Mercurial > hg > xemacs-beta
view src/number-mp.c @ 5090:0ca81354c4c7
Further frame-geometry cleanups
-------------------- ChangeLog entries follow: --------------------
man/ChangeLog addition:
2010-03-03 Ben Wing <ben@xemacs.org>
* internals/internals.texi (Intro to Window and Frame Geometry):
* internals/internals.texi (The Paned Area):
* internals/internals.texi (The Displayable Area):
Update to make note of e.g. the fact that the bottom gutter is
actually above the minibuffer.
src/ChangeLog addition:
2010-03-03 Ben Wing <ben@xemacs.org>
* emacs.c:
* emacs.c (assert_equal_failed):
* lisp.h:
* lisp.h (assert_equal):
New fun assert_equal, asserting that two values == each other, and
printing out both values upon failure.
* frame-gtk.c (gtk_initialize_frame_size):
* frame-impl.h:
* frame-impl.h (FRAME_TOP_INTERNAL_BORDER_START):
* frame-impl.h (FRAME_BOTTOM_INTERNAL_BORDER_START):
* frame-impl.h (FRAME_LEFT_INTERNAL_BORDER_START):
* frame-impl.h (FRAME_PANED_TOP_EDGE):
* frame-impl.h (FRAME_NONPANED_SIZE):
* frame-x.c (x_initialize_frame_size):
* frame.c:
* gutter.c (get_gutter_coords):
* gutter.c (calculate_gutter_size):
* gutter.h:
* gutter.h (WINDOW_REAL_TOP_GUTTER_BOUNDS):
* gutter.h (FRAME_TOP_GUTTER_BOUNDS):
* input-method-xlib.c:
* input-method-xlib.c (XIM_SetGeometry):
* redisplay-output.c (clear_left_border):
* redisplay-output.c (clear_right_border):
* redisplay-output.c (redisplay_output_pixmap):
* redisplay-output.c (redisplay_clear_region):
* redisplay-output.c (redisplay_clear_top_of_window):
* redisplay-output.c (redisplay_clear_to_window_end):
* redisplay-xlike-inc.c (XLIKE_clear_frame):
* redisplay.c:
* redisplay.c (UPDATE_CACHE_RETURN):
* redisplay.c (pixel_to_glyph_translation):
* toolbar.c (update_frame_toolbars_geometry):
* window.c (Fwindow_pixel_edges):
Get rid of some redundant macros. Consistently use the
FRAME_TOP_*_START, FRAME_RIGHT_*_END, etc. format. Rename
FRAME_*_BORDER_* to FRAME_*_INTERNAL_BORDER_*. Comment out
FRAME_BOTTOM_* for gutters and the paned area due to the
uncertainty over where the paned area actually begins. (Eventually
we should probably move the gutters outside the minibuffer so that
the paned area is contiguous.) Use FRAME_PANED_* more often in the
code to make things clearer.
Update the diagram to show that the bottom gutter is inside the
minibuffer (!) and that there are "junk boxes" when you have left
and/or right gutters (dead boxes that are mistakenly left uncleared,
unlike the corresponding scrollbar dead boxes). Update the text
appropriately to cover the bottom gutter position, etc.
Rewrite gutter-geometry code to use the FRAME_*_GUTTER_* in place of
equivalent expressions referencing other frame elements, to make the
code more portable in case we move around the gutter location.
Cleanup FRAME_*_GUTTER_BOUNDS() in gutter.h.
Add some #### GEOM! comments where I think code is incorrect --
typically, it wasn't fixed up properly when the gutter was added.
Some cosmetic changes.
author | Ben Wing <ben@xemacs.org> |
---|---|
date | Wed, 03 Mar 2010 05:07:47 -0600 |
parents | 16112448d484 |
children | ba07c880114a |
line wrap: on
line source
/* Numeric types for XEmacs using the MP library. Copyright (C) 2004 Jerry James. This file is part of XEmacs. XEmacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. XEmacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with XEmacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02111-1301, USA. */ /* Synched up with: Not in FSF. */ #include <config.h> #include <limits.h> #include <math.h> #include "lisp.h" static MINT *bignum_bytesize, *bignum_long_sign_bit, *bignum_one, *bignum_two; MINT *bignum_zero, *intern_bignum; MINT *bignum_min_int, *bignum_max_int, *bignum_max_uint; MINT *bignum_min_long, *bignum_max_long, *bignum_max_ulong; short div_rem; char * bignum_to_string (bignum b, int base) { REGISTER unsigned int i; unsigned int bufsize = 128U, index = 0U; int sign; char *buffer = xnew_array (char, 128), *retval; MINT *quo = MP_ITOM (0); short rem; /* FIXME: signal something if base is < 2 or doesn't fit into a short. */ /* Save the sign for later */ sign = MP_MCMP (b, bignum_zero); if (sign == 0) { XREALLOC_ARRAY (buffer, char, 2); buffer[0] = '0'; buffer[1] = '\0'; return buffer; } /* Copy abs(b) into quo for destructive modification */ else if (sign < 0) MP_MSUB (bignum_zero, b, quo); else MP_MOVE (b, quo); quo = MP_ITOM (0); /* Loop over the digits of b (in BASE) and place each one into buffer */ for (i = 0U; MP_MCMP(quo, bignum_zero) > 0; i++) { MP_SDIV (quo, base, quo, &rem); if (index == bufsize) { bufsize <<= 1; XREALLOC_ARRAY (buffer, char, bufsize); } buffer[index++] = rem < 10 ? rem + '0' : rem - 10 + 'a'; } MP_MFREE (quo); /* Reverse the digits, maybe add a minus sign, and add a null terminator */ bufsize = index + (sign < 0 ? 1 : 0) + 1; retval = xnew_array (char, bufsize); if (sign < 0) { retval[0] = '-'; i = 1; } else i = 0; for (; i < bufsize - 1; i++) retval[i] = buffer[--index]; retval[bufsize - 1] = '\0'; xfree (buffer); return retval; } #define BIGNUM_TO_TYPE(type,accumtype) do { \ MP_MULT (b, quo, quo); \ for (i = 0U; i < sizeof(type); i++) \ { \ MP_SDIV (quo, 256, quo, &rem); \ retval |= ((accumtype) rem) << (8 * i); \ } \ MP_MFREE (quo); \ } while (0) int bignum_to_int (bignum b) { short rem, sign; unsigned int retval = 0; REGISTER unsigned int i; MINT *quo; sign = MP_MCMP (b, bignum_zero) < 0 ? -1 : 1; quo = MP_ITOM (sign); BIGNUM_TO_TYPE (int, unsigned int); return ((int) retval) * sign; } unsigned int bignum_to_uint (bignum b) { short rem; unsigned int retval = 0U; REGISTER unsigned int i; MINT *quo; quo = MP_ITOM (MP_MCMP (b, bignum_zero) < 0 ? -1 : 1); BIGNUM_TO_TYPE (unsigned int, unsigned int); return retval; } long bignum_to_long (bignum b) { short rem, sign; unsigned long retval = 0L; REGISTER unsigned int i; MINT *quo; sign = MP_MCMP (b, bignum_zero) < 0 ? -1 : 1; quo = MP_ITOM (sign); BIGNUM_TO_TYPE (long, unsigned long); return ((long) retval) * sign; } unsigned long bignum_to_ulong (bignum b) { short rem; unsigned long retval = 0UL; REGISTER unsigned int i; MINT *quo; quo = MP_ITOM (MP_MCMP (b, bignum_zero) < 0 ? -1 : 1); BIGNUM_TO_TYPE (unsigned long, unsigned long); return retval; } double bignum_to_double (bignum b) { short rem, sign; double retval = 0.0, factor = 1.0; REGISTER unsigned int i; MINT *quo; sign = MP_MCMP (b, bignum_zero) < 0 ? -1 : 1; quo = MP_ITOM (sign); MP_MULT (b, quo, quo); for (i = 0U; MP_MCMP (quo, bignum_zero) > 0; i++) { MP_SDIV (quo, 256, quo, &rem); retval += rem * factor; factor *= 256.0; } MP_MFREE (quo); return retval * sign; } static short char_to_number (char c) { if (c >= '0' && c <= '9') return c - '0'; if (c >= 'a' && c <= 'z') return c - 'a' + 10; if (c >= 'A' && c <= 'Z') return c - 'A' + 10; return -1; } int bignum_set_string (bignum b, const char *s, int base) { MINT *mbase; short digit; int neg = 0; if (base == 0) { if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) { base = 16; s += 2; } else if (*s == '0') { base = 8; s++; } else base = 10; } /* FIXME: signal something if base is < 2 or doesn't fit into a short. */ if (*s == '-') { s++; neg = 1; } mbase = MP_ITOM ((short) base); MP_MOVE (bignum_zero, b); for (digit = char_to_number (*s); digit >= 0 && digit < base; digit = char_to_number (*++s)) { MINT *temp; MP_MULT (b, mbase, b); temp = MP_ITOM (digit); MP_MADD (b, temp, b); MP_MFREE (temp); } if (neg) MP_MSUB (bignum_zero, b, b); return (digit >= 0) ? -1 : 0; } void bignum_set_long (MINT *b, long l) { /* Negative l is hard, not least because -LONG_MIN == LONG_MIN. We pretend that l is unsigned, then subtract off the amount equal to the sign bit. */ bignum_set_ulong (b, (unsigned long) l); if (l < 0L) MP_MSUB (b, bignum_long_sign_bit, b); } void bignum_set_ulong (bignum b, unsigned long l) { REGISTER unsigned int i; MINT *multiplier = MP_ITOM (1); MP_MOVE (bignum_zero, b); for (i = 0UL; l > 0UL; l >>= 8, i++) { MINT *temp = MP_ITOM ((short) (l & 255)); MP_MULT (multiplier, temp, temp); MP_MADD (b, temp, b); MP_MULT (multiplier, bignum_bytesize, multiplier); MP_MFREE (temp); } MP_MFREE (multiplier); } void bignum_set_double (bignum b, double d) { REGISTER unsigned int i; int negative = (d < 0) ? 1 : 0; MINT *multiplier = MP_ITOM (1); MP_MOVE (bignum_zero, b); if (negative) d = -d; for (i = 0UL; d > 0.0; d /= 256, i++) { MINT *temp = MP_ITOM ((short) fmod (d, 256.0)); MP_MULT (multiplier, temp, temp); MP_MADD (b, temp, b); MP_MULT (multiplier, bignum_bytesize, multiplier); MP_MFREE (temp); } MP_MFREE (multiplier); if (negative) MP_MSUB (bignum_zero, b, b); } /* Return nonzero if b1 is exactly divisible by b2 */ int bignum_divisible_p (bignum b1, bignum b2) { int retval; MINT *rem = MP_ITOM (0); MP_MDIV (b1, b2, intern_bignum, rem); retval = (MP_MCMP (rem, bignum_zero) == 0); MP_MFREE (rem); return retval; } void bignum_ceil (bignum quotient, bignum N, bignum D) { MP_MDIV (N, D, quotient, intern_bignum); if (MP_MCMP (intern_bignum, bignum_zero) > 0 && MP_MCMP (quotient, bignum_zero) > 0) MP_MADD (quotient, bignum_one, quotient); } void bignum_floor (bignum quotient, bignum N, bignum D) { MP_MDIV (N, D, quotient, intern_bignum); if (MP_MCMP (intern_bignum, bignum_zero) > 0 && MP_MCMP (quotient, bignum_zero) < 0) MP_MSUB (quotient, bignum_one, quotient); } /* RESULT = N to the POWth power */ void bignum_pow (bignum result, bignum n, unsigned long pow) { MP_MOVE (bignum_one, result); for ( ; pow > 0UL; pow--) MP_MULT (result, n, result); } /* lcm(b1,b2) = b1 * b2 / gcd(b1, b2) */ void bignum_lcm (bignum result, bignum b1, bignum b2) { MP_MULT (b1, b2, result); MP_GCD (b1, b2, intern_bignum); MP_MDIV (result, intern_bignum, result, intern_bignum); } /* FIXME: We can't handle negative args, so right now we just make them positive before doing anything else. How should we really handle negative args? */ #define bignum_bit_op(result, b1, b2, op) \ REGISTER unsigned int i; \ MINT *multiplier = MP_ITOM (1), *n1 = MP_ITOM (0), *n2 = MP_ITOM (0); \ \ if (MP_MCMP (bignum_zero, b1) > 0) \ MP_MSUB (bignum_zero, b1, n1); \ else \ MP_MOVE (b1, n1); \ if (MP_MCMP (bignum_zero, b2) > 0) \ MP_MSUB (bignum_zero, b2, n2); \ else \ MP_MOVE (b2, n2); \ \ MP_MOVE (bignum_zero, result); \ \ for (i = 0UL; MP_MCMP (bignum_zero, n1) < 0 && \ MP_MCMP (bignum_zero, n2) < 0; i++) \ { \ short byte1, byte2; \ MINT *temp; \ \ MP_SDIV (n1, 256, n1, &byte1); \ MP_SDIV (n2, 256, n2, &byte2); \ temp = MP_ITOM (byte1 op byte2); \ MP_MULT (multiplier, temp, temp); \ MP_MADD (result, temp, result); \ MP_MULT (multiplier, bignum_bytesize, multiplier); \ MP_MFREE (temp); \ } \ MP_MFREE (n2); \ MP_MFREE (n1); \ MP_MFREE (multiplier) void bignum_and (bignum result, bignum b1, bignum b2) { bignum_bit_op (result, b1, b2, &); } void bignum_ior (bignum result, bignum b1, bignum b2) { bignum_bit_op (result, b1, b2, |); } void bignum_xor (bignum result, bignum b1, bignum b2) { bignum_bit_op (result, b1, b2, ^); } /* NOT is not well-defined for bignums ... where do you stop flipping bits? We just flip until we see the last one. This is probably a bad idea. */ void bignum_not (bignum result, bignum b) { REGISTER unsigned int i; MINT *multiplier = MP_ITOM (1), *n = MP_ITOM (0); if (MP_MCMP (bignum_zero, b) > 0) MP_MSUB (bignum_zero, b, n); else MP_MOVE (b, n); MP_MOVE (bignum_zero, result); for (i = 0UL; MP_MCMP (bignum_zero, n) < 0; i++) { short byte; MINT *temp; MP_SDIV (n, 256, n, &byte); temp = MP_ITOM (~byte); MP_MULT (multiplier, temp, temp); MP_MADD (result, temp, result); MP_MULT (multiplier, bignum_bytesize, multiplier); MP_MFREE (temp); } MP_MFREE (n); MP_MFREE (multiplier); } void bignum_setbit (bignum b, unsigned long bit) { bignum_pow (intern_bignum, bignum_two, bit); bignum_ior (b, b, intern_bignum); } /* This is so evil, even I feel queasy. */ void bignum_clrbit (bignum b, unsigned long bit) { MINT *num = MP_ITOM (0); /* See if the bit is already set, and subtract it off if not */ MP_MOVE (b, intern_bignum); bignum_pow (num, bignum_two, bit); bignum_ior (intern_bignum, intern_bignum, num); if (MP_MCMP (b, intern_bignum) == 0) MP_MSUB (b, num, b); MP_MFREE (num); } int bignum_testbit (bignum b, unsigned long bit) { bignum_pow (intern_bignum, bignum_two, bit); bignum_and (intern_bignum, b, intern_bignum); return MP_MCMP (intern_bignum, bignum_zero); } void bignum_lshift (bignum result, bignum b, unsigned long bits) { bignum_pow (intern_bignum, bignum_two, bits); MP_MULT (b, intern_bignum, result); } void bignum_rshift (bignum result, bignum b, unsigned long bits) { bignum_pow (intern_bignum, bignum_two, bits); MP_MDIV (b, intern_bignum, result, intern_bignum); } void bignum_random_seed(unsigned long seed) { /* FIXME: Implement me */ } void bignum_random(bignum result, bignum limit) { /* FIXME: Implement me */ MP_MOVE (bignum_zero, result); } void init_number_mp () { REGISTER unsigned int i; bignum_zero = MP_ITOM (0); bignum_one = MP_ITOM (1); bignum_two = MP_ITOM (2); /* intern_bignum holds throwaway values from macro expansions in number-mp.h. Its value is immaterial. */ intern_bignum = MP_ITOM (0); /* bignum_bytesize holds the number of bits in a byte. */ bignum_bytesize = MP_ITOM (256); /* bignum_long_sign_bit holds an adjustment for negative longs. */ bignum_long_sign_bit = MP_ITOM (256); for (i = 1UL; i < sizeof (long); i++) MP_MULT (bignum_bytesize, bignum_long_sign_bit, bignum_long_sign_bit); /* The MP interface only supports turning short ints into MINTs, so we have to set these the hard way. */ bignum_min_int = MP_ITOM (0); bignum_set_long (bignum_min_int, INT_MIN); bignum_max_int = MP_ITOM (0); bignum_set_long (bignum_max_int, INT_MAX); bignum_max_uint = MP_ITOM (0); bignum_set_ulong (bignum_max_uint, UINT_MAX); bignum_min_long = MP_ITOM (0); bignum_set_long (bignum_min_long, LONG_MIN); bignum_max_long = MP_ITOM (0); bignum_set_long (bignum_max_long, LONG_MAX); bignum_max_ulong = MP_ITOM (0); bignum_set_ulong (bignum_max_ulong, ULONG_MAX); }