Mercurial > hg > xemacs-beta
diff src/mule-ccl.c @ 428:3ecd8885ac67 r21-2-22
Import from CVS: tag r21-2-22
author | cvs |
---|---|
date | Mon, 13 Aug 2007 11:28:15 +0200 |
parents | |
children | 84b14dcb0985 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/mule-ccl.c Mon Aug 13 11:28:15 2007 +0200 @@ -0,0 +1,2027 @@ +/* CCL (Code Conversion Language) interpreter. + Copyright (C) 1995, 1997, 1998, 1999 Electrotechnical Laboratory, JAPAN. + Licensed to the Free Software Foundation. + +This file is part of XEmacs. + +GNU Emacs is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2, or (at your option) +any later version. + +GNU Emacs is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GNU Emacs; see the file COPYING. If not, write to +the Free Software Foundation, Inc., 59 Temple Place - Suite 330, +Boston, MA 02111-1307, USA. */ + +/* Synched up with : FSF Emacs 20.3.10 without ExCCL + * (including {Read|Write}MultibyteChar) */ + +#ifdef emacs + +#include <config.h> + +#if 0 +#ifdef STDC_HEADERS +#include <stdlib.h> +#endif +#endif + +#include "lisp.h" +#include "buffer.h" +#include "mule-charset.h" +#include "mule-ccl.h" +#include "file-coding.h" + +#else /* not emacs */ + +#include <stdio.h> +#include "mulelib.h" + +#endif /* not emacs */ + +/* This contains all code conversion map available to CCL. */ +/* +Lisp_Object Vcode_conversion_map_vector; +*/ + +/* Alist of fontname patterns vs corresponding CCL program. */ +Lisp_Object Vfont_ccl_encoder_alist; + +/* This symbol is a property which assocates with ccl program vector. + Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */ +Lisp_Object Qccl_program; + +/* These symbols are properties which associate with code conversion + map and their ID respectively. */ +/* +Lisp_Object Qcode_conversion_map; +Lisp_Object Qcode_conversion_map_id; +*/ + +/* Symbols of ccl program have this property, a value of the property + is an index for Vccl_protram_table. */ +Lisp_Object Qccl_program_idx; + +/* Vector of CCL program names vs corresponding program data. */ +Lisp_Object Vccl_program_table; + +/* CCL (Code Conversion Language) is a simple language which has + operations on one input buffer, one output buffer, and 7 registers. + The syntax of CCL is described in `ccl.el'. Emacs Lisp function + `ccl-compile' compiles a CCL program and produces a CCL code which + is a vector of integers. The structure of this vector is as + follows: The 1st element: buffer-magnification, a factor for the + size of output buffer compared with the size of input buffer. The + 2nd element: address of CCL code to be executed when encountered + with end of input stream. The 3rd and the remaining elements: CCL + codes. */ + +/* Header of CCL compiled code */ +#define CCL_HEADER_BUF_MAG 0 +#define CCL_HEADER_EOF 1 +#define CCL_HEADER_MAIN 2 + +/* CCL code is a sequence of 28-bit non-negative integers (i.e. the + MSB is always 0), each contains CCL command and/or arguments in the + following format: + + |----------------- integer (28-bit) ------------------| + |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -| + |--constant argument--|-register-|-register-|-command-| + ccccccccccccccccc RRR rrr XXXXX + or + |------- relative address -------|-register-|-command-| + cccccccccccccccccccc rrr XXXXX + or + |------------- constant or other args ----------------| + cccccccccccccccccccccccccccc + + where, `cc...c' is a non-negative integer indicating constant value + (the left most `c' is always 0) or an absolute jump address, `RRR' + and `rrr' are CCL register number, `XXXXX' is one of the following + CCL commands. */ + +/* CCL commands + + Each comment fields shows one or more lines for command syntax and + the following lines for semantics of the command. In semantics, IC + stands for Instruction Counter. */ + +#define CCL_SetRegister 0x00 /* Set register a register value: + 1:00000000000000000RRRrrrXXXXX + ------------------------------ + reg[rrr] = reg[RRR]; + */ + +#define CCL_SetShortConst 0x01 /* Set register a short constant value: + 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX + ------------------------------ + reg[rrr] = CCCCCCCCCCCCCCCCCCC; + */ + +#define CCL_SetConst 0x02 /* Set register a constant value: + 1:00000000000000000000rrrXXXXX + 2:CONSTANT + ------------------------------ + reg[rrr] = CONSTANT; + IC++; + */ + +#define CCL_SetArray 0x03 /* Set register an element of array: + 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX + 2:ELEMENT[0] + 3:ELEMENT[1] + ... + ------------------------------ + if (0 <= reg[RRR] < CC..C) + reg[rrr] = ELEMENT[reg[RRR]]; + IC += CC..C; + */ + +#define CCL_Jump 0x04 /* Jump: + 1:A--D--D--R--E--S--S-000XXXXX + ------------------------------ + IC += ADDRESS; + */ + +/* Note: If CC..C is greater than 0, the second code is omitted. */ + +#define CCL_JumpCond 0x05 /* Jump conditional: + 1:A--D--D--R--E--S--S-rrrXXXXX + ------------------------------ + if (!reg[rrr]) + IC += ADDRESS; + */ + + +#define CCL_WriteRegisterJump 0x06 /* Write register and jump: + 1:A--D--D--R--E--S--S-rrrXXXXX + ------------------------------ + write (reg[rrr]); + IC += ADDRESS; + */ + +#define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump: + 1:A--D--D--R--E--S--S-rrrXXXXX + 2:A--D--D--R--E--S--S-rrrYYYYY + ----------------------------- + write (reg[rrr]); + IC++; + read (reg[rrr]); + IC += ADDRESS; + */ +/* Note: If read is suspended, the resumed execution starts from the + second code (YYYYY == CCL_ReadJump). */ + +#define CCL_WriteConstJump 0x08 /* Write constant and jump: + 1:A--D--D--R--E--S--S-000XXXXX + 2:CONST + ------------------------------ + write (CONST); + IC += ADDRESS; + */ + +#define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump: + 1:A--D--D--R--E--S--S-rrrXXXXX + 2:CONST + 3:A--D--D--R--E--S--S-rrrYYYYY + ----------------------------- + write (CONST); + IC += 2; + read (reg[rrr]); + IC += ADDRESS; + */ +/* Note: If read is suspended, the resumed execution starts from the + second code (YYYYY == CCL_ReadJump). */ + +#define CCL_WriteStringJump 0x0A /* Write string and jump: + 1:A--D--D--R--E--S--S-000XXXXX + 2:LENGTH + 3:0000STRIN[0]STRIN[1]STRIN[2] + ... + ------------------------------ + write_string (STRING, LENGTH); + IC += ADDRESS; + */ + +#define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump: + 1:A--D--D--R--E--S--S-rrrXXXXX + 2:LENGTH + 3:ELEMENET[0] + 4:ELEMENET[1] + ... + N:A--D--D--R--E--S--S-rrrYYYYY + ------------------------------ + if (0 <= reg[rrr] < LENGTH) + write (ELEMENT[reg[rrr]]); + IC += LENGTH + 2; (... pointing at N+1) + read (reg[rrr]); + IC += ADDRESS; + */ +/* Note: If read is suspended, the resumed execution starts from the + Nth code (YYYYY == CCL_ReadJump). */ + +#define CCL_ReadJump 0x0C /* Read and jump: + 1:A--D--D--R--E--S--S-rrrYYYYY + ----------------------------- + read (reg[rrr]); + IC += ADDRESS; + */ + +#define CCL_Branch 0x0D /* Jump by branch table: + 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX + 2:A--D--D--R--E-S-S[0]000XXXXX + 3:A--D--D--R--E-S-S[1]000XXXXX + ... + ------------------------------ + if (0 <= reg[rrr] < CC..C) + IC += ADDRESS[reg[rrr]]; + else + IC += ADDRESS[CC..C]; + */ + +#define CCL_ReadRegister 0x0E /* Read bytes into registers: + 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX + 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX + ... + ------------------------------ + while (CCC--) + read (reg[rrr]); + */ + +#define CCL_WriteExprConst 0x0F /* write result of expression: + 1:00000OPERATION000RRR000XXXXX + 2:CONSTANT + ------------------------------ + write (reg[RRR] OPERATION CONSTANT); + IC++; + */ + +/* Note: If the Nth read is suspended, the resumed execution starts + from the Nth code. */ + +#define CCL_ReadBranch 0x10 /* Read one byte into a register, + and jump by branch table: + 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX + 2:A--D--D--R--E-S-S[0]000XXXXX + 3:A--D--D--R--E-S-S[1]000XXXXX + ... + ------------------------------ + read (read[rrr]); + if (0 <= reg[rrr] < CC..C) + IC += ADDRESS[reg[rrr]]; + else + IC += ADDRESS[CC..C]; + */ + +#define CCL_WriteRegister 0x11 /* Write registers: + 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX + 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX + ... + ------------------------------ + while (CCC--) + write (reg[rrr]); + ... + */ + +/* Note: If the Nth write is suspended, the resumed execution + starts from the Nth code. */ + +#define CCL_WriteExprRegister 0x12 /* Write result of expression + 1:00000OPERATIONRrrRRR000XXXXX + ------------------------------ + write (reg[RRR] OPERATION reg[Rrr]); + */ + +#define CCL_Call 0x13 /* Call the CCL program whose ID is + (CC..C). + 1:CCCCCCCCCCCCCCCCCCCC000XXXXX + ------------------------------ + call (CC..C) + */ + +#define CCL_WriteConstString 0x14 /* Write a constant or a string: + 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX + [2:0000STRIN[0]STRIN[1]STRIN[2]] + [...] + ----------------------------- + if (!rrr) + write (CC..C) + else + write_string (STRING, CC..C); + IC += (CC..C + 2) / 3; + */ + +#define CCL_WriteArray 0x15 /* Write an element of array: + 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX + 2:ELEMENT[0] + 3:ELEMENT[1] + ... + ------------------------------ + if (0 <= reg[rrr] < CC..C) + write (ELEMENT[reg[rrr]]); + IC += CC..C; + */ + +#define CCL_End 0x16 /* Terminate: + 1:00000000000000000000000XXXXX + ------------------------------ + terminate (); + */ + +/* The following two codes execute an assignment arithmetic/logical + operation. The form of the operation is like REG OP= OPERAND. */ + +#define CCL_ExprSelfConst 0x17 /* REG OP= constant: + 1:00000OPERATION000000rrrXXXXX + 2:CONSTANT + ------------------------------ + reg[rrr] OPERATION= CONSTANT; + */ + +#define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2: + 1:00000OPERATION000RRRrrrXXXXX + ------------------------------ + reg[rrr] OPERATION= reg[RRR]; + */ + +/* The following codes execute an arithmetic/logical operation. The + form of the operation is like REG_X = REG_Y OP OPERAND2. */ + +#define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant: + 1:00000OPERATION000RRRrrrXXXXX + 2:CONSTANT + ------------------------------ + reg[rrr] = reg[RRR] OPERATION CONSTANT; + IC++; + */ + +#define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3: + 1:00000OPERATIONRrrRRRrrrXXXXX + ------------------------------ + reg[rrr] = reg[RRR] OPERATION reg[Rrr]; + */ + +#define CCL_JumpCondExprConst 0x1B /* Jump conditional according to + an operation on constant: + 1:A--D--D--R--E--S--S-rrrXXXXX + 2:OPERATION + 3:CONSTANT + ----------------------------- + reg[7] = reg[rrr] OPERATION CONSTANT; + if (!(reg[7])) + IC += ADDRESS; + else + IC += 2 + */ + +#define CCL_JumpCondExprReg 0x1C /* Jump conditional according to + an operation on register: + 1:A--D--D--R--E--S--S-rrrXXXXX + 2:OPERATION + 3:RRR + ----------------------------- + reg[7] = reg[rrr] OPERATION reg[RRR]; + if (!reg[7]) + IC += ADDRESS; + else + IC += 2; + */ + +#define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according + to an operation on constant: + 1:A--D--D--R--E--S--S-rrrXXXXX + 2:OPERATION + 3:CONSTANT + ----------------------------- + read (reg[rrr]); + reg[7] = reg[rrr] OPERATION CONSTANT; + if (!reg[7]) + IC += ADDRESS; + else + IC += 2; + */ + +#define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according + to an operation on register: + 1:A--D--D--R--E--S--S-rrrXXXXX + 2:OPERATION + 3:RRR + ----------------------------- + read (reg[rrr]); + reg[7] = reg[rrr] OPERATION reg[RRR]; + if (!reg[7]) + IC += ADDRESS; + else + IC += 2; + */ + +#define CCL_Extention 0x1F /* Extended CCL code + 1:ExtendedCOMMNDRrrRRRrrrXXXXX + 2:ARGUEMENT + 3:... + ------------------------------ + extended_command (rrr,RRR,Rrr,ARGS) + */ + +/* + Here after, Extended CCL Instructions. + Bit length of extended command is 14. + Therefore, the instruction code range is 0..16384(0x3fff). + */ + +/* Read a multibyte characeter. + A code point is stored into reg[rrr]. A charset ID is stored into + reg[RRR]. */ + +#define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character + 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ + +/* Write a multibyte character. + Write a character whose code point is reg[rrr] and the charset ID + is reg[RRR]. */ + +#define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character + 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ + +#if 0 +/* Translate a character whose code point is reg[rrr] and the charset + ID is reg[RRR] by a translation table whose ID is reg[Rrr]. + + A translated character is set in reg[rrr] (code point) and reg[RRR] + (charset ID). */ + +#define CCL_TranslateCharacter 0x02 /* Translate a multibyte character + 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ + +/* Translate a character whose code point is reg[rrr] and the charset + ID is reg[RRR] by a translation table whose ID is ARGUMENT. + + A translated character is set in reg[rrr] (code point) and reg[RRR] + (charset ID). */ + +#define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character + 1:ExtendedCOMMNDRrrRRRrrrXXXXX + 2:ARGUMENT(Translation Table ID) + */ + +/* Iterate looking up MAPs for reg[rrr] starting from the Nth (N = + reg[RRR]) MAP until some value is found. + + Each MAP is a Lisp vector whose element is number, nil, t, or + lambda. + If the element is nil, ignore the map and proceed to the next map. + If the element is t or lambda, finish without changing reg[rrr]. + If the element is a number, set reg[rrr] to the number and finish. + + Detail of the map structure is descibed in the comment for + CCL_MapMultiple below. */ + +#define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps + 1:ExtendedCOMMNDXXXRRRrrrXXXXX + 2:NUMBER of MAPs + 3:MAP-ID1 + 4:MAP-ID2 + ... + */ + +/* Map the code in reg[rrr] by MAPs starting from the Nth (N = + reg[RRR]) map. + + MAPs are supplied in the succeeding CCL codes as follows: + + When CCL program gives this nested structure of map to this command: + ((MAP-ID11 + MAP-ID12 + (MAP-ID121 MAP-ID122 MAP-ID123) + MAP-ID13) + (MAP-ID21 + (MAP-ID211 (MAP-ID2111) MAP-ID212) + MAP-ID22)), + the compiled CCL codes has this sequence: + CCL_MapMultiple (CCL code of this command) + 16 (total number of MAPs and SEPARATORs) + -7 (1st SEPARATOR) + MAP-ID11 + MAP-ID12 + -3 (2nd SEPARATOR) + MAP-ID121 + MAP-ID122 + MAP-ID123 + MAP-ID13 + -7 (3rd SEPARATOR) + MAP-ID21 + -4 (4th SEPARATOR) + MAP-ID211 + -1 (5th SEPARATOR) + MAP_ID2111 + MAP-ID212 + MAP-ID22 + + A value of each SEPARATOR follows this rule: + MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+ + SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET) + + (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL. + + When some map fails to map (i.e. it doesn't have a value for + reg[rrr]), the mapping is treated as identity. + + The mapping is iterated for all maps in each map set (set of maps + separated by SEPARATOR) except in the case that lambda is + encountered. More precisely, the mapping proceeds as below: + + At first, VAL0 is set to reg[rrr], and it is translated by the + first map to VAL1. Then, VAL1 is translated by the next map to + VAL2. This mapping is iterated until the last map is used. The + result of the mapping is the last value of VAL?. + + But, when VALm is mapped to VALn and VALn is not a number, the + mapping proceed as below: + + If VALn is nil, the lastest map is ignored and the mapping of VALm + proceed to the next map. + + In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm + proceed to the next map. + + If VALn is lambda, the whole mapping process terminates, and VALm + is the result of this mapping. + + Each map is a Lisp vector of the following format (a) or (b): + (a)......[STARTPOINT VAL1 VAL2 ...] + (b)......[t VAL STARTPOINT ENDPOINT], + where + STARTPOINT is an offset to be used for indexing a map, + ENDPOINT is a maximum index number of a map, + VAL and VALn is a number, nil, t, or lambda. + + Valid index range of a map of type (a) is: + STARTPOINT <= index < STARTPOINT + map_size - 1 + Valid index range of a map of type (b) is: + STARTPOINT <= index < ENDPOINT */ + +#define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps + 1:ExtendedCOMMNDXXXRRRrrrXXXXX + 2:N-2 + 3:SEPARATOR_1 (< 0) + 4:MAP-ID_1 + 5:MAP-ID_2 + ... + M:SEPARATOR_x (< 0) + M+1:MAP-ID_y + ... + N:SEPARATOR_z (< 0) + */ + +#define MAX_MAP_SET_LEVEL 20 + +typedef struct +{ + int rest_length; + int orig_val; +} tr_stack; + +static tr_stack mapping_stack[MAX_MAP_SET_LEVEL]; +static tr_stack *mapping_stack_pointer; +#endif + +#define PUSH_MAPPING_STACK(restlen, orig) \ +{ \ + mapping_stack_pointer->rest_length = (restlen); \ + mapping_stack_pointer->orig_val = (orig); \ + mapping_stack_pointer++; \ +} + +#define POP_MAPPING_STACK(restlen, orig) \ +{ \ + mapping_stack_pointer--; \ + (restlen) = mapping_stack_pointer->rest_length; \ + (orig) = mapping_stack_pointer->orig_val; \ +} \ + +#define CCL_MapSingle 0x12 /* Map by single code conversion map + 1:ExtendedCOMMNDXXXRRRrrrXXXXX + 2:MAP-ID + ------------------------------ + Map reg[rrr] by MAP-ID. + If some valid mapping is found, + set reg[rrr] to the result, + else + set reg[RRR] to -1. + */ + +/* CCL arithmetic/logical operators. */ +#define CCL_PLUS 0x00 /* X = Y + Z */ +#define CCL_MINUS 0x01 /* X = Y - Z */ +#define CCL_MUL 0x02 /* X = Y * Z */ +#define CCL_DIV 0x03 /* X = Y / Z */ +#define CCL_MOD 0x04 /* X = Y % Z */ +#define CCL_AND 0x05 /* X = Y & Z */ +#define CCL_OR 0x06 /* X = Y | Z */ +#define CCL_XOR 0x07 /* X = Y ^ Z */ +#define CCL_LSH 0x08 /* X = Y << Z */ +#define CCL_RSH 0x09 /* X = Y >> Z */ +#define CCL_LSH8 0x0A /* X = (Y << 8) | Z */ +#define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */ +#define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */ +#define CCL_LS 0x10 /* X = (X < Y) */ +#define CCL_GT 0x11 /* X = (X > Y) */ +#define CCL_EQ 0x12 /* X = (X == Y) */ +#define CCL_LE 0x13 /* X = (X <= Y) */ +#define CCL_GE 0x14 /* X = (X >= Y) */ +#define CCL_NE 0x15 /* X = (X != Y) */ + +#define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z)) + r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */ +#define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z)) + r[7] = LOWER_BYTE (SJIS (Y, Z) */ + +/* Suspend CCL program because of reading from empty input buffer or + writing to full output buffer. When this program is resumed, the + same I/O command is executed. */ +#define CCL_SUSPEND(stat) \ + do { \ + ic--; \ + ccl->status = stat; \ + goto ccl_finish; \ + } while (0) + +/* Terminate CCL program because of invalid command. Should not occur + in the normal case. */ +#define CCL_INVALID_CMD \ + do { \ + ccl->status = CCL_STAT_INVALID_CMD; \ + goto ccl_error_handler; \ + } while (0) + +/* Encode one character CH to multibyte form and write to the current + output buffer. If CH is less than 256, CH is written as is. */ +#define CCL_WRITE_CHAR(ch) do { \ + if (!destination) \ + { \ + ccl->status = CCL_STAT_INVALID_CMD; \ + goto ccl_error_handler; \ + } \ + else \ + { \ + Bufbyte work[MAX_EMCHAR_LEN]; \ + int len = ( ch < ( conversion_mode == CCL_MODE_ENCODING ? \ + 256 : 128 ) ) ? \ + simple_set_charptr_emchar (work, ch) : \ + non_ascii_set_charptr_emchar (work, ch); \ + Dynarr_add_many (destination, work, len); \ + } \ +} while (0) + +/* Write a string at ccl_prog[IC] of length LEN to the current output + buffer. */ +#define CCL_WRITE_STRING(len) do { \ + if (!destination) \ + { \ + ccl->status = CCL_STAT_INVALID_CMD; \ + goto ccl_error_handler; \ + } \ + else \ + { \ + Bufbyte work[MAX_EMCHAR_LEN]; \ + for (i = 0; i < len; i++) \ + { \ + int ch = (XINT (ccl_prog[ic + (i / 3)]) \ + >> ((2 - (i % 3)) * 8)) & 0xFF; \ + int bytes = \ + ( ch < ( conversion_mode == CCL_MODE_ENCODING ? \ + 256 : 128 ) ) ? \ + simple_set_charptr_emchar (work, ch) : \ + non_ascii_set_charptr_emchar (work, ch); \ + Dynarr_add_many (destination, work, bytes); \ + } \ + } \ +} while (0) + +/* Read one byte from the current input buffer into Rth register. */ +#define CCL_READ_CHAR(r) do { \ + if (!src && !ccl->last_block) \ + { \ + ccl->status = CCL_STAT_INVALID_CMD; \ + goto ccl_error_handler; \ + } \ + else if (src < src_end) \ + r = *src++; \ + else if (ccl->last_block) \ + { \ + ic = ccl->eof_ic; \ + goto ccl_repeat; \ + } \ + else \ + /* Suspend CCL program because of \ + reading from empty input buffer or \ + writing to full output buffer. \ + When this program is resumed, the \ + same I/O command is executed. */ \ + { \ + ic--; \ + ccl->status = CCL_STAT_SUSPEND_BY_SRC; \ + goto ccl_finish; \ + } \ +} while (0) + + +/* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting + text goes to a place pointed by DESTINATION. The bytes actually + processed is returned as *CONSUMED. The return value is the length + of the resulting text. As a side effect, the contents of CCL registers + are updated. If SOURCE or DESTINATION is NULL, only operations on + registers are permitted. */ + +#ifdef CCL_DEBUG +#define CCL_DEBUG_BACKTRACE_LEN 256 +int ccl_backtrace_table[CCL_BACKTRACE_TABLE]; +int ccl_backtrace_idx; +#endif + +struct ccl_prog_stack + { + Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */ + int ic; /* Instruction Counter. */ + }; + +/* For the moment, we only support depth 256 of stack. */ +static struct ccl_prog_stack ccl_prog_stack_struct[256]; + +int +ccl_driver (struct ccl_program *ccl, CONST unsigned char *source, + unsigned_char_dynarr *destination, int src_bytes, + int *consumed, int conversion_mode) +{ + int *reg = ccl->reg; + int ic = ccl->ic; + int code = -1; /* init to illegal value, */ + int field1, field2; + Lisp_Object *ccl_prog = ccl->prog; + CONST unsigned char *src = source, *src_end = src + src_bytes; + int jump_address = 0; /* shut up the compiler */ + int i, j, op; + int stack_idx = ccl->stack_idx; + /* Instruction counter of the current CCL code. */ + int this_ic = 0; + + if (ic >= ccl->eof_ic) + ic = CCL_HEADER_MAIN; + +#if 0 /* not for XEmacs ? */ + if (ccl->buf_magnification ==0) /* We can't produce any bytes. */ + dst = NULL; +#endif + +#ifdef CCL_DEBUG + ccl_backtrace_idx = 0; +#endif + + for (;;) + { + ccl_repeat: +#ifdef CCL_DEBUG + ccl_backtrace_table[ccl_backtrace_idx++] = ic; + if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN) + ccl_backtrace_idx = 0; + ccl_backtrace_table[ccl_backtrace_idx] = 0; +#endif + + if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) + { + /* We can't just signal Qquit, instead break the loop as if + the whole data is processed. Don't reset Vquit_flag, it + must be handled later at a safer place. */ + if (consumed) + src = source + src_bytes; + ccl->status = CCL_STAT_QUIT; + break; + } + + this_ic = ic; + code = XINT (ccl_prog[ic]); ic++; + field1 = code >> 8; + field2 = (code & 0xFF) >> 5; + +#define rrr field2 +#define RRR (field1 & 7) +#define Rrr ((field1 >> 3) & 7) +#define ADDR field1 +#define EXCMD (field1 >> 6) + + switch (code & 0x1F) + { + case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */ + reg[rrr] = reg[RRR]; + break; + + case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ + reg[rrr] = field1; + break; + + case CCL_SetConst: /* 00000000000000000000rrrXXXXX */ + reg[rrr] = XINT (ccl_prog[ic]); + ic++; + break; + + case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */ + i = reg[RRR]; + j = field1 >> 3; + if ((unsigned int) i < j) + reg[rrr] = XINT (ccl_prog[ic + i]); + ic += j; + break; + + case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */ + ic += ADDR; + break; + + case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */ + if (!reg[rrr]) + ic += ADDR; + break; + + case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */ + i = reg[rrr]; + CCL_WRITE_CHAR (i); + ic += ADDR; + break; + + case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */ + i = reg[rrr]; + CCL_WRITE_CHAR (i); + ic++; + CCL_READ_CHAR (reg[rrr]); + ic += ADDR - 1; + break; + + case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */ + i = XINT (ccl_prog[ic]); + CCL_WRITE_CHAR (i); + ic += ADDR; + break; + + case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */ + i = XINT (ccl_prog[ic]); + CCL_WRITE_CHAR (i); + ic++; + CCL_READ_CHAR (reg[rrr]); + ic += ADDR - 1; + break; + + case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */ + j = XINT (ccl_prog[ic]); + ic++; + CCL_WRITE_STRING (j); + ic += ADDR - 1; + break; + + case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */ + i = reg[rrr]; + j = XINT (ccl_prog[ic]); + if ((unsigned int) i < j) + { + i = XINT (ccl_prog[ic + 1 + i]); + CCL_WRITE_CHAR (i); + } + ic += j + 2; + CCL_READ_CHAR (reg[rrr]); + ic += ADDR - (j + 2); + break; + + case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */ + CCL_READ_CHAR (reg[rrr]); + ic += ADDR; + break; + + case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ + CCL_READ_CHAR (reg[rrr]); + /* fall through ... */ + case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ + if ((unsigned int) reg[rrr] < field1) + ic += XINT (ccl_prog[ic + reg[rrr]]); + else + ic += XINT (ccl_prog[ic + field1]); + break; + + case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */ + while (1) + { + CCL_READ_CHAR (reg[rrr]); + if (!field1) break; + code = XINT (ccl_prog[ic]); ic++; + field1 = code >> 8; + field2 = (code & 0xFF) >> 5; + } + break; + + case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */ + rrr = 7; + i = reg[RRR]; + j = XINT (ccl_prog[ic]); + op = field1 >> 6; + ic++; + goto ccl_set_expr; + + case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */ + while (1) + { + i = reg[rrr]; + CCL_WRITE_CHAR (i); + if (!field1) break; + code = XINT (ccl_prog[ic]); ic++; + field1 = code >> 8; + field2 = (code & 0xFF) >> 5; + } + break; + + case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */ + rrr = 7; + i = reg[RRR]; + j = reg[Rrr]; + op = field1 >> 6; + goto ccl_set_expr; + + case CCL_Call: /* CCCCCCCCCCCCCCCCCCCC000XXXXX */ + { + Lisp_Object slot; + + if (stack_idx >= 256 + || field1 < 0 + || field1 >= XVECTOR_LENGTH (Vccl_program_table) + || (slot = XVECTOR_DATA (Vccl_program_table)[field1], + !CONSP (slot)) + || !VECTORP (XCDR (slot))) + { + if (stack_idx > 0) + { + ccl_prog = ccl_prog_stack_struct[0].ccl_prog; + ic = ccl_prog_stack_struct[0].ic; + } + ccl->status = CCL_STAT_INVALID_CMD; + goto ccl_error_handler; + } + + ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; + ccl_prog_stack_struct[stack_idx].ic = ic; + stack_idx++; + ccl_prog = XVECTOR_DATA (XCDR (slot)); + ic = CCL_HEADER_MAIN; + } + break; + + case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ + if (!rrr) + CCL_WRITE_CHAR (field1); + else + { + CCL_WRITE_STRING (field1); + ic += (field1 + 2) / 3; + } + break; + + case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ + i = reg[rrr]; + if ((unsigned int) i < field1) + { + j = XINT (ccl_prog[ic + i]); + CCL_WRITE_CHAR (j); + } + ic += field1; + break; + + case CCL_End: /* 0000000000000000000000XXXXX */ + if (stack_idx-- > 0) + { + ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog; + ic = ccl_prog_stack_struct[stack_idx].ic; + break; + } + if (src) + src = src_end; + /* ccl->ic should points to this command code again to + suppress further processing. */ + ic--; + /* Terminate CCL program successfully. */ + ccl->status = CCL_STAT_SUCCESS; + goto ccl_finish; + + case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */ + i = XINT (ccl_prog[ic]); + ic++; + op = field1 >> 6; + goto ccl_expr_self; + + case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */ + i = reg[RRR]; + op = field1 >> 6; + + ccl_expr_self: + switch (op) + { + case CCL_PLUS: reg[rrr] += i; break; + case CCL_MINUS: reg[rrr] -= i; break; + case CCL_MUL: reg[rrr] *= i; break; + case CCL_DIV: reg[rrr] /= i; break; + case CCL_MOD: reg[rrr] %= i; break; + case CCL_AND: reg[rrr] &= i; break; + case CCL_OR: reg[rrr] |= i; break; + case CCL_XOR: reg[rrr] ^= i; break; + case CCL_LSH: reg[rrr] <<= i; break; + case CCL_RSH: reg[rrr] >>= i; break; + case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break; + case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break; + case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break; + case CCL_LS: reg[rrr] = reg[rrr] < i; break; + case CCL_GT: reg[rrr] = reg[rrr] > i; break; + case CCL_EQ: reg[rrr] = reg[rrr] == i; break; + case CCL_LE: reg[rrr] = reg[rrr] <= i; break; + case CCL_GE: reg[rrr] = reg[rrr] >= i; break; + case CCL_NE: reg[rrr] = reg[rrr] != i; break; + default: + ccl->status = CCL_STAT_INVALID_CMD; + goto ccl_error_handler; + } + break; + + case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */ + i = reg[RRR]; + j = XINT (ccl_prog[ic]); + op = field1 >> 6; + jump_address = ++ic; + goto ccl_set_expr; + + case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */ + i = reg[RRR]; + j = reg[Rrr]; + op = field1 >> 6; + jump_address = ic; + goto ccl_set_expr; + + case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */ + CCL_READ_CHAR (reg[rrr]); + case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */ + i = reg[rrr]; + op = XINT (ccl_prog[ic]); + jump_address = ic++ + ADDR; + j = XINT (ccl_prog[ic]); + ic++; + rrr = 7; + goto ccl_set_expr; + + case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */ + CCL_READ_CHAR (reg[rrr]); + case CCL_JumpCondExprReg: + i = reg[rrr]; + op = XINT (ccl_prog[ic]); + jump_address = ic++ + ADDR; + j = reg[XINT (ccl_prog[ic])]; + ic++; + rrr = 7; + + ccl_set_expr: + switch (op) + { + case CCL_PLUS: reg[rrr] = i + j; break; + case CCL_MINUS: reg[rrr] = i - j; break; + case CCL_MUL: reg[rrr] = i * j; break; + case CCL_DIV: reg[rrr] = i / j; break; + case CCL_MOD: reg[rrr] = i % j; break; + case CCL_AND: reg[rrr] = i & j; break; + case CCL_OR: reg[rrr] = i | j; break; + case CCL_XOR: reg[rrr] = i ^ j; break; + case CCL_LSH: reg[rrr] = i << j; break; + case CCL_RSH: reg[rrr] = i >> j; break; + case CCL_LSH8: reg[rrr] = (i << 8) | j; break; + case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break; + case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break; + case CCL_LS: reg[rrr] = i < j; break; + case CCL_GT: reg[rrr] = i > j; break; + case CCL_EQ: reg[rrr] = i == j; break; + case CCL_LE: reg[rrr] = i <= j; break; + case CCL_GE: reg[rrr] = i >= j; break; + case CCL_NE: reg[rrr] = i != j; break; + case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break; + case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break; + default: + ccl->status = CCL_STAT_INVALID_CMD; + goto ccl_error_handler; + } + code &= 0x1F; + if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister) + { + i = reg[rrr]; + CCL_WRITE_CHAR (i); + } + else if (!reg[rrr]) + ic = jump_address; + break; + + case CCL_Extention: + switch (EXCMD) + { + case CCL_ReadMultibyteChar2: + if (!src) + CCL_INVALID_CMD; + + do { + if (src >= src_end) + { + src++; + goto ccl_read_multibyte_character_suspend; + } + + i = *src++; +#if 0 + if (i == LEADING_CODE_COMPOSITION) + { + if (src >= src_end) + goto ccl_read_multibyte_character_suspend; + if (*src == 0xFF) + { + ccl->private_state = COMPOSING_WITH_RULE_HEAD; + src++; + } + else + ccl->private_state = COMPOSING_NO_RULE_HEAD; + + continue; + } + if (ccl->private_state != COMPOSING_NO) + { + /* composite character */ + if (i < 0xA0) + ccl->private_state = COMPOSING_NO; + else + { + if (COMPOSING_WITH_RULE_RULE == ccl->private_state) + { + ccl->private_state = COMPOSING_WITH_RULE_HEAD; + continue; + } + else if (COMPOSING_WITH_RULE_HEAD == ccl->private_state) + ccl->private_state = COMPOSING_WITH_RULE_RULE; + + if (i == 0xA0) + { + if (src >= src_end) + goto ccl_read_multibyte_character_suspend; + i = *src++ & 0x7F; + } + else + i -= 0x20; + } + } +#endif + + if (i < 0x80) + { + /* ASCII */ + reg[rrr] = i; + reg[RRR] = LEADING_BYTE_ASCII; + } + else if (i <= MAX_LEADING_BYTE_OFFICIAL_1) + { + if (src >= src_end) + goto ccl_read_multibyte_character_suspend; + reg[RRR] = i; + reg[rrr] = (*src++ & 0x7F); + } + else if (i <= MAX_LEADING_BYTE_OFFICIAL_2) + { + if ((src + 1) >= src_end) + goto ccl_read_multibyte_character_suspend; + reg[RRR] = i; + i = (*src++ & 0x7F); + reg[rrr] = ((i << 7) | (*src & 0x7F)); + src++; + } + else if (i == PRE_LEADING_BYTE_PRIVATE_1) + { + if ((src + 1) >= src_end) + goto ccl_read_multibyte_character_suspend; + reg[RRR] = *src++; + reg[rrr] = (*src++ & 0x7F); + } + else if (i == PRE_LEADING_BYTE_PRIVATE_2) + { + if ((src + 2) >= src_end) + goto ccl_read_multibyte_character_suspend; + reg[RRR] = *src++; + i = (*src++ & 0x7F); + reg[rrr] = ((i << 7) | (*src & 0x7F)); + src++; + } + else + { + /* INVALID CODE. Return a single byte character. */ + reg[RRR] = LEADING_BYTE_ASCII; + reg[rrr] = i; + } + break; + } while (1); + break; + + ccl_read_multibyte_character_suspend: + src--; + if (ccl->last_block) + { + ic = ccl->eof_ic; + goto ccl_repeat; + } + else + CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); + + break; + + case CCL_WriteMultibyteChar2: + i = reg[RRR]; /* charset */ + if (i == LEADING_BYTE_ASCII) + i = reg[rrr] & 0xFF; +#if 0 + else if (i == CHARSET_COMPOSITION) + i = MAKE_COMPOSITE_CHAR (reg[rrr]); +#endif + else if (XCHARSET_DIMENSION (CHARSET_BY_LEADING_BYTE (i)) == 1) + i = ((i - FIELD2_TO_OFFICIAL_LEADING_BYTE) << 7) + | (reg[rrr] & 0x7F); + else if (i < MIN_LEADING_BYTE_OFFICIAL_2) + i = ((i - FIELD1_TO_OFFICIAL_LEADING_BYTE) << 14) | reg[rrr]; + else + i = ((i - FIELD1_TO_PRIVATE_LEADING_BYTE) << 14) | reg[rrr]; + + CCL_WRITE_CHAR (i); + + break; + +#if 0 + case CCL_TranslateCharacter: + i = reg[RRR]; /* charset */ + if (i == LEADING_BYTE_ASCII) + i = reg[rrr]; + else if (i == CHARSET_COMPOSITION) + { + reg[RRR] = -1; + break; + } + else if (CHARSET_DIMENSION (i) == 1) + i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F); + else if (i < MIN_LEADING_BYTE_OFFICIAL_2) + i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF); + else + i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF); + + op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), + i, -1, 0, 0); + SPLIT_CHAR (op, reg[RRR], i, j); + if (j != -1) + i = (i << 7) | j; + + reg[rrr] = i; + break; + + case CCL_TranslateCharacterConstTbl: + op = XINT (ccl_prog[ic]); /* table */ + ic++; + i = reg[RRR]; /* charset */ + if (i == LEADING_BYTE_ASCII) + i = reg[rrr]; + else if (i == CHARSET_COMPOSITION) + { + reg[RRR] = -1; + break; + } + else if (CHARSET_DIMENSION (i) == 1) + i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F); + else if (i < MIN_LEADING_BYTE_OFFICIAL_2) + i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF); + else + i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF); + + op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0); + SPLIT_CHAR (op, reg[RRR], i, j); + if (j != -1) + i = (i << 7) | j; + + reg[rrr] = i; + break; + + case CCL_IterateMultipleMap: + { + Lisp_Object map, content, attrib, value; + int point, size, fin_ic; + + j = XINT (ccl_prog[ic++]); /* number of maps. */ + fin_ic = ic + j; + op = reg[rrr]; + if ((j > reg[RRR]) && (j >= 0)) + { + ic += reg[RRR]; + i = reg[RRR]; + } + else + { + reg[RRR] = -1; + ic = fin_ic; + break; + } + + for (;i < j;i++) + { + + size = XVECTOR (Vcode_conversion_map_vector)->size; + point = XINT (ccl_prog[ic++]); + if (point >= size) continue; + map = + XVECTOR (Vcode_conversion_map_vector)->contents[point]; + + /* Check map varidity. */ + if (!CONSP (map)) continue; + map = XCONS(map)->cdr; + if (!VECTORP (map)) continue; + size = XVECTOR (map)->size; + if (size <= 1) continue; + + content = XVECTOR (map)->contents[0]; + + /* check map type, + [STARTPOINT VAL1 VAL2 ...] or + [t ELELMENT STARTPOINT ENDPOINT] */ + if (NUMBERP (content)) + { + point = XUINT (content); + point = op - point + 1; + if (!((point >= 1) && (point < size))) continue; + content = XVECTOR (map)->contents[point]; + } + else if (EQ (content, Qt)) + { + if (size != 4) continue; + if ((op >= XUINT (XVECTOR (map)->contents[2])) + && (op < XUINT (XVECTOR (map)->contents[3]))) + content = XVECTOR (map)->contents[1]; + else + continue; + } + else + continue; + + if (NILP (content)) + continue; + else if (NUMBERP (content)) + { + reg[RRR] = i; + reg[rrr] = XINT(content); + break; + } + else if (EQ (content, Qt) || EQ (content, Qlambda)) + { + reg[RRR] = i; + break; + } + else if (CONSP (content)) + { + attrib = XCONS (content)->car; + value = XCONS (content)->cdr; + if (!NUMBERP (attrib) || !NUMBERP (value)) + continue; + reg[RRR] = i; + reg[rrr] = XUINT (value); + break; + } + } + if (i == j) + reg[RRR] = -1; + ic = fin_ic; + } + break; + + case CCL_MapMultiple: + { + Lisp_Object map, content, attrib, value; + int point, size, map_vector_size; + int map_set_rest_length, fin_ic; + + map_set_rest_length = + XINT (ccl_prog[ic++]); /* number of maps and separators. */ + fin_ic = ic + map_set_rest_length; + if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0)) + { + ic += reg[RRR]; + i = reg[RRR]; + map_set_rest_length -= i; + } + else + { + ic = fin_ic; + reg[RRR] = -1; + break; + } + mapping_stack_pointer = mapping_stack; + op = reg[rrr]; + PUSH_MAPPING_STACK (0, op); + reg[RRR] = -1; + map_vector_size = XVECTOR (Vcode_conversion_map_vector)->size; + for (;map_set_rest_length > 0;i++, map_set_rest_length--) + { + point = XINT(ccl_prog[ic++]); + if (point < 0) + { + point = -point; + if (mapping_stack_pointer + >= &mapping_stack[MAX_MAP_SET_LEVEL]) + { + CCL_INVALID_CMD; + } + PUSH_MAPPING_STACK (map_set_rest_length - point, + reg[rrr]); + map_set_rest_length = point + 1; + reg[rrr] = op; + continue; + } + + if (point >= map_vector_size) continue; + map = (XVECTOR (Vcode_conversion_map_vector) + ->contents[point]); + + /* Check map varidity. */ + if (!CONSP (map)) continue; + map = XCONS (map)->cdr; + if (!VECTORP (map)) continue; + size = XVECTOR (map)->size; + if (size <= 1) continue; + + content = XVECTOR (map)->contents[0]; + + /* check map type, + [STARTPOINT VAL1 VAL2 ...] or + [t ELEMENT STARTPOINT ENDPOINT] */ + if (NUMBERP (content)) + { + point = XUINT (content); + point = op - point + 1; + if (!((point >= 1) && (point < size))) continue; + content = XVECTOR (map)->contents[point]; + } + else if (EQ (content, Qt)) + { + if (size != 4) continue; + if ((op >= XUINT (XVECTOR (map)->contents[2])) && + (op < XUINT (XVECTOR (map)->contents[3]))) + content = XVECTOR (map)->contents[1]; + else + continue; + } + else + continue; + + if (NILP (content)) + continue; + else if (NUMBERP (content)) + { + op = XINT (content); + reg[RRR] = i; + i += map_set_rest_length; + POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); + } + else if (CONSP (content)) + { + attrib = XCONS (content)->car; + value = XCONS (content)->cdr; + if (!NUMBERP (attrib) || !NUMBERP (value)) + continue; + reg[RRR] = i; + op = XUINT (value); + i += map_set_rest_length; + POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); + } + else if (EQ (content, Qt)) + { + reg[RRR] = i; + op = reg[rrr]; + i += map_set_rest_length; + POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); + } + else if (EQ (content, Qlambda)) + { + break; + } + else + CCL_INVALID_CMD; + } + ic = fin_ic; + } + reg[rrr] = op; + break; + + case CCL_MapSingle: + { + Lisp_Object map, attrib, value, content; + int size, point; + j = XINT (ccl_prog[ic++]); /* map_id */ + op = reg[rrr]; + if (j >= XVECTOR (Vcode_conversion_map_vector)->size) + { + reg[RRR] = -1; + break; + } + map = XVECTOR (Vcode_conversion_map_vector)->contents[j]; + if (!CONSP (map)) + { + reg[RRR] = -1; + break; + } + map = XCONS(map)->cdr; + if (!VECTORP (map)) + { + reg[RRR] = -1; + break; + } + size = XVECTOR (map)->size; + point = XUINT (XVECTOR (map)->contents[0]); + point = op - point + 1; + reg[RRR] = 0; + if ((size <= 1) || + (!((point >= 1) && (point < size)))) + reg[RRR] = -1; + else + { + content = XVECTOR (map)->contents[point]; + if (NILP (content)) + reg[RRR] = -1; + else if (NUMBERP (content)) + reg[rrr] = XINT (content); + else if (EQ (content, Qt)) + reg[RRR] = i; + else if (CONSP (content)) + { + attrib = XCONS (content)->car; + value = XCONS (content)->cdr; + if (!NUMBERP (attrib) || !NUMBERP (value)) + continue; + reg[rrr] = XUINT(value); + break; + } + else + reg[RRR] = -1; + } + } + break; +#endif + + default: + CCL_INVALID_CMD; + } + break; + + default: + ccl->status = CCL_STAT_INVALID_CMD; + goto ccl_error_handler; + } + } + + ccl_error_handler: + if (destination) + { + /* We can insert an error message only if DESTINATION is + specified and we still have a room to store the message + there. */ + char msg[256]; + +#if 0 /* not for XEmacs ? */ + if (!dst) + dst = destination; +#endif + + switch (ccl->status) + { + /* Terminate CCL program because of invalid command. + Should not occur in the normal case. */ + case CCL_STAT_INVALID_CMD: + sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.", + code & 0x1F, code, this_ic); +#ifdef CCL_DEBUG + { + int i = ccl_backtrace_idx - 1; + int j; + + Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); + + for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--) + { + if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1; + if (ccl_backtrace_table[i] == 0) + break; + sprintf(msg, " %d", ccl_backtrace_table[i]); + Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); + } + goto ccl_finish; + } +#endif + break; + + case CCL_STAT_QUIT: + sprintf(msg, "\nCCL: Quited."); + break; + + default: + sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status); + } + + Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); + } + + ccl_finish: + ccl->ic = ic; + ccl->stack_idx = stack_idx; + ccl->prog = ccl_prog; + if (consumed) *consumed = src - source; + if (destination) + return Dynarr_length (destination); + else + return 0; +} + +/* Setup fields of the structure pointed by CCL appropriately for the + execution of compiled CCL code in VEC (vector of integer). + If VEC is nil, we skip setting ups based on VEC. */ +void +setup_ccl_program (struct ccl_program *ccl, Lisp_Object vec) +{ + int i; + + if (VECTORP (vec)) + { + ccl->size = XVECTOR_LENGTH (vec); + ccl->prog = XVECTOR_DATA (vec); + ccl->eof_ic = XINT (XVECTOR_DATA (vec)[CCL_HEADER_EOF]); + ccl->buf_magnification = XINT (XVECTOR_DATA (vec)[CCL_HEADER_BUF_MAG]); + } + ccl->ic = CCL_HEADER_MAIN; + for (i = 0; i < 8; i++) + ccl->reg[i] = 0; + ccl->last_block = 0; + ccl->private_state = 0; + ccl->status = 0; + ccl->stack_idx = 0; +} + +/* Resolve symbols in the specified CCL code (Lisp vector). This + function converts symbols of code conversion maps and character + translation tables embeded in the CCL code into their ID numbers. */ + +static Lisp_Object +resolve_symbol_ccl_program (Lisp_Object ccl) +{ + int i, veclen; + Lisp_Object result, contents /*, prop */; + + result = ccl; + veclen = XVECTOR_LENGTH (result); + + /* Set CCL program's table ID */ + for (i = 0; i < veclen; i++) + { + contents = XVECTOR_DATA (result)[i]; + if (SYMBOLP (contents)) + { + if (EQ(result, ccl)) + result = Fcopy_sequence (ccl); + +#if 0 + prop = Fget (contents, Qtranslation_table_id); + if (NUMBERP (prop)) + { + XVECTOR_DATA (result)[i] = prop; + continue; + } + prop = Fget (contents, Qcode_conversion_map_id); + if (NUMBERP (prop)) + { + XVECTOR_DATA (result)[i] = prop; + continue; + } + prop = Fget (contents, Qccl_program_idx); + if (NUMBERP (prop)) + { + XVECTOR_DATA (result)[i] = prop; + continue; + } +#endif + } + } + + return result; +} + + +#ifdef emacs + +DEFUN ("ccl-execute", Fccl_execute, 2, 2, 0, /* +Execute CCL-PROGRAM with registers initialized by REGISTERS. + +CCL-PROGRAM is a symbol registered by register-ccl-program, +or a compiled code generated by `ccl-compile' (for backward compatibility, +in this case, the execution is slower). +No I/O commands should appear in CCL-PROGRAM. + +REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value + of Nth register. + +As side effect, each element of REGISTER holds the value of + corresponding register after the execution. +*/ + (ccl_prog, reg)) +{ + struct ccl_program ccl; + int i; + Lisp_Object ccl_id; + + if (SYMBOLP (ccl_prog) && + !NILP (ccl_id = Fget (ccl_prog, Qccl_program_idx, Qnil))) + { + ccl_prog = XVECTOR_DATA (Vccl_program_table)[XUINT (ccl_id)]; + CHECK_LIST (ccl_prog); + ccl_prog = XCDR (ccl_prog); + CHECK_VECTOR (ccl_prog); + } + else + { + CHECK_VECTOR (ccl_prog); + ccl_prog = resolve_symbol_ccl_program (ccl_prog); + } + + CHECK_VECTOR (reg); + if (XVECTOR_LENGTH (reg) != 8) + error ("Invalid length of vector REGISTERS"); + + setup_ccl_program (&ccl, ccl_prog); + for (i = 0; i < 8; i++) + ccl.reg[i] = (INTP (XVECTOR_DATA (reg)[i]) + ? XINT (XVECTOR_DATA (reg)[i]) + : 0); + + ccl_driver (&ccl, (CONST unsigned char *)0, (unsigned_char_dynarr *)0, + 0, (int *)0, CCL_MODE_ENCODING); + QUIT; + if (ccl.status != CCL_STAT_SUCCESS) + error ("Error in CCL program at %dth code", ccl.ic); + + for (i = 0; i < 8; i++) + XSETINT (XVECTOR_DATA (reg)[i], ccl.reg[i]); + return Qnil; +} + +DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, 3, 4, 0, /* +Execute CCL-PROGRAM with initial STATUS on STRING. + +CCL-PROGRAM is a symbol registered by register-ccl-program, +or a compiled code generated by `ccl-compile' (for backward compatibility, +in this case, the execution is slower). + +Read buffer is set to STRING, and write buffer is allocated automatically. + +If IC is nil, it is initialized to head of the CCL program.\n\ +STATUS is a vector of [R0 R1 ... R7 IC], where + R0..R7 are initial values of corresponding registers, + IC is the instruction counter specifying from where to start the program. +If R0..R7 are nil, they are initialized to 0. +If IC is nil, it is initialized to head of the CCL program. + +If optional 4th arg CONTINUE is non-nil, keep IC on read operation +when read buffer is exausted, else, IC is always set to the end of +CCL-PROGRAM on exit. + +It returns the contents of write buffer as a string, + and as side effect, STATUS is updated. +*/ + (ccl_prog, status, str, contin)) +{ + Lisp_Object val; + struct ccl_program ccl; + int i, produced; + unsigned_char_dynarr *outbuf; + struct gcpro gcpro1, gcpro2, gcpro3; + Lisp_Object ccl_id; + + if (SYMBOLP (ccl_prog) && + !NILP (ccl_id = Fget (ccl_prog, Qccl_program_idx, Qnil))) + { + ccl_prog = XVECTOR (Vccl_program_table)->contents[XUINT (ccl_id)]; + CHECK_LIST (ccl_prog); + ccl_prog = XCDR (ccl_prog); + CHECK_VECTOR (ccl_prog); + } + else + { + CHECK_VECTOR (ccl_prog); + ccl_prog = resolve_symbol_ccl_program (ccl_prog); + } + + CHECK_VECTOR (status); + if (XVECTOR_LENGTH (status) != 9) + signal_simple_error ("Vector should be of length 9", status); + CHECK_STRING (str); + GCPRO3 (ccl_prog, status, str); + + setup_ccl_program (&ccl, ccl_prog); + for (i = 0; i < 8; i++) + { + if (NILP (XVECTOR_DATA (status)[i])) + XSETINT (XVECTOR_DATA (status)[i], 0); + if (INTP (XVECTOR_DATA (status)[i])) + ccl.reg[i] = XINT (XVECTOR_DATA (status)[i]); + } + if (INTP (XVECTOR_DATA (status)[8])) + { + i = XINT (XVECTOR_DATA (status)[8]); + if (ccl.ic < i && i < ccl.size) + ccl.ic = i; + } + outbuf = Dynarr_new (unsigned_char); + ccl.last_block = NILP (contin); + produced = ccl_driver (&ccl, XSTRING_DATA (str), outbuf, + XSTRING_LENGTH (str), (int *)0, CCL_MODE_DECODING); + for (i = 0; i < 8; i++) + XVECTOR_DATA (status)[i] = make_int(ccl.reg[i]); + XSETINT (XVECTOR_DATA (status)[8], ccl.ic); + UNGCPRO; + + val = make_string (Dynarr_atp (outbuf, 0), produced); + Dynarr_free (outbuf); + QUIT; + if (ccl.status != CCL_STAT_SUCCESS + && ccl.status != CCL_STAT_SUSPEND_BY_SRC + && ccl.status != CCL_STAT_SUSPEND_BY_DST) + error ("Error in CCL program at %dth code", ccl.ic); + + return val; +} + +DEFUN ("register-ccl-program", Fregister_ccl_program, 2, 2, 0, /* +Register CCL program PROGRAM of NAME in `ccl-program-table'. +PROGRAM should be a compiled code of CCL program, or nil. +Return index number of the registered CCL program. +*/ + (name, ccl_prog)) +{ + int len = XVECTOR_LENGTH (Vccl_program_table); + int i; + + CHECK_SYMBOL (name); + if (!NILP (ccl_prog)) + { + CHECK_VECTOR (ccl_prog); + ccl_prog = resolve_symbol_ccl_program (ccl_prog); + } + + for (i = 0; i < len; i++) + { + Lisp_Object slot = XVECTOR_DATA (Vccl_program_table)[i]; + + if (!CONSP (slot)) + break; + + if (EQ (name, XCAR (slot))) + { + XCDR (slot) = ccl_prog; + return make_int (i); + } + } + + if (i == len) + { + Lisp_Object new_table = Fmake_vector (make_int (len * 2), Qnil); + int j; + + for (j = 0; j < len; j++) + XVECTOR_DATA (new_table)[j] + = XVECTOR_DATA (Vccl_program_table)[j]; + Vccl_program_table = new_table; + } + + XVECTOR_DATA (Vccl_program_table)[i] = Fcons (name, ccl_prog); + Fput (name, Qccl_program_idx, make_int (i)); + return make_int (i); +} + +#if 0 +/* Register code conversion map. + A code conversion map consists of numbers, Qt, Qnil, and Qlambda. + The first element is start code point. + The rest elements are mapped numbers. + Symbol t means to map to an original number before mapping. + Symbol nil means that the corresponding element is empty. + Symbol lambda menas to terminate mapping here. +*/ + +DEFUN ("register-code-conversion-map", Fregister_code_conversion_map, + Sregister_code_conversion_map, + 2, 2, 0, + "Register SYMBOL as code conversion map MAP.\n\ +Return index number of the registered map.") + (symbol, map) + Lisp_Object symbol, map; +{ + int len = XVECTOR (Vcode_conversion_map_vector)->size; + int i; + Lisp_Object index; + + CHECK_SYMBOL (symbol, 0); + CHECK_VECTOR (map, 1); + + for (i = 0; i < len; i++) + { + Lisp_Object slot = XVECTOR (Vcode_conversion_map_vector)->contents[i]; + + if (!CONSP (slot)) + break; + + if (EQ (symbol, XCONS (slot)->car)) + { + index = make_int (i); + XCONS (slot)->cdr = map; + Fput (symbol, Qcode_conversion_map, map); + Fput (symbol, Qcode_conversion_map_id, index); + return index; + } + } + + if (i == len) + { + Lisp_Object new_vector = Fmake_vector (make_int (len * 2), Qnil); + int j; + + for (j = 0; j < len; j++) + XVECTOR (new_vector)->contents[j] + = XVECTOR (Vcode_conversion_map_vector)->contents[j]; + Vcode_conversion_map_vector = new_vector; + } + + index = make_int (i); + Fput (symbol, Qcode_conversion_map, map); + Fput (symbol, Qcode_conversion_map_id, index); + XVECTOR (Vcode_conversion_map_vector)->contents[i] = Fcons (symbol, map); + return index; +} +#endif + + +void +syms_of_mule_ccl (void) +{ + DEFSUBR (Fccl_execute); + DEFSUBR (Fccl_execute_on_string); + DEFSUBR (Fregister_ccl_program); +#if 0 + DEFSUBR (&Fregister_code_conversion_map); +#endif +} + +void +vars_of_mule_ccl (void) +{ + staticpro (&Vccl_program_table); + Vccl_program_table = Fmake_vector (make_int (32), Qnil); + + Qccl_program = intern ("ccl-program"); + staticpro (&Qccl_program); + + Qccl_program_idx = intern ("ccl-program-idx"); + staticpro (&Qccl_program_idx); + +#if 0 + Qcode_conversion_map = intern ("code-conversion-map"); + staticpro (&Qcode_conversion_map); + + Qcode_conversion_map_id = intern ("code-conversion-map-id"); + staticpro (&Qcode_conversion_map_id); + + DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector /* +Vector of code conversion maps.*/ ); + Vcode_conversion_map_vector = Fmake_vector (make_int (16), Qnil); +#endif + + DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist /* +Alist of fontname patterns vs corresponding CCL program. +Each element looks like (REGEXP . CCL-CODE), + where CCL-CODE is a compiled CCL program. +When a font whose name matches REGEXP is used for displaying a character, + CCL-CODE is executed to calculate the code point in the font + from the charset number and position code(s) of the character which are set + in CCL registers R0, R1, and R2 before the execution. +The code point in the font is set in CCL registers R1 and R2 + when the execution terminated. +If the font is single-byte font, the register R2 is not used. +*/ ); + Vfont_ccl_encoder_alist = Qnil; +} + +#endif /* emacs */