Mercurial > hg > xemacs-beta
annotate src/number-mp.c @ 5090:0ca81354c4c7
Further frame-geometry cleanups
-------------------- ChangeLog entries follow: --------------------
man/ChangeLog addition:
2010-03-03 Ben Wing <ben@xemacs.org>
* internals/internals.texi (Intro to Window and Frame Geometry):
* internals/internals.texi (The Paned Area):
* internals/internals.texi (The Displayable Area):
Update to make note of e.g. the fact that the bottom gutter is
actually above the minibuffer.
src/ChangeLog addition:
2010-03-03 Ben Wing <ben@xemacs.org>
* emacs.c:
* emacs.c (assert_equal_failed):
* lisp.h:
* lisp.h (assert_equal):
New fun assert_equal, asserting that two values == each other, and
printing out both values upon failure.
* frame-gtk.c (gtk_initialize_frame_size):
* frame-impl.h:
* frame-impl.h (FRAME_TOP_INTERNAL_BORDER_START):
* frame-impl.h (FRAME_BOTTOM_INTERNAL_BORDER_START):
* frame-impl.h (FRAME_LEFT_INTERNAL_BORDER_START):
* frame-impl.h (FRAME_PANED_TOP_EDGE):
* frame-impl.h (FRAME_NONPANED_SIZE):
* frame-x.c (x_initialize_frame_size):
* frame.c:
* gutter.c (get_gutter_coords):
* gutter.c (calculate_gutter_size):
* gutter.h:
* gutter.h (WINDOW_REAL_TOP_GUTTER_BOUNDS):
* gutter.h (FRAME_TOP_GUTTER_BOUNDS):
* input-method-xlib.c:
* input-method-xlib.c (XIM_SetGeometry):
* redisplay-output.c (clear_left_border):
* redisplay-output.c (clear_right_border):
* redisplay-output.c (redisplay_output_pixmap):
* redisplay-output.c (redisplay_clear_region):
* redisplay-output.c (redisplay_clear_top_of_window):
* redisplay-output.c (redisplay_clear_to_window_end):
* redisplay-xlike-inc.c (XLIKE_clear_frame):
* redisplay.c:
* redisplay.c (UPDATE_CACHE_RETURN):
* redisplay.c (pixel_to_glyph_translation):
* toolbar.c (update_frame_toolbars_geometry):
* window.c (Fwindow_pixel_edges):
Get rid of some redundant macros. Consistently use the
FRAME_TOP_*_START, FRAME_RIGHT_*_END, etc. format. Rename
FRAME_*_BORDER_* to FRAME_*_INTERNAL_BORDER_*. Comment out
FRAME_BOTTOM_* for gutters and the paned area due to the
uncertainty over where the paned area actually begins. (Eventually
we should probably move the gutters outside the minibuffer so that
the paned area is contiguous.) Use FRAME_PANED_* more often in the
code to make things clearer.
Update the diagram to show that the bottom gutter is inside the
minibuffer (!) and that there are "junk boxes" when you have left
and/or right gutters (dead boxes that are mistakenly left uncleared,
unlike the corresponding scrollbar dead boxes). Update the text
appropriately to cover the bottom gutter position, etc.
Rewrite gutter-geometry code to use the FRAME_*_GUTTER_* in place of
equivalent expressions referencing other frame elements, to make the
code more portable in case we move around the gutter location.
Cleanup FRAME_*_GUTTER_BOUNDS() in gutter.h.
Add some #### GEOM! comments where I think code is incorrect --
typically, it wasn't fixed up properly when the gutter was added.
Some cosmetic changes.
author | Ben Wing <ben@xemacs.org> |
---|---|
date | Wed, 03 Mar 2010 05:07:47 -0600 |
parents | 16112448d484 |
children | ba07c880114a |
rev | line source |
---|---|
1983 | 1 /* Numeric types for XEmacs using the MP library. |
2 Copyright (C) 2004 Jerry James. | |
3 | |
4 This file is part of XEmacs. | |
5 | |
6 XEmacs is free software; you can redistribute it and/or modify it | |
7 under the terms of the GNU General Public License as published by the | |
8 Free Software Foundation; either version 2, or (at your option) any | |
9 later version. | |
10 | |
11 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
14 for more details. | |
15 | |
16 You should have received a copy of the GNU General Public License | |
17 along with XEmacs; see the file COPYING. If not, write to | |
4802
2fc0e2f18322
Don't create any bignums before pdumping. Add bignum, ratio, and bigfloat
Jerry James <james@xemacs.org>
parents:
1993
diff
changeset
|
18 the Free Software Foundation, Inc., 51 Franklin St - Fifth Floor, |
2fc0e2f18322
Don't create any bignums before pdumping. Add bignum, ratio, and bigfloat
Jerry James <james@xemacs.org>
parents:
1993
diff
changeset
|
19 Boston, MA 02111-1301, USA. */ |
1983 | 20 |
21 /* Synched up with: Not in FSF. */ | |
22 | |
23 #include <config.h> | |
24 #include <limits.h> | |
25 #include <math.h> | |
26 #include "lisp.h" | |
27 | |
28 static MINT *bignum_bytesize, *bignum_long_sign_bit, *bignum_one, *bignum_two; | |
29 MINT *bignum_zero, *intern_bignum; | |
30 MINT *bignum_min_int, *bignum_max_int, *bignum_max_uint; | |
31 MINT *bignum_min_long, *bignum_max_long, *bignum_max_ulong; | |
32 short div_rem; | |
33 | |
34 char * | |
35 bignum_to_string (bignum b, int base) | |
36 { | |
37 REGISTER unsigned int i; | |
38 unsigned int bufsize = 128U, index = 0U; | |
39 int sign; | |
40 char *buffer = xnew_array (char, 128), *retval; | |
41 MINT *quo = MP_ITOM (0); | |
42 short rem; | |
43 | |
44 /* FIXME: signal something if base is < 2 or doesn't fit into a short. */ | |
45 | |
46 /* Save the sign for later */ | |
47 sign = MP_MCMP (b, bignum_zero); | |
48 | |
49 if (sign == 0) | |
50 { | |
51 XREALLOC_ARRAY (buffer, char, 2); | |
52 buffer[0] = '0'; | |
53 buffer[1] = '\0'; | |
54 return buffer; | |
55 } | |
56 /* Copy abs(b) into quo for destructive modification */ | |
57 else if (sign < 0) | |
58 MP_MSUB (bignum_zero, b, quo); | |
59 else | |
60 MP_MOVE (b, quo); | |
61 | |
62 quo = MP_ITOM (0); | |
63 | |
64 /* Loop over the digits of b (in BASE) and place each one into buffer */ | |
65 for (i = 0U; MP_MCMP(quo, bignum_zero) > 0; i++) | |
66 { | |
67 MP_SDIV (quo, base, quo, &rem); | |
68 if (index == bufsize) | |
69 { | |
70 bufsize <<= 1; | |
71 XREALLOC_ARRAY (buffer, char, bufsize); | |
72 } | |
73 buffer[index++] = rem < 10 ? rem + '0' : rem - 10 + 'a'; | |
74 } | |
75 MP_MFREE (quo); | |
76 | |
77 /* Reverse the digits, maybe add a minus sign, and add a null terminator */ | |
78 bufsize = index + (sign < 0 ? 1 : 0) + 1; | |
79 retval = xnew_array (char, bufsize); | |
80 if (sign < 0) | |
81 { | |
82 retval[0] = '-'; | |
83 i = 1; | |
84 } | |
85 else | |
86 i = 0; | |
87 for (; i < bufsize - 1; i++) | |
88 retval[i] = buffer[--index]; | |
89 retval[bufsize - 1] = '\0'; | |
4976
16112448d484
Rename xfree(FOO, TYPE) -> xfree(FOO)
Ben Wing <ben@xemacs.org>
parents:
4802
diff
changeset
|
90 xfree (buffer); |
1983 | 91 return retval; |
92 } | |
93 | |
94 #define BIGNUM_TO_TYPE(type,accumtype) do { \ | |
95 MP_MULT (b, quo, quo); \ | |
96 for (i = 0U; i < sizeof(type); i++) \ | |
97 { \ | |
98 MP_SDIV (quo, 256, quo, &rem); \ | |
99 retval |= ((accumtype) rem) << (8 * i); \ | |
100 } \ | |
101 MP_MFREE (quo); \ | |
102 } while (0) | |
103 | |
104 int | |
105 bignum_to_int (bignum b) | |
106 { | |
107 short rem, sign; | |
108 unsigned int retval = 0; | |
109 REGISTER unsigned int i; | |
110 MINT *quo; | |
111 | |
112 sign = MP_MCMP (b, bignum_zero) < 0 ? -1 : 1; | |
113 quo = MP_ITOM (sign); | |
114 BIGNUM_TO_TYPE (int, unsigned int); | |
115 return ((int) retval) * sign; | |
116 } | |
117 | |
118 unsigned int | |
119 bignum_to_uint (bignum b) | |
120 { | |
121 short rem; | |
122 unsigned int retval = 0U; | |
123 REGISTER unsigned int i; | |
124 MINT *quo; | |
125 | |
126 quo = MP_ITOM (MP_MCMP (b, bignum_zero) < 0 ? -1 : 1); | |
127 BIGNUM_TO_TYPE (unsigned int, unsigned int); | |
128 return retval; | |
129 } | |
130 | |
131 long | |
132 bignum_to_long (bignum b) | |
133 { | |
134 short rem, sign; | |
135 unsigned long retval = 0L; | |
136 REGISTER unsigned int i; | |
137 MINT *quo; | |
138 | |
139 sign = MP_MCMP (b, bignum_zero) < 0 ? -1 : 1; | |
140 quo = MP_ITOM (sign); | |
141 BIGNUM_TO_TYPE (long, unsigned long); | |
142 return ((long) retval) * sign; | |
143 } | |
144 | |
145 unsigned long | |
146 bignum_to_ulong (bignum b) | |
147 { | |
148 short rem; | |
149 unsigned long retval = 0UL; | |
150 REGISTER unsigned int i; | |
151 MINT *quo; | |
152 | |
153 quo = MP_ITOM (MP_MCMP (b, bignum_zero) < 0 ? -1 : 1); | |
154 BIGNUM_TO_TYPE (unsigned long, unsigned long); | |
155 return retval; | |
156 } | |
157 | |
158 double | |
159 bignum_to_double (bignum b) | |
160 { | |
161 short rem, sign; | |
1990 | 162 double retval = 0.0, factor = 1.0; |
1983 | 163 REGISTER unsigned int i; |
164 MINT *quo; | |
165 | |
166 sign = MP_MCMP (b, bignum_zero) < 0 ? -1 : 1; | |
167 quo = MP_ITOM (sign); | |
168 MP_MULT (b, quo, quo); | |
1990 | 169 for (i = 0U; MP_MCMP (quo, bignum_zero) > 0; i++) |
1983 | 170 { |
171 MP_SDIV (quo, 256, quo, &rem); | |
1990 | 172 retval += rem * factor; |
173 factor *= 256.0; | |
1983 | 174 } |
175 MP_MFREE (quo); | |
176 return retval * sign; | |
177 } | |
178 | |
179 static short | |
180 char_to_number (char c) | |
181 { | |
182 if (c >= '0' && c <= '9') | |
183 return c - '0'; | |
184 if (c >= 'a' && c <= 'z') | |
185 return c - 'a' + 10; | |
186 if (c >= 'A' && c <= 'Z') | |
187 return c - 'A' + 10; | |
188 return -1; | |
189 } | |
190 | |
191 int | |
192 bignum_set_string (bignum b, const char *s, int base) | |
193 { | |
194 MINT *mbase; | |
195 short digit; | |
1993 | 196 int neg = 0; |
1983 | 197 |
198 if (base == 0) | |
199 { | |
200 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) | |
201 { | |
202 base = 16; | |
203 s += 2; | |
204 } | |
205 else if (*s == '0') | |
206 { | |
207 base = 8; | |
208 s++; | |
209 } | |
210 else | |
211 base = 10; | |
212 } | |
213 | |
214 /* FIXME: signal something if base is < 2 or doesn't fit into a short. */ | |
215 | |
1993 | 216 if (*s == '-') |
217 { | |
218 s++; | |
219 neg = 1; | |
220 } | |
221 | |
1983 | 222 mbase = MP_ITOM ((short) base); |
223 MP_MOVE (bignum_zero, b); | |
4802
2fc0e2f18322
Don't create any bignums before pdumping. Add bignum, ratio, and bigfloat
Jerry James <james@xemacs.org>
parents:
1993
diff
changeset
|
224 |
1983 | 225 for (digit = char_to_number (*s); digit >= 0 && digit < base; |
226 digit = char_to_number (*++s)) | |
227 { | |
228 MINT *temp; | |
229 | |
230 MP_MULT (b, mbase, b); | |
231 temp = MP_ITOM (digit); | |
232 MP_MADD (b, temp, b); | |
233 MP_MFREE (temp); | |
234 } | |
235 | |
1993 | 236 if (neg) |
237 MP_MSUB (bignum_zero, b, b); | |
238 | |
1983 | 239 return (digit >= 0) ? -1 : 0; |
240 } | |
241 | |
242 void | |
243 bignum_set_long (MINT *b, long l) | |
244 { | |
245 /* Negative l is hard, not least because -LONG_MIN == LONG_MIN. We pretend | |
246 that l is unsigned, then subtract off the amount equal to the sign bit. */ | |
247 bignum_set_ulong (b, (unsigned long) l); | |
248 if (l < 0L) | |
249 MP_MSUB (b, bignum_long_sign_bit, b); | |
250 } | |
251 | |
252 void | |
253 bignum_set_ulong (bignum b, unsigned long l) | |
254 { | |
255 REGISTER unsigned int i; | |
256 MINT *multiplier = MP_ITOM (1); | |
257 | |
258 MP_MOVE (bignum_zero, b); | |
259 for (i = 0UL; l > 0UL; l >>= 8, i++) | |
260 { | |
261 MINT *temp = MP_ITOM ((short) (l & 255)); | |
262 MP_MULT (multiplier, temp, temp); | |
263 MP_MADD (b, temp, b); | |
264 MP_MULT (multiplier, bignum_bytesize, multiplier); | |
265 MP_MFREE (temp); | |
266 } | |
267 MP_MFREE (multiplier); | |
268 } | |
269 | |
270 void | |
271 bignum_set_double (bignum b, double d) | |
272 { | |
273 REGISTER unsigned int i; | |
274 int negative = (d < 0) ? 1 : 0; | |
275 MINT *multiplier = MP_ITOM (1); | |
276 | |
277 MP_MOVE (bignum_zero, b); | |
278 if (negative) | |
279 d = -d; | |
280 for (i = 0UL; d > 0.0; d /= 256, i++) | |
281 { | |
282 MINT *temp = MP_ITOM ((short) fmod (d, 256.0)); | |
283 MP_MULT (multiplier, temp, temp); | |
284 MP_MADD (b, temp, b); | |
285 MP_MULT (multiplier, bignum_bytesize, multiplier); | |
286 MP_MFREE (temp); | |
287 } | |
288 MP_MFREE (multiplier); | |
289 if (negative) | |
290 MP_MSUB (bignum_zero, b, b); | |
291 } | |
292 | |
293 /* Return nonzero if b1 is exactly divisible by b2 */ | |
294 int | |
295 bignum_divisible_p (bignum b1, bignum b2) | |
296 { | |
297 int retval; | |
298 MINT *rem = MP_ITOM (0); | |
299 MP_MDIV (b1, b2, intern_bignum, rem); | |
300 retval = (MP_MCMP (rem, bignum_zero) == 0); | |
301 MP_MFREE (rem); | |
302 return retval; | |
303 } | |
304 | |
305 void bignum_ceil (bignum quotient, bignum N, bignum D) | |
306 { | |
307 MP_MDIV (N, D, quotient, intern_bignum); | |
308 if (MP_MCMP (intern_bignum, bignum_zero) > 0 && | |
309 MP_MCMP (quotient, bignum_zero) > 0) | |
310 MP_MADD (quotient, bignum_one, quotient); | |
311 } | |
312 | |
313 void bignum_floor (bignum quotient, bignum N, bignum D) | |
314 { | |
315 MP_MDIV (N, D, quotient, intern_bignum); | |
316 if (MP_MCMP (intern_bignum, bignum_zero) > 0 && | |
317 MP_MCMP (quotient, bignum_zero) < 0) | |
318 MP_MSUB (quotient, bignum_one, quotient); | |
319 } | |
320 | |
321 /* RESULT = N to the POWth power */ | |
322 void | |
323 bignum_pow (bignum result, bignum n, unsigned long pow) | |
324 { | |
325 MP_MOVE (bignum_one, result); | |
326 for ( ; pow > 0UL; pow--) | |
327 MP_MULT (result, n, result); | |
328 } | |
329 | |
330 /* lcm(b1,b2) = b1 * b2 / gcd(b1, b2) */ | |
331 void | |
332 bignum_lcm (bignum result, bignum b1, bignum b2) | |
333 { | |
334 MP_MULT (b1, b2, result); | |
335 MP_GCD (b1, b2, intern_bignum); | |
336 MP_MDIV (result, intern_bignum, result, intern_bignum); | |
337 } | |
338 | |
339 /* FIXME: We can't handle negative args, so right now we just make them | |
340 positive before doing anything else. How should we really handle negative | |
341 args? */ | |
342 #define bignum_bit_op(result, b1, b2, op) \ | |
343 REGISTER unsigned int i; \ | |
344 MINT *multiplier = MP_ITOM (1), *n1 = MP_ITOM (0), *n2 = MP_ITOM (0); \ | |
345 \ | |
346 if (MP_MCMP (bignum_zero, b1) > 0) \ | |
347 MP_MSUB (bignum_zero, b1, n1); \ | |
348 else \ | |
349 MP_MOVE (b1, n1); \ | |
350 if (MP_MCMP (bignum_zero, b2) > 0) \ | |
351 MP_MSUB (bignum_zero, b2, n2); \ | |
352 else \ | |
353 MP_MOVE (b2, n2); \ | |
354 \ | |
355 MP_MOVE (bignum_zero, result); \ | |
356 \ | |
357 for (i = 0UL; MP_MCMP (bignum_zero, n1) < 0 && \ | |
358 MP_MCMP (bignum_zero, n2) < 0; i++) \ | |
359 { \ | |
360 short byte1, byte2; \ | |
361 MINT *temp; \ | |
362 \ | |
363 MP_SDIV (n1, 256, n1, &byte1); \ | |
364 MP_SDIV (n2, 256, n2, &byte2); \ | |
365 temp = MP_ITOM (byte1 op byte2); \ | |
366 MP_MULT (multiplier, temp, temp); \ | |
367 MP_MADD (result, temp, result); \ | |
368 MP_MULT (multiplier, bignum_bytesize, multiplier); \ | |
369 MP_MFREE (temp); \ | |
370 } \ | |
371 MP_MFREE (n2); \ | |
372 MP_MFREE (n1); \ | |
373 MP_MFREE (multiplier) | |
374 | |
375 void | |
376 bignum_and (bignum result, bignum b1, bignum b2) | |
377 { | |
378 bignum_bit_op (result, b1, b2, &); | |
379 } | |
380 | |
381 void | |
382 bignum_ior (bignum result, bignum b1, bignum b2) | |
383 { | |
384 bignum_bit_op (result, b1, b2, |); | |
385 } | |
386 | |
387 void | |
388 bignum_xor (bignum result, bignum b1, bignum b2) | |
389 { | |
390 bignum_bit_op (result, b1, b2, ^); | |
391 } | |
392 | |
393 /* NOT is not well-defined for bignums ... where do you stop flipping bits? | |
394 We just flip until we see the last one. This is probably a bad idea. */ | |
395 void | |
396 bignum_not (bignum result, bignum b) | |
397 { | |
398 REGISTER unsigned int i; | |
399 MINT *multiplier = MP_ITOM (1), *n = MP_ITOM (0); | |
400 | |
401 if (MP_MCMP (bignum_zero, b) > 0) | |
402 MP_MSUB (bignum_zero, b, n); | |
403 else | |
404 MP_MOVE (b, n); | |
405 | |
406 MP_MOVE (bignum_zero, result); | |
407 | |
408 for (i = 0UL; MP_MCMP (bignum_zero, n) < 0; i++) | |
409 { | |
410 short byte; | |
411 MINT *temp; | |
412 | |
413 MP_SDIV (n, 256, n, &byte); | |
414 temp = MP_ITOM (~byte); | |
415 MP_MULT (multiplier, temp, temp); | |
416 MP_MADD (result, temp, result); | |
417 MP_MULT (multiplier, bignum_bytesize, multiplier); | |
418 MP_MFREE (temp); | |
419 } | |
420 MP_MFREE (n); | |
421 MP_MFREE (multiplier); | |
422 } | |
423 | |
424 void | |
425 bignum_setbit (bignum b, unsigned long bit) | |
426 { | |
427 bignum_pow (intern_bignum, bignum_two, bit); | |
428 bignum_ior (b, b, intern_bignum); | |
429 } | |
430 | |
431 /* This is so evil, even I feel queasy. */ | |
432 void | |
433 bignum_clrbit (bignum b, unsigned long bit) | |
434 { | |
435 MINT *num = MP_ITOM (0); | |
436 | |
437 /* See if the bit is already set, and subtract it off if not */ | |
438 MP_MOVE (b, intern_bignum); | |
439 bignum_pow (num, bignum_two, bit); | |
440 bignum_ior (intern_bignum, intern_bignum, num); | |
441 if (MP_MCMP (b, intern_bignum) == 0) | |
442 MP_MSUB (b, num, b); | |
443 MP_MFREE (num); | |
444 } | |
445 | |
446 int | |
447 bignum_testbit (bignum b, unsigned long bit) | |
448 { | |
449 bignum_pow (intern_bignum, bignum_two, bit); | |
450 bignum_and (intern_bignum, b, intern_bignum); | |
451 return MP_MCMP (intern_bignum, bignum_zero); | |
452 } | |
453 | |
454 void | |
455 bignum_lshift (bignum result, bignum b, unsigned long bits) | |
456 { | |
457 bignum_pow (intern_bignum, bignum_two, bits); | |
458 MP_MULT (b, intern_bignum, result); | |
459 } | |
460 | |
461 void | |
462 bignum_rshift (bignum result, bignum b, unsigned long bits) | |
463 { | |
464 bignum_pow (intern_bignum, bignum_two, bits); | |
465 MP_MDIV (b, intern_bignum, result, intern_bignum); | |
466 } | |
467 | |
468 void bignum_random_seed(unsigned long seed) | |
469 { | |
470 /* FIXME: Implement me */ | |
471 } | |
472 | |
473 void bignum_random(bignum result, bignum limit) | |
474 { | |
475 /* FIXME: Implement me */ | |
476 MP_MOVE (bignum_zero, result); | |
477 } | |
478 | |
479 void | |
480 init_number_mp () | |
481 { | |
482 REGISTER unsigned int i; | |
483 | |
484 bignum_zero = MP_ITOM (0); | |
485 bignum_one = MP_ITOM (1); | |
486 bignum_two = MP_ITOM (2); | |
487 | |
488 /* intern_bignum holds throwaway values from macro expansions in | |
489 number-mp.h. Its value is immaterial. */ | |
490 intern_bignum = MP_ITOM (0); | |
491 | |
492 /* bignum_bytesize holds the number of bits in a byte. */ | |
493 bignum_bytesize = MP_ITOM (256); | |
494 | |
495 /* bignum_long_sign_bit holds an adjustment for negative longs. */ | |
496 bignum_long_sign_bit = MP_ITOM (256); | |
497 for (i = 1UL; i < sizeof (long); i++) | |
498 MP_MULT (bignum_bytesize, bignum_long_sign_bit, bignum_long_sign_bit); | |
499 | |
500 /* The MP interface only supports turning short ints into MINTs, so we have | |
501 to set these the hard way. */ | |
502 | |
503 bignum_min_int = MP_ITOM (0); | |
504 bignum_set_long (bignum_min_int, INT_MIN); | |
505 | |
506 bignum_max_int = MP_ITOM (0); | |
507 bignum_set_long (bignum_max_int, INT_MAX); | |
508 | |
509 bignum_max_uint = MP_ITOM (0); | |
510 bignum_set_ulong (bignum_max_uint, UINT_MAX); | |
511 | |
512 bignum_min_long = MP_ITOM (0); | |
513 bignum_set_long (bignum_min_long, LONG_MIN); | |
514 | |
515 bignum_max_long = MP_ITOM (0); | |
516 bignum_set_long (bignum_max_long, LONG_MAX); | |
517 | |
518 bignum_max_ulong = MP_ITOM (0); | |
519 bignum_set_ulong (bignum_max_ulong, ULONG_MAX); | |
520 } |