changeset 4080:476d0799d704

[xemacs-hg @ 2007-07-27 18:56:45 by aidan] Move mule-ccl.el -> ccl.el.
author aidan
date Fri, 27 Jul 2007 18:56:53 +0000
parents ec4186bc44d0
children feba53edd132
files lisp/ChangeLog lisp/mule/ccl.el lisp/mule/chinese.el lisp/mule/mule-ccl.el lisp/mule/mule-coding.el
diffstat 5 files changed, 1577 insertions(+), 1567 deletions(-) [+]
line wrap: on
line diff
--- a/lisp/ChangeLog	Thu Jul 26 21:51:51 2007 +0000
+++ b/lisp/ChangeLog	Fri Jul 27 18:56:53 2007 +0000
@@ -1,3 +1,13 @@
+2007-07-27  Aidan Kehoe  <kehoea@parhasard.net>
+
+	* mule/mule-ccl.el:
+	* mule/ccl.el: 
+	Renamed mule-ccl.el to ccl.el, for compatibility with GNU now we
+	no longer dump it. 
+	* mule/mule-coding.el (require):
+	* mule/chinese.el (progn):
+	Reflect this renaming in a couple of require calls. 
+
 2007-07-23  Aidan Kehoe  <kehoea@parhasard.net>
 
 	* mule/general-late.el (posix-charset-to-coding-system-hash):
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lisp/mule/ccl.el	Fri Jul 27 18:56:53 2007 +0000
@@ -0,0 +1,1565 @@
+;;; ccl.el --- CCL (Code Conversion Language) compiler -*- coding: iso-2022-7bit; -*-
+
+;; Copyright (C) 1995 Electrotechnical Laboratory, JAPAN.
+;; Licensed to the Free Software Foundation.
+;; Copyright (C) 2002, 2007 Free Software Foundation, Inc.
+
+;; Keywords: CCL, mule, multilingual, character set, coding-system
+
+;; This file is part of XEmacs.
+
+;; XEmacs is free software; you can redistribute it and/or modify
+;; it under the terms of the GNU General Public License as published by
+;; the Free Software Foundation; either version 2, or (at your option)
+;; any later version.
+
+;; XEmacs is distributed in the hope that it will be useful,
+;; but WITHOUT ANY WARRANTY; without even the implied warranty of
+;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+;; GNU General Public License for more details.
+
+;; You should have received a copy of the GNU General Public License
+;; along with XEmacs; see the file COPYING.  If not, write to the
+;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+;; Boston, MA 02111-1307, USA.
+
+;; Synched up with: FSF 21.0.90
+
+;;; Commentary:
+
+;; CCL (Code Conversion Language) is a simple programming language to
+;; be used for various kind of code conversion.  CCL program is
+;; compiled to CCL code (vector of integers) and executed by CCL
+;; interpreter of Emacs.
+;;
+;; CCL is used for code conversion at process I/O and file I/O for
+;; non-standard coding-system.  In addition, it is used for
+;; calculating a code point of X's font from a character code.
+;; However, since CCL is designed as a powerful programming language,
+;; it can be used for more generic calculation.  For instance,
+;; combination of three or more arithmetic operations can be
+;; calculated faster than Emacs Lisp.
+;;
+;; Syntax and semantics of CCL program is described in the
+;; documentation of `define-ccl-program'.
+
+;;; Code:
+
+(defconst ccl-command-table
+  [if branch loop break repeat write-repeat write-read-repeat
+      read read-if read-branch write call end
+      read-multibyte-character write-multibyte-character
+      translate-character mule-to-unicode unicode-to-mule
+      iterate-multiple-map map-multiple map-single lookup-integer
+      lookup-character]
+  "Vector of CCL commands (symbols).")
+
+;; Put a property to each symbol of CCL commands for the compiler.
+(let (op (i 0) (len (length ccl-command-table)))
+  (while (< i len)
+    (setq op (aref ccl-command-table i))
+    (put op 'ccl-compile-function (intern (format "ccl-compile-%s" op)))
+    (setq i (1+ i))))
+
+(defconst ccl-code-table
+  [set-register
+   set-short-const
+   set-const
+   set-array
+   jump
+   jump-cond
+   write-register-jump
+   write-register-read-jump
+   write-const-jump
+   write-const-read-jump
+   write-string-jump
+   write-array-read-jump
+   read-jump
+   branch
+   read-register
+   write-expr-const
+   read-branch
+   write-register
+   write-expr-register
+   call
+   write-const-string
+   write-array
+   end
+   set-assign-expr-const
+   set-assign-expr-register
+   set-expr-const
+   set-expr-register
+   jump-cond-expr-const
+   jump-cond-expr-register
+   read-jump-cond-expr-const
+   read-jump-cond-expr-register
+   ex-cmd
+   ]
+  "Vector of CCL compiled codes (symbols).")
+
+(defconst ccl-extended-code-table
+  [read-multibyte-character
+   write-multibyte-character
+   translate-character
+   translate-character-const-tbl
+   mule-to-unicode
+   unicode-to-mule
+   nil nil nil nil nil nil nil nil nil nil ; 0x06-0x0f
+   iterate-multiple-map
+   map-multiple
+   map-single
+   lookup-int-const-tbl
+   lookup-char-const-tbl   
+   ]
+  "Vector of CCL extended compiled codes (symbols).")
+
+;; Put a property to each symbol of CCL codes for the disassembler.
+(let (code (i 0) (len (length ccl-code-table)))
+  (while (< i len)
+    (setq code (aref ccl-code-table i))
+    (put code 'ccl-code i)
+    (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))
+    (setq i (1+ i))))
+
+(let (code (i 0) (len (length ccl-extended-code-table)))
+  (while (< i len)
+    (setq code (aref ccl-extended-code-table i))
+    (if code
+	(progn
+	  (put code 'ccl-ex-code i)
+	  (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))))
+    (setq i (1+ i))))
+
+(defconst ccl-jump-code-list
+  '(jump jump-cond write-register-jump write-register-read-jump
+    write-const-jump write-const-read-jump write-string-jump
+    write-array-read-jump read-jump))
+
+;; Put a property `jump-flag' to each CCL code which execute jump in
+;; some way.
+(let ((l ccl-jump-code-list))
+  (while l
+    (put (car l) 'jump-flag t)
+    (setq l (cdr l))))
+
+(defconst ccl-register-table
+  [r0 r1 r2 r3 r4 r5 r6 r7]
+  "Vector of CCL registers (symbols).")
+
+;; Put a property to indicate register number to each symbol of CCL.
+;; registers.
+(let (reg (i 0) (len (length ccl-register-table)))
+  (while (< i len)
+    (setq reg (aref ccl-register-table i))
+    (put reg 'ccl-register-number i)
+    (setq i (1+ i))))
+
+(defconst ccl-arith-table
+  [+ - * / % & | ^ << >> <8 >8 // nil nil nil
+   < > == <= >= != de-sjis en-sjis]
+  "Vector of CCL arithmetic/logical operators (symbols).")
+
+;; Put a property to each symbol of CCL operators for the compiler.
+(let (arith (i 0) (len (length ccl-arith-table)))
+  (while (< i len)
+    (setq arith (aref ccl-arith-table i))
+    (if arith (put arith 'ccl-arith-code i))
+    (setq i (1+ i))))
+
+(defconst ccl-assign-arith-table
+  [+= -= *= /= %= &= |= ^= <<= >>= <8= >8= //=]
+  "Vector of CCL assignment operators (symbols).")
+
+;; Put a property to each symbol of CCL assignment operators for the compiler.
+(let (arith (i 0) (len (length ccl-assign-arith-table)))
+  (while (< i len)
+    (setq arith (aref ccl-assign-arith-table i))
+    (put arith 'ccl-self-arith-code i)
+    (setq i (1+ i))))
+
+(defvar ccl-program-vector nil
+  "Working vector of CCL codes produced by CCL compiler.")
+(defvar ccl-current-ic 0
+  "The current index for `ccl-program-vector'.")
+
+;; Embed integer DATA in `ccl-program-vector' at `ccl-current-ic' and
+;; increment it.  If IC is specified, embed DATA at IC.
+(defun ccl-embed-data (data &optional ic)
+  ;; XEmacs: Embed characters as characters, since their integer values vary at
+  ;; runtime. 
+  ; (if (characterp data) 
+  ;  (setq data (char-int data)))
+  (if ic
+      (aset ccl-program-vector ic data)
+    (let ((len (length ccl-program-vector)))
+      (if (>= ccl-current-ic len)
+	  (let ((new (make-vector (* len 2) nil)))
+	    (while (> len 0)
+	      (setq len (1- len))
+	      (aset new len (aref ccl-program-vector len)))
+	    (setq ccl-program-vector new))))
+    (aset ccl-program-vector ccl-current-ic data)
+    (setq ccl-current-ic (1+ ccl-current-ic))))
+
+;; Embed pair of SYMBOL and PROP where (get SYMBOL PROP) should give
+;; proper index number for SYMBOL.  PROP should be
+;; `translation-table-id', `translation-hash-table-id'
+;; `code-conversion-map-id', or `ccl-program-idx'.
+(defun ccl-embed-symbol (symbol prop)
+  (ccl-embed-data (cons symbol prop)))
+
+;; Embed string STR of length LEN in `ccl-program-vector' at
+;; `ccl-current-ic'.
+(defun ccl-embed-string (len str)
+  (let ((i 0))
+    (while (< i len)
+      (ccl-embed-data (logior (ash (aref str i) 16)
+			       (if (< (1+ i) len)
+				   (ash (aref str (1+ i)) 8)
+				 0)
+			       (if (< (+ i 2) len)
+				   (aref str (+ i 2))
+				 0)))
+      (setq i (+ i 3)))))
+
+;; Embed a relative jump address to `ccl-current-ic' in
+;; `ccl-program-vector' at IC without altering the other bit field.
+(defun ccl-embed-current-address (ic)
+  (let ((relative (- ccl-current-ic (1+ ic))))
+    (aset ccl-program-vector ic
+	  (logior (aref ccl-program-vector ic) (ash relative 8)))))
+
+;; Embed CCL code for the operation OP and arguments REG and DATA in
+;; `ccl-program-vector' at `ccl-current-ic' in the following format.
+;;	|----------------- integer (28-bit) ------------------|
+;;	|------------ 20-bit ------------|- 3-bit --|- 5-bit -|
+;;	|------------- DATA -------------|-- REG ---|-- OP ---|
+;; If REG2 is specified, embed a code in the following format.
+;;	|------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
+;;	|-------- DATA -------|-- REG2 --|-- REG ---|-- OP ---|
+
+;; If REG is a CCL register symbol (e.g. r0, r1...), the register
+;; number is embedded.  If OP is one of unconditional jumps, DATA is
+;; changed to an relative jump address.
+
+(defun ccl-embed-code (op reg data &optional reg2)
+  (if (and (> data 0) (get op 'jump-flag))
+      ;; DATA is an absolute jump address.  Make it relative to the
+      ;; next of jump code.
+      (setq data (- data (1+ ccl-current-ic))))
+  (let ((code (logior (get op 'ccl-code)
+		      (ash
+		       (if (symbolp reg) (get reg 'ccl-register-number) reg) 5)
+		      (if reg2
+			  (logior (ash (get reg2 'ccl-register-number) 8)
+				  (ash data 11))
+			(ash data 8)))))
+    (ccl-embed-data code)))
+
+;; extended ccl command format
+;;	|- 14-bit -|- 3-bit --|- 3-bit --|- 3-bit --|- 5-bit -|
+;;	|- EX-OP --|-- REG3 --|-- REG2 --|-- REG ---|-- OP ---|
+(defun ccl-embed-extended-command (ex-op reg reg2 reg3)
+  (let ((data (logior (ash (get ex-op 'ccl-ex-code) 3)
+		      (if (symbolp reg3)
+			  (get reg3 'ccl-register-number)
+			0))))
+    (ccl-embed-code 'ex-cmd reg data reg2)))
+
+;; Just advance `ccl-current-ic' by INC.
+(defun ccl-increment-ic (inc)
+  (setq ccl-current-ic (+ ccl-current-ic inc)))
+
+;; If non-nil, index of the start of the current loop.
+(defvar ccl-loop-head nil)
+;; If non-nil, list of absolute addresses of the breaking points of
+;; the current loop.
+(defvar ccl-breaks nil)
+
+;;;###autoload
+(defun ccl-compile (ccl-program)
+  "Return a compiled code of CCL-PROGRAM as a vector of integer."
+  (if (or (null (consp ccl-program))
+	  (null (integerp (car ccl-program)))
+	  (null (listp (car (cdr ccl-program)))))
+      (error "CCL: Invalid CCL program: %s" ccl-program))
+  (if (null (vectorp ccl-program-vector))
+      (setq ccl-program-vector (make-vector 8192 0)))
+  (setq ccl-loop-head nil ccl-breaks nil)
+  (setq ccl-current-ic 0)
+
+  ;; The first element is the buffer magnification.
+  (ccl-embed-data (car ccl-program))
+
+  ;; The second element is the address of the start CCL code for
+  ;; processing end of input buffer (we call it eof-processor).  We
+  ;; set it later.
+  (ccl-increment-ic 1)
+
+  ;; Compile the main body of the CCL program.
+  (ccl-compile-1 (car (cdr ccl-program)))
+
+  ;; Embed the address of eof-processor.
+  (ccl-embed-data ccl-current-ic 1)
+
+  ;; Then compile eof-processor.
+  (if (nth 2 ccl-program)
+      (ccl-compile-1 (nth 2 ccl-program)))
+
+  ;; At last, embed termination code.
+  (ccl-embed-code 'end 0 0)
+
+  (let ((vec (make-vector ccl-current-ic 0))
+	(i 0))
+    (while (< i ccl-current-ic)
+      (aset vec i (aref ccl-program-vector i))
+      (setq i (1+ i)))
+    vec))
+
+;; Signal syntax error.
+(defun ccl-syntax-error (cmd)
+  (error "CCL: Syntax error: %s" cmd))
+
+;; Check if ARG is a valid CCL register.
+(defun ccl-check-register (arg cmd)
+  (if (get arg 'ccl-register-number)
+      arg
+    (error "CCL: Invalid register %s in %s." arg cmd)))
+
+;; Check if ARG is a valid CCL command.
+(defun ccl-check-compile-function (arg cmd)
+  (or (get arg 'ccl-compile-function)
+      (error "CCL: Invalid command: %s" cmd)))
+
+;; In the following code, most ccl-compile-XXXX functions return t if
+;; they end with unconditional jump, else return nil.
+
+;; Compile CCL-BLOCK (see the syntax above).
+(defun ccl-compile-1 (ccl-block)
+  (let (unconditional-jump
+	cmd)
+    (if (or (integer-or-char-p ccl-block)
+	    (stringp ccl-block)
+	    (and ccl-block (symbolp (car ccl-block))))
+	;; This block consists of single statement.
+	(setq ccl-block (list ccl-block)))
+
+    ;; Now CCL-BLOCK is a list of statements.  Compile them one by
+    ;; one.
+    (while ccl-block
+      (setq cmd (car ccl-block))
+      (setq unconditional-jump
+	    (cond ((integer-or-char-p cmd)
+		   ;; SET statement for the register 0.
+		   (ccl-compile-set (list 'r0 '= cmd)))
+
+		  ((stringp cmd)
+		   ;; WRITE statement of string argument.
+		   (ccl-compile-write-string cmd))
+
+		  ((listp cmd)
+		   ;; The other statements.
+		   (cond ((eq (nth 1 cmd) '=)
+			  ;; SET statement of the form `(REG = EXPRESSION)'.
+			  (ccl-compile-set cmd))
+
+			 ((and (symbolp (nth 1 cmd))
+			       (get (nth 1 cmd) 'ccl-self-arith-code))
+			  ;; SET statement with an assignment operation.
+			  (ccl-compile-self-set cmd))
+
+			 (t
+			  (funcall (ccl-check-compile-function (car cmd) cmd)
+				   cmd))))
+
+		  (t
+		   (ccl-syntax-error cmd))))
+      (setq ccl-block (cdr ccl-block)))
+    unconditional-jump))
+
+(defconst ccl-max-short-const (ash 1 19))
+(defconst ccl-min-short-const (ash -1 19))
+
+;; Compile SET statement.
+(defun ccl-compile-set (cmd)
+  (let ((rrr (ccl-check-register (car cmd) cmd))
+	(right (nth 2 cmd)))
+    (cond ((listp right)
+	   ;; CMD has the form `(RRR = (XXX OP YYY))'.
+	   (ccl-compile-expression rrr right))
+
+	  ((integer-or-char-p right)
+	   ;; CMD has the form `(RRR = integer)'.
+	   (if (and (<= right ccl-max-short-const)
+		    (>= right ccl-min-short-const))
+	       (ccl-embed-code 'set-short-const rrr right)
+	     (ccl-embed-code 'set-const rrr 0)
+	     (ccl-embed-data right)))
+
+	  (t
+	   ;; CMD has the form `(RRR = rrr [ array ])'.
+	   (ccl-check-register right cmd)
+	   (let ((ary (nth 3 cmd)))
+	     (if (vectorp ary)
+		 (let ((i 0) (len (length ary)))
+		   (ccl-embed-code 'set-array rrr len right)
+		   (while (< i len)
+		     (ccl-embed-data (aref ary i))
+		     (setq i (1+ i))))
+	       (ccl-embed-code 'set-register rrr 0 right))))))
+  nil)
+
+;; Compile SET statement with ASSIGNMENT_OPERATOR.
+(defun ccl-compile-self-set (cmd)
+  (let ((rrr (ccl-check-register (car cmd) cmd))
+	(right (nth 2 cmd)))
+    (if (listp right)
+	;; CMD has the form `(RRR ASSIGN_OP (XXX OP YYY))', compile
+	;; the right hand part as `(r7 = (XXX OP YYY))' (note: the
+	;; register 7 can be used for storing temporary value).
+	(progn
+	  (ccl-compile-expression 'r7 right)
+	  (setq right 'r7)))
+    ;; Now CMD has the form `(RRR ASSIGN_OP ARG)'.  Compile it as
+    ;; `(RRR = (RRR OP ARG))'.
+    (ccl-compile-expression
+     rrr
+     (list rrr (intern (substring (symbol-name (nth 1 cmd)) 0 -1)) right)))
+  nil)
+
+;; Compile SET statement of the form `(RRR = EXPR)'.
+(defun ccl-compile-expression (rrr expr)
+  (let ((left (car expr))
+	(op (get (nth 1 expr) 'ccl-arith-code))
+	(right (nth 2 expr)))
+    (if (listp left)
+	(progn
+	  ;; EXPR has the form `((EXPR2 OP2 ARG) OP RIGHT)'.  Compile
+	  ;; the first term as `(r7 = (EXPR2 OP2 ARG)).'
+	  (ccl-compile-expression 'r7 left)
+	  (setq left 'r7)))
+
+    ;; Now EXPR has the form (LEFT OP RIGHT).
+    (if (and (eq rrr left)
+	     (< op (length ccl-assign-arith-table)))
+	;; Compile this SET statement as `(RRR OP= RIGHT)'.
+	(if (integer-or-char-p right)
+	    (progn
+	      (ccl-embed-code 'set-assign-expr-const rrr (ash op 3) 'r0)
+	      (ccl-embed-data right))
+	  (ccl-check-register right expr)
+	  (ccl-embed-code 'set-assign-expr-register rrr (ash op 3) right))
+
+      ;; Compile this SET statement as `(RRR = (LEFT OP RIGHT))'.
+      (if (integer-or-char-p right)
+	  (progn
+	    (ccl-embed-code 'set-expr-const rrr (ash op 3) left)
+	    (ccl-embed-data right))
+	(ccl-check-register right expr)
+	(ccl-embed-code 'set-expr-register
+			rrr
+			(logior (ash op 3) (get right 'ccl-register-number))
+			left)))))
+
+;; Compile WRITE statement with string argument.
+(defun ccl-compile-write-string (str)
+  (setq str (encode-coding-string str 'binary))
+  (let ((len (length str)))
+    (ccl-embed-code 'write-const-string 1 len)
+    (ccl-embed-string len str))
+  nil)
+
+;; Compile IF statement of the form `(if CONDITION TRUE-PART FALSE-PART)'.
+;; If READ-FLAG is non-nil, this statement has the form
+;; `(read-if (REG OPERATOR ARG) TRUE-PART FALSE-PART)'.
+(defun ccl-compile-if (cmd &optional read-flag)
+  (if (and (/= (length cmd) 3) (/= (length cmd) 4))
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (let ((condition (nth 1 cmd))
+	(true-cmds (nth 2 cmd))
+	(false-cmds (nth 3 cmd))
+	jump-cond-address)
+    (if (and (listp condition)
+	     (listp (car condition)))
+	;; If CONDITION is a nested expression, the inner expression
+	;; should be compiled at first as SET statement, i.e.:
+	;; `(if ((X OP2 Y) OP Z) ...)' is compiled into two statements:
+	;; `(r7 = (X OP2 Y)) (if (r7 OP Z) ...)'.
+	(progn
+	  (ccl-compile-expression 'r7 (car condition))
+	  (setq condition (cons 'r7 (cdr condition)))
+	  (setq cmd (cons (car cmd)
+			  (cons condition (cdr (cdr cmd)))))))
+
+    (setq jump-cond-address ccl-current-ic)
+    ;; Compile CONDITION.
+    (if (symbolp condition)
+	;; CONDITION is a register.
+	(progn
+	  (ccl-check-register condition cmd)
+	  (ccl-embed-code 'jump-cond condition 0))
+      ;; CONDITION is a simple expression of the form (RRR OP ARG).
+      (let ((rrr (car condition))
+	    (op (get (nth 1 condition) 'ccl-arith-code))
+	    (arg (nth 2 condition)))
+	(ccl-check-register rrr cmd)
+	(if (integer-or-char-p arg)
+	    (progn
+	      (ccl-embed-code (if read-flag 'read-jump-cond-expr-const
+				'jump-cond-expr-const)
+			      rrr 0)
+	      (ccl-embed-data op)
+	      (ccl-embed-data arg))
+	  (ccl-check-register arg cmd)
+	  (ccl-embed-code (if read-flag 'read-jump-cond-expr-register 
+			    'jump-cond-expr-register)
+			  rrr 0)
+	  (ccl-embed-data op)
+	  (ccl-embed-data (get arg 'ccl-register-number)))))
+
+    ;; Compile TRUE-PART.
+    (let ((unconditional-jump (ccl-compile-1 true-cmds)))
+      (if (null false-cmds)
+	  ;; This is the place to jump to if condition is false.
+	  (progn
+	    (ccl-embed-current-address jump-cond-address)
+	    (setq unconditional-jump nil))
+	(let (end-true-part-address)
+	  (if (not unconditional-jump)
+	      (progn
+		;; If TRUE-PART does not end with unconditional jump, we
+		;; have to jump to the end of FALSE-PART from here.
+		(setq end-true-part-address ccl-current-ic)
+		(ccl-embed-code 'jump 0 0)))
+	  ;; This is the place to jump to if CONDITION is false.
+	  (ccl-embed-current-address jump-cond-address)
+	  ;; Compile FALSE-PART.
+	  (setq unconditional-jump
+		(and (ccl-compile-1 false-cmds) unconditional-jump))
+	  (if end-true-part-address
+	      ;; This is the place to jump to after the end of TRUE-PART.
+	      (ccl-embed-current-address end-true-part-address))))
+      unconditional-jump)))
+
+;; Compile BRANCH statement.
+(defun ccl-compile-branch (cmd)
+  (if (< (length cmd) 3)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (ccl-compile-branch-blocks 'branch
+			     (ccl-compile-branch-expression (nth 1 cmd) cmd)
+			     (cdr (cdr cmd))))
+
+;; Compile READ statement of the form `(read-branch EXPR BLOCK0 BLOCK1 ...)'.
+(defun ccl-compile-read-branch (cmd)
+  (if (< (length cmd) 3)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (ccl-compile-branch-blocks 'read-branch
+			     (ccl-compile-branch-expression (nth 1 cmd) cmd)
+			     (cdr (cdr cmd))))
+
+;; Compile EXPRESSION part of BRANCH statement and return register
+;; which holds a value of the expression.
+(defun ccl-compile-branch-expression (expr cmd)
+  (if (listp expr)
+      ;; EXPR has the form `(EXPR2 OP ARG)'.  Compile it as SET
+      ;; statement of the form `(r7 = (EXPR2 OP ARG))'.
+      (progn
+	(ccl-compile-expression 'r7 expr)
+	'r7)
+    (ccl-check-register expr cmd)))
+
+;; Compile BLOCKs of BRANCH statement.  CODE is 'branch or 'read-branch.
+;; REG is a register which holds a value of EXPRESSION part.  BLOCKs
+;; is a list of CCL-BLOCKs.
+(defun ccl-compile-branch-blocks (code rrr blocks)
+  (let ((branches (length blocks))
+	branch-idx
+	jump-table-head-address
+	empty-block-indexes
+	block-tail-addresses
+	block-unconditional-jump)
+    (ccl-embed-code code rrr branches)
+    (setq jump-table-head-address ccl-current-ic)
+    ;; The size of jump table is the number of blocks plus 1 (for the
+    ;; case RRR is out of range).
+    (ccl-increment-ic (1+ branches))
+    (setq empty-block-indexes (list branches))
+    ;; Compile each block.
+    (setq branch-idx 0)
+    (while blocks
+      (if (null (car blocks))
+	  ;; This block is empty.
+	  (setq empty-block-indexes (cons branch-idx empty-block-indexes)
+		block-unconditional-jump t)
+	;; This block is not empty.
+	(ccl-embed-data (- ccl-current-ic jump-table-head-address)
+			(+ jump-table-head-address branch-idx))
+	(setq block-unconditional-jump (ccl-compile-1 (car blocks)))
+	(if (not block-unconditional-jump)
+	    (progn
+	      ;; Jump address of the end of branches are embedded later.
+	      ;; For the moment, just remember where to embed them.
+	      (setq block-tail-addresses
+		    (cons ccl-current-ic block-tail-addresses))
+	      (ccl-embed-code 'jump 0 0))))
+      (setq branch-idx (1+ branch-idx))
+      (setq blocks (cdr blocks)))
+    (if (not block-unconditional-jump)
+	;; We don't need jump code at the end of the last block.
+	(setq block-tail-addresses (cdr block-tail-addresses)
+	      ccl-current-ic (1- ccl-current-ic)))
+    ;; Embed jump address at the tailing jump commands of blocks.
+    (while block-tail-addresses
+      (ccl-embed-current-address (car block-tail-addresses))
+      (setq block-tail-addresses (cdr block-tail-addresses)))
+    ;; For empty blocks, make entries in the jump table point directly here.
+    (while empty-block-indexes
+      (ccl-embed-data (- ccl-current-ic jump-table-head-address)
+		      (+ jump-table-head-address (car empty-block-indexes)))
+      (setq empty-block-indexes (cdr empty-block-indexes))))
+  ;; Branch command ends by unconditional jump if RRR is out of range.
+  nil)
+
+;; Compile LOOP statement.
+(defun ccl-compile-loop (cmd)
+  (if (< (length cmd) 2)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (let* ((ccl-loop-head ccl-current-ic)
+	 (ccl-breaks nil)
+	 unconditional-jump)
+    (setq cmd (cdr cmd))
+    (if cmd
+	(progn
+	  (setq unconditional-jump t)
+	  (while cmd
+	    (setq unconditional-jump
+		  (and (ccl-compile-1 (car cmd)) unconditional-jump))
+	    (setq cmd (cdr cmd)))
+	  (if (not ccl-breaks)
+	      unconditional-jump
+	    ;; Embed jump address for break statements encountered in
+	    ;; this loop.
+	    (while ccl-breaks
+	      (ccl-embed-current-address (car ccl-breaks))
+	      (setq ccl-breaks (cdr ccl-breaks))))
+	  nil))))
+
+;; Compile BREAK statement.
+(defun ccl-compile-break (cmd)
+  (if (/= (length cmd) 1)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (if (null ccl-loop-head)
+      (error "CCL: No outer loop: %s" cmd))
+  (setq ccl-breaks (cons ccl-current-ic ccl-breaks))
+  (ccl-embed-code 'jump 0 0)
+  t)
+
+;; Compile REPEAT statement.
+(defun ccl-compile-repeat (cmd)
+  (if (/= (length cmd) 1)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (if (null ccl-loop-head)
+      (error "CCL: No outer loop: %s" cmd))
+  (ccl-embed-code 'jump 0 ccl-loop-head)
+  t)
+
+;; Compile WRITE-REPEAT statement.
+(defun ccl-compile-write-repeat (cmd)
+  (if (/= (length cmd) 2)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (if (null ccl-loop-head)
+      (error "CCL: No outer loop: %s" cmd))
+  (let ((arg (nth 1 cmd)))
+    (cond ((integer-or-char-p arg)
+	   (ccl-embed-code 'write-const-jump 0 ccl-loop-head)
+	   (ccl-embed-data arg))
+	  ((stringp arg)
+	   (setq arg (encode-coding-string arg 'binary))
+	   (let ((len (length arg)))
+	     (ccl-embed-code 'write-string-jump 0 ccl-loop-head)
+	     (ccl-embed-data len)
+	     (ccl-embed-string len arg)))
+	  (t
+	   (ccl-check-register arg cmd)
+	   (ccl-embed-code 'write-register-jump arg ccl-loop-head))))
+  t)
+
+;; Compile WRITE-READ-REPEAT statement.
+(defun ccl-compile-write-read-repeat (cmd)
+  (if (or (< (length cmd) 2) (> (length cmd) 3))
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (if (null ccl-loop-head)
+      (error "CCL: No outer loop: %s" cmd))
+  (let ((rrr (ccl-check-register (nth 1 cmd) cmd))
+	(arg (nth 2 cmd)))
+    (cond ((null arg)
+	   (ccl-embed-code 'write-register-read-jump rrr ccl-loop-head))
+	  ((integer-or-char-p arg)
+	   (ccl-embed-code 'write-const-read-jump rrr arg ccl-loop-head))
+	  ((vectorp arg)
+	   (let ((len (length arg))
+		 (i 0))
+	     (ccl-embed-code 'write-array-read-jump rrr ccl-loop-head)
+	     (ccl-embed-data len)
+	     (while (< i len)
+	       (ccl-embed-data (aref arg i))
+	       (setq i (1+ i)))))
+	  (t
+	   (error "CCL: Invalid argument %s: %s" arg cmd)))
+    (ccl-embed-code 'read-jump rrr ccl-loop-head))
+  t)
+			    
+;; Compile READ statement.
+(defun ccl-compile-read (cmd)
+  (if (< (length cmd) 2)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (let* ((args (cdr cmd))
+	 (i (1- (length args))))
+    (while args
+      (let ((rrr (ccl-check-register (car args) cmd)))
+	(ccl-embed-code 'read-register rrr i)
+	(setq args (cdr args) i (1- i)))))
+  nil)
+
+;; Compile READ-IF statement.
+(defun ccl-compile-read-if (cmd)
+  (ccl-compile-if cmd 'read))
+
+;; Compile WRITE statement.
+(defun ccl-compile-write (cmd)
+  (if (< (length cmd) 2)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (let ((rrr (nth 1 cmd)))
+    (cond ((integer-or-char-p rrr)
+	   (ccl-embed-code 'write-const-string 0 rrr))
+	  ((stringp rrr)
+	   (ccl-compile-write-string rrr))
+	  ((and (symbolp rrr) (vectorp (nth 2 cmd)))
+	   (ccl-check-register rrr cmd)
+	   ;; CMD has the form `(write REG ARRAY)'.
+	   (let* ((arg (nth 2 cmd))
+		  (len (length arg))
+		  (i 0))
+	     (ccl-embed-code 'write-array rrr len)
+	     (while (< i len)
+	       (if (not (integer-or-char-p (aref arg i)))
+		   (error "CCL: Invalid argument %s: %s" arg cmd))
+	       (ccl-embed-data (aref arg i))
+	       (setq i (1+ i)))))
+
+	  ((symbolp rrr)
+	   ;; CMD has the form `(write REG ...)'.
+	   (let* ((args (cdr cmd))
+		  (i (1- (length args))))
+	     (while args
+	       (setq rrr (ccl-check-register (car args) cmd))
+	       (ccl-embed-code 'write-register rrr i)
+	       (setq args (cdr args) i (1- i)))))
+
+	  ((listp rrr)
+	   ;; CMD has the form `(write (LEFT OP RIGHT))'.
+	   (let ((left (car rrr))
+		 (op (get (nth 1 rrr) 'ccl-arith-code))
+		 (right (nth 2 rrr)))
+	     (if (listp left)
+		 (progn
+		   ;; RRR has the form `((EXPR OP2 ARG) OP RIGHT)'.
+		   ;; Compile the first term as `(r7 = (EXPR OP2 ARG))'.
+		   (ccl-compile-expression 'r7 left)
+		   (setq left 'r7)))
+	     ;; Now RRR has the form `(ARG OP RIGHT)'.
+	     (if (integer-or-char-p right)
+		 (progn
+		   (ccl-embed-code 'write-expr-const 0 (ash op 3) left)
+		   (ccl-embed-data right))
+	       (ccl-check-register right rrr)
+	       (ccl-embed-code 'write-expr-register 0
+			       (logior (ash op 3)
+				       (get right 'ccl-register-number))))))
+
+	  (t
+	   (error "CCL: Invalid argument: %s" cmd))))
+  nil)
+
+;; Compile CALL statement.
+(defun ccl-compile-call (cmd)
+  (if (/= (length cmd) 2)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (if (not (symbolp (nth 1 cmd)))
+      (error "CCL: Subroutine should be a symbol: %s" cmd))
+  (ccl-embed-code 'call 1 0)
+  (ccl-embed-symbol (nth 1 cmd) 'ccl-program-idx)
+  nil)
+
+;; Compile END statement.
+(defun ccl-compile-end (cmd)
+  (if (/= (length cmd) 1)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (ccl-embed-code 'end 0 0)
+  t)
+
+;; Compile read-multibyte-character
+(defun ccl-compile-read-multibyte-character (cmd)
+  (if (/= (length cmd) 3)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (let ((RRR (nth 1 cmd))
+	(rrr (nth 2 cmd)))
+    (ccl-check-register rrr cmd)
+    (ccl-check-register RRR cmd)
+    (ccl-embed-extended-command 'read-multibyte-character rrr RRR 0))
+  nil)
+
+;; Compile write-multibyte-character
+(defun ccl-compile-write-multibyte-character (cmd)
+  (if (/= (length cmd) 3)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (let ((RRR (nth 1 cmd))
+	(rrr (nth 2 cmd)))
+    (ccl-check-register rrr cmd)
+    (ccl-check-register RRR cmd)
+    (ccl-embed-extended-command 'write-multibyte-character rrr RRR 0))
+  nil)
+
+;; Compile translate-character
+(defun ccl-compile-translate-character (cmd)
+  (if (/= (length cmd) 4)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (let ((Rrr (nth 1 cmd))
+	(RRR (nth 2 cmd))
+	(rrr (nth 3 cmd)))
+    (ccl-check-register rrr cmd)
+    (ccl-check-register RRR cmd)
+    (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
+	   (ccl-embed-extended-command 'translate-character-const-tbl
+				       rrr RRR 0)
+	   (ccl-embed-symbol Rrr 'translation-table-id))
+	  (t
+	   (ccl-check-register Rrr cmd)
+	   (ccl-embed-extended-command 'translate-character rrr RRR Rrr))))
+  nil)
+
+;; Compile mule-to-unicode
+(defun ccl-compile-mule-to-unicode (cmd)
+  (if (/= (length cmd) 3)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (let ((RRR (nth 1 cmd))
+	(rrr (nth 2 cmd)))
+    (ccl-check-register RRR cmd)
+    (ccl-check-register rrr cmd)
+    (ccl-embed-extended-command 'mule-to-unicode RRR rrr 0))
+  nil)
+
+;; Given a Unicode code point in register rrr, write the charset ID of the
+;; corresponding character in RRR, and the Mule-CCL form of its code in rrr.
+(defun ccl-compile-unicode-to-mule (cmd)
+  (if (/= (length cmd) 3)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (let ((rrr (nth 1 cmd))
+	(RRR (nth 2 cmd)))
+    (ccl-check-register rrr cmd)
+    (ccl-check-register RRR cmd)
+    (ccl-embed-extended-command 'unicode-to-mule rrr RRR 0))
+  nil)
+
+;; Compile lookup-integer
+(defun ccl-compile-lookup-integer (cmd)
+  (if (/= (length cmd) 4)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (let ((Rrr (nth 1 cmd))
+	(RRR (nth 2 cmd))
+	(rrr (nth 3 cmd)))
+    (ccl-check-register RRR cmd)
+    (ccl-check-register rrr cmd)
+    (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
+	   (ccl-embed-extended-command 'lookup-int-const-tbl
+				       rrr RRR 0)
+	   (ccl-embed-symbol Rrr 'translation-hash-table-id))
+	  (t
+	   (error "CCL: non-constant table: %s" cmd)
+	   ;; not implemented:
+	   (ccl-check-register Rrr cmd)
+	   (ccl-embed-extended-command 'lookup-int rrr RRR 0))))
+  nil)
+
+;; Compile lookup-character
+(defun ccl-compile-lookup-character (cmd)
+  (if (/= (length cmd) 4)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (let ((Rrr (nth 1 cmd))
+	(RRR (nth 2 cmd))
+	(rrr (nth 3 cmd)))
+    (ccl-check-register RRR cmd)
+    (ccl-check-register rrr cmd)
+    (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
+	   (ccl-embed-extended-command 'lookup-char-const-tbl
+				       rrr RRR 0)
+	   (ccl-embed-symbol Rrr 'translation-hash-table-id))
+	  (t
+	   (error "CCL: non-constant table: %s" cmd)
+	   ;; not implemented:
+	   (ccl-check-register Rrr cmd)
+	   (ccl-embed-extended-command 'lookup-char rrr RRR 0))))
+  nil)
+
+(defun ccl-compile-iterate-multiple-map (cmd)
+  (ccl-compile-multiple-map-function 'iterate-multiple-map cmd)
+  nil)
+
+(defun ccl-compile-map-multiple (cmd)
+  (if (/= (length cmd) 4)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (let (func arg)
+    (setq func
+	  (lambda (arg mp)
+	    (let ((len 0) result add)
+	      (while arg
+		(if (consp (car arg))
+		    (setq add (funcall func (car arg) t)
+			  result (append result add)
+			  add (+ (- (car add)) 1))
+		  (setq result
+			(append result
+				(list (car arg)))
+			add 1))
+		(setq arg (cdr arg)
+		      len (+ len add)))
+	      (if mp 
+		  (cons (- len) result)
+		result))))
+    (setq arg (append (list (nth 0 cmd) (nth 1 cmd) (nth 2 cmd))
+		      (funcall func (nth 3 cmd) nil)))
+    (ccl-compile-multiple-map-function 'map-multiple arg))
+  nil)
+
+(defun ccl-compile-map-single (cmd)
+  (if (/= (length cmd) 4)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (let ((RRR (nth 1 cmd))
+	(rrr (nth 2 cmd))
+	(map (nth 3 cmd)))
+    (ccl-check-register rrr cmd)
+    (ccl-check-register RRR cmd)
+    (ccl-embed-extended-command 'map-single rrr RRR 0)
+    (cond ((symbolp map)
+	   (if (get map 'code-conversion-map)
+	       (ccl-embed-symbol map 'code-conversion-map-id)
+	     (error "CCL: Invalid map: %s" map)))
+	  (t
+	   (error "CCL: Invalid type of arguments: %s" cmd))))
+  nil)
+
+(defun ccl-compile-multiple-map-function (command cmd)
+  (if (< (length cmd) 4)
+      (error "CCL: Invalid number of arguments: %s" cmd))
+  (let ((RRR (nth 1 cmd))
+	(rrr (nth 2 cmd))
+	(args (nthcdr 3 cmd))
+	map)
+    (ccl-check-register rrr cmd)
+    (ccl-check-register RRR cmd)
+    (ccl-embed-extended-command command rrr RRR 0)
+    (ccl-embed-data (length args))
+    (while args
+      (setq map (car args))
+      (cond ((symbolp map)
+	     (if (get map 'code-conversion-map)
+		 (ccl-embed-symbol map 'code-conversion-map-id)
+	       (error "CCL: Invalid map: %s" map)))
+	    ((numberp map)
+	     (ccl-embed-data map))
+	    (t
+	     (error "CCL: Invalid type of arguments: %s" cmd)))
+      (setq args (cdr args)))))
+
+
+;;; CCL dump staffs
+
+;; To avoid byte-compiler warning.
+(defvar ccl-code)
+
+;;;###autoload
+(defun ccl-dump (ccl-code)
+  "Disassemble compiled CCL-CODE."
+  (let ((len (length ccl-code))
+	(buffer-mag (aref ccl-code 0)))
+    (cond ((= buffer-mag 0)
+	   (insert "Don't output anything.\n"))
+	  ((= buffer-mag 1)
+	   (insert "Out-buffer must be as large as in-buffer.\n"))
+	  (t
+	   (insert
+	    (format "Out-buffer must be %d times bigger than in-buffer.\n"
+		    buffer-mag))))
+    (insert "Main-body:\n")
+    (setq ccl-current-ic 2)
+    (if (> (aref ccl-code 1) 0)
+	(progn
+	  (while (< ccl-current-ic (aref ccl-code 1))
+	    (ccl-dump-1))
+	  (insert "At EOF:\n")))
+    (while (< ccl-current-ic len)
+      (ccl-dump-1))
+    ))
+
+;; Return a CCL code in `ccl-code' at `ccl-current-ic'.
+(defun ccl-get-next-code ()
+  (prog1
+      (aref ccl-code ccl-current-ic)
+    (setq ccl-current-ic (1+ ccl-current-ic))))
+
+(defun ccl-dump-1 ()
+  (let* ((code (ccl-get-next-code))
+	 (cmd (aref ccl-code-table (logand code 31)))
+	 (rrr (ash (logand code 255) -5))
+	 (cc (ash code -8)))
+    (insert (format "%5d:[%s] " (1- ccl-current-ic) cmd))
+    (funcall (get cmd 'ccl-dump-function) rrr cc))) 
+
+(defun ccl-dump-set-register (rrr cc)
+  (insert (format "r%d = r%d\n" rrr cc)))
+
+(defun ccl-dump-set-short-const (rrr cc)
+  (insert (format "r%d = %d\n" rrr cc)))
+
+(defun ccl-dump-set-const (rrr ignore)
+  (insert (format "r%d = %d\n" rrr (ccl-get-next-code))))
+
+(defun ccl-dump-set-array (rrr cc)
+  (let ((rrr2 (logand cc 7))
+	(len (ash cc -3))
+	(i 0))
+    (insert (format "r%d = array[r%d] of length %d\n\t"
+		    rrr rrr2 len))
+    (while (< i len)
+      (insert (format "%d " (ccl-get-next-code)))
+      (setq i (1+ i)))
+    (insert "\n")))
+
+(defun ccl-dump-jump (ignore cc &optional address)
+  (insert (format "jump to %d(" (+ (or address ccl-current-ic) cc)))
+  (if (>= cc 0)
+      (insert "+"))
+  (insert (format "%d)\n" (1+ cc))))
+
+(defun ccl-dump-jump-cond (rrr cc)
+  (insert (format "if (r%d == 0), " rrr))
+  (ccl-dump-jump nil cc))
+
+(defun ccl-dump-write-register-jump (rrr cc)
+  (insert (format "write r%d, " rrr))
+  (ccl-dump-jump nil cc))
+
+(defun ccl-dump-write-register-read-jump (rrr cc)
+  (insert (format "write r%d, read r%d, " rrr rrr))
+  (ccl-dump-jump nil cc)
+  (ccl-get-next-code)			; Skip dummy READ-JUMP
+  )
+
+(defun ccl-extract-arith-op (cc)
+  (aref ccl-arith-table (ash cc -6)))
+
+(defun ccl-dump-write-expr-const (ignore cc)
+  (insert (format "write (r%d %s %d)\n"
+		  (logand cc 7)
+		  (ccl-extract-arith-op cc)
+		  (ccl-get-next-code))))
+
+(defun ccl-dump-write-expr-register (ignore cc)
+  (insert (format "write (r%d %s r%d)\n"
+		  (logand cc 7)
+		  (ccl-extract-arith-op cc)
+		  (logand (ash cc -3) 7))))
+
+(defun ccl-dump-insert-char (cc)
+  (cond ((= cc ?\t) (insert " \"^I\""))
+	((= cc ?\n) (insert " \"^J\""))
+	(t (insert (format " \"%c\"" cc)))))
+
+(defun ccl-dump-write-const-jump (ignore cc)
+  (let ((address ccl-current-ic))
+    (insert "write char")
+    (ccl-dump-insert-char (ccl-get-next-code))
+    (insert ", ")
+    (ccl-dump-jump nil cc address)))
+
+(defun ccl-dump-write-const-read-jump (rrr cc)
+  (let ((address ccl-current-ic))
+    (insert "write char")
+    (ccl-dump-insert-char (ccl-get-next-code))
+    (insert (format ", read r%d, " rrr))
+    (ccl-dump-jump cc address)
+    (ccl-get-next-code)			; Skip dummy READ-JUMP
+    ))
+
+(defun ccl-dump-write-string-jump (ignore cc)
+  (let ((address ccl-current-ic)
+	(len (ccl-get-next-code))
+	(i 0))
+    (insert "write \"")
+    (while (< i len)
+      (let ((code (ccl-get-next-code)))
+	(insert (ash code -16))
+	(if (< (1+ i) len) (insert (logand (ash code -8) 255)))
+	(if (< (+ i 2) len) (insert (logand code 255))))
+      (setq i (+ i 3)))
+    (insert "\", ")
+    (ccl-dump-jump nil cc address)))
+
+(defun ccl-dump-write-array-read-jump (rrr cc)
+  (let ((address ccl-current-ic)
+	(len (ccl-get-next-code))
+	(i 0))
+    (insert (format "write array[r%d] of length %d,\n\t" rrr len))
+    (while (< i len)
+      (ccl-dump-insert-char (ccl-get-next-code))
+      (setq i (1+ i)))
+    (insert (format "\n\tthen read r%d, " rrr))
+    (ccl-dump-jump nil cc address)
+    (ccl-get-next-code)			; Skip dummy READ-JUMP.
+    ))
+
+(defun ccl-dump-read-jump (rrr cc)
+  (insert (format "read r%d, " rrr))
+  (ccl-dump-jump nil cc))
+
+(defun ccl-dump-branch (rrr len)
+  (let ((jump-table-head ccl-current-ic)
+	(i 0))
+    (insert (format "jump to array[r%d] of length %d\n\t" rrr len))
+    (while (<= i len)
+      (insert (format "%d " (+ jump-table-head (ccl-get-next-code))))
+      (setq i (1+ i)))
+    (insert "\n")))
+
+(defun ccl-dump-read-register (rrr cc)
+  (insert (format "read r%d (%d remaining)\n" rrr cc)))
+
+(defun ccl-dump-read-branch (rrr len)
+  (insert (format "read r%d, " rrr))
+  (ccl-dump-branch rrr len))
+
+(defun ccl-dump-write-register (rrr cc)
+  (insert (format "write r%d (%d remaining)\n" rrr cc)))
+
+(defun ccl-dump-call (ignore cc)
+  (insert (format "call subroutine #%d\n" cc)))
+
+(defun ccl-dump-write-const-string (rrr cc)
+  (if (= rrr 0)
+      (progn
+	(insert "write char")
+	(ccl-dump-insert-char cc)
+	(newline))
+    (let ((len cc)
+	  (i 0))
+      (insert "write \"")
+      (while (< i len)
+	(let ((code (ccl-get-next-code)))
+	  (insert (format "%c" (lsh code -16)))
+	  (if (< (1+ i) len)
+	      (insert (format "%c" (logand (lsh code -8) 255))))
+	  (if (< (+ i 2) len)
+	      (insert (format "%c" (logand code 255))))
+	  (setq i (+ i 3))))
+      (insert "\"\n"))))
+
+(defun ccl-dump-write-array (rrr cc)
+  (let ((i 0))
+    (insert (format "write array[r%d] of length %d\n\t" rrr cc))
+    (while (< i cc)
+      (ccl-dump-insert-char (ccl-get-next-code))
+      (setq i (1+ i)))
+    (insert "\n")))
+
+(defun ccl-dump-end (&rest ignore)
+  (insert "end\n"))
+
+(defun ccl-dump-set-assign-expr-const (rrr cc)
+  (insert (format "r%d %s= %d\n"
+		  rrr
+		  (ccl-extract-arith-op cc)
+		  (ccl-get-next-code))))
+
+(defun ccl-dump-set-assign-expr-register (rrr cc)
+  (insert (format "r%d %s= r%d\n"
+		  rrr
+		  (ccl-extract-arith-op cc)
+		  (logand cc 7))))
+
+(defun ccl-dump-set-expr-const (rrr cc)
+  (insert (format "r%d = r%d %s %d\n"
+		  rrr
+		  (logand cc 7)
+		  (ccl-extract-arith-op cc)
+		  (ccl-get-next-code))))
+
+(defun ccl-dump-set-expr-register (rrr cc)
+  (insert (format "r%d = r%d %s r%d\n"
+		  rrr
+		  (logand cc 7)
+		  (ccl-extract-arith-op cc)
+		  (logand (ash cc -3) 7))))
+
+(defun ccl-dump-jump-cond-expr-const (rrr cc)
+  (let ((address ccl-current-ic))
+    (insert (format "if !(r%d %s %d), "
+		    rrr
+		    (aref ccl-arith-table (ccl-get-next-code))
+		    (ccl-get-next-code)))
+    (ccl-dump-jump nil cc address)))
+
+(defun ccl-dump-jump-cond-expr-register (rrr cc)
+  (let ((address ccl-current-ic))
+    (insert (format "if !(r%d %s r%d), "
+		    rrr
+		    (aref ccl-arith-table (ccl-get-next-code))
+		    (ccl-get-next-code)))
+    (ccl-dump-jump nil cc address)))
+
+(defun ccl-dump-read-jump-cond-expr-const (rrr cc)
+  (insert (format "read r%d, " rrr))
+  (ccl-dump-jump-cond-expr-const rrr cc))
+
+(defun ccl-dump-read-jump-cond-expr-register (rrr cc)
+  (insert (format "read r%d, " rrr))
+  (ccl-dump-jump-cond-expr-register rrr cc))
+
+(defun ccl-dump-binary (ccl-code)
+  (let ((len (length ccl-code))
+	(i 2))
+    (while (< i len)
+      (let ((code (aref ccl-code i))
+	    (j 27))
+	(while (>= j 0)
+	  (insert (if (= (logand code (ash 1 j)) 0) ?0 ?1))
+	  (setq j (1- j)))
+	(setq code (logand code 31))
+	(if (< code (length ccl-code-table))
+	    (insert (format ":%s" (aref ccl-code-table code))))
+	(insert "\n"))
+      (setq i (1+ i)))))
+
+(defun ccl-dump-ex-cmd (rrr cc)
+  (let* ((RRR (logand cc #x7))
+	 (Rrr (logand (ash cc -3) #x7))
+	 (ex-op (aref ccl-extended-code-table (logand (ash cc -6) #x3fff))))
+    (insert (format "<%s> " ex-op))
+    (funcall (get ex-op 'ccl-dump-function) rrr RRR Rrr)))
+
+(defun ccl-dump-read-multibyte-character (rrr RRR Rrr)
+  (insert (format "read-multibyte-character r%d r%d\n" RRR rrr)))
+
+(defun ccl-dump-write-multibyte-character (rrr RRR Rrr)
+  (insert (format "write-multibyte-character r%d r%d\n" RRR rrr)))
+
+(defun ccl-dump-translate-character (rrr RRR Rrr)
+  (insert (format "translation table(r%d) r%d r%d\n" Rrr RRR rrr)))
+
+(defun ccl-dump-translate-character-const-tbl (rrr RRR Rrr)
+  (let ((tbl (ccl-get-next-code)))
+    (insert (format "translation table(%S) r%d r%d\n" tbl RRR rrr))))
+
+(defun ccl-dump-lookup-int-const-tbl (rrr RRR Rrr)
+  (let ((tbl (ccl-get-next-code)))
+    (insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr))))
+
+(defun ccl-dump-lookup-char-const-tbl (rrr RRR Rrr)
+  (let ((tbl (ccl-get-next-code)))
+    (insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr))))
+
+(defun ccl-dump-mule-to-unicode (rrr RRR Rrr)
+  (insert (format "change chars in r%d and r%d to unicode\n" RRR rrr)))
+
+(defun ccl-dump-unicode-to-mule (rrr RRR Rrr)
+  (insert (format "converter UCS code %d to a Mule char\n" rrr)))
+
+(defun ccl-dump-iterate-multiple-map (rrr RRR Rrr)
+  (let ((notbl (ccl-get-next-code))
+	(i 0) id)
+    (insert (format "iterate-multiple-map r%d r%d\n" RRR rrr))
+    (insert (format "\tnumber of maps is %d .\n\t [" notbl))
+    (while (< i notbl)
+      (setq id (ccl-get-next-code))
+      (insert (format "%S" id))
+      (setq i (1+ i)))
+    (insert "]\n")))
+
+(defun ccl-dump-map-multiple (rrr RRR Rrr)
+  (let ((notbl (ccl-get-next-code))
+	(i 0) id)
+    (insert (format "map-multiple r%d r%d\n" RRR rrr))
+    (insert (format "\tnumber of maps and separators is %d\n\t [" notbl))
+    (while (< i notbl)
+      (setq id (ccl-get-next-code))
+      (if (= id -1)
+	  (insert "]\n\t [")
+	(insert (format "%S " id)))
+      (setq i (1+ i)))
+    (insert "]\n")))
+
+(defun ccl-dump-map-single (rrr RRR Rrr)
+  (let ((id (ccl-get-next-code)))
+    (insert (format "map-single r%d r%d map(%S)\n" RRR rrr id))))
+
+
+;; CCL emulation staffs 
+
+;; Not yet implemented.
+
+;; Auto-loaded functions.
+
+;;;###autoload
+(defmacro declare-ccl-program (name &optional vector)
+  "Declare NAME as a name of CCL program.
+
+This macro exists for backward compatibility.  In the old version of
+Emacs, to compile a CCL program which calls another CCL program not
+yet defined, it must be declared as a CCL program in advance.  But,
+now CCL program names are resolved not at compile time but before
+execution.
+
+Optional arg VECTOR is a compiled CCL code of the CCL program."
+  `(put ',name 'ccl-program-idx (register-ccl-program ',name ,vector)))
+
+;;;###autoload
+(defmacro define-ccl-program (name ccl-program &optional doc)
+  "Set NAME to be the compiled CCL code of CCL-PROGRAM.
+
+CCL-PROGRAM has this form:
+	(BUFFER_MAGNIFICATION
+	 CCL_MAIN_CODE
+	 [ CCL_EOF_CODE ])
+
+BUFFER_MAGNIFICATION is an integer value specifying the approximate
+output buffer magnification size compared with the bytes of input data
+text.  If the value is zero, the CCL program can't execute `read' and
+`write' commands.
+
+CCL_MAIN_CODE and CCL_EOF_CODE are CCL program codes.  CCL_MAIN_CODE is
+executed first.  If there are no more input data when a `read' command is
+executed in CCL_MAIN_CODE, CCL_EOF_CODE is executed.  If CCL_MAIN_CODE is
+terminated, CCL_EOF_CODE is not executed.
+
+Here's the syntax of CCL program code in BNF notation.  The lines starting
+with two semicolons (and optional leading spaces) describe the semantics.
+
+CCL_MAIN_CODE := CCL_BLOCK
+
+CCL_EOF_CODE := CCL_BLOCK
+
+CCL_BLOCK := STATEMENT | (STATEMENT [STATEMENT ...])
+
+STATEMENT :=
+	SET | IF | BRANCH | LOOP | REPEAT | BREAK | READ | WRITE | CALL
+	| TRANSLATE | MAP | LOOKUP | END
+
+SET :=	(REG = EXPRESSION)
+	| (REG ASSIGNMENT_OPERATOR EXPRESSION)
+	;; The following form is the same as (r0 = INT-OR-CHAR).
+	| INT-OR-CHAR
+
+EXPRESSION := ARG | (EXPRESSION OPERATOR ARG)
+
+;; Evaluate EXPRESSION.  If the result is nonzero, execute
+;; CCL_BLOCK_0.  Otherwise, execute CCL_BLOCK_1.
+IF :=	(if EXPRESSION CCL_BLOCK_0 [CCL_BLOCK_1])
+
+;; Evaluate EXPRESSION.  Provided that the result is N, execute
+;; CCL_BLOCK_N.
+BRANCH := (branch EXPRESSION CCL_BLOCK_0 [CCL_BLOCK_1 ...])
+
+;; Execute STATEMENTs until (break) or (end) is executed.
+LOOP := (loop STATEMENT [STATEMENT ...])
+
+;; Terminate the innermost loop.
+BREAK := (break)
+
+REPEAT :=
+	;; Jump to the head of the innermost loop.
+	(repeat)
+	;; Same as: ((write [REG | INT-OR-CHAR | string])
+	;;	     (repeat))
+	| (write-repeat [REG | INT-OR-CHAR | string])
+	;; Same as: ((write REG [ARRAY])
+	;;	     (read REG)
+	;;	     (repeat))
+	| (write-read-repeat REG [ARRAY])
+	;; Same as: ((write INT-OR-CHAR)
+	;;	     (read REG)
+	;;	     (repeat))
+	| (write-read-repeat REG INT-OR-CHAR)
+
+READ := ;; Set REG_0 to a byte read from the input text, set REG_1
+	;; to the next byte read, and so on. Note that \"byte\" here means
+	;; \"some octet from XEmacs' internal representation\", which may
+	;; not be that useful to you when non-ASCII characters are involved.
+        ;;
+        ;; Yes, this is exactly the opposite of what (write ...) does.
+	(read REG_0 [REG_1 ...])
+	;; Same as: ((read REG)
+	;;	     (if (REG OPERATOR ARG) CCL_BLOCK_0 CCL_BLOCK_1))
+	| (read-if (REG OPERATOR ARG) CCL_BLOCK_0 [CCL_BLOCK_1])
+	;; Same as: ((read REG)
+	;;	     (branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...]))
+	| (read-branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...])
+	;; Read a character from the input text, splitting it into its
+	;; multibyte representation. Set REG_0 to the charset ID of the
+	;; character, and set REG_1 to the code point of the character.  If
+	;; the dimension of charset is two, set REG_1 to ((CODE0 << 7) |
+	;; CODE1), where CODE0 is the first code point and CODE1 is the
+	;; second code point.
+	| (read-multibyte-character REG_0 REG_1)
+
+WRITE :=
+	;; Write REG_0, REG_1, ... to the output buffer.  If REG_N is
+	;; a multibyte character, write the corresponding multibyte
+	;; representation.
+	(write REG_0 [REG_1 ...])
+	;; Same as: ((r7 = EXPRESSION)
+	;;	     (write r7))
+	| (write EXPRESSION)
+	;; Write the value of `INT-OR-CHAR' to the output buffer.  If it
+	;; is a multibyte character, write the corresponding multibyte
+	;; representation.
+	| (write INT-OR-CHAR)
+	;; Write the byte sequence of `string' as is to the output
+	;; buffer.  It is encoded by binary coding system, thus,
+        ;; by this operation, you cannot write multibyte string
+        ;; as it is.
+	| (write string)
+	;; Same as: (write string)
+	| string
+	;; Provided that the value of REG is N, write Nth element of
+	;; ARRAY to the output buffer.  If it is a multibyte
+	;; character, write the corresponding multibyte
+	;; representation.
+	| (write REG ARRAY)
+	;; Write a multibyte representation of a character whose
+	;; charset ID is REG_0 and code point is REG_1.  If the
+	;; dimension of the charset is two, REG_1 should be ((CODE0 <<
+	;; 7) | CODE1), where CODE0 is the first code point and CODE1
+	;; is the second code point of the character.
+	| (write-multibyte-character REG_0 REG_1)
+
+;; Call CCL program whose name is ccl-program-name.
+CALL := (call ccl-program-name)
+
+TRANSLATE := ;; Not implemented under XEmacs, except mule-to-unicode and
+	     ;; unicode-to-mule.
+	     (translate-character REG(table) REG(charset) REG(codepoint)) 
+	     | (translate-character SYMBOL REG(charset) REG(codepoint)) 
+	     | (mule-to-unicode REG(charset) REG(codepoint))
+	     | (unicode-to-mule REG(unicode,code) REG(CHARSET))
+
+LOOKUP :=
+	(lookup-character SYMBOL REG(charset) REG(codepoint))
+	| (lookup-integer SYMBOL REG(integer))
+        ;; SYMBOL refers to a table defined by `define-hash-translation-table'.
+
+MAP :=
+     (iterate-multiple-map REG REG MAP-IDs)
+     | (map-multiple REG REG (MAP-SET))
+     | (map-single REG REG MAP-ID)
+MAP-IDs := MAP-ID ...
+MAP-SET := MAP-IDs | (MAP-IDs) MAP-SET
+MAP-ID := INT-OR-CHAR
+
+;; Terminate the CCL program.
+END := (end)
+
+;; CCL registers. These can contain any integer value.  As r7 is used by the
+;; CCL interpreter itself, its value can change unexpectedly.
+REG := r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7
+
+ARG := REG | INT-OR-CHAR
+
+OPERATOR :=
+	;; Normal arithmetical operators (same meaning as C code).
+	+ | - | * | / | %
+
+	;; Bitwise operators (same meaning as C code)
+	| & | `|' | ^
+
+	;; Shifting operators (same meaning as C code)
+	| << | >>
+
+	;; (REG = ARG_0 <8 ARG_1) means:
+	;;	(REG = ((ARG_0 << 8) | ARG_1))
+	| <8
+
+	;; (REG = ARG_0 >8 ARG_1) means:
+	;;	((REG = (ARG_0 >> 8))
+	;;	 (r7 = (ARG_0 & 255)))
+	| >8
+
+	;; (REG = ARG_0 // ARG_1) means:
+	;;	((REG = (ARG_0 / ARG_1))
+	;;	 (r7 = (ARG_0 % ARG_1)))
+	| //
+
+	;; Normal comparing operators (same meaning as C code)
+	| < | > | == | <= | >= | !=
+
+	;; If ARG_0 and ARG_1 are higher and lower byte of Shift-JIS
+	;; code, and CHAR is the corresponding JISX0208 character,
+	;; (REG = ARG_0 de-sjis ARG_1) means:
+	;;	((REG = CODE0)
+	;;	 (r7 = CODE1))
+	;; where CODE0 is the first code point of CHAR, CODE1 is the
+	;; second code point of CHAR.
+	| de-sjis
+
+	;; If ARG_0 and ARG_1 are the first and second code point of
+	;; JISX0208 character CHAR, and SJIS is the correponding
+	;; Shift-JIS code,
+	;; (REG = ARG_0 en-sjis ARG_1) means:
+	;;	((REG = HIGH)
+	;;	 (r7 = LOW))
+	;; where HIGH is the higher byte of SJIS, LOW is the lower
+	;; byte of SJIS.
+	| en-sjis
+
+ASSIGNMENT_OPERATOR :=
+	;; Same meaning as C code
+	+= | -= | *= | /= | %= | &= | `|=' | ^= | <<= | >>=
+
+	;; (REG <8= ARG) is the same as:
+	;;	((REG <<= 8)
+	;;	 (REG |= ARG))
+	| <8= 
+
+	;; (REG >8= ARG) is the same as:
+	;;	((r7 = (REG & 255))
+	;;	 (REG >>= 8))
+
+	;; (REG //= ARG) is the same as:
+	;;	((r7 = (REG % ARG))
+	;;	 (REG /= ARG))
+	| //=
+
+ARRAY := `[' INT-OR-CHAR ... `]'
+
+INT-OR-CHAR := integer | character
+"
+  `(let ((prog ,(ccl-compile (eval ccl-program))))
+     (defconst ,name prog ,doc)
+     (put ',name 'ccl-program-idx (register-ccl-program ',name prog))
+     nil))
+
+;;;###autoload
+(defmacro check-ccl-program (ccl-program &optional name)
+  "Check validity of CCL-PROGRAM.
+If CCL-PROGRAM is a symbol denoting a CCL program, return
+CCL-PROGRAM, else return nil.
+If CCL-PROGRAM is a vector and optional arg NAME (symbol) is supplied,
+register CCL-PROGRAM by name NAME, and return NAME."
+  `(if (ccl-program-p ,ccl-program)
+       (if (vectorp ,ccl-program)
+	   (progn
+	     (register-ccl-program ,name ,ccl-program)
+	     ,name)
+	 ,ccl-program)))
+
+(provide 'ccl)
+
+;; ccl.el ends here
\ No newline at end of file
--- a/lisp/mule/chinese.el	Thu Jul 26 21:51:51 2007 +0000
+++ b/lisp/mule/chinese.el	Fri Jul 27 18:56:53 2007 +0000
@@ -31,7 +31,7 @@
 
 ;;; Code:
 
-(eval-when-compile (progn (require 'ccl "mule-ccl") (require 'china-util)))
+(eval-when-compile (progn (require 'ccl) (require 'china-util)))
 
 ;; Syntax of Chinese characters.
 (loop for row in '(33 34 41)
--- a/lisp/mule/mule-ccl.el	Thu Jul 26 21:51:51 2007 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1565 +0,0 @@
-;;; mule-ccl.el --- CCL (Code Conversion Language) compiler -*- coding: iso-2022-7bit; -*-
-
-;; Copyright (C) 1995 Electrotechnical Laboratory, JAPAN.
-;; Licensed to the Free Software Foundation.
-;; Copyright (C) 2002, 2007 Free Software Foundation, Inc.
-
-;; Keywords: CCL, mule, multilingual, character set, coding-system
-
-;; This file is part of XEmacs.
-
-;; XEmacs is free software; you can redistribute it and/or modify
-;; it under the terms of the GNU General Public License as published by
-;; the Free Software Foundation; either version 2, or (at your option)
-;; any later version.
-
-;; XEmacs is distributed in the hope that it will be useful,
-;; but WITHOUT ANY WARRANTY; without even the implied warranty of
-;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-;; GNU General Public License for more details.
-
-;; You should have received a copy of the GNU General Public License
-;; along with XEmacs; see the file COPYING.  If not, write to the
-;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
-;; Boston, MA 02111-1307, USA.
-
-;; Synched up with: FSF 21.0.90
-
-;;; Commentary:
-
-;; CCL (Code Conversion Language) is a simple programming language to
-;; be used for various kind of code conversion.  CCL program is
-;; compiled to CCL code (vector of integers) and executed by CCL
-;; interpreter of Emacs.
-;;
-;; CCL is used for code conversion at process I/O and file I/O for
-;; non-standard coding-system.  In addition, it is used for
-;; calculating a code point of X's font from a character code.
-;; However, since CCL is designed as a powerful programming language,
-;; it can be used for more generic calculation.  For instance,
-;; combination of three or more arithmetic operations can be
-;; calculated faster than Emacs Lisp.
-;;
-;; Syntax and semantics of CCL program is described in the
-;; documentation of `define-ccl-program'.
-
-;;; Code:
-
-(defconst ccl-command-table
-  [if branch loop break repeat write-repeat write-read-repeat
-      read read-if read-branch write call end
-      read-multibyte-character write-multibyte-character
-      translate-character mule-to-unicode unicode-to-mule
-      iterate-multiple-map map-multiple map-single lookup-integer
-      lookup-character]
-  "Vector of CCL commands (symbols).")
-
-;; Put a property to each symbol of CCL commands for the compiler.
-(let (op (i 0) (len (length ccl-command-table)))
-  (while (< i len)
-    (setq op (aref ccl-command-table i))
-    (put op 'ccl-compile-function (intern (format "ccl-compile-%s" op)))
-    (setq i (1+ i))))
-
-(defconst ccl-code-table
-  [set-register
-   set-short-const
-   set-const
-   set-array
-   jump
-   jump-cond
-   write-register-jump
-   write-register-read-jump
-   write-const-jump
-   write-const-read-jump
-   write-string-jump
-   write-array-read-jump
-   read-jump
-   branch
-   read-register
-   write-expr-const
-   read-branch
-   write-register
-   write-expr-register
-   call
-   write-const-string
-   write-array
-   end
-   set-assign-expr-const
-   set-assign-expr-register
-   set-expr-const
-   set-expr-register
-   jump-cond-expr-const
-   jump-cond-expr-register
-   read-jump-cond-expr-const
-   read-jump-cond-expr-register
-   ex-cmd
-   ]
-  "Vector of CCL compiled codes (symbols).")
-
-(defconst ccl-extended-code-table
-  [read-multibyte-character
-   write-multibyte-character
-   translate-character
-   translate-character-const-tbl
-   mule-to-unicode
-   unicode-to-mule
-   nil nil nil nil nil nil nil nil nil nil ; 0x06-0x0f
-   iterate-multiple-map
-   map-multiple
-   map-single
-   lookup-int-const-tbl
-   lookup-char-const-tbl   
-   ]
-  "Vector of CCL extended compiled codes (symbols).")
-
-;; Put a property to each symbol of CCL codes for the disassembler.
-(let (code (i 0) (len (length ccl-code-table)))
-  (while (< i len)
-    (setq code (aref ccl-code-table i))
-    (put code 'ccl-code i)
-    (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))
-    (setq i (1+ i))))
-
-(let (code (i 0) (len (length ccl-extended-code-table)))
-  (while (< i len)
-    (setq code (aref ccl-extended-code-table i))
-    (if code
-	(progn
-	  (put code 'ccl-ex-code i)
-	  (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))))
-    (setq i (1+ i))))
-
-(defconst ccl-jump-code-list
-  '(jump jump-cond write-register-jump write-register-read-jump
-    write-const-jump write-const-read-jump write-string-jump
-    write-array-read-jump read-jump))
-
-;; Put a property `jump-flag' to each CCL code which execute jump in
-;; some way.
-(let ((l ccl-jump-code-list))
-  (while l
-    (put (car l) 'jump-flag t)
-    (setq l (cdr l))))
-
-(defconst ccl-register-table
-  [r0 r1 r2 r3 r4 r5 r6 r7]
-  "Vector of CCL registers (symbols).")
-
-;; Put a property to indicate register number to each symbol of CCL.
-;; registers.
-(let (reg (i 0) (len (length ccl-register-table)))
-  (while (< i len)
-    (setq reg (aref ccl-register-table i))
-    (put reg 'ccl-register-number i)
-    (setq i (1+ i))))
-
-(defconst ccl-arith-table
-  [+ - * / % & | ^ << >> <8 >8 // nil nil nil
-   < > == <= >= != de-sjis en-sjis]
-  "Vector of CCL arithmetic/logical operators (symbols).")
-
-;; Put a property to each symbol of CCL operators for the compiler.
-(let (arith (i 0) (len (length ccl-arith-table)))
-  (while (< i len)
-    (setq arith (aref ccl-arith-table i))
-    (if arith (put arith 'ccl-arith-code i))
-    (setq i (1+ i))))
-
-(defconst ccl-assign-arith-table
-  [+= -= *= /= %= &= |= ^= <<= >>= <8= >8= //=]
-  "Vector of CCL assignment operators (symbols).")
-
-;; Put a property to each symbol of CCL assignment operators for the compiler.
-(let (arith (i 0) (len (length ccl-assign-arith-table)))
-  (while (< i len)
-    (setq arith (aref ccl-assign-arith-table i))
-    (put arith 'ccl-self-arith-code i)
-    (setq i (1+ i))))
-
-(defvar ccl-program-vector nil
-  "Working vector of CCL codes produced by CCL compiler.")
-(defvar ccl-current-ic 0
-  "The current index for `ccl-program-vector'.")
-
-;; Embed integer DATA in `ccl-program-vector' at `ccl-current-ic' and
-;; increment it.  If IC is specified, embed DATA at IC.
-(defun ccl-embed-data (data &optional ic)
-  ;; XEmacs: Embed characters as characters, since their integer values vary at
-  ;; runtime. 
-  ; (if (characterp data) 
-  ;  (setq data (char-int data)))
-  (if ic
-      (aset ccl-program-vector ic data)
-    (let ((len (length ccl-program-vector)))
-      (if (>= ccl-current-ic len)
-	  (let ((new (make-vector (* len 2) nil)))
-	    (while (> len 0)
-	      (setq len (1- len))
-	      (aset new len (aref ccl-program-vector len)))
-	    (setq ccl-program-vector new))))
-    (aset ccl-program-vector ccl-current-ic data)
-    (setq ccl-current-ic (1+ ccl-current-ic))))
-
-;; Embed pair of SYMBOL and PROP where (get SYMBOL PROP) should give
-;; proper index number for SYMBOL.  PROP should be
-;; `translation-table-id', `translation-hash-table-id'
-;; `code-conversion-map-id', or `ccl-program-idx'.
-(defun ccl-embed-symbol (symbol prop)
-  (ccl-embed-data (cons symbol prop)))
-
-;; Embed string STR of length LEN in `ccl-program-vector' at
-;; `ccl-current-ic'.
-(defun ccl-embed-string (len str)
-  (let ((i 0))
-    (while (< i len)
-      (ccl-embed-data (logior (ash (aref str i) 16)
-			       (if (< (1+ i) len)
-				   (ash (aref str (1+ i)) 8)
-				 0)
-			       (if (< (+ i 2) len)
-				   (aref str (+ i 2))
-				 0)))
-      (setq i (+ i 3)))))
-
-;; Embed a relative jump address to `ccl-current-ic' in
-;; `ccl-program-vector' at IC without altering the other bit field.
-(defun ccl-embed-current-address (ic)
-  (let ((relative (- ccl-current-ic (1+ ic))))
-    (aset ccl-program-vector ic
-	  (logior (aref ccl-program-vector ic) (ash relative 8)))))
-
-;; Embed CCL code for the operation OP and arguments REG and DATA in
-;; `ccl-program-vector' at `ccl-current-ic' in the following format.
-;;	|----------------- integer (28-bit) ------------------|
-;;	|------------ 20-bit ------------|- 3-bit --|- 5-bit -|
-;;	|------------- DATA -------------|-- REG ---|-- OP ---|
-;; If REG2 is specified, embed a code in the following format.
-;;	|------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
-;;	|-------- DATA -------|-- REG2 --|-- REG ---|-- OP ---|
-
-;; If REG is a CCL register symbol (e.g. r0, r1...), the register
-;; number is embedded.  If OP is one of unconditional jumps, DATA is
-;; changed to an relative jump address.
-
-(defun ccl-embed-code (op reg data &optional reg2)
-  (if (and (> data 0) (get op 'jump-flag))
-      ;; DATA is an absolute jump address.  Make it relative to the
-      ;; next of jump code.
-      (setq data (- data (1+ ccl-current-ic))))
-  (let ((code (logior (get op 'ccl-code)
-		      (ash
-		       (if (symbolp reg) (get reg 'ccl-register-number) reg) 5)
-		      (if reg2
-			  (logior (ash (get reg2 'ccl-register-number) 8)
-				  (ash data 11))
-			(ash data 8)))))
-    (ccl-embed-data code)))
-
-;; extended ccl command format
-;;	|- 14-bit -|- 3-bit --|- 3-bit --|- 3-bit --|- 5-bit -|
-;;	|- EX-OP --|-- REG3 --|-- REG2 --|-- REG ---|-- OP ---|
-(defun ccl-embed-extended-command (ex-op reg reg2 reg3)
-  (let ((data (logior (ash (get ex-op 'ccl-ex-code) 3)
-		      (if (symbolp reg3)
-			  (get reg3 'ccl-register-number)
-			0))))
-    (ccl-embed-code 'ex-cmd reg data reg2)))
-
-;; Just advance `ccl-current-ic' by INC.
-(defun ccl-increment-ic (inc)
-  (setq ccl-current-ic (+ ccl-current-ic inc)))
-
-;; If non-nil, index of the start of the current loop.
-(defvar ccl-loop-head nil)
-;; If non-nil, list of absolute addresses of the breaking points of
-;; the current loop.
-(defvar ccl-breaks nil)
-
-;;;###autoload
-(defun ccl-compile (ccl-program)
-  "Return a compiled code of CCL-PROGRAM as a vector of integer."
-  (if (or (null (consp ccl-program))
-	  (null (integerp (car ccl-program)))
-	  (null (listp (car (cdr ccl-program)))))
-      (error "CCL: Invalid CCL program: %s" ccl-program))
-  (if (null (vectorp ccl-program-vector))
-      (setq ccl-program-vector (make-vector 8192 0)))
-  (setq ccl-loop-head nil ccl-breaks nil)
-  (setq ccl-current-ic 0)
-
-  ;; The first element is the buffer magnification.
-  (ccl-embed-data (car ccl-program))
-
-  ;; The second element is the address of the start CCL code for
-  ;; processing end of input buffer (we call it eof-processor).  We
-  ;; set it later.
-  (ccl-increment-ic 1)
-
-  ;; Compile the main body of the CCL program.
-  (ccl-compile-1 (car (cdr ccl-program)))
-
-  ;; Embed the address of eof-processor.
-  (ccl-embed-data ccl-current-ic 1)
-
-  ;; Then compile eof-processor.
-  (if (nth 2 ccl-program)
-      (ccl-compile-1 (nth 2 ccl-program)))
-
-  ;; At last, embed termination code.
-  (ccl-embed-code 'end 0 0)
-
-  (let ((vec (make-vector ccl-current-ic 0))
-	(i 0))
-    (while (< i ccl-current-ic)
-      (aset vec i (aref ccl-program-vector i))
-      (setq i (1+ i)))
-    vec))
-
-;; Signal syntax error.
-(defun ccl-syntax-error (cmd)
-  (error "CCL: Syntax error: %s" cmd))
-
-;; Check if ARG is a valid CCL register.
-(defun ccl-check-register (arg cmd)
-  (if (get arg 'ccl-register-number)
-      arg
-    (error "CCL: Invalid register %s in %s." arg cmd)))
-
-;; Check if ARG is a valid CCL command.
-(defun ccl-check-compile-function (arg cmd)
-  (or (get arg 'ccl-compile-function)
-      (error "CCL: Invalid command: %s" cmd)))
-
-;; In the following code, most ccl-compile-XXXX functions return t if
-;; they end with unconditional jump, else return nil.
-
-;; Compile CCL-BLOCK (see the syntax above).
-(defun ccl-compile-1 (ccl-block)
-  (let (unconditional-jump
-	cmd)
-    (if (or (integer-or-char-p ccl-block)
-	    (stringp ccl-block)
-	    (and ccl-block (symbolp (car ccl-block))))
-	;; This block consists of single statement.
-	(setq ccl-block (list ccl-block)))
-
-    ;; Now CCL-BLOCK is a list of statements.  Compile them one by
-    ;; one.
-    (while ccl-block
-      (setq cmd (car ccl-block))
-      (setq unconditional-jump
-	    (cond ((integer-or-char-p cmd)
-		   ;; SET statement for the register 0.
-		   (ccl-compile-set (list 'r0 '= cmd)))
-
-		  ((stringp cmd)
-		   ;; WRITE statement of string argument.
-		   (ccl-compile-write-string cmd))
-
-		  ((listp cmd)
-		   ;; The other statements.
-		   (cond ((eq (nth 1 cmd) '=)
-			  ;; SET statement of the form `(REG = EXPRESSION)'.
-			  (ccl-compile-set cmd))
-
-			 ((and (symbolp (nth 1 cmd))
-			       (get (nth 1 cmd) 'ccl-self-arith-code))
-			  ;; SET statement with an assignment operation.
-			  (ccl-compile-self-set cmd))
-
-			 (t
-			  (funcall (ccl-check-compile-function (car cmd) cmd)
-				   cmd))))
-
-		  (t
-		   (ccl-syntax-error cmd))))
-      (setq ccl-block (cdr ccl-block)))
-    unconditional-jump))
-
-(defconst ccl-max-short-const (ash 1 19))
-(defconst ccl-min-short-const (ash -1 19))
-
-;; Compile SET statement.
-(defun ccl-compile-set (cmd)
-  (let ((rrr (ccl-check-register (car cmd) cmd))
-	(right (nth 2 cmd)))
-    (cond ((listp right)
-	   ;; CMD has the form `(RRR = (XXX OP YYY))'.
-	   (ccl-compile-expression rrr right))
-
-	  ((integer-or-char-p right)
-	   ;; CMD has the form `(RRR = integer)'.
-	   (if (and (<= right ccl-max-short-const)
-		    (>= right ccl-min-short-const))
-	       (ccl-embed-code 'set-short-const rrr right)
-	     (ccl-embed-code 'set-const rrr 0)
-	     (ccl-embed-data right)))
-
-	  (t
-	   ;; CMD has the form `(RRR = rrr [ array ])'.
-	   (ccl-check-register right cmd)
-	   (let ((ary (nth 3 cmd)))
-	     (if (vectorp ary)
-		 (let ((i 0) (len (length ary)))
-		   (ccl-embed-code 'set-array rrr len right)
-		   (while (< i len)
-		     (ccl-embed-data (aref ary i))
-		     (setq i (1+ i))))
-	       (ccl-embed-code 'set-register rrr 0 right))))))
-  nil)
-
-;; Compile SET statement with ASSIGNMENT_OPERATOR.
-(defun ccl-compile-self-set (cmd)
-  (let ((rrr (ccl-check-register (car cmd) cmd))
-	(right (nth 2 cmd)))
-    (if (listp right)
-	;; CMD has the form `(RRR ASSIGN_OP (XXX OP YYY))', compile
-	;; the right hand part as `(r7 = (XXX OP YYY))' (note: the
-	;; register 7 can be used for storing temporary value).
-	(progn
-	  (ccl-compile-expression 'r7 right)
-	  (setq right 'r7)))
-    ;; Now CMD has the form `(RRR ASSIGN_OP ARG)'.  Compile it as
-    ;; `(RRR = (RRR OP ARG))'.
-    (ccl-compile-expression
-     rrr
-     (list rrr (intern (substring (symbol-name (nth 1 cmd)) 0 -1)) right)))
-  nil)
-
-;; Compile SET statement of the form `(RRR = EXPR)'.
-(defun ccl-compile-expression (rrr expr)
-  (let ((left (car expr))
-	(op (get (nth 1 expr) 'ccl-arith-code))
-	(right (nth 2 expr)))
-    (if (listp left)
-	(progn
-	  ;; EXPR has the form `((EXPR2 OP2 ARG) OP RIGHT)'.  Compile
-	  ;; the first term as `(r7 = (EXPR2 OP2 ARG)).'
-	  (ccl-compile-expression 'r7 left)
-	  (setq left 'r7)))
-
-    ;; Now EXPR has the form (LEFT OP RIGHT).
-    (if (and (eq rrr left)
-	     (< op (length ccl-assign-arith-table)))
-	;; Compile this SET statement as `(RRR OP= RIGHT)'.
-	(if (integer-or-char-p right)
-	    (progn
-	      (ccl-embed-code 'set-assign-expr-const rrr (ash op 3) 'r0)
-	      (ccl-embed-data right))
-	  (ccl-check-register right expr)
-	  (ccl-embed-code 'set-assign-expr-register rrr (ash op 3) right))
-
-      ;; Compile this SET statement as `(RRR = (LEFT OP RIGHT))'.
-      (if (integer-or-char-p right)
-	  (progn
-	    (ccl-embed-code 'set-expr-const rrr (ash op 3) left)
-	    (ccl-embed-data right))
-	(ccl-check-register right expr)
-	(ccl-embed-code 'set-expr-register
-			rrr
-			(logior (ash op 3) (get right 'ccl-register-number))
-			left)))))
-
-;; Compile WRITE statement with string argument.
-(defun ccl-compile-write-string (str)
-  (setq str (encode-coding-string str 'binary))
-  (let ((len (length str)))
-    (ccl-embed-code 'write-const-string 1 len)
-    (ccl-embed-string len str))
-  nil)
-
-;; Compile IF statement of the form `(if CONDITION TRUE-PART FALSE-PART)'.
-;; If READ-FLAG is non-nil, this statement has the form
-;; `(read-if (REG OPERATOR ARG) TRUE-PART FALSE-PART)'.
-(defun ccl-compile-if (cmd &optional read-flag)
-  (if (and (/= (length cmd) 3) (/= (length cmd) 4))
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (let ((condition (nth 1 cmd))
-	(true-cmds (nth 2 cmd))
-	(false-cmds (nth 3 cmd))
-	jump-cond-address)
-    (if (and (listp condition)
-	     (listp (car condition)))
-	;; If CONDITION is a nested expression, the inner expression
-	;; should be compiled at first as SET statement, i.e.:
-	;; `(if ((X OP2 Y) OP Z) ...)' is compiled into two statements:
-	;; `(r7 = (X OP2 Y)) (if (r7 OP Z) ...)'.
-	(progn
-	  (ccl-compile-expression 'r7 (car condition))
-	  (setq condition (cons 'r7 (cdr condition)))
-	  (setq cmd (cons (car cmd)
-			  (cons condition (cdr (cdr cmd)))))))
-
-    (setq jump-cond-address ccl-current-ic)
-    ;; Compile CONDITION.
-    (if (symbolp condition)
-	;; CONDITION is a register.
-	(progn
-	  (ccl-check-register condition cmd)
-	  (ccl-embed-code 'jump-cond condition 0))
-      ;; CONDITION is a simple expression of the form (RRR OP ARG).
-      (let ((rrr (car condition))
-	    (op (get (nth 1 condition) 'ccl-arith-code))
-	    (arg (nth 2 condition)))
-	(ccl-check-register rrr cmd)
-	(if (integer-or-char-p arg)
-	    (progn
-	      (ccl-embed-code (if read-flag 'read-jump-cond-expr-const
-				'jump-cond-expr-const)
-			      rrr 0)
-	      (ccl-embed-data op)
-	      (ccl-embed-data arg))
-	  (ccl-check-register arg cmd)
-	  (ccl-embed-code (if read-flag 'read-jump-cond-expr-register 
-			    'jump-cond-expr-register)
-			  rrr 0)
-	  (ccl-embed-data op)
-	  (ccl-embed-data (get arg 'ccl-register-number)))))
-
-    ;; Compile TRUE-PART.
-    (let ((unconditional-jump (ccl-compile-1 true-cmds)))
-      (if (null false-cmds)
-	  ;; This is the place to jump to if condition is false.
-	  (progn
-	    (ccl-embed-current-address jump-cond-address)
-	    (setq unconditional-jump nil))
-	(let (end-true-part-address)
-	  (if (not unconditional-jump)
-	      (progn
-		;; If TRUE-PART does not end with unconditional jump, we
-		;; have to jump to the end of FALSE-PART from here.
-		(setq end-true-part-address ccl-current-ic)
-		(ccl-embed-code 'jump 0 0)))
-	  ;; This is the place to jump to if CONDITION is false.
-	  (ccl-embed-current-address jump-cond-address)
-	  ;; Compile FALSE-PART.
-	  (setq unconditional-jump
-		(and (ccl-compile-1 false-cmds) unconditional-jump))
-	  (if end-true-part-address
-	      ;; This is the place to jump to after the end of TRUE-PART.
-	      (ccl-embed-current-address end-true-part-address))))
-      unconditional-jump)))
-
-;; Compile BRANCH statement.
-(defun ccl-compile-branch (cmd)
-  (if (< (length cmd) 3)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (ccl-compile-branch-blocks 'branch
-			     (ccl-compile-branch-expression (nth 1 cmd) cmd)
-			     (cdr (cdr cmd))))
-
-;; Compile READ statement of the form `(read-branch EXPR BLOCK0 BLOCK1 ...)'.
-(defun ccl-compile-read-branch (cmd)
-  (if (< (length cmd) 3)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (ccl-compile-branch-blocks 'read-branch
-			     (ccl-compile-branch-expression (nth 1 cmd) cmd)
-			     (cdr (cdr cmd))))
-
-;; Compile EXPRESSION part of BRANCH statement and return register
-;; which holds a value of the expression.
-(defun ccl-compile-branch-expression (expr cmd)
-  (if (listp expr)
-      ;; EXPR has the form `(EXPR2 OP ARG)'.  Compile it as SET
-      ;; statement of the form `(r7 = (EXPR2 OP ARG))'.
-      (progn
-	(ccl-compile-expression 'r7 expr)
-	'r7)
-    (ccl-check-register expr cmd)))
-
-;; Compile BLOCKs of BRANCH statement.  CODE is 'branch or 'read-branch.
-;; REG is a register which holds a value of EXPRESSION part.  BLOCKs
-;; is a list of CCL-BLOCKs.
-(defun ccl-compile-branch-blocks (code rrr blocks)
-  (let ((branches (length blocks))
-	branch-idx
-	jump-table-head-address
-	empty-block-indexes
-	block-tail-addresses
-	block-unconditional-jump)
-    (ccl-embed-code code rrr branches)
-    (setq jump-table-head-address ccl-current-ic)
-    ;; The size of jump table is the number of blocks plus 1 (for the
-    ;; case RRR is out of range).
-    (ccl-increment-ic (1+ branches))
-    (setq empty-block-indexes (list branches))
-    ;; Compile each block.
-    (setq branch-idx 0)
-    (while blocks
-      (if (null (car blocks))
-	  ;; This block is empty.
-	  (setq empty-block-indexes (cons branch-idx empty-block-indexes)
-		block-unconditional-jump t)
-	;; This block is not empty.
-	(ccl-embed-data (- ccl-current-ic jump-table-head-address)
-			(+ jump-table-head-address branch-idx))
-	(setq block-unconditional-jump (ccl-compile-1 (car blocks)))
-	(if (not block-unconditional-jump)
-	    (progn
-	      ;; Jump address of the end of branches are embedded later.
-	      ;; For the moment, just remember where to embed them.
-	      (setq block-tail-addresses
-		    (cons ccl-current-ic block-tail-addresses))
-	      (ccl-embed-code 'jump 0 0))))
-      (setq branch-idx (1+ branch-idx))
-      (setq blocks (cdr blocks)))
-    (if (not block-unconditional-jump)
-	;; We don't need jump code at the end of the last block.
-	(setq block-tail-addresses (cdr block-tail-addresses)
-	      ccl-current-ic (1- ccl-current-ic)))
-    ;; Embed jump address at the tailing jump commands of blocks.
-    (while block-tail-addresses
-      (ccl-embed-current-address (car block-tail-addresses))
-      (setq block-tail-addresses (cdr block-tail-addresses)))
-    ;; For empty blocks, make entries in the jump table point directly here.
-    (while empty-block-indexes
-      (ccl-embed-data (- ccl-current-ic jump-table-head-address)
-		      (+ jump-table-head-address (car empty-block-indexes)))
-      (setq empty-block-indexes (cdr empty-block-indexes))))
-  ;; Branch command ends by unconditional jump if RRR is out of range.
-  nil)
-
-;; Compile LOOP statement.
-(defun ccl-compile-loop (cmd)
-  (if (< (length cmd) 2)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (let* ((ccl-loop-head ccl-current-ic)
-	 (ccl-breaks nil)
-	 unconditional-jump)
-    (setq cmd (cdr cmd))
-    (if cmd
-	(progn
-	  (setq unconditional-jump t)
-	  (while cmd
-	    (setq unconditional-jump
-		  (and (ccl-compile-1 (car cmd)) unconditional-jump))
-	    (setq cmd (cdr cmd)))
-	  (if (not ccl-breaks)
-	      unconditional-jump
-	    ;; Embed jump address for break statements encountered in
-	    ;; this loop.
-	    (while ccl-breaks
-	      (ccl-embed-current-address (car ccl-breaks))
-	      (setq ccl-breaks (cdr ccl-breaks))))
-	  nil))))
-
-;; Compile BREAK statement.
-(defun ccl-compile-break (cmd)
-  (if (/= (length cmd) 1)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (if (null ccl-loop-head)
-      (error "CCL: No outer loop: %s" cmd))
-  (setq ccl-breaks (cons ccl-current-ic ccl-breaks))
-  (ccl-embed-code 'jump 0 0)
-  t)
-
-;; Compile REPEAT statement.
-(defun ccl-compile-repeat (cmd)
-  (if (/= (length cmd) 1)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (if (null ccl-loop-head)
-      (error "CCL: No outer loop: %s" cmd))
-  (ccl-embed-code 'jump 0 ccl-loop-head)
-  t)
-
-;; Compile WRITE-REPEAT statement.
-(defun ccl-compile-write-repeat (cmd)
-  (if (/= (length cmd) 2)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (if (null ccl-loop-head)
-      (error "CCL: No outer loop: %s" cmd))
-  (let ((arg (nth 1 cmd)))
-    (cond ((integer-or-char-p arg)
-	   (ccl-embed-code 'write-const-jump 0 ccl-loop-head)
-	   (ccl-embed-data arg))
-	  ((stringp arg)
-	   (setq arg (encode-coding-string arg 'binary))
-	   (let ((len (length arg)))
-	     (ccl-embed-code 'write-string-jump 0 ccl-loop-head)
-	     (ccl-embed-data len)
-	     (ccl-embed-string len arg)))
-	  (t
-	   (ccl-check-register arg cmd)
-	   (ccl-embed-code 'write-register-jump arg ccl-loop-head))))
-  t)
-
-;; Compile WRITE-READ-REPEAT statement.
-(defun ccl-compile-write-read-repeat (cmd)
-  (if (or (< (length cmd) 2) (> (length cmd) 3))
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (if (null ccl-loop-head)
-      (error "CCL: No outer loop: %s" cmd))
-  (let ((rrr (ccl-check-register (nth 1 cmd) cmd))
-	(arg (nth 2 cmd)))
-    (cond ((null arg)
-	   (ccl-embed-code 'write-register-read-jump rrr ccl-loop-head))
-	  ((integer-or-char-p arg)
-	   (ccl-embed-code 'write-const-read-jump rrr arg ccl-loop-head))
-	  ((vectorp arg)
-	   (let ((len (length arg))
-		 (i 0))
-	     (ccl-embed-code 'write-array-read-jump rrr ccl-loop-head)
-	     (ccl-embed-data len)
-	     (while (< i len)
-	       (ccl-embed-data (aref arg i))
-	       (setq i (1+ i)))))
-	  (t
-	   (error "CCL: Invalid argument %s: %s" arg cmd)))
-    (ccl-embed-code 'read-jump rrr ccl-loop-head))
-  t)
-			    
-;; Compile READ statement.
-(defun ccl-compile-read (cmd)
-  (if (< (length cmd) 2)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (let* ((args (cdr cmd))
-	 (i (1- (length args))))
-    (while args
-      (let ((rrr (ccl-check-register (car args) cmd)))
-	(ccl-embed-code 'read-register rrr i)
-	(setq args (cdr args) i (1- i)))))
-  nil)
-
-;; Compile READ-IF statement.
-(defun ccl-compile-read-if (cmd)
-  (ccl-compile-if cmd 'read))
-
-;; Compile WRITE statement.
-(defun ccl-compile-write (cmd)
-  (if (< (length cmd) 2)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (let ((rrr (nth 1 cmd)))
-    (cond ((integer-or-char-p rrr)
-	   (ccl-embed-code 'write-const-string 0 rrr))
-	  ((stringp rrr)
-	   (ccl-compile-write-string rrr))
-	  ((and (symbolp rrr) (vectorp (nth 2 cmd)))
-	   (ccl-check-register rrr cmd)
-	   ;; CMD has the form `(write REG ARRAY)'.
-	   (let* ((arg (nth 2 cmd))
-		  (len (length arg))
-		  (i 0))
-	     (ccl-embed-code 'write-array rrr len)
-	     (while (< i len)
-	       (if (not (integer-or-char-p (aref arg i)))
-		   (error "CCL: Invalid argument %s: %s" arg cmd))
-	       (ccl-embed-data (aref arg i))
-	       (setq i (1+ i)))))
-
-	  ((symbolp rrr)
-	   ;; CMD has the form `(write REG ...)'.
-	   (let* ((args (cdr cmd))
-		  (i (1- (length args))))
-	     (while args
-	       (setq rrr (ccl-check-register (car args) cmd))
-	       (ccl-embed-code 'write-register rrr i)
-	       (setq args (cdr args) i (1- i)))))
-
-	  ((listp rrr)
-	   ;; CMD has the form `(write (LEFT OP RIGHT))'.
-	   (let ((left (car rrr))
-		 (op (get (nth 1 rrr) 'ccl-arith-code))
-		 (right (nth 2 rrr)))
-	     (if (listp left)
-		 (progn
-		   ;; RRR has the form `((EXPR OP2 ARG) OP RIGHT)'.
-		   ;; Compile the first term as `(r7 = (EXPR OP2 ARG))'.
-		   (ccl-compile-expression 'r7 left)
-		   (setq left 'r7)))
-	     ;; Now RRR has the form `(ARG OP RIGHT)'.
-	     (if (integer-or-char-p right)
-		 (progn
-		   (ccl-embed-code 'write-expr-const 0 (ash op 3) left)
-		   (ccl-embed-data right))
-	       (ccl-check-register right rrr)
-	       (ccl-embed-code 'write-expr-register 0
-			       (logior (ash op 3)
-				       (get right 'ccl-register-number))))))
-
-	  (t
-	   (error "CCL: Invalid argument: %s" cmd))))
-  nil)
-
-;; Compile CALL statement.
-(defun ccl-compile-call (cmd)
-  (if (/= (length cmd) 2)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (if (not (symbolp (nth 1 cmd)))
-      (error "CCL: Subroutine should be a symbol: %s" cmd))
-  (ccl-embed-code 'call 1 0)
-  (ccl-embed-symbol (nth 1 cmd) 'ccl-program-idx)
-  nil)
-
-;; Compile END statement.
-(defun ccl-compile-end (cmd)
-  (if (/= (length cmd) 1)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (ccl-embed-code 'end 0 0)
-  t)
-
-;; Compile read-multibyte-character
-(defun ccl-compile-read-multibyte-character (cmd)
-  (if (/= (length cmd) 3)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (let ((RRR (nth 1 cmd))
-	(rrr (nth 2 cmd)))
-    (ccl-check-register rrr cmd)
-    (ccl-check-register RRR cmd)
-    (ccl-embed-extended-command 'read-multibyte-character rrr RRR 0))
-  nil)
-
-;; Compile write-multibyte-character
-(defun ccl-compile-write-multibyte-character (cmd)
-  (if (/= (length cmd) 3)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (let ((RRR (nth 1 cmd))
-	(rrr (nth 2 cmd)))
-    (ccl-check-register rrr cmd)
-    (ccl-check-register RRR cmd)
-    (ccl-embed-extended-command 'write-multibyte-character rrr RRR 0))
-  nil)
-
-;; Compile translate-character
-(defun ccl-compile-translate-character (cmd)
-  (if (/= (length cmd) 4)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (let ((Rrr (nth 1 cmd))
-	(RRR (nth 2 cmd))
-	(rrr (nth 3 cmd)))
-    (ccl-check-register rrr cmd)
-    (ccl-check-register RRR cmd)
-    (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
-	   (ccl-embed-extended-command 'translate-character-const-tbl
-				       rrr RRR 0)
-	   (ccl-embed-symbol Rrr 'translation-table-id))
-	  (t
-	   (ccl-check-register Rrr cmd)
-	   (ccl-embed-extended-command 'translate-character rrr RRR Rrr))))
-  nil)
-
-;; Compile mule-to-unicode
-(defun ccl-compile-mule-to-unicode (cmd)
-  (if (/= (length cmd) 3)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (let ((RRR (nth 1 cmd))
-	(rrr (nth 2 cmd)))
-    (ccl-check-register RRR cmd)
-    (ccl-check-register rrr cmd)
-    (ccl-embed-extended-command 'mule-to-unicode RRR rrr 0))
-  nil)
-
-;; Given a Unicode code point in register rrr, write the charset ID of the
-;; corresponding character in RRR, and the Mule-CCL form of its code in rrr.
-(defun ccl-compile-unicode-to-mule (cmd)
-  (if (/= (length cmd) 3)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (let ((rrr (nth 1 cmd))
-	(RRR (nth 2 cmd)))
-    (ccl-check-register rrr cmd)
-    (ccl-check-register RRR cmd)
-    (ccl-embed-extended-command 'unicode-to-mule rrr RRR 0))
-  nil)
-
-;; Compile lookup-integer
-(defun ccl-compile-lookup-integer (cmd)
-  (if (/= (length cmd) 4)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (let ((Rrr (nth 1 cmd))
-	(RRR (nth 2 cmd))
-	(rrr (nth 3 cmd)))
-    (ccl-check-register RRR cmd)
-    (ccl-check-register rrr cmd)
-    (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
-	   (ccl-embed-extended-command 'lookup-int-const-tbl
-				       rrr RRR 0)
-	   (ccl-embed-symbol Rrr 'translation-hash-table-id))
-	  (t
-	   (error "CCL: non-constant table: %s" cmd)
-	   ;; not implemented:
-	   (ccl-check-register Rrr cmd)
-	   (ccl-embed-extended-command 'lookup-int rrr RRR 0))))
-  nil)
-
-;; Compile lookup-character
-(defun ccl-compile-lookup-character (cmd)
-  (if (/= (length cmd) 4)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (let ((Rrr (nth 1 cmd))
-	(RRR (nth 2 cmd))
-	(rrr (nth 3 cmd)))
-    (ccl-check-register RRR cmd)
-    (ccl-check-register rrr cmd)
-    (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
-	   (ccl-embed-extended-command 'lookup-char-const-tbl
-				       rrr RRR 0)
-	   (ccl-embed-symbol Rrr 'translation-hash-table-id))
-	  (t
-	   (error "CCL: non-constant table: %s" cmd)
-	   ;; not implemented:
-	   (ccl-check-register Rrr cmd)
-	   (ccl-embed-extended-command 'lookup-char rrr RRR 0))))
-  nil)
-
-(defun ccl-compile-iterate-multiple-map (cmd)
-  (ccl-compile-multiple-map-function 'iterate-multiple-map cmd)
-  nil)
-
-(defun ccl-compile-map-multiple (cmd)
-  (if (/= (length cmd) 4)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (let (func arg)
-    (setq func
-	  (lambda (arg mp)
-	    (let ((len 0) result add)
-	      (while arg
-		(if (consp (car arg))
-		    (setq add (funcall func (car arg) t)
-			  result (append result add)
-			  add (+ (- (car add)) 1))
-		  (setq result
-			(append result
-				(list (car arg)))
-			add 1))
-		(setq arg (cdr arg)
-		      len (+ len add)))
-	      (if mp 
-		  (cons (- len) result)
-		result))))
-    (setq arg (append (list (nth 0 cmd) (nth 1 cmd) (nth 2 cmd))
-		      (funcall func (nth 3 cmd) nil)))
-    (ccl-compile-multiple-map-function 'map-multiple arg))
-  nil)
-
-(defun ccl-compile-map-single (cmd)
-  (if (/= (length cmd) 4)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (let ((RRR (nth 1 cmd))
-	(rrr (nth 2 cmd))
-	(map (nth 3 cmd)))
-    (ccl-check-register rrr cmd)
-    (ccl-check-register RRR cmd)
-    (ccl-embed-extended-command 'map-single rrr RRR 0)
-    (cond ((symbolp map)
-	   (if (get map 'code-conversion-map)
-	       (ccl-embed-symbol map 'code-conversion-map-id)
-	     (error "CCL: Invalid map: %s" map)))
-	  (t
-	   (error "CCL: Invalid type of arguments: %s" cmd))))
-  nil)
-
-(defun ccl-compile-multiple-map-function (command cmd)
-  (if (< (length cmd) 4)
-      (error "CCL: Invalid number of arguments: %s" cmd))
-  (let ((RRR (nth 1 cmd))
-	(rrr (nth 2 cmd))
-	(args (nthcdr 3 cmd))
-	map)
-    (ccl-check-register rrr cmd)
-    (ccl-check-register RRR cmd)
-    (ccl-embed-extended-command command rrr RRR 0)
-    (ccl-embed-data (length args))
-    (while args
-      (setq map (car args))
-      (cond ((symbolp map)
-	     (if (get map 'code-conversion-map)
-		 (ccl-embed-symbol map 'code-conversion-map-id)
-	       (error "CCL: Invalid map: %s" map)))
-	    ((numberp map)
-	     (ccl-embed-data map))
-	    (t
-	     (error "CCL: Invalid type of arguments: %s" cmd)))
-      (setq args (cdr args)))))
-
-
-;;; CCL dump staffs
-
-;; To avoid byte-compiler warning.
-(defvar ccl-code)
-
-;;;###autoload
-(defun ccl-dump (ccl-code)
-  "Disassemble compiled CCL-CODE."
-  (let ((len (length ccl-code))
-	(buffer-mag (aref ccl-code 0)))
-    (cond ((= buffer-mag 0)
-	   (insert "Don't output anything.\n"))
-	  ((= buffer-mag 1)
-	   (insert "Out-buffer must be as large as in-buffer.\n"))
-	  (t
-	   (insert
-	    (format "Out-buffer must be %d times bigger than in-buffer.\n"
-		    buffer-mag))))
-    (insert "Main-body:\n")
-    (setq ccl-current-ic 2)
-    (if (> (aref ccl-code 1) 0)
-	(progn
-	  (while (< ccl-current-ic (aref ccl-code 1))
-	    (ccl-dump-1))
-	  (insert "At EOF:\n")))
-    (while (< ccl-current-ic len)
-      (ccl-dump-1))
-    ))
-
-;; Return a CCL code in `ccl-code' at `ccl-current-ic'.
-(defun ccl-get-next-code ()
-  (prog1
-      (aref ccl-code ccl-current-ic)
-    (setq ccl-current-ic (1+ ccl-current-ic))))
-
-(defun ccl-dump-1 ()
-  (let* ((code (ccl-get-next-code))
-	 (cmd (aref ccl-code-table (logand code 31)))
-	 (rrr (ash (logand code 255) -5))
-	 (cc (ash code -8)))
-    (insert (format "%5d:[%s] " (1- ccl-current-ic) cmd))
-    (funcall (get cmd 'ccl-dump-function) rrr cc))) 
-
-(defun ccl-dump-set-register (rrr cc)
-  (insert (format "r%d = r%d\n" rrr cc)))
-
-(defun ccl-dump-set-short-const (rrr cc)
-  (insert (format "r%d = %d\n" rrr cc)))
-
-(defun ccl-dump-set-const (rrr ignore)
-  (insert (format "r%d = %d\n" rrr (ccl-get-next-code))))
-
-(defun ccl-dump-set-array (rrr cc)
-  (let ((rrr2 (logand cc 7))
-	(len (ash cc -3))
-	(i 0))
-    (insert (format "r%d = array[r%d] of length %d\n\t"
-		    rrr rrr2 len))
-    (while (< i len)
-      (insert (format "%d " (ccl-get-next-code)))
-      (setq i (1+ i)))
-    (insert "\n")))
-
-(defun ccl-dump-jump (ignore cc &optional address)
-  (insert (format "jump to %d(" (+ (or address ccl-current-ic) cc)))
-  (if (>= cc 0)
-      (insert "+"))
-  (insert (format "%d)\n" (1+ cc))))
-
-(defun ccl-dump-jump-cond (rrr cc)
-  (insert (format "if (r%d == 0), " rrr))
-  (ccl-dump-jump nil cc))
-
-(defun ccl-dump-write-register-jump (rrr cc)
-  (insert (format "write r%d, " rrr))
-  (ccl-dump-jump nil cc))
-
-(defun ccl-dump-write-register-read-jump (rrr cc)
-  (insert (format "write r%d, read r%d, " rrr rrr))
-  (ccl-dump-jump nil cc)
-  (ccl-get-next-code)			; Skip dummy READ-JUMP
-  )
-
-(defun ccl-extract-arith-op (cc)
-  (aref ccl-arith-table (ash cc -6)))
-
-(defun ccl-dump-write-expr-const (ignore cc)
-  (insert (format "write (r%d %s %d)\n"
-		  (logand cc 7)
-		  (ccl-extract-arith-op cc)
-		  (ccl-get-next-code))))
-
-(defun ccl-dump-write-expr-register (ignore cc)
-  (insert (format "write (r%d %s r%d)\n"
-		  (logand cc 7)
-		  (ccl-extract-arith-op cc)
-		  (logand (ash cc -3) 7))))
-
-(defun ccl-dump-insert-char (cc)
-  (cond ((= cc ?\t) (insert " \"^I\""))
-	((= cc ?\n) (insert " \"^J\""))
-	(t (insert (format " \"%c\"" cc)))))
-
-(defun ccl-dump-write-const-jump (ignore cc)
-  (let ((address ccl-current-ic))
-    (insert "write char")
-    (ccl-dump-insert-char (ccl-get-next-code))
-    (insert ", ")
-    (ccl-dump-jump nil cc address)))
-
-(defun ccl-dump-write-const-read-jump (rrr cc)
-  (let ((address ccl-current-ic))
-    (insert "write char")
-    (ccl-dump-insert-char (ccl-get-next-code))
-    (insert (format ", read r%d, " rrr))
-    (ccl-dump-jump cc address)
-    (ccl-get-next-code)			; Skip dummy READ-JUMP
-    ))
-
-(defun ccl-dump-write-string-jump (ignore cc)
-  (let ((address ccl-current-ic)
-	(len (ccl-get-next-code))
-	(i 0))
-    (insert "write \"")
-    (while (< i len)
-      (let ((code (ccl-get-next-code)))
-	(insert (ash code -16))
-	(if (< (1+ i) len) (insert (logand (ash code -8) 255)))
-	(if (< (+ i 2) len) (insert (logand code 255))))
-      (setq i (+ i 3)))
-    (insert "\", ")
-    (ccl-dump-jump nil cc address)))
-
-(defun ccl-dump-write-array-read-jump (rrr cc)
-  (let ((address ccl-current-ic)
-	(len (ccl-get-next-code))
-	(i 0))
-    (insert (format "write array[r%d] of length %d,\n\t" rrr len))
-    (while (< i len)
-      (ccl-dump-insert-char (ccl-get-next-code))
-      (setq i (1+ i)))
-    (insert (format "\n\tthen read r%d, " rrr))
-    (ccl-dump-jump nil cc address)
-    (ccl-get-next-code)			; Skip dummy READ-JUMP.
-    ))
-
-(defun ccl-dump-read-jump (rrr cc)
-  (insert (format "read r%d, " rrr))
-  (ccl-dump-jump nil cc))
-
-(defun ccl-dump-branch (rrr len)
-  (let ((jump-table-head ccl-current-ic)
-	(i 0))
-    (insert (format "jump to array[r%d] of length %d\n\t" rrr len))
-    (while (<= i len)
-      (insert (format "%d " (+ jump-table-head (ccl-get-next-code))))
-      (setq i (1+ i)))
-    (insert "\n")))
-
-(defun ccl-dump-read-register (rrr cc)
-  (insert (format "read r%d (%d remaining)\n" rrr cc)))
-
-(defun ccl-dump-read-branch (rrr len)
-  (insert (format "read r%d, " rrr))
-  (ccl-dump-branch rrr len))
-
-(defun ccl-dump-write-register (rrr cc)
-  (insert (format "write r%d (%d remaining)\n" rrr cc)))
-
-(defun ccl-dump-call (ignore cc)
-  (insert (format "call subroutine #%d\n" cc)))
-
-(defun ccl-dump-write-const-string (rrr cc)
-  (if (= rrr 0)
-      (progn
-	(insert "write char")
-	(ccl-dump-insert-char cc)
-	(newline))
-    (let ((len cc)
-	  (i 0))
-      (insert "write \"")
-      (while (< i len)
-	(let ((code (ccl-get-next-code)))
-	  (insert (format "%c" (lsh code -16)))
-	  (if (< (1+ i) len)
-	      (insert (format "%c" (logand (lsh code -8) 255))))
-	  (if (< (+ i 2) len)
-	      (insert (format "%c" (logand code 255))))
-	  (setq i (+ i 3))))
-      (insert "\"\n"))))
-
-(defun ccl-dump-write-array (rrr cc)
-  (let ((i 0))
-    (insert (format "write array[r%d] of length %d\n\t" rrr cc))
-    (while (< i cc)
-      (ccl-dump-insert-char (ccl-get-next-code))
-      (setq i (1+ i)))
-    (insert "\n")))
-
-(defun ccl-dump-end (&rest ignore)
-  (insert "end\n"))
-
-(defun ccl-dump-set-assign-expr-const (rrr cc)
-  (insert (format "r%d %s= %d\n"
-		  rrr
-		  (ccl-extract-arith-op cc)
-		  (ccl-get-next-code))))
-
-(defun ccl-dump-set-assign-expr-register (rrr cc)
-  (insert (format "r%d %s= r%d\n"
-		  rrr
-		  (ccl-extract-arith-op cc)
-		  (logand cc 7))))
-
-(defun ccl-dump-set-expr-const (rrr cc)
-  (insert (format "r%d = r%d %s %d\n"
-		  rrr
-		  (logand cc 7)
-		  (ccl-extract-arith-op cc)
-		  (ccl-get-next-code))))
-
-(defun ccl-dump-set-expr-register (rrr cc)
-  (insert (format "r%d = r%d %s r%d\n"
-		  rrr
-		  (logand cc 7)
-		  (ccl-extract-arith-op cc)
-		  (logand (ash cc -3) 7))))
-
-(defun ccl-dump-jump-cond-expr-const (rrr cc)
-  (let ((address ccl-current-ic))
-    (insert (format "if !(r%d %s %d), "
-		    rrr
-		    (aref ccl-arith-table (ccl-get-next-code))
-		    (ccl-get-next-code)))
-    (ccl-dump-jump nil cc address)))
-
-(defun ccl-dump-jump-cond-expr-register (rrr cc)
-  (let ((address ccl-current-ic))
-    (insert (format "if !(r%d %s r%d), "
-		    rrr
-		    (aref ccl-arith-table (ccl-get-next-code))
-		    (ccl-get-next-code)))
-    (ccl-dump-jump nil cc address)))
-
-(defun ccl-dump-read-jump-cond-expr-const (rrr cc)
-  (insert (format "read r%d, " rrr))
-  (ccl-dump-jump-cond-expr-const rrr cc))
-
-(defun ccl-dump-read-jump-cond-expr-register (rrr cc)
-  (insert (format "read r%d, " rrr))
-  (ccl-dump-jump-cond-expr-register rrr cc))
-
-(defun ccl-dump-binary (ccl-code)
-  (let ((len (length ccl-code))
-	(i 2))
-    (while (< i len)
-      (let ((code (aref ccl-code i))
-	    (j 27))
-	(while (>= j 0)
-	  (insert (if (= (logand code (ash 1 j)) 0) ?0 ?1))
-	  (setq j (1- j)))
-	(setq code (logand code 31))
-	(if (< code (length ccl-code-table))
-	    (insert (format ":%s" (aref ccl-code-table code))))
-	(insert "\n"))
-      (setq i (1+ i)))))
-
-(defun ccl-dump-ex-cmd (rrr cc)
-  (let* ((RRR (logand cc #x7))
-	 (Rrr (logand (ash cc -3) #x7))
-	 (ex-op (aref ccl-extended-code-table (logand (ash cc -6) #x3fff))))
-    (insert (format "<%s> " ex-op))
-    (funcall (get ex-op 'ccl-dump-function) rrr RRR Rrr)))
-
-(defun ccl-dump-read-multibyte-character (rrr RRR Rrr)
-  (insert (format "read-multibyte-character r%d r%d\n" RRR rrr)))
-
-(defun ccl-dump-write-multibyte-character (rrr RRR Rrr)
-  (insert (format "write-multibyte-character r%d r%d\n" RRR rrr)))
-
-(defun ccl-dump-translate-character (rrr RRR Rrr)
-  (insert (format "translation table(r%d) r%d r%d\n" Rrr RRR rrr)))
-
-(defun ccl-dump-translate-character-const-tbl (rrr RRR Rrr)
-  (let ((tbl (ccl-get-next-code)))
-    (insert (format "translation table(%S) r%d r%d\n" tbl RRR rrr))))
-
-(defun ccl-dump-lookup-int-const-tbl (rrr RRR Rrr)
-  (let ((tbl (ccl-get-next-code)))
-    (insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr))))
-
-(defun ccl-dump-lookup-char-const-tbl (rrr RRR Rrr)
-  (let ((tbl (ccl-get-next-code)))
-    (insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr))))
-
-(defun ccl-dump-mule-to-unicode (rrr RRR Rrr)
-  (insert (format "change chars in r%d and r%d to unicode\n" RRR rrr)))
-
-(defun ccl-dump-unicode-to-mule (rrr RRR Rrr)
-  (insert (format "converter UCS code %d to a Mule char\n" rrr)))
-
-(defun ccl-dump-iterate-multiple-map (rrr RRR Rrr)
-  (let ((notbl (ccl-get-next-code))
-	(i 0) id)
-    (insert (format "iterate-multiple-map r%d r%d\n" RRR rrr))
-    (insert (format "\tnumber of maps is %d .\n\t [" notbl))
-    (while (< i notbl)
-      (setq id (ccl-get-next-code))
-      (insert (format "%S" id))
-      (setq i (1+ i)))
-    (insert "]\n")))
-
-(defun ccl-dump-map-multiple (rrr RRR Rrr)
-  (let ((notbl (ccl-get-next-code))
-	(i 0) id)
-    (insert (format "map-multiple r%d r%d\n" RRR rrr))
-    (insert (format "\tnumber of maps and separators is %d\n\t [" notbl))
-    (while (< i notbl)
-      (setq id (ccl-get-next-code))
-      (if (= id -1)
-	  (insert "]\n\t [")
-	(insert (format "%S " id)))
-      (setq i (1+ i)))
-    (insert "]\n")))
-
-(defun ccl-dump-map-single (rrr RRR Rrr)
-  (let ((id (ccl-get-next-code)))
-    (insert (format "map-single r%d r%d map(%S)\n" RRR rrr id))))
-
-
-;; CCL emulation staffs 
-
-;; Not yet implemented.
-
-;; Auto-loaded functions.
-
-;;;###autoload
-(defmacro declare-ccl-program (name &optional vector)
-  "Declare NAME as a name of CCL program.
-
-This macro exists for backward compatibility.  In the old version of
-Emacs, to compile a CCL program which calls another CCL program not
-yet defined, it must be declared as a CCL program in advance.  But,
-now CCL program names are resolved not at compile time but before
-execution.
-
-Optional arg VECTOR is a compiled CCL code of the CCL program."
-  `(put ',name 'ccl-program-idx (register-ccl-program ',name ,vector)))
-
-;;;###autoload
-(defmacro define-ccl-program (name ccl-program &optional doc)
-  "Set NAME to be the compiled CCL code of CCL-PROGRAM.
-
-CCL-PROGRAM has this form:
-	(BUFFER_MAGNIFICATION
-	 CCL_MAIN_CODE
-	 [ CCL_EOF_CODE ])
-
-BUFFER_MAGNIFICATION is an integer value specifying the approximate
-output buffer magnification size compared with the bytes of input data
-text.  If the value is zero, the CCL program can't execute `read' and
-`write' commands.
-
-CCL_MAIN_CODE and CCL_EOF_CODE are CCL program codes.  CCL_MAIN_CODE is
-executed first.  If there are no more input data when a `read' command is
-executed in CCL_MAIN_CODE, CCL_EOF_CODE is executed.  If CCL_MAIN_CODE is
-terminated, CCL_EOF_CODE is not executed.
-
-Here's the syntax of CCL program code in BNF notation.  The lines starting
-with two semicolons (and optional leading spaces) describe the semantics.
-
-CCL_MAIN_CODE := CCL_BLOCK
-
-CCL_EOF_CODE := CCL_BLOCK
-
-CCL_BLOCK := STATEMENT | (STATEMENT [STATEMENT ...])
-
-STATEMENT :=
-	SET | IF | BRANCH | LOOP | REPEAT | BREAK | READ | WRITE | CALL
-	| TRANSLATE | MAP | LOOKUP | END
-
-SET :=	(REG = EXPRESSION)
-	| (REG ASSIGNMENT_OPERATOR EXPRESSION)
-	;; The following form is the same as (r0 = INT-OR-CHAR).
-	| INT-OR-CHAR
-
-EXPRESSION := ARG | (EXPRESSION OPERATOR ARG)
-
-;; Evaluate EXPRESSION.  If the result is nonzero, execute
-;; CCL_BLOCK_0.  Otherwise, execute CCL_BLOCK_1.
-IF :=	(if EXPRESSION CCL_BLOCK_0 [CCL_BLOCK_1])
-
-;; Evaluate EXPRESSION.  Provided that the result is N, execute
-;; CCL_BLOCK_N.
-BRANCH := (branch EXPRESSION CCL_BLOCK_0 [CCL_BLOCK_1 ...])
-
-;; Execute STATEMENTs until (break) or (end) is executed.
-LOOP := (loop STATEMENT [STATEMENT ...])
-
-;; Terminate the innermost loop.
-BREAK := (break)
-
-REPEAT :=
-	;; Jump to the head of the innermost loop.
-	(repeat)
-	;; Same as: ((write [REG | INT-OR-CHAR | string])
-	;;	     (repeat))
-	| (write-repeat [REG | INT-OR-CHAR | string])
-	;; Same as: ((write REG [ARRAY])
-	;;	     (read REG)
-	;;	     (repeat))
-	| (write-read-repeat REG [ARRAY])
-	;; Same as: ((write INT-OR-CHAR)
-	;;	     (read REG)
-	;;	     (repeat))
-	| (write-read-repeat REG INT-OR-CHAR)
-
-READ := ;; Set REG_0 to a byte read from the input text, set REG_1
-	;; to the next byte read, and so on. Note that \"byte\" here means
-	;; \"some octet from XEmacs' internal representation\", which may
-	;; not be that useful to you when non-ASCII characters are involved.
-        ;;
-        ;; Yes, this is exactly the opposite of what (write ...) does.
-	(read REG_0 [REG_1 ...])
-	;; Same as: ((read REG)
-	;;	     (if (REG OPERATOR ARG) CCL_BLOCK_0 CCL_BLOCK_1))
-	| (read-if (REG OPERATOR ARG) CCL_BLOCK_0 [CCL_BLOCK_1])
-	;; Same as: ((read REG)
-	;;	     (branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...]))
-	| (read-branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...])
-	;; Read a character from the input text, splitting it into its
-	;; multibyte representation. Set REG_0 to the charset ID of the
-	;; character, and set REG_1 to the code point of the character.  If
-	;; the dimension of charset is two, set REG_1 to ((CODE0 << 7) |
-	;; CODE1), where CODE0 is the first code point and CODE1 is the
-	;; second code point.
-	| (read-multibyte-character REG_0 REG_1)
-
-WRITE :=
-	;; Write REG_0, REG_1, ... to the output buffer.  If REG_N is
-	;; a multibyte character, write the corresponding multibyte
-	;; representation.
-	(write REG_0 [REG_1 ...])
-	;; Same as: ((r7 = EXPRESSION)
-	;;	     (write r7))
-	| (write EXPRESSION)
-	;; Write the value of `INT-OR-CHAR' to the output buffer.  If it
-	;; is a multibyte character, write the corresponding multibyte
-	;; representation.
-	| (write INT-OR-CHAR)
-	;; Write the byte sequence of `string' as is to the output
-	;; buffer.  It is encoded by binary coding system, thus,
-        ;; by this operation, you cannot write multibyte string
-        ;; as it is.
-	| (write string)
-	;; Same as: (write string)
-	| string
-	;; Provided that the value of REG is N, write Nth element of
-	;; ARRAY to the output buffer.  If it is a multibyte
-	;; character, write the corresponding multibyte
-	;; representation.
-	| (write REG ARRAY)
-	;; Write a multibyte representation of a character whose
-	;; charset ID is REG_0 and code point is REG_1.  If the
-	;; dimension of the charset is two, REG_1 should be ((CODE0 <<
-	;; 7) | CODE1), where CODE0 is the first code point and CODE1
-	;; is the second code point of the character.
-	| (write-multibyte-character REG_0 REG_1)
-
-;; Call CCL program whose name is ccl-program-name.
-CALL := (call ccl-program-name)
-
-TRANSLATE := ;; Not implemented under XEmacs, except mule-to-unicode and
-	     ;; unicode-to-mule.
-	     (translate-character REG(table) REG(charset) REG(codepoint)) 
-	     | (translate-character SYMBOL REG(charset) REG(codepoint)) 
-	     | (mule-to-unicode REG(charset) REG(codepoint))
-	     | (unicode-to-mule REG(unicode,code) REG(CHARSET))
-
-LOOKUP :=
-	(lookup-character SYMBOL REG(charset) REG(codepoint))
-	| (lookup-integer SYMBOL REG(integer))
-        ;; SYMBOL refers to a table defined by `define-hash-translation-table'.
-
-MAP :=
-     (iterate-multiple-map REG REG MAP-IDs)
-     | (map-multiple REG REG (MAP-SET))
-     | (map-single REG REG MAP-ID)
-MAP-IDs := MAP-ID ...
-MAP-SET := MAP-IDs | (MAP-IDs) MAP-SET
-MAP-ID := INT-OR-CHAR
-
-;; Terminate the CCL program.
-END := (end)
-
-;; CCL registers. These can contain any integer value.  As r7 is used by the
-;; CCL interpreter itself, its value can change unexpectedly.
-REG := r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7
-
-ARG := REG | INT-OR-CHAR
-
-OPERATOR :=
-	;; Normal arithmetical operators (same meaning as C code).
-	+ | - | * | / | %
-
-	;; Bitwise operators (same meaning as C code)
-	| & | `|' | ^
-
-	;; Shifting operators (same meaning as C code)
-	| << | >>
-
-	;; (REG = ARG_0 <8 ARG_1) means:
-	;;	(REG = ((ARG_0 << 8) | ARG_1))
-	| <8
-
-	;; (REG = ARG_0 >8 ARG_1) means:
-	;;	((REG = (ARG_0 >> 8))
-	;;	 (r7 = (ARG_0 & 255)))
-	| >8
-
-	;; (REG = ARG_0 // ARG_1) means:
-	;;	((REG = (ARG_0 / ARG_1))
-	;;	 (r7 = (ARG_0 % ARG_1)))
-	| //
-
-	;; Normal comparing operators (same meaning as C code)
-	| < | > | == | <= | >= | !=
-
-	;; If ARG_0 and ARG_1 are higher and lower byte of Shift-JIS
-	;; code, and CHAR is the corresponding JISX0208 character,
-	;; (REG = ARG_0 de-sjis ARG_1) means:
-	;;	((REG = CODE0)
-	;;	 (r7 = CODE1))
-	;; where CODE0 is the first code point of CHAR, CODE1 is the
-	;; second code point of CHAR.
-	| de-sjis
-
-	;; If ARG_0 and ARG_1 are the first and second code point of
-	;; JISX0208 character CHAR, and SJIS is the correponding
-	;; Shift-JIS code,
-	;; (REG = ARG_0 en-sjis ARG_1) means:
-	;;	((REG = HIGH)
-	;;	 (r7 = LOW))
-	;; where HIGH is the higher byte of SJIS, LOW is the lower
-	;; byte of SJIS.
-	| en-sjis
-
-ASSIGNMENT_OPERATOR :=
-	;; Same meaning as C code
-	+= | -= | *= | /= | %= | &= | `|=' | ^= | <<= | >>=
-
-	;; (REG <8= ARG) is the same as:
-	;;	((REG <<= 8)
-	;;	 (REG |= ARG))
-	| <8= 
-
-	;; (REG >8= ARG) is the same as:
-	;;	((r7 = (REG & 255))
-	;;	 (REG >>= 8))
-
-	;; (REG //= ARG) is the same as:
-	;;	((r7 = (REG % ARG))
-	;;	 (REG /= ARG))
-	| //=
-
-ARRAY := `[' INT-OR-CHAR ... `]'
-
-INT-OR-CHAR := integer | character
-"
-  `(let ((prog ,(ccl-compile (eval ccl-program))))
-     (defconst ,name prog ,doc)
-     (put ',name 'ccl-program-idx (register-ccl-program ',name prog))
-     nil))
-
-;;;###autoload
-(defmacro check-ccl-program (ccl-program &optional name)
-  "Check validity of CCL-PROGRAM.
-If CCL-PROGRAM is a symbol denoting a CCL program, return
-CCL-PROGRAM, else return nil.
-If CCL-PROGRAM is a vector and optional arg NAME (symbol) is supplied,
-register CCL-PROGRAM by name NAME, and return NAME."
-  `(if (ccl-program-p ,ccl-program)
-       (if (vectorp ,ccl-program)
-	   (progn
-	     (register-ccl-program ,name ,ccl-program)
-	     ,name)
-	 ,ccl-program)))
-
-(provide 'ccl)
-
-;; ccl.el ends here
\ No newline at end of file
--- a/lisp/mule/mule-coding.el	Thu Jul 26 21:51:51 2007 +0000
+++ b/lisp/mule/mule-coding.el	Fri Jul 27 18:56:53 2007 +0000
@@ -29,7 +29,7 @@
 ;;; split off of mule.el and mostly moved to coding.el
 
 ;; Needed for make-8-bit-coding-system. 
-(eval-when-compile (require 'ccl "mule-ccl"))
+(eval-when-compile (require 'ccl))
 
 ;;; Code: