Mercurial > hg > xemacs-beta
annotate src/alloc.c @ 2732:2590b61c3f03
[xemacs-hg @ 2005-04-14 21:52:41 by viteno]
Update xemacs_extra_name.
author | viteno |
---|---|
date | Thu, 14 Apr 2005 21:52:41 +0000 |
parents | 6fa9919a9a0b |
children | 05d62157e048 |
rev | line source |
---|---|
428 | 1 /* Storage allocation and gc for XEmacs Lisp interpreter. |
2 Copyright (C) 1985-1998 Free Software Foundation, Inc. | |
3 Copyright (C) 1995 Sun Microsystems, Inc. | |
2367 | 4 Copyright (C) 1995, 1996, 2001, 2002, 2003, 2004 Ben Wing. |
428 | 5 |
6 This file is part of XEmacs. | |
7 | |
8 XEmacs is free software; you can redistribute it and/or modify it | |
9 under the terms of the GNU General Public License as published by the | |
10 Free Software Foundation; either version 2, or (at your option) any | |
11 later version. | |
12 | |
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
16 for more details. | |
17 | |
18 You should have received a copy of the GNU General Public License | |
19 along with XEmacs; see the file COPYING. If not, write to | |
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
21 Boston, MA 02111-1307, USA. */ | |
22 | |
23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from | |
24 FSF. */ | |
25 | |
26 /* Authorship: | |
27 | |
28 FSF: Original version; a long time ago. | |
29 Mly: Significantly rewritten to use new 3-bit tags and | |
30 nicely abstracted object definitions, for 19.8. | |
31 JWZ: Improved code to keep track of purespace usage and | |
32 issue nice purespace and GC stats. | |
33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking | |
34 and various changes for Mule, for 19.12. | |
35 Added bit vectors for 19.13. | |
36 Added lcrecord lists for 19.14. | |
37 slb: Lots of work on the purification and dump time code. | |
38 Synched Doug Lea malloc support from Emacs 20.2. | |
442 | 39 og: Killed the purespace. Portable dumper (moved to dumper.c) |
428 | 40 */ |
41 | |
42 #include <config.h> | |
43 #include "lisp.h" | |
44 | |
45 #include "backtrace.h" | |
46 #include "buffer.h" | |
47 #include "bytecode.h" | |
48 #include "chartab.h" | |
49 #include "device.h" | |
50 #include "elhash.h" | |
51 #include "events.h" | |
872 | 52 #include "extents-impl.h" |
1204 | 53 #include "file-coding.h" |
872 | 54 #include "frame-impl.h" |
428 | 55 #include "glyphs.h" |
56 #include "opaque.h" | |
1204 | 57 #include "lstream.h" |
872 | 58 #include "process.h" |
1292 | 59 #include "profile.h" |
428 | 60 #include "redisplay.h" |
61 #include "specifier.h" | |
62 #include "sysfile.h" | |
442 | 63 #include "sysdep.h" |
428 | 64 #include "window.h" |
65 #include "console-stream.h" | |
66 | |
67 #ifdef DOUG_LEA_MALLOC | |
68 #include <malloc.h> | |
69 #endif | |
70 | |
71 EXFUN (Fgarbage_collect, 0); | |
72 | |
814 | 73 static void recompute_need_to_garbage_collect (void); |
74 | |
428 | 75 #if 0 /* this is _way_ too slow to be part of the standard debug options */ |
76 #if defined(DEBUG_XEMACS) && defined(MULE) | |
77 #define VERIFY_STRING_CHARS_INTEGRITY | |
78 #endif | |
79 #endif | |
80 | |
81 /* Define this to use malloc/free with no freelist for all datatypes, | |
82 the hope being that some debugging tools may help detect | |
83 freed memory references */ | |
84 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */ | |
85 #include <dmalloc.h> | |
86 #define ALLOC_NO_POOLS | |
87 #endif | |
88 | |
89 #ifdef DEBUG_XEMACS | |
458 | 90 static Fixnum debug_allocation; |
91 static Fixnum debug_allocation_backtrace_length; | |
428 | 92 #endif |
93 | |
94 /* Number of bytes of consing done since the last gc */ | |
814 | 95 static EMACS_INT consing_since_gc; |
1292 | 96 EMACS_UINT total_consing; |
97 | |
814 | 98 int need_to_garbage_collect; |
851 | 99 int need_to_check_c_alloca; |
887 | 100 int need_to_signal_post_gc; |
851 | 101 int funcall_allocation_flag; |
102 Bytecount __temp_alloca_size__; | |
103 Bytecount funcall_alloca_count; | |
814 | 104 |
105 /* Determine now whether we need to garbage collect or not, to make | |
106 Ffuncall() faster */ | |
107 #define INCREMENT_CONS_COUNTER_1(size) \ | |
108 do \ | |
109 { \ | |
110 consing_since_gc += (size); \ | |
1292 | 111 total_consing += (size); \ |
112 if (profiling_active) \ | |
113 profile_record_consing (size); \ | |
814 | 114 recompute_need_to_garbage_collect (); \ |
115 } while (0) | |
428 | 116 |
117 #define debug_allocation_backtrace() \ | |
118 do { \ | |
119 if (debug_allocation_backtrace_length > 0) \ | |
120 debug_short_backtrace (debug_allocation_backtrace_length); \ | |
121 } while (0) | |
122 | |
123 #ifdef DEBUG_XEMACS | |
801 | 124 #define INCREMENT_CONS_COUNTER(foosize, type) \ |
125 do { \ | |
126 if (debug_allocation) \ | |
127 { \ | |
128 stderr_out ("allocating %s (size %ld)\n", type, \ | |
129 (long) foosize); \ | |
130 debug_allocation_backtrace (); \ | |
131 } \ | |
132 INCREMENT_CONS_COUNTER_1 (foosize); \ | |
428 | 133 } while (0) |
134 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \ | |
135 do { \ | |
136 if (debug_allocation > 1) \ | |
137 { \ | |
801 | 138 stderr_out ("allocating noseeum %s (size %ld)\n", type, \ |
139 (long) foosize); \ | |
428 | 140 debug_allocation_backtrace (); \ |
141 } \ | |
142 INCREMENT_CONS_COUNTER_1 (foosize); \ | |
143 } while (0) | |
144 #else | |
145 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size) | |
146 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \ | |
147 INCREMENT_CONS_COUNTER_1 (size) | |
148 #endif | |
149 | |
150 #define DECREMENT_CONS_COUNTER(size) do { \ | |
151 consing_since_gc -= (size); \ | |
1292 | 152 total_consing -= (size); \ |
153 if (profiling_active) \ | |
154 profile_record_unconsing (size); \ | |
428 | 155 if (consing_since_gc < 0) \ |
156 consing_since_gc = 0; \ | |
814 | 157 recompute_need_to_garbage_collect (); \ |
428 | 158 } while (0) |
159 | |
160 /* Number of bytes of consing since gc before another gc should be done. */ | |
801 | 161 static EMACS_INT gc_cons_threshold; |
162 | |
163 /* Percentage of consing of total data size before another GC. */ | |
164 static EMACS_INT gc_cons_percentage; | |
165 | |
166 #ifdef ERROR_CHECK_GC | |
853 | 167 int always_gc; /* Debugging hack; equivalent to |
168 (setq gc-cons-thresold -1) */ | |
801 | 169 #else |
170 #define always_gc 0 | |
171 #endif | |
428 | 172 |
173 /* Nonzero during gc */ | |
174 int gc_in_progress; | |
175 | |
1154 | 176 /* Nonzero means display messages at beginning and end of GC. */ |
177 | |
178 int garbage_collection_messages; | |
179 | |
428 | 180 /* Number of times GC has happened at this level or below. |
181 * Level 0 is most volatile, contrary to usual convention. | |
182 * (Of course, there's only one level at present) */ | |
183 EMACS_INT gc_generation_number[1]; | |
184 | |
185 /* This is just for use by the printer, to allow things to print uniquely */ | |
186 static int lrecord_uid_counter; | |
187 | |
188 /* Nonzero when calling certain hooks or doing other things where | |
189 a GC would be bad */ | |
1957 | 190 int gc_currently_forbidden; |
428 | 191 |
192 /* Hooks. */ | |
193 Lisp_Object Vpre_gc_hook, Qpre_gc_hook; | |
194 Lisp_Object Vpost_gc_hook, Qpost_gc_hook; | |
195 | |
196 /* "Garbage collecting" */ | |
197 Lisp_Object Vgc_message; | |
198 Lisp_Object Vgc_pointer_glyph; | |
2367 | 199 static const Ascbyte gc_default_message[] = "Garbage collecting"; |
428 | 200 Lisp_Object Qgarbage_collecting; |
201 | |
1292 | 202 static Lisp_Object QSin_garbage_collection; |
203 | |
428 | 204 /* Non-zero means we're in the process of doing the dump */ |
205 int purify_flag; | |
206 | |
1204 | 207 /* Non-zero means we're pdumping out or in */ |
208 #ifdef PDUMP | |
209 int in_pdump; | |
210 #endif | |
211 | |
800 | 212 #ifdef ERROR_CHECK_TYPES |
428 | 213 |
793 | 214 Error_Behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN, ERROR_ME_DEBUG_WARN; |
428 | 215 |
216 #endif | |
217 | |
801 | 218 /* Very cheesy ways of figuring out how much memory is being used for |
219 data. #### Need better (system-dependent) ways. */ | |
220 void *minimum_address_seen; | |
221 void *maximum_address_seen; | |
222 | |
2720 | 223 #ifndef MC_ALLOC |
428 | 224 int |
225 c_readonly (Lisp_Object obj) | |
226 { | |
227 return POINTER_TYPE_P (XTYPE (obj)) && C_READONLY (obj); | |
228 } | |
2720 | 229 #endif /* MC_ALLOC */ |
428 | 230 |
231 int | |
232 lisp_readonly (Lisp_Object obj) | |
233 { | |
234 return POINTER_TYPE_P (XTYPE (obj)) && LISP_READONLY (obj); | |
235 } | |
236 | |
237 | |
238 /* Maximum amount of C stack to save when a GC happens. */ | |
239 | |
240 #ifndef MAX_SAVE_STACK | |
241 #define MAX_SAVE_STACK 0 /* 16000 */ | |
242 #endif | |
243 | |
244 /* Non-zero means ignore malloc warnings. Set during initialization. */ | |
245 int ignore_malloc_warnings; | |
246 | |
247 | |
2720 | 248 #ifndef MC_ALLOC |
428 | 249 static void *breathing_space; |
250 | |
251 void | |
252 release_breathing_space (void) | |
253 { | |
254 if (breathing_space) | |
255 { | |
256 void *tmp = breathing_space; | |
257 breathing_space = 0; | |
1726 | 258 xfree (tmp, void *); |
428 | 259 } |
260 } | |
2720 | 261 #endif /* not MC_ALLOC */ |
428 | 262 |
263 /* malloc calls this if it finds we are near exhausting storage */ | |
264 void | |
442 | 265 malloc_warning (const char *str) |
428 | 266 { |
267 if (ignore_malloc_warnings) | |
268 return; | |
269 | |
270 warn_when_safe | |
793 | 271 (Qmemory, Qemergency, |
428 | 272 "%s\n" |
273 "Killing some buffers may delay running out of memory.\n" | |
274 "However, certainly by the time you receive the 95%% warning,\n" | |
275 "you should clean up, kill this Emacs, and start a new one.", | |
276 str); | |
277 } | |
278 | |
279 /* Called if malloc returns zero */ | |
280 DOESNT_RETURN | |
281 memory_full (void) | |
282 { | |
283 /* Force a GC next time eval is called. | |
284 It's better to loop garbage-collecting (we might reclaim enough | |
285 to win) than to loop beeping and barfing "Memory exhausted" | |
286 */ | |
287 consing_since_gc = gc_cons_threshold + 1; | |
814 | 288 recompute_need_to_garbage_collect (); |
2720 | 289 #ifndef MC_ALLOC |
428 | 290 release_breathing_space (); |
2720 | 291 #endif /* not MC_ALLOC */ |
428 | 292 |
293 /* Flush some histories which might conceivably contain garbalogical | |
294 inhibitors. */ | |
295 if (!NILP (Fboundp (Qvalues))) | |
296 Fset (Qvalues, Qnil); | |
297 Vcommand_history = Qnil; | |
298 | |
563 | 299 out_of_memory ("Memory exhausted", Qunbound); |
428 | 300 } |
301 | |
801 | 302 static void |
303 set_alloc_mins_and_maxes (void *val, Bytecount size) | |
304 { | |
305 if (!val) | |
306 return; | |
307 if ((char *) val + size > (char *) maximum_address_seen) | |
308 maximum_address_seen = (char *) val + size; | |
309 if (!minimum_address_seen) | |
310 minimum_address_seen = | |
311 #if SIZEOF_VOID_P == 8 | |
312 (void *) 0xFFFFFFFFFFFFFFFF; | |
313 #else | |
314 (void *) 0xFFFFFFFF; | |
315 #endif | |
316 if ((char *) val < (char *) minimum_address_seen) | |
317 minimum_address_seen = (char *) val; | |
318 } | |
319 | |
1315 | 320 #ifdef ERROR_CHECK_MALLOC |
1292 | 321 static int in_malloc; |
1333 | 322 extern int regex_malloc_disallowed; |
2367 | 323 |
324 #define MALLOC_BEGIN() \ | |
325 do \ | |
326 { \ | |
327 assert (!in_malloc); \ | |
328 assert (!regex_malloc_disallowed); \ | |
329 in_malloc = 1; \ | |
330 } \ | |
331 while (0) | |
332 | |
2720 | 333 #ifdef MC_ALLOC |
334 #define FREE_OR_REALLOC_BEGIN(block) \ | |
335 do \ | |
336 { \ | |
337 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an \ | |
338 error until much later on for many system mallocs, such as \ | |
339 the one that comes with Solaris 2.3. FMH!! */ \ | |
340 assert (block != (void *) 0xDEADBEEF); \ | |
341 MALLOC_BEGIN (); \ | |
342 } \ | |
343 while (0) | |
344 #else /* not MC_ALLOC */ | |
2367 | 345 #define FREE_OR_REALLOC_BEGIN(block) \ |
346 do \ | |
347 { \ | |
348 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an \ | |
349 error until much later on for many system mallocs, such as \ | |
350 the one that comes with Solaris 2.3. FMH!! */ \ | |
351 assert (block != (void *) 0xDEADBEEF); \ | |
352 /* You cannot free something within dumped space, because there is \ | |
353 no longer any sort of malloc structure associated with the block. \ | |
354 If you are tripping this, you may need to conditionalize on \ | |
355 DUMPEDP. */ \ | |
356 assert (!DUMPEDP (block)); \ | |
357 MALLOC_BEGIN (); \ | |
358 } \ | |
359 while (0) | |
2720 | 360 #endif /* not MC_ALLOC */ |
2367 | 361 |
362 #define MALLOC_END() \ | |
363 do \ | |
364 { \ | |
365 in_malloc = 0; \ | |
366 } \ | |
367 while (0) | |
368 | |
369 #else /* ERROR_CHECK_MALLOC */ | |
370 | |
2658 | 371 #define MALLOC_BEGIN() |
2367 | 372 #define FREE_OR_REALLOC_BEGIN(block) |
373 #define MALLOC_END() | |
374 | |
375 #endif /* ERROR_CHECK_MALLOC */ | |
376 | |
377 static void | |
378 malloc_after (void *val, Bytecount size) | |
379 { | |
380 if (!val && size != 0) | |
381 memory_full (); | |
382 set_alloc_mins_and_maxes (val, size); | |
383 } | |
384 | |
385 /* like malloc, calloc, realloc, free but: | |
386 | |
387 -- check for no memory left | |
388 -- set internal mins and maxes | |
389 -- with error-checking on, check for reentrancy, invalid freeing, etc. | |
390 */ | |
1292 | 391 |
428 | 392 #undef xmalloc |
393 void * | |
665 | 394 xmalloc (Bytecount size) |
428 | 395 { |
1292 | 396 void *val; |
2367 | 397 MALLOC_BEGIN (); |
1292 | 398 val = malloc (size); |
2367 | 399 MALLOC_END (); |
400 malloc_after (val, size); | |
428 | 401 return val; |
402 } | |
403 | |
404 #undef xcalloc | |
405 static void * | |
665 | 406 xcalloc (Elemcount nelem, Bytecount elsize) |
428 | 407 { |
1292 | 408 void *val; |
2367 | 409 MALLOC_BEGIN (); |
1292 | 410 val= calloc (nelem, elsize); |
2367 | 411 MALLOC_END (); |
412 malloc_after (val, nelem * elsize); | |
428 | 413 return val; |
414 } | |
415 | |
416 void * | |
665 | 417 xmalloc_and_zero (Bytecount size) |
428 | 418 { |
419 return xcalloc (size, sizeof (char)); | |
420 } | |
421 | |
422 #undef xrealloc | |
423 void * | |
665 | 424 xrealloc (void *block, Bytecount size) |
428 | 425 { |
2367 | 426 FREE_OR_REALLOC_BEGIN (block); |
551 | 427 block = realloc (block, size); |
2367 | 428 MALLOC_END (); |
429 malloc_after (block, size); | |
551 | 430 return block; |
428 | 431 } |
432 | |
433 void | |
434 xfree_1 (void *block) | |
435 { | |
436 #ifdef ERROR_CHECK_MALLOC | |
437 assert (block); | |
438 #endif /* ERROR_CHECK_MALLOC */ | |
2367 | 439 FREE_OR_REALLOC_BEGIN (block); |
428 | 440 free (block); |
2367 | 441 MALLOC_END (); |
428 | 442 } |
443 | |
444 #ifdef ERROR_CHECK_GC | |
445 | |
2720 | 446 #ifndef MC_ALLOC |
428 | 447 static void |
665 | 448 deadbeef_memory (void *ptr, Bytecount size) |
428 | 449 { |
826 | 450 UINT_32_BIT *ptr4 = (UINT_32_BIT *) ptr; |
665 | 451 Bytecount beefs = size >> 2; |
428 | 452 |
453 /* In practice, size will always be a multiple of four. */ | |
454 while (beefs--) | |
1204 | 455 (*ptr4++) = 0xDEADBEEF; /* -559038737 base 10 */ |
428 | 456 } |
2720 | 457 #endif /* not MC_ALLOC */ |
428 | 458 |
459 #else /* !ERROR_CHECK_GC */ | |
460 | |
461 | |
462 #define deadbeef_memory(ptr, size) | |
463 | |
464 #endif /* !ERROR_CHECK_GC */ | |
465 | |
466 #undef xstrdup | |
467 char * | |
442 | 468 xstrdup (const char *str) |
428 | 469 { |
470 int len = strlen (str) + 1; /* for stupid terminating 0 */ | |
471 void *val = xmalloc (len); | |
771 | 472 |
428 | 473 if (val == 0) return 0; |
474 return (char *) memcpy (val, str, len); | |
475 } | |
476 | |
477 #ifdef NEED_STRDUP | |
478 char * | |
442 | 479 strdup (const char *s) |
428 | 480 { |
481 return xstrdup (s); | |
482 } | |
483 #endif /* NEED_STRDUP */ | |
484 | |
485 | |
2720 | 486 #ifndef MC_ALLOC |
428 | 487 static void * |
665 | 488 allocate_lisp_storage (Bytecount size) |
428 | 489 { |
793 | 490 void *val = xmalloc (size); |
491 /* We don't increment the cons counter anymore. Calling functions do | |
492 that now because we have two different kinds of cons counters -- one | |
493 for normal objects, and one for no-see-um conses (and possibly others | |
494 similar) where the conses are used totally internally, never escape, | |
495 and are created and then freed and shouldn't logically increment the | |
496 cons counting. #### (Or perhaps, we should decrement it when an object | |
497 get freed?) */ | |
498 | |
499 /* But we do now (as of 3-27-02) go and zero out the memory. This is a | |
500 good thing, as it will guarantee we won't get any intermittent bugs | |
1204 | 501 coming from an uninitiated field. The speed loss is unnoticeable, |
502 esp. as the objects are not large -- large stuff like buffer text and | |
503 redisplay structures are allocated separately. */ | |
793 | 504 memset (val, 0, size); |
851 | 505 |
506 if (need_to_check_c_alloca) | |
507 xemacs_c_alloca (0); | |
508 | |
793 | 509 return val; |
428 | 510 } |
2720 | 511 #endif /* not MC_ALLOC */ |
512 | |
513 #ifdef MC_ALLOC_TYPE_STATS | |
514 static struct | |
515 { | |
516 int instances_in_use; | |
517 int bytes_in_use; | |
518 int bytes_in_use_including_overhead; | |
519 } lrecord_stats [countof (lrecord_implementations_table) | |
520 + MODULE_DEFINABLE_TYPE_COUNT]; | |
521 | |
522 void | |
523 init_lrecord_stats () | |
524 { | |
525 xzero (lrecord_stats); | |
526 } | |
527 | |
528 void | |
529 inc_lrecord_stats (Bytecount size, const struct lrecord_header *h) | |
530 { | |
531 int type_index = h->type; | |
532 if (!size) | |
533 size = detagged_lisp_object_size (h); | |
534 | |
535 lrecord_stats[type_index].instances_in_use++; | |
536 lrecord_stats[type_index].bytes_in_use += size; | |
537 lrecord_stats[type_index].bytes_in_use_including_overhead | |
538 #ifdef MEMORY_USAGE_STATS | |
539 += mc_alloced_storage_size (size, 0); | |
540 #else /* not MEMORY_USAGE_STATS */ | |
541 += size; | |
542 #endif /* not MEMORY_USAGE_STATS */ | |
543 } | |
544 | |
545 void | |
546 dec_lrecord_stats (Bytecount size_including_overhead, | |
547 const struct lrecord_header *h) | |
548 { | |
549 int type_index = h->type; | |
550 | |
551 lrecord_stats[type_index].instances_in_use--; | |
552 lrecord_stats[type_index].bytes_in_use -= detagged_lisp_object_size (h); | |
553 lrecord_stats[type_index].bytes_in_use_including_overhead | |
554 -= size_including_overhead; | |
555 | |
556 DECREMENT_CONS_COUNTER (lrecord_stats[type_index].bytes_in_use); | |
557 } | |
558 #endif /* not MC_ALLOC_TYPE_STATS */ | |
559 | |
560 #ifndef MC_ALLOC | |
442 | 561 /* lcrecords are chained together through their "next" field. |
562 After doing the mark phase, GC will walk this linked list | |
563 and free any lcrecord which hasn't been marked. */ | |
428 | 564 static struct lcrecord_header *all_lcrecords; |
2720 | 565 #endif /* not MC_ALLOC */ |
566 | |
567 #ifdef MC_ALLOC | |
568 /* The basic lrecord allocation functions. See lrecord.h for details. */ | |
569 void * | |
570 alloc_lrecord (Bytecount size, | |
571 const struct lrecord_implementation *implementation) | |
572 { | |
573 struct lrecord_header *lheader; | |
574 | |
575 type_checking_assert | |
576 ((implementation->static_size == 0 ? | |
577 implementation->size_in_bytes_method != NULL : | |
578 implementation->static_size == size)); | |
579 | |
580 lheader = (struct lrecord_header *) mc_alloc (size); | |
581 gc_checking_assert (LRECORD_FREE_P (lheader)); | |
582 set_lheader_implementation (lheader, implementation); | |
583 lheader->uid = lrecord_uid_counter++; | |
584 #ifdef MC_ALLOC_TYPE_STATS | |
585 inc_lrecord_stats (size, lheader); | |
586 #endif /* not MC_ALLOC_TYPE_STATS */ | |
587 INCREMENT_CONS_COUNTER (size, implementation->name); | |
588 return lheader; | |
589 } | |
590 | |
591 void * | |
592 noseeum_alloc_lrecord (Bytecount size, | |
593 const struct lrecord_implementation *implementation) | |
594 { | |
595 struct lrecord_header *lheader; | |
596 | |
597 type_checking_assert | |
598 ((implementation->static_size == 0 ? | |
599 implementation->size_in_bytes_method != NULL : | |
600 implementation->static_size == size)); | |
601 | |
602 lheader = (struct lrecord_header *) mc_alloc (size); | |
603 gc_checking_assert (LRECORD_FREE_P (lheader)); | |
604 set_lheader_implementation (lheader, implementation); | |
605 lheader->uid = lrecord_uid_counter++; | |
606 #ifdef MC_ALLOC_TYPE_STATS | |
607 inc_lrecord_stats (size, lheader); | |
608 #endif /* not MC_ALLOC_TYPE_STATS */ | |
609 NOSEEUM_INCREMENT_CONS_COUNTER (size, implementation->name); | |
610 return lheader; | |
611 } | |
612 | |
613 void | |
614 free_lrecord (Lisp_Object lrecord) | |
615 { | |
616 gc_checking_assert (!gc_in_progress); | |
617 gc_checking_assert (!LRECORD_FREE_P (XRECORD_LHEADER (lrecord))); | |
618 gc_checking_assert (!XRECORD_LHEADER (lrecord)->free); | |
619 | |
620 MC_ALLOC_CALL_FINALIZER (XPNTR (lrecord)); | |
621 mc_free (XPNTR (lrecord)); | |
622 } | |
623 #else /* not MC_ALLOC */ | |
428 | 624 |
1204 | 625 /* The most basic of the lcrecord allocation functions. Not usually called |
626 directly. Allocates an lrecord not managed by any lcrecord-list, of a | |
627 specified size. See lrecord.h. */ | |
628 | |
428 | 629 void * |
1204 | 630 basic_alloc_lcrecord (Bytecount size, |
631 const struct lrecord_implementation *implementation) | |
428 | 632 { |
633 struct lcrecord_header *lcheader; | |
634 | |
442 | 635 type_checking_assert |
636 ((implementation->static_size == 0 ? | |
637 implementation->size_in_bytes_method != NULL : | |
638 implementation->static_size == size) | |
639 && | |
640 (! implementation->basic_p) | |
641 && | |
642 (! (implementation->hash == NULL && implementation->equal != NULL))); | |
428 | 643 |
644 lcheader = (struct lcrecord_header *) allocate_lisp_storage (size); | |
442 | 645 set_lheader_implementation (&lcheader->lheader, implementation); |
428 | 646 lcheader->next = all_lcrecords; |
647 #if 1 /* mly prefers to see small ID numbers */ | |
648 lcheader->uid = lrecord_uid_counter++; | |
649 #else /* jwz prefers to see real addrs */ | |
650 lcheader->uid = (int) &lcheader; | |
651 #endif | |
652 lcheader->free = 0; | |
653 all_lcrecords = lcheader; | |
654 INCREMENT_CONS_COUNTER (size, implementation->name); | |
655 return lcheader; | |
656 } | |
657 | |
658 #if 0 /* Presently unused */ | |
659 /* Very, very poor man's EGC? | |
660 * This may be slow and thrash pages all over the place. | |
661 * Only call it if you really feel you must (and if the | |
662 * lrecord was fairly recently allocated). | |
663 * Otherwise, just let the GC do its job -- that's what it's there for | |
664 */ | |
665 void | |
771 | 666 very_old_free_lcrecord (struct lcrecord_header *lcrecord) |
428 | 667 { |
668 if (all_lcrecords == lcrecord) | |
669 { | |
670 all_lcrecords = lcrecord->next; | |
671 } | |
672 else | |
673 { | |
674 struct lrecord_header *header = all_lcrecords; | |
675 for (;;) | |
676 { | |
677 struct lrecord_header *next = header->next; | |
678 if (next == lcrecord) | |
679 { | |
680 header->next = lrecord->next; | |
681 break; | |
682 } | |
683 else if (next == 0) | |
2500 | 684 ABORT (); |
428 | 685 else |
686 header = next; | |
687 } | |
688 } | |
689 if (lrecord->implementation->finalizer) | |
690 lrecord->implementation->finalizer (lrecord, 0); | |
691 xfree (lrecord); | |
692 return; | |
693 } | |
694 #endif /* Unused */ | |
2720 | 695 #endif /* not MC_ALLOC */ |
428 | 696 |
697 | |
698 static void | |
699 disksave_object_finalization_1 (void) | |
700 { | |
2720 | 701 #ifdef MC_ALLOC |
702 mc_finalize_for_disksave (); | |
703 #else /* not MC_ALLOC */ | |
428 | 704 struct lcrecord_header *header; |
705 | |
706 for (header = all_lcrecords; header; header = header->next) | |
707 { | |
442 | 708 if (LHEADER_IMPLEMENTATION (&header->lheader)->finalizer && |
428 | 709 !header->free) |
442 | 710 LHEADER_IMPLEMENTATION (&header->lheader)->finalizer (header, 1); |
428 | 711 } |
2720 | 712 #endif /* not MC_ALLOC */ |
428 | 713 } |
714 | |
1204 | 715 /* Bitwise copy all parts of a Lisp object other than the header */ |
716 | |
717 void | |
718 copy_lisp_object (Lisp_Object dst, Lisp_Object src) | |
719 { | |
720 const struct lrecord_implementation *imp = | |
721 XRECORD_LHEADER_IMPLEMENTATION (src); | |
722 Bytecount size = lisp_object_size (src); | |
723 | |
724 assert (imp == XRECORD_LHEADER_IMPLEMENTATION (dst)); | |
725 assert (size == lisp_object_size (dst)); | |
726 | |
2720 | 727 #ifdef MC_ALLOC |
728 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lrecord_header), | |
729 (char *) XRECORD_LHEADER (src) + sizeof (struct lrecord_header), | |
730 size - sizeof (struct lrecord_header)); | |
731 #else /* not MC_ALLOC */ | |
1204 | 732 if (imp->basic_p) |
733 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lrecord_header), | |
734 (char *) XRECORD_LHEADER (src) + sizeof (struct lrecord_header), | |
735 size - sizeof (struct lrecord_header)); | |
736 else | |
737 memcpy ((char *) XRECORD_LHEADER (dst) + sizeof (struct lcrecord_header), | |
738 (char *) XRECORD_LHEADER (src) + sizeof (struct lcrecord_header), | |
739 size - sizeof (struct lcrecord_header)); | |
2720 | 740 #endif /* not MC_ALLOC */ |
1204 | 741 } |
742 | |
428 | 743 |
744 /************************************************************************/ | |
745 /* Debugger support */ | |
746 /************************************************************************/ | |
747 /* Give gdb/dbx enough information to decode Lisp Objects. We make | |
748 sure certain symbols are always defined, so gdb doesn't complain | |
438 | 749 about expressions in src/.gdbinit. See src/.gdbinit or src/.dbxrc |
750 to see how this is used. */ | |
428 | 751 |
458 | 752 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS; |
753 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1; | |
428 | 754 |
755 #ifdef USE_UNION_TYPE | |
458 | 756 unsigned char dbg_USE_UNION_TYPE = 1; |
428 | 757 #else |
458 | 758 unsigned char dbg_USE_UNION_TYPE = 0; |
428 | 759 #endif |
760 | |
458 | 761 unsigned char dbg_valbits = VALBITS; |
762 unsigned char dbg_gctypebits = GCTYPEBITS; | |
763 | |
764 /* On some systems, the above definitions will be optimized away by | |
765 the compiler or linker unless they are referenced in some function. */ | |
766 long dbg_inhibit_dbg_symbol_deletion (void); | |
767 long | |
768 dbg_inhibit_dbg_symbol_deletion (void) | |
769 { | |
770 return | |
771 (dbg_valmask + | |
772 dbg_typemask + | |
773 dbg_USE_UNION_TYPE + | |
774 dbg_valbits + | |
775 dbg_gctypebits); | |
776 } | |
428 | 777 |
778 /* Macros turned into functions for ease of debugging. | |
779 Debuggers don't know about macros! */ | |
780 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2); | |
781 int | |
782 dbg_eq (Lisp_Object obj1, Lisp_Object obj2) | |
783 { | |
784 return EQ (obj1, obj2); | |
785 } | |
786 | |
787 | |
2720 | 788 #ifndef MC_ALLOC |
428 | 789 /************************************************************************/ |
790 /* Fixed-size type macros */ | |
791 /************************************************************************/ | |
792 | |
793 /* For fixed-size types that are commonly used, we malloc() large blocks | |
794 of memory at a time and subdivide them into chunks of the correct | |
795 size for an object of that type. This is more efficient than | |
796 malloc()ing each object separately because we save on malloc() time | |
797 and overhead due to the fewer number of malloc()ed blocks, and | |
798 also because we don't need any extra pointers within each object | |
799 to keep them threaded together for GC purposes. For less common | |
800 (and frequently large-size) types, we use lcrecords, which are | |
801 malloc()ed individually and chained together through a pointer | |
802 in the lcrecord header. lcrecords do not need to be fixed-size | |
803 (i.e. two objects of the same type need not have the same size; | |
804 however, the size of a particular object cannot vary dynamically). | |
805 It is also much easier to create a new lcrecord type because no | |
806 additional code needs to be added to alloc.c. Finally, lcrecords | |
807 may be more efficient when there are only a small number of them. | |
808 | |
809 The types that are stored in these large blocks (or "frob blocks") | |
1983 | 810 are cons, all number types except fixnum, compiled-function, symbol, |
811 marker, extent, event, and string. | |
428 | 812 |
813 Note that strings are special in that they are actually stored in | |
814 two parts: a structure containing information about the string, and | |
815 the actual data associated with the string. The former structure | |
816 (a struct Lisp_String) is a fixed-size structure and is managed the | |
817 same way as all the other such types. This structure contains a | |
818 pointer to the actual string data, which is stored in structures of | |
819 type struct string_chars_block. Each string_chars_block consists | |
820 of a pointer to a struct Lisp_String, followed by the data for that | |
440 | 821 string, followed by another pointer to a Lisp_String, followed by |
822 the data for that string, etc. At GC time, the data in these | |
823 blocks is compacted by searching sequentially through all the | |
428 | 824 blocks and compressing out any holes created by unmarked strings. |
825 Strings that are more than a certain size (bigger than the size of | |
826 a string_chars_block, although something like half as big might | |
827 make more sense) are malloc()ed separately and not stored in | |
828 string_chars_blocks. Furthermore, no one string stretches across | |
829 two string_chars_blocks. | |
830 | |
1204 | 831 Vectors are each malloc()ed separately as lcrecords. |
428 | 832 |
833 In the following discussion, we use conses, but it applies equally | |
834 well to the other fixed-size types. | |
835 | |
836 We store cons cells inside of cons_blocks, allocating a new | |
837 cons_block with malloc() whenever necessary. Cons cells reclaimed | |
838 by GC are put on a free list to be reallocated before allocating | |
839 any new cons cells from the latest cons_block. Each cons_block is | |
840 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least | |
841 the versions in malloc.c and gmalloc.c) really allocates in units | |
842 of powers of two and uses 4 bytes for its own overhead. | |
843 | |
844 What GC actually does is to search through all the cons_blocks, | |
845 from the most recently allocated to the oldest, and put all | |
846 cons cells that are not marked (whether or not they're already | |
847 free) on a cons_free_list. The cons_free_list is a stack, and | |
848 so the cons cells in the oldest-allocated cons_block end up | |
849 at the head of the stack and are the first to be reallocated. | |
850 If any cons_block is entirely free, it is freed with free() | |
851 and its cons cells removed from the cons_free_list. Because | |
852 the cons_free_list ends up basically in memory order, we have | |
853 a high locality of reference (assuming a reasonable turnover | |
854 of allocating and freeing) and have a reasonable probability | |
855 of entirely freeing up cons_blocks that have been more recently | |
856 allocated. This stage is called the "sweep stage" of GC, and | |
857 is executed after the "mark stage", which involves starting | |
858 from all places that are known to point to in-use Lisp objects | |
859 (e.g. the obarray, where are all symbols are stored; the | |
860 current catches and condition-cases; the backtrace list of | |
861 currently executing functions; the gcpro list; etc.) and | |
862 recursively marking all objects that are accessible. | |
863 | |
454 | 864 At the beginning of the sweep stage, the conses in the cons blocks |
865 are in one of three states: in use and marked, in use but not | |
866 marked, and not in use (already freed). Any conses that are marked | |
867 have been marked in the mark stage just executed, because as part | |
868 of the sweep stage we unmark any marked objects. The way we tell | |
869 whether or not a cons cell is in use is through the LRECORD_FREE_P | |
870 macro. This uses a special lrecord type `lrecord_type_free', | |
871 which is never associated with any valid object. | |
872 | |
873 Conses on the free_cons_list are threaded through a pointer stored | |
874 in the conses themselves. Because the cons is still in a | |
875 cons_block and needs to remain marked as not in use for the next | |
876 time that GC happens, we need room to store both the "free" | |
877 indicator and the chaining pointer. So this pointer is stored | |
878 after the lrecord header (actually where C places a pointer after | |
879 the lrecord header; they are not necessarily contiguous). This | |
880 implies that all fixed-size types must be big enough to contain at | |
881 least one pointer. This is true for all current fixed-size types, | |
882 with the possible exception of Lisp_Floats, for which we define the | |
883 meat of the struct using a union of a pointer and a double to | |
884 ensure adequate space for the free list chain pointer. | |
428 | 885 |
886 Some types of objects need additional "finalization" done | |
887 when an object is converted from in use to not in use; | |
888 this is the purpose of the ADDITIONAL_FREE_type macro. | |
889 For example, markers need to be removed from the chain | |
890 of markers that is kept in each buffer. This is because | |
891 markers in a buffer automatically disappear if the marker | |
892 is no longer referenced anywhere (the same does not | |
893 apply to extents, however). | |
894 | |
895 WARNING: Things are in an extremely bizarre state when | |
896 the ADDITIONAL_FREE_type macros are called, so beware! | |
897 | |
454 | 898 When ERROR_CHECK_GC is defined, we do things differently so as to |
899 maximize our chances of catching places where there is insufficient | |
900 GCPROing. The thing we want to avoid is having an object that | |
901 we're using but didn't GCPRO get freed by GC and then reallocated | |
902 while we're in the process of using it -- this will result in | |
903 something seemingly unrelated getting trashed, and is extremely | |
904 difficult to track down. If the object gets freed but not | |
905 reallocated, we can usually catch this because we set most of the | |
906 bytes of a freed object to 0xDEADBEEF. (The lisp object type is set | |
907 to the invalid type `lrecord_type_free', however, and a pointer | |
908 used to chain freed objects together is stored after the lrecord | |
909 header; we play some tricks with this pointer to make it more | |
428 | 910 bogus, so crashes are more likely to occur right away.) |
911 | |
912 We want freed objects to stay free as long as possible, | |
913 so instead of doing what we do above, we maintain the | |
914 free objects in a first-in first-out queue. We also | |
915 don't recompute the free list each GC, unlike above; | |
916 this ensures that the queue ordering is preserved. | |
917 [This means that we are likely to have worse locality | |
918 of reference, and that we can never free a frob block | |
919 once it's allocated. (Even if we know that all cells | |
920 in it are free, there's no easy way to remove all those | |
921 cells from the free list because the objects on the | |
922 free list are unlikely to be in memory order.)] | |
923 Furthermore, we never take objects off the free list | |
924 unless there's a large number (usually 1000, but | |
925 varies depending on type) of them already on the list. | |
926 This way, we ensure that an object that gets freed will | |
927 remain free for the next 1000 (or whatever) times that | |
440 | 928 an object of that type is allocated. */ |
428 | 929 |
930 #ifndef MALLOC_OVERHEAD | |
931 #ifdef GNU_MALLOC | |
932 #define MALLOC_OVERHEAD 0 | |
933 #elif defined (rcheck) | |
934 #define MALLOC_OVERHEAD 20 | |
935 #else | |
936 #define MALLOC_OVERHEAD 8 | |
937 #endif | |
938 #endif /* MALLOC_OVERHEAD */ | |
939 | |
940 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC) | |
941 /* If we released our reserve (due to running out of memory), | |
942 and we have a fair amount free once again, | |
943 try to set aside another reserve in case we run out once more. | |
944 | |
945 This is called when a relocatable block is freed in ralloc.c. */ | |
946 void refill_memory_reserve (void); | |
947 void | |
442 | 948 refill_memory_reserve (void) |
428 | 949 { |
950 if (breathing_space == 0) | |
951 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD); | |
952 } | |
953 #endif | |
954 | |
955 #ifdef ALLOC_NO_POOLS | |
956 # define TYPE_ALLOC_SIZE(type, structtype) 1 | |
957 #else | |
958 # define TYPE_ALLOC_SIZE(type, structtype) \ | |
959 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \ | |
960 / sizeof (structtype)) | |
961 #endif /* ALLOC_NO_POOLS */ | |
962 | |
963 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \ | |
964 \ | |
965 struct type##_block \ | |
966 { \ | |
967 struct type##_block *prev; \ | |
968 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \ | |
969 }; \ | |
970 \ | |
971 static struct type##_block *current_##type##_block; \ | |
972 static int current_##type##_block_index; \ | |
973 \ | |
454 | 974 static Lisp_Free *type##_free_list; \ |
975 static Lisp_Free *type##_free_list_tail; \ | |
428 | 976 \ |
977 static void \ | |
978 init_##type##_alloc (void) \ | |
979 { \ | |
980 current_##type##_block = 0; \ | |
981 current_##type##_block_index = \ | |
982 countof (current_##type##_block->block); \ | |
983 type##_free_list = 0; \ | |
984 type##_free_list_tail = 0; \ | |
985 } \ | |
986 \ | |
987 static int gc_count_num_##type##_in_use; \ | |
988 static int gc_count_num_##type##_freelist | |
989 | |
990 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \ | |
991 if (current_##type##_block_index \ | |
992 == countof (current_##type##_block->block)) \ | |
993 { \ | |
994 struct type##_block *AFTFB_new = (struct type##_block *) \ | |
995 allocate_lisp_storage (sizeof (struct type##_block)); \ | |
996 AFTFB_new->prev = current_##type##_block; \ | |
997 current_##type##_block = AFTFB_new; \ | |
998 current_##type##_block_index = 0; \ | |
999 } \ | |
1000 (result) = \ | |
1001 &(current_##type##_block->block[current_##type##_block_index++]); \ | |
1002 } while (0) | |
1003 | |
1004 /* Allocate an instance of a type that is stored in blocks. | |
1005 TYPE is the "name" of the type, STRUCTTYPE is the corresponding | |
1006 structure type. */ | |
1007 | |
1008 #ifdef ERROR_CHECK_GC | |
1009 | |
1010 /* Note: if you get crashes in this function, suspect incorrect calls | |
1011 to free_cons() and friends. This happened once because the cons | |
1012 cell was not GC-protected and was getting collected before | |
1013 free_cons() was called. */ | |
1014 | |
454 | 1015 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \ |
1016 if (gc_count_num_##type##_freelist > \ | |
1017 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \ | |
1018 { \ | |
1019 result = (structtype *) type##_free_list; \ | |
1204 | 1020 assert (LRECORD_FREE_P (result)); \ |
1021 /* Before actually using the chain pointer, we complement \ | |
1022 all its bits; see PUT_FIXED_TYPE_ON_FREE_LIST(). */ \ | |
454 | 1023 type##_free_list = (Lisp_Free *) \ |
1024 (~ (EMACS_UINT) (type##_free_list->chain)); \ | |
1025 gc_count_num_##type##_freelist--; \ | |
1026 } \ | |
1027 else \ | |
1028 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ | |
1029 MARK_LRECORD_AS_NOT_FREE (result); \ | |
428 | 1030 } while (0) |
1031 | |
1032 #else /* !ERROR_CHECK_GC */ | |
1033 | |
454 | 1034 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) do { \ |
428 | 1035 if (type##_free_list) \ |
1036 { \ | |
454 | 1037 result = (structtype *) type##_free_list; \ |
1038 type##_free_list = type##_free_list->chain; \ | |
428 | 1039 } \ |
1040 else \ | |
1041 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \ | |
454 | 1042 MARK_LRECORD_AS_NOT_FREE (result); \ |
428 | 1043 } while (0) |
1044 | |
1045 #endif /* !ERROR_CHECK_GC */ | |
1046 | |
454 | 1047 |
428 | 1048 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \ |
1049 do \ | |
1050 { \ | |
1051 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ | |
1052 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ | |
1053 } while (0) | |
1054 | |
1055 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \ | |
1056 do \ | |
1057 { \ | |
1058 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \ | |
1059 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \ | |
1060 } while (0) | |
1061 | |
454 | 1062 |
1063 /* Lisp_Free is the type to represent a free list member inside a frob | |
1064 block of any lisp object type. */ | |
1065 typedef struct Lisp_Free | |
1066 { | |
1067 struct lrecord_header lheader; | |
1068 struct Lisp_Free *chain; | |
1069 } Lisp_Free; | |
1070 | |
1071 #define LRECORD_FREE_P(ptr) \ | |
771 | 1072 (((struct lrecord_header *) ptr)->type == lrecord_type_free) |
454 | 1073 |
1074 #define MARK_LRECORD_AS_FREE(ptr) \ | |
771 | 1075 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_free)) |
454 | 1076 |
1077 #ifdef ERROR_CHECK_GC | |
1078 #define MARK_LRECORD_AS_NOT_FREE(ptr) \ | |
771 | 1079 ((void) (((struct lrecord_header *) ptr)->type = lrecord_type_undefined)) |
428 | 1080 #else |
454 | 1081 #define MARK_LRECORD_AS_NOT_FREE(ptr) DO_NOTHING |
428 | 1082 #endif |
1083 | |
1084 #ifdef ERROR_CHECK_GC | |
1085 | |
454 | 1086 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \ |
1087 if (type##_free_list_tail) \ | |
1088 { \ | |
1089 /* When we store the chain pointer, we complement all \ | |
1090 its bits; this should significantly increase its \ | |
1091 bogosity in case someone tries to use the value, and \ | |
1092 should make us crash faster if someone overwrites the \ | |
1093 pointer because when it gets un-complemented in \ | |
1094 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \ | |
1095 extremely bogus. */ \ | |
1096 type##_free_list_tail->chain = \ | |
1097 (Lisp_Free *) ~ (EMACS_UINT) (ptr); \ | |
1098 } \ | |
1099 else \ | |
1100 type##_free_list = (Lisp_Free *) (ptr); \ | |
1101 type##_free_list_tail = (Lisp_Free *) (ptr); \ | |
1102 } while (0) | |
428 | 1103 |
1104 #else /* !ERROR_CHECK_GC */ | |
1105 | |
454 | 1106 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) do { \ |
1107 ((Lisp_Free *) (ptr))->chain = type##_free_list; \ | |
1108 type##_free_list = (Lisp_Free *) (ptr); \ | |
1109 } while (0) \ | |
428 | 1110 |
1111 #endif /* !ERROR_CHECK_GC */ | |
1112 | |
1113 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */ | |
1114 | |
1115 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \ | |
1116 structtype *FFT_ptr = (ptr); \ | |
1204 | 1117 gc_checking_assert (!LRECORD_FREE_P (FFT_ptr)); \ |
2367 | 1118 gc_checking_assert (!DUMPEDP (FFT_ptr)); \ |
428 | 1119 ADDITIONAL_FREE_##type (FFT_ptr); \ |
1120 deadbeef_memory (FFT_ptr, sizeof (structtype)); \ | |
1121 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \ | |
454 | 1122 MARK_LRECORD_AS_FREE (FFT_ptr); \ |
428 | 1123 } while (0) |
1124 | |
1125 /* Like FREE_FIXED_TYPE() but used when we are explicitly | |
1126 freeing a structure through free_cons(), free_marker(), etc. | |
1127 rather than through the normal process of sweeping. | |
1128 We attempt to undo the changes made to the allocation counters | |
1129 as a result of this structure being allocated. This is not | |
1130 completely necessary but helps keep things saner: e.g. this way, | |
1131 repeatedly allocating and freeing a cons will not result in | |
1132 the consing-since-gc counter advancing, which would cause a GC | |
1204 | 1133 and somewhat defeat the purpose of explicitly freeing. |
1134 | |
1135 We also disable this mechanism entirely when ALLOC_NO_POOLS is | |
1136 set, which is used for Purify and the like. */ | |
1137 | |
1138 #ifndef ALLOC_NO_POOLS | |
428 | 1139 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \ |
1140 do { FREE_FIXED_TYPE (type, structtype, ptr); \ | |
1141 DECREMENT_CONS_COUNTER (sizeof (structtype)); \ | |
1142 gc_count_num_##type##_freelist++; \ | |
1143 } while (0) | |
1204 | 1144 #else |
1145 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) | |
1146 #endif | |
2720 | 1147 #endif /* not MC_ALLOC */ |
428 | 1148 |
1149 | |
1150 | |
1151 /************************************************************************/ | |
1152 /* Cons allocation */ | |
1153 /************************************************************************/ | |
1154 | |
2720 | 1155 #ifndef MC_ALLOC |
440 | 1156 DECLARE_FIXED_TYPE_ALLOC (cons, Lisp_Cons); |
428 | 1157 /* conses are used and freed so often that we set this really high */ |
1158 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */ | |
1159 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000 | |
2720 | 1160 #endif /* not MC_ALLOC */ |
428 | 1161 |
1162 static Lisp_Object | |
1163 mark_cons (Lisp_Object obj) | |
1164 { | |
1165 if (NILP (XCDR (obj))) | |
1166 return XCAR (obj); | |
1167 | |
1168 mark_object (XCAR (obj)); | |
1169 return XCDR (obj); | |
1170 } | |
1171 | |
1172 static int | |
1173 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth) | |
1174 { | |
442 | 1175 depth++; |
1176 while (internal_equal (XCAR (ob1), XCAR (ob2), depth)) | |
428 | 1177 { |
1178 ob1 = XCDR (ob1); | |
1179 ob2 = XCDR (ob2); | |
1180 if (! CONSP (ob1) || ! CONSP (ob2)) | |
442 | 1181 return internal_equal (ob1, ob2, depth); |
428 | 1182 } |
1183 return 0; | |
1184 } | |
1185 | |
1204 | 1186 static const struct memory_description cons_description[] = { |
853 | 1187 { XD_LISP_OBJECT, offsetof (Lisp_Cons, car_) }, |
1188 { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr_) }, | |
428 | 1189 { XD_END } |
1190 }; | |
1191 | |
934 | 1192 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons, |
1193 1, /*dumpable-flag*/ | |
1194 mark_cons, print_cons, 0, | |
1195 cons_equal, | |
1196 /* | |
1197 * No `hash' method needed. | |
1198 * internal_hash knows how to | |
1199 * handle conses. | |
1200 */ | |
1201 0, | |
1202 cons_description, | |
1203 Lisp_Cons); | |
428 | 1204 |
1205 DEFUN ("cons", Fcons, 2, 2, 0, /* | |
1206 Create a new cons, give it CAR and CDR as components, and return it. | |
1207 */ | |
1208 (car, cdr)) | |
1209 { | |
1210 /* This cannot GC. */ | |
1211 Lisp_Object val; | |
440 | 1212 Lisp_Cons *c; |
1213 | |
2720 | 1214 #ifdef MC_ALLOC |
1215 c = alloc_lrecord_type (Lisp_Cons, &lrecord_cons); | |
1216 #else /* not MC_ALLOC */ | |
440 | 1217 ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c); |
442 | 1218 set_lheader_implementation (&c->lheader, &lrecord_cons); |
2720 | 1219 #endif /* not MC_ALLOC */ |
793 | 1220 val = wrap_cons (c); |
853 | 1221 XSETCAR (val, car); |
1222 XSETCDR (val, cdr); | |
428 | 1223 return val; |
1224 } | |
1225 | |
1226 /* This is identical to Fcons() but it used for conses that we're | |
1227 going to free later, and is useful when trying to track down | |
1228 "real" consing. */ | |
1229 Lisp_Object | |
1230 noseeum_cons (Lisp_Object car, Lisp_Object cdr) | |
1231 { | |
1232 Lisp_Object val; | |
440 | 1233 Lisp_Cons *c; |
1234 | |
2720 | 1235 #ifdef MC_ALLOC |
1236 c = noseeum_alloc_lrecord_type (Lisp_Cons, &lrecord_cons); | |
1237 #else /* not MC_ALLOC */ | |
440 | 1238 NOSEEUM_ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c); |
442 | 1239 set_lheader_implementation (&c->lheader, &lrecord_cons); |
2720 | 1240 #endif /* not MC_ALLOC */ |
793 | 1241 val = wrap_cons (c); |
428 | 1242 XCAR (val) = car; |
1243 XCDR (val) = cdr; | |
1244 return val; | |
1245 } | |
1246 | |
1247 DEFUN ("list", Flist, 0, MANY, 0, /* | |
1248 Return a newly created list with specified arguments as elements. | |
1249 Any number of arguments, even zero arguments, are allowed. | |
1250 */ | |
1251 (int nargs, Lisp_Object *args)) | |
1252 { | |
1253 Lisp_Object val = Qnil; | |
1254 Lisp_Object *argp = args + nargs; | |
1255 | |
1256 while (argp > args) | |
1257 val = Fcons (*--argp, val); | |
1258 return val; | |
1259 } | |
1260 | |
1261 Lisp_Object | |
1262 list1 (Lisp_Object obj0) | |
1263 { | |
1264 /* This cannot GC. */ | |
1265 return Fcons (obj0, Qnil); | |
1266 } | |
1267 | |
1268 Lisp_Object | |
1269 list2 (Lisp_Object obj0, Lisp_Object obj1) | |
1270 { | |
1271 /* This cannot GC. */ | |
1272 return Fcons (obj0, Fcons (obj1, Qnil)); | |
1273 } | |
1274 | |
1275 Lisp_Object | |
1276 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
1277 { | |
1278 /* This cannot GC. */ | |
1279 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil))); | |
1280 } | |
1281 | |
1282 Lisp_Object | |
1283 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
1284 { | |
1285 /* This cannot GC. */ | |
1286 return Fcons (obj0, Fcons (obj1, obj2)); | |
1287 } | |
1288 | |
1289 Lisp_Object | |
1290 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist) | |
1291 { | |
1292 return Fcons (Fcons (key, value), alist); | |
1293 } | |
1294 | |
1295 Lisp_Object | |
1296 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3) | |
1297 { | |
1298 /* This cannot GC. */ | |
1299 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil)))); | |
1300 } | |
1301 | |
1302 Lisp_Object | |
1303 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, | |
1304 Lisp_Object obj4) | |
1305 { | |
1306 /* This cannot GC. */ | |
1307 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil))))); | |
1308 } | |
1309 | |
1310 Lisp_Object | |
1311 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3, | |
1312 Lisp_Object obj4, Lisp_Object obj5) | |
1313 { | |
1314 /* This cannot GC. */ | |
1315 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil)))))); | |
1316 } | |
1317 | |
1318 DEFUN ("make-list", Fmake_list, 2, 2, 0, /* | |
444 | 1319 Return a new list of length LENGTH, with each element being OBJECT. |
428 | 1320 */ |
444 | 1321 (length, object)) |
428 | 1322 { |
1323 CHECK_NATNUM (length); | |
1324 | |
1325 { | |
1326 Lisp_Object val = Qnil; | |
647 | 1327 EMACS_INT size = XINT (length); |
428 | 1328 |
1329 while (size--) | |
444 | 1330 val = Fcons (object, val); |
428 | 1331 return val; |
1332 } | |
1333 } | |
1334 | |
1335 | |
1336 /************************************************************************/ | |
1337 /* Float allocation */ | |
1338 /************************************************************************/ | |
1339 | |
1983 | 1340 /*** With enhanced number support, these are short floats */ |
1341 | |
2720 | 1342 #ifndef MC_ALLOC |
440 | 1343 DECLARE_FIXED_TYPE_ALLOC (float, Lisp_Float); |
428 | 1344 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000 |
2720 | 1345 #endif /* not MC_ALLOC */ |
428 | 1346 |
1347 Lisp_Object | |
1348 make_float (double float_value) | |
1349 { | |
440 | 1350 Lisp_Float *f; |
1351 | |
2720 | 1352 #ifdef MC_ALLOC |
1353 f = alloc_lrecord_type (Lisp_Float, &lrecord_float); | |
1354 #else /* not MC_ALLOC */ | |
440 | 1355 ALLOCATE_FIXED_TYPE (float, Lisp_Float, f); |
1356 | |
1357 /* Avoid dump-time `uninitialized memory read' purify warnings. */ | |
1358 if (sizeof (struct lrecord_header) + sizeof (double) != sizeof (*f)) | |
1359 xzero (*f); | |
2720 | 1360 #endif /* not MC_ALLOC */ |
440 | 1361 |
442 | 1362 set_lheader_implementation (&f->lheader, &lrecord_float); |
428 | 1363 float_data (f) = float_value; |
793 | 1364 return wrap_float (f); |
428 | 1365 } |
1366 | |
1367 | |
1368 /************************************************************************/ | |
1983 | 1369 /* Enhanced number allocation */ |
1370 /************************************************************************/ | |
1371 | |
1372 /*** Bignum ***/ | |
1373 #ifdef HAVE_BIGNUM | |
2720 | 1374 #ifndef MC_ALLOC |
1983 | 1375 DECLARE_FIXED_TYPE_ALLOC (bignum, Lisp_Bignum); |
1376 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_bignum 250 | |
2720 | 1377 #endif /* not MC_ALLOC */ |
1983 | 1378 |
1379 /* WARNING: This function returns a bignum even if its argument fits into a | |
1380 fixnum. See Fcanonicalize_number(). */ | |
1381 Lisp_Object | |
1382 make_bignum (long bignum_value) | |
1383 { | |
1384 Lisp_Bignum *b; | |
1385 | |
2720 | 1386 #ifdef MC_ALLOC |
1387 b = alloc_lrecord_type (Lisp_Bignum, &lrecord_bignum); | |
1388 #else /* not MC_ALLOC */ | |
1983 | 1389 ALLOCATE_FIXED_TYPE (bignum, Lisp_Bignum, b); |
1390 set_lheader_implementation (&b->lheader, &lrecord_bignum); | |
2720 | 1391 #endif /* not MC_ALLOC */ |
1983 | 1392 bignum_init (bignum_data (b)); |
1393 bignum_set_long (bignum_data (b), bignum_value); | |
1394 return wrap_bignum (b); | |
1395 } | |
1396 | |
1397 /* WARNING: This function returns a bignum even if its argument fits into a | |
1398 fixnum. See Fcanonicalize_number(). */ | |
1399 Lisp_Object | |
1400 make_bignum_bg (bignum bg) | |
1401 { | |
1402 Lisp_Bignum *b; | |
1403 | |
2720 | 1404 #ifdef MC_ALLOC |
1405 b = alloc_lrecord_type (Lisp_Bignum, &lrecord_bignum); | |
1406 #else /* not MC_ALLOC */ | |
1983 | 1407 ALLOCATE_FIXED_TYPE (bignum, Lisp_Bignum, b); |
1408 set_lheader_implementation (&b->lheader, &lrecord_bignum); | |
2720 | 1409 #endif /* not MC_ALLOC */ |
1983 | 1410 bignum_init (bignum_data (b)); |
1411 bignum_set (bignum_data (b), bg); | |
1412 return wrap_bignum (b); | |
1413 } | |
1414 #endif /* HAVE_BIGNUM */ | |
1415 | |
1416 /*** Ratio ***/ | |
1417 #ifdef HAVE_RATIO | |
2720 | 1418 #ifndef MC_ALLOC |
1983 | 1419 DECLARE_FIXED_TYPE_ALLOC (ratio, Lisp_Ratio); |
1420 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_ratio 250 | |
2720 | 1421 #endif /* not MC_ALLOC */ |
1983 | 1422 |
1423 Lisp_Object | |
1424 make_ratio (long numerator, unsigned long denominator) | |
1425 { | |
1426 Lisp_Ratio *r; | |
1427 | |
2720 | 1428 #ifdef MC_ALLOC |
1429 r = alloc_lrecord_type (Lisp_Ratio, &lrecord_ratio); | |
1430 #else /* not MC_ALLOC */ | |
1983 | 1431 ALLOCATE_FIXED_TYPE (ratio, Lisp_Ratio, r); |
1432 set_lheader_implementation (&r->lheader, &lrecord_ratio); | |
2720 | 1433 #endif /* not MC_ALLOC */ |
1983 | 1434 ratio_init (ratio_data (r)); |
1435 ratio_set_long_ulong (ratio_data (r), numerator, denominator); | |
1436 ratio_canonicalize (ratio_data (r)); | |
1437 return wrap_ratio (r); | |
1438 } | |
1439 | |
1440 Lisp_Object | |
1441 make_ratio_bg (bignum numerator, bignum denominator) | |
1442 { | |
1443 Lisp_Ratio *r; | |
1444 | |
2720 | 1445 #ifdef MC_ALLOC |
1446 r = alloc_lrecord_type (Lisp_Ratio, &lrecord_ratio); | |
1447 #else /* not MC_ALLOC */ | |
1983 | 1448 ALLOCATE_FIXED_TYPE (ratio, Lisp_Ratio, r); |
1449 set_lheader_implementation (&r->lheader, &lrecord_ratio); | |
2720 | 1450 #endif /* not MC_ALLOC */ |
1983 | 1451 ratio_init (ratio_data (r)); |
1452 ratio_set_bignum_bignum (ratio_data (r), numerator, denominator); | |
1453 ratio_canonicalize (ratio_data (r)); | |
1454 return wrap_ratio (r); | |
1455 } | |
1456 | |
1457 Lisp_Object | |
1458 make_ratio_rt (ratio rat) | |
1459 { | |
1460 Lisp_Ratio *r; | |
1461 | |
2720 | 1462 #ifdef MC_ALLOC |
1463 r = alloc_lrecord_type (Lisp_Ratio, &lrecord_ratio); | |
1464 #else /* not MC_ALLOC */ | |
1983 | 1465 ALLOCATE_FIXED_TYPE (ratio, Lisp_Ratio, r); |
1466 set_lheader_implementation (&r->lheader, &lrecord_ratio); | |
2720 | 1467 #endif /* not MC_ALLOC */ |
1983 | 1468 ratio_init (ratio_data (r)); |
1469 ratio_set (ratio_data (r), rat); | |
1470 return wrap_ratio (r); | |
1471 } | |
1472 #endif /* HAVE_RATIO */ | |
1473 | |
1474 /*** Bigfloat ***/ | |
1475 #ifdef HAVE_BIGFLOAT | |
2720 | 1476 #ifndef MC_ALLOC |
1983 | 1477 DECLARE_FIXED_TYPE_ALLOC (bigfloat, Lisp_Bigfloat); |
1478 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_bigfloat 250 | |
2720 | 1479 #endif /* not MC_ALLOC */ |
1983 | 1480 |
1481 /* This function creates a bigfloat with the default precision if the | |
1482 PRECISION argument is zero. */ | |
1483 Lisp_Object | |
1484 make_bigfloat (double float_value, unsigned long precision) | |
1485 { | |
1486 Lisp_Bigfloat *f; | |
1487 | |
2720 | 1488 #ifdef MC_ALLOC |
1489 f = alloc_lrecord_type (Lisp_Bigfloat, &lrecord_bigfloat); | |
1490 #else /* not MC_ALLOC */ | |
1983 | 1491 ALLOCATE_FIXED_TYPE (bigfloat, Lisp_Bigfloat, f); |
1492 set_lheader_implementation (&f->lheader, &lrecord_bigfloat); | |
2720 | 1493 #endif /* not MC_ALLOC */ |
1983 | 1494 if (precision == 0UL) |
1495 bigfloat_init (bigfloat_data (f)); | |
1496 else | |
1497 bigfloat_init_prec (bigfloat_data (f), precision); | |
1498 bigfloat_set_double (bigfloat_data (f), float_value); | |
1499 return wrap_bigfloat (f); | |
1500 } | |
1501 | |
1502 /* This function creates a bigfloat with the precision of its argument */ | |
1503 Lisp_Object | |
1504 make_bigfloat_bf (bigfloat float_value) | |
1505 { | |
1506 Lisp_Bigfloat *f; | |
1507 | |
2720 | 1508 #ifdef MC_ALLOC |
1509 f = alloc_lrecord_type (Lisp_Bigfloat, &lrecord_bigfloat); | |
1510 #else /* not MC_ALLOC */ | |
1983 | 1511 ALLOCATE_FIXED_TYPE (bigfloat, Lisp_Bigfloat, f); |
1512 set_lheader_implementation (&f->lheader, &lrecord_bigfloat); | |
2720 | 1513 #endif /* not MC_ALLOC */ |
1983 | 1514 bigfloat_init_prec (bigfloat_data (f), bigfloat_get_prec (float_value)); |
1515 bigfloat_set (bigfloat_data (f), float_value); | |
1516 return wrap_bigfloat (f); | |
1517 } | |
1518 #endif /* HAVE_BIGFLOAT */ | |
1519 | |
1520 /************************************************************************/ | |
428 | 1521 /* Vector allocation */ |
1522 /************************************************************************/ | |
1523 | |
1524 static Lisp_Object | |
1525 mark_vector (Lisp_Object obj) | |
1526 { | |
1527 Lisp_Vector *ptr = XVECTOR (obj); | |
1528 int len = vector_length (ptr); | |
1529 int i; | |
1530 | |
1531 for (i = 0; i < len - 1; i++) | |
1532 mark_object (ptr->contents[i]); | |
1533 return (len > 0) ? ptr->contents[len - 1] : Qnil; | |
1534 } | |
1535 | |
665 | 1536 static Bytecount |
442 | 1537 size_vector (const void *lheader) |
428 | 1538 { |
456 | 1539 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, contents, |
442 | 1540 ((Lisp_Vector *) lheader)->size); |
428 | 1541 } |
1542 | |
1543 static int | |
1544 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
1545 { | |
1546 int len = XVECTOR_LENGTH (obj1); | |
1547 if (len != XVECTOR_LENGTH (obj2)) | |
1548 return 0; | |
1549 | |
1550 { | |
1551 Lisp_Object *ptr1 = XVECTOR_DATA (obj1); | |
1552 Lisp_Object *ptr2 = XVECTOR_DATA (obj2); | |
1553 while (len--) | |
1554 if (!internal_equal (*ptr1++, *ptr2++, depth + 1)) | |
1555 return 0; | |
1556 } | |
1557 return 1; | |
1558 } | |
1559 | |
665 | 1560 static Hashcode |
442 | 1561 vector_hash (Lisp_Object obj, int depth) |
1562 { | |
1563 return HASH2 (XVECTOR_LENGTH (obj), | |
1564 internal_array_hash (XVECTOR_DATA (obj), | |
1565 XVECTOR_LENGTH (obj), | |
1566 depth + 1)); | |
1567 } | |
1568 | |
1204 | 1569 static const struct memory_description vector_description[] = { |
440 | 1570 { XD_LONG, offsetof (Lisp_Vector, size) }, |
1571 { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Vector, contents), XD_INDIRECT(0, 0) }, | |
428 | 1572 { XD_END } |
1573 }; | |
1574 | |
1204 | 1575 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION ("vector", vector, |
1576 1, /*dumpable-flag*/ | |
1577 mark_vector, print_vector, 0, | |
1578 vector_equal, | |
1579 vector_hash, | |
1580 vector_description, | |
1581 size_vector, Lisp_Vector); | |
428 | 1582 /* #### should allocate `small' vectors from a frob-block */ |
1583 static Lisp_Vector * | |
665 | 1584 make_vector_internal (Elemcount sizei) |
428 | 1585 { |
1204 | 1586 /* no `next' field; we use lcrecords */ |
665 | 1587 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Vector, Lisp_Object, |
1204 | 1588 contents, sizei); |
1589 Lisp_Vector *p = | |
2720 | 1590 #ifdef MC_ALLOC |
1591 (Lisp_Vector *) alloc_lrecord (sizem, &lrecord_vector); | |
1592 #else /* not MC_ALLOC */ | |
1204 | 1593 (Lisp_Vector *) basic_alloc_lcrecord (sizem, &lrecord_vector); |
2720 | 1594 #endif /* not MC_ALLOC */ |
428 | 1595 |
1596 p->size = sizei; | |
1597 return p; | |
1598 } | |
1599 | |
1600 Lisp_Object | |
665 | 1601 make_vector (Elemcount length, Lisp_Object object) |
428 | 1602 { |
1603 Lisp_Vector *vecp = make_vector_internal (length); | |
1604 Lisp_Object *p = vector_data (vecp); | |
1605 | |
1606 while (length--) | |
444 | 1607 *p++ = object; |
428 | 1608 |
793 | 1609 return wrap_vector (vecp); |
428 | 1610 } |
1611 | |
1612 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /* | |
444 | 1613 Return a new vector of length LENGTH, with each element being OBJECT. |
428 | 1614 See also the function `vector'. |
1615 */ | |
444 | 1616 (length, object)) |
428 | 1617 { |
1618 CONCHECK_NATNUM (length); | |
444 | 1619 return make_vector (XINT (length), object); |
428 | 1620 } |
1621 | |
1622 DEFUN ("vector", Fvector, 0, MANY, 0, /* | |
1623 Return a newly created vector with specified arguments as elements. | |
1624 Any number of arguments, even zero arguments, are allowed. | |
1625 */ | |
1626 (int nargs, Lisp_Object *args)) | |
1627 { | |
1628 Lisp_Vector *vecp = make_vector_internal (nargs); | |
1629 Lisp_Object *p = vector_data (vecp); | |
1630 | |
1631 while (nargs--) | |
1632 *p++ = *args++; | |
1633 | |
793 | 1634 return wrap_vector (vecp); |
428 | 1635 } |
1636 | |
1637 Lisp_Object | |
1638 vector1 (Lisp_Object obj0) | |
1639 { | |
1640 return Fvector (1, &obj0); | |
1641 } | |
1642 | |
1643 Lisp_Object | |
1644 vector2 (Lisp_Object obj0, Lisp_Object obj1) | |
1645 { | |
1646 Lisp_Object args[2]; | |
1647 args[0] = obj0; | |
1648 args[1] = obj1; | |
1649 return Fvector (2, args); | |
1650 } | |
1651 | |
1652 Lisp_Object | |
1653 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2) | |
1654 { | |
1655 Lisp_Object args[3]; | |
1656 args[0] = obj0; | |
1657 args[1] = obj1; | |
1658 args[2] = obj2; | |
1659 return Fvector (3, args); | |
1660 } | |
1661 | |
1662 #if 0 /* currently unused */ | |
1663 | |
1664 Lisp_Object | |
1665 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1666 Lisp_Object obj3) | |
1667 { | |
1668 Lisp_Object args[4]; | |
1669 args[0] = obj0; | |
1670 args[1] = obj1; | |
1671 args[2] = obj2; | |
1672 args[3] = obj3; | |
1673 return Fvector (4, args); | |
1674 } | |
1675 | |
1676 Lisp_Object | |
1677 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1678 Lisp_Object obj3, Lisp_Object obj4) | |
1679 { | |
1680 Lisp_Object args[5]; | |
1681 args[0] = obj0; | |
1682 args[1] = obj1; | |
1683 args[2] = obj2; | |
1684 args[3] = obj3; | |
1685 args[4] = obj4; | |
1686 return Fvector (5, args); | |
1687 } | |
1688 | |
1689 Lisp_Object | |
1690 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1691 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5) | |
1692 { | |
1693 Lisp_Object args[6]; | |
1694 args[0] = obj0; | |
1695 args[1] = obj1; | |
1696 args[2] = obj2; | |
1697 args[3] = obj3; | |
1698 args[4] = obj4; | |
1699 args[5] = obj5; | |
1700 return Fvector (6, args); | |
1701 } | |
1702 | |
1703 Lisp_Object | |
1704 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1705 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, | |
1706 Lisp_Object obj6) | |
1707 { | |
1708 Lisp_Object args[7]; | |
1709 args[0] = obj0; | |
1710 args[1] = obj1; | |
1711 args[2] = obj2; | |
1712 args[3] = obj3; | |
1713 args[4] = obj4; | |
1714 args[5] = obj5; | |
1715 args[6] = obj6; | |
1716 return Fvector (7, args); | |
1717 } | |
1718 | |
1719 Lisp_Object | |
1720 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, | |
1721 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5, | |
1722 Lisp_Object obj6, Lisp_Object obj7) | |
1723 { | |
1724 Lisp_Object args[8]; | |
1725 args[0] = obj0; | |
1726 args[1] = obj1; | |
1727 args[2] = obj2; | |
1728 args[3] = obj3; | |
1729 args[4] = obj4; | |
1730 args[5] = obj5; | |
1731 args[6] = obj6; | |
1732 args[7] = obj7; | |
1733 return Fvector (8, args); | |
1734 } | |
1735 #endif /* unused */ | |
1736 | |
1737 /************************************************************************/ | |
1738 /* Bit Vector allocation */ | |
1739 /************************************************************************/ | |
1740 | |
1741 /* #### should allocate `small' bit vectors from a frob-block */ | |
440 | 1742 static Lisp_Bit_Vector * |
665 | 1743 make_bit_vector_internal (Elemcount sizei) |
428 | 1744 { |
1204 | 1745 /* no `next' field; we use lcrecords */ |
665 | 1746 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (sizei); |
1747 Bytecount sizem = FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, | |
1204 | 1748 unsigned long, |
1749 bits, num_longs); | |
1750 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *) | |
2720 | 1751 #ifdef MC_ALLOC |
1752 alloc_lrecord (sizem, &lrecord_bit_vector); | |
1753 #else /* not MC_ALLOC */ | |
1204 | 1754 basic_alloc_lcrecord (sizem, &lrecord_bit_vector); |
2720 | 1755 #endif /* not MC_ALLOC */ |
428 | 1756 |
1757 bit_vector_length (p) = sizei; | |
1758 return p; | |
1759 } | |
1760 | |
1761 Lisp_Object | |
665 | 1762 make_bit_vector (Elemcount length, Lisp_Object bit) |
428 | 1763 { |
440 | 1764 Lisp_Bit_Vector *p = make_bit_vector_internal (length); |
665 | 1765 Elemcount num_longs = BIT_VECTOR_LONG_STORAGE (length); |
428 | 1766 |
444 | 1767 CHECK_BIT (bit); |
1768 | |
1769 if (ZEROP (bit)) | |
428 | 1770 memset (p->bits, 0, num_longs * sizeof (long)); |
1771 else | |
1772 { | |
665 | 1773 Elemcount bits_in_last = length & (LONGBITS_POWER_OF_2 - 1); |
428 | 1774 memset (p->bits, ~0, num_longs * sizeof (long)); |
1775 /* But we have to make sure that the unused bits in the | |
1776 last long are 0, so that equal/hash is easy. */ | |
1777 if (bits_in_last) | |
1778 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1; | |
1779 } | |
1780 | |
793 | 1781 return wrap_bit_vector (p); |
428 | 1782 } |
1783 | |
1784 Lisp_Object | |
665 | 1785 make_bit_vector_from_byte_vector (unsigned char *bytevec, Elemcount length) |
428 | 1786 { |
665 | 1787 Elemcount i; |
428 | 1788 Lisp_Bit_Vector *p = make_bit_vector_internal (length); |
1789 | |
1790 for (i = 0; i < length; i++) | |
1791 set_bit_vector_bit (p, i, bytevec[i]); | |
1792 | |
793 | 1793 return wrap_bit_vector (p); |
428 | 1794 } |
1795 | |
1796 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /* | |
444 | 1797 Return a new bit vector of length LENGTH. with each bit set to BIT. |
1798 BIT must be one of the integers 0 or 1. See also the function `bit-vector'. | |
428 | 1799 */ |
444 | 1800 (length, bit)) |
428 | 1801 { |
1802 CONCHECK_NATNUM (length); | |
1803 | |
444 | 1804 return make_bit_vector (XINT (length), bit); |
428 | 1805 } |
1806 | |
1807 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /* | |
1808 Return a newly created bit vector with specified arguments as elements. | |
1809 Any number of arguments, even zero arguments, are allowed. | |
444 | 1810 Each argument must be one of the integers 0 or 1. |
428 | 1811 */ |
1812 (int nargs, Lisp_Object *args)) | |
1813 { | |
1814 int i; | |
1815 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs); | |
1816 | |
1817 for (i = 0; i < nargs; i++) | |
1818 { | |
1819 CHECK_BIT (args[i]); | |
1820 set_bit_vector_bit (p, i, !ZEROP (args[i])); | |
1821 } | |
1822 | |
793 | 1823 return wrap_bit_vector (p); |
428 | 1824 } |
1825 | |
1826 | |
1827 /************************************************************************/ | |
1828 /* Compiled-function allocation */ | |
1829 /************************************************************************/ | |
1830 | |
2720 | 1831 #ifndef MC_ALLOC |
428 | 1832 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function); |
1833 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000 | |
2720 | 1834 #endif /* not MC_ALLOC */ |
428 | 1835 |
1836 static Lisp_Object | |
1837 make_compiled_function (void) | |
1838 { | |
1839 Lisp_Compiled_Function *f; | |
1840 | |
2720 | 1841 #ifdef MC_ALLOC |
1842 f = alloc_lrecord_type (Lisp_Compiled_Function, &lrecord_compiled_function); | |
1843 #else /* not MC_ALLOC */ | |
428 | 1844 ALLOCATE_FIXED_TYPE (compiled_function, Lisp_Compiled_Function, f); |
442 | 1845 set_lheader_implementation (&f->lheader, &lrecord_compiled_function); |
2720 | 1846 #endif /* not MC_ALLOC */ |
428 | 1847 |
1848 f->stack_depth = 0; | |
1849 f->specpdl_depth = 0; | |
1850 f->flags.documentationp = 0; | |
1851 f->flags.interactivep = 0; | |
1852 f->flags.domainp = 0; /* I18N3 */ | |
1853 f->instructions = Qzero; | |
1854 f->constants = Qzero; | |
1855 f->arglist = Qnil; | |
1739 | 1856 f->args = NULL; |
1857 f->max_args = f->min_args = f->args_in_array = 0; | |
428 | 1858 f->doc_and_interactive = Qnil; |
1859 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK | |
1860 f->annotated = Qnil; | |
1861 #endif | |
793 | 1862 return wrap_compiled_function (f); |
428 | 1863 } |
1864 | |
1865 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /* | |
1866 Return a new compiled-function object. | |
1867 Usage: (arglist instructions constants stack-depth | |
1868 &optional doc-string interactive) | |
1869 Note that, unlike all other emacs-lisp functions, calling this with five | |
1870 arguments is NOT the same as calling it with six arguments, the last of | |
1871 which is nil. If the INTERACTIVE arg is specified as nil, then that means | |
1872 that this function was defined with `(interactive)'. If the arg is not | |
1873 specified, then that means the function is not interactive. | |
1874 This is terrible behavior which is retained for compatibility with old | |
1875 `.elc' files which expect these semantics. | |
1876 */ | |
1877 (int nargs, Lisp_Object *args)) | |
1878 { | |
1879 /* In a non-insane world this function would have this arglist... | |
1880 (arglist instructions constants stack_depth &optional doc_string interactive) | |
1881 */ | |
1882 Lisp_Object fun = make_compiled_function (); | |
1883 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun); | |
1884 | |
1885 Lisp_Object arglist = args[0]; | |
1886 Lisp_Object instructions = args[1]; | |
1887 Lisp_Object constants = args[2]; | |
1888 Lisp_Object stack_depth = args[3]; | |
1889 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil; | |
1890 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound; | |
1891 | |
1892 if (nargs < 4 || nargs > 6) | |
1893 return Fsignal (Qwrong_number_of_arguments, | |
1894 list2 (intern ("make-byte-code"), make_int (nargs))); | |
1895 | |
1896 /* Check for valid formal parameter list now, to allow us to use | |
1897 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */ | |
1898 { | |
814 | 1899 EXTERNAL_LIST_LOOP_2 (symbol, arglist) |
428 | 1900 { |
1901 CHECK_SYMBOL (symbol); | |
1902 if (EQ (symbol, Qt) || | |
1903 EQ (symbol, Qnil) || | |
1904 SYMBOL_IS_KEYWORD (symbol)) | |
563 | 1905 invalid_constant_2 |
428 | 1906 ("Invalid constant symbol in formal parameter list", |
1907 symbol, arglist); | |
1908 } | |
1909 } | |
1910 f->arglist = arglist; | |
1911 | |
1912 /* `instructions' is a string or a cons (string . int) for a | |
1913 lazy-loaded function. */ | |
1914 if (CONSP (instructions)) | |
1915 { | |
1916 CHECK_STRING (XCAR (instructions)); | |
1917 CHECK_INT (XCDR (instructions)); | |
1918 } | |
1919 else | |
1920 { | |
1921 CHECK_STRING (instructions); | |
1922 } | |
1923 f->instructions = instructions; | |
1924 | |
1925 if (!NILP (constants)) | |
1926 CHECK_VECTOR (constants); | |
1927 f->constants = constants; | |
1928 | |
1929 CHECK_NATNUM (stack_depth); | |
442 | 1930 f->stack_depth = (unsigned short) XINT (stack_depth); |
428 | 1931 |
1932 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK | |
1933 if (!NILP (Vcurrent_compiled_function_annotation)) | |
1934 f->annotated = Fcopy (Vcurrent_compiled_function_annotation); | |
1935 else if (!NILP (Vload_file_name_internal_the_purecopy)) | |
1936 f->annotated = Vload_file_name_internal_the_purecopy; | |
1937 else if (!NILP (Vload_file_name_internal)) | |
1938 { | |
1939 struct gcpro gcpro1; | |
1940 GCPRO1 (fun); /* don't let fun get reaped */ | |
1941 Vload_file_name_internal_the_purecopy = | |
1942 Ffile_name_nondirectory (Vload_file_name_internal); | |
1943 f->annotated = Vload_file_name_internal_the_purecopy; | |
1944 UNGCPRO; | |
1945 } | |
1946 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */ | |
1947 | |
1948 /* doc_string may be nil, string, int, or a cons (string . int). | |
1949 interactive may be list or string (or unbound). */ | |
1950 f->doc_and_interactive = Qunbound; | |
1951 #ifdef I18N3 | |
1952 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0) | |
1953 f->doc_and_interactive = Vfile_domain; | |
1954 #endif | |
1955 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0) | |
1956 { | |
1957 f->doc_and_interactive | |
1958 = (UNBOUNDP (f->doc_and_interactive) ? interactive : | |
1959 Fcons (interactive, f->doc_and_interactive)); | |
1960 } | |
1961 if ((f->flags.documentationp = !NILP (doc_string)) != 0) | |
1962 { | |
1963 f->doc_and_interactive | |
1964 = (UNBOUNDP (f->doc_and_interactive) ? doc_string : | |
1965 Fcons (doc_string, f->doc_and_interactive)); | |
1966 } | |
1967 if (UNBOUNDP (f->doc_and_interactive)) | |
1968 f->doc_and_interactive = Qnil; | |
1969 | |
1970 return fun; | |
1971 } | |
1972 | |
1973 | |
1974 /************************************************************************/ | |
1975 /* Symbol allocation */ | |
1976 /************************************************************************/ | |
1977 | |
2720 | 1978 #ifndef MC_ALLOC |
440 | 1979 DECLARE_FIXED_TYPE_ALLOC (symbol, Lisp_Symbol); |
428 | 1980 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000 |
2720 | 1981 #endif /* not MC_ALLOC */ |
428 | 1982 |
1983 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /* | |
1984 Return a newly allocated uninterned symbol whose name is NAME. | |
1985 Its value and function definition are void, and its property list is nil. | |
1986 */ | |
1987 (name)) | |
1988 { | |
440 | 1989 Lisp_Symbol *p; |
428 | 1990 |
1991 CHECK_STRING (name); | |
1992 | |
2720 | 1993 #ifdef MC_ALLOC |
1994 p = alloc_lrecord_type (Lisp_Symbol, &lrecord_symbol); | |
1995 #else /* not MC_ALLOC */ | |
440 | 1996 ALLOCATE_FIXED_TYPE (symbol, Lisp_Symbol, p); |
442 | 1997 set_lheader_implementation (&p->lheader, &lrecord_symbol); |
2720 | 1998 #endif /* not MC_ALLOC */ |
793 | 1999 p->name = name; |
428 | 2000 p->plist = Qnil; |
2001 p->value = Qunbound; | |
2002 p->function = Qunbound; | |
2003 symbol_next (p) = 0; | |
793 | 2004 return wrap_symbol (p); |
428 | 2005 } |
2006 | |
2007 | |
2008 /************************************************************************/ | |
2009 /* Extent allocation */ | |
2010 /************************************************************************/ | |
2011 | |
2720 | 2012 #ifndef MC_ALLOC |
428 | 2013 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent); |
2014 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000 | |
2720 | 2015 #endif /* not MC_ALLOC */ |
428 | 2016 |
2017 struct extent * | |
2018 allocate_extent (void) | |
2019 { | |
2020 struct extent *e; | |
2021 | |
2720 | 2022 #ifdef MC_ALLOC |
2023 e = alloc_lrecord_type (struct extent, &lrecord_extent); | |
2024 #else /* not MC_ALLOC */ | |
428 | 2025 ALLOCATE_FIXED_TYPE (extent, struct extent, e); |
442 | 2026 set_lheader_implementation (&e->lheader, &lrecord_extent); |
2720 | 2027 #endif /* not MC_ALLOC */ |
428 | 2028 extent_object (e) = Qnil; |
2029 set_extent_start (e, -1); | |
2030 set_extent_end (e, -1); | |
2031 e->plist = Qnil; | |
2032 | |
2033 xzero (e->flags); | |
2034 | |
2035 extent_face (e) = Qnil; | |
2036 e->flags.end_open = 1; /* default is for endpoints to behave like markers */ | |
2037 e->flags.detachable = 1; | |
2038 | |
2039 return e; | |
2040 } | |
2041 | |
2042 | |
2043 /************************************************************************/ | |
2044 /* Event allocation */ | |
2045 /************************************************************************/ | |
2046 | |
2720 | 2047 #ifndef MC_ALLOC |
440 | 2048 DECLARE_FIXED_TYPE_ALLOC (event, Lisp_Event); |
428 | 2049 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000 |
2720 | 2050 #endif /* not MC_ALLOC */ |
428 | 2051 |
2052 Lisp_Object | |
2053 allocate_event (void) | |
2054 { | |
440 | 2055 Lisp_Event *e; |
2056 | |
2720 | 2057 #ifdef MC_ALLOC |
2058 e = alloc_lrecord_type (Lisp_Event, &lrecord_event); | |
2059 #else /* not MC_ALLOC */ | |
440 | 2060 ALLOCATE_FIXED_TYPE (event, Lisp_Event, e); |
442 | 2061 set_lheader_implementation (&e->lheader, &lrecord_event); |
2720 | 2062 #endif /* not MC_ALLOC */ |
428 | 2063 |
793 | 2064 return wrap_event (e); |
428 | 2065 } |
2066 | |
1204 | 2067 #ifdef EVENT_DATA_AS_OBJECTS |
2720 | 2068 #ifndef MC_ALLOC |
934 | 2069 DECLARE_FIXED_TYPE_ALLOC (key_data, Lisp_Key_Data); |
2070 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_key_data 1000 | |
2720 | 2071 #endif /* not MC_ALLOC */ |
934 | 2072 |
2073 Lisp_Object | |
1204 | 2074 make_key_data (void) |
934 | 2075 { |
2076 Lisp_Key_Data *d; | |
2077 | |
2720 | 2078 #ifdef MC_ALLOC |
2079 d = alloc_lrecord_type (Lisp_Key_Data, &lrecord_key_data); | |
2080 #else /* not MC_ALLOC */ | |
934 | 2081 ALLOCATE_FIXED_TYPE (key_data, Lisp_Key_Data, d); |
1204 | 2082 xzero (*d); |
934 | 2083 set_lheader_implementation (&d->lheader, &lrecord_key_data); |
2720 | 2084 #endif /* not MC_ALLOC */ |
1204 | 2085 d->keysym = Qnil; |
2086 | |
2087 return wrap_key_data (d); | |
934 | 2088 } |
2089 | |
2720 | 2090 #ifndef MC_ALLOC |
934 | 2091 DECLARE_FIXED_TYPE_ALLOC (button_data, Lisp_Button_Data); |
2092 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_button_data 1000 | |
2720 | 2093 #endif /* not MC_ALLOC */ |
934 | 2094 |
2095 Lisp_Object | |
1204 | 2096 make_button_data (void) |
934 | 2097 { |
2098 Lisp_Button_Data *d; | |
2099 | |
2720 | 2100 #ifdef MC_ALLOC |
2101 d = alloc_lrecord_type (Lisp_Button_Data, &lrecord_button_data); | |
2102 #else /* not MC_ALLOC */ | |
934 | 2103 ALLOCATE_FIXED_TYPE (button_data, Lisp_Button_Data, d); |
1204 | 2104 xzero (*d); |
934 | 2105 set_lheader_implementation (&d->lheader, &lrecord_button_data); |
2106 | |
2720 | 2107 #endif /* not MC_ALLOC */ |
1204 | 2108 return wrap_button_data (d); |
934 | 2109 } |
2110 | |
2720 | 2111 #ifndef MC_ALLOC |
934 | 2112 DECLARE_FIXED_TYPE_ALLOC (motion_data, Lisp_Motion_Data); |
2113 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_motion_data 1000 | |
2720 | 2114 #endif /* not MC_ALLOC */ |
934 | 2115 |
2116 Lisp_Object | |
1204 | 2117 make_motion_data (void) |
934 | 2118 { |
2119 Lisp_Motion_Data *d; | |
2120 | |
2720 | 2121 #ifdef MC_ALLOC |
2122 d = alloc_lrecord_type (Lisp_Motion_Data, &lrecord_motion_data); | |
2123 #else /* not MC_ALLOC */ | |
934 | 2124 ALLOCATE_FIXED_TYPE (motion_data, Lisp_Motion_Data, d); |
1204 | 2125 xzero (*d); |
934 | 2126 set_lheader_implementation (&d->lheader, &lrecord_motion_data); |
2720 | 2127 #endif /* not MC_ALLOC */ |
934 | 2128 |
1204 | 2129 return wrap_motion_data (d); |
934 | 2130 } |
2131 | |
2720 | 2132 #ifndef MC_ALLOC |
934 | 2133 DECLARE_FIXED_TYPE_ALLOC (process_data, Lisp_Process_Data); |
2134 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_process_data 1000 | |
2720 | 2135 #endif /* not MC_ALLOC */ |
934 | 2136 |
2137 Lisp_Object | |
1204 | 2138 make_process_data (void) |
934 | 2139 { |
2140 Lisp_Process_Data *d; | |
2141 | |
2720 | 2142 #ifdef MC_ALLOC |
2143 d = alloc_lrecord_type (Lisp_Process_Data, &lrecord_process_data); | |
2144 #else /* not MC_ALLOC */ | |
934 | 2145 ALLOCATE_FIXED_TYPE (process_data, Lisp_Process_Data, d); |
1204 | 2146 xzero (*d); |
934 | 2147 set_lheader_implementation (&d->lheader, &lrecord_process_data); |
1204 | 2148 d->process = Qnil; |
2720 | 2149 #endif /* not MC_ALLOC */ |
1204 | 2150 |
2151 return wrap_process_data (d); | |
934 | 2152 } |
2153 | |
2720 | 2154 #ifndef MC_ALLOC |
934 | 2155 DECLARE_FIXED_TYPE_ALLOC (timeout_data, Lisp_Timeout_Data); |
2156 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_timeout_data 1000 | |
2720 | 2157 #endif /* not MC_ALLOC */ |
934 | 2158 |
2159 Lisp_Object | |
1204 | 2160 make_timeout_data (void) |
934 | 2161 { |
2162 Lisp_Timeout_Data *d; | |
2163 | |
2720 | 2164 #ifdef MC_ALLOC |
2165 d = alloc_lrecord_type (Lisp_Timeout_Data, &lrecord_timeout_data); | |
2166 #else /* not MC_ALLOC */ | |
934 | 2167 ALLOCATE_FIXED_TYPE (timeout_data, Lisp_Timeout_Data, d); |
1204 | 2168 xzero (*d); |
934 | 2169 set_lheader_implementation (&d->lheader, &lrecord_timeout_data); |
1204 | 2170 d->function = Qnil; |
2171 d->object = Qnil; | |
2720 | 2172 #endif /* not MC_ALLOC */ |
1204 | 2173 |
2174 return wrap_timeout_data (d); | |
934 | 2175 } |
2176 | |
2720 | 2177 #ifndef MC_ALLOC |
934 | 2178 DECLARE_FIXED_TYPE_ALLOC (magic_data, Lisp_Magic_Data); |
2179 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_data 1000 | |
2720 | 2180 #endif /* not MC_ALLOC */ |
934 | 2181 |
2182 Lisp_Object | |
1204 | 2183 make_magic_data (void) |
934 | 2184 { |
2185 Lisp_Magic_Data *d; | |
2186 | |
2720 | 2187 #ifdef MC_ALLOC |
2188 d = alloc_lrecord_type (Lisp_Magic_Data, &lrecord_magic_data); | |
2189 #else /* not MC_ALLOC */ | |
934 | 2190 ALLOCATE_FIXED_TYPE (magic_data, Lisp_Magic_Data, d); |
1204 | 2191 xzero (*d); |
934 | 2192 set_lheader_implementation (&d->lheader, &lrecord_magic_data); |
2720 | 2193 #endif /* not MC_ALLOC */ |
934 | 2194 |
1204 | 2195 return wrap_magic_data (d); |
934 | 2196 } |
2197 | |
2720 | 2198 #ifndef MC_ALLOC |
934 | 2199 DECLARE_FIXED_TYPE_ALLOC (magic_eval_data, Lisp_Magic_Eval_Data); |
2200 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_magic_eval_data 1000 | |
2720 | 2201 #endif /* not MC_ALLOC */ |
934 | 2202 |
2203 Lisp_Object | |
1204 | 2204 make_magic_eval_data (void) |
934 | 2205 { |
2206 Lisp_Magic_Eval_Data *d; | |
2207 | |
2720 | 2208 #ifdef MC_ALLOC |
2209 d = alloc_lrecord_type (Lisp_Magic_Eval_Data, &lrecord_magic_eval_data); | |
2210 #else /* not MC_ALLOC */ | |
934 | 2211 ALLOCATE_FIXED_TYPE (magic_eval_data, Lisp_Magic_Eval_Data, d); |
1204 | 2212 xzero (*d); |
934 | 2213 set_lheader_implementation (&d->lheader, &lrecord_magic_eval_data); |
1204 | 2214 d->object = Qnil; |
2720 | 2215 #endif /* not MC_ALLOC */ |
1204 | 2216 |
2217 return wrap_magic_eval_data (d); | |
934 | 2218 } |
2219 | |
2720 | 2220 #ifndef MC_ALLOC |
934 | 2221 DECLARE_FIXED_TYPE_ALLOC (eval_data, Lisp_Eval_Data); |
2222 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_eval_data 1000 | |
2720 | 2223 #endif /* not MC_ALLOC */ |
934 | 2224 |
2225 Lisp_Object | |
1204 | 2226 make_eval_data (void) |
934 | 2227 { |
2228 Lisp_Eval_Data *d; | |
2229 | |
2720 | 2230 #ifdef MC_ALLOC |
2231 d = alloc_lrecord_type (Lisp_Eval_Data, &lrecord_eval_data); | |
2232 #else /* not MC_ALLOC */ | |
934 | 2233 ALLOCATE_FIXED_TYPE (eval_data, Lisp_Eval_Data, d); |
1204 | 2234 xzero (*d); |
934 | 2235 set_lheader_implementation (&d->lheader, &lrecord_eval_data); |
1204 | 2236 d->function = Qnil; |
2237 d->object = Qnil; | |
2720 | 2238 #endif /* not MC_ALLOC */ |
1204 | 2239 |
2240 return wrap_eval_data (d); | |
934 | 2241 } |
2242 | |
2720 | 2243 #ifndef MC_ALLOC |
934 | 2244 DECLARE_FIXED_TYPE_ALLOC (misc_user_data, Lisp_Misc_User_Data); |
2245 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_misc_user_data 1000 | |
2720 | 2246 #endif /* not MC_ALLOC */ |
934 | 2247 |
2248 Lisp_Object | |
1204 | 2249 make_misc_user_data (void) |
934 | 2250 { |
2251 Lisp_Misc_User_Data *d; | |
2252 | |
2720 | 2253 #ifdef MC_ALLOC |
2254 d = alloc_lrecord_type (Lisp_Misc_User_Data, &lrecord_misc_user_data); | |
2255 #else /* not MC_ALLOC */ | |
934 | 2256 ALLOCATE_FIXED_TYPE (misc_user_data, Lisp_Misc_User_Data, d); |
1204 | 2257 xzero (*d); |
934 | 2258 set_lheader_implementation (&d->lheader, &lrecord_misc_user_data); |
1204 | 2259 d->function = Qnil; |
2260 d->object = Qnil; | |
2720 | 2261 #endif /* not MC_ALLOC */ |
1204 | 2262 |
2263 return wrap_misc_user_data (d); | |
934 | 2264 } |
1204 | 2265 |
2266 #endif /* EVENT_DATA_AS_OBJECTS */ | |
428 | 2267 |
2268 /************************************************************************/ | |
2269 /* Marker allocation */ | |
2270 /************************************************************************/ | |
2271 | |
2720 | 2272 #ifndef MC_ALLOC |
440 | 2273 DECLARE_FIXED_TYPE_ALLOC (marker, Lisp_Marker); |
428 | 2274 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000 |
2720 | 2275 #endif /* not MC_ALLOC */ |
428 | 2276 |
2277 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /* | |
2278 Return a new marker which does not point at any place. | |
2279 */ | |
2280 ()) | |
2281 { | |
440 | 2282 Lisp_Marker *p; |
2283 | |
2720 | 2284 #ifdef MC_ALLOC |
2285 p = alloc_lrecord_type (Lisp_Marker, &lrecord_marker); | |
2286 #else /* not MC_ALLOC */ | |
440 | 2287 ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p); |
442 | 2288 set_lheader_implementation (&p->lheader, &lrecord_marker); |
2720 | 2289 #endif /* not MC_ALLOC */ |
428 | 2290 p->buffer = 0; |
665 | 2291 p->membpos = 0; |
428 | 2292 marker_next (p) = 0; |
2293 marker_prev (p) = 0; | |
2294 p->insertion_type = 0; | |
793 | 2295 return wrap_marker (p); |
428 | 2296 } |
2297 | |
2298 Lisp_Object | |
2299 noseeum_make_marker (void) | |
2300 { | |
440 | 2301 Lisp_Marker *p; |
2302 | |
2720 | 2303 #ifdef MC_ALLOC |
2304 p = noseeum_alloc_lrecord_type (Lisp_Marker, &lrecord_marker); | |
2305 #else /* not MC_ALLOC */ | |
440 | 2306 NOSEEUM_ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p); |
442 | 2307 set_lheader_implementation (&p->lheader, &lrecord_marker); |
2720 | 2308 #endif /* not MC_ALLOC */ |
428 | 2309 p->buffer = 0; |
665 | 2310 p->membpos = 0; |
428 | 2311 marker_next (p) = 0; |
2312 marker_prev (p) = 0; | |
2313 p->insertion_type = 0; | |
793 | 2314 return wrap_marker (p); |
428 | 2315 } |
2316 | |
2317 | |
2318 /************************************************************************/ | |
2319 /* String allocation */ | |
2320 /************************************************************************/ | |
2321 | |
2322 /* The data for "short" strings generally resides inside of structs of type | |
2323 string_chars_block. The Lisp_String structure is allocated just like any | |
1204 | 2324 other basic lrecord, and these are freelisted when they get garbage |
2325 collected. The data for short strings get compacted, but the data for | |
2326 large strings do not. | |
428 | 2327 |
2328 Previously Lisp_String structures were relocated, but this caused a lot | |
2329 of bus-errors because the C code didn't include enough GCPRO's for | |
2330 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so | |
2331 that the reference would get relocated). | |
2332 | |
2333 This new method makes things somewhat bigger, but it is MUCH safer. */ | |
2334 | |
2720 | 2335 #ifndef MC_ALLOC |
438 | 2336 DECLARE_FIXED_TYPE_ALLOC (string, Lisp_String); |
428 | 2337 /* strings are used and freed quite often */ |
2338 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */ | |
2339 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000 | |
2720 | 2340 #endif /* not MC_ALLOC */ |
428 | 2341 |
2342 static Lisp_Object | |
2343 mark_string (Lisp_Object obj) | |
2344 { | |
793 | 2345 if (CONSP (XSTRING_PLIST (obj)) && EXTENT_INFOP (XCAR (XSTRING_PLIST (obj)))) |
2346 flush_cached_extent_info (XCAR (XSTRING_PLIST (obj))); | |
2347 return XSTRING_PLIST (obj); | |
428 | 2348 } |
2349 | |
2350 static int | |
2286 | 2351 string_equal (Lisp_Object obj1, Lisp_Object obj2, int UNUSED (depth)) |
428 | 2352 { |
2353 Bytecount len; | |
2354 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) && | |
2355 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len)); | |
2356 } | |
2357 | |
1204 | 2358 static const struct memory_description string_description[] = { |
793 | 2359 { XD_BYTECOUNT, offsetof (Lisp_String, size_) }, |
2360 { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data_), XD_INDIRECT(0, 1) }, | |
440 | 2361 { XD_LISP_OBJECT, offsetof (Lisp_String, plist) }, |
428 | 2362 { XD_END } |
2363 }; | |
2364 | |
442 | 2365 /* We store the string's extent info as the first element of the string's |
2366 property list; and the string's MODIFF as the first or second element | |
2367 of the string's property list (depending on whether the extent info | |
2368 is present), but only if the string has been modified. This is ugly | |
2369 but it reduces the memory allocated for the string in the vast | |
2370 majority of cases, where the string is never modified and has no | |
2371 extent info. | |
2372 | |
2373 #### This means you can't use an int as a key in a string's plist. */ | |
2374 | |
2375 static Lisp_Object * | |
2376 string_plist_ptr (Lisp_Object string) | |
2377 { | |
793 | 2378 Lisp_Object *ptr = &XSTRING_PLIST (string); |
442 | 2379 |
2380 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr))) | |
2381 ptr = &XCDR (*ptr); | |
2382 if (CONSP (*ptr) && INTP (XCAR (*ptr))) | |
2383 ptr = &XCDR (*ptr); | |
2384 return ptr; | |
2385 } | |
2386 | |
2387 static Lisp_Object | |
2388 string_getprop (Lisp_Object string, Lisp_Object property) | |
2389 { | |
2390 return external_plist_get (string_plist_ptr (string), property, 0, ERROR_ME); | |
2391 } | |
2392 | |
2393 static int | |
2394 string_putprop (Lisp_Object string, Lisp_Object property, Lisp_Object value) | |
2395 { | |
2396 external_plist_put (string_plist_ptr (string), property, value, 0, ERROR_ME); | |
2397 return 1; | |
2398 } | |
2399 | |
2400 static int | |
2401 string_remprop (Lisp_Object string, Lisp_Object property) | |
2402 { | |
2403 return external_remprop (string_plist_ptr (string), property, 0, ERROR_ME); | |
2404 } | |
2405 | |
2406 static Lisp_Object | |
2407 string_plist (Lisp_Object string) | |
2408 { | |
2409 return *string_plist_ptr (string); | |
2410 } | |
2411 | |
2720 | 2412 #ifndef MC_ALLOC |
442 | 2413 /* No `finalize', or `hash' methods. |
2414 internal_hash() already knows how to hash strings and finalization | |
2415 is done with the ADDITIONAL_FREE_string macro, which is the | |
2416 standard way to do finalization when using | |
2417 SWEEP_FIXED_TYPE_BLOCK(). */ | |
2720 | 2418 |
934 | 2419 DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS ("string", string, |
2420 1, /*dumpable-flag*/ | |
2421 mark_string, print_string, | |
2422 0, string_equal, 0, | |
2423 string_description, | |
2424 string_getprop, | |
2425 string_putprop, | |
2426 string_remprop, | |
2427 string_plist, | |
2428 Lisp_String); | |
2720 | 2429 #endif /* not MC_ALLOC */ |
2430 | |
428 | 2431 /* String blocks contain this many useful bytes. */ |
2432 #define STRING_CHARS_BLOCK_SIZE \ | |
814 | 2433 ((Bytecount) (8192 - MALLOC_OVERHEAD - \ |
2434 ((2 * sizeof (struct string_chars_block *)) \ | |
2435 + sizeof (EMACS_INT)))) | |
428 | 2436 /* Block header for small strings. */ |
2437 struct string_chars_block | |
2438 { | |
2439 EMACS_INT pos; | |
2440 struct string_chars_block *next; | |
2441 struct string_chars_block *prev; | |
2442 /* Contents of string_chars_block->string_chars are interleaved | |
2443 string_chars structures (see below) and the actual string data */ | |
2444 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE]; | |
2445 }; | |
2446 | |
2447 static struct string_chars_block *first_string_chars_block; | |
2448 static struct string_chars_block *current_string_chars_block; | |
2449 | |
2450 /* If SIZE is the length of a string, this returns how many bytes | |
2451 * the string occupies in string_chars_block->string_chars | |
2452 * (including alignment padding). | |
2453 */ | |
438 | 2454 #define STRING_FULLSIZE(size) \ |
826 | 2455 ALIGN_FOR_TYPE (((size) + 1 + sizeof (Lisp_String *)), Lisp_String *) |
428 | 2456 |
2457 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE) | |
2458 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size))) | |
2459 | |
454 | 2460 #define STRING_CHARS_FREE_P(ptr) ((ptr)->string == NULL) |
2461 #define MARK_STRING_CHARS_AS_FREE(ptr) ((void) ((ptr)->string = NULL)) | |
2462 | |
2720 | 2463 #ifdef MC_ALLOC |
2464 static void | |
2465 finalize_string (void *header, int for_disksave) | |
2466 { | |
2467 if (!for_disksave) | |
2468 { | |
2469 Lisp_String *s = (Lisp_String *) header; | |
2470 Bytecount size = s->size_; | |
2471 if (BIG_STRING_SIZE_P (size)) | |
2472 xfree (s->data_, Ibyte *); | |
2473 } | |
2474 } | |
2475 | |
2476 DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS ("string", string, | |
2477 1, /*dumpable-flag*/ | |
2478 mark_string, print_string, | |
2479 finalize_string, | |
2480 string_equal, 0, | |
2481 string_description, | |
2482 string_getprop, | |
2483 string_putprop, | |
2484 string_remprop, | |
2485 string_plist, | |
2486 Lisp_String); | |
2487 | |
2488 #endif /* MC_ALLOC */ | |
2489 | |
428 | 2490 struct string_chars |
2491 { | |
438 | 2492 Lisp_String *string; |
428 | 2493 unsigned char chars[1]; |
2494 }; | |
2495 | |
2496 struct unused_string_chars | |
2497 { | |
438 | 2498 Lisp_String *string; |
428 | 2499 EMACS_INT fullsize; |
2500 }; | |
2501 | |
2502 static void | |
2503 init_string_chars_alloc (void) | |
2504 { | |
2505 first_string_chars_block = xnew (struct string_chars_block); | |
2506 first_string_chars_block->prev = 0; | |
2507 first_string_chars_block->next = 0; | |
2508 first_string_chars_block->pos = 0; | |
2509 current_string_chars_block = first_string_chars_block; | |
2510 } | |
2511 | |
1550 | 2512 static Ibyte * |
2513 allocate_big_string_chars (Bytecount length) | |
2514 { | |
2515 Ibyte *p = xnew_array (Ibyte, length); | |
2516 INCREMENT_CONS_COUNTER (length, "string chars"); | |
2517 return p; | |
2518 } | |
2519 | |
428 | 2520 static struct string_chars * |
793 | 2521 allocate_string_chars_struct (Lisp_Object string_it_goes_with, |
814 | 2522 Bytecount fullsize) |
428 | 2523 { |
2524 struct string_chars *s_chars; | |
2525 | |
438 | 2526 if (fullsize <= |
2527 (countof (current_string_chars_block->string_chars) | |
2528 - current_string_chars_block->pos)) | |
428 | 2529 { |
2530 /* This string can fit in the current string chars block */ | |
2531 s_chars = (struct string_chars *) | |
2532 (current_string_chars_block->string_chars | |
2533 + current_string_chars_block->pos); | |
2534 current_string_chars_block->pos += fullsize; | |
2535 } | |
2536 else | |
2537 { | |
2538 /* Make a new current string chars block */ | |
2539 struct string_chars_block *new_scb = xnew (struct string_chars_block); | |
2540 | |
2541 current_string_chars_block->next = new_scb; | |
2542 new_scb->prev = current_string_chars_block; | |
2543 new_scb->next = 0; | |
2544 current_string_chars_block = new_scb; | |
2545 new_scb->pos = fullsize; | |
2546 s_chars = (struct string_chars *) | |
2547 current_string_chars_block->string_chars; | |
2548 } | |
2549 | |
793 | 2550 s_chars->string = XSTRING (string_it_goes_with); |
428 | 2551 |
2552 INCREMENT_CONS_COUNTER (fullsize, "string chars"); | |
2553 | |
2554 return s_chars; | |
2555 } | |
2556 | |
771 | 2557 #ifdef SLEDGEHAMMER_CHECK_ASCII_BEGIN |
2558 void | |
2559 sledgehammer_check_ascii_begin (Lisp_Object str) | |
2560 { | |
2561 Bytecount i; | |
2562 | |
2563 for (i = 0; i < XSTRING_LENGTH (str); i++) | |
2564 { | |
826 | 2565 if (!byte_ascii_p (string_byte (str, i))) |
771 | 2566 break; |
2567 } | |
2568 | |
2569 assert (i == (Bytecount) XSTRING_ASCII_BEGIN (str) || | |
2570 (i > MAX_STRING_ASCII_BEGIN && | |
2571 (Bytecount) XSTRING_ASCII_BEGIN (str) == | |
2572 (Bytecount) MAX_STRING_ASCII_BEGIN)); | |
2573 } | |
2574 #endif | |
2575 | |
2576 /* You do NOT want to be calling this! (And if you do, you must call | |
851 | 2577 XSET_STRING_ASCII_BEGIN() after modifying the string.) Use ALLOCA () |
771 | 2578 instead and then call make_string() like the rest of the world. */ |
2579 | |
428 | 2580 Lisp_Object |
2581 make_uninit_string (Bytecount length) | |
2582 { | |
438 | 2583 Lisp_String *s; |
814 | 2584 Bytecount fullsize = STRING_FULLSIZE (length); |
428 | 2585 |
438 | 2586 assert (length >= 0 && fullsize > 0); |
428 | 2587 |
2720 | 2588 #ifdef MC_ALLOC |
2589 s = alloc_lrecord_type (Lisp_String, &lrecord_string); | |
2590 #else /* not MC_ALLOC */ | |
428 | 2591 /* Allocate the string header */ |
438 | 2592 ALLOCATE_FIXED_TYPE (string, Lisp_String, s); |
793 | 2593 xzero (*s); |
771 | 2594 set_lheader_implementation (&s->u.lheader, &lrecord_string); |
2720 | 2595 #endif /* not MC_ALLOC */ |
2596 | |
826 | 2597 set_lispstringp_data (s, BIG_STRING_FULLSIZE_P (fullsize) |
2720 | 2598 ? allocate_big_string_chars (length + 1) |
2599 : allocate_string_chars_struct (wrap_string (s), | |
2600 fullsize)->chars); | |
438 | 2601 |
826 | 2602 set_lispstringp_length (s, length); |
428 | 2603 s->plist = Qnil; |
793 | 2604 set_string_byte (wrap_string (s), length, 0); |
2605 | |
2606 return wrap_string (s); | |
428 | 2607 } |
2608 | |
2609 #ifdef VERIFY_STRING_CHARS_INTEGRITY | |
2610 static void verify_string_chars_integrity (void); | |
2611 #endif | |
2612 | |
2613 /* Resize the string S so that DELTA bytes can be inserted starting | |
2614 at POS. If DELTA < 0, it means deletion starting at POS. If | |
2615 POS < 0, resize the string but don't copy any characters. Use | |
2616 this if you're planning on completely overwriting the string. | |
2617 */ | |
2618 | |
2619 void | |
793 | 2620 resize_string (Lisp_Object s, Bytecount pos, Bytecount delta) |
428 | 2621 { |
438 | 2622 Bytecount oldfullsize, newfullsize; |
428 | 2623 #ifdef VERIFY_STRING_CHARS_INTEGRITY |
2624 verify_string_chars_integrity (); | |
2625 #endif | |
800 | 2626 #ifdef ERROR_CHECK_TEXT |
428 | 2627 if (pos >= 0) |
2628 { | |
793 | 2629 assert (pos <= XSTRING_LENGTH (s)); |
428 | 2630 if (delta < 0) |
793 | 2631 assert (pos + (-delta) <= XSTRING_LENGTH (s)); |
428 | 2632 } |
2633 else | |
2634 { | |
2635 if (delta < 0) | |
793 | 2636 assert ((-delta) <= XSTRING_LENGTH (s)); |
428 | 2637 } |
800 | 2638 #endif /* ERROR_CHECK_TEXT */ |
428 | 2639 |
2640 if (delta == 0) | |
2641 /* simplest case: no size change. */ | |
2642 return; | |
438 | 2643 |
2644 if (pos >= 0 && delta < 0) | |
2645 /* If DELTA < 0, the functions below will delete the characters | |
2646 before POS. We want to delete characters *after* POS, however, | |
2647 so convert this to the appropriate form. */ | |
2648 pos += -delta; | |
2649 | |
793 | 2650 oldfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s)); |
2651 newfullsize = STRING_FULLSIZE (XSTRING_LENGTH (s) + delta); | |
438 | 2652 |
2653 if (BIG_STRING_FULLSIZE_P (oldfullsize)) | |
428 | 2654 { |
438 | 2655 if (BIG_STRING_FULLSIZE_P (newfullsize)) |
428 | 2656 { |
440 | 2657 /* Both strings are big. We can just realloc(). |
2658 But careful! If the string is shrinking, we have to | |
2659 memmove() _before_ realloc(), and if growing, we have to | |
2660 memmove() _after_ realloc() - otherwise the access is | |
2661 illegal, and we might crash. */ | |
793 | 2662 Bytecount len = XSTRING_LENGTH (s) + 1 - pos; |
440 | 2663 |
2664 if (delta < 0 && pos >= 0) | |
793 | 2665 memmove (XSTRING_DATA (s) + pos + delta, |
2666 XSTRING_DATA (s) + pos, len); | |
2667 XSET_STRING_DATA | |
867 | 2668 (s, (Ibyte *) xrealloc (XSTRING_DATA (s), |
793 | 2669 XSTRING_LENGTH (s) + delta + 1)); |
440 | 2670 if (delta > 0 && pos >= 0) |
793 | 2671 memmove (XSTRING_DATA (s) + pos + delta, XSTRING_DATA (s) + pos, |
2672 len); | |
1550 | 2673 /* Bump the cons counter. |
2674 Conservative; Martin let the increment be delta. */ | |
2675 INCREMENT_CONS_COUNTER (newfullsize, "string chars"); | |
428 | 2676 } |
438 | 2677 else /* String has been demoted from BIG_STRING. */ |
428 | 2678 { |
867 | 2679 Ibyte *new_data = |
438 | 2680 allocate_string_chars_struct (s, newfullsize)->chars; |
867 | 2681 Ibyte *old_data = XSTRING_DATA (s); |
438 | 2682 |
2683 if (pos >= 0) | |
2684 { | |
2685 memcpy (new_data, old_data, pos); | |
2686 memcpy (new_data + pos + delta, old_data + pos, | |
793 | 2687 XSTRING_LENGTH (s) + 1 - pos); |
438 | 2688 } |
793 | 2689 XSET_STRING_DATA (s, new_data); |
1726 | 2690 xfree (old_data, Ibyte *); |
438 | 2691 } |
2692 } | |
2693 else /* old string is small */ | |
2694 { | |
2695 if (oldfullsize == newfullsize) | |
2696 { | |
2697 /* special case; size change but the necessary | |
2698 allocation size won't change (up or down; code | |
2699 somewhere depends on there not being any unused | |
2700 allocation space, modulo any alignment | |
2701 constraints). */ | |
428 | 2702 if (pos >= 0) |
2703 { | |
867 | 2704 Ibyte *addroff = pos + XSTRING_DATA (s); |
428 | 2705 |
2706 memmove (addroff + delta, addroff, | |
2707 /* +1 due to zero-termination. */ | |
793 | 2708 XSTRING_LENGTH (s) + 1 - pos); |
428 | 2709 } |
2710 } | |
2711 else | |
2712 { | |
867 | 2713 Ibyte *old_data = XSTRING_DATA (s); |
2714 Ibyte *new_data = | |
438 | 2715 BIG_STRING_FULLSIZE_P (newfullsize) |
1550 | 2716 ? allocate_big_string_chars (XSTRING_LENGTH (s) + delta + 1) |
438 | 2717 : allocate_string_chars_struct (s, newfullsize)->chars; |
2718 | |
428 | 2719 if (pos >= 0) |
2720 { | |
438 | 2721 memcpy (new_data, old_data, pos); |
2722 memcpy (new_data + pos + delta, old_data + pos, | |
793 | 2723 XSTRING_LENGTH (s) + 1 - pos); |
428 | 2724 } |
793 | 2725 XSET_STRING_DATA (s, new_data); |
438 | 2726 |
2727 { | |
2728 /* We need to mark this chunk of the string_chars_block | |
2729 as unused so that compact_string_chars() doesn't | |
2730 freak. */ | |
2731 struct string_chars *old_s_chars = (struct string_chars *) | |
2732 ((char *) old_data - offsetof (struct string_chars, chars)); | |
2733 /* Sanity check to make sure we aren't hosed by strange | |
2734 alignment/padding. */ | |
793 | 2735 assert (old_s_chars->string == XSTRING (s)); |
454 | 2736 MARK_STRING_CHARS_AS_FREE (old_s_chars); |
438 | 2737 ((struct unused_string_chars *) old_s_chars)->fullsize = |
2738 oldfullsize; | |
2739 } | |
428 | 2740 } |
438 | 2741 } |
2742 | |
793 | 2743 XSET_STRING_LENGTH (s, XSTRING_LENGTH (s) + delta); |
438 | 2744 /* If pos < 0, the string won't be zero-terminated. |
2745 Terminate now just to make sure. */ | |
793 | 2746 XSTRING_DATA (s)[XSTRING_LENGTH (s)] = '\0'; |
438 | 2747 |
2748 if (pos >= 0) | |
793 | 2749 /* We also have to adjust all of the extent indices after the |
2750 place we did the change. We say "pos - 1" because | |
2751 adjust_extents() is exclusive of the starting position | |
2752 passed to it. */ | |
2753 adjust_extents (s, pos - 1, XSTRING_LENGTH (s), delta); | |
428 | 2754 |
2755 #ifdef VERIFY_STRING_CHARS_INTEGRITY | |
2756 verify_string_chars_integrity (); | |
2757 #endif | |
2758 } | |
2759 | |
2760 #ifdef MULE | |
2761 | |
771 | 2762 /* WARNING: If you modify an existing string, you must call |
2763 CHECK_LISP_WRITEABLE() before and bump_string_modiff() afterwards. */ | |
428 | 2764 void |
867 | 2765 set_string_char (Lisp_Object s, Charcount i, Ichar c) |
428 | 2766 { |
867 | 2767 Ibyte newstr[MAX_ICHAR_LEN]; |
771 | 2768 Bytecount bytoff = string_index_char_to_byte (s, i); |
867 | 2769 Bytecount oldlen = itext_ichar_len (XSTRING_DATA (s) + bytoff); |
2770 Bytecount newlen = set_itext_ichar (newstr, c); | |
428 | 2771 |
793 | 2772 sledgehammer_check_ascii_begin (s); |
428 | 2773 if (oldlen != newlen) |
2774 resize_string (s, bytoff, newlen - oldlen); | |
793 | 2775 /* Remember, XSTRING_DATA (s) might have changed so we can't cache it. */ |
2776 memcpy (XSTRING_DATA (s) + bytoff, newstr, newlen); | |
771 | 2777 if (oldlen != newlen) |
2778 { | |
793 | 2779 if (newlen > 1 && i <= (Charcount) XSTRING_ASCII_BEGIN (s)) |
771 | 2780 /* Everything starting with the new char is no longer part of |
2781 ascii_begin */ | |
793 | 2782 XSET_STRING_ASCII_BEGIN (s, i); |
2783 else if (newlen == 1 && i == (Charcount) XSTRING_ASCII_BEGIN (s)) | |
771 | 2784 /* We've extended ascii_begin, and we have to figure out how much by */ |
2785 { | |
2786 Bytecount j; | |
814 | 2787 for (j = (Bytecount) i + 1; j < XSTRING_LENGTH (s); j++) |
771 | 2788 { |
826 | 2789 if (!byte_ascii_p (XSTRING_DATA (s)[j])) |
771 | 2790 break; |
2791 } | |
814 | 2792 XSET_STRING_ASCII_BEGIN (s, min (j, (Bytecount) MAX_STRING_ASCII_BEGIN)); |
771 | 2793 } |
2794 } | |
793 | 2795 sledgehammer_check_ascii_begin (s); |
428 | 2796 } |
2797 | |
2798 #endif /* MULE */ | |
2799 | |
2800 DEFUN ("make-string", Fmake_string, 2, 2, 0, /* | |
444 | 2801 Return a new string consisting of LENGTH copies of CHARACTER. |
2802 LENGTH must be a non-negative integer. | |
428 | 2803 */ |
444 | 2804 (length, character)) |
428 | 2805 { |
2806 CHECK_NATNUM (length); | |
444 | 2807 CHECK_CHAR_COERCE_INT (character); |
428 | 2808 { |
867 | 2809 Ibyte init_str[MAX_ICHAR_LEN]; |
2810 int len = set_itext_ichar (init_str, XCHAR (character)); | |
428 | 2811 Lisp_Object val = make_uninit_string (len * XINT (length)); |
2812 | |
2813 if (len == 1) | |
771 | 2814 { |
2815 /* Optimize the single-byte case */ | |
2816 memset (XSTRING_DATA (val), XCHAR (character), XSTRING_LENGTH (val)); | |
793 | 2817 XSET_STRING_ASCII_BEGIN (val, min (MAX_STRING_ASCII_BEGIN, |
2818 len * XINT (length))); | |
771 | 2819 } |
428 | 2820 else |
2821 { | |
647 | 2822 EMACS_INT i; |
867 | 2823 Ibyte *ptr = XSTRING_DATA (val); |
428 | 2824 |
2720 | 2825 #ifdef MC_ALLOC |
2826 /* Need this for the new allocator: strings are using the uid | |
2827 field for ascii_begin. The uid field is set for debugging, | |
2828 but the string code assumes here that ascii_begin is always | |
2829 zero, when not touched. This assumption is not true with | |
2830 the new allocator, so ascii_begin has to be set to zero | |
2831 here. */ | |
2832 XSET_STRING_ASCII_BEGIN (val, 0); | |
2833 #endif /* not MC_ALLOC */ | |
2834 | |
428 | 2835 for (i = XINT (length); i; i--) |
2836 { | |
867 | 2837 Ibyte *init_ptr = init_str; |
428 | 2838 switch (len) |
2839 { | |
2840 case 4: *ptr++ = *init_ptr++; | |
2841 case 3: *ptr++ = *init_ptr++; | |
2842 case 2: *ptr++ = *init_ptr++; | |
2843 case 1: *ptr++ = *init_ptr++; | |
2844 } | |
2845 } | |
2846 } | |
771 | 2847 sledgehammer_check_ascii_begin (val); |
428 | 2848 return val; |
2849 } | |
2850 } | |
2851 | |
2852 DEFUN ("string", Fstring, 0, MANY, 0, /* | |
2853 Concatenate all the argument characters and make the result a string. | |
2854 */ | |
2855 (int nargs, Lisp_Object *args)) | |
2856 { | |
2367 | 2857 Ibyte *storage = alloca_ibytes (nargs * MAX_ICHAR_LEN); |
867 | 2858 Ibyte *p = storage; |
428 | 2859 |
2860 for (; nargs; nargs--, args++) | |
2861 { | |
2862 Lisp_Object lisp_char = *args; | |
2863 CHECK_CHAR_COERCE_INT (lisp_char); | |
867 | 2864 p += set_itext_ichar (p, XCHAR (lisp_char)); |
428 | 2865 } |
2866 return make_string (storage, p - storage); | |
2867 } | |
2868 | |
771 | 2869 /* Initialize the ascii_begin member of a string to the correct value. */ |
2870 | |
2871 void | |
2872 init_string_ascii_begin (Lisp_Object string) | |
2873 { | |
2874 #ifdef MULE | |
2875 int i; | |
2876 Bytecount length = XSTRING_LENGTH (string); | |
867 | 2877 Ibyte *contents = XSTRING_DATA (string); |
771 | 2878 |
2879 for (i = 0; i < length; i++) | |
2880 { | |
826 | 2881 if (!byte_ascii_p (contents[i])) |
771 | 2882 break; |
2883 } | |
793 | 2884 XSET_STRING_ASCII_BEGIN (string, min (i, MAX_STRING_ASCII_BEGIN)); |
771 | 2885 #else |
793 | 2886 XSET_STRING_ASCII_BEGIN (string, min (XSTRING_LENGTH (string), |
2887 MAX_STRING_ASCII_BEGIN)); | |
771 | 2888 #endif |
2889 sledgehammer_check_ascii_begin (string); | |
2890 } | |
428 | 2891 |
2892 /* Take some raw memory, which MUST already be in internal format, | |
2893 and package it up into a Lisp string. */ | |
2894 Lisp_Object | |
867 | 2895 make_string (const Ibyte *contents, Bytecount length) |
428 | 2896 { |
2897 Lisp_Object val; | |
2898 | |
2899 /* Make sure we find out about bad make_string's when they happen */ | |
800 | 2900 #if defined (ERROR_CHECK_TEXT) && defined (MULE) |
428 | 2901 bytecount_to_charcount (contents, length); /* Just for the assertions */ |
2902 #endif | |
2903 | |
2904 val = make_uninit_string (length); | |
2905 memcpy (XSTRING_DATA (val), contents, length); | |
771 | 2906 init_string_ascii_begin (val); |
2907 sledgehammer_check_ascii_begin (val); | |
428 | 2908 return val; |
2909 } | |
2910 | |
2911 /* Take some raw memory, encoded in some external data format, | |
2912 and convert it into a Lisp string. */ | |
2913 Lisp_Object | |
442 | 2914 make_ext_string (const Extbyte *contents, EMACS_INT length, |
440 | 2915 Lisp_Object coding_system) |
428 | 2916 { |
440 | 2917 Lisp_Object string; |
2918 TO_INTERNAL_FORMAT (DATA, (contents, length), | |
2919 LISP_STRING, string, | |
2920 coding_system); | |
2921 return string; | |
428 | 2922 } |
2923 | |
2924 Lisp_Object | |
867 | 2925 build_intstring (const Ibyte *str) |
771 | 2926 { |
2927 /* Some strlen's crash and burn if passed null. */ | |
814 | 2928 return make_string (str, (str ? qxestrlen (str) : (Bytecount) 0)); |
771 | 2929 } |
2930 | |
2931 Lisp_Object | |
867 | 2932 build_string (const CIbyte *str) |
428 | 2933 { |
2934 /* Some strlen's crash and burn if passed null. */ | |
867 | 2935 return make_string ((const Ibyte *) str, (str ? strlen (str) : 0)); |
428 | 2936 } |
2937 | |
2938 Lisp_Object | |
593 | 2939 build_ext_string (const Extbyte *str, Lisp_Object coding_system) |
428 | 2940 { |
2941 /* Some strlen's crash and burn if passed null. */ | |
2367 | 2942 return make_ext_string ((const Extbyte *) str, |
2943 (str ? dfc_external_data_len (str, coding_system) : | |
2944 0), | |
440 | 2945 coding_system); |
428 | 2946 } |
2947 | |
2948 Lisp_Object | |
867 | 2949 build_msg_intstring (const Ibyte *str) |
428 | 2950 { |
771 | 2951 return build_intstring (GETTEXT (str)); |
2952 } | |
2953 | |
2954 Lisp_Object | |
867 | 2955 build_msg_string (const CIbyte *str) |
771 | 2956 { |
2957 return build_string (CGETTEXT (str)); | |
428 | 2958 } |
2959 | |
2960 Lisp_Object | |
867 | 2961 make_string_nocopy (const Ibyte *contents, Bytecount length) |
428 | 2962 { |
438 | 2963 Lisp_String *s; |
428 | 2964 Lisp_Object val; |
2965 | |
2966 /* Make sure we find out about bad make_string_nocopy's when they happen */ | |
800 | 2967 #if defined (ERROR_CHECK_TEXT) && defined (MULE) |
428 | 2968 bytecount_to_charcount (contents, length); /* Just for the assertions */ |
2969 #endif | |
2970 | |
2720 | 2971 #ifdef MC_ALLOC |
2972 s = alloc_lrecord_type (Lisp_String, &lrecord_string); | |
2973 mcpro (wrap_pointer_1 (s)); /* otherwise nocopy_strings get | |
2974 collected and static data is tried to | |
2975 be freed. */ | |
2976 #else /* not MC_ALLOC */ | |
428 | 2977 /* Allocate the string header */ |
438 | 2978 ALLOCATE_FIXED_TYPE (string, Lisp_String, s); |
771 | 2979 set_lheader_implementation (&s->u.lheader, &lrecord_string); |
2980 SET_C_READONLY_RECORD_HEADER (&s->u.lheader); | |
2720 | 2981 #endif /* not MC_ALLOC */ |
428 | 2982 s->plist = Qnil; |
867 | 2983 set_lispstringp_data (s, (Ibyte *) contents); |
826 | 2984 set_lispstringp_length (s, length); |
793 | 2985 val = wrap_string (s); |
771 | 2986 init_string_ascii_begin (val); |
2987 sledgehammer_check_ascii_begin (val); | |
2988 | |
428 | 2989 return val; |
2990 } | |
2991 | |
2992 | |
2720 | 2993 #ifndef MC_ALLOC |
428 | 2994 /************************************************************************/ |
2995 /* lcrecord lists */ | |
2996 /************************************************************************/ | |
2997 | |
2998 /* Lcrecord lists are used to manage the allocation of particular | |
1204 | 2999 sorts of lcrecords, to avoid calling basic_alloc_lcrecord() (and thus |
428 | 3000 malloc() and garbage-collection junk) as much as possible. |
3001 It is similar to the Blocktype class. | |
3002 | |
1204 | 3003 See detailed comment in lcrecord.h. |
3004 */ | |
3005 | |
3006 const struct memory_description free_description[] = { | |
2551 | 3007 { XD_LISP_OBJECT, offsetof (struct free_lcrecord_header, chain), 0, { 0 }, |
1204 | 3008 XD_FLAG_FREE_LISP_OBJECT }, |
3009 { XD_END } | |
3010 }; | |
3011 | |
3012 DEFINE_LRECORD_IMPLEMENTATION ("free", free, | |
3013 0, /*dumpable-flag*/ | |
3014 0, internal_object_printer, | |
3015 0, 0, 0, free_description, | |
3016 struct free_lcrecord_header); | |
3017 | |
3018 const struct memory_description lcrecord_list_description[] = { | |
2551 | 3019 { XD_LISP_OBJECT, offsetof (struct lcrecord_list, free), 0, { 0 }, |
1204 | 3020 XD_FLAG_FREE_LISP_OBJECT }, |
3021 { XD_END } | |
3022 }; | |
428 | 3023 |
3024 static Lisp_Object | |
3025 mark_lcrecord_list (Lisp_Object obj) | |
3026 { | |
3027 struct lcrecord_list *list = XLCRECORD_LIST (obj); | |
3028 Lisp_Object chain = list->free; | |
3029 | |
3030 while (!NILP (chain)) | |
3031 { | |
3032 struct lrecord_header *lheader = XRECORD_LHEADER (chain); | |
3033 struct free_lcrecord_header *free_header = | |
3034 (struct free_lcrecord_header *) lheader; | |
3035 | |
442 | 3036 gc_checking_assert |
3037 (/* There should be no other pointers to the free list. */ | |
3038 ! MARKED_RECORD_HEADER_P (lheader) | |
3039 && | |
3040 /* Only lcrecords should be here. */ | |
1204 | 3041 ! list->implementation->basic_p |
442 | 3042 && |
3043 /* Only free lcrecords should be here. */ | |
3044 free_header->lcheader.free | |
3045 && | |
3046 /* The type of the lcrecord must be right. */ | |
1204 | 3047 lheader->type == lrecord_type_free |
442 | 3048 && |
3049 /* So must the size. */ | |
1204 | 3050 (list->implementation->static_size == 0 || |
3051 list->implementation->static_size == list->size) | |
442 | 3052 ); |
428 | 3053 |
3054 MARK_RECORD_HEADER (lheader); | |
3055 chain = free_header->chain; | |
3056 } | |
3057 | |
3058 return Qnil; | |
3059 } | |
3060 | |
934 | 3061 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list, |
3062 0, /*dumpable-flag*/ | |
3063 mark_lcrecord_list, internal_object_printer, | |
1204 | 3064 0, 0, 0, lcrecord_list_description, |
3065 struct lcrecord_list); | |
934 | 3066 |
428 | 3067 Lisp_Object |
665 | 3068 make_lcrecord_list (Elemcount size, |
442 | 3069 const struct lrecord_implementation *implementation) |
428 | 3070 { |
1204 | 3071 /* Don't use alloc_lcrecord_type() avoid infinite recursion |
3072 allocating this, */ | |
3073 struct lcrecord_list *p = (struct lcrecord_list *) | |
3074 basic_alloc_lcrecord (sizeof (struct lcrecord_list), | |
3075 &lrecord_lcrecord_list); | |
428 | 3076 |
3077 p->implementation = implementation; | |
3078 p->size = size; | |
3079 p->free = Qnil; | |
793 | 3080 return wrap_lcrecord_list (p); |
428 | 3081 } |
3082 | |
3083 Lisp_Object | |
1204 | 3084 alloc_managed_lcrecord (Lisp_Object lcrecord_list) |
428 | 3085 { |
3086 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); | |
3087 if (!NILP (list->free)) | |
3088 { | |
3089 Lisp_Object val = list->free; | |
3090 struct free_lcrecord_header *free_header = | |
3091 (struct free_lcrecord_header *) XPNTR (val); | |
1204 | 3092 struct lrecord_header *lheader = &free_header->lcheader.lheader; |
428 | 3093 |
3094 #ifdef ERROR_CHECK_GC | |
1204 | 3095 /* Major overkill here. */ |
428 | 3096 /* There should be no other pointers to the free list. */ |
442 | 3097 assert (! MARKED_RECORD_HEADER_P (lheader)); |
428 | 3098 /* Only free lcrecords should be here. */ |
3099 assert (free_header->lcheader.free); | |
1204 | 3100 assert (lheader->type == lrecord_type_free); |
3101 /* Only lcrecords should be here. */ | |
3102 assert (! (list->implementation->basic_p)); | |
3103 #if 0 /* Not used anymore, now that we set the type of the header to | |
3104 lrecord_type_free. */ | |
428 | 3105 /* The type of the lcrecord must be right. */ |
442 | 3106 assert (LHEADER_IMPLEMENTATION (lheader) == list->implementation); |
1204 | 3107 #endif /* 0 */ |
428 | 3108 /* So must the size. */ |
1204 | 3109 assert (list->implementation->static_size == 0 || |
3110 list->implementation->static_size == list->size); | |
428 | 3111 #endif /* ERROR_CHECK_GC */ |
442 | 3112 |
428 | 3113 list->free = free_header->chain; |
3114 free_header->lcheader.free = 0; | |
1204 | 3115 /* Put back the correct type, as we set it to lrecord_type_free. */ |
3116 lheader->type = list->implementation->lrecord_type_index; | |
3117 zero_sized_lcrecord (free_header, list->size); | |
428 | 3118 return val; |
3119 } | |
3120 else | |
1204 | 3121 return wrap_pointer_1 (basic_alloc_lcrecord (list->size, |
3122 list->implementation)); | |
428 | 3123 } |
3124 | |
771 | 3125 /* "Free" a Lisp object LCRECORD by placing it on its associated free list |
1204 | 3126 LCRECORD_LIST; next time alloc_managed_lcrecord() is called with the |
771 | 3127 same LCRECORD_LIST as its parameter, it will return an object from the |
3128 free list, which may be this one. Be VERY VERY SURE there are no | |
3129 pointers to this object hanging around anywhere where they might be | |
3130 used! | |
3131 | |
3132 The first thing this does before making any global state change is to | |
3133 call the finalize method of the object, if it exists. */ | |
3134 | |
428 | 3135 void |
3136 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord) | |
3137 { | |
3138 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list); | |
3139 struct free_lcrecord_header *free_header = | |
3140 (struct free_lcrecord_header *) XPNTR (lcrecord); | |
442 | 3141 struct lrecord_header *lheader = &free_header->lcheader.lheader; |
3142 const struct lrecord_implementation *implementation | |
428 | 3143 = LHEADER_IMPLEMENTATION (lheader); |
3144 | |
771 | 3145 /* Finalizer methods may try to free objects within them, which typically |
3146 won't be marked and thus are scheduled for demolition. Putting them | |
3147 on the free list would be very bad, as we'd have xfree()d memory in | |
3148 the list. Even if for some reason the objects are still live | |
3149 (generally a logic error!), we still will have problems putting such | |
3150 an object on the free list right now (e.g. we'd have to avoid calling | |
3151 the finalizer twice, etc.). So basically, those finalizers should not | |
3152 be freeing any objects if during GC. Abort now to catch those | |
3153 problems. */ | |
3154 gc_checking_assert (!gc_in_progress); | |
3155 | |
428 | 3156 /* Make sure the size is correct. This will catch, for example, |
3157 putting a window configuration on the wrong free list. */ | |
1204 | 3158 gc_checking_assert (detagged_lisp_object_size (lheader) == list->size); |
771 | 3159 /* Make sure the object isn't already freed. */ |
3160 gc_checking_assert (!free_header->lcheader.free); | |
2367 | 3161 /* Freeing stuff in dumped memory is bad. If you trip this, you |
3162 may need to check for this before freeing. */ | |
3163 gc_checking_assert (!OBJECT_DUMPED_P (lcrecord)); | |
771 | 3164 |
428 | 3165 if (implementation->finalizer) |
3166 implementation->finalizer (lheader, 0); | |
1204 | 3167 /* Yes, there are two ways to indicate freeness -- the type is |
3168 lrecord_type_free or the ->free flag is set. We used to do only the | |
3169 latter; now we do the former as well for KKCC purposes. Probably | |
3170 safer in any case, as we will lose quicker this way than keeping | |
3171 around an lrecord of apparently correct type but bogus junk in it. */ | |
3172 MARK_LRECORD_AS_FREE (lheader); | |
428 | 3173 free_header->chain = list->free; |
3174 free_header->lcheader.free = 1; | |
3175 list->free = lcrecord; | |
3176 } | |
3177 | |
771 | 3178 static Lisp_Object all_lcrecord_lists[countof (lrecord_implementations_table)]; |
3179 | |
3180 void * | |
3181 alloc_automanaged_lcrecord (Bytecount size, | |
3182 const struct lrecord_implementation *imp) | |
3183 { | |
3184 if (EQ (all_lcrecord_lists[imp->lrecord_type_index], Qzero)) | |
3185 all_lcrecord_lists[imp->lrecord_type_index] = | |
3186 make_lcrecord_list (size, imp); | |
3187 | |
1204 | 3188 return XPNTR (alloc_managed_lcrecord |
771 | 3189 (all_lcrecord_lists[imp->lrecord_type_index])); |
3190 } | |
3191 | |
3192 void | |
3193 free_lcrecord (Lisp_Object rec) | |
3194 { | |
3195 int type = XRECORD_LHEADER (rec)->type; | |
3196 | |
3197 assert (!EQ (all_lcrecord_lists[type], Qzero)); | |
3198 | |
3199 free_managed_lcrecord (all_lcrecord_lists[type], rec); | |
3200 } | |
2720 | 3201 #endif /* not MC_ALLOC */ |
428 | 3202 |
3203 | |
3204 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /* | |
3205 Kept for compatibility, returns its argument. | |
3206 Old: | |
3207 Make a copy of OBJECT in pure storage. | |
3208 Recursively copies contents of vectors and cons cells. | |
3209 Does not copy symbols. | |
3210 */ | |
444 | 3211 (object)) |
428 | 3212 { |
444 | 3213 return object; |
428 | 3214 } |
3215 | |
3216 | |
3217 /************************************************************************/ | |
3218 /* Garbage Collection */ | |
3219 /************************************************************************/ | |
3220 | |
442 | 3221 /* All the built-in lisp object types are enumerated in `enum lrecord_type'. |
3222 Additional ones may be defined by a module (none yet). We leave some | |
3223 room in `lrecord_implementations_table' for such new lisp object types. */ | |
647 | 3224 const struct lrecord_implementation *lrecord_implementations_table[(int)lrecord_type_last_built_in_type + MODULE_DEFINABLE_TYPE_COUNT]; |
3225 int lrecord_type_count = lrecord_type_last_built_in_type; | |
1676 | 3226 #ifndef USE_KKCC |
442 | 3227 /* Object marker functions are in the lrecord_implementation structure. |
3228 But copying them to a parallel array is much more cache-friendly. | |
3229 This hack speeds up (garbage-collect) by about 5%. */ | |
3230 Lisp_Object (*lrecord_markers[countof (lrecord_implementations_table)]) (Lisp_Object); | |
1676 | 3231 #endif /* not USE_KKCC */ |
428 | 3232 |
3233 struct gcpro *gcprolist; | |
3234 | |
771 | 3235 /* We want the staticpro list relocated, but not the pointers found |
3236 therein, because they refer to locations in the global data segment, not | |
3237 in the heap; we only dump heap objects. Hence we use a trivial | |
3238 description, as for pointerless objects. (Note that the data segment | |
3239 objects, which are global variables like Qfoo or Vbar, themselves are | |
3240 pointers to heap objects. Each needs to be described to pdump as a | |
3241 "root pointer"; this happens in the call to staticpro(). */ | |
1204 | 3242 static const struct memory_description staticpro_description_1[] = { |
452 | 3243 { XD_END } |
3244 }; | |
3245 | |
1204 | 3246 static const struct sized_memory_description staticpro_description = { |
452 | 3247 sizeof (Lisp_Object *), |
3248 staticpro_description_1 | |
3249 }; | |
3250 | |
1204 | 3251 static const struct memory_description staticpros_description_1[] = { |
452 | 3252 XD_DYNARR_DESC (Lisp_Object_ptr_dynarr, &staticpro_description), |
3253 { XD_END } | |
3254 }; | |
3255 | |
1204 | 3256 static const struct sized_memory_description staticpros_description = { |
452 | 3257 sizeof (Lisp_Object_ptr_dynarr), |
3258 staticpros_description_1 | |
3259 }; | |
3260 | |
771 | 3261 #ifdef DEBUG_XEMACS |
3262 | |
1204 | 3263 static const struct memory_description staticpro_one_name_description_1[] = { |
2367 | 3264 { XD_ASCII_STRING, 0 }, |
771 | 3265 { XD_END } |
3266 }; | |
3267 | |
1204 | 3268 static const struct sized_memory_description staticpro_one_name_description = { |
771 | 3269 sizeof (char *), |
3270 staticpro_one_name_description_1 | |
3271 }; | |
3272 | |
1204 | 3273 static const struct memory_description staticpro_names_description_1[] = { |
771 | 3274 XD_DYNARR_DESC (char_ptr_dynarr, &staticpro_one_name_description), |
3275 { XD_END } | |
3276 }; | |
3277 | |
1204 | 3278 |
3279 extern const struct sized_memory_description staticpro_names_description; | |
3280 | |
3281 const struct sized_memory_description staticpro_names_description = { | |
771 | 3282 sizeof (char_ptr_dynarr), |
3283 staticpro_names_description_1 | |
3284 }; | |
3285 | |
3286 /* Help debug crashes gc-marking a staticpro'ed object. */ | |
3287 | |
3288 Lisp_Object_ptr_dynarr *staticpros; | |
3289 char_ptr_dynarr *staticpro_names; | |
3290 | |
3291 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
3292 garbage collection, and for dumping. */ | |
3293 void | |
3294 staticpro_1 (Lisp_Object *varaddress, char *varname) | |
3295 { | |
3296 Dynarr_add (staticpros, varaddress); | |
3297 Dynarr_add (staticpro_names, varname); | |
1204 | 3298 dump_add_root_lisp_object (varaddress); |
771 | 3299 } |
3300 | |
3301 | |
3302 Lisp_Object_ptr_dynarr *staticpros_nodump; | |
3303 char_ptr_dynarr *staticpro_nodump_names; | |
3304 | |
3305 /* Mark the Lisp_Object at heap VARADDRESS as a root object for | |
3306 garbage collection, but not for dumping. (See below.) */ | |
3307 void | |
3308 staticpro_nodump_1 (Lisp_Object *varaddress, char *varname) | |
3309 { | |
3310 Dynarr_add (staticpros_nodump, varaddress); | |
3311 Dynarr_add (staticpro_nodump_names, varname); | |
3312 } | |
3313 | |
996 | 3314 #ifdef HAVE_SHLIB |
3315 /* Stop treating the Lisp_Object at non-heap VARADDRESS as a root object | |
3316 for garbage collection, but not for dumping. */ | |
3317 void | |
3318 unstaticpro_nodump_1 (Lisp_Object *varaddress, char *varname) | |
3319 { | |
3320 Dynarr_delete_object (staticpros, varaddress); | |
3321 Dynarr_delete_object (staticpro_names, varname); | |
3322 } | |
3323 #endif | |
3324 | |
771 | 3325 #else /* not DEBUG_XEMACS */ |
3326 | |
452 | 3327 Lisp_Object_ptr_dynarr *staticpros; |
3328 | |
3329 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
3330 garbage collection, and for dumping. */ | |
428 | 3331 void |
3332 staticpro (Lisp_Object *varaddress) | |
3333 { | |
452 | 3334 Dynarr_add (staticpros, varaddress); |
1204 | 3335 dump_add_root_lisp_object (varaddress); |
428 | 3336 } |
3337 | |
442 | 3338 |
452 | 3339 Lisp_Object_ptr_dynarr *staticpros_nodump; |
3340 | |
771 | 3341 /* Mark the Lisp_Object at heap VARADDRESS as a root object for garbage |
3342 collection, but not for dumping. This is used for objects where the | |
3343 only sure pointer is in the heap (rather than in the global data | |
3344 segment, as must be the case for pdump root pointers), but not inside of | |
3345 another Lisp object (where it will be marked as a result of that Lisp | |
3346 object's mark method). The call to staticpro_nodump() must occur *BOTH* | |
3347 at initialization time and at "reinitialization" time (startup, after | |
3348 pdump load.) (For example, this is the case with the predicate symbols | |
3349 for specifier and coding system types. The pointer to this symbol is | |
3350 inside of a methods structure, which is allocated on the heap. The | |
3351 methods structure will be written out to the pdump data file, and may be | |
3352 reloaded at a different address.) | |
3353 | |
3354 #### The necessity for reinitialization is a bug in pdump. Pdump should | |
3355 automatically regenerate the staticpro()s for these symbols when it | |
3356 loads the data in. */ | |
3357 | |
428 | 3358 void |
3359 staticpro_nodump (Lisp_Object *varaddress) | |
3360 { | |
452 | 3361 Dynarr_add (staticpros_nodump, varaddress); |
428 | 3362 } |
3363 | |
996 | 3364 #ifdef HAVE_SHLIB |
3365 /* Unmark the Lisp_Object at non-heap VARADDRESS as a root object for | |
3366 garbage collection, but not for dumping. */ | |
3367 void | |
3368 unstaticpro_nodump (Lisp_Object *varaddress) | |
3369 { | |
3370 Dynarr_delete_object (staticpros, varaddress); | |
3371 } | |
3372 #endif | |
3373 | |
771 | 3374 #endif /* not DEBUG_XEMACS */ |
3375 | |
2720 | 3376 |
3377 | |
3378 | |
3379 | |
3380 #ifdef MC_ALLOC | |
3381 static const struct memory_description mcpro_description_1[] = { | |
3382 { XD_END } | |
3383 }; | |
3384 | |
3385 static const struct sized_memory_description mcpro_description = { | |
3386 sizeof (Lisp_Object *), | |
3387 mcpro_description_1 | |
3388 }; | |
3389 | |
3390 static const struct memory_description mcpros_description_1[] = { | |
3391 XD_DYNARR_DESC (Lisp_Object_dynarr, &mcpro_description), | |
3392 { XD_END } | |
3393 }; | |
3394 | |
3395 static const struct sized_memory_description mcpros_description = { | |
3396 sizeof (Lisp_Object_dynarr), | |
3397 mcpros_description_1 | |
3398 }; | |
3399 | |
3400 #ifdef DEBUG_XEMACS | |
3401 | |
3402 static const struct memory_description mcpro_one_name_description_1[] = { | |
3403 { XD_ASCII_STRING, 0 }, | |
3404 { XD_END } | |
3405 }; | |
3406 | |
3407 static const struct sized_memory_description mcpro_one_name_description = { | |
3408 sizeof (char *), | |
3409 mcpro_one_name_description_1 | |
3410 }; | |
3411 | |
3412 static const struct memory_description mcpro_names_description_1[] = { | |
3413 XD_DYNARR_DESC (char_ptr_dynarr, &mcpro_one_name_description), | |
3414 { XD_END } | |
3415 }; | |
3416 | |
3417 extern const struct sized_memory_description mcpro_names_description; | |
3418 | |
3419 const struct sized_memory_description mcpro_names_description = { | |
3420 sizeof (char_ptr_dynarr), | |
3421 mcpro_names_description_1 | |
3422 }; | |
3423 | |
3424 /* Help debug crashes gc-marking a mcpro'ed object. */ | |
3425 | |
3426 Lisp_Object_dynarr *mcpros; | |
3427 char_ptr_dynarr *mcpro_names; | |
3428 | |
3429 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
3430 garbage collection, and for dumping. */ | |
3431 void | |
3432 mcpro_1 (Lisp_Object varaddress, char *varname) | |
3433 { | |
3434 Dynarr_add (mcpros, varaddress); | |
3435 Dynarr_add (mcpro_names, varname); | |
3436 } | |
3437 | |
3438 #else /* not DEBUG_XEMACS */ | |
3439 | |
3440 Lisp_Object_dynarr *mcpros; | |
3441 | |
3442 /* Mark the Lisp_Object at non-heap VARADDRESS as a root object for | |
3443 garbage collection, and for dumping. */ | |
3444 void | |
3445 mcpro (Lisp_Object varaddress) | |
3446 { | |
3447 Dynarr_add (mcpros, varaddress); | |
3448 } | |
3449 | |
3450 #endif /* not DEBUG_XEMACS */ | |
3451 #endif /* MC_ALLOC */ | |
3452 | |
442 | 3453 #ifdef ERROR_CHECK_GC |
2720 | 3454 #ifdef MC_ALLOC |
3455 #define GC_CHECK_LHEADER_INVARIANTS(lheader) do { \ | |
3456 struct lrecord_header * GCLI_lh = (lheader); \ | |
3457 assert (GCLI_lh != 0); \ | |
3458 assert (GCLI_lh->type < (unsigned int) lrecord_type_count); \ | |
3459 } while (0) | |
3460 #else /* not MC_ALLOC */ | |
442 | 3461 #define GC_CHECK_LHEADER_INVARIANTS(lheader) do { \ |
3462 struct lrecord_header * GCLI_lh = (lheader); \ | |
3463 assert (GCLI_lh != 0); \ | |
647 | 3464 assert (GCLI_lh->type < (unsigned int) lrecord_type_count); \ |
442 | 3465 assert (! C_READONLY_RECORD_HEADER_P (GCLI_lh) || \ |
3466 (MARKED_RECORD_HEADER_P (GCLI_lh) && \ | |
3467 LISP_READONLY_RECORD_HEADER_P (GCLI_lh))); \ | |
3468 } while (0) | |
2720 | 3469 #endif /* not MC_ALLOC */ |
442 | 3470 #else |
3471 #define GC_CHECK_LHEADER_INVARIANTS(lheader) | |
3472 #endif | |
3473 | |
934 | 3474 |
1204 | 3475 static const struct memory_description lisp_object_description_1[] = { |
3476 { XD_LISP_OBJECT, 0 }, | |
3477 { XD_END } | |
3478 }; | |
3479 | |
3480 const struct sized_memory_description lisp_object_description = { | |
3481 sizeof (Lisp_Object), | |
3482 lisp_object_description_1 | |
3483 }; | |
3484 | |
3485 #if defined (USE_KKCC) || defined (PDUMP) | |
934 | 3486 |
3487 /* This function extracts the value of a count variable described somewhere | |
3488 else in the description. It is converted corresponding to the type */ | |
1204 | 3489 EMACS_INT |
3490 lispdesc_indirect_count_1 (EMACS_INT code, | |
3491 const struct memory_description *idesc, | |
3492 const void *idata) | |
934 | 3493 { |
3494 EMACS_INT count; | |
3495 const void *irdata; | |
3496 | |
3497 int line = XD_INDIRECT_VAL (code); | |
3498 int delta = XD_INDIRECT_DELTA (code); | |
3499 | |
1204 | 3500 irdata = ((char *) idata) + |
3501 lispdesc_indirect_count (idesc[line].offset, idesc, idata); | |
934 | 3502 switch (idesc[line].type) |
3503 { | |
3504 case XD_BYTECOUNT: | |
1204 | 3505 count = * (Bytecount *) irdata; |
934 | 3506 break; |
3507 case XD_ELEMCOUNT: | |
1204 | 3508 count = * (Elemcount *) irdata; |
934 | 3509 break; |
3510 case XD_HASHCODE: | |
1204 | 3511 count = * (Hashcode *) irdata; |
934 | 3512 break; |
3513 case XD_INT: | |
1204 | 3514 count = * (int *) irdata; |
934 | 3515 break; |
3516 case XD_LONG: | |
1204 | 3517 count = * (long *) irdata; |
934 | 3518 break; |
3519 default: | |
3520 stderr_out ("Unsupported count type : %d (line = %d, code = %ld)\n", | |
1204 | 3521 idesc[line].type, line, (long) code); |
2666 | 3522 #if defined(USE_KKCC) && defined(DEBUG_XEMACS) |
2645 | 3523 if (gc_in_progress) |
3524 kkcc_backtrace (); | |
3525 #endif | |
1204 | 3526 #ifdef PDUMP |
3527 if (in_pdump) | |
3528 pdump_backtrace (); | |
3529 #endif | |
934 | 3530 count = 0; /* warning suppression */ |
2500 | 3531 ABORT (); |
934 | 3532 } |
3533 count += delta; | |
3534 return count; | |
3535 } | |
3536 | |
1204 | 3537 /* SDESC is a "description map" (basically, a list of offsets used for |
3538 successive indirections) and OBJ is the first object to indirect off of. | |
3539 Return the description ultimately found. */ | |
3540 | |
3541 const struct sized_memory_description * | |
3542 lispdesc_indirect_description_1 (const void *obj, | |
3543 const struct sized_memory_description *sdesc) | |
934 | 3544 { |
3545 int pos; | |
3546 | |
1204 | 3547 for (pos = 0; sdesc[pos].size >= 0; pos++) |
3548 obj = * (const void **) ((const char *) obj + sdesc[pos].size); | |
3549 | |
3550 return (const struct sized_memory_description *) obj; | |
3551 } | |
3552 | |
3553 /* Compute the size of the data at RDATA, described by a single entry | |
3554 DESC1 in a description array. OBJ and DESC are used for | |
3555 XD_INDIRECT references. */ | |
3556 | |
3557 static Bytecount | |
3558 lispdesc_one_description_line_size (void *rdata, | |
3559 const struct memory_description *desc1, | |
3560 const void *obj, | |
3561 const struct memory_description *desc) | |
3562 { | |
3563 union_switcheroo: | |
3564 switch (desc1->type) | |
934 | 3565 { |
1204 | 3566 case XD_LISP_OBJECT_ARRAY: |
3567 { | |
3568 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
3569 return (val * sizeof (Lisp_Object)); | |
3570 } | |
3571 case XD_LISP_OBJECT: | |
3572 case XD_LO_LINK: | |
3573 return sizeof (Lisp_Object); | |
3574 case XD_OPAQUE_PTR: | |
3575 return sizeof (void *); | |
2367 | 3576 case XD_BLOCK_PTR: |
1204 | 3577 { |
3578 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
3579 return val * sizeof (void *); | |
3580 } | |
2367 | 3581 case XD_BLOCK_ARRAY: |
1204 | 3582 { |
3583 EMACS_INT val = lispdesc_indirect_count (desc1->data1, desc, obj); | |
3584 | |
3585 return (val * | |
2367 | 3586 lispdesc_block_size |
2551 | 3587 (rdata, |
3588 lispdesc_indirect_description (obj, desc1->data2.descr))); | |
1204 | 3589 } |
3590 case XD_OPAQUE_DATA_PTR: | |
3591 return sizeof (void *); | |
3592 case XD_UNION_DYNAMIC_SIZE: | |
3593 { | |
3594 /* If an explicit size was given in the first-level structure | |
3595 description, use it; else compute size based on current union | |
3596 constant. */ | |
3597 const struct sized_memory_description *sdesc = | |
2551 | 3598 lispdesc_indirect_description (obj, desc1->data2.descr); |
1204 | 3599 if (sdesc->size) |
3600 return sdesc->size; | |
3601 else | |
3602 { | |
3603 desc1 = lispdesc_process_xd_union (desc1, desc, obj); | |
3604 if (desc1) | |
3605 goto union_switcheroo; | |
934 | 3606 break; |
1204 | 3607 } |
3608 } | |
3609 case XD_UNION: | |
3610 { | |
3611 /* If an explicit size was given in the first-level structure | |
3612 description, use it; else compute size based on maximum of all | |
3613 possible structures. */ | |
3614 const struct sized_memory_description *sdesc = | |
2551 | 3615 lispdesc_indirect_description (obj, desc1->data2.descr); |
1204 | 3616 if (sdesc->size) |
3617 return sdesc->size; | |
3618 else | |
3619 { | |
3620 int count; | |
3621 Bytecount max_size = -1, size; | |
3622 | |
3623 desc1 = sdesc->description; | |
3624 | |
3625 for (count = 0; desc1[count].type != XD_END; count++) | |
3626 { | |
3627 size = lispdesc_one_description_line_size (rdata, | |
3628 &desc1[count], | |
3629 obj, desc); | |
3630 if (size > max_size) | |
3631 max_size = size; | |
3632 } | |
3633 return max_size; | |
3634 } | |
934 | 3635 } |
2367 | 3636 case XD_ASCII_STRING: |
1204 | 3637 return sizeof (void *); |
3638 case XD_DOC_STRING: | |
3639 return sizeof (void *); | |
3640 case XD_INT_RESET: | |
3641 return sizeof (int); | |
3642 case XD_BYTECOUNT: | |
3643 return sizeof (Bytecount); | |
3644 case XD_ELEMCOUNT: | |
3645 return sizeof (Elemcount); | |
3646 case XD_HASHCODE: | |
3647 return sizeof (Hashcode); | |
3648 case XD_INT: | |
3649 return sizeof (int); | |
3650 case XD_LONG: | |
3651 return sizeof (long); | |
3652 default: | |
3653 stderr_out ("Unsupported dump type : %d\n", desc1->type); | |
2500 | 3654 ABORT (); |
934 | 3655 } |
3656 | |
1204 | 3657 return 0; |
934 | 3658 } |
3659 | |
3660 | |
1204 | 3661 /* Return the size of the memory block (NOT necessarily a structure!) |
3662 described by SDESC and pointed to by OBJ. If SDESC records an | |
3663 explicit size (i.e. non-zero), it is simply returned; otherwise, | |
3664 the size is calculated by the maximum offset and the size of the | |
3665 object at that offset, rounded up to the maximum alignment. In | |
3666 this case, we may need the object, for example when retrieving an | |
3667 "indirect count" of an inlined array (the count is not constant, | |
3668 but is specified by one of the elements of the memory block). (It | |
3669 is generally not a problem if we return an overly large size -- we | |
3670 will simply end up reserving more space than necessary; but if the | |
3671 size is too small we could be in serious trouble, in particular | |
3672 with nested inlined structures, where there may be alignment | |
3673 padding in the middle of a block. #### In fact there is an (at | |
3674 least theoretical) problem with an overly large size -- we may | |
3675 trigger a protection fault when reading from invalid memory. We | |
3676 need to handle this -- perhaps in a stupid but dependable way, | |
3677 i.e. by trapping SIGSEGV and SIGBUS.) */ | |
3678 | |
3679 Bytecount | |
2367 | 3680 lispdesc_block_size_1 (const void *obj, Bytecount size, |
3681 const struct memory_description *desc) | |
934 | 3682 { |
1204 | 3683 EMACS_INT max_offset = -1; |
934 | 3684 int max_offset_pos = -1; |
3685 int pos; | |
2367 | 3686 |
3687 if (size) | |
3688 return size; | |
934 | 3689 |
3690 for (pos = 0; desc[pos].type != XD_END; pos++) | |
3691 { | |
1204 | 3692 EMACS_INT offset = lispdesc_indirect_count (desc[pos].offset, desc, obj); |
3693 if (offset == max_offset) | |
934 | 3694 { |
3695 stderr_out ("Two relocatable elements at same offset?\n"); | |
2500 | 3696 ABORT (); |
934 | 3697 } |
1204 | 3698 else if (offset > max_offset) |
934 | 3699 { |
1204 | 3700 max_offset = offset; |
934 | 3701 max_offset_pos = pos; |
3702 } | |
3703 } | |
3704 | |
3705 if (max_offset_pos < 0) | |
3706 return 0; | |
3707 | |
1204 | 3708 { |
3709 Bytecount size_at_max; | |
3710 size_at_max = | |
3711 lispdesc_one_description_line_size ((char *) obj + max_offset, | |
3712 &desc[max_offset_pos], obj, desc); | |
3713 | |
3714 /* We have no way of knowing the required alignment for this structure, | |
3715 so just make it maximally aligned. */ | |
3716 return MAX_ALIGN_SIZE (max_offset + size_at_max); | |
3717 } | |
3718 } | |
3719 | |
3720 #endif /* defined (USE_KKCC) || defined (PDUMP) */ | |
3721 | |
2720 | 3722 #ifdef MC_ALLOC |
3723 #define GC_CHECK_NOT_FREE(lheader) \ | |
3724 gc_checking_assert (! LRECORD_FREE_P (lheader)); | |
3725 #else /* MC_ALLOC */ | |
1276 | 3726 #define GC_CHECK_NOT_FREE(lheader) \ |
2720 | 3727 gc_checking_assert (! LRECORD_FREE_P (lheader)); \ |
1276 | 3728 gc_checking_assert (LHEADER_IMPLEMENTATION (lheader)->basic_p || \ |
3729 ! ((struct lcrecord_header *) lheader)->free) | |
2720 | 3730 #endif /* MC_ALLOC */ |
1276 | 3731 |
1204 | 3732 #ifdef USE_KKCC |
3733 /* The following functions implement the new mark algorithm. | |
3734 They mark objects according to their descriptions. They | |
3735 are modeled on the corresponding pdumper procedures. */ | |
3736 | |
2666 | 3737 #ifdef DEBUG_XEMACS |
3738 /* The backtrace for the KKCC mark functions. */ | |
3739 #define KKCC_INIT_BT_STACK_SIZE 4096 | |
1676 | 3740 |
3741 typedef struct | |
3742 { | |
2645 | 3743 void *obj; |
3744 const struct memory_description *desc; | |
3745 int pos; | |
2666 | 3746 } kkcc_bt_stack_entry; |
3747 | |
3748 static kkcc_bt_stack_entry *kkcc_bt; | |
3749 static int kkcc_bt_stack_size; | |
2645 | 3750 static int kkcc_bt_depth = 0; |
3751 | |
2666 | 3752 static void |
3753 kkcc_bt_init (void) | |
3754 { | |
3755 kkcc_bt_depth = 0; | |
3756 kkcc_bt_stack_size = KKCC_INIT_BT_STACK_SIZE; | |
3757 kkcc_bt = (kkcc_bt_stack_entry *) | |
3758 malloc (kkcc_bt_stack_size * sizeof (kkcc_bt_stack_entry)); | |
3759 if (!kkcc_bt) | |
3760 { | |
3761 stderr_out ("KKCC backtrace stack init failed for size %d\n", | |
3762 kkcc_bt_stack_size); | |
3763 ABORT (); | |
3764 } | |
3765 } | |
2645 | 3766 |
3767 void | |
3768 kkcc_backtrace (void) | |
3769 { | |
3770 int i; | |
3771 stderr_out ("KKCC mark stack backtrace :\n"); | |
3772 for (i = kkcc_bt_depth - 1; i >= 0; i--) | |
3773 { | |
2650 | 3774 Lisp_Object obj = wrap_pointer_1 (kkcc_bt[i].obj); |
2645 | 3775 stderr_out (" [%d]", i); |
2720 | 3776 #ifdef MC_ALLOC |
3777 if ((XRECORD_LHEADER (obj)->type >= lrecord_type_last_built_in_type) | |
3778 #else /* not MC_ALLOC */ | |
2650 | 3779 if ((XRECORD_LHEADER (obj)->type >= lrecord_type_free) |
2720 | 3780 #endif /* not MC_ALLOC */ |
2650 | 3781 || (!LRECORDP (obj)) |
3782 || (!XRECORD_LHEADER_IMPLEMENTATION (obj))) | |
2645 | 3783 { |
3784 stderr_out (" non Lisp Object"); | |
3785 } | |
3786 else | |
3787 { | |
3788 stderr_out (" %s", | |
2650 | 3789 XRECORD_LHEADER_IMPLEMENTATION (obj)->name); |
2645 | 3790 } |
3791 stderr_out (" (addr: 0x%x, desc: 0x%x, ", | |
3792 (int) kkcc_bt[i].obj, | |
3793 (int) kkcc_bt[i].desc); | |
3794 if (kkcc_bt[i].pos >= 0) | |
3795 stderr_out ("pos: %d)\n", kkcc_bt[i].pos); | |
3796 else | |
3797 stderr_out ("root set)\n"); | |
3798 } | |
3799 } | |
3800 | |
3801 static void | |
2666 | 3802 kkcc_bt_stack_realloc (void) |
3803 { | |
3804 kkcc_bt_stack_size *= 2; | |
3805 kkcc_bt = (kkcc_bt_stack_entry *) | |
3806 realloc (kkcc_bt, kkcc_bt_stack_size * sizeof (kkcc_bt_stack_entry)); | |
3807 if (!kkcc_bt) | |
3808 { | |
3809 stderr_out ("KKCC backtrace stack realloc failed for size %d\n", | |
3810 kkcc_bt_stack_size); | |
3811 ABORT (); | |
3812 } | |
3813 } | |
3814 | |
3815 static void | |
3816 kkcc_bt_free (void) | |
3817 { | |
3818 free (kkcc_bt); | |
3819 kkcc_bt = 0; | |
3820 kkcc_bt_stack_size = 0; | |
3821 } | |
3822 | |
3823 static void | |
2645 | 3824 kkcc_bt_push (void *obj, const struct memory_description *desc, |
3825 int level, int pos) | |
3826 { | |
3827 kkcc_bt_depth = level; | |
3828 kkcc_bt[kkcc_bt_depth].obj = obj; | |
3829 kkcc_bt[kkcc_bt_depth].desc = desc; | |
3830 kkcc_bt[kkcc_bt_depth].pos = pos; | |
3831 kkcc_bt_depth++; | |
2666 | 3832 if (kkcc_bt_depth >= kkcc_bt_stack_size) |
3833 kkcc_bt_stack_realloc (); | |
2645 | 3834 } |
3835 | |
3836 #else /* not DEBUG_XEMACS */ | |
2666 | 3837 #define kkcc_bt_init() |
2645 | 3838 #define kkcc_bt_push(obj, desc, level, pos) |
3839 #endif /* not DEBUG_XEMACS */ | |
3840 | |
2666 | 3841 /* Object memory descriptions are in the lrecord_implementation structure. |
3842 But copying them to a parallel array is much more cache-friendly. */ | |
3843 const struct memory_description *lrecord_memory_descriptions[countof (lrecord_implementations_table)]; | |
3844 | |
3845 /* the initial stack size in kkcc_gc_stack_entries */ | |
3846 #define KKCC_INIT_GC_STACK_SIZE 16384 | |
3847 | |
3848 typedef struct | |
3849 { | |
3850 void *data; | |
3851 const struct memory_description *desc; | |
3852 #ifdef DEBUG_XEMACS | |
3853 int level; | |
3854 int pos; | |
3855 #endif | |
3856 } kkcc_gc_stack_entry; | |
3857 | |
3858 static kkcc_gc_stack_entry *kkcc_gc_stack_ptr; | |
3859 static kkcc_gc_stack_entry *kkcc_gc_stack_top; | |
3860 static kkcc_gc_stack_entry *kkcc_gc_stack_last_entry; | |
3861 static int kkcc_gc_stack_size; | |
3862 | |
1676 | 3863 static void |
3864 kkcc_gc_stack_init (void) | |
3865 { | |
3866 kkcc_gc_stack_size = KKCC_INIT_GC_STACK_SIZE; | |
3867 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *) | |
3868 malloc (kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry)); | |
3869 if (!kkcc_gc_stack_ptr) | |
3870 { | |
3871 stderr_out ("stack init failed for size %d\n", kkcc_gc_stack_size); | |
2666 | 3872 ABORT (); |
1676 | 3873 } |
3874 kkcc_gc_stack_top = kkcc_gc_stack_ptr - 1; | |
3875 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1; | |
3876 } | |
3877 | |
3878 static void | |
3879 kkcc_gc_stack_free (void) | |
3880 { | |
3881 free (kkcc_gc_stack_ptr); | |
3882 kkcc_gc_stack_ptr = 0; | |
3883 kkcc_gc_stack_top = 0; | |
3884 kkcc_gc_stack_size = 0; | |
3885 } | |
3886 | |
3887 static void | |
3888 kkcc_gc_stack_realloc (void) | |
3889 { | |
3890 int current_offset = (int)(kkcc_gc_stack_top - kkcc_gc_stack_ptr); | |
3891 kkcc_gc_stack_size *= 2; | |
3892 kkcc_gc_stack_ptr = (kkcc_gc_stack_entry *) | |
3893 realloc (kkcc_gc_stack_ptr, | |
3894 kkcc_gc_stack_size * sizeof (kkcc_gc_stack_entry)); | |
3895 if (!kkcc_gc_stack_ptr) | |
3896 { | |
3897 stderr_out ("stack realloc failed for size %d\n", kkcc_gc_stack_size); | |
2666 | 3898 ABORT (); |
1676 | 3899 } |
3900 kkcc_gc_stack_top = kkcc_gc_stack_ptr + current_offset; | |
3901 kkcc_gc_stack_last_entry = kkcc_gc_stack_ptr + kkcc_gc_stack_size - 1; | |
3902 } | |
3903 | |
3904 #define KKCC_GC_STACK_FULL (kkcc_gc_stack_top >= kkcc_gc_stack_last_entry) | |
3905 #define KKCC_GC_STACK_EMPTY (kkcc_gc_stack_top < kkcc_gc_stack_ptr) | |
3906 | |
3907 static void | |
2645 | 3908 #ifdef DEBUG_XEMACS |
3909 kkcc_gc_stack_push_1 (void *data, const struct memory_description *desc, | |
3910 int level, int pos) | |
3911 #else | |
3912 kkcc_gc_stack_push_1 (void *data, const struct memory_description *desc) | |
3913 #endif | |
1676 | 3914 { |
3915 if (KKCC_GC_STACK_FULL) | |
3916 kkcc_gc_stack_realloc(); | |
3917 kkcc_gc_stack_top++; | |
3918 kkcc_gc_stack_top->data = data; | |
3919 kkcc_gc_stack_top->desc = desc; | |
2645 | 3920 #ifdef DEBUG_XEMACS |
3921 kkcc_gc_stack_top->level = level; | |
3922 kkcc_gc_stack_top->pos = pos; | |
3923 #endif | |
3924 } | |
3925 | |
3926 #ifdef DEBUG_XEMACS | |
3927 #define kkcc_gc_stack_push(data, desc, level, pos) \ | |
3928 kkcc_gc_stack_push_1 (data, desc, level, pos) | |
3929 #else | |
3930 #define kkcc_gc_stack_push(data, desc, level, pos) \ | |
3931 kkcc_gc_stack_push_1 (data, desc) | |
3932 #endif | |
1676 | 3933 |
3934 static kkcc_gc_stack_entry * | |
3935 kkcc_gc_stack_pop (void) | |
3936 { | |
3937 if (KKCC_GC_STACK_EMPTY) | |
3938 return 0; | |
3939 kkcc_gc_stack_top--; | |
3940 return kkcc_gc_stack_top + 1; | |
3941 } | |
3942 | |
3943 void | |
2645 | 3944 #ifdef DEBUG_XEMACS |
3945 kkcc_gc_stack_push_lisp_object_1 (Lisp_Object obj, int level, int pos) | |
3946 #else | |
3947 kkcc_gc_stack_push_lisp_object_1 (Lisp_Object obj) | |
3948 #endif | |
1676 | 3949 { |
3950 if (XTYPE (obj) == Lisp_Type_Record) | |
3951 { | |
3952 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
3953 const struct memory_description *desc; | |
3954 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
3955 desc = RECORD_DESCRIPTION (lheader); | |
3956 if (! MARKED_RECORD_HEADER_P (lheader)) | |
3957 { | |
3958 MARK_RECORD_HEADER (lheader); | |
2666 | 3959 kkcc_gc_stack_push ((void*) lheader, desc, level, pos); |
1676 | 3960 } |
3961 } | |
3962 } | |
3963 | |
2645 | 3964 #ifdef DEBUG_XEMACS |
3965 #define kkcc_gc_stack_push_lisp_object(obj, level, pos) \ | |
3966 kkcc_gc_stack_push_lisp_object_1 (obj, level, pos) | |
3967 #else | |
3968 #define kkcc_gc_stack_push_lisp_object(obj, level, pos) \ | |
3969 kkcc_gc_stack_push_lisp_object_1 (obj) | |
3970 #endif | |
3971 | |
1265 | 3972 #ifdef ERROR_CHECK_GC |
3973 #define KKCC_DO_CHECK_FREE(obj, allow_free) \ | |
3974 do \ | |
3975 { \ | |
3976 if (!allow_free && XTYPE (obj) == Lisp_Type_Record) \ | |
3977 { \ | |
3978 struct lrecord_header *lheader = XRECORD_LHEADER (obj); \ | |
3979 GC_CHECK_NOT_FREE (lheader); \ | |
3980 } \ | |
3981 } while (0) | |
3982 #else | |
3983 #define KKCC_DO_CHECK_FREE(obj, allow_free) | |
3984 #endif | |
1204 | 3985 |
3986 #ifdef ERROR_CHECK_GC | |
2645 | 3987 #ifdef DEBUG_XEMACS |
1598 | 3988 static void |
2645 | 3989 mark_object_maybe_checking_free_1 (Lisp_Object obj, int allow_free, |
3990 int level, int pos) | |
3991 #else | |
3992 static void | |
3993 mark_object_maybe_checking_free_1 (Lisp_Object obj, int allow_free) | |
3994 #endif | |
1204 | 3995 { |
1265 | 3996 KKCC_DO_CHECK_FREE (obj, allow_free); |
2645 | 3997 kkcc_gc_stack_push_lisp_object (obj, level, pos); |
3998 } | |
3999 | |
4000 #ifdef DEBUG_XEMACS | |
4001 #define mark_object_maybe_checking_free(obj, allow_free, level, pos) \ | |
4002 mark_object_maybe_checking_free_1 (obj, allow_free, level, pos) | |
1204 | 4003 #else |
2645 | 4004 #define mark_object_maybe_checking_free(obj, allow_free, level, pos) \ |
4005 mark_object_maybe_checking_free_1 (obj, allow_free) | |
4006 #endif | |
4007 #else /* not ERROR_CHECK_GC */ | |
4008 #define mark_object_maybe_checking_free(obj, allow_free, level, pos) \ | |
4009 kkcc_gc_stack_push_lisp_object (obj, level, pos) | |
4010 #endif /* not ERROR_CHECK_GC */ | |
1204 | 4011 |
934 | 4012 |
4013 /* This function loops all elements of a struct pointer and calls | |
4014 mark_with_description with each element. */ | |
4015 static void | |
2645 | 4016 #ifdef DEBUG_XEMACS |
4017 mark_struct_contents_1 (const void *data, | |
4018 const struct sized_memory_description *sdesc, | |
4019 int count, int level, int pos) | |
4020 #else | |
4021 mark_struct_contents_1 (const void *data, | |
1204 | 4022 const struct sized_memory_description *sdesc, |
4023 int count) | |
2645 | 4024 #endif |
934 | 4025 { |
4026 int i; | |
4027 Bytecount elsize; | |
2367 | 4028 elsize = lispdesc_block_size (data, sdesc); |
934 | 4029 |
4030 for (i = 0; i < count; i++) | |
4031 { | |
2645 | 4032 kkcc_gc_stack_push (((char *) data) + elsize * i, sdesc->description, |
4033 level, pos); | |
934 | 4034 } |
4035 } | |
4036 | |
2645 | 4037 #ifdef DEBUG_XEMACS |
4038 #define mark_struct_contents(data, sdesc, count, level, pos) \ | |
4039 mark_struct_contents_1 (data, sdesc, count, level, pos) | |
4040 #else | |
4041 #define mark_struct_contents(data, sdesc, count, level, pos) \ | |
4042 mark_struct_contents_1 (data, sdesc, count) | |
4043 #endif | |
1598 | 4044 |
4045 /* This function implements the KKCC mark algorithm. | |
4046 Instead of calling mark_object, all the alive Lisp_Objects are pushed | |
4047 on the kkcc_gc_stack. This function processes all elements on the stack | |
4048 according to their descriptions. */ | |
4049 static void | |
4050 kkcc_marking (void) | |
4051 { | |
4052 kkcc_gc_stack_entry *stack_entry = 0; | |
4053 void *data = 0; | |
4054 const struct memory_description *desc = 0; | |
4055 int pos; | |
2645 | 4056 #ifdef DEBUG_XEMACS |
4057 int level = 0; | |
2666 | 4058 kkcc_bt_init (); |
2645 | 4059 #endif |
1598 | 4060 |
4061 while ((stack_entry = kkcc_gc_stack_pop ()) != 0) | |
4062 { | |
4063 data = stack_entry->data; | |
4064 desc = stack_entry->desc; | |
2645 | 4065 #ifdef DEBUG_XEMACS |
4066 level = stack_entry->level + 1; | |
4067 #endif | |
4068 | |
4069 kkcc_bt_push (data, desc, stack_entry->level, stack_entry->pos); | |
1598 | 4070 |
2720 | 4071 gc_checking_assert (data); |
4072 gc_checking_assert (desc); | |
4073 | |
1598 | 4074 for (pos = 0; desc[pos].type != XD_END; pos++) |
4075 { | |
4076 const struct memory_description *desc1 = &desc[pos]; | |
4077 const void *rdata = | |
4078 (const char *) data + lispdesc_indirect_count (desc1->offset, | |
4079 desc, data); | |
4080 union_switcheroo: | |
4081 | |
4082 /* If the flag says don't mark, then don't mark. */ | |
4083 if ((desc1->flags) & XD_FLAG_NO_KKCC) | |
4084 continue; | |
4085 | |
4086 switch (desc1->type) | |
4087 { | |
4088 case XD_BYTECOUNT: | |
4089 case XD_ELEMCOUNT: | |
4090 case XD_HASHCODE: | |
4091 case XD_INT: | |
4092 case XD_LONG: | |
4093 case XD_INT_RESET: | |
4094 case XD_LO_LINK: | |
4095 case XD_OPAQUE_PTR: | |
4096 case XD_OPAQUE_DATA_PTR: | |
2367 | 4097 case XD_ASCII_STRING: |
1598 | 4098 case XD_DOC_STRING: |
4099 break; | |
4100 case XD_LISP_OBJECT: | |
4101 { | |
4102 const Lisp_Object *stored_obj = (const Lisp_Object *) rdata; | |
4103 | |
4104 /* Because of the way that tagged objects work (pointers and | |
4105 Lisp_Objects have the same representation), XD_LISP_OBJECT | |
4106 can be used for untagged pointers. They might be NULL, | |
4107 though. */ | |
4108 if (EQ (*stored_obj, Qnull_pointer)) | |
4109 break; | |
2720 | 4110 #ifdef MC_ALLOC |
4111 mark_object_maybe_checking_free (*stored_obj, 0, level, pos); | |
4112 #else /* not MC_ALLOC */ | |
1598 | 4113 mark_object_maybe_checking_free |
2645 | 4114 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT, |
4115 level, pos); | |
1598 | 4116 break; |
2720 | 4117 #endif /* not MC_ALLOC */ |
1598 | 4118 } |
4119 case XD_LISP_OBJECT_ARRAY: | |
4120 { | |
4121 int i; | |
4122 EMACS_INT count = | |
4123 lispdesc_indirect_count (desc1->data1, desc, data); | |
4124 | |
4125 for (i = 0; i < count; i++) | |
4126 { | |
4127 const Lisp_Object *stored_obj = | |
4128 (const Lisp_Object *) rdata + i; | |
4129 | |
4130 if (EQ (*stored_obj, Qnull_pointer)) | |
4131 break; | |
2720 | 4132 #ifdef MC_ALLOC |
4133 mark_object_maybe_checking_free (*stored_obj, 0, level, pos); | |
4134 #else /* not MC_ALLOC */ | |
1598 | 4135 mark_object_maybe_checking_free |
2645 | 4136 (*stored_obj, (desc1->flags) & XD_FLAG_FREE_LISP_OBJECT, |
4137 level, pos); | |
2720 | 4138 #endif /* not MC_ALLOC */ |
1598 | 4139 } |
4140 break; | |
4141 } | |
2367 | 4142 case XD_BLOCK_PTR: |
1598 | 4143 { |
4144 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
4145 data); | |
4146 const struct sized_memory_description *sdesc = | |
2551 | 4147 lispdesc_indirect_description (data, desc1->data2.descr); |
1598 | 4148 const char *dobj = * (const char **) rdata; |
4149 if (dobj) | |
2645 | 4150 mark_struct_contents (dobj, sdesc, count, level, pos); |
1598 | 4151 break; |
4152 } | |
2367 | 4153 case XD_BLOCK_ARRAY: |
1598 | 4154 { |
4155 EMACS_INT count = lispdesc_indirect_count (desc1->data1, desc, | |
4156 data); | |
4157 const struct sized_memory_description *sdesc = | |
2551 | 4158 lispdesc_indirect_description (data, desc1->data2.descr); |
1598 | 4159 |
2645 | 4160 mark_struct_contents (rdata, sdesc, count, level, pos); |
1598 | 4161 break; |
4162 } | |
4163 case XD_UNION: | |
4164 case XD_UNION_DYNAMIC_SIZE: | |
4165 desc1 = lispdesc_process_xd_union (desc1, desc, data); | |
4166 if (desc1) | |
4167 goto union_switcheroo; | |
4168 break; | |
4169 | |
4170 default: | |
4171 stderr_out ("Unsupported description type : %d\n", desc1->type); | |
2645 | 4172 kkcc_backtrace (); |
2500 | 4173 ABORT (); |
1598 | 4174 } |
4175 } | |
4176 } | |
2666 | 4177 #ifdef DEBUG_XEMACS |
4178 kkcc_bt_free (); | |
4179 #endif | |
1598 | 4180 } |
934 | 4181 #endif /* USE_KKCC */ |
4182 | |
428 | 4183 /* Mark reference to a Lisp_Object. If the object referred to has not been |
4184 seen yet, recursively mark all the references contained in it. */ | |
4185 | |
4186 void | |
2286 | 4187 mark_object ( |
4188 #ifdef USE_KKCC | |
4189 Lisp_Object UNUSED (obj) | |
4190 #else | |
4191 Lisp_Object obj | |
4192 #endif | |
4193 ) | |
428 | 4194 { |
1598 | 4195 #ifdef USE_KKCC |
4196 /* this code should never be reached when configured for KKCC */ | |
4197 stderr_out ("KKCC: Invalid mark_object call.\n"); | |
4198 stderr_out ("Replace mark_object with kkcc_gc_stack_push_lisp_object.\n"); | |
2500 | 4199 ABORT (); |
1676 | 4200 #else /* not USE_KKCC */ |
1598 | 4201 |
428 | 4202 tail_recurse: |
4203 | |
4204 /* Checks we used to perform */ | |
4205 /* if (EQ (obj, Qnull_pointer)) return; */ | |
4206 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */ | |
4207 /* if (PURIFIED (XPNTR (obj))) return; */ | |
4208 | |
4209 if (XTYPE (obj) == Lisp_Type_Record) | |
4210 { | |
4211 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
442 | 4212 |
4213 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
4214 | |
1204 | 4215 /* We handle this separately, above, so we can mark free objects */ |
1265 | 4216 GC_CHECK_NOT_FREE (lheader); |
1204 | 4217 |
442 | 4218 /* All c_readonly objects have their mark bit set, |
4219 so that we only need to check the mark bit here. */ | |
4220 if (! MARKED_RECORD_HEADER_P (lheader)) | |
428 | 4221 { |
4222 MARK_RECORD_HEADER (lheader); | |
442 | 4223 |
1598 | 4224 if (RECORD_MARKER (lheader)) |
4225 { | |
4226 obj = RECORD_MARKER (lheader) (obj); | |
4227 if (!NILP (obj)) goto tail_recurse; | |
4228 } | |
428 | 4229 } |
4230 } | |
1676 | 4231 #endif /* not KKCC */ |
428 | 4232 } |
4233 | |
4234 | |
2720 | 4235 #ifndef MC_ALLOC |
428 | 4236 static int gc_count_num_short_string_in_use; |
647 | 4237 static Bytecount gc_count_string_total_size; |
4238 static Bytecount gc_count_short_string_total_size; | |
428 | 4239 |
4240 /* static int gc_count_total_records_used, gc_count_records_total_size; */ | |
4241 | |
4242 | |
4243 /* stats on lcrecords in use - kinda kludgy */ | |
4244 | |
4245 static struct | |
4246 { | |
4247 int instances_in_use; | |
4248 int bytes_in_use; | |
4249 int instances_freed; | |
4250 int bytes_freed; | |
4251 int instances_on_free_list; | |
707 | 4252 } lcrecord_stats [countof (lrecord_implementations_table) |
4253 + MODULE_DEFINABLE_TYPE_COUNT]; | |
428 | 4254 |
4255 static void | |
442 | 4256 tick_lcrecord_stats (const struct lrecord_header *h, int free_p) |
428 | 4257 { |
647 | 4258 int type_index = h->type; |
428 | 4259 |
4260 if (((struct lcrecord_header *) h)->free) | |
4261 { | |
442 | 4262 gc_checking_assert (!free_p); |
428 | 4263 lcrecord_stats[type_index].instances_on_free_list++; |
4264 } | |
4265 else | |
4266 { | |
1204 | 4267 Bytecount sz = detagged_lisp_object_size (h); |
4268 | |
428 | 4269 if (free_p) |
4270 { | |
4271 lcrecord_stats[type_index].instances_freed++; | |
4272 lcrecord_stats[type_index].bytes_freed += sz; | |
4273 } | |
4274 else | |
4275 { | |
4276 lcrecord_stats[type_index].instances_in_use++; | |
4277 lcrecord_stats[type_index].bytes_in_use += sz; | |
4278 } | |
4279 } | |
4280 } | |
2720 | 4281 #endif /* not MC_ALLOC */ |
428 | 4282 |
4283 | |
2720 | 4284 #ifndef MC_ALLOC |
428 | 4285 /* Free all unmarked records */ |
4286 static void | |
4287 sweep_lcrecords_1 (struct lcrecord_header **prev, int *used) | |
4288 { | |
4289 struct lcrecord_header *header; | |
4290 int num_used = 0; | |
4291 /* int total_size = 0; */ | |
4292 | |
4293 xzero (lcrecord_stats); /* Reset all statistics to 0. */ | |
4294 | |
4295 /* First go through and call all the finalize methods. | |
4296 Then go through and free the objects. There used to | |
4297 be only one loop here, with the call to the finalizer | |
4298 occurring directly before the xfree() below. That | |
4299 is marginally faster but much less safe -- if the | |
4300 finalize method for an object needs to reference any | |
4301 other objects contained within it (and many do), | |
4302 we could easily be screwed by having already freed that | |
4303 other object. */ | |
4304 | |
4305 for (header = *prev; header; header = header->next) | |
4306 { | |
4307 struct lrecord_header *h = &(header->lheader); | |
442 | 4308 |
4309 GC_CHECK_LHEADER_INVARIANTS (h); | |
4310 | |
4311 if (! MARKED_RECORD_HEADER_P (h) && ! header->free) | |
428 | 4312 { |
4313 if (LHEADER_IMPLEMENTATION (h)->finalizer) | |
4314 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0); | |
4315 } | |
4316 } | |
4317 | |
4318 for (header = *prev; header; ) | |
4319 { | |
4320 struct lrecord_header *h = &(header->lheader); | |
442 | 4321 if (MARKED_RECORD_HEADER_P (h)) |
428 | 4322 { |
442 | 4323 if (! C_READONLY_RECORD_HEADER_P (h)) |
428 | 4324 UNMARK_RECORD_HEADER (h); |
4325 num_used++; | |
4326 /* total_size += n->implementation->size_in_bytes (h);*/ | |
440 | 4327 /* #### May modify header->next on a C_READONLY lcrecord */ |
428 | 4328 prev = &(header->next); |
4329 header = *prev; | |
4330 tick_lcrecord_stats (h, 0); | |
4331 } | |
4332 else | |
4333 { | |
4334 struct lcrecord_header *next = header->next; | |
4335 *prev = next; | |
4336 tick_lcrecord_stats (h, 1); | |
4337 /* used to call finalizer right here. */ | |
1726 | 4338 xfree (header, struct lcrecord_header *); |
428 | 4339 header = next; |
4340 } | |
4341 } | |
4342 *used = num_used; | |
4343 /* *total = total_size; */ | |
4344 } | |
4345 | |
4346 /* And the Lord said: Thou shalt use the `c-backslash-region' command | |
4347 to make macros prettier. */ | |
4348 | |
4349 #ifdef ERROR_CHECK_GC | |
4350 | |
771 | 4351 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \ |
428 | 4352 do { \ |
4353 struct typename##_block *SFTB_current; \ | |
4354 int SFTB_limit; \ | |
4355 int num_free = 0, num_used = 0; \ | |
4356 \ | |
444 | 4357 for (SFTB_current = current_##typename##_block, \ |
428 | 4358 SFTB_limit = current_##typename##_block_index; \ |
4359 SFTB_current; \ | |
4360 ) \ | |
4361 { \ | |
4362 int SFTB_iii; \ | |
4363 \ | |
4364 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ | |
4365 { \ | |
4366 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ | |
4367 \ | |
454 | 4368 if (LRECORD_FREE_P (SFTB_victim)) \ |
428 | 4369 { \ |
4370 num_free++; \ | |
4371 } \ | |
4372 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
4373 { \ | |
4374 num_used++; \ | |
4375 } \ | |
442 | 4376 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ |
428 | 4377 { \ |
4378 num_free++; \ | |
4379 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ | |
4380 } \ | |
4381 else \ | |
4382 { \ | |
4383 num_used++; \ | |
4384 UNMARK_##typename (SFTB_victim); \ | |
4385 } \ | |
4386 } \ | |
4387 SFTB_current = SFTB_current->prev; \ | |
4388 SFTB_limit = countof (current_##typename##_block->block); \ | |
4389 } \ | |
4390 \ | |
4391 gc_count_num_##typename##_in_use = num_used; \ | |
4392 gc_count_num_##typename##_freelist = num_free; \ | |
4393 } while (0) | |
4394 | |
4395 #else /* !ERROR_CHECK_GC */ | |
4396 | |
771 | 4397 #define SWEEP_FIXED_TYPE_BLOCK_1(typename, obj_type, lheader) \ |
4398 do { \ | |
4399 struct typename##_block *SFTB_current; \ | |
4400 struct typename##_block **SFTB_prev; \ | |
4401 int SFTB_limit; \ | |
4402 int num_free = 0, num_used = 0; \ | |
4403 \ | |
4404 typename##_free_list = 0; \ | |
4405 \ | |
4406 for (SFTB_prev = ¤t_##typename##_block, \ | |
4407 SFTB_current = current_##typename##_block, \ | |
4408 SFTB_limit = current_##typename##_block_index; \ | |
4409 SFTB_current; \ | |
4410 ) \ | |
4411 { \ | |
4412 int SFTB_iii; \ | |
4413 int SFTB_empty = 1; \ | |
4414 Lisp_Free *SFTB_old_free_list = typename##_free_list; \ | |
4415 \ | |
4416 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \ | |
4417 { \ | |
4418 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \ | |
4419 \ | |
4420 if (LRECORD_FREE_P (SFTB_victim)) \ | |
4421 { \ | |
4422 num_free++; \ | |
4423 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \ | |
4424 } \ | |
4425 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
4426 { \ | |
4427 SFTB_empty = 0; \ | |
4428 num_used++; \ | |
4429 } \ | |
4430 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \ | |
4431 { \ | |
4432 num_free++; \ | |
4433 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \ | |
4434 } \ | |
4435 else \ | |
4436 { \ | |
4437 SFTB_empty = 0; \ | |
4438 num_used++; \ | |
4439 UNMARK_##typename (SFTB_victim); \ | |
4440 } \ | |
4441 } \ | |
4442 if (!SFTB_empty) \ | |
4443 { \ | |
4444 SFTB_prev = &(SFTB_current->prev); \ | |
4445 SFTB_current = SFTB_current->prev; \ | |
4446 } \ | |
4447 else if (SFTB_current == current_##typename##_block \ | |
4448 && !SFTB_current->prev) \ | |
4449 { \ | |
4450 /* No real point in freeing sole allocation block */ \ | |
4451 break; \ | |
4452 } \ | |
4453 else \ | |
4454 { \ | |
4455 struct typename##_block *SFTB_victim_block = SFTB_current; \ | |
4456 if (SFTB_victim_block == current_##typename##_block) \ | |
4457 current_##typename##_block_index \ | |
4458 = countof (current_##typename##_block->block); \ | |
4459 SFTB_current = SFTB_current->prev; \ | |
4460 { \ | |
4461 *SFTB_prev = SFTB_current; \ | |
1726 | 4462 xfree (SFTB_victim_block, struct typename##_block *); \ |
771 | 4463 /* Restore free list to what it was before victim was swept */ \ |
4464 typename##_free_list = SFTB_old_free_list; \ | |
4465 num_free -= SFTB_limit; \ | |
4466 } \ | |
4467 } \ | |
4468 SFTB_limit = countof (current_##typename##_block->block); \ | |
4469 } \ | |
4470 \ | |
4471 gc_count_num_##typename##_in_use = num_used; \ | |
4472 gc_count_num_##typename##_freelist = num_free; \ | |
428 | 4473 } while (0) |
4474 | |
4475 #endif /* !ERROR_CHECK_GC */ | |
4476 | |
771 | 4477 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \ |
4478 SWEEP_FIXED_TYPE_BLOCK_1 (typename, obj_type, lheader) | |
4479 | |
2720 | 4480 #endif /* not MC_ALLOC */ |
4481 | |
428 | 4482 |
2720 | 4483 #ifndef MC_ALLOC |
428 | 4484 static void |
4485 sweep_conses (void) | |
4486 { | |
4487 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4488 #define ADDITIONAL_FREE_cons(ptr) | |
4489 | |
440 | 4490 SWEEP_FIXED_TYPE_BLOCK (cons, Lisp_Cons); |
428 | 4491 } |
2720 | 4492 #endif /* not MC_ALLOC */ |
428 | 4493 |
4494 /* Explicitly free a cons cell. */ | |
4495 void | |
853 | 4496 free_cons (Lisp_Object cons) |
428 | 4497 { |
2720 | 4498 #ifndef MC_ALLOC /* to avoid compiler warning */ |
853 | 4499 Lisp_Cons *ptr = XCONS (cons); |
2720 | 4500 #endif /* MC_ALLOC */ |
853 | 4501 |
428 | 4502 #ifdef ERROR_CHECK_GC |
2720 | 4503 #ifdef MC_ALLOC |
4504 Lisp_Cons *ptr = XCONS (cons); | |
4505 #endif /* MC_ALLOC */ | |
428 | 4506 /* If the CAR is not an int, then it will be a pointer, which will |
4507 always be four-byte aligned. If this cons cell has already been | |
4508 placed on the free list, however, its car will probably contain | |
4509 a chain pointer to the next cons on the list, which has cleverly | |
4510 had all its 0's and 1's inverted. This allows for a quick | |
1204 | 4511 check to make sure we're not freeing something already freed. |
4512 | |
4513 NOTE: This check may not be necessary. Freeing an object sets its | |
4514 type to lrecord_type_free, which will trip up the XCONS() above -- as | |
4515 well as a check in FREE_FIXED_TYPE(). */ | |
853 | 4516 if (POINTER_TYPE_P (XTYPE (cons_car (ptr)))) |
4517 ASSERT_VALID_POINTER (XPNTR (cons_car (ptr))); | |
428 | 4518 #endif /* ERROR_CHECK_GC */ |
4519 | |
2720 | 4520 #ifdef MC_ALLOC |
4521 free_lrecord (cons); | |
4522 #else /* not MC_ALLOC */ | |
440 | 4523 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, Lisp_Cons, ptr); |
2720 | 4524 #endif /* not MC_ALLOC */ |
428 | 4525 } |
4526 | |
4527 /* explicitly free a list. You **must make sure** that you have | |
4528 created all the cons cells that make up this list and that there | |
4529 are no pointers to any of these cons cells anywhere else. If there | |
4530 are, you will lose. */ | |
4531 | |
4532 void | |
4533 free_list (Lisp_Object list) | |
4534 { | |
4535 Lisp_Object rest, next; | |
4536 | |
4537 for (rest = list; !NILP (rest); rest = next) | |
4538 { | |
4539 next = XCDR (rest); | |
853 | 4540 free_cons (rest); |
428 | 4541 } |
4542 } | |
4543 | |
4544 /* explicitly free an alist. You **must make sure** that you have | |
4545 created all the cons cells that make up this alist and that there | |
4546 are no pointers to any of these cons cells anywhere else. If there | |
4547 are, you will lose. */ | |
4548 | |
4549 void | |
4550 free_alist (Lisp_Object alist) | |
4551 { | |
4552 Lisp_Object rest, next; | |
4553 | |
4554 for (rest = alist; !NILP (rest); rest = next) | |
4555 { | |
4556 next = XCDR (rest); | |
853 | 4557 free_cons (XCAR (rest)); |
4558 free_cons (rest); | |
428 | 4559 } |
4560 } | |
4561 | |
2720 | 4562 #ifndef MC_ALLOC |
428 | 4563 static void |
4564 sweep_compiled_functions (void) | |
4565 { | |
4566 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
945 | 4567 #define ADDITIONAL_FREE_compiled_function(ptr) \ |
1726 | 4568 if (ptr->args_in_array) xfree (ptr->args, Lisp_Object *) |
428 | 4569 |
4570 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function); | |
4571 } | |
4572 | |
4573 static void | |
4574 sweep_floats (void) | |
4575 { | |
4576 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4577 #define ADDITIONAL_FREE_float(ptr) | |
4578 | |
440 | 4579 SWEEP_FIXED_TYPE_BLOCK (float, Lisp_Float); |
428 | 4580 } |
4581 | |
1983 | 4582 #ifdef HAVE_BIGNUM |
4583 static void | |
4584 sweep_bignums (void) | |
4585 { | |
4586 #define UNMARK_bignum(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4587 #define ADDITIONAL_FREE_bignum(ptr) bignum_fini (ptr->data) | |
4588 | |
4589 SWEEP_FIXED_TYPE_BLOCK (bignum, Lisp_Bignum); | |
4590 } | |
4591 #endif /* HAVE_BIGNUM */ | |
4592 | |
4593 #ifdef HAVE_RATIO | |
4594 static void | |
4595 sweep_ratios (void) | |
4596 { | |
4597 #define UNMARK_ratio(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4598 #define ADDITIONAL_FREE_ratio(ptr) ratio_fini (ptr->data) | |
4599 | |
4600 SWEEP_FIXED_TYPE_BLOCK (ratio, Lisp_Ratio); | |
4601 } | |
4602 #endif /* HAVE_RATIO */ | |
4603 | |
4604 #ifdef HAVE_BIGFLOAT | |
4605 static void | |
4606 sweep_bigfloats (void) | |
4607 { | |
4608 #define UNMARK_bigfloat(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4609 #define ADDITIONAL_FREE_bigfloat(ptr) bigfloat_fini (ptr->bf) | |
4610 | |
4611 SWEEP_FIXED_TYPE_BLOCK (bigfloat, Lisp_Bigfloat); | |
4612 } | |
4613 #endif | |
4614 | |
428 | 4615 static void |
4616 sweep_symbols (void) | |
4617 { | |
4618 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4619 #define ADDITIONAL_FREE_symbol(ptr) | |
4620 | |
440 | 4621 SWEEP_FIXED_TYPE_BLOCK (symbol, Lisp_Symbol); |
428 | 4622 } |
4623 | |
4624 static void | |
4625 sweep_extents (void) | |
4626 { | |
4627 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4628 #define ADDITIONAL_FREE_extent(ptr) | |
4629 | |
4630 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent); | |
4631 } | |
4632 | |
4633 static void | |
4634 sweep_events (void) | |
4635 { | |
4636 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4637 #define ADDITIONAL_FREE_event(ptr) | |
4638 | |
440 | 4639 SWEEP_FIXED_TYPE_BLOCK (event, Lisp_Event); |
428 | 4640 } |
2720 | 4641 #endif /* not MC_ALLOC */ |
428 | 4642 |
1204 | 4643 #ifdef EVENT_DATA_AS_OBJECTS |
934 | 4644 |
2720 | 4645 #ifndef MC_ALLOC |
934 | 4646 static void |
4647 sweep_key_data (void) | |
4648 { | |
4649 #define UNMARK_key_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4650 #define ADDITIONAL_FREE_key_data(ptr) | |
4651 | |
4652 SWEEP_FIXED_TYPE_BLOCK (key_data, Lisp_Key_Data); | |
4653 } | |
2720 | 4654 #endif /* not MC_ALLOC */ |
934 | 4655 |
1204 | 4656 void |
4657 free_key_data (Lisp_Object ptr) | |
4658 { | |
2720 | 4659 #ifdef MC_ALLOC |
4660 free_lrecord (ptr); | |
4661 #else /* not MC_ALLOC */ | |
1204 | 4662 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (key_data, Lisp_Key_Data, XKEY_DATA (ptr)); |
2720 | 4663 #endif /* not MC_ALLOC */ |
4664 } | |
4665 | |
4666 #ifndef MC_ALLOC | |
934 | 4667 static void |
4668 sweep_button_data (void) | |
4669 { | |
4670 #define UNMARK_button_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4671 #define ADDITIONAL_FREE_button_data(ptr) | |
4672 | |
4673 SWEEP_FIXED_TYPE_BLOCK (button_data, Lisp_Button_Data); | |
4674 } | |
2720 | 4675 #endif /* not MC_ALLOC */ |
934 | 4676 |
1204 | 4677 void |
4678 free_button_data (Lisp_Object ptr) | |
4679 { | |
2720 | 4680 #ifdef MC_ALLOC |
4681 free_lrecord (ptr); | |
4682 #else /* not MC_ALLOC */ | |
1204 | 4683 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (button_data, Lisp_Button_Data, XBUTTON_DATA (ptr)); |
2720 | 4684 #endif /* not MC_ALLOC */ |
4685 } | |
4686 | |
4687 #ifndef MC_ALLOC | |
934 | 4688 static void |
4689 sweep_motion_data (void) | |
4690 { | |
4691 #define UNMARK_motion_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4692 #define ADDITIONAL_FREE_motion_data(ptr) | |
4693 | |
4694 SWEEP_FIXED_TYPE_BLOCK (motion_data, Lisp_Motion_Data); | |
4695 } | |
2720 | 4696 #endif /* not MC_ALLOC */ |
934 | 4697 |
1204 | 4698 void |
4699 free_motion_data (Lisp_Object ptr) | |
4700 { | |
2720 | 4701 #ifdef MC_ALLOC |
4702 free_lrecord (ptr); | |
4703 #else /* not MC_ALLOC */ | |
1204 | 4704 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (motion_data, Lisp_Motion_Data, XMOTION_DATA (ptr)); |
2720 | 4705 #endif /* not MC_ALLOC */ |
4706 } | |
4707 | |
4708 #ifndef MC_ALLOC | |
934 | 4709 static void |
4710 sweep_process_data (void) | |
4711 { | |
4712 #define UNMARK_process_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4713 #define ADDITIONAL_FREE_process_data(ptr) | |
4714 | |
4715 SWEEP_FIXED_TYPE_BLOCK (process_data, Lisp_Process_Data); | |
4716 } | |
2720 | 4717 #endif /* not MC_ALLOC */ |
934 | 4718 |
1204 | 4719 void |
4720 free_process_data (Lisp_Object ptr) | |
4721 { | |
2720 | 4722 #ifdef MC_ALLOC |
4723 free_lrecord (ptr); | |
4724 #else /* not MC_ALLOC */ | |
1204 | 4725 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (process_data, Lisp_Process_Data, XPROCESS_DATA (ptr)); |
2720 | 4726 #endif /* not MC_ALLOC */ |
4727 } | |
4728 | |
4729 #ifndef MC_ALLOC | |
934 | 4730 static void |
4731 sweep_timeout_data (void) | |
4732 { | |
4733 #define UNMARK_timeout_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4734 #define ADDITIONAL_FREE_timeout_data(ptr) | |
4735 | |
4736 SWEEP_FIXED_TYPE_BLOCK (timeout_data, Lisp_Timeout_Data); | |
4737 } | |
2720 | 4738 #endif /* not MC_ALLOC */ |
934 | 4739 |
1204 | 4740 void |
4741 free_timeout_data (Lisp_Object ptr) | |
4742 { | |
2720 | 4743 #ifdef MC_ALLOC |
4744 free_lrecord (ptr); | |
4745 #else /* not MC_ALLOC */ | |
1204 | 4746 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (timeout_data, Lisp_Timeout_Data, XTIMEOUT_DATA (ptr)); |
2720 | 4747 #endif /* not MC_ALLOC */ |
4748 } | |
4749 | |
4750 #ifndef MC_ALLOC | |
934 | 4751 static void |
4752 sweep_magic_data (void) | |
4753 { | |
4754 #define UNMARK_magic_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4755 #define ADDITIONAL_FREE_magic_data(ptr) | |
4756 | |
4757 SWEEP_FIXED_TYPE_BLOCK (magic_data, Lisp_Magic_Data); | |
4758 } | |
2720 | 4759 #endif /* not MC_ALLOC */ |
934 | 4760 |
1204 | 4761 void |
4762 free_magic_data (Lisp_Object ptr) | |
4763 { | |
2720 | 4764 #ifdef MC_ALLOC |
4765 free_lrecord (ptr); | |
4766 #else /* not MC_ALLOC */ | |
1204 | 4767 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_data, Lisp_Magic_Data, XMAGIC_DATA (ptr)); |
2720 | 4768 #endif /* not MC_ALLOC */ |
4769 } | |
4770 | |
4771 #ifndef MC_ALLOC | |
934 | 4772 static void |
4773 sweep_magic_eval_data (void) | |
4774 { | |
4775 #define UNMARK_magic_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4776 #define ADDITIONAL_FREE_magic_eval_data(ptr) | |
4777 | |
4778 SWEEP_FIXED_TYPE_BLOCK (magic_eval_data, Lisp_Magic_Eval_Data); | |
4779 } | |
2720 | 4780 #endif /* not MC_ALLOC */ |
934 | 4781 |
1204 | 4782 void |
4783 free_magic_eval_data (Lisp_Object ptr) | |
4784 { | |
2720 | 4785 #ifdef MC_ALLOC |
4786 free_lrecord (ptr); | |
4787 #else /* not MC_ALLOC */ | |
1204 | 4788 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (magic_eval_data, Lisp_Magic_Eval_Data, XMAGIC_EVAL_DATA (ptr)); |
2720 | 4789 #endif /* not MC_ALLOC */ |
4790 } | |
4791 | |
4792 #ifndef MC_ALLOC | |
934 | 4793 static void |
4794 sweep_eval_data (void) | |
4795 { | |
4796 #define UNMARK_eval_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4797 #define ADDITIONAL_FREE_eval_data(ptr) | |
4798 | |
4799 SWEEP_FIXED_TYPE_BLOCK (eval_data, Lisp_Eval_Data); | |
4800 } | |
2720 | 4801 #endif /* not MC_ALLOC */ |
934 | 4802 |
1204 | 4803 void |
4804 free_eval_data (Lisp_Object ptr) | |
4805 { | |
2720 | 4806 #ifdef MC_ALLOC |
4807 free_lrecord (ptr); | |
4808 #else /* not MC_ALLOC */ | |
1204 | 4809 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (eval_data, Lisp_Eval_Data, XEVAL_DATA (ptr)); |
2720 | 4810 #endif /* not MC_ALLOC */ |
4811 } | |
4812 | |
4813 #ifndef MC_ALLOC | |
934 | 4814 static void |
4815 sweep_misc_user_data (void) | |
4816 { | |
4817 #define UNMARK_misc_user_data(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4818 #define ADDITIONAL_FREE_misc_user_data(ptr) | |
4819 | |
4820 SWEEP_FIXED_TYPE_BLOCK (misc_user_data, Lisp_Misc_User_Data); | |
4821 } | |
2720 | 4822 #endif /* not MC_ALLOC */ |
934 | 4823 |
1204 | 4824 void |
4825 free_misc_user_data (Lisp_Object ptr) | |
4826 { | |
2720 | 4827 #ifdef MC_ALLOC |
4828 free_lrecord (ptr); | |
4829 #else /* not MC_ALLOC */ | |
1204 | 4830 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (misc_user_data, Lisp_Misc_User_Data, XMISC_USER_DATA (ptr)); |
2720 | 4831 #endif /* not MC_ALLOC */ |
1204 | 4832 } |
4833 | |
4834 #endif /* EVENT_DATA_AS_OBJECTS */ | |
934 | 4835 |
2720 | 4836 #ifndef MC_ALLOC |
428 | 4837 static void |
4838 sweep_markers (void) | |
4839 { | |
4840 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader)) | |
4841 #define ADDITIONAL_FREE_marker(ptr) \ | |
4842 do { Lisp_Object tem; \ | |
793 | 4843 tem = wrap_marker (ptr); \ |
428 | 4844 unchain_marker (tem); \ |
4845 } while (0) | |
4846 | |
440 | 4847 SWEEP_FIXED_TYPE_BLOCK (marker, Lisp_Marker); |
428 | 4848 } |
2720 | 4849 #endif /* not MC_ALLOC */ |
428 | 4850 |
4851 /* Explicitly free a marker. */ | |
4852 void | |
1204 | 4853 free_marker (Lisp_Object ptr) |
428 | 4854 { |
2720 | 4855 #ifdef MC_ALLOC |
4856 free_lrecord (ptr); | |
4857 #else /* not MC_ALLOC */ | |
1204 | 4858 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, Lisp_Marker, XMARKER (ptr)); |
2720 | 4859 #endif /* not MC_ALLOC */ |
428 | 4860 } |
4861 | |
4862 | |
4863 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) | |
4864 | |
4865 static void | |
4866 verify_string_chars_integrity (void) | |
4867 { | |
4868 struct string_chars_block *sb; | |
4869 | |
4870 /* Scan each existing string block sequentially, string by string. */ | |
4871 for (sb = first_string_chars_block; sb; sb = sb->next) | |
4872 { | |
4873 int pos = 0; | |
4874 /* POS is the index of the next string in the block. */ | |
4875 while (pos < sb->pos) | |
4876 { | |
4877 struct string_chars *s_chars = | |
4878 (struct string_chars *) &(sb->string_chars[pos]); | |
438 | 4879 Lisp_String *string; |
428 | 4880 int size; |
4881 int fullsize; | |
4882 | |
454 | 4883 /* If the string_chars struct is marked as free (i.e. the |
4884 STRING pointer is NULL) then this is an unused chunk of | |
4885 string storage. (See below.) */ | |
4886 | |
4887 if (STRING_CHARS_FREE_P (s_chars)) | |
428 | 4888 { |
4889 fullsize = ((struct unused_string_chars *) s_chars)->fullsize; | |
4890 pos += fullsize; | |
4891 continue; | |
4892 } | |
4893 | |
4894 string = s_chars->string; | |
4895 /* Must be 32-bit aligned. */ | |
4896 assert ((((int) string) & 3) == 0); | |
4897 | |
793 | 4898 size = string->size_; |
428 | 4899 fullsize = STRING_FULLSIZE (size); |
4900 | |
4901 assert (!BIG_STRING_FULLSIZE_P (fullsize)); | |
2720 | 4902 assert (XSTRING_DATA (string) == s_chars->chars); |
428 | 4903 pos += fullsize; |
4904 } | |
4905 assert (pos == sb->pos); | |
4906 } | |
4907 } | |
4908 | |
1204 | 4909 #endif /* defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY) */ |
428 | 4910 |
4911 /* Compactify string chars, relocating the reference to each -- | |
4912 free any empty string_chars_block we see. */ | |
4913 static void | |
4914 compact_string_chars (void) | |
4915 { | |
4916 struct string_chars_block *to_sb = first_string_chars_block; | |
4917 int to_pos = 0; | |
4918 struct string_chars_block *from_sb; | |
4919 | |
4920 /* Scan each existing string block sequentially, string by string. */ | |
4921 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next) | |
4922 { | |
4923 int from_pos = 0; | |
4924 /* FROM_POS is the index of the next string in the block. */ | |
4925 while (from_pos < from_sb->pos) | |
4926 { | |
4927 struct string_chars *from_s_chars = | |
4928 (struct string_chars *) &(from_sb->string_chars[from_pos]); | |
4929 struct string_chars *to_s_chars; | |
438 | 4930 Lisp_String *string; |
428 | 4931 int size; |
4932 int fullsize; | |
4933 | |
454 | 4934 /* If the string_chars struct is marked as free (i.e. the |
4935 STRING pointer is NULL) then this is an unused chunk of | |
4936 string storage. This happens under Mule when a string's | |
4937 size changes in such a way that its fullsize changes. | |
4938 (Strings can change size because a different-length | |
4939 character can be substituted for another character.) | |
4940 In this case, after the bogus string pointer is the | |
4941 "fullsize" of this entry, i.e. how many bytes to skip. */ | |
4942 | |
4943 if (STRING_CHARS_FREE_P (from_s_chars)) | |
428 | 4944 { |
4945 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize; | |
4946 from_pos += fullsize; | |
4947 continue; | |
4948 } | |
4949 | |
4950 string = from_s_chars->string; | |
1204 | 4951 gc_checking_assert (!(LRECORD_FREE_P (string))); |
428 | 4952 |
793 | 4953 size = string->size_; |
428 | 4954 fullsize = STRING_FULLSIZE (size); |
4955 | |
442 | 4956 gc_checking_assert (! BIG_STRING_FULLSIZE_P (fullsize)); |
428 | 4957 |
4958 /* Just skip it if it isn't marked. */ | |
771 | 4959 if (! MARKED_RECORD_HEADER_P (&(string->u.lheader))) |
428 | 4960 { |
4961 from_pos += fullsize; | |
4962 continue; | |
4963 } | |
4964 | |
4965 /* If it won't fit in what's left of TO_SB, close TO_SB out | |
4966 and go on to the next string_chars_block. We know that TO_SB | |
4967 cannot advance past FROM_SB here since FROM_SB is large enough | |
4968 to currently contain this string. */ | |
4969 if ((to_pos + fullsize) > countof (to_sb->string_chars)) | |
4970 { | |
4971 to_sb->pos = to_pos; | |
4972 to_sb = to_sb->next; | |
4973 to_pos = 0; | |
4974 } | |
4975 | |
4976 /* Compute new address of this string | |
4977 and update TO_POS for the space being used. */ | |
4978 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]); | |
4979 | |
4980 /* Copy the string_chars to the new place. */ | |
4981 if (from_s_chars != to_s_chars) | |
4982 memmove (to_s_chars, from_s_chars, fullsize); | |
4983 | |
4984 /* Relocate FROM_S_CHARS's reference */ | |
826 | 4985 set_lispstringp_data (string, &(to_s_chars->chars[0])); |
428 | 4986 |
4987 from_pos += fullsize; | |
4988 to_pos += fullsize; | |
4989 } | |
4990 } | |
4991 | |
4992 /* Set current to the last string chars block still used and | |
4993 free any that follow. */ | |
4994 { | |
4995 struct string_chars_block *victim; | |
4996 | |
4997 for (victim = to_sb->next; victim; ) | |
4998 { | |
4999 struct string_chars_block *next = victim->next; | |
1726 | 5000 xfree (victim, struct string_chars_block *); |
428 | 5001 victim = next; |
5002 } | |
5003 | |
5004 current_string_chars_block = to_sb; | |
5005 current_string_chars_block->pos = to_pos; | |
5006 current_string_chars_block->next = 0; | |
5007 } | |
5008 } | |
5009 | |
2720 | 5010 #ifndef MC_ALLOC |
428 | 5011 #if 1 /* Hack to debug missing purecopy's */ |
5012 static int debug_string_purity; | |
5013 | |
5014 static void | |
793 | 5015 debug_string_purity_print (Lisp_Object p) |
428 | 5016 { |
5017 Charcount i; | |
826 | 5018 Charcount s = string_char_length (p); |
442 | 5019 stderr_out ("\""); |
428 | 5020 for (i = 0; i < s; i++) |
5021 { | |
867 | 5022 Ichar ch = string_ichar (p, i); |
428 | 5023 if (ch < 32 || ch >= 126) |
5024 stderr_out ("\\%03o", ch); | |
5025 else if (ch == '\\' || ch == '\"') | |
5026 stderr_out ("\\%c", ch); | |
5027 else | |
5028 stderr_out ("%c", ch); | |
5029 } | |
5030 stderr_out ("\"\n"); | |
5031 } | |
5032 #endif /* 1 */ | |
2720 | 5033 #endif /* not MC_ALLOC */ |
5034 | |
5035 #ifndef MC_ALLOC | |
428 | 5036 static void |
5037 sweep_strings (void) | |
5038 { | |
647 | 5039 int num_small_used = 0; |
5040 Bytecount num_small_bytes = 0, num_bytes = 0; | |
428 | 5041 int debug = debug_string_purity; |
5042 | |
793 | 5043 #define UNMARK_string(ptr) do { \ |
5044 Lisp_String *p = (ptr); \ | |
5045 Bytecount size = p->size_; \ | |
5046 UNMARK_RECORD_HEADER (&(p->u.lheader)); \ | |
5047 num_bytes += size; \ | |
5048 if (!BIG_STRING_SIZE_P (size)) \ | |
5049 { \ | |
5050 num_small_bytes += size; \ | |
5051 num_small_used++; \ | |
5052 } \ | |
5053 if (debug) \ | |
5054 debug_string_purity_print (wrap_string (p)); \ | |
438 | 5055 } while (0) |
5056 #define ADDITIONAL_FREE_string(ptr) do { \ | |
793 | 5057 Bytecount size = ptr->size_; \ |
438 | 5058 if (BIG_STRING_SIZE_P (size)) \ |
1726 | 5059 xfree (ptr->data_, Ibyte *); \ |
438 | 5060 } while (0) |
5061 | |
771 | 5062 SWEEP_FIXED_TYPE_BLOCK_1 (string, Lisp_String, u.lheader); |
428 | 5063 |
5064 gc_count_num_short_string_in_use = num_small_used; | |
5065 gc_count_string_total_size = num_bytes; | |
5066 gc_count_short_string_total_size = num_small_bytes; | |
5067 } | |
2720 | 5068 #endif /* not MC_ALLOC */ |
428 | 5069 |
5070 /* I hate duplicating all this crap! */ | |
5071 int | |
5072 marked_p (Lisp_Object obj) | |
5073 { | |
5074 /* Checks we used to perform. */ | |
5075 /* if (EQ (obj, Qnull_pointer)) return 1; */ | |
5076 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */ | |
5077 /* if (PURIFIED (XPNTR (obj))) return 1; */ | |
5078 | |
5079 if (XTYPE (obj) == Lisp_Type_Record) | |
5080 { | |
5081 struct lrecord_header *lheader = XRECORD_LHEADER (obj); | |
442 | 5082 |
5083 GC_CHECK_LHEADER_INVARIANTS (lheader); | |
5084 | |
5085 return MARKED_RECORD_HEADER_P (lheader); | |
428 | 5086 } |
5087 return 1; | |
5088 } | |
5089 | |
5090 static void | |
5091 gc_sweep (void) | |
5092 { | |
2720 | 5093 #ifdef MC_ALLOC |
5094 compact_string_chars (); | |
5095 mc_finalize (); | |
5096 mc_sweep (); | |
5097 #else /* not MC_ALLOC */ | |
428 | 5098 /* Free all unmarked records. Do this at the very beginning, |
5099 before anything else, so that the finalize methods can safely | |
5100 examine items in the objects. sweep_lcrecords_1() makes | |
5101 sure to call all the finalize methods *before* freeing anything, | |
5102 to complete the safety. */ | |
5103 { | |
5104 int ignored; | |
5105 sweep_lcrecords_1 (&all_lcrecords, &ignored); | |
5106 } | |
5107 | |
5108 compact_string_chars (); | |
5109 | |
5110 /* Finalize methods below (called through the ADDITIONAL_FREE_foo | |
5111 macros) must be *extremely* careful to make sure they're not | |
5112 referencing freed objects. The only two existing finalize | |
5113 methods (for strings and markers) pass muster -- the string | |
5114 finalizer doesn't look at anything but its own specially- | |
5115 created block, and the marker finalizer only looks at live | |
5116 buffers (which will never be freed) and at the markers before | |
5117 and after it in the chain (which, by induction, will never be | |
5118 freed because if so, they would have already removed themselves | |
5119 from the chain). */ | |
5120 | |
5121 /* Put all unmarked strings on free list, free'ing the string chars | |
5122 of large unmarked strings */ | |
5123 sweep_strings (); | |
5124 | |
5125 /* Put all unmarked conses on free list */ | |
5126 sweep_conses (); | |
5127 | |
5128 /* Free all unmarked compiled-function objects */ | |
5129 sweep_compiled_functions (); | |
5130 | |
5131 /* Put all unmarked floats on free list */ | |
5132 sweep_floats (); | |
5133 | |
1983 | 5134 #ifdef HAVE_BIGNUM |
5135 /* Put all unmarked bignums on free list */ | |
5136 sweep_bignums (); | |
5137 #endif | |
5138 | |
5139 #ifdef HAVE_RATIO | |
5140 /* Put all unmarked ratios on free list */ | |
5141 sweep_ratios (); | |
5142 #endif | |
5143 | |
5144 #ifdef HAVE_BIGFLOAT | |
5145 /* Put all unmarked bigfloats on free list */ | |
5146 sweep_bigfloats (); | |
5147 #endif | |
5148 | |
428 | 5149 /* Put all unmarked symbols on free list */ |
5150 sweep_symbols (); | |
5151 | |
5152 /* Put all unmarked extents on free list */ | |
5153 sweep_extents (); | |
5154 | |
5155 /* Put all unmarked markers on free list. | |
5156 Dechain each one first from the buffer into which it points. */ | |
5157 sweep_markers (); | |
5158 | |
5159 sweep_events (); | |
5160 | |
1204 | 5161 #ifdef EVENT_DATA_AS_OBJECTS |
934 | 5162 sweep_key_data (); |
5163 sweep_button_data (); | |
5164 sweep_motion_data (); | |
5165 sweep_process_data (); | |
5166 sweep_timeout_data (); | |
5167 sweep_magic_data (); | |
5168 sweep_magic_eval_data (); | |
5169 sweep_eval_data (); | |
5170 sweep_misc_user_data (); | |
1204 | 5171 #endif /* EVENT_DATA_AS_OBJECTS */ |
2720 | 5172 #endif /* not MC_ALLOC */ |
5173 | |
5174 #ifndef MC_ALLOC | |
428 | 5175 #ifdef PDUMP |
442 | 5176 pdump_objects_unmark (); |
428 | 5177 #endif |
2720 | 5178 #endif /* not MC_ALLOC */ |
428 | 5179 } |
5180 | |
5181 /* Clearing for disksave. */ | |
5182 | |
5183 void | |
5184 disksave_object_finalization (void) | |
5185 { | |
5186 /* It's important that certain information from the environment not get | |
5187 dumped with the executable (pathnames, environment variables, etc.). | |
5188 To make it easier to tell when this has happened with strings(1) we | |
5189 clear some known-to-be-garbage blocks of memory, so that leftover | |
5190 results of old evaluation don't look like potential problems. | |
5191 But first we set some notable variables to nil and do one more GC, | |
5192 to turn those strings into garbage. | |
440 | 5193 */ |
428 | 5194 |
5195 /* Yeah, this list is pretty ad-hoc... */ | |
5196 Vprocess_environment = Qnil; | |
771 | 5197 env_initted = 0; |
428 | 5198 Vexec_directory = Qnil; |
5199 Vdata_directory = Qnil; | |
5200 Vsite_directory = Qnil; | |
5201 Vdoc_directory = Qnil; | |
5202 Vexec_path = Qnil; | |
5203 Vload_path = Qnil; | |
5204 /* Vdump_load_path = Qnil; */ | |
5205 /* Release hash tables for locate_file */ | |
5206 Flocate_file_clear_hashing (Qt); | |
771 | 5207 uncache_home_directory (); |
776 | 5208 zero_out_command_line_status_vars (); |
872 | 5209 clear_default_devices (); |
428 | 5210 |
5211 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \ | |
5212 defined(LOADHIST_BUILTIN)) | |
5213 Vload_history = Qnil; | |
5214 #endif | |
5215 Vshell_file_name = Qnil; | |
5216 | |
5217 garbage_collect_1 (); | |
5218 | |
5219 /* Run the disksave finalization methods of all live objects. */ | |
5220 disksave_object_finalization_1 (); | |
5221 | |
5222 /* Zero out the uninitialized (really, unused) part of the containers | |
5223 for the live strings. */ | |
5224 { | |
5225 struct string_chars_block *scb; | |
5226 for (scb = first_string_chars_block; scb; scb = scb->next) | |
5227 { | |
5228 int count = sizeof (scb->string_chars) - scb->pos; | |
5229 | |
5230 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE); | |
440 | 5231 if (count != 0) |
5232 { | |
5233 /* from the block's fill ptr to the end */ | |
5234 memset ((scb->string_chars + scb->pos), 0, count); | |
5235 } | |
428 | 5236 } |
5237 } | |
5238 | |
5239 /* There, that ought to be enough... */ | |
5240 | |
5241 } | |
5242 | |
5243 | |
771 | 5244 int |
5245 begin_gc_forbidden (void) | |
5246 { | |
853 | 5247 return internal_bind_int (&gc_currently_forbidden, 1); |
771 | 5248 } |
5249 | |
5250 void | |
5251 end_gc_forbidden (int count) | |
5252 { | |
5253 unbind_to (count); | |
5254 } | |
5255 | |
428 | 5256 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */ |
5257 static int gc_hooks_inhibited; | |
5258 | |
611 | 5259 struct post_gc_action |
5260 { | |
5261 void (*fun) (void *); | |
5262 void *arg; | |
5263 }; | |
5264 | |
5265 typedef struct post_gc_action post_gc_action; | |
5266 | |
5267 typedef struct | |
5268 { | |
5269 Dynarr_declare (post_gc_action); | |
5270 } post_gc_action_dynarr; | |
5271 | |
5272 static post_gc_action_dynarr *post_gc_actions; | |
5273 | |
5274 /* Register an action to be called at the end of GC. | |
5275 gc_in_progress is 0 when this is called. | |
5276 This is used when it is discovered that an action needs to be taken, | |
5277 but it's during GC, so it's not safe. (e.g. in a finalize method.) | |
5278 | |
5279 As a general rule, do not use Lisp objects here. | |
5280 And NEVER signal an error. | |
5281 */ | |
5282 | |
5283 void | |
5284 register_post_gc_action (void (*fun) (void *), void *arg) | |
5285 { | |
5286 post_gc_action action; | |
5287 | |
5288 if (!post_gc_actions) | |
5289 post_gc_actions = Dynarr_new (post_gc_action); | |
5290 | |
5291 action.fun = fun; | |
5292 action.arg = arg; | |
5293 | |
5294 Dynarr_add (post_gc_actions, action); | |
5295 } | |
5296 | |
5297 static void | |
5298 run_post_gc_actions (void) | |
5299 { | |
5300 int i; | |
5301 | |
5302 if (post_gc_actions) | |
5303 { | |
5304 for (i = 0; i < Dynarr_length (post_gc_actions); i++) | |
5305 { | |
5306 post_gc_action action = Dynarr_at (post_gc_actions, i); | |
5307 (action.fun) (action.arg); | |
5308 } | |
5309 | |
5310 Dynarr_reset (post_gc_actions); | |
5311 } | |
5312 } | |
5313 | |
428 | 5314 |
5315 void | |
5316 garbage_collect_1 (void) | |
5317 { | |
5318 #if MAX_SAVE_STACK > 0 | |
5319 char stack_top_variable; | |
5320 extern char *stack_bottom; | |
5321 #endif | |
5322 struct frame *f; | |
5323 int speccount; | |
5324 int cursor_changed; | |
5325 Lisp_Object pre_gc_cursor; | |
5326 struct gcpro gcpro1; | |
1292 | 5327 PROFILE_DECLARE (); |
428 | 5328 |
1123 | 5329 assert (!in_display || gc_currently_forbidden); |
5330 | |
428 | 5331 if (gc_in_progress |
5332 || gc_currently_forbidden | |
5333 || in_display | |
5334 || preparing_for_armageddon) | |
5335 return; | |
5336 | |
1292 | 5337 PROFILE_RECORD_ENTERING_SECTION (QSin_garbage_collection); |
5338 | |
428 | 5339 /* We used to call selected_frame() here. |
5340 | |
5341 The following functions cannot be called inside GC | |
5342 so we move to after the above tests. */ | |
5343 { | |
5344 Lisp_Object frame; | |
5345 Lisp_Object device = Fselected_device (Qnil); | |
5346 if (NILP (device)) /* Could happen during startup, eg. if always_gc */ | |
5347 return; | |
872 | 5348 frame = Fselected_frame (device); |
428 | 5349 if (NILP (frame)) |
563 | 5350 invalid_state ("No frames exist on device", device); |
428 | 5351 f = XFRAME (frame); |
5352 } | |
5353 | |
5354 pre_gc_cursor = Qnil; | |
5355 cursor_changed = 0; | |
5356 | |
5357 GCPRO1 (pre_gc_cursor); | |
5358 | |
5359 /* Very important to prevent GC during any of the following | |
5360 stuff that might run Lisp code; otherwise, we'll likely | |
5361 have infinite GC recursion. */ | |
771 | 5362 speccount = begin_gc_forbidden (); |
428 | 5363 |
887 | 5364 need_to_signal_post_gc = 0; |
1318 | 5365 recompute_funcall_allocation_flag (); |
887 | 5366 |
428 | 5367 if (!gc_hooks_inhibited) |
853 | 5368 run_hook_trapping_problems |
1333 | 5369 (Qgarbage_collecting, Qpre_gc_hook, |
853 | 5370 INHIBIT_EXISTING_PERMANENT_DISPLAY_OBJECT_DELETION); |
428 | 5371 |
5372 /* Now show the GC cursor/message. */ | |
5373 if (!noninteractive) | |
5374 { | |
5375 if (FRAME_WIN_P (f)) | |
5376 { | |
771 | 5377 Lisp_Object frame = wrap_frame (f); |
428 | 5378 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph, |
5379 FRAME_SELECTED_WINDOW (f), | |
5380 ERROR_ME_NOT, 1); | |
5381 pre_gc_cursor = f->pointer; | |
5382 if (POINTER_IMAGE_INSTANCEP (cursor) | |
5383 /* don't change if we don't know how to change back. */ | |
5384 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor)) | |
5385 { | |
5386 cursor_changed = 1; | |
5387 Fset_frame_pointer (frame, cursor); | |
5388 } | |
5389 } | |
5390 | |
5391 /* Don't print messages to the stream device. */ | |
5392 if (!cursor_changed && !FRAME_STREAM_P (f)) | |
5393 { | |
1154 | 5394 if (garbage_collection_messages) |
5395 { | |
5396 Lisp_Object args[2], whole_msg; | |
5397 args[0] = (STRINGP (Vgc_message) ? Vgc_message : | |
5398 build_msg_string (gc_default_message)); | |
5399 args[1] = build_string ("..."); | |
5400 whole_msg = Fconcat (2, args); | |
5401 echo_area_message (f, (Ibyte *) 0, whole_msg, 0, -1, | |
5402 Qgarbage_collecting); | |
5403 } | |
428 | 5404 } |
5405 } | |
5406 | |
5407 /***** Now we actually start the garbage collection. */ | |
5408 | |
5409 gc_in_progress = 1; | |
2367 | 5410 inhibit_non_essential_conversion_operations = 1; |
428 | 5411 |
5412 gc_generation_number[0]++; | |
5413 | |
5414 #if MAX_SAVE_STACK > 0 | |
5415 | |
5416 /* Save a copy of the contents of the stack, for debugging. */ | |
5417 if (!purify_flag) | |
5418 { | |
5419 /* Static buffer in which we save a copy of the C stack at each GC. */ | |
5420 static char *stack_copy; | |
665 | 5421 static Bytecount stack_copy_size; |
428 | 5422 |
5423 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom; | |
665 | 5424 Bytecount stack_size = (stack_diff > 0 ? stack_diff : -stack_diff); |
428 | 5425 if (stack_size < MAX_SAVE_STACK) |
5426 { | |
5427 if (stack_copy_size < stack_size) | |
5428 { | |
5429 stack_copy = (char *) xrealloc (stack_copy, stack_size); | |
5430 stack_copy_size = stack_size; | |
5431 } | |
5432 | |
5433 memcpy (stack_copy, | |
5434 stack_diff > 0 ? stack_bottom : &stack_top_variable, | |
5435 stack_size); | |
5436 } | |
5437 } | |
5438 #endif /* MAX_SAVE_STACK > 0 */ | |
5439 | |
5440 /* Do some totally ad-hoc resource clearing. */ | |
5441 /* #### generalize this? */ | |
5442 clear_event_resource (); | |
5443 cleanup_specifiers (); | |
1204 | 5444 cleanup_buffer_undo_lists (); |
428 | 5445 |
5446 /* Mark all the special slots that serve as the roots of accessibility. */ | |
5447 | |
1598 | 5448 #ifdef USE_KKCC |
5449 /* initialize kkcc stack */ | |
5450 kkcc_gc_stack_init(); | |
2645 | 5451 #define mark_object(obj) kkcc_gc_stack_push_lisp_object (obj, 0, -1) |
1598 | 5452 #endif /* USE_KKCC */ |
5453 | |
428 | 5454 { /* staticpro() */ |
452 | 5455 Lisp_Object **p = Dynarr_begin (staticpros); |
665 | 5456 Elemcount count; |
452 | 5457 for (count = Dynarr_length (staticpros); count; count--) |
5458 mark_object (**p++); | |
5459 } | |
5460 | |
5461 { /* staticpro_nodump() */ | |
5462 Lisp_Object **p = Dynarr_begin (staticpros_nodump); | |
665 | 5463 Elemcount count; |
452 | 5464 for (count = Dynarr_length (staticpros_nodump); count; count--) |
5465 mark_object (**p++); | |
428 | 5466 } |
5467 | |
2720 | 5468 #ifdef MC_ALLOC |
5469 { /* mcpro () */ | |
5470 Lisp_Object *p = Dynarr_begin (mcpros); | |
5471 Elemcount count; | |
5472 for (count = Dynarr_length (mcpros); count; count--) | |
5473 mark_object (*p++); | |
5474 } | |
5475 #endif /* MC_ALLOC */ | |
5476 | |
428 | 5477 { /* GCPRO() */ |
5478 struct gcpro *tail; | |
5479 int i; | |
5480 for (tail = gcprolist; tail; tail = tail->next) | |
5481 for (i = 0; i < tail->nvars; i++) | |
5482 mark_object (tail->var[i]); | |
5483 } | |
5484 | |
5485 { /* specbind() */ | |
5486 struct specbinding *bind; | |
5487 for (bind = specpdl; bind != specpdl_ptr; bind++) | |
5488 { | |
5489 mark_object (bind->symbol); | |
5490 mark_object (bind->old_value); | |
5491 } | |
5492 } | |
5493 | |
5494 { | |
5495 struct catchtag *catch; | |
5496 for (catch = catchlist; catch; catch = catch->next) | |
5497 { | |
5498 mark_object (catch->tag); | |
5499 mark_object (catch->val); | |
853 | 5500 mark_object (catch->actual_tag); |
2532 | 5501 mark_object (catch->backtrace); |
428 | 5502 } |
5503 } | |
5504 | |
5505 { | |
5506 struct backtrace *backlist; | |
5507 for (backlist = backtrace_list; backlist; backlist = backlist->next) | |
5508 { | |
5509 int nargs = backlist->nargs; | |
5510 int i; | |
5511 | |
5512 mark_object (*backlist->function); | |
1292 | 5513 if (nargs < 0 /* nargs == UNEVALLED || nargs == MANY */ |
5514 /* might be fake (internal profiling entry) */ | |
5515 && backlist->args) | |
428 | 5516 mark_object (backlist->args[0]); |
5517 else | |
5518 for (i = 0; i < nargs; i++) | |
5519 mark_object (backlist->args[i]); | |
5520 } | |
5521 } | |
5522 | |
5523 mark_profiling_info (); | |
5524 | |
5525 /* OK, now do the after-mark stuff. This is for things that | |
5526 are only marked when something else is marked (e.g. weak hash tables). | |
5527 There may be complex dependencies between such objects -- e.g. | |
5528 a weak hash table might be unmarked, but after processing a later | |
5529 weak hash table, the former one might get marked. So we have to | |
5530 iterate until nothing more gets marked. */ | |
1598 | 5531 #ifdef USE_KKCC |
5532 kkcc_marking (); | |
5533 #endif /* USE_KKCC */ | |
1590 | 5534 init_marking_ephemerons (); |
428 | 5535 while (finish_marking_weak_hash_tables () > 0 || |
887 | 5536 finish_marking_weak_lists () > 0 || |
1590 | 5537 continue_marking_ephemerons () > 0) |
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5538 #ifdef USE_KKCC |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5539 { |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5540 kkcc_marking (); |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5541 } |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5542 #else /* NOT USE_KKCC */ |
1590 | 5543 ; |
1598 | 5544 #endif /* USE_KKCC */ |
5545 | |
1590 | 5546 /* At this point, we know which objects need to be finalized: we |
5547 still need to resurrect them */ | |
5548 | |
5549 while (finish_marking_ephemerons () > 0 || | |
5550 finish_marking_weak_lists () > 0 || | |
5551 finish_marking_weak_hash_tables () > 0) | |
1643 | 5552 #ifdef USE_KKCC |
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5553 { |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5554 kkcc_marking (); |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5555 } |
1643 | 5556 kkcc_gc_stack_free (); |
1676 | 5557 #undef mark_object |
1773
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5558 #else /* NOT USE_KKCC */ |
aa0db78e67c4
[xemacs-hg @ 2003-11-01 14:54:53 by kaltenbach]
kaltenbach
parents:
1739
diff
changeset
|
5559 ; |
1643 | 5560 #endif /* USE_KKCC */ |
5561 | |
428 | 5562 /* And prune (this needs to be called after everything else has been |
5563 marked and before we do any sweeping). */ | |
5564 /* #### this is somewhat ad-hoc and should probably be an object | |
5565 method */ | |
5566 prune_weak_hash_tables (); | |
5567 prune_weak_lists (); | |
5568 prune_specifiers (); | |
5569 prune_syntax_tables (); | |
5570 | |
887 | 5571 prune_ephemerons (); |
858 | 5572 prune_weak_boxes (); |
5573 | |
428 | 5574 gc_sweep (); |
5575 | |
5576 consing_since_gc = 0; | |
5577 #ifndef DEBUG_XEMACS | |
5578 /* Allow you to set it really fucking low if you really want ... */ | |
5579 if (gc_cons_threshold < 10000) | |
5580 gc_cons_threshold = 10000; | |
5581 #endif | |
814 | 5582 recompute_need_to_garbage_collect (); |
428 | 5583 |
2367 | 5584 inhibit_non_essential_conversion_operations = 0; |
428 | 5585 gc_in_progress = 0; |
5586 | |
611 | 5587 run_post_gc_actions (); |
5588 | |
428 | 5589 /******* End of garbage collection ********/ |
5590 | |
5591 /* Now remove the GC cursor/message */ | |
5592 if (!noninteractive) | |
5593 { | |
5594 if (cursor_changed) | |
771 | 5595 Fset_frame_pointer (wrap_frame (f), pre_gc_cursor); |
428 | 5596 else if (!FRAME_STREAM_P (f)) |
5597 { | |
5598 /* Show "...done" only if the echo area would otherwise be empty. */ | |
5599 if (NILP (clear_echo_area (selected_frame (), | |
5600 Qgarbage_collecting, 0))) | |
5601 { | |
1154 | 5602 if (garbage_collection_messages) |
5603 { | |
5604 Lisp_Object args[2], whole_msg; | |
5605 args[0] = (STRINGP (Vgc_message) ? Vgc_message : | |
5606 build_msg_string (gc_default_message)); | |
5607 args[1] = build_msg_string ("... done"); | |
5608 whole_msg = Fconcat (2, args); | |
5609 echo_area_message (selected_frame (), (Ibyte *) 0, | |
5610 whole_msg, 0, -1, | |
5611 Qgarbage_collecting); | |
5612 } | |
428 | 5613 } |
5614 } | |
5615 } | |
5616 | |
5617 /* now stop inhibiting GC */ | |
771 | 5618 unbind_to (speccount); |
428 | 5619 |
2720 | 5620 #ifndef MC_ALLOC |
428 | 5621 if (!breathing_space) |
5622 { | |
5623 breathing_space = malloc (4096 - MALLOC_OVERHEAD); | |
5624 } | |
2720 | 5625 #endif /* not MC_ALLOC */ |
428 | 5626 |
5627 UNGCPRO; | |
887 | 5628 |
5629 need_to_signal_post_gc = 1; | |
5630 funcall_allocation_flag = 1; | |
5631 | |
1292 | 5632 PROFILE_RECORD_EXITING_SECTION (QSin_garbage_collection); |
5633 | |
428 | 5634 return; |
5635 } | |
5636 | |
2720 | 5637 #ifdef MC_ALLOC |
5638 #ifdef MC_ALLOC_TYPE_STATS | |
5639 static Lisp_Object | |
5640 gc_plist_hack (const Ascbyte *name, int value, Lisp_Object tail) | |
5641 { | |
5642 /* C doesn't have local functions (or closures, or GC, or readable syntax, | |
5643 or portable numeric datatypes, or bit-vectors, or characters, or | |
5644 arrays, or exceptions, or ...) */ | |
5645 return cons3 (intern (name), make_int (value), tail); | |
5646 } | |
5647 #endif /* MC_ALLOC_TYPE_STATS */ | |
5648 | |
5649 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /* | |
5650 Reclaim storage for Lisp objects no longer needed. | |
5651 Return info on amount of space in use: | |
5652 ((USED-CONSES . STORAGE-CONSES) (USED-SYMS . STORAGE-SYMS) | |
5653 (USED-MARKERS . STORAGE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS | |
5654 PLIST) | |
5655 where `PLIST' is a list of alternating keyword/value pairs providing | |
5656 more detailed information. | |
5657 Garbage collection happens automatically if you cons more than | |
5658 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. | |
5659 */ | |
5660 ()) | |
5661 { | |
5662 #ifdef MC_ALLOC_TYPE_STATS | |
5663 Lisp_Object pl = Qnil; | |
5664 int i; | |
5665 #endif /* not MC_ALLOC_TYPE_STATS */ | |
5666 | |
5667 garbage_collect_1 (); | |
5668 | |
5669 #ifdef MC_ALLOC_TYPE_STATS | |
5670 for (i = 0; i < (countof (lrecord_implementations_table) | |
5671 + MODULE_DEFINABLE_TYPE_COUNT); i++) | |
5672 { | |
5673 if (lrecord_stats[i].instances_in_use != 0) | |
5674 { | |
5675 char buf [255]; | |
5676 const char *name = lrecord_implementations_table[i]->name; | |
5677 int len = strlen (name); | |
5678 | |
5679 if (lrecord_stats[i].bytes_in_use_including_overhead != | |
5680 lrecord_stats[i].bytes_in_use) | |
5681 { | |
5682 sprintf (buf, "%s-storage-including-overhead", name); | |
5683 pl = gc_plist_hack (buf, | |
5684 lrecord_stats[i] | |
5685 .bytes_in_use_including_overhead, | |
5686 pl); | |
5687 } | |
5688 | |
5689 sprintf (buf, "%s-storage", name); | |
5690 pl = gc_plist_hack (buf, | |
5691 lrecord_stats[i].bytes_in_use, | |
5692 pl); | |
5693 | |
5694 if (name[len-1] == 's') | |
5695 sprintf (buf, "%ses-used", name); | |
5696 else | |
5697 sprintf (buf, "%ss-used", name); | |
5698 pl = gc_plist_hack (buf, lrecord_stats[i].instances_in_use, pl); | |
5699 } | |
5700 } | |
5701 | |
5702 /* The things we do for backwards-compatibility */ | |
5703 return | |
5704 list6 | |
5705 (Fcons (make_int (lrecord_stats[lrecord_type_cons].instances_in_use), | |
5706 make_int (lrecord_stats[lrecord_type_cons] | |
5707 .bytes_in_use_including_overhead)), | |
5708 Fcons (make_int (lrecord_stats[lrecord_type_symbol].instances_in_use), | |
5709 make_int (lrecord_stats[lrecord_type_symbol] | |
5710 .bytes_in_use_including_overhead)), | |
5711 Fcons (make_int (lrecord_stats[lrecord_type_marker].instances_in_use), | |
5712 make_int (lrecord_stats[lrecord_type_marker] | |
5713 .bytes_in_use_including_overhead)), | |
5714 make_int (lrecord_stats[lrecord_type_string] | |
5715 .bytes_in_use_including_overhead), | |
5716 make_int (lrecord_stats[lrecord_type_vector] | |
5717 .bytes_in_use_including_overhead), | |
5718 pl); | |
5719 #else /* not MC_ALLOC_TYPE_STATS */ | |
5720 return Qnil; | |
5721 #endif /* not MC_ALLOC_TYPE_STATS */ | |
5722 } | |
5723 #else /* not MC_ALLOC */ | |
428 | 5724 /* Debugging aids. */ |
5725 | |
5726 static Lisp_Object | |
2367 | 5727 gc_plist_hack (const Ascbyte *name, int value, Lisp_Object tail) |
428 | 5728 { |
5729 /* C doesn't have local functions (or closures, or GC, or readable syntax, | |
5730 or portable numeric datatypes, or bit-vectors, or characters, or | |
5731 arrays, or exceptions, or ...) */ | |
5732 return cons3 (intern (name), make_int (value), tail); | |
5733 } | |
5734 | |
5735 #define HACK_O_MATIC(type, name, pl) do { \ | |
5736 int s = 0; \ | |
5737 struct type##_block *x = current_##type##_block; \ | |
5738 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \ | |
5739 (pl) = gc_plist_hack ((name), s, (pl)); \ | |
5740 } while (0) | |
5741 | |
5742 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /* | |
5743 Reclaim storage for Lisp objects no longer needed. | |
5744 Return info on amount of space in use: | |
5745 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS) | |
5746 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS | |
5747 PLIST) | |
5748 where `PLIST' is a list of alternating keyword/value pairs providing | |
5749 more detailed information. | |
5750 Garbage collection happens automatically if you cons more than | |
5751 `gc-cons-threshold' bytes of Lisp data since previous garbage collection. | |
5752 */ | |
5753 ()) | |
5754 { | |
5755 Lisp_Object pl = Qnil; | |
647 | 5756 int i; |
428 | 5757 int gc_count_vector_total_size = 0; |
5758 garbage_collect_1 (); | |
5759 | |
442 | 5760 for (i = 0; i < lrecord_type_count; i++) |
428 | 5761 { |
5762 if (lcrecord_stats[i].bytes_in_use != 0 | |
5763 || lcrecord_stats[i].bytes_freed != 0 | |
5764 || lcrecord_stats[i].instances_on_free_list != 0) | |
5765 { | |
5766 char buf [255]; | |
442 | 5767 const char *name = lrecord_implementations_table[i]->name; |
428 | 5768 int len = strlen (name); |
5769 /* save this for the FSFmacs-compatible part of the summary */ | |
460 | 5770 if (i == lrecord_type_vector) |
428 | 5771 gc_count_vector_total_size = |
5772 lcrecord_stats[i].bytes_in_use + lcrecord_stats[i].bytes_freed; | |
5773 | |
5774 sprintf (buf, "%s-storage", name); | |
5775 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl); | |
5776 /* Okay, simple pluralization check for `symbol-value-varalias' */ | |
5777 if (name[len-1] == 's') | |
5778 sprintf (buf, "%ses-freed", name); | |
5779 else | |
5780 sprintf (buf, "%ss-freed", name); | |
5781 if (lcrecord_stats[i].instances_freed != 0) | |
5782 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl); | |
5783 if (name[len-1] == 's') | |
5784 sprintf (buf, "%ses-on-free-list", name); | |
5785 else | |
5786 sprintf (buf, "%ss-on-free-list", name); | |
5787 if (lcrecord_stats[i].instances_on_free_list != 0) | |
5788 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list, | |
5789 pl); | |
5790 if (name[len-1] == 's') | |
5791 sprintf (buf, "%ses-used", name); | |
5792 else | |
5793 sprintf (buf, "%ss-used", name); | |
5794 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl); | |
5795 } | |
5796 } | |
5797 | |
5798 HACK_O_MATIC (extent, "extent-storage", pl); | |
5799 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl); | |
5800 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl); | |
5801 HACK_O_MATIC (event, "event-storage", pl); | |
5802 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl); | |
5803 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl); | |
5804 HACK_O_MATIC (marker, "marker-storage", pl); | |
5805 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl); | |
5806 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl); | |
5807 HACK_O_MATIC (float, "float-storage", pl); | |
5808 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl); | |
5809 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl); | |
1983 | 5810 #ifdef HAVE_BIGNUM |
5811 HACK_O_MATIC (bignum, "bignum-storage", pl); | |
5812 pl = gc_plist_hack ("bignums-free", gc_count_num_bignum_freelist, pl); | |
5813 pl = gc_plist_hack ("bignums-used", gc_count_num_bignum_in_use, pl); | |
5814 #endif /* HAVE_BIGNUM */ | |
5815 #ifdef HAVE_RATIO | |
5816 HACK_O_MATIC (ratio, "ratio-storage", pl); | |
5817 pl = gc_plist_hack ("ratios-free", gc_count_num_ratio_freelist, pl); | |
5818 pl = gc_plist_hack ("ratios-used", gc_count_num_ratio_in_use, pl); | |
5819 #endif /* HAVE_RATIO */ | |
5820 #ifdef HAVE_BIGFLOAT | |
5821 HACK_O_MATIC (bigfloat, "bigfloat-storage", pl); | |
5822 pl = gc_plist_hack ("bigfloats-free", gc_count_num_bigfloat_freelist, pl); | |
5823 pl = gc_plist_hack ("bigfloats-used", gc_count_num_bigfloat_in_use, pl); | |
5824 #endif /* HAVE_BIGFLOAT */ | |
428 | 5825 HACK_O_MATIC (string, "string-header-storage", pl); |
5826 pl = gc_plist_hack ("long-strings-total-length", | |
5827 gc_count_string_total_size | |
5828 - gc_count_short_string_total_size, pl); | |
5829 HACK_O_MATIC (string_chars, "short-string-storage", pl); | |
5830 pl = gc_plist_hack ("short-strings-total-length", | |
5831 gc_count_short_string_total_size, pl); | |
5832 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl); | |
5833 pl = gc_plist_hack ("long-strings-used", | |
5834 gc_count_num_string_in_use | |
5835 - gc_count_num_short_string_in_use, pl); | |
5836 pl = gc_plist_hack ("short-strings-used", | |
5837 gc_count_num_short_string_in_use, pl); | |
5838 | |
5839 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl); | |
5840 pl = gc_plist_hack ("compiled-functions-free", | |
5841 gc_count_num_compiled_function_freelist, pl); | |
5842 pl = gc_plist_hack ("compiled-functions-used", | |
5843 gc_count_num_compiled_function_in_use, pl); | |
5844 | |
5845 HACK_O_MATIC (symbol, "symbol-storage", pl); | |
5846 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl); | |
5847 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl); | |
5848 | |
5849 HACK_O_MATIC (cons, "cons-storage", pl); | |
5850 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl); | |
5851 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl); | |
5852 | |
5853 /* The things we do for backwards-compatibility */ | |
5854 return | |
5855 list6 (Fcons (make_int (gc_count_num_cons_in_use), | |
5856 make_int (gc_count_num_cons_freelist)), | |
5857 Fcons (make_int (gc_count_num_symbol_in_use), | |
5858 make_int (gc_count_num_symbol_freelist)), | |
5859 Fcons (make_int (gc_count_num_marker_in_use), | |
5860 make_int (gc_count_num_marker_freelist)), | |
5861 make_int (gc_count_string_total_size), | |
5862 make_int (gc_count_vector_total_size), | |
5863 pl); | |
5864 } | |
5865 #undef HACK_O_MATIC | |
2720 | 5866 #endif /* not MC_ALLOC */ |
428 | 5867 |
5868 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /* | |
5869 Return the number of bytes consed since the last garbage collection. | |
5870 \"Consed\" is a misnomer in that this actually counts allocation | |
5871 of all different kinds of objects, not just conses. | |
5872 | |
5873 If this value exceeds `gc-cons-threshold', a garbage collection happens. | |
5874 */ | |
5875 ()) | |
5876 { | |
5877 return make_int (consing_since_gc); | |
5878 } | |
5879 | |
440 | 5880 #if 0 |
444 | 5881 DEFUN ("memory-limit", Fmemory_limit, 0, 0, 0, /* |
801 | 5882 Return the address of the last byte XEmacs has allocated, divided by 1024. |
5883 This may be helpful in debugging XEmacs's memory usage. | |
428 | 5884 The value is divided by 1024 to make sure it will fit in a lisp integer. |
5885 */ | |
5886 ()) | |
5887 { | |
5888 return make_int ((EMACS_INT) sbrk (0) / 1024); | |
5889 } | |
440 | 5890 #endif |
428 | 5891 |
801 | 5892 DEFUN ("memory-usage", Fmemory_usage, 0, 0, 0, /* |
5893 Return the total number of bytes used by the data segment in XEmacs. | |
5894 This may be helpful in debugging XEmacs's memory usage. | |
5895 */ | |
5896 ()) | |
5897 { | |
5898 return make_int (total_data_usage ()); | |
5899 } | |
5900 | |
851 | 5901 void |
5902 recompute_funcall_allocation_flag (void) | |
5903 { | |
887 | 5904 funcall_allocation_flag = |
5905 need_to_garbage_collect || | |
5906 need_to_check_c_alloca || | |
5907 need_to_signal_post_gc; | |
851 | 5908 } |
5909 | |
801 | 5910 /* True if it's time to garbage collect now. */ |
814 | 5911 static void |
5912 recompute_need_to_garbage_collect (void) | |
801 | 5913 { |
5914 if (always_gc) | |
814 | 5915 need_to_garbage_collect = 1; |
5916 else | |
5917 need_to_garbage_collect = | |
5918 (consing_since_gc > gc_cons_threshold | |
5919 #if 0 /* #### implement this better */ | |
5920 && | |
5921 (100 * consing_since_gc) / total_data_usage () >= | |
5922 gc_cons_percentage | |
5923 #endif /* 0 */ | |
5924 ); | |
851 | 5925 recompute_funcall_allocation_flag (); |
801 | 5926 } |
5927 | |
428 | 5928 |
5929 int | |
5930 object_dead_p (Lisp_Object obj) | |
5931 { | |
5932 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) || | |
5933 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) || | |
5934 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) || | |
5935 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) || | |
5936 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) || | |
5937 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) || | |
5938 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj)))); | |
5939 } | |
5940 | |
5941 #ifdef MEMORY_USAGE_STATS | |
5942 | |
5943 /* Attempt to determine the actual amount of space that is used for | |
5944 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE". | |
5945 | |
5946 It seems that the following holds: | |
5947 | |
5948 1. When using the old allocator (malloc.c): | |
5949 | |
5950 -- blocks are always allocated in chunks of powers of two. For | |
5951 each block, there is an overhead of 8 bytes if rcheck is not | |
5952 defined, 20 bytes if it is defined. In other words, a | |
5953 one-byte allocation needs 8 bytes of overhead for a total of | |
5954 9 bytes, and needs to have 16 bytes of memory chunked out for | |
5955 it. | |
5956 | |
5957 2. When using the new allocator (gmalloc.c): | |
5958 | |
5959 -- blocks are always allocated in chunks of powers of two up | |
5960 to 4096 bytes. Larger blocks are allocated in chunks of | |
5961 an integral multiple of 4096 bytes. The minimum block | |
5962 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG | |
5963 is defined. There is no per-block overhead, but there | |
5964 is an overhead of 3*sizeof (size_t) for each 4096 bytes | |
5965 allocated. | |
5966 | |
5967 3. When using the system malloc, anything goes, but they are | |
5968 generally slower and more space-efficient than the GNU | |
5969 allocators. One possibly reasonable assumption to make | |
5970 for want of better data is that sizeof (void *), or maybe | |
5971 2 * sizeof (void *), is required as overhead and that | |
5972 blocks are allocated in the minimum required size except | |
5973 that some minimum block size is imposed (e.g. 16 bytes). */ | |
5974 | |
665 | 5975 Bytecount |
2286 | 5976 malloced_storage_size (void *UNUSED (ptr), Bytecount claimed_size, |
428 | 5977 struct overhead_stats *stats) |
5978 { | |
665 | 5979 Bytecount orig_claimed_size = claimed_size; |
428 | 5980 |
5981 #ifdef GNU_MALLOC | |
665 | 5982 if (claimed_size < (Bytecount) (2 * sizeof (void *))) |
428 | 5983 claimed_size = 2 * sizeof (void *); |
5984 # ifdef SUNOS_LOCALTIME_BUG | |
5985 if (claimed_size < 16) | |
5986 claimed_size = 16; | |
5987 # endif | |
5988 if (claimed_size < 4096) | |
5989 { | |
2260 | 5990 /* fxg: rename log->log2 to supress gcc3 shadow warning */ |
5991 int log2 = 1; | |
428 | 5992 |
5993 /* compute the log base two, more or less, then use it to compute | |
5994 the block size needed. */ | |
5995 claimed_size--; | |
5996 /* It's big, it's heavy, it's wood! */ | |
5997 while ((claimed_size /= 2) != 0) | |
2260 | 5998 ++log2; |
428 | 5999 claimed_size = 1; |
6000 /* It's better than bad, it's good! */ | |
2260 | 6001 while (log2 > 0) |
428 | 6002 { |
6003 claimed_size *= 2; | |
2260 | 6004 log2--; |
428 | 6005 } |
6006 /* We have to come up with some average about the amount of | |
6007 blocks used. */ | |
665 | 6008 if ((Bytecount) (rand () & 4095) < claimed_size) |
428 | 6009 claimed_size += 3 * sizeof (void *); |
6010 } | |
6011 else | |
6012 { | |
6013 claimed_size += 4095; | |
6014 claimed_size &= ~4095; | |
6015 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t); | |
6016 } | |
6017 | |
6018 #elif defined (SYSTEM_MALLOC) | |
6019 | |
6020 if (claimed_size < 16) | |
6021 claimed_size = 16; | |
6022 claimed_size += 2 * sizeof (void *); | |
6023 | |
6024 #else /* old GNU allocator */ | |
6025 | |
6026 # ifdef rcheck /* #### may not be defined here */ | |
6027 claimed_size += 20; | |
6028 # else | |
6029 claimed_size += 8; | |
6030 # endif | |
6031 { | |
2260 | 6032 /* fxg: rename log->log2 to supress gcc3 shadow warning */ |
6033 int log2 = 1; | |
428 | 6034 |
6035 /* compute the log base two, more or less, then use it to compute | |
6036 the block size needed. */ | |
6037 claimed_size--; | |
6038 /* It's big, it's heavy, it's wood! */ | |
6039 while ((claimed_size /= 2) != 0) | |
2260 | 6040 ++log2; |
428 | 6041 claimed_size = 1; |
6042 /* It's better than bad, it's good! */ | |
2260 | 6043 while (log2 > 0) |
428 | 6044 { |
6045 claimed_size *= 2; | |
2260 | 6046 log2--; |
428 | 6047 } |
6048 } | |
6049 | |
6050 #endif /* old GNU allocator */ | |
6051 | |
6052 if (stats) | |
6053 { | |
6054 stats->was_requested += orig_claimed_size; | |
6055 stats->malloc_overhead += claimed_size - orig_claimed_size; | |
6056 } | |
6057 return claimed_size; | |
6058 } | |
6059 | |
2720 | 6060 #ifndef MC_ALLOC |
665 | 6061 Bytecount |
6062 fixed_type_block_overhead (Bytecount size) | |
428 | 6063 { |
665 | 6064 Bytecount per_block = TYPE_ALLOC_SIZE (cons, unsigned char); |
6065 Bytecount overhead = 0; | |
6066 Bytecount storage_size = malloced_storage_size (0, per_block, 0); | |
428 | 6067 while (size >= per_block) |
6068 { | |
6069 size -= per_block; | |
6070 overhead += sizeof (void *) + per_block - storage_size; | |
6071 } | |
6072 if (rand () % per_block < size) | |
6073 overhead += sizeof (void *) + per_block - storage_size; | |
6074 return overhead; | |
6075 } | |
2720 | 6076 #endif /* not MC_ALLOC */ |
428 | 6077 #endif /* MEMORY_USAGE_STATS */ |
6078 | |
6079 | |
6080 /* Initialization */ | |
771 | 6081 static void |
1204 | 6082 common_init_alloc_early (void) |
428 | 6083 { |
771 | 6084 #ifndef Qzero |
6085 Qzero = make_int (0); /* Only used if Lisp_Object is a union type */ | |
6086 #endif | |
6087 | |
6088 #ifndef Qnull_pointer | |
6089 /* C guarantees that Qnull_pointer will be initialized to all 0 bits, | |
6090 so the following is actually a no-op. */ | |
793 | 6091 Qnull_pointer = wrap_pointer_1 (0); |
771 | 6092 #endif |
6093 | |
428 | 6094 gc_generation_number[0] = 0; |
2720 | 6095 #ifndef MC_ALLOC |
428 | 6096 breathing_space = 0; |
2720 | 6097 #endif /* not MC_ALLOC */ |
771 | 6098 Vgc_message = Qzero; |
2720 | 6099 #ifndef MC_ALLOC |
428 | 6100 all_lcrecords = 0; |
2720 | 6101 #endif /* not MC_ALLOC */ |
428 | 6102 ignore_malloc_warnings = 1; |
6103 #ifdef DOUG_LEA_MALLOC | |
6104 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */ | |
6105 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */ | |
6106 #if 0 /* Moved to emacs.c */ | |
6107 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */ | |
6108 #endif | |
6109 #endif | |
2720 | 6110 init_string_chars_alloc (); |
6111 #ifndef MC_ALLOC | |
428 | 6112 init_string_alloc (); |
6113 init_string_chars_alloc (); | |
6114 init_cons_alloc (); | |
6115 init_symbol_alloc (); | |
6116 init_compiled_function_alloc (); | |
6117 init_float_alloc (); | |
1983 | 6118 #ifdef HAVE_BIGNUM |
6119 init_bignum_alloc (); | |
6120 #endif | |
6121 #ifdef HAVE_RATIO | |
6122 init_ratio_alloc (); | |
6123 #endif | |
6124 #ifdef HAVE_BIGFLOAT | |
6125 init_bigfloat_alloc (); | |
6126 #endif | |
428 | 6127 init_marker_alloc (); |
6128 init_extent_alloc (); | |
6129 init_event_alloc (); | |
1204 | 6130 #ifdef EVENT_DATA_AS_OBJECTS |
934 | 6131 init_key_data_alloc (); |
6132 init_button_data_alloc (); | |
6133 init_motion_data_alloc (); | |
6134 init_process_data_alloc (); | |
6135 init_timeout_data_alloc (); | |
6136 init_magic_data_alloc (); | |
6137 init_magic_eval_data_alloc (); | |
6138 init_eval_data_alloc (); | |
6139 init_misc_user_data_alloc (); | |
1204 | 6140 #endif /* EVENT_DATA_AS_OBJECTS */ |
2720 | 6141 #endif /* not MC_ALLOC */ |
428 | 6142 |
6143 ignore_malloc_warnings = 0; | |
6144 | |
452 | 6145 if (staticpros_nodump) |
6146 Dynarr_free (staticpros_nodump); | |
6147 staticpros_nodump = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); | |
6148 Dynarr_resize (staticpros_nodump, 100); /* merely a small optimization */ | |
771 | 6149 #ifdef DEBUG_XEMACS |
6150 if (staticpro_nodump_names) | |
6151 Dynarr_free (staticpro_nodump_names); | |
6152 staticpro_nodump_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
6153 Dynarr_resize (staticpro_nodump_names, 100); /* ditto */ | |
6154 #endif | |
428 | 6155 |
2720 | 6156 #ifdef MC_ALLOC |
6157 mcpros = Dynarr_new2 (Lisp_Object_dynarr, Lisp_Object); | |
6158 Dynarr_resize (mcpros, 1410); /* merely a small optimization */ | |
6159 dump_add_root_block_ptr (&mcpros, &mcpros_description); | |
6160 #ifdef DEBUG_XEMACS | |
6161 mcpro_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
6162 Dynarr_resize (mcpro_names, 1410); /* merely a small optimization */ | |
6163 dump_add_root_block_ptr (&mcpro_names, &mcpro_names_description); | |
6164 #endif | |
6165 #endif /* MC_ALLOC */ | |
6166 | |
428 | 6167 consing_since_gc = 0; |
814 | 6168 need_to_garbage_collect = always_gc; |
851 | 6169 need_to_check_c_alloca = 0; |
6170 funcall_allocation_flag = 0; | |
6171 funcall_alloca_count = 0; | |
814 | 6172 |
428 | 6173 #if 1 |
6174 gc_cons_threshold = 500000; /* XEmacs change */ | |
6175 #else | |
6176 gc_cons_threshold = 15000; /* debugging */ | |
6177 #endif | |
801 | 6178 gc_cons_percentage = 0; /* #### 20; Don't have an accurate measure of |
6179 memory usage on Windows; not verified on other | |
6180 systems */ | |
428 | 6181 lrecord_uid_counter = 259; |
2720 | 6182 #ifndef MC_ALLOC |
428 | 6183 debug_string_purity = 0; |
2720 | 6184 #endif /* not MC_ALLOC */ |
428 | 6185 |
6186 gc_currently_forbidden = 0; | |
6187 gc_hooks_inhibited = 0; | |
6188 | |
800 | 6189 #ifdef ERROR_CHECK_TYPES |
428 | 6190 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = |
6191 666; | |
6192 ERROR_ME_NOT. | |
6193 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42; | |
6194 ERROR_ME_WARN. | |
6195 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = | |
6196 3333632; | |
793 | 6197 ERROR_ME_DEBUG_WARN. |
6198 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = | |
6199 8675309; | |
800 | 6200 #endif /* ERROR_CHECK_TYPES */ |
428 | 6201 } |
6202 | |
2720 | 6203 #ifndef MC_ALLOC |
771 | 6204 static void |
6205 init_lcrecord_lists (void) | |
6206 { | |
6207 int i; | |
6208 | |
6209 for (i = 0; i < countof (lrecord_implementations_table); i++) | |
6210 { | |
6211 all_lcrecord_lists[i] = Qzero; /* Qnil not yet set */ | |
6212 staticpro_nodump (&all_lcrecord_lists[i]); | |
6213 } | |
6214 } | |
2720 | 6215 #endif /* not MC_ALLOC */ |
771 | 6216 |
6217 void | |
1204 | 6218 init_alloc_early (void) |
771 | 6219 { |
1204 | 6220 #if defined (__cplusplus) && defined (ERROR_CHECK_GC) |
6221 static struct gcpro initial_gcpro; | |
6222 | |
6223 initial_gcpro.next = 0; | |
6224 initial_gcpro.var = &Qnil; | |
6225 initial_gcpro.nvars = 1; | |
6226 gcprolist = &initial_gcpro; | |
6227 #else | |
6228 gcprolist = 0; | |
6229 #endif /* defined (__cplusplus) && defined (ERROR_CHECK_GC) */ | |
6230 } | |
6231 | |
6232 void | |
6233 reinit_alloc_early (void) | |
6234 { | |
6235 common_init_alloc_early (); | |
2720 | 6236 #ifndef MC_ALLOC |
771 | 6237 init_lcrecord_lists (); |
2720 | 6238 #endif /* not MC_ALLOC */ |
771 | 6239 } |
6240 | |
428 | 6241 void |
6242 init_alloc_once_early (void) | |
6243 { | |
1204 | 6244 common_init_alloc_early (); |
428 | 6245 |
442 | 6246 { |
6247 int i; | |
6248 for (i = 0; i < countof (lrecord_implementations_table); i++) | |
6249 lrecord_implementations_table[i] = 0; | |
6250 } | |
6251 | |
6252 INIT_LRECORD_IMPLEMENTATION (cons); | |
6253 INIT_LRECORD_IMPLEMENTATION (vector); | |
6254 INIT_LRECORD_IMPLEMENTATION (string); | |
2720 | 6255 #ifndef MC_ALLOC |
442 | 6256 INIT_LRECORD_IMPLEMENTATION (lcrecord_list); |
1204 | 6257 INIT_LRECORD_IMPLEMENTATION (free); |
2720 | 6258 #endif /* not MC_ALLOC */ |
428 | 6259 |
452 | 6260 staticpros = Dynarr_new2 (Lisp_Object_ptr_dynarr, Lisp_Object *); |
6261 Dynarr_resize (staticpros, 1410); /* merely a small optimization */ | |
2367 | 6262 dump_add_root_block_ptr (&staticpros, &staticpros_description); |
771 | 6263 #ifdef DEBUG_XEMACS |
6264 staticpro_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
6265 Dynarr_resize (staticpro_names, 1410); /* merely a small optimization */ | |
2367 | 6266 dump_add_root_block_ptr (&staticpro_names, &staticpro_names_description); |
771 | 6267 #endif |
6268 | |
2720 | 6269 #ifdef MC_ALLOC |
6270 mcpros = Dynarr_new2 (Lisp_Object_dynarr, Lisp_Object); | |
6271 Dynarr_resize (mcpros, 1410); /* merely a small optimization */ | |
6272 dump_add_root_block_ptr (&mcpros, &mcpros_description); | |
6273 #ifdef DEBUG_XEMACS | |
6274 mcpro_names = Dynarr_new2 (char_ptr_dynarr, char *); | |
6275 Dynarr_resize (mcpro_names, 1410); /* merely a small optimization */ | |
6276 dump_add_root_block_ptr (&mcpro_names, &mcpro_names_description); | |
6277 #endif | |
6278 #endif /* MC_ALLOC */ | |
6279 | |
6280 #ifndef MC_ALLOC | |
771 | 6281 init_lcrecord_lists (); |
2720 | 6282 #endif /* not MC_ALLOC */ |
428 | 6283 } |
6284 | |
6285 void | |
6286 syms_of_alloc (void) | |
6287 { | |
442 | 6288 DEFSYMBOL (Qpre_gc_hook); |
6289 DEFSYMBOL (Qpost_gc_hook); | |
6290 DEFSYMBOL (Qgarbage_collecting); | |
428 | 6291 |
6292 DEFSUBR (Fcons); | |
6293 DEFSUBR (Flist); | |
6294 DEFSUBR (Fvector); | |
6295 DEFSUBR (Fbit_vector); | |
6296 DEFSUBR (Fmake_byte_code); | |
6297 DEFSUBR (Fmake_list); | |
6298 DEFSUBR (Fmake_vector); | |
6299 DEFSUBR (Fmake_bit_vector); | |
6300 DEFSUBR (Fmake_string); | |
6301 DEFSUBR (Fstring); | |
6302 DEFSUBR (Fmake_symbol); | |
6303 DEFSUBR (Fmake_marker); | |
6304 DEFSUBR (Fpurecopy); | |
6305 DEFSUBR (Fgarbage_collect); | |
440 | 6306 #if 0 |
428 | 6307 DEFSUBR (Fmemory_limit); |
440 | 6308 #endif |
801 | 6309 DEFSUBR (Fmemory_usage); |
428 | 6310 DEFSUBR (Fconsing_since_gc); |
6311 } | |
6312 | |
6313 void | |
6314 vars_of_alloc (void) | |
6315 { | |
1292 | 6316 QSin_garbage_collection = build_msg_string ("(in garbage collection)"); |
6317 staticpro (&QSin_garbage_collection); | |
6318 | |
428 | 6319 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /* |
6320 *Number of bytes of consing between garbage collections. | |
6321 \"Consing\" is a misnomer in that this actually counts allocation | |
6322 of all different kinds of objects, not just conses. | |
6323 Garbage collection can happen automatically once this many bytes have been | |
6324 allocated since the last garbage collection. All data types count. | |
6325 | |
6326 Garbage collection happens automatically when `eval' or `funcall' are | |
6327 called. (Note that `funcall' is called implicitly as part of evaluation.) | |
6328 By binding this temporarily to a large number, you can effectively | |
6329 prevent garbage collection during a part of the program. | |
6330 | |
853 | 6331 Normally, you cannot set this value less than 10,000 (if you do, it is |
6332 automatically reset during the next garbage collection). However, if | |
6333 XEmacs was compiled with DEBUG_XEMACS, this does not happen, allowing | |
6334 you to set this value very low to track down problems with insufficient | |
6335 GCPRO'ing. If you set this to a negative number, garbage collection will | |
6336 happen at *EVERY* call to `eval' or `funcall'. This is an extremely | |
6337 effective way to check GCPRO problems, but be warned that your XEmacs | |
6338 will be unusable! You almost certainly won't have the patience to wait | |
6339 long enough to be able to set it back. | |
6340 | |
428 | 6341 See also `consing-since-gc'. |
6342 */ ); | |
6343 | |
801 | 6344 DEFVAR_INT ("gc-cons-percentage", &gc_cons_percentage /* |
6345 *Percentage of memory allocated between garbage collections. | |
6346 | |
6347 Garbage collection will happen if this percentage of the total amount of | |
6348 memory used for data has been allocated since the last garbage collection. | |
6349 However, it will not happen if less than `gc-cons-threshold' bytes have | |
6350 been allocated -- this sets an absolute minimum in case very little data | |
6351 has been allocated or the percentage is set very low. Set this to 0 to | |
6352 have garbage collection always happen after `gc-cons-threshold' bytes have | |
6353 been allocated, regardless of current memory usage. | |
6354 | |
6355 Garbage collection happens automatically when `eval' or `funcall' are | |
6356 called. (Note that `funcall' is called implicitly as part of evaluation.) | |
6357 By binding this temporarily to a large number, you can effectively | |
6358 prevent garbage collection during a part of the program. | |
6359 | |
6360 See also `consing-since-gc'. | |
6361 */ ); | |
6362 | |
428 | 6363 #ifdef DEBUG_XEMACS |
6364 DEFVAR_INT ("debug-allocation", &debug_allocation /* | |
6365 If non-zero, print out information to stderr about all objects allocated. | |
6366 See also `debug-allocation-backtrace-length'. | |
6367 */ ); | |
6368 debug_allocation = 0; | |
6369 | |
6370 DEFVAR_INT ("debug-allocation-backtrace-length", | |
6371 &debug_allocation_backtrace_length /* | |
6372 Length (in stack frames) of short backtrace printed out by `debug-allocation'. | |
6373 */ ); | |
6374 debug_allocation_backtrace_length = 2; | |
6375 #endif | |
6376 | |
6377 DEFVAR_BOOL ("purify-flag", &purify_flag /* | |
6378 Non-nil means loading Lisp code in order to dump an executable. | |
6379 This means that certain objects should be allocated in readonly space. | |
6380 */ ); | |
6381 | |
1154 | 6382 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages /* |
6383 Non-nil means display messages at start and end of garbage collection. | |
6384 */ ); | |
6385 garbage_collection_messages = 0; | |
6386 | |
428 | 6387 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /* |
6388 Function or functions to be run just before each garbage collection. | |
6389 Interrupts, garbage collection, and errors are inhibited while this hook | |
6390 runs, so be extremely careful in what you add here. In particular, avoid | |
6391 consing, and do not interact with the user. | |
6392 */ ); | |
6393 Vpre_gc_hook = Qnil; | |
6394 | |
6395 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /* | |
6396 Function or functions to be run just after each garbage collection. | |
6397 Interrupts, garbage collection, and errors are inhibited while this hook | |
887 | 6398 runs. Each hook is called with one argument which is an alist with |
6399 finalization data. | |
428 | 6400 */ ); |
6401 Vpost_gc_hook = Qnil; | |
6402 | |
6403 DEFVAR_LISP ("gc-message", &Vgc_message /* | |
6404 String to print to indicate that a garbage collection is in progress. | |
6405 This is printed in the echo area. If the selected frame is on a | |
6406 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer | |
6407 image instance) in the domain of the selected frame, the mouse pointer | |
6408 will change instead of this message being printed. | |
6409 */ ); | |
6410 Vgc_message = build_string (gc_default_message); | |
6411 | |
6412 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /* | |
6413 Pointer glyph used to indicate that a garbage collection is in progress. | |
6414 If the selected window is on a window system and this glyph specifies a | |
6415 value (i.e. a pointer image instance) in the domain of the selected | |
6416 window, the pointer will be changed as specified during garbage collection. | |
6417 Otherwise, a message will be printed in the echo area, as controlled | |
6418 by `gc-message'. | |
6419 */ ); | |
6420 } | |
6421 | |
6422 void | |
6423 complex_vars_of_alloc (void) | |
6424 { | |
6425 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer); | |
6426 } |