Mercurial > hg > xemacs-beta
annotate src/unicode.c @ 4594:2986723ac32d
Update comment.
author | Stephen J. Turnbull <stephen@xemacs.org> |
---|---|
date | Mon, 02 Feb 2009 23:31:09 +0900 |
parents | 2669b1b7e33b |
children | 7e54adf407a1 |
rev | line source |
---|---|
771 | 1 /* Code to handle Unicode conversion. |
3025 | 2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005 Ben Wing. |
771 | 3 |
4 This file is part of XEmacs. | |
5 | |
6 XEmacs is free software; you can redistribute it and/or modify it | |
7 under the terms of the GNU General Public License as published by the | |
8 Free Software Foundation; either version 2, or (at your option) any | |
9 later version. | |
10 | |
11 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
14 for more details. | |
15 | |
16 You should have received a copy of the GNU General Public License | |
17 along with XEmacs; see the file COPYING. If not, write to | |
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
19 Boston, MA 02111-1307, USA. */ | |
20 | |
21 /* Synched up with: FSF 20.3. Not in FSF. */ | |
22 | |
23 /* Authorship: | |
24 | |
25 Current primary author: Ben Wing <ben@xemacs.org> | |
26 | |
27 Written by Ben Wing <ben@xemacs.org>, June, 2001. | |
28 Separated out into this file, August, 2001. | |
29 Includes Unicode coding systems, some parts of which have been written | |
877 | 30 by someone else. #### Morioka and Hayashi, I think. |
771 | 31 |
32 As of September 2001, the detection code is here and abstraction of the | |
877 | 33 detection system is finished. The unicode detectors have been rewritten |
771 | 34 to include multiple levels of likelihood. |
35 */ | |
36 | |
37 #include <config.h> | |
38 #include "lisp.h" | |
39 | |
40 #include "charset.h" | |
41 #include "file-coding.h" | |
42 #include "opaque.h" | |
43 | |
44 #include "sysfile.h" | |
45 | |
2367 | 46 /* For more info about how Unicode works under Windows, see intl-win32.c. */ |
47 | |
48 /* Info about Unicode translation tables [ben]: | |
49 | |
50 FORMAT: | |
51 ------- | |
52 | |
53 We currently use the following format for tables: | |
54 | |
55 If dimension == 1, to_unicode_table is a 96-element array of ints | |
56 (Unicode code points); else, it's a 96-element array of int * pointers, | |
57 each of which points to a 96-element array of ints. If no elements in a | |
58 row have been filled in, the pointer will point to a default empty | |
59 table; that way, memory usage is more reasonable but lookup still fast. | |
60 | |
61 -- If from_unicode_levels == 1, from_unicode_table is a 256-element | |
62 array of shorts (octet 1 in high byte, octet 2 in low byte; we don't | |
63 store Ichars directly to save space). | |
64 | |
65 -- If from_unicode_levels == 2, from_unicode_table is a 256-element | |
66 array of short * pointers, each of which points to a 256-element array | |
67 of shorts. | |
68 | |
69 -- If from_unicode_levels == 3, from_unicode_table is a 256-element | |
70 array of short ** pointers, each of which points to a 256-element array | |
71 of short * pointers, each of which points to a 256-element array of | |
72 shorts. | |
73 | |
74 -- If from_unicode_levels == 4, same thing but one level deeper. | |
75 | |
76 Just as for to_unicode_table, we use default tables to fill in all | |
77 entries with no values in them. | |
78 | |
79 #### An obvious space-saving optimization is to use variable-sized | |
80 tables, where each table instead of just being a 256-element array, is a | |
81 structure with a start value, an end value, and a variable number of | |
82 entries (END - START + 1). Only 8 bits are needed for END and START, | |
83 and could be stored at the end to avoid alignment problems. However, | |
84 before charging off and implementing this, we need to consider whether | |
85 it's worth it: | |
86 | |
87 (1) Most tables will be highly localized in which code points are | |
88 defined, heavily reducing the possible memory waste. Before doing any | |
89 rewriting, write some code to see how much memory is actually being | |
90 wasted (i.e. ratio of empty entries to total # of entries) and only | |
91 start rewriting if it's unacceptably high. You have to check over all | |
92 charsets. | |
93 | |
94 (2) Since entries are usually added one at a time, you have to be very | |
95 careful when creating the tables to avoid realloc()/free() thrashing in | |
96 the common case when you are in an area of high localization and are | |
97 going to end up using most entries in the table. You'd certainly want | |
98 to allow only certain sizes, not arbitrary ones (probably powers of 2, | |
99 where you want the entire block including the START/END values to fit | |
100 into a power of 2, minus any malloc overhead if there is any -- there's | |
101 none under gmalloc.c, and probably most system malloc() functions are | |
102 quite smart nowadays and also have no overhead). You could optimize | |
103 somewhat during the in-C initializations, because you can compute the | |
104 actual usage of various tables by scanning the entries you're going to | |
105 add in a separate pass before adding them. (You could actually do the | |
106 same thing when entries are added on the Lisp level by making the | |
107 assumption that all the entries will come in one after another before | |
108 any use is made of the data. So as they're coming in, you just store | |
109 them in a big long list, and the first time you need to retrieve an | |
110 entry, you compute the whole table at once.) You'd still have to deal | |
111 with the possibility of later entries coming in, though. | |
112 | |
113 (3) You do lose some speed using START/END values, since you need a | |
114 couple of comparisons at each level. This could easily make each single | |
115 lookup become 3-4 times slower. The Unicode book considers this a big | |
116 issue, and recommends against variable-sized tables for this reason; | |
117 however, they almost certainly have in mind applications that primarily | |
118 involve conversion of large amounts of data. Most Unicode strings that | |
119 are translated in XEmacs are fairly small. The only place where this | |
120 might matter is in loading large files -- e.g. a 3-megabyte | |
121 Unicode-encoded file. So think about this, and maybe do a trial | |
122 implementation where you don't worry too much about the intricacies of | |
123 (2) and just implement some basic "multiply by 1.5" trick or something | |
124 to do the resizing. There is a very good FAQ on Unicode called | |
125 something like the Linux-Unicode How-To (it should be part of the Linux | |
126 How-To's, I think), that lists the url of a guy with a whole bunch of | |
127 unicode files you can use to stress-test your implementations, and he's | |
128 highly likely to have a good multi-megabyte Unicode-encoded file (with | |
129 normal text in it -- if you created your own just by creating repeated | |
130 strings of letters and numbers, you probably wouldn't get accurate | |
131 results). | |
132 | |
133 INITIALIZATION: | |
134 --------------- | |
135 | |
136 There are advantages and disadvantages to loading the tables at | |
137 run-time. | |
138 | |
139 Advantages: | |
140 | |
141 They're big, and it's very fast to recreate them (a fraction of a second | |
142 on modern processors). | |
143 | |
144 Disadvantages: | |
145 | |
146 (1) User-defined charsets: It would be inconvenient to require all | |
147 dumped user-defined charsets to be reloaded at init time. | |
148 | |
149 NB With run-time loading, we load in init-mule-at-startup, in | |
150 mule-cmds.el. This is called from startup.el, which is quite late in | |
151 the initialization process -- but data-directory isn't set until then. | |
152 With dump-time loading, you still can't dump in a Japanese directory | |
153 (again, until we move to Unicode internally), but this is not such an | |
154 imposition. | |
155 | |
156 | |
157 */ | |
158 | |
771 | 159 /* #### WARNING! The current sledgehammer routines have a fundamental |
160 problem in that they can't handle two characters mapping to a | |
161 single Unicode codepoint or vice-versa in a single charset table. | |
162 It's not clear there is any way to handle this and still make the | |
877 | 163 sledgehammer routines useful. |
164 | |
165 Inquiring Minds Want To Know Dept: does the above WARNING mean that | |
166 _if_ it happens, then it will signal error, or then it will do | |
167 something evil and unpredictable? Signaling an error is OK: for | |
168 all national standards, the national to Unicode map is an inclusion | |
169 (1-to-1). Any character set that does not behave that way is | |
1318 | 170 broken according to the Unicode standard. |
171 | |
2500 | 172 Answer: You will get an ABORT(), since the purpose of the sledgehammer |
1318 | 173 routines is self-checking. The above problem with non-1-to-1 mapping |
174 occurs in the Big5 tables, as provided by the Unicode Consortium. */ | |
877 | 175 |
771 | 176 /* #define SLEDGEHAMMER_CHECK_UNICODE */ |
177 | |
178 /* When MULE is not defined, we may still need some Unicode support -- | |
179 in particular, some Windows API's always want Unicode, and the way | |
180 we've set up the Unicode encapsulation, we may as well go ahead and | |
181 always use the Unicode versions of split API's. (It would be | |
182 trickier to not use them, and pointless -- under NT, the ANSI API's | |
183 call the Unicode ones anyway, so in the case of structures, we'd be | |
184 converting from Unicode to ANSI structures, only to have the OS | |
185 convert them back.) */ | |
186 | |
187 Lisp_Object Qunicode; | |
4096 | 188 Lisp_Object Qutf_16, Qutf_8, Qucs_4, Qutf_7, Qutf_32; |
771 | 189 Lisp_Object Qneed_bom; |
190 | |
191 Lisp_Object Qutf_16_little_endian, Qutf_16_bom; | |
192 Lisp_Object Qutf_16_little_endian_bom; | |
193 | |
985 | 194 Lisp_Object Qutf_8_bom; |
195 | |
3952 | 196 /* See the Unicode FAQ, http://www.unicode.org/faq/utf_bom.html#35 for this |
197 algorithm. | |
198 | |
199 (They also give another, really verbose one, as part of their explanation | |
200 of the various planes of the encoding, but we won't use that.) */ | |
201 | |
202 #define UTF_16_LEAD_OFFSET (0xD800 - (0x10000 >> 10)) | |
203 #define UTF_16_SURROGATE_OFFSET (0x10000 - (0xD800 << 10) - 0xDC00) | |
204 | |
205 #define utf_16_surrogates_to_code(lead, trail) \ | |
206 (((lead) << 10) + (trail) + UTF_16_SURROGATE_OFFSET) | |
207 | |
208 #define CODE_TO_UTF_16_SURROGATES(codepoint, lead, trail) do { \ | |
209 int __ctu16s_code = (codepoint); \ | |
210 lead = UTF_16_LEAD_OFFSET + (__ctu16s_code >> 10); \ | |
211 trail = 0xDC00 + (__ctu16s_code & 0x3FF); \ | |
212 } while (0) | |
213 | |
771 | 214 #ifdef MULE |
215 | |
3352 | 216 /* Using ints for to_unicode is OK (as long as they are >= 32 bits). |
217 In from_unicode, we're converting from Mule characters, which means | |
218 that the values being converted to are only 96x96, and we can save | |
219 space by using shorts (signedness doesn't matter). */ | |
771 | 220 static int *to_unicode_blank_1; |
221 static int **to_unicode_blank_2; | |
222 | |
223 static short *from_unicode_blank_1; | |
224 static short **from_unicode_blank_2; | |
225 static short ***from_unicode_blank_3; | |
226 static short ****from_unicode_blank_4; | |
227 | |
1204 | 228 static const struct memory_description to_unicode_level_0_desc_1[] = { |
771 | 229 { XD_END } |
230 }; | |
231 | |
1204 | 232 static const struct sized_memory_description to_unicode_level_0_desc = { |
233 sizeof (int), to_unicode_level_0_desc_1 | |
771 | 234 }; |
235 | |
1204 | 236 static const struct memory_description to_unicode_level_1_desc_1[] = { |
2551 | 237 { XD_BLOCK_PTR, 0, 96, { &to_unicode_level_0_desc } }, |
771 | 238 { XD_END } |
239 }; | |
240 | |
1204 | 241 static const struct sized_memory_description to_unicode_level_1_desc = { |
242 sizeof (void *), to_unicode_level_1_desc_1 | |
771 | 243 }; |
244 | |
1204 | 245 static const struct memory_description to_unicode_description_1[] = { |
2551 | 246 { XD_BLOCK_PTR, 1, 96, { &to_unicode_level_0_desc } }, |
247 { XD_BLOCK_PTR, 2, 96, { &to_unicode_level_1_desc } }, | |
771 | 248 { XD_END } |
249 }; | |
250 | |
251 /* Not static because each charset has a set of to and from tables and | |
252 needs to describe them to pdump. */ | |
1204 | 253 const struct sized_memory_description to_unicode_description = { |
254 sizeof (void *), to_unicode_description_1 | |
255 }; | |
256 | |
2367 | 257 /* Used only for to_unicode_blank_2 */ |
258 static const struct memory_description to_unicode_level_2_desc_1[] = { | |
2551 | 259 { XD_BLOCK_PTR, 0, 96, { &to_unicode_level_1_desc } }, |
2367 | 260 { XD_END } |
261 }; | |
262 | |
1204 | 263 static const struct memory_description from_unicode_level_0_desc_1[] = { |
771 | 264 { XD_END } |
265 }; | |
266 | |
1204 | 267 static const struct sized_memory_description from_unicode_level_0_desc = { |
268 sizeof (short), from_unicode_level_0_desc_1 | |
771 | 269 }; |
270 | |
1204 | 271 static const struct memory_description from_unicode_level_1_desc_1[] = { |
2551 | 272 { XD_BLOCK_PTR, 0, 256, { &from_unicode_level_0_desc } }, |
771 | 273 { XD_END } |
274 }; | |
275 | |
1204 | 276 static const struct sized_memory_description from_unicode_level_1_desc = { |
277 sizeof (void *), from_unicode_level_1_desc_1 | |
771 | 278 }; |
279 | |
1204 | 280 static const struct memory_description from_unicode_level_2_desc_1[] = { |
2551 | 281 { XD_BLOCK_PTR, 0, 256, { &from_unicode_level_1_desc } }, |
771 | 282 { XD_END } |
283 }; | |
284 | |
1204 | 285 static const struct sized_memory_description from_unicode_level_2_desc = { |
286 sizeof (void *), from_unicode_level_2_desc_1 | |
771 | 287 }; |
288 | |
1204 | 289 static const struct memory_description from_unicode_level_3_desc_1[] = { |
2551 | 290 { XD_BLOCK_PTR, 0, 256, { &from_unicode_level_2_desc } }, |
771 | 291 { XD_END } |
292 }; | |
293 | |
1204 | 294 static const struct sized_memory_description from_unicode_level_3_desc = { |
295 sizeof (void *), from_unicode_level_3_desc_1 | |
771 | 296 }; |
297 | |
1204 | 298 static const struct memory_description from_unicode_description_1[] = { |
2551 | 299 { XD_BLOCK_PTR, 1, 256, { &from_unicode_level_0_desc } }, |
300 { XD_BLOCK_PTR, 2, 256, { &from_unicode_level_1_desc } }, | |
301 { XD_BLOCK_PTR, 3, 256, { &from_unicode_level_2_desc } }, | |
302 { XD_BLOCK_PTR, 4, 256, { &from_unicode_level_3_desc } }, | |
771 | 303 { XD_END } |
304 }; | |
305 | |
306 /* Not static because each charset has a set of to and from tables and | |
307 needs to describe them to pdump. */ | |
1204 | 308 const struct sized_memory_description from_unicode_description = { |
309 sizeof (void *), from_unicode_description_1 | |
771 | 310 }; |
311 | |
2367 | 312 /* Used only for from_unicode_blank_4 */ |
313 static const struct memory_description from_unicode_level_4_desc_1[] = { | |
2551 | 314 { XD_BLOCK_PTR, 0, 256, { &from_unicode_level_3_desc } }, |
2367 | 315 { XD_END } |
316 }; | |
317 | |
771 | 318 static Lisp_Object_dynarr *unicode_precedence_dynarr; |
319 | |
1204 | 320 static const struct memory_description lod_description_1[] = { |
321 XD_DYNARR_DESC (Lisp_Object_dynarr, &lisp_object_description), | |
771 | 322 { XD_END } |
323 }; | |
324 | |
1204 | 325 static const struct sized_memory_description lisp_object_dynarr_description = { |
771 | 326 sizeof (Lisp_Object_dynarr), |
327 lod_description_1 | |
328 }; | |
329 | |
330 Lisp_Object Vlanguage_unicode_precedence_list; | |
331 Lisp_Object Vdefault_unicode_precedence_list; | |
332 | |
333 Lisp_Object Qignore_first_column; | |
334 | |
3439 | 335 Lisp_Object Vcurrent_jit_charset; |
336 Lisp_Object Qlast_allocated_character; | |
337 Lisp_Object Qccl_encode_to_ucs_2; | |
338 | |
4268 | 339 Lisp_Object Vnumber_of_jit_charsets; |
340 Lisp_Object Vlast_jit_charset_final; | |
341 Lisp_Object Vcharset_descr; | |
342 | |
343 | |
771 | 344 |
345 /************************************************************************/ | |
346 /* Unicode implementation */ | |
347 /************************************************************************/ | |
348 | |
349 #define BREAKUP_UNICODE_CODE(val, u1, u2, u3, u4, levels) \ | |
350 do { \ | |
351 int buc_val = (val); \ | |
352 \ | |
353 (u1) = buc_val >> 24; \ | |
354 (u2) = (buc_val >> 16) & 255; \ | |
355 (u3) = (buc_val >> 8) & 255; \ | |
356 (u4) = buc_val & 255; \ | |
357 (levels) = (buc_val <= 0xFF ? 1 : \ | |
358 buc_val <= 0xFFFF ? 2 : \ | |
359 buc_val <= 0xFFFFFF ? 3 : \ | |
360 4); \ | |
361 } while (0) | |
362 | |
363 static void | |
364 init_blank_unicode_tables (void) | |
365 { | |
366 int i; | |
367 | |
368 from_unicode_blank_1 = xnew_array (short, 256); | |
369 from_unicode_blank_2 = xnew_array (short *, 256); | |
370 from_unicode_blank_3 = xnew_array (short **, 256); | |
371 from_unicode_blank_4 = xnew_array (short ***, 256); | |
372 for (i = 0; i < 256; i++) | |
373 { | |
877 | 374 /* #### IMWTK: Why does using -1 here work? Simply because there are |
1318 | 375 no existing 96x96 charsets? |
376 | |
377 Answer: I don't understand the concern. -1 indicates there is no | |
378 entry for this particular codepoint, which is always the case for | |
379 blank tables. */ | |
771 | 380 from_unicode_blank_1[i] = (short) -1; |
381 from_unicode_blank_2[i] = from_unicode_blank_1; | |
382 from_unicode_blank_3[i] = from_unicode_blank_2; | |
383 from_unicode_blank_4[i] = from_unicode_blank_3; | |
384 } | |
385 | |
386 to_unicode_blank_1 = xnew_array (int, 96); | |
387 to_unicode_blank_2 = xnew_array (int *, 96); | |
388 for (i = 0; i < 96; i++) | |
389 { | |
877 | 390 /* Here -1 is guaranteed OK. */ |
771 | 391 to_unicode_blank_1[i] = -1; |
392 to_unicode_blank_2[i] = to_unicode_blank_1; | |
393 } | |
394 } | |
395 | |
396 static void * | |
397 create_new_from_unicode_table (int level) | |
398 { | |
399 switch (level) | |
400 { | |
401 /* WARNING: If you are thinking of compressing these, keep in | |
402 mind that sizeof (short) does not equal sizeof (short *). */ | |
403 case 1: | |
404 { | |
405 short *newtab = xnew_array (short, 256); | |
406 memcpy (newtab, from_unicode_blank_1, 256 * sizeof (short)); | |
407 return newtab; | |
408 } | |
409 case 2: | |
410 { | |
411 short **newtab = xnew_array (short *, 256); | |
412 memcpy (newtab, from_unicode_blank_2, 256 * sizeof (short *)); | |
413 return newtab; | |
414 } | |
415 case 3: | |
416 { | |
417 short ***newtab = xnew_array (short **, 256); | |
418 memcpy (newtab, from_unicode_blank_3, 256 * sizeof (short **)); | |
419 return newtab; | |
420 } | |
421 case 4: | |
422 { | |
423 short ****newtab = xnew_array (short ***, 256); | |
424 memcpy (newtab, from_unicode_blank_4, 256 * sizeof (short ***)); | |
425 return newtab; | |
426 } | |
427 default: | |
2500 | 428 ABORT (); |
771 | 429 return 0; |
430 } | |
431 } | |
432 | |
877 | 433 /* Allocate and blank the tables. |
1318 | 434 Loading them up is done by load-unicode-mapping-table. */ |
771 | 435 void |
436 init_charset_unicode_tables (Lisp_Object charset) | |
437 { | |
438 if (XCHARSET_DIMENSION (charset) == 1) | |
439 { | |
440 int *to_table = xnew_array (int, 96); | |
441 memcpy (to_table, to_unicode_blank_1, 96 * sizeof (int)); | |
442 XCHARSET_TO_UNICODE_TABLE (charset) = to_table; | |
443 } | |
444 else | |
445 { | |
446 int **to_table = xnew_array (int *, 96); | |
447 memcpy (to_table, to_unicode_blank_2, 96 * sizeof (int *)); | |
448 XCHARSET_TO_UNICODE_TABLE (charset) = to_table; | |
449 } | |
450 | |
451 { | |
2367 | 452 XCHARSET_FROM_UNICODE_TABLE (charset) = |
453 create_new_from_unicode_table (1); | |
771 | 454 XCHARSET_FROM_UNICODE_LEVELS (charset) = 1; |
455 } | |
456 } | |
457 | |
458 static void | |
459 free_from_unicode_table (void *table, int level) | |
460 { | |
461 int i; | |
462 | |
463 switch (level) | |
464 { | |
465 case 2: | |
466 { | |
467 short **tab = (short **) table; | |
468 for (i = 0; i < 256; i++) | |
469 { | |
470 if (tab[i] != from_unicode_blank_1) | |
471 free_from_unicode_table (tab[i], 1); | |
472 } | |
473 break; | |
474 } | |
475 case 3: | |
476 { | |
477 short ***tab = (short ***) table; | |
478 for (i = 0; i < 256; i++) | |
479 { | |
480 if (tab[i] != from_unicode_blank_2) | |
481 free_from_unicode_table (tab[i], 2); | |
482 } | |
483 break; | |
484 } | |
485 case 4: | |
486 { | |
487 short ****tab = (short ****) table; | |
488 for (i = 0; i < 256; i++) | |
489 { | |
490 if (tab[i] != from_unicode_blank_3) | |
491 free_from_unicode_table (tab[i], 3); | |
492 } | |
493 break; | |
494 } | |
495 } | |
496 | |
1726 | 497 xfree (table, void *); |
771 | 498 } |
499 | |
500 static void | |
501 free_to_unicode_table (void *table, int level) | |
502 { | |
503 if (level == 2) | |
504 { | |
505 int i; | |
506 int **tab = (int **) table; | |
507 | |
508 for (i = 0; i < 96; i++) | |
509 { | |
510 if (tab[i] != to_unicode_blank_1) | |
511 free_to_unicode_table (tab[i], 1); | |
512 } | |
513 } | |
514 | |
1726 | 515 xfree (table, void *); |
771 | 516 } |
517 | |
518 void | |
519 free_charset_unicode_tables (Lisp_Object charset) | |
520 { | |
521 free_to_unicode_table (XCHARSET_TO_UNICODE_TABLE (charset), | |
522 XCHARSET_DIMENSION (charset)); | |
523 free_from_unicode_table (XCHARSET_FROM_UNICODE_TABLE (charset), | |
524 XCHARSET_FROM_UNICODE_LEVELS (charset)); | |
525 } | |
526 | |
527 #ifdef MEMORY_USAGE_STATS | |
528 | |
529 static Bytecount | |
530 compute_from_unicode_table_size_1 (void *table, int level, | |
531 struct overhead_stats *stats) | |
532 { | |
533 int i; | |
534 Bytecount size = 0; | |
535 | |
536 switch (level) | |
537 { | |
538 case 2: | |
539 { | |
540 short **tab = (short **) table; | |
541 for (i = 0; i < 256; i++) | |
542 { | |
543 if (tab[i] != from_unicode_blank_1) | |
544 size += compute_from_unicode_table_size_1 (tab[i], 1, stats); | |
545 } | |
546 break; | |
547 } | |
548 case 3: | |
549 { | |
550 short ***tab = (short ***) table; | |
551 for (i = 0; i < 256; i++) | |
552 { | |
553 if (tab[i] != from_unicode_blank_2) | |
554 size += compute_from_unicode_table_size_1 (tab[i], 2, stats); | |
555 } | |
556 break; | |
557 } | |
558 case 4: | |
559 { | |
560 short ****tab = (short ****) table; | |
561 for (i = 0; i < 256; i++) | |
562 { | |
563 if (tab[i] != from_unicode_blank_3) | |
564 size += compute_from_unicode_table_size_1 (tab[i], 3, stats); | |
565 } | |
566 break; | |
567 } | |
568 } | |
569 | |
3024 | 570 size += malloced_storage_size (table, |
771 | 571 256 * (level == 1 ? sizeof (short) : |
572 sizeof (void *)), | |
573 stats); | |
574 return size; | |
575 } | |
576 | |
577 static Bytecount | |
578 compute_to_unicode_table_size_1 (void *table, int level, | |
579 struct overhead_stats *stats) | |
580 { | |
581 Bytecount size = 0; | |
582 | |
583 if (level == 2) | |
584 { | |
585 int i; | |
586 int **tab = (int **) table; | |
587 | |
588 for (i = 0; i < 96; i++) | |
589 { | |
590 if (tab[i] != to_unicode_blank_1) | |
591 size += compute_to_unicode_table_size_1 (tab[i], 1, stats); | |
592 } | |
593 } | |
594 | |
3024 | 595 size += malloced_storage_size (table, |
771 | 596 96 * (level == 1 ? sizeof (int) : |
597 sizeof (void *)), | |
598 stats); | |
599 return size; | |
600 } | |
601 | |
602 Bytecount | |
603 compute_from_unicode_table_size (Lisp_Object charset, | |
604 struct overhead_stats *stats) | |
605 { | |
606 return (compute_from_unicode_table_size_1 | |
607 (XCHARSET_FROM_UNICODE_TABLE (charset), | |
608 XCHARSET_FROM_UNICODE_LEVELS (charset), | |
609 stats)); | |
610 } | |
611 | |
612 Bytecount | |
613 compute_to_unicode_table_size (Lisp_Object charset, | |
614 struct overhead_stats *stats) | |
615 { | |
616 return (compute_to_unicode_table_size_1 | |
617 (XCHARSET_TO_UNICODE_TABLE (charset), | |
618 XCHARSET_DIMENSION (charset), | |
619 stats)); | |
620 } | |
621 | |
622 #endif | |
623 | |
624 #ifdef SLEDGEHAMMER_CHECK_UNICODE | |
625 | |
626 /* "Sledgehammer checks" are checks that verify the self-consistency | |
627 of an entire structure every time a change is about to be made or | |
628 has been made to the structure. Not fast but a pretty much | |
629 sure-fire way of flushing out any incorrectnesses in the algorithms | |
630 that create the structure. | |
631 | |
632 Checking only after a change has been made will speed things up by | |
633 a factor of 2, but it doesn't absolutely prove that the code just | |
634 checked caused the problem; perhaps it happened elsewhere, either | |
635 in some code you forgot to sledgehammer check or as a result of | |
636 data corruption. */ | |
637 | |
638 static void | |
639 assert_not_any_blank_table (void *tab) | |
640 { | |
641 assert (tab != from_unicode_blank_1); | |
642 assert (tab != from_unicode_blank_2); | |
643 assert (tab != from_unicode_blank_3); | |
644 assert (tab != from_unicode_blank_4); | |
645 assert (tab != to_unicode_blank_1); | |
646 assert (tab != to_unicode_blank_2); | |
647 assert (tab); | |
648 } | |
649 | |
650 static void | |
651 sledgehammer_check_from_table (Lisp_Object charset, void *table, int level, | |
652 int codetop) | |
653 { | |
654 int i; | |
655 | |
656 switch (level) | |
657 { | |
658 case 1: | |
659 { | |
660 short *tab = (short *) table; | |
661 for (i = 0; i < 256; i++) | |
662 { | |
663 if (tab[i] != -1) | |
664 { | |
665 Lisp_Object char_charset; | |
666 int c1, c2; | |
667 | |
867 | 668 assert (valid_ichar_p (tab[i])); |
669 BREAKUP_ICHAR (tab[i], char_charset, c1, c2); | |
771 | 670 assert (EQ (charset, char_charset)); |
671 if (XCHARSET_DIMENSION (charset) == 1) | |
672 { | |
673 int *to_table = | |
674 (int *) XCHARSET_TO_UNICODE_TABLE (charset); | |
675 assert_not_any_blank_table (to_table); | |
676 assert (to_table[c1 - 32] == (codetop << 8) + i); | |
677 } | |
678 else | |
679 { | |
680 int **to_table = | |
681 (int **) XCHARSET_TO_UNICODE_TABLE (charset); | |
682 assert_not_any_blank_table (to_table); | |
683 assert_not_any_blank_table (to_table[c1 - 32]); | |
684 assert (to_table[c1 - 32][c2 - 32] == (codetop << 8) + i); | |
685 } | |
686 } | |
687 } | |
688 break; | |
689 } | |
690 case 2: | |
691 { | |
692 short **tab = (short **) table; | |
693 for (i = 0; i < 256; i++) | |
694 { | |
695 if (tab[i] != from_unicode_blank_1) | |
696 sledgehammer_check_from_table (charset, tab[i], 1, | |
697 (codetop << 8) + i); | |
698 } | |
699 break; | |
700 } | |
701 case 3: | |
702 { | |
703 short ***tab = (short ***) table; | |
704 for (i = 0; i < 256; i++) | |
705 { | |
706 if (tab[i] != from_unicode_blank_2) | |
707 sledgehammer_check_from_table (charset, tab[i], 2, | |
708 (codetop << 8) + i); | |
709 } | |
710 break; | |
711 } | |
712 case 4: | |
713 { | |
714 short ****tab = (short ****) table; | |
715 for (i = 0; i < 256; i++) | |
716 { | |
717 if (tab[i] != from_unicode_blank_3) | |
718 sledgehammer_check_from_table (charset, tab[i], 3, | |
719 (codetop << 8) + i); | |
720 } | |
721 break; | |
722 } | |
723 default: | |
2500 | 724 ABORT (); |
771 | 725 } |
726 } | |
727 | |
728 static void | |
729 sledgehammer_check_to_table (Lisp_Object charset, void *table, int level, | |
730 int codetop) | |
731 { | |
732 int i; | |
733 | |
734 switch (level) | |
735 { | |
736 case 1: | |
737 { | |
738 int *tab = (int *) table; | |
739 | |
740 if (XCHARSET_CHARS (charset) == 94) | |
741 { | |
742 assert (tab[0] == -1); | |
743 assert (tab[95] == -1); | |
744 } | |
745 | |
746 for (i = 0; i < 96; i++) | |
747 { | |
748 if (tab[i] != -1) | |
749 { | |
750 int u4, u3, u2, u1, levels; | |
867 | 751 Ichar ch; |
752 Ichar this_ch; | |
771 | 753 short val; |
754 void *frtab = XCHARSET_FROM_UNICODE_TABLE (charset); | |
755 | |
756 if (XCHARSET_DIMENSION (charset) == 1) | |
867 | 757 this_ch = make_ichar (charset, i + 32, 0); |
771 | 758 else |
867 | 759 this_ch = make_ichar (charset, codetop + 32, i + 32); |
771 | 760 |
761 assert (tab[i] >= 0); | |
762 BREAKUP_UNICODE_CODE (tab[i], u4, u3, u2, u1, levels); | |
763 assert (levels <= XCHARSET_FROM_UNICODE_LEVELS (charset)); | |
764 | |
765 switch (XCHARSET_FROM_UNICODE_LEVELS (charset)) | |
766 { | |
767 case 1: val = ((short *) frtab)[u1]; break; | |
768 case 2: val = ((short **) frtab)[u2][u1]; break; | |
769 case 3: val = ((short ***) frtab)[u3][u2][u1]; break; | |
770 case 4: val = ((short ****) frtab)[u4][u3][u2][u1]; break; | |
2500 | 771 default: ABORT (); |
771 | 772 } |
773 | |
867 | 774 ch = make_ichar (charset, val >> 8, val & 0xFF); |
771 | 775 assert (ch == this_ch); |
776 | |
777 switch (XCHARSET_FROM_UNICODE_LEVELS (charset)) | |
778 { | |
779 case 4: | |
780 assert_not_any_blank_table (frtab); | |
781 frtab = ((short ****) frtab)[u4]; | |
782 /* fall through */ | |
783 case 3: | |
784 assert_not_any_blank_table (frtab); | |
785 frtab = ((short ***) frtab)[u3]; | |
786 /* fall through */ | |
787 case 2: | |
788 assert_not_any_blank_table (frtab); | |
789 frtab = ((short **) frtab)[u2]; | |
790 /* fall through */ | |
791 case 1: | |
792 assert_not_any_blank_table (frtab); | |
793 break; | |
2500 | 794 default: ABORT (); |
771 | 795 } |
796 } | |
797 } | |
798 break; | |
799 } | |
800 case 2: | |
801 { | |
802 int **tab = (int **) table; | |
803 | |
804 if (XCHARSET_CHARS (charset) == 94) | |
805 { | |
806 assert (tab[0] == to_unicode_blank_1); | |
807 assert (tab[95] == to_unicode_blank_1); | |
808 } | |
809 | |
810 for (i = 0; i < 96; i++) | |
811 { | |
812 if (tab[i] != to_unicode_blank_1) | |
813 sledgehammer_check_to_table (charset, tab[i], 1, i); | |
814 } | |
815 break; | |
816 } | |
817 default: | |
2500 | 818 ABORT (); |
771 | 819 } |
820 } | |
821 | |
822 static void | |
823 sledgehammer_check_unicode_tables (Lisp_Object charset) | |
824 { | |
825 /* verify that the blank tables have not been modified */ | |
826 int i; | |
827 int from_level = XCHARSET_FROM_UNICODE_LEVELS (charset); | |
828 int to_level = XCHARSET_FROM_UNICODE_LEVELS (charset); | |
829 | |
830 for (i = 0; i < 256; i++) | |
831 { | |
832 assert (from_unicode_blank_1[i] == (short) -1); | |
833 assert (from_unicode_blank_2[i] == from_unicode_blank_1); | |
834 assert (from_unicode_blank_3[i] == from_unicode_blank_2); | |
835 assert (from_unicode_blank_4[i] == from_unicode_blank_3); | |
836 } | |
837 | |
838 for (i = 0; i < 96; i++) | |
839 { | |
840 assert (to_unicode_blank_1[i] == -1); | |
841 assert (to_unicode_blank_2[i] == to_unicode_blank_1); | |
842 } | |
843 | |
844 assert (from_level >= 1 && from_level <= 4); | |
845 | |
846 sledgehammer_check_from_table (charset, | |
847 XCHARSET_FROM_UNICODE_TABLE (charset), | |
848 from_level, 0); | |
849 | |
850 sledgehammer_check_to_table (charset, | |
851 XCHARSET_TO_UNICODE_TABLE (charset), | |
852 XCHARSET_DIMENSION (charset), 0); | |
853 } | |
854 | |
855 #endif /* SLEDGEHAMMER_CHECK_UNICODE */ | |
856 | |
857 static void | |
867 | 858 set_unicode_conversion (Ichar chr, int code) |
771 | 859 { |
860 Lisp_Object charset; | |
861 int c1, c2; | |
862 | |
867 | 863 BREAKUP_ICHAR (chr, charset, c1, c2); |
771 | 864 |
877 | 865 /* I tried an assert on code > 255 || chr == code, but that fails because |
866 Mule gives many Latin characters separate code points for different | |
867 ISO 8859 coded character sets. Obvious in hindsight.... */ | |
868 assert (!EQ (charset, Vcharset_ascii) || chr == code); | |
869 assert (!EQ (charset, Vcharset_latin_iso8859_1) || chr == code); | |
870 assert (!EQ (charset, Vcharset_control_1) || chr == code); | |
871 | |
872 /* This assert is needed because it is simply unimplemented. */ | |
771 | 873 assert (!EQ (charset, Vcharset_composite)); |
874 | |
875 #ifdef SLEDGEHAMMER_CHECK_UNICODE | |
876 sledgehammer_check_unicode_tables (charset); | |
877 #endif | |
878 | |
2704 | 879 if (EQ(charset, Vcharset_ascii) || EQ(charset, Vcharset_control_1)) |
880 return; | |
881 | |
771 | 882 /* First, the char -> unicode translation */ |
883 | |
884 if (XCHARSET_DIMENSION (charset) == 1) | |
885 { | |
886 int *to_table = (int *) XCHARSET_TO_UNICODE_TABLE (charset); | |
887 to_table[c1 - 32] = code; | |
888 } | |
889 else | |
890 { | |
891 int **to_table_2 = (int **) XCHARSET_TO_UNICODE_TABLE (charset); | |
892 int *to_table_1; | |
893 | |
894 assert (XCHARSET_DIMENSION (charset) == 2); | |
895 to_table_1 = to_table_2[c1 - 32]; | |
896 if (to_table_1 == to_unicode_blank_1) | |
897 { | |
898 to_table_1 = xnew_array (int, 96); | |
899 memcpy (to_table_1, to_unicode_blank_1, 96 * sizeof (int)); | |
900 to_table_2[c1 - 32] = to_table_1; | |
901 } | |
902 to_table_1[c2 - 32] = code; | |
903 } | |
904 | |
905 /* Then, unicode -> char: much harder */ | |
906 | |
907 { | |
908 int charset_levels; | |
909 int u4, u3, u2, u1; | |
910 int code_levels; | |
911 BREAKUP_UNICODE_CODE (code, u4, u3, u2, u1, code_levels); | |
912 | |
913 charset_levels = XCHARSET_FROM_UNICODE_LEVELS (charset); | |
914 | |
915 /* Make sure the charset's tables have at least as many levels as | |
916 the code point has: Note that the charset is guaranteed to have | |
917 at least one level, because it was created that way */ | |
918 if (charset_levels < code_levels) | |
919 { | |
920 int i; | |
921 | |
922 assert (charset_levels > 0); | |
923 for (i = 2; i <= code_levels; i++) | |
924 { | |
925 if (charset_levels < i) | |
926 { | |
927 void *old_table = XCHARSET_FROM_UNICODE_TABLE (charset); | |
928 void *table = create_new_from_unicode_table (i); | |
929 XCHARSET_FROM_UNICODE_TABLE (charset) = table; | |
930 | |
931 switch (i) | |
932 { | |
933 case 2: | |
934 ((short **) table)[0] = (short *) old_table; | |
935 break; | |
936 case 3: | |
937 ((short ***) table)[0] = (short **) old_table; | |
938 break; | |
939 case 4: | |
940 ((short ****) table)[0] = (short ***) old_table; | |
941 break; | |
2500 | 942 default: ABORT (); |
771 | 943 } |
944 } | |
945 } | |
946 | |
947 charset_levels = code_levels; | |
948 XCHARSET_FROM_UNICODE_LEVELS (charset) = code_levels; | |
949 } | |
950 | |
951 /* Now, make sure there is a non-default table at each level */ | |
952 { | |
953 int i; | |
954 void *table = XCHARSET_FROM_UNICODE_TABLE (charset); | |
955 | |
956 for (i = charset_levels; i >= 2; i--) | |
957 { | |
958 switch (i) | |
959 { | |
960 case 4: | |
961 if (((short ****) table)[u4] == from_unicode_blank_3) | |
962 ((short ****) table)[u4] = | |
963 ((short ***) create_new_from_unicode_table (3)); | |
964 table = ((short ****) table)[u4]; | |
965 break; | |
966 case 3: | |
967 if (((short ***) table)[u3] == from_unicode_blank_2) | |
968 ((short ***) table)[u3] = | |
969 ((short **) create_new_from_unicode_table (2)); | |
970 table = ((short ***) table)[u3]; | |
971 break; | |
972 case 2: | |
973 if (((short **) table)[u2] == from_unicode_blank_1) | |
974 ((short **) table)[u2] = | |
975 ((short *) create_new_from_unicode_table (1)); | |
976 table = ((short **) table)[u2]; | |
977 break; | |
2500 | 978 default: ABORT (); |
771 | 979 } |
980 } | |
981 } | |
982 | |
983 /* Finally, set the character */ | |
984 | |
985 { | |
986 void *table = XCHARSET_FROM_UNICODE_TABLE (charset); | |
987 switch (charset_levels) | |
988 { | |
989 case 1: ((short *) table)[u1] = (c1 << 8) + c2; break; | |
990 case 2: ((short **) table)[u2][u1] = (c1 << 8) + c2; break; | |
991 case 3: ((short ***) table)[u3][u2][u1] = (c1 << 8) + c2; break; | |
992 case 4: ((short ****) table)[u4][u3][u2][u1] = (c1 << 8) + c2; break; | |
2500 | 993 default: ABORT (); |
771 | 994 } |
995 } | |
996 } | |
997 | |
998 #ifdef SLEDGEHAMMER_CHECK_UNICODE | |
999 sledgehammer_check_unicode_tables (charset); | |
1000 #endif | |
1001 } | |
1002 | |
788 | 1003 int |
867 | 1004 ichar_to_unicode (Ichar chr) |
771 | 1005 { |
1006 Lisp_Object charset; | |
1007 int c1, c2; | |
1008 | |
867 | 1009 type_checking_assert (valid_ichar_p (chr)); |
877 | 1010 /* This shortcut depends on the representation of an Ichar, see text.c. */ |
771 | 1011 if (chr < 256) |
1012 return (int) chr; | |
1013 | |
867 | 1014 BREAKUP_ICHAR (chr, charset, c1, c2); |
771 | 1015 if (EQ (charset, Vcharset_composite)) |
1016 return -1; /* #### don't know how to handle */ | |
1017 else if (XCHARSET_DIMENSION (charset) == 1) | |
1018 return ((int *) XCHARSET_TO_UNICODE_TABLE (charset))[c1 - 32]; | |
1019 else | |
1020 return ((int **) XCHARSET_TO_UNICODE_TABLE (charset))[c1 - 32][c2 - 32]; | |
1021 } | |
1022 | |
867 | 1023 static Ichar |
3439 | 1024 get_free_codepoint(Lisp_Object charset) |
1025 { | |
1026 Lisp_Object name = Fcharset_name(charset); | |
1027 Lisp_Object zeichen = Fget(name, Qlast_allocated_character, Qnil); | |
1028 Ichar res; | |
1029 | |
1030 /* Only allow this with the 96x96 character sets we are using for | |
1031 temporary Unicode support. */ | |
1032 assert(2 == XCHARSET_DIMENSION(charset) && 96 == XCHARSET_CHARS(charset)); | |
1033 | |
1034 if (!NILP(zeichen)) | |
1035 { | |
1036 int c1, c2; | |
1037 | |
1038 BREAKUP_ICHAR(XCHAR(zeichen), charset, c1, c2); | |
1039 | |
1040 if (127 == c1 && 127 == c2) | |
1041 { | |
1042 /* We've already used the hightest-numbered character in this | |
1043 set--tell our caller to create another. */ | |
1044 return -1; | |
1045 } | |
1046 | |
1047 if (127 == c2) | |
1048 { | |
1049 ++c1; | |
1050 c2 = 0x20; | |
1051 } | |
1052 else | |
1053 { | |
1054 ++c2; | |
1055 } | |
1056 | |
1057 res = make_ichar(charset, c1, c2); | |
1058 Fput(name, Qlast_allocated_character, make_char(res)); | |
1059 } | |
1060 else | |
1061 { | |
1062 res = make_ichar(charset, 32, 32); | |
1063 Fput(name, Qlast_allocated_character, make_char(res)); | |
1064 } | |
1065 return res; | |
1066 } | |
1067 | |
1068 /* The just-in-time creation of XEmacs characters that correspond to unknown | |
1069 Unicode code points happens when: | |
1070 | |
1071 1. The lookup would otherwise fail. | |
1072 | |
1073 2. The charsets array is the nil or the default. | |
1074 | |
1075 If there are no free code points in the just-in-time Unicode character | |
1076 set, and the charsets array is the default unicode precedence list, | |
1077 create a new just-in-time Unicode character set, add it at the end of the | |
1078 unicode precedence list, create the XEmacs character in that character | |
1079 set, and return it. */ | |
1080 | |
1081 static Ichar | |
877 | 1082 unicode_to_ichar (int code, Lisp_Object_dynarr *charsets) |
771 | 1083 { |
1084 int u1, u2, u3, u4; | |
1085 int code_levels; | |
1086 int i; | |
1087 int n = Dynarr_length (charsets); | |
1088 | |
1089 type_checking_assert (code >= 0); | |
877 | 1090 /* This shortcut depends on the representation of an Ichar, see text.c. |
1091 Note that it may _not_ be extended to U+00A0 to U+00FF (many ISO 8859 | |
893 | 1092 coded character sets have points that map into that region, so this |
1093 function is many-valued). */ | |
877 | 1094 if (code < 0xA0) |
867 | 1095 return (Ichar) code; |
771 | 1096 |
1097 BREAKUP_UNICODE_CODE (code, u4, u3, u2, u1, code_levels); | |
1098 | |
1099 for (i = 0; i < n; i++) | |
1100 { | |
1101 Lisp_Object charset = Dynarr_at (charsets, i); | |
1102 int charset_levels = XCHARSET_FROM_UNICODE_LEVELS (charset); | |
1103 if (charset_levels >= code_levels) | |
1104 { | |
1105 void *table = XCHARSET_FROM_UNICODE_TABLE (charset); | |
1106 short retval; | |
1107 | |
1108 switch (charset_levels) | |
1109 { | |
1110 case 1: retval = ((short *) table)[u1]; break; | |
1111 case 2: retval = ((short **) table)[u2][u1]; break; | |
1112 case 3: retval = ((short ***) table)[u3][u2][u1]; break; | |
1113 case 4: retval = ((short ****) table)[u4][u3][u2][u1]; break; | |
2500 | 1114 default: ABORT (); retval = 0; |
771 | 1115 } |
1116 | |
1117 if (retval != -1) | |
867 | 1118 return make_ichar (charset, retval >> 8, retval & 0xFF); |
771 | 1119 } |
1120 } | |
3439 | 1121 |
1122 /* Only do the magic just-in-time assignment if we're using the default | |
1123 list. */ | |
1124 if (unicode_precedence_dynarr == charsets) | |
1125 { | |
1126 if (NILP (Vcurrent_jit_charset) || | |
1127 (-1 == (i = get_free_codepoint(Vcurrent_jit_charset)))) | |
1128 { | |
3452 | 1129 Ibyte setname[32]; |
4268 | 1130 int number_of_jit_charsets = XINT (Vnumber_of_jit_charsets); |
1131 Ascbyte last_jit_charset_final = XCHAR (Vlast_jit_charset_final); | |
1132 | |
1133 /* This final byte shit is, umm, not that cool. */ | |
1134 assert (last_jit_charset_final >= 0x30); | |
3439 | 1135 |
3452 | 1136 /* Assertion added partly because our Win32 layer doesn't |
1137 support snprintf; with this, we're sure it won't overflow | |
1138 the buffer. */ | |
1139 assert(100 > number_of_jit_charsets); | |
1140 | |
4268 | 1141 qxesprintf(setname, "jit-ucs-charset-%d", number_of_jit_charsets); |
1142 | |
3439 | 1143 Vcurrent_jit_charset = Fmake_charset |
4268 | 1144 (intern((const CIbyte *)setname), Vcharset_descr, |
3439 | 1145 /* Set encode-as-utf-8 to t, to have this character set written |
1146 using UTF-8 escapes in escape-quoted and ctext. This | |
1147 sidesteps the fact that our internal character -> Unicode | |
1148 mapping is not stable from one invocation to the next. */ | |
1149 nconc2 (list2(Qencode_as_utf_8, Qt), | |
1150 nconc2 (list6(Qcolumns, make_int(1), Qchars, make_int(96), | |
1151 Qdimension, make_int(2)), | |
3659 | 1152 list6(Qregistries, Qunicode_registries, |
4268 | 1153 Qfinal, make_char(last_jit_charset_final), |
3439 | 1154 /* This CCL program is initialised in |
1155 unicode.el. */ | |
1156 Qccl_program, Qccl_encode_to_ucs_2)))); | |
4268 | 1157 |
1158 /* Record for the Unicode infrastructure that we've created | |
1159 this character set. */ | |
1160 Vnumber_of_jit_charsets = make_int (number_of_jit_charsets + 1); | |
1161 Vlast_jit_charset_final = make_char (last_jit_charset_final + 1); | |
3439 | 1162 |
1163 i = get_free_codepoint(Vcurrent_jit_charset); | |
1164 } | |
1165 | |
1166 if (-1 != i) | |
1167 { | |
1168 set_unicode_conversion((Ichar)i, code); | |
1169 /* No need to add the charset to the end of the list; it's done | |
1170 automatically. */ | |
1171 } | |
1172 } | |
1173 return (Ichar) i; | |
771 | 1174 } |
1175 | |
877 | 1176 /* Add charsets to precedence list. |
1177 LIST must be a list of charsets. Charsets which are in the list more | |
1178 than once are given the precedence implied by their earliest appearance. | |
1179 Later appearances are ignored. */ | |
771 | 1180 static void |
1181 add_charsets_to_precedence_list (Lisp_Object list, int *lbs, | |
1182 Lisp_Object_dynarr *dynarr) | |
1183 { | |
1184 { | |
1185 EXTERNAL_LIST_LOOP_2 (elt, list) | |
1186 { | |
1187 Lisp_Object charset = Fget_charset (elt); | |
778 | 1188 int lb = XCHARSET_LEADING_BYTE (charset); |
771 | 1189 if (lbs[lb - MIN_LEADING_BYTE] == 0) |
1190 { | |
877 | 1191 Dynarr_add (dynarr, charset); |
771 | 1192 lbs[lb - MIN_LEADING_BYTE] = 1; |
1193 } | |
1194 } | |
1195 } | |
1196 } | |
1197 | |
877 | 1198 /* Rebuild the charset precedence array. |
1199 The "charsets preferred for the current language" get highest precedence, | |
1200 followed by the "charsets preferred by default", ordered as in | |
1201 Vlanguage_unicode_precedence_list and Vdefault_unicode_precedence_list, | |
1202 respectively. All remaining charsets follow in an arbitrary order. */ | |
771 | 1203 void |
1204 recalculate_unicode_precedence (void) | |
1205 { | |
1206 int lbs[NUM_LEADING_BYTES]; | |
1207 int i; | |
1208 | |
1209 for (i = 0; i < NUM_LEADING_BYTES; i++) | |
1210 lbs[i] = 0; | |
1211 | |
1212 Dynarr_reset (unicode_precedence_dynarr); | |
1213 | |
1214 add_charsets_to_precedence_list (Vlanguage_unicode_precedence_list, | |
1215 lbs, unicode_precedence_dynarr); | |
1216 add_charsets_to_precedence_list (Vdefault_unicode_precedence_list, | |
1217 lbs, unicode_precedence_dynarr); | |
1218 | |
1219 for (i = 0; i < NUM_LEADING_BYTES; i++) | |
1220 { | |
1221 if (lbs[i] == 0) | |
1222 { | |
826 | 1223 Lisp_Object charset = charset_by_leading_byte (i + MIN_LEADING_BYTE); |
771 | 1224 if (!NILP (charset)) |
1225 Dynarr_add (unicode_precedence_dynarr, charset); | |
1226 } | |
1227 } | |
1228 } | |
1229 | |
877 | 1230 DEFUN ("unicode-precedence-list", |
1231 Funicode_precedence_list, | |
1232 0, 0, 0, /* | |
1233 Return the precedence order among charsets used for Unicode decoding. | |
1234 | |
1235 Value is a list of charsets, which are searched in order for a translation | |
1236 matching a given Unicode character. | |
1237 | |
1238 The highest precedence is given to the language-specific precedence list of | |
1239 charsets, defined by `set-language-unicode-precedence-list'. These are | |
1240 followed by charsets in the default precedence list, defined by | |
1241 `set-default-unicode-precedence-list'. Charsets occurring multiple times are | |
1242 given precedence according to their first occurrance in either list. These | |
1243 are followed by the remaining charsets, in some arbitrary order. | |
771 | 1244 |
1245 The language-specific precedence list is meant to be set as part of the | |
1246 language environment initialization; the default precedence list is meant | |
1247 to be set by the user. | |
1318 | 1248 |
1249 #### NOTE: This interface may be changed. | |
771 | 1250 */ |
877 | 1251 ()) |
1252 { | |
1253 int i; | |
1254 Lisp_Object list = Qnil; | |
1255 | |
1256 for (i = Dynarr_length (unicode_precedence_dynarr) - 1; i >= 0; i--) | |
1257 list = Fcons (Dynarr_at (unicode_precedence_dynarr, i), list); | |
1258 return list; | |
1259 } | |
1260 | |
1261 | |
1262 /* #### This interface is wrong. Cyrillic users and Chinese users are going | |
1263 to have varying opinions about whether ISO Cyrillic, KOI8-R, or Windows | |
1264 1251 should take precedence, and whether Big Five or CNS should take | |
1265 precedence, respectively. This means that users are sometimes going to | |
1266 want to set Vlanguage_unicode_precedence_list. | |
1267 Furthermore, this should be language-local (buffer-local would be a | |
1318 | 1268 reasonable approximation). |
1269 | |
1270 Answer: You are right, this needs rethinking. */ | |
877 | 1271 DEFUN ("set-language-unicode-precedence-list", |
1272 Fset_language_unicode_precedence_list, | |
1273 1, 1, 0, /* | |
1274 Set the language-specific precedence of charsets in Unicode decoding. | |
1275 LIST is a list of charsets. | |
1276 See `unicode-precedence-list' for more information. | |
1318 | 1277 |
1278 #### NOTE: This interface may be changed. | |
877 | 1279 */ |
771 | 1280 (list)) |
1281 { | |
1282 { | |
1283 EXTERNAL_LIST_LOOP_2 (elt, list) | |
1284 Fget_charset (elt); | |
1285 } | |
1286 | |
1287 Vlanguage_unicode_precedence_list = list; | |
1288 recalculate_unicode_precedence (); | |
1289 return Qnil; | |
1290 } | |
1291 | |
1292 DEFUN ("language-unicode-precedence-list", | |
1293 Flanguage_unicode_precedence_list, | |
1294 0, 0, 0, /* | |
1295 Return the language-specific precedence list used for Unicode decoding. | |
877 | 1296 See `unicode-precedence-list' for more information. |
1318 | 1297 |
1298 #### NOTE: This interface may be changed. | |
771 | 1299 */ |
1300 ()) | |
1301 { | |
1302 return Vlanguage_unicode_precedence_list; | |
1303 } | |
1304 | |
1305 DEFUN ("set-default-unicode-precedence-list", | |
1306 Fset_default_unicode_precedence_list, | |
1307 1, 1, 0, /* | |
1308 Set the default precedence list used for Unicode decoding. | |
877 | 1309 This is intended to be set by the user. See |
1310 `unicode-precedence-list' for more information. | |
1318 | 1311 |
1312 #### NOTE: This interface may be changed. | |
771 | 1313 */ |
1314 (list)) | |
1315 { | |
1316 { | |
1317 EXTERNAL_LIST_LOOP_2 (elt, list) | |
1318 Fget_charset (elt); | |
1319 } | |
1320 | |
1321 Vdefault_unicode_precedence_list = list; | |
1322 recalculate_unicode_precedence (); | |
1323 return Qnil; | |
1324 } | |
1325 | |
1326 DEFUN ("default-unicode-precedence-list", | |
1327 Fdefault_unicode_precedence_list, | |
1328 0, 0, 0, /* | |
1329 Return the default precedence list used for Unicode decoding. | |
877 | 1330 See `unicode-precedence-list' for more information. |
1318 | 1331 |
1332 #### NOTE: This interface may be changed. | |
771 | 1333 */ |
1334 ()) | |
1335 { | |
1336 return Vdefault_unicode_precedence_list; | |
1337 } | |
1338 | |
1339 DEFUN ("set-unicode-conversion", Fset_unicode_conversion, | |
1340 2, 2, 0, /* | |
1341 Add conversion information between Unicode codepoints and characters. | |
877 | 1342 Conversions for U+0000 to U+00FF are hardwired to ASCII, Control-1, and |
1343 Latin-1. Attempts to set these values will raise an error. | |
1344 | |
771 | 1345 CHARACTER is one of the following: |
1346 | |
1347 -- A character (in which case CODE must be a non-negative integer; values | |
1348 above 2^20 - 1 are allowed for the purpose of specifying private | |
877 | 1349 characters, but are illegal in standard Unicode---they will cause errors |
1350 when converted to utf-16) | |
771 | 1351 -- A vector of characters (in which case CODE must be a vector of integers |
1352 of the same length) | |
1353 */ | |
1354 (character, code)) | |
1355 { | |
1356 Lisp_Object charset; | |
877 | 1357 int ichar, unicode; |
771 | 1358 |
1359 CHECK_CHAR (character); | |
1360 CHECK_NATNUM (code); | |
1361 | |
877 | 1362 unicode = XINT (code); |
1363 ichar = XCHAR (character); | |
1364 charset = ichar_charset (ichar); | |
1365 | |
1366 /* The translations of ASCII, Control-1, and Latin-1 code points are | |
1367 hard-coded in ichar_to_unicode and unicode_to_ichar. | |
1368 | |
1369 Checking unicode < 256 && ichar != unicode is wrong because Mule gives | |
1370 many Latin characters code points in a few different character sets. */ | |
1371 if ((EQ (charset, Vcharset_ascii) || | |
1372 EQ (charset, Vcharset_control_1) || | |
1373 EQ (charset, Vcharset_latin_iso8859_1)) | |
1374 && unicode != ichar) | |
893 | 1375 signal_error (Qinvalid_argument, "Can't change Unicode translation for ASCII, Control-1 or Latin-1 character", |
771 | 1376 character); |
1377 | |
877 | 1378 /* #### Composite characters are not properly implemented yet. */ |
1379 if (EQ (charset, Vcharset_composite)) | |
1380 signal_error (Qinvalid_argument, "Can't set Unicode translation for Composite char", | |
1381 character); | |
1382 | |
1383 set_unicode_conversion (ichar, unicode); | |
771 | 1384 return Qnil; |
1385 } | |
1386 | |
1387 #endif /* MULE */ | |
1388 | |
800 | 1389 DEFUN ("char-to-unicode", Fchar_to_unicode, 1, 1, 0, /* |
771 | 1390 Convert character to Unicode codepoint. |
3025 | 1391 When there is no international support (i.e. the `mule' feature is not |
877 | 1392 present), this function simply does `char-to-int'. |
771 | 1393 */ |
1394 (character)) | |
1395 { | |
1396 CHECK_CHAR (character); | |
1397 #ifdef MULE | |
867 | 1398 return make_int (ichar_to_unicode (XCHAR (character))); |
771 | 1399 #else |
1400 return Fchar_to_int (character); | |
1401 #endif /* MULE */ | |
1402 } | |
1403 | |
800 | 1404 DEFUN ("unicode-to-char", Funicode_to_char, 1, 2, 0, /* |
771 | 1405 Convert Unicode codepoint to character. |
1406 CODE should be a non-negative integer. | |
1407 If CHARSETS is given, it should be a list of charsets, and only those | |
1408 charsets will be consulted, in the given order, for a translation. | |
1409 Otherwise, the default ordering of all charsets will be given (see | |
1410 `set-unicode-charset-precedence'). | |
1411 | |
3025 | 1412 When there is no international support (i.e. the `mule' feature is not |
877 | 1413 present), this function simply does `int-to-char' and ignores the CHARSETS |
1414 argument. | |
2622 | 1415 |
3439 | 1416 If the CODE would not otherwise be converted to an XEmacs character, and the |
1417 list of character sets to be consulted is nil or the default, a new XEmacs | |
1418 character will be created for it in one of the `jit-ucs-charset' Mule | |
4268 | 1419 character sets, and that character will be returned. |
1420 | |
1421 This is limited to around 400,000 characters per XEmacs session, though, so | |
1422 while normal usage will not be problematic, things like: | |
1423 | |
1424 \(dotimes (i #x110000) (decode-char 'ucs i)) | |
1425 | |
1426 will eventually error. The long-term solution to this is Unicode as an | |
1427 internal encoding. | |
771 | 1428 */ |
2333 | 1429 (code, USED_IF_MULE (charsets))) |
771 | 1430 { |
1431 #ifdef MULE | |
1432 Lisp_Object_dynarr *dyn; | |
1433 int lbs[NUM_LEADING_BYTES]; | |
1434 int c; | |
1435 | |
1436 CHECK_NATNUM (code); | |
1437 c = XINT (code); | |
1438 { | |
1439 EXTERNAL_LIST_LOOP_2 (elt, charsets) | |
1440 Fget_charset (elt); | |
1441 } | |
1442 | |
1443 if (NILP (charsets)) | |
1444 { | |
877 | 1445 Ichar ret = unicode_to_ichar (c, unicode_precedence_dynarr); |
771 | 1446 if (ret == -1) |
1447 return Qnil; | |
1448 return make_char (ret); | |
1449 } | |
1450 | |
1451 dyn = Dynarr_new (Lisp_Object); | |
1452 memset (lbs, 0, NUM_LEADING_BYTES * sizeof (int)); | |
1453 add_charsets_to_precedence_list (charsets, lbs, dyn); | |
1454 { | |
877 | 1455 Ichar ret = unicode_to_ichar (c, dyn); |
771 | 1456 Dynarr_free (dyn); |
1457 if (ret == -1) | |
1458 return Qnil; | |
1459 return make_char (ret); | |
1460 } | |
1461 #else | |
1462 CHECK_NATNUM (code); | |
1463 return Fint_to_char (code); | |
1464 #endif /* MULE */ | |
1465 } | |
1466 | |
872 | 1467 #ifdef MULE |
1468 | |
771 | 1469 static Lisp_Object |
1470 cerrar_el_fulano (Lisp_Object fulano) | |
1471 { | |
1472 FILE *file = (FILE *) get_opaque_ptr (fulano); | |
1473 retry_fclose (file); | |
1474 return Qnil; | |
1475 } | |
1476 | |
1318 | 1477 DEFUN ("load-unicode-mapping-table", Fload_unicode_mapping_table, |
771 | 1478 2, 6, 0, /* |
877 | 1479 Load Unicode tables with the Unicode mapping data in FILENAME for CHARSET. |
771 | 1480 Data is text, in the form of one translation per line -- charset |
1481 codepoint followed by Unicode codepoint. Numbers are decimal or hex | |
1482 \(preceded by 0x). Comments are marked with a #. Charset codepoints | |
877 | 1483 for two-dimensional charsets have the first octet stored in the |
771 | 1484 high 8 bits of the hex number and the second in the low 8 bits. |
1485 | |
1486 If START and END are given, only charset codepoints within the given | |
877 | 1487 range will be processed. (START and END apply to the codepoints in the |
1488 file, before OFFSET is applied.) | |
771 | 1489 |
877 | 1490 If OFFSET is given, that value will be added to all charset codepoints |
1491 in the file to obtain the internal charset codepoint. \(We assume | |
1492 that octets in the table are in the range 33 to 126 or 32 to 127. If | |
1493 you have a table in ku-ten form, with octets in the range 1 to 94, you | |
1494 will have to use an offset of 5140, i.e. 0x2020.) | |
771 | 1495 |
1496 FLAGS, if specified, control further how the tables are interpreted | |
877 | 1497 and are used to special-case certain known format deviations in the |
1498 Unicode tables or in the charset: | |
771 | 1499 |
1500 `ignore-first-column' | |
877 | 1501 The JIS X 0208 tables have 3 columns of data instead of 2. The first |
1502 column contains the Shift-JIS codepoint, which we ignore. | |
771 | 1503 `big5' |
877 | 1504 The charset codepoints are Big Five codepoints; convert it to the |
1505 hacked-up Mule codepoint in `chinese-big5-1' or `chinese-big5-2'. | |
771 | 1506 */ |
1507 (filename, charset, start, end, offset, flags)) | |
1508 { | |
1509 int st = 0, en = INT_MAX, of = 0; | |
1510 FILE *file; | |
1511 struct gcpro gcpro1; | |
1512 char line[1025]; | |
1513 int fondo = specpdl_depth (); | |
1514 int ignore_first_column = 0; | |
1515 int big5 = 0; | |
1516 | |
1517 CHECK_STRING (filename); | |
1518 charset = Fget_charset (charset); | |
1519 if (!NILP (start)) | |
1520 { | |
1521 CHECK_INT (start); | |
1522 st = XINT (start); | |
1523 } | |
1524 if (!NILP (end)) | |
1525 { | |
1526 CHECK_INT (end); | |
1527 en = XINT (end); | |
1528 } | |
1529 if (!NILP (offset)) | |
1530 { | |
1531 CHECK_INT (offset); | |
1532 of = XINT (offset); | |
1533 } | |
1534 | |
1535 if (!LISTP (flags)) | |
1536 flags = list1 (flags); | |
1537 | |
1538 { | |
1539 EXTERNAL_LIST_LOOP_2 (elt, flags) | |
1540 { | |
1541 if (EQ (elt, Qignore_first_column)) | |
1542 ignore_first_column = 1; | |
1543 else if (EQ (elt, Qbig5)) | |
1544 big5 = 1; | |
1545 else | |
1546 invalid_constant | |
1318 | 1547 ("Unrecognized `load-unicode-mapping-table' flag", elt); |
771 | 1548 } |
1549 } | |
1550 | |
1551 GCPRO1 (filename); | |
1552 filename = Fexpand_file_name (filename, Qnil); | |
1553 file = qxe_fopen (XSTRING_DATA (filename), READ_TEXT); | |
1554 if (!file) | |
1555 report_file_error ("Cannot open", filename); | |
1556 record_unwind_protect (cerrar_el_fulano, make_opaque_ptr (file)); | |
1557 while (fgets (line, sizeof (line), file)) | |
1558 { | |
1559 char *p = line; | |
1560 int cp1, cp2, endcount; | |
1561 int cp1high, cp1low; | |
1562 int dummy; | |
1563 | |
1564 while (*p) /* erase all comments out of the line */ | |
1565 { | |
1566 if (*p == '#') | |
1567 *p = '\0'; | |
1568 else | |
1569 p++; | |
1570 } | |
1571 /* see if line is nothing but whitespace and skip if so */ | |
1572 p = line + strspn (line, " \t\n\r\f"); | |
1573 if (!*p) | |
1574 continue; | |
1575 /* NOTE: It appears that MS Windows and Newlib sscanf() have | |
1576 different interpretations for whitespace (== "skip all whitespace | |
1577 at processing point"): Newlib requires at least one corresponding | |
1578 whitespace character in the input, but MS allows none. The | |
1579 following would be easier to write if we could count on the MS | |
1580 interpretation. | |
1581 | |
1582 Also, the return value does NOT include %n storage. */ | |
1583 if ((!ignore_first_column ? | |
1584 sscanf (p, "%i %i%n", &cp1, &cp2, &endcount) < 2 : | |
1585 sscanf (p, "%i %i %i%n", &dummy, &cp1, &cp2, &endcount) < 3) | |
2367 | 1586 /* #### Temporary code! Cygwin newlib fucked up scanf() handling |
1587 of numbers beginning 0x0... starting in 04/2004, in an attempt | |
1588 to fix another bug. A partial fix for this was put in in | |
1589 06/2004, but as of 10/2004 the value of ENDCOUNT returned in | |
1590 such case is still wrong. If this gets fixed soon, remove | |
1591 this code. --ben */ | |
1592 #ifndef CYGWIN_SCANF_BUG | |
1593 || *(p + endcount + strspn (p + endcount, " \t\n\r\f")) | |
1594 #endif | |
1595 ) | |
771 | 1596 { |
793 | 1597 warn_when_safe (Qunicode, Qwarning, |
771 | 1598 "Unrecognized line in translation file %s:\n%s", |
1599 XSTRING_DATA (filename), line); | |
1600 continue; | |
1601 } | |
1602 if (cp1 >= st && cp1 <= en) | |
1603 { | |
1604 cp1 += of; | |
1605 if (cp1 < 0 || cp1 >= 65536) | |
1606 { | |
1607 out_of_range: | |
793 | 1608 warn_when_safe (Qunicode, Qwarning, |
1609 "Out of range first codepoint 0x%x in " | |
1610 "translation file %s:\n%s", | |
771 | 1611 cp1, XSTRING_DATA (filename), line); |
1612 continue; | |
1613 } | |
1614 | |
1615 cp1high = cp1 >> 8; | |
1616 cp1low = cp1 & 255; | |
1617 | |
1618 if (big5) | |
1619 { | |
867 | 1620 Ichar ch = decode_big5_char (cp1high, cp1low); |
771 | 1621 if (ch == -1) |
793 | 1622 |
1623 warn_when_safe (Qunicode, Qwarning, | |
1624 "Out of range Big5 codepoint 0x%x in " | |
1625 "translation file %s:\n%s", | |
771 | 1626 cp1, XSTRING_DATA (filename), line); |
1627 else | |
1628 set_unicode_conversion (ch, cp2); | |
1629 } | |
1630 else | |
1631 { | |
1632 int l1, h1, l2, h2; | |
867 | 1633 Ichar emch; |
771 | 1634 |
1635 switch (XCHARSET_TYPE (charset)) | |
1636 { | |
1637 case CHARSET_TYPE_94: l1 = 33; h1 = 126; l2 = 0; h2 = 0; break; | |
1638 case CHARSET_TYPE_96: l1 = 32; h1 = 127; l2 = 0; h2 = 0; break; | |
1639 case CHARSET_TYPE_94X94: l1 = 33; h1 = 126; l2 = 33; h2 = 126; | |
1640 break; | |
1641 case CHARSET_TYPE_96X96: l1 = 32; h1 = 127; l2 = 32; h2 = 127; | |
1642 break; | |
2500 | 1643 default: ABORT (); l1 = 0; h1 = 0; l2 = 0; h2 = 0; |
771 | 1644 } |
1645 | |
1646 if (cp1high < l2 || cp1high > h2 || cp1low < l1 || cp1low > h1) | |
1647 goto out_of_range; | |
1648 | |
867 | 1649 emch = (cp1high == 0 ? make_ichar (charset, cp1low, 0) : |
1650 make_ichar (charset, cp1high, cp1low)); | |
771 | 1651 set_unicode_conversion (emch, cp2); |
1652 } | |
1653 } | |
1654 } | |
1655 | |
1656 if (ferror (file)) | |
1657 report_file_error ("IO error when reading", filename); | |
1658 | |
1659 unbind_to (fondo); /* close file */ | |
1660 UNGCPRO; | |
1661 return Qnil; | |
1662 } | |
1663 | |
1664 #endif /* MULE */ | |
1665 | |
1666 | |
1667 /************************************************************************/ | |
1668 /* Unicode coding system */ | |
1669 /************************************************************************/ | |
1670 | |
1671 struct unicode_coding_system | |
1672 { | |
1673 enum unicode_type type; | |
1887 | 1674 unsigned int little_endian :1; |
1675 unsigned int need_bom :1; | |
771 | 1676 }; |
1677 | |
1678 #define CODING_SYSTEM_UNICODE_TYPE(codesys) \ | |
1679 (CODING_SYSTEM_TYPE_DATA (codesys, unicode)->type) | |
1680 #define XCODING_SYSTEM_UNICODE_TYPE(codesys) \ | |
1681 CODING_SYSTEM_UNICODE_TYPE (XCODING_SYSTEM (codesys)) | |
1682 #define CODING_SYSTEM_UNICODE_LITTLE_ENDIAN(codesys) \ | |
1683 (CODING_SYSTEM_TYPE_DATA (codesys, unicode)->little_endian) | |
1684 #define XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN(codesys) \ | |
1685 CODING_SYSTEM_UNICODE_LITTLE_ENDIAN (XCODING_SYSTEM (codesys)) | |
1686 #define CODING_SYSTEM_UNICODE_NEED_BOM(codesys) \ | |
1687 (CODING_SYSTEM_TYPE_DATA (codesys, unicode)->need_bom) | |
1688 #define XCODING_SYSTEM_UNICODE_NEED_BOM(codesys) \ | |
1689 CODING_SYSTEM_UNICODE_NEED_BOM (XCODING_SYSTEM (codesys)) | |
1690 | |
1691 struct unicode_coding_stream | |
1692 { | |
1693 /* decode */ | |
1694 unsigned char counter; | |
4096 | 1695 unsigned char indicated_length; |
771 | 1696 int seen_char; |
1697 /* encode */ | |
1698 Lisp_Object current_charset; | |
1699 int current_char_boundary; | |
1700 int wrote_bom; | |
1701 }; | |
1702 | |
1204 | 1703 static const struct memory_description unicode_coding_system_description[] = { |
771 | 1704 { XD_END } |
1705 }; | |
1706 | |
1204 | 1707 DEFINE_CODING_SYSTEM_TYPE_WITH_DATA (unicode); |
1708 | |
771 | 1709 static void |
1710 decode_unicode_char (int ch, unsigned_char_dynarr *dst, | |
1887 | 1711 struct unicode_coding_stream *data, |
1712 unsigned int ignore_bom) | |
771 | 1713 { |
1714 if (ch == 0xFEFF && !data->seen_char && ignore_bom) | |
1715 ; | |
1716 else | |
1717 { | |
1718 #ifdef MULE | |
877 | 1719 Ichar chr = unicode_to_ichar (ch, unicode_precedence_dynarr); |
771 | 1720 |
1721 if (chr != -1) | |
1722 { | |
867 | 1723 Ibyte work[MAX_ICHAR_LEN]; |
771 | 1724 int len; |
1725 | |
867 | 1726 len = set_itext_ichar (work, chr); |
771 | 1727 Dynarr_add_many (dst, work, len); |
1728 } | |
1729 else | |
1730 { | |
1731 Dynarr_add (dst, LEADING_BYTE_JAPANESE_JISX0208); | |
1732 Dynarr_add (dst, 34 + 128); | |
1733 Dynarr_add (dst, 46 + 128); | |
1734 } | |
1735 #else | |
867 | 1736 Dynarr_add (dst, (Ibyte) ch); |
771 | 1737 #endif /* MULE */ |
1738 } | |
1739 | |
1740 data->seen_char = 1; | |
1741 } | |
1742 | |
4096 | 1743 #define DECODE_ERROR_OCTET(octet, dst, data, ignore_bom) \ |
1744 decode_unicode_char ((octet) + UNICODE_ERROR_OCTET_RANGE_START, \ | |
1745 dst, data, ignore_bom) | |
1746 | |
1747 static inline void | |
1748 indicate_invalid_utf_8 (unsigned char indicated_length, | |
1749 unsigned char counter, | |
1750 int ch, unsigned_char_dynarr *dst, | |
1751 struct unicode_coding_stream *data, | |
1752 unsigned int ignore_bom) | |
1753 { | |
1754 Binbyte stored = indicated_length - counter; | |
1755 Binbyte mask = "\x00\x00\xC0\xE0\xF0\xF8\xFC"[indicated_length]; | |
1756 | |
1757 while (stored > 0) | |
1758 { | |
1759 DECODE_ERROR_OCTET (((ch >> (6 * (stored - 1))) & 0x3f) | mask, | |
1760 dst, data, ignore_bom); | |
1761 mask = 0x80, stored--; | |
1762 } | |
1763 } | |
1764 | |
771 | 1765 static void |
1766 encode_unicode_char_1 (int code, unsigned_char_dynarr *dst, | |
4096 | 1767 enum unicode_type type, unsigned int little_endian, |
1768 int write_error_characters_as_such) | |
771 | 1769 { |
1770 switch (type) | |
1771 { | |
1772 case UNICODE_UTF_16: | |
1773 if (little_endian) | |
1774 { | |
3952 | 1775 if (code < 0x10000) { |
1776 Dynarr_add (dst, (unsigned char) (code & 255)); | |
1777 Dynarr_add (dst, (unsigned char) ((code >> 8) & 255)); | |
4096 | 1778 } else if (write_error_characters_as_such && |
1779 code >= UNICODE_ERROR_OCTET_RANGE_START && | |
1780 code < (UNICODE_ERROR_OCTET_RANGE_START + 0x100)) | |
1781 { | |
1782 Dynarr_add (dst, (unsigned char) ((code & 0xFF))); | |
1783 } | |
1784 else if (code < 0x110000) | |
1785 { | |
1786 /* Little endian; least significant byte first. */ | |
1787 int first, second; | |
1788 | |
1789 CODE_TO_UTF_16_SURROGATES(code, first, second); | |
1790 | |
1791 Dynarr_add (dst, (unsigned char) (first & 255)); | |
1792 Dynarr_add (dst, (unsigned char) ((first >> 8) & 255)); | |
1793 | |
1794 Dynarr_add (dst, (unsigned char) (second & 255)); | |
1795 Dynarr_add (dst, (unsigned char) ((second >> 8) & 255)); | |
1796 } | |
1797 else | |
1798 { | |
1799 /* Not valid Unicode. Pass U+FFFD, least significant byte | |
1800 first. */ | |
1801 Dynarr_add (dst, (unsigned char) 0xFD); | |
1802 Dynarr_add (dst, (unsigned char) 0xFF); | |
1803 } | |
771 | 1804 } |
1805 else | |
1806 { | |
3952 | 1807 if (code < 0x10000) { |
1808 Dynarr_add (dst, (unsigned char) ((code >> 8) & 255)); | |
1809 Dynarr_add (dst, (unsigned char) (code & 255)); | |
4096 | 1810 } else if (write_error_characters_as_such && |
1811 code >= UNICODE_ERROR_OCTET_RANGE_START && | |
1812 code < (UNICODE_ERROR_OCTET_RANGE_START + 0x100)) | |
1813 { | |
1814 Dynarr_add (dst, (unsigned char) ((code & 0xFF))); | |
1815 } | |
1816 else if (code < 0x110000) | |
1817 { | |
1818 /* Big endian; most significant byte first. */ | |
1819 int first, second; | |
1820 | |
1821 CODE_TO_UTF_16_SURROGATES(code, first, second); | |
1822 | |
1823 Dynarr_add (dst, (unsigned char) ((first >> 8) & 255)); | |
1824 Dynarr_add (dst, (unsigned char) (first & 255)); | |
1825 | |
1826 Dynarr_add (dst, (unsigned char) ((second >> 8) & 255)); | |
1827 Dynarr_add (dst, (unsigned char) (second & 255)); | |
1828 } | |
1829 else | |
1830 { | |
1831 /* Not valid Unicode. Pass U+FFFD, most significant byte | |
1832 first. */ | |
1833 Dynarr_add (dst, (unsigned char) 0xFF); | |
1834 Dynarr_add (dst, (unsigned char) 0xFD); | |
1835 } | |
771 | 1836 } |
1837 break; | |
1838 | |
1839 case UNICODE_UCS_4: | |
4096 | 1840 case UNICODE_UTF_32: |
771 | 1841 if (little_endian) |
1842 { | |
4096 | 1843 if (write_error_characters_as_such && |
1844 code >= UNICODE_ERROR_OCTET_RANGE_START && | |
1845 code < (UNICODE_ERROR_OCTET_RANGE_START + 0x100)) | |
1846 { | |
1847 Dynarr_add (dst, (unsigned char) ((code & 0xFF))); | |
1848 } | |
1849 else | |
1850 { | |
1851 /* We generate and accept incorrect sequences here, which is | |
1852 okay, in the interest of preservation of the user's | |
1853 data. */ | |
1854 Dynarr_add (dst, (unsigned char) (code & 255)); | |
1855 Dynarr_add (dst, (unsigned char) ((code >> 8) & 255)); | |
1856 Dynarr_add (dst, (unsigned char) ((code >> 16) & 255)); | |
1857 Dynarr_add (dst, (unsigned char) (code >> 24)); | |
1858 } | |
771 | 1859 } |
1860 else | |
1861 { | |
4096 | 1862 if (write_error_characters_as_such && |
1863 code >= UNICODE_ERROR_OCTET_RANGE_START && | |
1864 code < (UNICODE_ERROR_OCTET_RANGE_START + 0x100)) | |
1865 { | |
1866 Dynarr_add (dst, (unsigned char) ((code & 0xFF))); | |
1867 } | |
1868 else | |
1869 { | |
1870 /* We generate and accept incorrect sequences here, which is okay, | |
1871 in the interest of preservation of the user's data. */ | |
1872 Dynarr_add (dst, (unsigned char) (code >> 24)); | |
1873 Dynarr_add (dst, (unsigned char) ((code >> 16) & 255)); | |
1874 Dynarr_add (dst, (unsigned char) ((code >> 8) & 255)); | |
1875 Dynarr_add (dst, (unsigned char) (code & 255)); | |
1876 } | |
771 | 1877 } |
1878 break; | |
1879 | |
1880 case UNICODE_UTF_8: | |
1881 if (code <= 0x7f) | |
1882 { | |
1883 Dynarr_add (dst, (unsigned char) code); | |
1884 } | |
1885 else if (code <= 0x7ff) | |
1886 { | |
1887 Dynarr_add (dst, (unsigned char) ((code >> 6) | 0xc0)); | |
1888 Dynarr_add (dst, (unsigned char) ((code & 0x3f) | 0x80)); | |
1889 } | |
1890 else if (code <= 0xffff) | |
1891 { | |
1892 Dynarr_add (dst, (unsigned char) ((code >> 12) | 0xe0)); | |
1893 Dynarr_add (dst, (unsigned char) (((code >> 6) & 0x3f) | 0x80)); | |
1894 Dynarr_add (dst, (unsigned char) ((code & 0x3f) | 0x80)); | |
1895 } | |
1896 else if (code <= 0x1fffff) | |
1897 { | |
1898 Dynarr_add (dst, (unsigned char) ((code >> 18) | 0xf0)); | |
1899 Dynarr_add (dst, (unsigned char) (((code >> 12) & 0x3f) | 0x80)); | |
1900 Dynarr_add (dst, (unsigned char) (((code >> 6) & 0x3f) | 0x80)); | |
1901 Dynarr_add (dst, (unsigned char) ((code & 0x3f) | 0x80)); | |
1902 } | |
1903 else if (code <= 0x3ffffff) | |
1904 { | |
4096 | 1905 |
1906 #if !(UNICODE_ERROR_OCTET_RANGE_START > 0x1fffff \ | |
1907 && UNICODE_ERROR_OCTET_RANGE_START < 0x3ffffff) | |
1908 #error "This code needs to be rewritten. " | |
1909 #endif | |
1910 if (write_error_characters_as_such && | |
1911 code >= UNICODE_ERROR_OCTET_RANGE_START && | |
1912 code < (UNICODE_ERROR_OCTET_RANGE_START + 0x100)) | |
1913 { | |
1914 Dynarr_add (dst, (unsigned char) ((code & 0xFF))); | |
1915 } | |
1916 else | |
1917 { | |
1918 Dynarr_add (dst, (unsigned char) ((code >> 24) | 0xf8)); | |
1919 Dynarr_add (dst, (unsigned char) (((code >> 18) & 0x3f) | 0x80)); | |
1920 Dynarr_add (dst, (unsigned char) (((code >> 12) & 0x3f) | 0x80)); | |
1921 Dynarr_add (dst, (unsigned char) (((code >> 6) & 0x3f) | 0x80)); | |
1922 Dynarr_add (dst, (unsigned char) ((code & 0x3f) | 0x80)); | |
1923 } | |
771 | 1924 } |
1925 else | |
1926 { | |
1927 Dynarr_add (dst, (unsigned char) ((code >> 30) | 0xfc)); | |
1928 Dynarr_add (dst, (unsigned char) (((code >> 24) & 0x3f) | 0x80)); | |
1929 Dynarr_add (dst, (unsigned char) (((code >> 18) & 0x3f) | 0x80)); | |
1930 Dynarr_add (dst, (unsigned char) (((code >> 12) & 0x3f) | 0x80)); | |
1931 Dynarr_add (dst, (unsigned char) (((code >> 6) & 0x3f) | 0x80)); | |
1932 Dynarr_add (dst, (unsigned char) ((code & 0x3f) | 0x80)); | |
1933 } | |
1934 break; | |
1935 | |
2500 | 1936 case UNICODE_UTF_7: ABORT (); |
771 | 1937 |
2500 | 1938 default: ABORT (); |
771 | 1939 } |
1940 } | |
1941 | |
3439 | 1942 /* Also used in mule-coding.c for UTF-8 handling in ISO 2022-oriented |
1943 encodings. */ | |
1944 void | |
2333 | 1945 encode_unicode_char (Lisp_Object USED_IF_MULE (charset), int h, |
1946 int USED_IF_MULE (l), unsigned_char_dynarr *dst, | |
4096 | 1947 enum unicode_type type, unsigned int little_endian, |
1948 int write_error_characters_as_such) | |
771 | 1949 { |
1950 #ifdef MULE | |
867 | 1951 int code = ichar_to_unicode (make_ichar (charset, h & 127, l & 127)); |
771 | 1952 |
1953 if (code == -1) | |
1954 { | |
1955 if (type != UNICODE_UTF_16 && | |
1956 XCHARSET_DIMENSION (charset) == 2 && | |
1957 XCHARSET_CHARS (charset) == 94) | |
1958 { | |
1959 unsigned char final = XCHARSET_FINAL (charset); | |
1960 | |
1961 if (('@' <= final) && (final < 0x7f)) | |
1962 code = (0xe00000 + (final - '@') * 94 * 94 | |
1963 + ((h & 127) - 33) * 94 + (l & 127) - 33); | |
1964 else | |
1965 code = '?'; | |
1966 } | |
1967 else | |
1968 code = '?'; | |
1969 } | |
1970 #else | |
1971 int code = h; | |
1972 #endif /* MULE */ | |
1973 | |
4096 | 1974 encode_unicode_char_1 (code, dst, type, little_endian, |
1975 write_error_characters_as_such); | |
771 | 1976 } |
1977 | |
1978 static Bytecount | |
1979 unicode_convert (struct coding_stream *str, const UExtbyte *src, | |
1980 unsigned_char_dynarr *dst, Bytecount n) | |
1981 { | |
1982 unsigned int ch = str->ch; | |
1983 struct unicode_coding_stream *data = CODING_STREAM_TYPE_DATA (str, unicode); | |
1984 enum unicode_type type = | |
1985 XCODING_SYSTEM_UNICODE_TYPE (str->codesys); | |
1887 | 1986 unsigned int little_endian = |
1987 XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN (str->codesys); | |
1988 unsigned int ignore_bom = XCODING_SYSTEM_UNICODE_NEED_BOM (str->codesys); | |
771 | 1989 Bytecount orign = n; |
1990 | |
1991 if (str->direction == CODING_DECODE) | |
1992 { | |
1993 unsigned char counter = data->counter; | |
4096 | 1994 unsigned char indicated_length |
1995 = data->indicated_length; | |
771 | 1996 |
1997 while (n--) | |
1998 { | |
1999 UExtbyte c = *src++; | |
2000 | |
2001 switch (type) | |
2002 { | |
2003 case UNICODE_UTF_8: | |
4096 | 2004 if (0 == counter) |
2005 { | |
2006 if (0 == (c & 0x80)) | |
2007 { | |
2008 /* ASCII. */ | |
2009 decode_unicode_char (c, dst, data, ignore_bom); | |
2010 } | |
2011 else if (0 == (c & 0x40)) | |
2012 { | |
2013 /* Highest bit set, second highest not--there's | |
2014 something wrong. */ | |
2015 DECODE_ERROR_OCTET (c, dst, data, ignore_bom); | |
2016 } | |
2017 else if (0 == (c & 0x20)) | |
2018 { | |
2019 ch = c & 0x1f; | |
2020 counter = 1; | |
2021 indicated_length = 2; | |
2022 } | |
2023 else if (0 == (c & 0x10)) | |
2024 { | |
2025 ch = c & 0x0f; | |
2026 counter = 2; | |
2027 indicated_length = 3; | |
2028 } | |
2029 else if (0 == (c & 0x08)) | |
2030 { | |
2031 ch = c & 0x0f; | |
2032 counter = 3; | |
2033 indicated_length = 4; | |
2034 } | |
2035 else | |
2036 { | |
2037 /* We don't supports lengths longer than 4 in | |
2038 external-format data. */ | |
2039 DECODE_ERROR_OCTET (c, dst, data, ignore_bom); | |
2040 | |
2041 } | |
2042 } | |
2043 else | |
2044 { | |
2045 /* counter != 0 */ | |
2046 if ((0 == (c & 0x80)) || (0 != (c & 0x40))) | |
2047 { | |
2048 indicate_invalid_utf_8(indicated_length, | |
2049 counter, | |
2050 ch, dst, data, ignore_bom); | |
2051 if (c & 0x80) | |
2052 { | |
2053 DECODE_ERROR_OCTET (c, dst, data, ignore_bom); | |
2054 } | |
2055 else | |
2056 { | |
2057 /* The character just read is ASCII. Treat it as | |
2058 such. */ | |
2059 decode_unicode_char (c, dst, data, ignore_bom); | |
2060 } | |
2061 ch = 0; | |
2062 counter = 0; | |
2063 } | |
2064 else | |
2065 { | |
2066 ch = (ch << 6) | (c & 0x3f); | |
2067 counter--; | |
2068 /* Just processed the final byte. Emit the character. */ | |
2069 if (!counter) | |
2070 { | |
2071 /* Don't accept over-long sequences, surrogates, | |
2072 or codes above #x10FFFF. */ | |
2073 if ((ch < 0x80) || | |
2074 ((ch < 0x800) && indicated_length > 2) || | |
2075 ((ch < 0x10000) && indicated_length > 3) || | |
2076 valid_utf_16_surrogate(ch) || (ch > 0x110000)) | |
2077 { | |
2078 indicate_invalid_utf_8(indicated_length, | |
2079 counter, | |
2080 ch, dst, data, | |
2081 ignore_bom); | |
2082 } | |
2083 else | |
2084 { | |
2085 decode_unicode_char (ch, dst, data, ignore_bom); | |
2086 } | |
2087 ch = 0; | |
2088 } | |
2089 } | |
771 | 2090 } |
2091 break; | |
2092 | |
2093 case UNICODE_UTF_16: | |
3952 | 2094 |
771 | 2095 if (little_endian) |
2096 ch = (c << counter) | ch; | |
2097 else | |
2098 ch = (ch << 8) | c; | |
4096 | 2099 |
771 | 2100 counter += 8; |
3952 | 2101 |
4096 | 2102 if (16 == counter) |
2103 { | |
771 | 2104 int tempch = ch; |
4096 | 2105 |
2106 if (valid_utf_16_first_surrogate(ch)) | |
2107 { | |
2108 break; | |
2109 } | |
771 | 2110 ch = 0; |
2111 counter = 0; | |
2112 decode_unicode_char (tempch, dst, data, ignore_bom); | |
2113 } | |
4096 | 2114 else if (32 == counter) |
3952 | 2115 { |
2116 int tempch; | |
4096 | 2117 |
4583
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2118 if (little_endian) |
4096 | 2119 { |
4583
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2120 if (!valid_utf_16_last_surrogate(ch >> 16)) |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2121 { |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2122 DECODE_ERROR_OCTET (ch & 0xFF, dst, data, |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2123 ignore_bom); |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2124 DECODE_ERROR_OCTET ((ch >> 8) & 0xFF, dst, data, |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2125 ignore_bom); |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2126 DECODE_ERROR_OCTET ((ch >> 16) & 0xFF, dst, data, |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2127 ignore_bom); |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2128 DECODE_ERROR_OCTET ((ch >> 24) & 0xFF, dst, data, |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2129 ignore_bom); |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2130 } |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2131 else |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2132 { |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2133 tempch = utf_16_surrogates_to_code((ch & 0xffff), |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2134 (ch >> 16)); |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2135 decode_unicode_char(tempch, dst, data, ignore_bom); |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2136 } |
4096 | 2137 } |
4583
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2138 else |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2139 { |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2140 if (!valid_utf_16_last_surrogate(ch & 0xFFFF)) |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2141 { |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2142 DECODE_ERROR_OCTET ((ch >> 24) & 0xFF, dst, data, |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2143 ignore_bom); |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2144 DECODE_ERROR_OCTET ((ch >> 16) & 0xFF, dst, data, |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2145 ignore_bom); |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2146 DECODE_ERROR_OCTET ((ch >> 8) & 0xFF, dst, data, |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2147 ignore_bom); |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2148 DECODE_ERROR_OCTET (ch & 0xFF, dst, data, |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2149 ignore_bom); |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2150 } |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2151 else |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2152 { |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2153 tempch = utf_16_surrogates_to_code((ch >> 16), |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2154 (ch & 0xffff)); |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2155 decode_unicode_char(tempch, dst, data, ignore_bom); |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2156 } |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2157 } |
2669b1b7e33b
Correct little-endian UTF-16 surrogate handling.
Aidan Kehoe <kehoea@parhasard.net>
parents:
4270
diff
changeset
|
2158 |
3952 | 2159 ch = 0; |
2160 counter = 0; | |
4096 | 2161 } |
2162 else | |
2163 assert(8 == counter || 24 == counter); | |
771 | 2164 break; |
2165 | |
2166 case UNICODE_UCS_4: | |
4096 | 2167 case UNICODE_UTF_32: |
771 | 2168 if (little_endian) |
2169 ch = (c << counter) | ch; | |
2170 else | |
2171 ch = (ch << 8) | c; | |
2172 counter += 8; | |
2173 if (counter == 32) | |
2174 { | |
4096 | 2175 if (ch > 0x10ffff) |
2176 { | |
2177 /* ch is not a legal Unicode character. We're fine | |
2178 with that in UCS-4, though not in UTF-32. */ | |
2179 if (UNICODE_UCS_4 == type && ch < 0x80000000) | |
2180 { | |
2181 decode_unicode_char (ch, dst, data, ignore_bom); | |
2182 } | |
2183 else if (little_endian) | |
2184 { | |
2185 DECODE_ERROR_OCTET (ch & 0xFF, dst, data, | |
2186 ignore_bom); | |
2187 DECODE_ERROR_OCTET ((ch >> 8) & 0xFF, dst, data, | |
2188 ignore_bom); | |
2189 DECODE_ERROR_OCTET ((ch >> 16) & 0xFF, dst, data, | |
2190 ignore_bom); | |
2191 DECODE_ERROR_OCTET ((ch >> 24) & 0xFF, dst, data, | |
2192 ignore_bom); | |
2193 } | |
2194 else | |
2195 { | |
2196 DECODE_ERROR_OCTET ((ch >> 24) & 0xFF, dst, data, | |
2197 ignore_bom); | |
2198 DECODE_ERROR_OCTET ((ch >> 16) & 0xFF, dst, data, | |
2199 ignore_bom); | |
2200 DECODE_ERROR_OCTET ((ch >> 8) & 0xFF, dst, data, | |
2201 ignore_bom); | |
2202 DECODE_ERROR_OCTET (ch & 0xFF, dst, data, | |
2203 ignore_bom); | |
2204 } | |
2205 } | |
2206 else | |
2207 { | |
2208 decode_unicode_char (ch, dst, data, ignore_bom); | |
2209 } | |
771 | 2210 ch = 0; |
2211 counter = 0; | |
2212 } | |
2213 break; | |
2214 | |
2215 case UNICODE_UTF_7: | |
2500 | 2216 ABORT (); |
771 | 2217 break; |
2218 | |
2500 | 2219 default: ABORT (); |
771 | 2220 } |
2221 | |
2222 } | |
4096 | 2223 |
2224 if (str->eof && ch) | |
2225 { | |
2226 switch (type) | |
2227 { | |
2228 case UNICODE_UTF_8: | |
2229 indicate_invalid_utf_8(indicated_length, | |
2230 counter, ch, dst, data, | |
2231 ignore_bom); | |
2232 break; | |
2233 | |
2234 case UNICODE_UTF_16: | |
2235 case UNICODE_UCS_4: | |
2236 case UNICODE_UTF_32: | |
2237 if (8 == counter) | |
2238 { | |
2239 DECODE_ERROR_OCTET (ch, dst, data, ignore_bom); | |
2240 } | |
2241 else if (16 == counter) | |
2242 { | |
2243 if (little_endian) | |
2244 { | |
2245 DECODE_ERROR_OCTET (ch & 0xFF, dst, data, ignore_bom); | |
2246 DECODE_ERROR_OCTET ((ch >> 8) & 0xFF, dst, data, | |
2247 ignore_bom); | |
2248 } | |
2249 else | |
2250 { | |
2251 DECODE_ERROR_OCTET ((ch >> 8) & 0xFF, dst, data, | |
2252 ignore_bom); | |
2253 DECODE_ERROR_OCTET (ch & 0xFF, dst, data, ignore_bom); | |
2254 } | |
2255 } | |
2256 else if (24 == counter) | |
2257 { | |
2258 if (little_endian) | |
2259 { | |
2260 DECODE_ERROR_OCTET ((ch >> 16) & 0xFF, dst, data, | |
2261 ignore_bom); | |
2262 DECODE_ERROR_OCTET (ch & 0xFF, dst, data, ignore_bom); | |
2263 DECODE_ERROR_OCTET ((ch >> 8) & 0xFF, dst, data, | |
2264 ignore_bom); | |
2265 } | |
2266 else | |
2267 { | |
2268 DECODE_ERROR_OCTET ((ch >> 16) & 0xFF, dst, data, | |
2269 ignore_bom); | |
2270 DECODE_ERROR_OCTET ((ch >> 8) & 0xFF, dst, data, | |
2271 ignore_bom); | |
2272 DECODE_ERROR_OCTET (ch & 0xFF, dst, data, | |
2273 ignore_bom); | |
2274 } | |
2275 } | |
2276 else assert(0); | |
2277 break; | |
2278 } | |
2279 ch = 0; | |
2280 } | |
771 | 2281 |
2282 data->counter = counter; | |
4096 | 2283 data->indicated_length = indicated_length; |
771 | 2284 } |
2285 else | |
2286 { | |
2287 unsigned char char_boundary = data->current_char_boundary; | |
2288 Lisp_Object charset = data->current_charset; | |
2289 | |
2290 #ifdef ENABLE_COMPOSITE_CHARS | |
2291 /* flags for handling composite chars. We do a little switcheroo | |
2292 on the source while we're outputting the composite char. */ | |
2293 Bytecount saved_n = 0; | |
867 | 2294 const Ibyte *saved_src = NULL; |
771 | 2295 int in_composite = 0; |
2296 | |
2297 back_to_square_n: | |
2298 #endif /* ENABLE_COMPOSITE_CHARS */ | |
2299 | |
2300 if (XCODING_SYSTEM_UNICODE_NEED_BOM (str->codesys) && !data->wrote_bom) | |
2301 { | |
4096 | 2302 encode_unicode_char_1 (0xFEFF, dst, type, little_endian, 1); |
771 | 2303 data->wrote_bom = 1; |
2304 } | |
2305 | |
2306 while (n--) | |
2307 { | |
867 | 2308 Ibyte c = *src++; |
771 | 2309 |
2310 #ifdef MULE | |
826 | 2311 if (byte_ascii_p (c)) |
771 | 2312 #endif /* MULE */ |
2313 { /* Processing ASCII character */ | |
2314 ch = 0; | |
2315 encode_unicode_char (Vcharset_ascii, c, 0, dst, type, | |
4096 | 2316 little_endian, 1); |
771 | 2317 |
2318 char_boundary = 1; | |
2319 } | |
2320 #ifdef MULE | |
867 | 2321 else if (ibyte_leading_byte_p (c) || ibyte_leading_byte_p (ch)) |
771 | 2322 { /* Processing Leading Byte */ |
2323 ch = 0; | |
826 | 2324 charset = charset_by_leading_byte (c); |
2325 if (leading_byte_prefix_p(c)) | |
771 | 2326 ch = c; |
2327 char_boundary = 0; | |
2328 } | |
2329 else | |
2330 { /* Processing Non-ASCII character */ | |
2331 char_boundary = 1; | |
2332 if (EQ (charset, Vcharset_control_1)) | |
2704 | 2333 /* See: |
2334 | |
2335 (Info-goto-node "(internals)Internal String Encoding") | |
2336 | |
2337 for the rationale behind subtracting #xa0 from the | |
2338 character's code. */ | |
2339 encode_unicode_char (Vcharset_control_1, c - 0xa0, 0, dst, | |
4096 | 2340 type, little_endian, 1); |
771 | 2341 else |
2342 { | |
2343 switch (XCHARSET_REP_BYTES (charset)) | |
2344 { | |
2345 case 2: | |
2346 encode_unicode_char (charset, c, 0, dst, type, | |
4096 | 2347 little_endian, 1); |
771 | 2348 break; |
2349 case 3: | |
2350 if (XCHARSET_PRIVATE_P (charset)) | |
2351 { | |
2352 encode_unicode_char (charset, c, 0, dst, type, | |
4096 | 2353 little_endian, 1); |
771 | 2354 ch = 0; |
2355 } | |
2356 else if (ch) | |
2357 { | |
2358 #ifdef ENABLE_COMPOSITE_CHARS | |
2359 if (EQ (charset, Vcharset_composite)) | |
2360 { | |
2361 if (in_composite) | |
2362 { | |
2363 /* #### Bother! We don't know how to | |
2364 handle this yet. */ | |
2365 encode_unicode_char (Vcharset_ascii, '~', 0, | |
2366 dst, type, | |
4096 | 2367 little_endian, 1); |
771 | 2368 } |
2369 else | |
2370 { | |
867 | 2371 Ichar emch = make_ichar (Vcharset_composite, |
771 | 2372 ch & 0x7F, |
2373 c & 0x7F); | |
2374 Lisp_Object lstr = | |
2375 composite_char_string (emch); | |
2376 saved_n = n; | |
2377 saved_src = src; | |
2378 in_composite = 1; | |
2379 src = XSTRING_DATA (lstr); | |
2380 n = XSTRING_LENGTH (lstr); | |
2381 } | |
2382 } | |
2383 else | |
2384 #endif /* ENABLE_COMPOSITE_CHARS */ | |
2385 encode_unicode_char (charset, ch, c, dst, type, | |
4096 | 2386 little_endian, 1); |
771 | 2387 ch = 0; |
2388 } | |
2389 else | |
2390 { | |
2391 ch = c; | |
2392 char_boundary = 0; | |
2393 } | |
2394 break; | |
2395 case 4: | |
2396 if (ch) | |
2397 { | |
2398 encode_unicode_char (charset, ch, c, dst, type, | |
4096 | 2399 little_endian, 1); |
771 | 2400 ch = 0; |
2401 } | |
2402 else | |
2403 { | |
2404 ch = c; | |
2405 char_boundary = 0; | |
2406 } | |
2407 break; | |
2408 default: | |
2500 | 2409 ABORT (); |
771 | 2410 } |
2411 } | |
2412 } | |
2413 #endif /* MULE */ | |
2414 } | |
2415 | |
2416 #ifdef ENABLE_COMPOSITE_CHARS | |
2417 if (in_composite) | |
2418 { | |
2419 n = saved_n; | |
2420 src = saved_src; | |
2421 in_composite = 0; | |
2422 goto back_to_square_n; /* Wheeeeeeeee ..... */ | |
2423 } | |
2424 #endif /* ENABLE_COMPOSITE_CHARS */ | |
2425 | |
2426 data->current_char_boundary = char_boundary; | |
2427 data->current_charset = charset; | |
2428 | |
2429 /* La palabra se hizo carne! */ | |
2430 /* A palavra fez-se carne! */ | |
2431 /* Whatever. */ | |
2432 } | |
2433 | |
2434 str->ch = ch; | |
2435 return orign; | |
2436 } | |
2437 | |
2438 /* DEFINE_DETECTOR (utf_7); */ | |
2439 DEFINE_DETECTOR (utf_8); | |
2440 DEFINE_DETECTOR_CATEGORY (utf_8, utf_8); | |
985 | 2441 DEFINE_DETECTOR_CATEGORY (utf_8, utf_8_bom); |
771 | 2442 DEFINE_DETECTOR (ucs_4); |
2443 DEFINE_DETECTOR_CATEGORY (ucs_4, ucs_4); | |
2444 DEFINE_DETECTOR (utf_16); | |
2445 DEFINE_DETECTOR_CATEGORY (utf_16, utf_16); | |
2446 DEFINE_DETECTOR_CATEGORY (utf_16, utf_16_little_endian); | |
2447 DEFINE_DETECTOR_CATEGORY (utf_16, utf_16_bom); | |
2448 DEFINE_DETECTOR_CATEGORY (utf_16, utf_16_little_endian_bom); | |
2449 | |
2450 struct ucs_4_detector | |
2451 { | |
2452 int in_ucs_4_byte; | |
2453 }; | |
2454 | |
2455 static void | |
2456 ucs_4_detect (struct detection_state *st, const UExtbyte *src, | |
2457 Bytecount n) | |
2458 { | |
2459 struct ucs_4_detector *data = DETECTION_STATE_DATA (st, ucs_4); | |
2460 | |
2461 while (n--) | |
2462 { | |
2463 UExtbyte c = *src++; | |
2464 switch (data->in_ucs_4_byte) | |
2465 { | |
2466 case 0: | |
2467 if (c >= 128) | |
2468 { | |
2469 DET_RESULT (st, ucs_4) = DET_NEARLY_IMPOSSIBLE; | |
2470 return; | |
2471 } | |
2472 else | |
2473 data->in_ucs_4_byte++; | |
2474 break; | |
2475 case 3: | |
2476 data->in_ucs_4_byte = 0; | |
2477 break; | |
2478 default: | |
2479 data->in_ucs_4_byte++; | |
2480 } | |
2481 } | |
2482 | |
2483 /* !!#### write this for real */ | |
2484 DET_RESULT (st, ucs_4) = DET_AS_LIKELY_AS_UNLIKELY; | |
2485 } | |
2486 | |
2487 struct utf_16_detector | |
2488 { | |
2489 unsigned int seen_ffff:1; | |
2490 unsigned int seen_forward_bom:1; | |
2491 unsigned int seen_rev_bom:1; | |
2492 int byteno; | |
2493 int prev_char; | |
2494 int text, rev_text; | |
1267 | 2495 int sep, rev_sep; |
2496 int num_ascii; | |
771 | 2497 }; |
2498 | |
2499 static void | |
2500 utf_16_detect (struct detection_state *st, const UExtbyte *src, | |
2501 Bytecount n) | |
2502 { | |
2503 struct utf_16_detector *data = DETECTION_STATE_DATA (st, utf_16); | |
2504 | |
2505 while (n--) | |
2506 { | |
2507 UExtbyte c = *src++; | |
2508 int prevc = data->prev_char; | |
2509 if (data->byteno == 1 && c == 0xFF && prevc == 0xFE) | |
2510 data->seen_forward_bom = 1; | |
2511 else if (data->byteno == 1 && c == 0xFE && prevc == 0xFF) | |
2512 data->seen_rev_bom = 1; | |
2513 | |
2514 if (data->byteno & 1) | |
2515 { | |
2516 if (c == 0xFF && prevc == 0xFF) | |
2517 data->seen_ffff = 1; | |
2518 if (prevc == 0 | |
2519 && (c == '\r' || c == '\n' | |
2520 || (c >= 0x20 && c <= 0x7E))) | |
2521 data->text++; | |
2522 if (c == 0 | |
2523 && (prevc == '\r' || prevc == '\n' | |
2524 || (prevc >= 0x20 && prevc <= 0x7E))) | |
2525 data->rev_text++; | |
1267 | 2526 /* #### 0x2028 is LINE SEPARATOR and 0x2029 is PARAGRAPH SEPARATOR. |
2527 I used to count these in text and rev_text but that is very bad, | |
2528 as 0x2028 is also space + left-paren in ASCII, which is extremely | |
2529 common. So, what do we do with these? */ | |
771 | 2530 if (prevc == 0x20 && (c == 0x28 || c == 0x29)) |
1267 | 2531 data->sep++; |
771 | 2532 if (c == 0x20 && (prevc == 0x28 || prevc == 0x29)) |
1267 | 2533 data->rev_sep++; |
771 | 2534 } |
2535 | |
1267 | 2536 if ((c >= ' ' && c <= '~') || c == '\n' || c == '\r' || c == '\t' || |
2537 c == '\f' || c == '\v') | |
2538 data->num_ascii++; | |
771 | 2539 data->byteno++; |
2540 data->prev_char = c; | |
2541 } | |
2542 | |
2543 { | |
2544 int variance_indicates_big_endian = | |
2545 (data->text >= 10 | |
2546 && (data->rev_text == 0 | |
2547 || data->text / data->rev_text >= 10)); | |
2548 int variance_indicates_little_endian = | |
2549 (data->rev_text >= 10 | |
2550 && (data->text == 0 | |
2551 || data->rev_text / data->text >= 10)); | |
2552 | |
2553 if (data->seen_ffff) | |
2554 SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE); | |
2555 else if (data->seen_forward_bom) | |
2556 { | |
2557 SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE); | |
2558 if (variance_indicates_big_endian) | |
2559 DET_RESULT (st, utf_16_bom) = DET_NEAR_CERTAINTY; | |
2560 else if (variance_indicates_little_endian) | |
2561 DET_RESULT (st, utf_16_bom) = DET_SOMEWHAT_LIKELY; | |
2562 else | |
2563 DET_RESULT (st, utf_16_bom) = DET_QUITE_PROBABLE; | |
2564 } | |
2565 else if (data->seen_forward_bom) | |
2566 { | |
2567 SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE); | |
2568 if (variance_indicates_big_endian) | |
2569 DET_RESULT (st, utf_16_bom) = DET_NEAR_CERTAINTY; | |
2570 else if (variance_indicates_little_endian) | |
2571 /* #### may need to rethink */ | |
2572 DET_RESULT (st, utf_16_bom) = DET_SOMEWHAT_LIKELY; | |
2573 else | |
2574 /* #### may need to rethink */ | |
2575 DET_RESULT (st, utf_16_bom) = DET_QUITE_PROBABLE; | |
2576 } | |
2577 else if (data->seen_rev_bom) | |
2578 { | |
2579 SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE); | |
2580 if (variance_indicates_little_endian) | |
2581 DET_RESULT (st, utf_16_little_endian_bom) = DET_NEAR_CERTAINTY; | |
2582 else if (variance_indicates_big_endian) | |
2583 /* #### may need to rethink */ | |
2584 DET_RESULT (st, utf_16_little_endian_bom) = DET_SOMEWHAT_LIKELY; | |
2585 else | |
2586 /* #### may need to rethink */ | |
2587 DET_RESULT (st, utf_16_little_endian_bom) = DET_QUITE_PROBABLE; | |
2588 } | |
2589 else if (variance_indicates_big_endian) | |
2590 { | |
2591 SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE); | |
2592 DET_RESULT (st, utf_16) = DET_SOMEWHAT_LIKELY; | |
2593 DET_RESULT (st, utf_16_little_endian) = DET_SOMEWHAT_UNLIKELY; | |
2594 } | |
2595 else if (variance_indicates_little_endian) | |
2596 { | |
2597 SET_DET_RESULTS (st, utf_16, DET_NEARLY_IMPOSSIBLE); | |
2598 DET_RESULT (st, utf_16) = DET_SOMEWHAT_UNLIKELY; | |
2599 DET_RESULT (st, utf_16_little_endian) = DET_SOMEWHAT_LIKELY; | |
2600 } | |
2601 else | |
1267 | 2602 { |
2603 /* #### FUCKME! There should really be an ASCII detector. This | |
2604 would rule out the need to have this built-in here as | |
2605 well. --ben */ | |
1292 | 2606 int pct_ascii = data->byteno ? (100 * data->num_ascii) / data->byteno |
2607 : 100; | |
1267 | 2608 |
2609 if (pct_ascii > 90) | |
2610 SET_DET_RESULTS (st, utf_16, DET_QUITE_IMPROBABLE); | |
2611 else if (pct_ascii > 75) | |
2612 SET_DET_RESULTS (st, utf_16, DET_SOMEWHAT_UNLIKELY); | |
2613 else | |
2614 SET_DET_RESULTS (st, utf_16, DET_AS_LIKELY_AS_UNLIKELY); | |
2615 } | |
771 | 2616 } |
2617 } | |
2618 | |
2619 struct utf_8_detector | |
2620 { | |
985 | 2621 int byteno; |
2622 int first_byte; | |
2623 int second_byte; | |
1267 | 2624 int prev_byte; |
771 | 2625 int in_utf_8_byte; |
1267 | 2626 int recent_utf_8_sequence; |
2627 int seen_bogus_utf8; | |
2628 int seen_really_bogus_utf8; | |
2629 int seen_2byte_sequence; | |
2630 int seen_longer_sequence; | |
2631 int seen_iso2022_esc; | |
2632 int seen_iso_shift; | |
1887 | 2633 unsigned int seen_utf_bom:1; |
771 | 2634 }; |
2635 | |
2636 static void | |
2637 utf_8_detect (struct detection_state *st, const UExtbyte *src, | |
2638 Bytecount n) | |
2639 { | |
2640 struct utf_8_detector *data = DETECTION_STATE_DATA (st, utf_8); | |
2641 | |
2642 while (n--) | |
2643 { | |
2644 UExtbyte c = *src++; | |
985 | 2645 switch (data->byteno) |
2646 { | |
2647 case 0: | |
2648 data->first_byte = c; | |
2649 break; | |
2650 case 1: | |
2651 data->second_byte = c; | |
2652 break; | |
2653 case 2: | |
2654 if (data->first_byte == 0xef && | |
2655 data->second_byte == 0xbb && | |
2656 c == 0xbf) | |
1267 | 2657 data->seen_utf_bom = 1; |
985 | 2658 break; |
2659 } | |
2660 | |
771 | 2661 switch (data->in_utf_8_byte) |
2662 { | |
2663 case 0: | |
1267 | 2664 if (data->prev_byte == ISO_CODE_ESC && c >= 0x28 && c <= 0x2F) |
2665 data->seen_iso2022_esc++; | |
2666 else if (c == ISO_CODE_SI || c == ISO_CODE_SO) | |
2667 data->seen_iso_shift++; | |
771 | 2668 else if (c >= 0xfc) |
2669 data->in_utf_8_byte = 5; | |
2670 else if (c >= 0xf8) | |
2671 data->in_utf_8_byte = 4; | |
2672 else if (c >= 0xf0) | |
2673 data->in_utf_8_byte = 3; | |
2674 else if (c >= 0xe0) | |
2675 data->in_utf_8_byte = 2; | |
2676 else if (c >= 0xc0) | |
2677 data->in_utf_8_byte = 1; | |
2678 else if (c >= 0x80) | |
1267 | 2679 data->seen_bogus_utf8++; |
2680 if (data->in_utf_8_byte > 0) | |
2681 data->recent_utf_8_sequence = data->in_utf_8_byte; | |
771 | 2682 break; |
2683 default: | |
2684 if ((c & 0xc0) != 0x80) | |
1267 | 2685 data->seen_really_bogus_utf8++; |
2686 else | |
771 | 2687 { |
1267 | 2688 data->in_utf_8_byte--; |
2689 if (data->in_utf_8_byte == 0) | |
2690 { | |
2691 if (data->recent_utf_8_sequence == 1) | |
2692 data->seen_2byte_sequence++; | |
2693 else | |
2694 { | |
2695 assert (data->recent_utf_8_sequence >= 2); | |
2696 data->seen_longer_sequence++; | |
2697 } | |
2698 } | |
771 | 2699 } |
2700 } | |
985 | 2701 |
2702 data->byteno++; | |
1267 | 2703 data->prev_byte = c; |
771 | 2704 } |
1267 | 2705 |
2706 /* either BOM or no BOM, but not both */ | |
2707 SET_DET_RESULTS (st, utf_8, DET_NEARLY_IMPOSSIBLE); | |
2708 | |
2709 | |
2710 if (data->seen_utf_bom) | |
2711 DET_RESULT (st, utf_8_bom) = DET_NEAR_CERTAINTY; | |
2712 else | |
2713 { | |
2714 if (data->seen_really_bogus_utf8 || | |
2715 data->seen_bogus_utf8 >= 2) | |
2716 ; /* bogus */ | |
2717 else if (data->seen_bogus_utf8) | |
2718 DET_RESULT (st, utf_8) = DET_SOMEWHAT_UNLIKELY; | |
2719 else if ((data->seen_longer_sequence >= 5 || | |
2720 data->seen_2byte_sequence >= 10) && | |
2721 (!(data->seen_iso2022_esc + data->seen_iso_shift) || | |
2722 (data->seen_longer_sequence * 2 + data->seen_2byte_sequence) / | |
2723 (data->seen_iso2022_esc + data->seen_iso_shift) >= 10)) | |
2724 /* heuristics, heuristics, we love heuristics */ | |
2725 DET_RESULT (st, utf_8) = DET_QUITE_PROBABLE; | |
2726 else if (data->seen_iso2022_esc || | |
2727 data->seen_iso_shift >= 3) | |
2728 DET_RESULT (st, utf_8) = DET_SOMEWHAT_UNLIKELY; | |
2729 else if (data->seen_longer_sequence || | |
2730 data->seen_2byte_sequence) | |
2731 DET_RESULT (st, utf_8) = DET_SOMEWHAT_LIKELY; | |
2732 else if (data->seen_iso_shift) | |
2733 DET_RESULT (st, utf_8) = DET_SOMEWHAT_UNLIKELY; | |
2734 else | |
2735 DET_RESULT (st, utf_8) = DET_AS_LIKELY_AS_UNLIKELY; | |
2736 } | |
771 | 2737 } |
2738 | |
2739 static void | |
2740 unicode_init_coding_stream (struct coding_stream *str) | |
2741 { | |
2742 struct unicode_coding_stream *data = | |
2743 CODING_STREAM_TYPE_DATA (str, unicode); | |
2744 xzero (*data); | |
2745 data->current_charset = Qnil; | |
2746 } | |
2747 | |
2748 static void | |
2749 unicode_rewind_coding_stream (struct coding_stream *str) | |
2750 { | |
2751 unicode_init_coding_stream (str); | |
2752 } | |
2753 | |
2754 static int | |
2755 unicode_putprop (Lisp_Object codesys, Lisp_Object key, Lisp_Object value) | |
2756 { | |
3767 | 2757 if (EQ (key, Qunicode_type)) |
771 | 2758 { |
2759 enum unicode_type type; | |
2760 | |
2761 if (EQ (value, Qutf_8)) | |
2762 type = UNICODE_UTF_8; | |
2763 else if (EQ (value, Qutf_16)) | |
2764 type = UNICODE_UTF_16; | |
2765 else if (EQ (value, Qutf_7)) | |
2766 type = UNICODE_UTF_7; | |
2767 else if (EQ (value, Qucs_4)) | |
2768 type = UNICODE_UCS_4; | |
4096 | 2769 else if (EQ (value, Qutf_32)) |
2770 type = UNICODE_UTF_32; | |
771 | 2771 else |
2772 invalid_constant ("Invalid Unicode type", key); | |
2773 | |
2774 XCODING_SYSTEM_UNICODE_TYPE (codesys) = type; | |
2775 } | |
2776 else if (EQ (key, Qlittle_endian)) | |
2777 XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN (codesys) = !NILP (value); | |
2778 else if (EQ (key, Qneed_bom)) | |
2779 XCODING_SYSTEM_UNICODE_NEED_BOM (codesys) = !NILP (value); | |
2780 else | |
2781 return 0; | |
2782 return 1; | |
2783 } | |
2784 | |
2785 static Lisp_Object | |
2786 unicode_getprop (Lisp_Object coding_system, Lisp_Object prop) | |
2787 { | |
3767 | 2788 if (EQ (prop, Qunicode_type)) |
771 | 2789 { |
2790 switch (XCODING_SYSTEM_UNICODE_TYPE (coding_system)) | |
2791 { | |
2792 case UNICODE_UTF_16: return Qutf_16; | |
2793 case UNICODE_UTF_8: return Qutf_8; | |
2794 case UNICODE_UTF_7: return Qutf_7; | |
2795 case UNICODE_UCS_4: return Qucs_4; | |
4096 | 2796 case UNICODE_UTF_32: return Qutf_32; |
2500 | 2797 default: ABORT (); |
771 | 2798 } |
2799 } | |
2800 else if (EQ (prop, Qlittle_endian)) | |
2801 return XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN (coding_system) ? Qt : Qnil; | |
2802 else if (EQ (prop, Qneed_bom)) | |
2803 return XCODING_SYSTEM_UNICODE_NEED_BOM (coding_system) ? Qt : Qnil; | |
2804 return Qunbound; | |
2805 } | |
2806 | |
2807 static void | |
2286 | 2808 unicode_print (Lisp_Object cs, Lisp_Object printcharfun, |
2809 int UNUSED (escapeflag)) | |
771 | 2810 { |
3767 | 2811 write_fmt_string_lisp (printcharfun, "(%s", 1, |
2812 unicode_getprop (cs, Qunicode_type)); | |
771 | 2813 if (XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN (cs)) |
826 | 2814 write_c_string (printcharfun, ", little-endian"); |
771 | 2815 if (XCODING_SYSTEM_UNICODE_NEED_BOM (cs)) |
826 | 2816 write_c_string (printcharfun, ", need-bom"); |
2817 write_c_string (printcharfun, ")"); | |
771 | 2818 } |
2819 | |
2820 int | |
2286 | 2821 dfc_coding_system_is_unicode ( |
2822 #ifdef WIN32_ANY | |
2823 Lisp_Object codesys | |
2824 #else | |
2825 Lisp_Object UNUSED (codesys) | |
2826 #endif | |
2827 ) | |
771 | 2828 { |
1315 | 2829 #ifdef WIN32_ANY |
771 | 2830 codesys = Fget_coding_system (codesys); |
2831 return (EQ (XCODING_SYSTEM_TYPE (codesys), Qunicode) && | |
2832 XCODING_SYSTEM_UNICODE_TYPE (codesys) == UNICODE_UTF_16 && | |
2833 XCODING_SYSTEM_UNICODE_LITTLE_ENDIAN (codesys)); | |
2834 | |
2835 #else | |
2836 return 0; | |
2837 #endif | |
2838 } | |
2839 | |
2840 | |
2841 /************************************************************************/ | |
2842 /* Initialization */ | |
2843 /************************************************************************/ | |
2844 | |
2845 void | |
2846 syms_of_unicode (void) | |
2847 { | |
2848 #ifdef MULE | |
877 | 2849 DEFSUBR (Funicode_precedence_list); |
771 | 2850 DEFSUBR (Fset_language_unicode_precedence_list); |
2851 DEFSUBR (Flanguage_unicode_precedence_list); | |
2852 DEFSUBR (Fset_default_unicode_precedence_list); | |
2853 DEFSUBR (Fdefault_unicode_precedence_list); | |
2854 DEFSUBR (Fset_unicode_conversion); | |
2855 | |
1318 | 2856 DEFSUBR (Fload_unicode_mapping_table); |
771 | 2857 |
3439 | 2858 DEFSYMBOL (Qccl_encode_to_ucs_2); |
2859 DEFSYMBOL (Qlast_allocated_character); | |
771 | 2860 DEFSYMBOL (Qignore_first_column); |
3659 | 2861 |
2862 DEFSYMBOL (Qunicode_registries); | |
771 | 2863 #endif /* MULE */ |
2864 | |
800 | 2865 DEFSUBR (Fchar_to_unicode); |
2866 DEFSUBR (Funicode_to_char); | |
771 | 2867 |
2868 DEFSYMBOL (Qunicode); | |
2869 DEFSYMBOL (Qucs_4); | |
2870 DEFSYMBOL (Qutf_16); | |
4096 | 2871 DEFSYMBOL (Qutf_32); |
771 | 2872 DEFSYMBOL (Qutf_8); |
2873 DEFSYMBOL (Qutf_7); | |
2874 | |
2875 DEFSYMBOL (Qneed_bom); | |
2876 | |
2877 DEFSYMBOL (Qutf_16); | |
2878 DEFSYMBOL (Qutf_16_little_endian); | |
2879 DEFSYMBOL (Qutf_16_bom); | |
2880 DEFSYMBOL (Qutf_16_little_endian_bom); | |
985 | 2881 |
2882 DEFSYMBOL (Qutf_8); | |
2883 DEFSYMBOL (Qutf_8_bom); | |
771 | 2884 } |
2885 | |
2886 void | |
2887 coding_system_type_create_unicode (void) | |
2888 { | |
2889 INITIALIZE_CODING_SYSTEM_TYPE_WITH_DATA (unicode, "unicode-coding-system-p"); | |
2890 CODING_SYSTEM_HAS_METHOD (unicode, print); | |
2891 CODING_SYSTEM_HAS_METHOD (unicode, convert); | |
2892 CODING_SYSTEM_HAS_METHOD (unicode, init_coding_stream); | |
2893 CODING_SYSTEM_HAS_METHOD (unicode, rewind_coding_stream); | |
2894 CODING_SYSTEM_HAS_METHOD (unicode, putprop); | |
2895 CODING_SYSTEM_HAS_METHOD (unicode, getprop); | |
2896 | |
2897 INITIALIZE_DETECTOR (utf_8); | |
2898 DETECTOR_HAS_METHOD (utf_8, detect); | |
2899 INITIALIZE_DETECTOR_CATEGORY (utf_8, utf_8); | |
985 | 2900 INITIALIZE_DETECTOR_CATEGORY (utf_8, utf_8_bom); |
771 | 2901 |
2902 INITIALIZE_DETECTOR (ucs_4); | |
2903 DETECTOR_HAS_METHOD (ucs_4, detect); | |
2904 INITIALIZE_DETECTOR_CATEGORY (ucs_4, ucs_4); | |
2905 | |
2906 INITIALIZE_DETECTOR (utf_16); | |
2907 DETECTOR_HAS_METHOD (utf_16, detect); | |
2908 INITIALIZE_DETECTOR_CATEGORY (utf_16, utf_16); | |
2909 INITIALIZE_DETECTOR_CATEGORY (utf_16, utf_16_little_endian); | |
2910 INITIALIZE_DETECTOR_CATEGORY (utf_16, utf_16_bom); | |
2911 INITIALIZE_DETECTOR_CATEGORY (utf_16, utf_16_little_endian_bom); | |
2912 } | |
2913 | |
2914 void | |
2915 reinit_coding_system_type_create_unicode (void) | |
2916 { | |
2917 REINITIALIZE_CODING_SYSTEM_TYPE (unicode); | |
2918 } | |
2919 | |
2920 void | |
2921 vars_of_unicode (void) | |
2922 { | |
2923 Fprovide (intern ("unicode")); | |
2924 | |
2925 #ifdef MULE | |
4270 | 2926 staticpro (&Vnumber_of_jit_charsets); |
2927 Vnumber_of_jit_charsets = make_int (0); | |
2928 staticpro (&Vlast_jit_charset_final); | |
2929 Vlast_jit_charset_final = make_char (0x30); | |
2930 staticpro (&Vcharset_descr); | |
2931 Vcharset_descr | |
2932 = build_string ("Mule charset for otherwise unknown Unicode code points."); | |
2933 | |
771 | 2934 staticpro (&Vlanguage_unicode_precedence_list); |
2935 Vlanguage_unicode_precedence_list = Qnil; | |
2936 | |
2937 staticpro (&Vdefault_unicode_precedence_list); | |
2938 Vdefault_unicode_precedence_list = Qnil; | |
2939 | |
2940 unicode_precedence_dynarr = Dynarr_new (Lisp_Object); | |
2367 | 2941 dump_add_root_block_ptr (&unicode_precedence_dynarr, |
771 | 2942 &lisp_object_dynarr_description); |
2367 | 2943 |
3659 | 2944 |
2945 | |
2367 | 2946 init_blank_unicode_tables (); |
2947 | |
3439 | 2948 staticpro (&Vcurrent_jit_charset); |
2949 Vcurrent_jit_charset = Qnil; | |
2950 | |
2367 | 2951 /* Note that the "block" we are describing is a single pointer, and hence |
2952 we could potentially use dump_add_root_block_ptr(). However, given | |
2953 the way the descriptions are written, we couldn't use them, and would | |
2954 have to write new descriptions for each of the pointers below, since | |
2955 we would have to make use of a description with an XD_BLOCK_ARRAY | |
2956 in it. */ | |
2957 | |
2958 dump_add_root_block (&to_unicode_blank_1, sizeof (void *), | |
2959 to_unicode_level_1_desc_1); | |
2960 dump_add_root_block (&to_unicode_blank_2, sizeof (void *), | |
2961 to_unicode_level_2_desc_1); | |
2962 | |
2963 dump_add_root_block (&from_unicode_blank_1, sizeof (void *), | |
2964 from_unicode_level_1_desc_1); | |
2965 dump_add_root_block (&from_unicode_blank_2, sizeof (void *), | |
2966 from_unicode_level_2_desc_1); | |
2967 dump_add_root_block (&from_unicode_blank_3, sizeof (void *), | |
2968 from_unicode_level_3_desc_1); | |
2969 dump_add_root_block (&from_unicode_blank_4, sizeof (void *), | |
2970 from_unicode_level_4_desc_1); | |
3659 | 2971 |
2972 DEFVAR_LISP ("unicode-registries", &Qunicode_registries /* | |
2973 Vector describing the X11 registries searched when using fallback fonts. | |
2974 | |
2975 "Fallback fonts" here includes by default those fonts used by redisplay when | |
2976 displaying charsets for which the `encode-as-utf-8' property is true, and | |
2977 those used when no font matching the charset's registries property has been | |
2978 found (that is, they're probably Mule-specific charsets like Ethiopic or | |
2979 IPA.) | |
2980 */ ); | |
2981 Qunicode_registries = vector1(build_string("iso10646-1")); | |
771 | 2982 #endif /* MULE */ |
2983 } |