801 hash = HASH3(hash, h, s); |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1802 } |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1803 |
|
479443c0f95a
Have list hashes depend on the order of the contents, as is the case for vectors.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4117
diff
changeset
|
1804 return hash; |
| 428 | 1805 } |
| 1806 if (STRINGP (obj)) | |
| 1807 { | |
| 1808 return hash_string (XSTRING_DATA (obj), XSTRING_LENGTH (obj)); | |
| 1809 } | |
| 1810 if (LRECORDP (obj)) | |
| 1811 { | |
| 442 | 1812 const struct lrecord_implementation |
| 428 | 1813 *imp = XRECORD_LHEADER_IMPLEMENTATION (obj); |
| 1814 if (imp->hash) | |
| 1815 return imp->hash (obj, depth); | |
| 1816 } | |
| 1817 | |
| 1818 return LISP_HASH (obj); | |
| 1819 } | |
| 1820 | |
| 1821 DEFUN ("sxhash", Fsxhash, 1, 1, 0, /* | |
| 1822 Return a hash value for OBJECT. | |
| 444 | 1823 \(equal obj1 obj2) implies (= (sxhash obj1) (sxhash obj2)). |
| 428 | 1824 */ |
| 1825 (object)) | |
| 1826 { | |
| 1827 return make_int (internal_hash (object, 0)); | |
| 1828 } | |
| 1829 | |
| 1830 #if 0 | |
| 826 | 1831 DEFUN ("internal-hash-value", Finternal_hash_value, 1, 1, 0, /* |
| 428 | 1832 Hash value of OBJECT. For debugging. |
| 1833 The value is returned as (HIGH . LOW). | |
| 1834 */ | |
| 1835 (object)) | |
| 1836 { | |
| 1837 /* This function is pretty 32bit-centric. */ | |
| 665 | 1838 Hashcode hash = internal_hash (object, 0); |
| 428 | 1839 return Fcons (hash >> 16, hash & 0xffff); |
| 1840 } | |
| 1841 #endif | |
| 1842 | |
| 1843 | |
| 1844 /************************************************************************/ | |
| 1845 /* initialization */ | |
| 1846 /************************************************************************/ | |
| 1847 | |
| 1848 void | |
| 1849 syms_of_elhash (void) | |
| 1850 { | |
| 1851 DEFSUBR (Fhash_table_p); | |
| 1852 DEFSUBR (Fmake_hash_table); | |
| 1853 DEFSUBR (Fcopy_hash_table); | |
| 1854 DEFSUBR (Fgethash); | |
| 1855 DEFSUBR (Fremhash); | |
| 1856 DEFSUBR (Fputhash); | |
| 1857 DEFSUBR (Fclrhash); | |
| 1858 DEFSUBR (Fmaphash); | |
| 1859 DEFSUBR (Fhash_table_count); | |
| 1860 DEFSUBR (Fhash_table_test); | |
| 1861 DEFSUBR (Fhash_table_size); | |
| 1862 DEFSUBR (Fhash_table_rehash_size); | |
| 1863 DEFSUBR (Fhash_table_rehash_threshold); | |
| 1864 DEFSUBR (Fhash_table_weakness); | |
| 1865 DEFSUBR (Fhash_table_type); /* obsolete */ | |
| 1866 DEFSUBR (Fsxhash); | |
| 1867 #if 0 | |
| 1868 DEFSUBR (Finternal_hash_value); | |
| 1869 #endif | |
| 1870 | |
| 563 | 1871 DEFSYMBOL_MULTIWORD_PREDICATE (Qhash_tablep); |
| 1872 DEFSYMBOL (Qhash_table); | |
| 1873 DEFSYMBOL (Qhashtable); | |
| 1874 DEFSYMBOL (Qweakness); | |
| 1875 DEFSYMBOL (Qvalue); | |
| 1876 DEFSYMBOL (Qkey_or_value); | |
| 1877 DEFSYMBOL (Qkey_and_value); | |
| 1878 DEFSYMBOL (Qrehash_size); | |
| 1879 DEFSYMBOL (Qrehash_threshold); | |
| 428 | 1880 |
| 563 | 1881 DEFSYMBOL (Qweak); /* obsolete */ |
| 1882 DEFSYMBOL (Qkey_weak); /* obsolete */ | |
| 1883 DEFSYMBOL (Qkey_or_value_weak); /* obsolete */ | |
| 1884 DEFSYMBOL (Qvalue_weak); /* obsolete */ | |
| 1885 DEFSYMBOL (Qnon_weak); /* obsolete */ | |
| 428 | 1886 |
|
4820
e6dec75ded0e
Use keywords, not ordinary symbols, in the structure syntax for hash tables.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4779
diff
changeset
|
1887 DEFKEYWORD (Q_data); |
| 563 | 1888 DEFKEYWORD (Q_test); |
| 1889 DEFKEYWORD (Q_size); | |
| 1890 DEFKEYWORD (Q_rehash_size); | |
| 1891 DEFKEYWORD (Q_rehash_threshold); | |
| 1892 DEFKEYWORD (Q_weakness); | |
| 1893 DEFKEYWORD (Q_type); /* obsolete */ | |
| 428 | 1894 } |
| 1895 | |
| 1896 void | |
| 771 | 1897 init_elhash_once_early (void) |
| 428 | 1898 { |
| 771 | 1899 INIT_LRECORD_IMPLEMENTATION (hash_table); |
| 3092 | 1900 #ifdef NEW_GC |
| 1901 INIT_LRECORD_IMPLEMENTATION (hash_table_entry); | |
| 1902 #endif /* NEW_GC */ | |
| 771 | 1903 |
| 428 | 1904 /* This must NOT be staticpro'd */ |
| 1905 Vall_weak_hash_tables = Qnil; | |
| 452 | 1906 dump_add_weak_object_chain (&Vall_weak_hash_tables); |
| 428 | 1907 } |
