Mercurial > hg > xemacs-beta
comparison src/mule-ccl.c @ 428:3ecd8885ac67 r21-2-22
Import from CVS: tag r21-2-22
author | cvs |
---|---|
date | Mon, 13 Aug 2007 11:28:15 +0200 |
parents | |
children | 84b14dcb0985 |
comparison
equal
deleted
inserted
replaced
427:0a0253eac470 | 428:3ecd8885ac67 |
---|---|
1 /* CCL (Code Conversion Language) interpreter. | |
2 Copyright (C) 1995, 1997, 1998, 1999 Electrotechnical Laboratory, JAPAN. | |
3 Licensed to the Free Software Foundation. | |
4 | |
5 This file is part of XEmacs. | |
6 | |
7 GNU Emacs is free software; you can redistribute it and/or modify | |
8 it under the terms of the GNU General Public License as published by | |
9 the Free Software Foundation; either version 2, or (at your option) | |
10 any later version. | |
11 | |
12 GNU Emacs is distributed in the hope that it will be useful, | |
13 but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 GNU General Public License for more details. | |
16 | |
17 You should have received a copy of the GNU General Public License | |
18 along with GNU Emacs; see the file COPYING. If not, write to | |
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
20 Boston, MA 02111-1307, USA. */ | |
21 | |
22 /* Synched up with : FSF Emacs 20.3.10 without ExCCL | |
23 * (including {Read|Write}MultibyteChar) */ | |
24 | |
25 #ifdef emacs | |
26 | |
27 #include <config.h> | |
28 | |
29 #if 0 | |
30 #ifdef STDC_HEADERS | |
31 #include <stdlib.h> | |
32 #endif | |
33 #endif | |
34 | |
35 #include "lisp.h" | |
36 #include "buffer.h" | |
37 #include "mule-charset.h" | |
38 #include "mule-ccl.h" | |
39 #include "file-coding.h" | |
40 | |
41 #else /* not emacs */ | |
42 | |
43 #include <stdio.h> | |
44 #include "mulelib.h" | |
45 | |
46 #endif /* not emacs */ | |
47 | |
48 /* This contains all code conversion map available to CCL. */ | |
49 /* | |
50 Lisp_Object Vcode_conversion_map_vector; | |
51 */ | |
52 | |
53 /* Alist of fontname patterns vs corresponding CCL program. */ | |
54 Lisp_Object Vfont_ccl_encoder_alist; | |
55 | |
56 /* This symbol is a property which assocates with ccl program vector. | |
57 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */ | |
58 Lisp_Object Qccl_program; | |
59 | |
60 /* These symbols are properties which associate with code conversion | |
61 map and their ID respectively. */ | |
62 /* | |
63 Lisp_Object Qcode_conversion_map; | |
64 Lisp_Object Qcode_conversion_map_id; | |
65 */ | |
66 | |
67 /* Symbols of ccl program have this property, a value of the property | |
68 is an index for Vccl_protram_table. */ | |
69 Lisp_Object Qccl_program_idx; | |
70 | |
71 /* Vector of CCL program names vs corresponding program data. */ | |
72 Lisp_Object Vccl_program_table; | |
73 | |
74 /* CCL (Code Conversion Language) is a simple language which has | |
75 operations on one input buffer, one output buffer, and 7 registers. | |
76 The syntax of CCL is described in `ccl.el'. Emacs Lisp function | |
77 `ccl-compile' compiles a CCL program and produces a CCL code which | |
78 is a vector of integers. The structure of this vector is as | |
79 follows: The 1st element: buffer-magnification, a factor for the | |
80 size of output buffer compared with the size of input buffer. The | |
81 2nd element: address of CCL code to be executed when encountered | |
82 with end of input stream. The 3rd and the remaining elements: CCL | |
83 codes. */ | |
84 | |
85 /* Header of CCL compiled code */ | |
86 #define CCL_HEADER_BUF_MAG 0 | |
87 #define CCL_HEADER_EOF 1 | |
88 #define CCL_HEADER_MAIN 2 | |
89 | |
90 /* CCL code is a sequence of 28-bit non-negative integers (i.e. the | |
91 MSB is always 0), each contains CCL command and/or arguments in the | |
92 following format: | |
93 | |
94 |----------------- integer (28-bit) ------------------| | |
95 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -| | |
96 |--constant argument--|-register-|-register-|-command-| | |
97 ccccccccccccccccc RRR rrr XXXXX | |
98 or | |
99 |------- relative address -------|-register-|-command-| | |
100 cccccccccccccccccccc rrr XXXXX | |
101 or | |
102 |------------- constant or other args ----------------| | |
103 cccccccccccccccccccccccccccc | |
104 | |
105 where, `cc...c' is a non-negative integer indicating constant value | |
106 (the left most `c' is always 0) or an absolute jump address, `RRR' | |
107 and `rrr' are CCL register number, `XXXXX' is one of the following | |
108 CCL commands. */ | |
109 | |
110 /* CCL commands | |
111 | |
112 Each comment fields shows one or more lines for command syntax and | |
113 the following lines for semantics of the command. In semantics, IC | |
114 stands for Instruction Counter. */ | |
115 | |
116 #define CCL_SetRegister 0x00 /* Set register a register value: | |
117 1:00000000000000000RRRrrrXXXXX | |
118 ------------------------------ | |
119 reg[rrr] = reg[RRR]; | |
120 */ | |
121 | |
122 #define CCL_SetShortConst 0x01 /* Set register a short constant value: | |
123 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
124 ------------------------------ | |
125 reg[rrr] = CCCCCCCCCCCCCCCCCCC; | |
126 */ | |
127 | |
128 #define CCL_SetConst 0x02 /* Set register a constant value: | |
129 1:00000000000000000000rrrXXXXX | |
130 2:CONSTANT | |
131 ------------------------------ | |
132 reg[rrr] = CONSTANT; | |
133 IC++; | |
134 */ | |
135 | |
136 #define CCL_SetArray 0x03 /* Set register an element of array: | |
137 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX | |
138 2:ELEMENT[0] | |
139 3:ELEMENT[1] | |
140 ... | |
141 ------------------------------ | |
142 if (0 <= reg[RRR] < CC..C) | |
143 reg[rrr] = ELEMENT[reg[RRR]]; | |
144 IC += CC..C; | |
145 */ | |
146 | |
147 #define CCL_Jump 0x04 /* Jump: | |
148 1:A--D--D--R--E--S--S-000XXXXX | |
149 ------------------------------ | |
150 IC += ADDRESS; | |
151 */ | |
152 | |
153 /* Note: If CC..C is greater than 0, the second code is omitted. */ | |
154 | |
155 #define CCL_JumpCond 0x05 /* Jump conditional: | |
156 1:A--D--D--R--E--S--S-rrrXXXXX | |
157 ------------------------------ | |
158 if (!reg[rrr]) | |
159 IC += ADDRESS; | |
160 */ | |
161 | |
162 | |
163 #define CCL_WriteRegisterJump 0x06 /* Write register and jump: | |
164 1:A--D--D--R--E--S--S-rrrXXXXX | |
165 ------------------------------ | |
166 write (reg[rrr]); | |
167 IC += ADDRESS; | |
168 */ | |
169 | |
170 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump: | |
171 1:A--D--D--R--E--S--S-rrrXXXXX | |
172 2:A--D--D--R--E--S--S-rrrYYYYY | |
173 ----------------------------- | |
174 write (reg[rrr]); | |
175 IC++; | |
176 read (reg[rrr]); | |
177 IC += ADDRESS; | |
178 */ | |
179 /* Note: If read is suspended, the resumed execution starts from the | |
180 second code (YYYYY == CCL_ReadJump). */ | |
181 | |
182 #define CCL_WriteConstJump 0x08 /* Write constant and jump: | |
183 1:A--D--D--R--E--S--S-000XXXXX | |
184 2:CONST | |
185 ------------------------------ | |
186 write (CONST); | |
187 IC += ADDRESS; | |
188 */ | |
189 | |
190 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump: | |
191 1:A--D--D--R--E--S--S-rrrXXXXX | |
192 2:CONST | |
193 3:A--D--D--R--E--S--S-rrrYYYYY | |
194 ----------------------------- | |
195 write (CONST); | |
196 IC += 2; | |
197 read (reg[rrr]); | |
198 IC += ADDRESS; | |
199 */ | |
200 /* Note: If read is suspended, the resumed execution starts from the | |
201 second code (YYYYY == CCL_ReadJump). */ | |
202 | |
203 #define CCL_WriteStringJump 0x0A /* Write string and jump: | |
204 1:A--D--D--R--E--S--S-000XXXXX | |
205 2:LENGTH | |
206 3:0000STRIN[0]STRIN[1]STRIN[2] | |
207 ... | |
208 ------------------------------ | |
209 write_string (STRING, LENGTH); | |
210 IC += ADDRESS; | |
211 */ | |
212 | |
213 #define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump: | |
214 1:A--D--D--R--E--S--S-rrrXXXXX | |
215 2:LENGTH | |
216 3:ELEMENET[0] | |
217 4:ELEMENET[1] | |
218 ... | |
219 N:A--D--D--R--E--S--S-rrrYYYYY | |
220 ------------------------------ | |
221 if (0 <= reg[rrr] < LENGTH) | |
222 write (ELEMENT[reg[rrr]]); | |
223 IC += LENGTH + 2; (... pointing at N+1) | |
224 read (reg[rrr]); | |
225 IC += ADDRESS; | |
226 */ | |
227 /* Note: If read is suspended, the resumed execution starts from the | |
228 Nth code (YYYYY == CCL_ReadJump). */ | |
229 | |
230 #define CCL_ReadJump 0x0C /* Read and jump: | |
231 1:A--D--D--R--E--S--S-rrrYYYYY | |
232 ----------------------------- | |
233 read (reg[rrr]); | |
234 IC += ADDRESS; | |
235 */ | |
236 | |
237 #define CCL_Branch 0x0D /* Jump by branch table: | |
238 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
239 2:A--D--D--R--E-S-S[0]000XXXXX | |
240 3:A--D--D--R--E-S-S[1]000XXXXX | |
241 ... | |
242 ------------------------------ | |
243 if (0 <= reg[rrr] < CC..C) | |
244 IC += ADDRESS[reg[rrr]]; | |
245 else | |
246 IC += ADDRESS[CC..C]; | |
247 */ | |
248 | |
249 #define CCL_ReadRegister 0x0E /* Read bytes into registers: | |
250 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
251 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
252 ... | |
253 ------------------------------ | |
254 while (CCC--) | |
255 read (reg[rrr]); | |
256 */ | |
257 | |
258 #define CCL_WriteExprConst 0x0F /* write result of expression: | |
259 1:00000OPERATION000RRR000XXXXX | |
260 2:CONSTANT | |
261 ------------------------------ | |
262 write (reg[RRR] OPERATION CONSTANT); | |
263 IC++; | |
264 */ | |
265 | |
266 /* Note: If the Nth read is suspended, the resumed execution starts | |
267 from the Nth code. */ | |
268 | |
269 #define CCL_ReadBranch 0x10 /* Read one byte into a register, | |
270 and jump by branch table: | |
271 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
272 2:A--D--D--R--E-S-S[0]000XXXXX | |
273 3:A--D--D--R--E-S-S[1]000XXXXX | |
274 ... | |
275 ------------------------------ | |
276 read (read[rrr]); | |
277 if (0 <= reg[rrr] < CC..C) | |
278 IC += ADDRESS[reg[rrr]]; | |
279 else | |
280 IC += ADDRESS[CC..C]; | |
281 */ | |
282 | |
283 #define CCL_WriteRegister 0x11 /* Write registers: | |
284 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX | |
285 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX | |
286 ... | |
287 ------------------------------ | |
288 while (CCC--) | |
289 write (reg[rrr]); | |
290 ... | |
291 */ | |
292 | |
293 /* Note: If the Nth write is suspended, the resumed execution | |
294 starts from the Nth code. */ | |
295 | |
296 #define CCL_WriteExprRegister 0x12 /* Write result of expression | |
297 1:00000OPERATIONRrrRRR000XXXXX | |
298 ------------------------------ | |
299 write (reg[RRR] OPERATION reg[Rrr]); | |
300 */ | |
301 | |
302 #define CCL_Call 0x13 /* Call the CCL program whose ID is | |
303 (CC..C). | |
304 1:CCCCCCCCCCCCCCCCCCCC000XXXXX | |
305 ------------------------------ | |
306 call (CC..C) | |
307 */ | |
308 | |
309 #define CCL_WriteConstString 0x14 /* Write a constant or a string: | |
310 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
311 [2:0000STRIN[0]STRIN[1]STRIN[2]] | |
312 [...] | |
313 ----------------------------- | |
314 if (!rrr) | |
315 write (CC..C) | |
316 else | |
317 write_string (STRING, CC..C); | |
318 IC += (CC..C + 2) / 3; | |
319 */ | |
320 | |
321 #define CCL_WriteArray 0x15 /* Write an element of array: | |
322 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX | |
323 2:ELEMENT[0] | |
324 3:ELEMENT[1] | |
325 ... | |
326 ------------------------------ | |
327 if (0 <= reg[rrr] < CC..C) | |
328 write (ELEMENT[reg[rrr]]); | |
329 IC += CC..C; | |
330 */ | |
331 | |
332 #define CCL_End 0x16 /* Terminate: | |
333 1:00000000000000000000000XXXXX | |
334 ------------------------------ | |
335 terminate (); | |
336 */ | |
337 | |
338 /* The following two codes execute an assignment arithmetic/logical | |
339 operation. The form of the operation is like REG OP= OPERAND. */ | |
340 | |
341 #define CCL_ExprSelfConst 0x17 /* REG OP= constant: | |
342 1:00000OPERATION000000rrrXXXXX | |
343 2:CONSTANT | |
344 ------------------------------ | |
345 reg[rrr] OPERATION= CONSTANT; | |
346 */ | |
347 | |
348 #define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2: | |
349 1:00000OPERATION000RRRrrrXXXXX | |
350 ------------------------------ | |
351 reg[rrr] OPERATION= reg[RRR]; | |
352 */ | |
353 | |
354 /* The following codes execute an arithmetic/logical operation. The | |
355 form of the operation is like REG_X = REG_Y OP OPERAND2. */ | |
356 | |
357 #define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant: | |
358 1:00000OPERATION000RRRrrrXXXXX | |
359 2:CONSTANT | |
360 ------------------------------ | |
361 reg[rrr] = reg[RRR] OPERATION CONSTANT; | |
362 IC++; | |
363 */ | |
364 | |
365 #define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3: | |
366 1:00000OPERATIONRrrRRRrrrXXXXX | |
367 ------------------------------ | |
368 reg[rrr] = reg[RRR] OPERATION reg[Rrr]; | |
369 */ | |
370 | |
371 #define CCL_JumpCondExprConst 0x1B /* Jump conditional according to | |
372 an operation on constant: | |
373 1:A--D--D--R--E--S--S-rrrXXXXX | |
374 2:OPERATION | |
375 3:CONSTANT | |
376 ----------------------------- | |
377 reg[7] = reg[rrr] OPERATION CONSTANT; | |
378 if (!(reg[7])) | |
379 IC += ADDRESS; | |
380 else | |
381 IC += 2 | |
382 */ | |
383 | |
384 #define CCL_JumpCondExprReg 0x1C /* Jump conditional according to | |
385 an operation on register: | |
386 1:A--D--D--R--E--S--S-rrrXXXXX | |
387 2:OPERATION | |
388 3:RRR | |
389 ----------------------------- | |
390 reg[7] = reg[rrr] OPERATION reg[RRR]; | |
391 if (!reg[7]) | |
392 IC += ADDRESS; | |
393 else | |
394 IC += 2; | |
395 */ | |
396 | |
397 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according | |
398 to an operation on constant: | |
399 1:A--D--D--R--E--S--S-rrrXXXXX | |
400 2:OPERATION | |
401 3:CONSTANT | |
402 ----------------------------- | |
403 read (reg[rrr]); | |
404 reg[7] = reg[rrr] OPERATION CONSTANT; | |
405 if (!reg[7]) | |
406 IC += ADDRESS; | |
407 else | |
408 IC += 2; | |
409 */ | |
410 | |
411 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according | |
412 to an operation on register: | |
413 1:A--D--D--R--E--S--S-rrrXXXXX | |
414 2:OPERATION | |
415 3:RRR | |
416 ----------------------------- | |
417 read (reg[rrr]); | |
418 reg[7] = reg[rrr] OPERATION reg[RRR]; | |
419 if (!reg[7]) | |
420 IC += ADDRESS; | |
421 else | |
422 IC += 2; | |
423 */ | |
424 | |
425 #define CCL_Extention 0x1F /* Extended CCL code | |
426 1:ExtendedCOMMNDRrrRRRrrrXXXXX | |
427 2:ARGUEMENT | |
428 3:... | |
429 ------------------------------ | |
430 extended_command (rrr,RRR,Rrr,ARGS) | |
431 */ | |
432 | |
433 /* | |
434 Here after, Extended CCL Instructions. | |
435 Bit length of extended command is 14. | |
436 Therefore, the instruction code range is 0..16384(0x3fff). | |
437 */ | |
438 | |
439 /* Read a multibyte characeter. | |
440 A code point is stored into reg[rrr]. A charset ID is stored into | |
441 reg[RRR]. */ | |
442 | |
443 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character | |
444 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ | |
445 | |
446 /* Write a multibyte character. | |
447 Write a character whose code point is reg[rrr] and the charset ID | |
448 is reg[RRR]. */ | |
449 | |
450 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character | |
451 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ | |
452 | |
453 #if 0 | |
454 /* Translate a character whose code point is reg[rrr] and the charset | |
455 ID is reg[RRR] by a translation table whose ID is reg[Rrr]. | |
456 | |
457 A translated character is set in reg[rrr] (code point) and reg[RRR] | |
458 (charset ID). */ | |
459 | |
460 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character | |
461 1:ExtendedCOMMNDRrrRRRrrrXXXXX */ | |
462 | |
463 /* Translate a character whose code point is reg[rrr] and the charset | |
464 ID is reg[RRR] by a translation table whose ID is ARGUMENT. | |
465 | |
466 A translated character is set in reg[rrr] (code point) and reg[RRR] | |
467 (charset ID). */ | |
468 | |
469 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character | |
470 1:ExtendedCOMMNDRrrRRRrrrXXXXX | |
471 2:ARGUMENT(Translation Table ID) | |
472 */ | |
473 | |
474 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N = | |
475 reg[RRR]) MAP until some value is found. | |
476 | |
477 Each MAP is a Lisp vector whose element is number, nil, t, or | |
478 lambda. | |
479 If the element is nil, ignore the map and proceed to the next map. | |
480 If the element is t or lambda, finish without changing reg[rrr]. | |
481 If the element is a number, set reg[rrr] to the number and finish. | |
482 | |
483 Detail of the map structure is descibed in the comment for | |
484 CCL_MapMultiple below. */ | |
485 | |
486 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps | |
487 1:ExtendedCOMMNDXXXRRRrrrXXXXX | |
488 2:NUMBER of MAPs | |
489 3:MAP-ID1 | |
490 4:MAP-ID2 | |
491 ... | |
492 */ | |
493 | |
494 /* Map the code in reg[rrr] by MAPs starting from the Nth (N = | |
495 reg[RRR]) map. | |
496 | |
497 MAPs are supplied in the succeeding CCL codes as follows: | |
498 | |
499 When CCL program gives this nested structure of map to this command: | |
500 ((MAP-ID11 | |
501 MAP-ID12 | |
502 (MAP-ID121 MAP-ID122 MAP-ID123) | |
503 MAP-ID13) | |
504 (MAP-ID21 | |
505 (MAP-ID211 (MAP-ID2111) MAP-ID212) | |
506 MAP-ID22)), | |
507 the compiled CCL codes has this sequence: | |
508 CCL_MapMultiple (CCL code of this command) | |
509 16 (total number of MAPs and SEPARATORs) | |
510 -7 (1st SEPARATOR) | |
511 MAP-ID11 | |
512 MAP-ID12 | |
513 -3 (2nd SEPARATOR) | |
514 MAP-ID121 | |
515 MAP-ID122 | |
516 MAP-ID123 | |
517 MAP-ID13 | |
518 -7 (3rd SEPARATOR) | |
519 MAP-ID21 | |
520 -4 (4th SEPARATOR) | |
521 MAP-ID211 | |
522 -1 (5th SEPARATOR) | |
523 MAP_ID2111 | |
524 MAP-ID212 | |
525 MAP-ID22 | |
526 | |
527 A value of each SEPARATOR follows this rule: | |
528 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+ | |
529 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET) | |
530 | |
531 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL. | |
532 | |
533 When some map fails to map (i.e. it doesn't have a value for | |
534 reg[rrr]), the mapping is treated as identity. | |
535 | |
536 The mapping is iterated for all maps in each map set (set of maps | |
537 separated by SEPARATOR) except in the case that lambda is | |
538 encountered. More precisely, the mapping proceeds as below: | |
539 | |
540 At first, VAL0 is set to reg[rrr], and it is translated by the | |
541 first map to VAL1. Then, VAL1 is translated by the next map to | |
542 VAL2. This mapping is iterated until the last map is used. The | |
543 result of the mapping is the last value of VAL?. | |
544 | |
545 But, when VALm is mapped to VALn and VALn is not a number, the | |
546 mapping proceed as below: | |
547 | |
548 If VALn is nil, the lastest map is ignored and the mapping of VALm | |
549 proceed to the next map. | |
550 | |
551 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm | |
552 proceed to the next map. | |
553 | |
554 If VALn is lambda, the whole mapping process terminates, and VALm | |
555 is the result of this mapping. | |
556 | |
557 Each map is a Lisp vector of the following format (a) or (b): | |
558 (a)......[STARTPOINT VAL1 VAL2 ...] | |
559 (b)......[t VAL STARTPOINT ENDPOINT], | |
560 where | |
561 STARTPOINT is an offset to be used for indexing a map, | |
562 ENDPOINT is a maximum index number of a map, | |
563 VAL and VALn is a number, nil, t, or lambda. | |
564 | |
565 Valid index range of a map of type (a) is: | |
566 STARTPOINT <= index < STARTPOINT + map_size - 1 | |
567 Valid index range of a map of type (b) is: | |
568 STARTPOINT <= index < ENDPOINT */ | |
569 | |
570 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps | |
571 1:ExtendedCOMMNDXXXRRRrrrXXXXX | |
572 2:N-2 | |
573 3:SEPARATOR_1 (< 0) | |
574 4:MAP-ID_1 | |
575 5:MAP-ID_2 | |
576 ... | |
577 M:SEPARATOR_x (< 0) | |
578 M+1:MAP-ID_y | |
579 ... | |
580 N:SEPARATOR_z (< 0) | |
581 */ | |
582 | |
583 #define MAX_MAP_SET_LEVEL 20 | |
584 | |
585 typedef struct | |
586 { | |
587 int rest_length; | |
588 int orig_val; | |
589 } tr_stack; | |
590 | |
591 static tr_stack mapping_stack[MAX_MAP_SET_LEVEL]; | |
592 static tr_stack *mapping_stack_pointer; | |
593 #endif | |
594 | |
595 #define PUSH_MAPPING_STACK(restlen, orig) \ | |
596 { \ | |
597 mapping_stack_pointer->rest_length = (restlen); \ | |
598 mapping_stack_pointer->orig_val = (orig); \ | |
599 mapping_stack_pointer++; \ | |
600 } | |
601 | |
602 #define POP_MAPPING_STACK(restlen, orig) \ | |
603 { \ | |
604 mapping_stack_pointer--; \ | |
605 (restlen) = mapping_stack_pointer->rest_length; \ | |
606 (orig) = mapping_stack_pointer->orig_val; \ | |
607 } \ | |
608 | |
609 #define CCL_MapSingle 0x12 /* Map by single code conversion map | |
610 1:ExtendedCOMMNDXXXRRRrrrXXXXX | |
611 2:MAP-ID | |
612 ------------------------------ | |
613 Map reg[rrr] by MAP-ID. | |
614 If some valid mapping is found, | |
615 set reg[rrr] to the result, | |
616 else | |
617 set reg[RRR] to -1. | |
618 */ | |
619 | |
620 /* CCL arithmetic/logical operators. */ | |
621 #define CCL_PLUS 0x00 /* X = Y + Z */ | |
622 #define CCL_MINUS 0x01 /* X = Y - Z */ | |
623 #define CCL_MUL 0x02 /* X = Y * Z */ | |
624 #define CCL_DIV 0x03 /* X = Y / Z */ | |
625 #define CCL_MOD 0x04 /* X = Y % Z */ | |
626 #define CCL_AND 0x05 /* X = Y & Z */ | |
627 #define CCL_OR 0x06 /* X = Y | Z */ | |
628 #define CCL_XOR 0x07 /* X = Y ^ Z */ | |
629 #define CCL_LSH 0x08 /* X = Y << Z */ | |
630 #define CCL_RSH 0x09 /* X = Y >> Z */ | |
631 #define CCL_LSH8 0x0A /* X = (Y << 8) | Z */ | |
632 #define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */ | |
633 #define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */ | |
634 #define CCL_LS 0x10 /* X = (X < Y) */ | |
635 #define CCL_GT 0x11 /* X = (X > Y) */ | |
636 #define CCL_EQ 0x12 /* X = (X == Y) */ | |
637 #define CCL_LE 0x13 /* X = (X <= Y) */ | |
638 #define CCL_GE 0x14 /* X = (X >= Y) */ | |
639 #define CCL_NE 0x15 /* X = (X != Y) */ | |
640 | |
641 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z)) | |
642 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */ | |
643 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z)) | |
644 r[7] = LOWER_BYTE (SJIS (Y, Z) */ | |
645 | |
646 /* Suspend CCL program because of reading from empty input buffer or | |
647 writing to full output buffer. When this program is resumed, the | |
648 same I/O command is executed. */ | |
649 #define CCL_SUSPEND(stat) \ | |
650 do { \ | |
651 ic--; \ | |
652 ccl->status = stat; \ | |
653 goto ccl_finish; \ | |
654 } while (0) | |
655 | |
656 /* Terminate CCL program because of invalid command. Should not occur | |
657 in the normal case. */ | |
658 #define CCL_INVALID_CMD \ | |
659 do { \ | |
660 ccl->status = CCL_STAT_INVALID_CMD; \ | |
661 goto ccl_error_handler; \ | |
662 } while (0) | |
663 | |
664 /* Encode one character CH to multibyte form and write to the current | |
665 output buffer. If CH is less than 256, CH is written as is. */ | |
666 #define CCL_WRITE_CHAR(ch) do { \ | |
667 if (!destination) \ | |
668 { \ | |
669 ccl->status = CCL_STAT_INVALID_CMD; \ | |
670 goto ccl_error_handler; \ | |
671 } \ | |
672 else \ | |
673 { \ | |
674 Bufbyte work[MAX_EMCHAR_LEN]; \ | |
675 int len = ( ch < ( conversion_mode == CCL_MODE_ENCODING ? \ | |
676 256 : 128 ) ) ? \ | |
677 simple_set_charptr_emchar (work, ch) : \ | |
678 non_ascii_set_charptr_emchar (work, ch); \ | |
679 Dynarr_add_many (destination, work, len); \ | |
680 } \ | |
681 } while (0) | |
682 | |
683 /* Write a string at ccl_prog[IC] of length LEN to the current output | |
684 buffer. */ | |
685 #define CCL_WRITE_STRING(len) do { \ | |
686 if (!destination) \ | |
687 { \ | |
688 ccl->status = CCL_STAT_INVALID_CMD; \ | |
689 goto ccl_error_handler; \ | |
690 } \ | |
691 else \ | |
692 { \ | |
693 Bufbyte work[MAX_EMCHAR_LEN]; \ | |
694 for (i = 0; i < len; i++) \ | |
695 { \ | |
696 int ch = (XINT (ccl_prog[ic + (i / 3)]) \ | |
697 >> ((2 - (i % 3)) * 8)) & 0xFF; \ | |
698 int bytes = \ | |
699 ( ch < ( conversion_mode == CCL_MODE_ENCODING ? \ | |
700 256 : 128 ) ) ? \ | |
701 simple_set_charptr_emchar (work, ch) : \ | |
702 non_ascii_set_charptr_emchar (work, ch); \ | |
703 Dynarr_add_many (destination, work, bytes); \ | |
704 } \ | |
705 } \ | |
706 } while (0) | |
707 | |
708 /* Read one byte from the current input buffer into Rth register. */ | |
709 #define CCL_READ_CHAR(r) do { \ | |
710 if (!src && !ccl->last_block) \ | |
711 { \ | |
712 ccl->status = CCL_STAT_INVALID_CMD; \ | |
713 goto ccl_error_handler; \ | |
714 } \ | |
715 else if (src < src_end) \ | |
716 r = *src++; \ | |
717 else if (ccl->last_block) \ | |
718 { \ | |
719 ic = ccl->eof_ic; \ | |
720 goto ccl_repeat; \ | |
721 } \ | |
722 else \ | |
723 /* Suspend CCL program because of \ | |
724 reading from empty input buffer or \ | |
725 writing to full output buffer. \ | |
726 When this program is resumed, the \ | |
727 same I/O command is executed. */ \ | |
728 { \ | |
729 ic--; \ | |
730 ccl->status = CCL_STAT_SUSPEND_BY_SRC; \ | |
731 goto ccl_finish; \ | |
732 } \ | |
733 } while (0) | |
734 | |
735 | |
736 /* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting | |
737 text goes to a place pointed by DESTINATION. The bytes actually | |
738 processed is returned as *CONSUMED. The return value is the length | |
739 of the resulting text. As a side effect, the contents of CCL registers | |
740 are updated. If SOURCE or DESTINATION is NULL, only operations on | |
741 registers are permitted. */ | |
742 | |
743 #ifdef CCL_DEBUG | |
744 #define CCL_DEBUG_BACKTRACE_LEN 256 | |
745 int ccl_backtrace_table[CCL_BACKTRACE_TABLE]; | |
746 int ccl_backtrace_idx; | |
747 #endif | |
748 | |
749 struct ccl_prog_stack | |
750 { | |
751 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */ | |
752 int ic; /* Instruction Counter. */ | |
753 }; | |
754 | |
755 /* For the moment, we only support depth 256 of stack. */ | |
756 static struct ccl_prog_stack ccl_prog_stack_struct[256]; | |
757 | |
758 int | |
759 ccl_driver (struct ccl_program *ccl, CONST unsigned char *source, | |
760 unsigned_char_dynarr *destination, int src_bytes, | |
761 int *consumed, int conversion_mode) | |
762 { | |
763 int *reg = ccl->reg; | |
764 int ic = ccl->ic; | |
765 int code = -1; /* init to illegal value, */ | |
766 int field1, field2; | |
767 Lisp_Object *ccl_prog = ccl->prog; | |
768 CONST unsigned char *src = source, *src_end = src + src_bytes; | |
769 int jump_address = 0; /* shut up the compiler */ | |
770 int i, j, op; | |
771 int stack_idx = ccl->stack_idx; | |
772 /* Instruction counter of the current CCL code. */ | |
773 int this_ic = 0; | |
774 | |
775 if (ic >= ccl->eof_ic) | |
776 ic = CCL_HEADER_MAIN; | |
777 | |
778 #if 0 /* not for XEmacs ? */ | |
779 if (ccl->buf_magnification ==0) /* We can't produce any bytes. */ | |
780 dst = NULL; | |
781 #endif | |
782 | |
783 #ifdef CCL_DEBUG | |
784 ccl_backtrace_idx = 0; | |
785 #endif | |
786 | |
787 for (;;) | |
788 { | |
789 ccl_repeat: | |
790 #ifdef CCL_DEBUG | |
791 ccl_backtrace_table[ccl_backtrace_idx++] = ic; | |
792 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN) | |
793 ccl_backtrace_idx = 0; | |
794 ccl_backtrace_table[ccl_backtrace_idx] = 0; | |
795 #endif | |
796 | |
797 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) | |
798 { | |
799 /* We can't just signal Qquit, instead break the loop as if | |
800 the whole data is processed. Don't reset Vquit_flag, it | |
801 must be handled later at a safer place. */ | |
802 if (consumed) | |
803 src = source + src_bytes; | |
804 ccl->status = CCL_STAT_QUIT; | |
805 break; | |
806 } | |
807 | |
808 this_ic = ic; | |
809 code = XINT (ccl_prog[ic]); ic++; | |
810 field1 = code >> 8; | |
811 field2 = (code & 0xFF) >> 5; | |
812 | |
813 #define rrr field2 | |
814 #define RRR (field1 & 7) | |
815 #define Rrr ((field1 >> 3) & 7) | |
816 #define ADDR field1 | |
817 #define EXCMD (field1 >> 6) | |
818 | |
819 switch (code & 0x1F) | |
820 { | |
821 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */ | |
822 reg[rrr] = reg[RRR]; | |
823 break; | |
824 | |
825 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
826 reg[rrr] = field1; | |
827 break; | |
828 | |
829 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */ | |
830 reg[rrr] = XINT (ccl_prog[ic]); | |
831 ic++; | |
832 break; | |
833 | |
834 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */ | |
835 i = reg[RRR]; | |
836 j = field1 >> 3; | |
837 if ((unsigned int) i < j) | |
838 reg[rrr] = XINT (ccl_prog[ic + i]); | |
839 ic += j; | |
840 break; | |
841 | |
842 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */ | |
843 ic += ADDR; | |
844 break; | |
845 | |
846 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
847 if (!reg[rrr]) | |
848 ic += ADDR; | |
849 break; | |
850 | |
851 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
852 i = reg[rrr]; | |
853 CCL_WRITE_CHAR (i); | |
854 ic += ADDR; | |
855 break; | |
856 | |
857 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
858 i = reg[rrr]; | |
859 CCL_WRITE_CHAR (i); | |
860 ic++; | |
861 CCL_READ_CHAR (reg[rrr]); | |
862 ic += ADDR - 1; | |
863 break; | |
864 | |
865 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */ | |
866 i = XINT (ccl_prog[ic]); | |
867 CCL_WRITE_CHAR (i); | |
868 ic += ADDR; | |
869 break; | |
870 | |
871 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
872 i = XINT (ccl_prog[ic]); | |
873 CCL_WRITE_CHAR (i); | |
874 ic++; | |
875 CCL_READ_CHAR (reg[rrr]); | |
876 ic += ADDR - 1; | |
877 break; | |
878 | |
879 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */ | |
880 j = XINT (ccl_prog[ic]); | |
881 ic++; | |
882 CCL_WRITE_STRING (j); | |
883 ic += ADDR - 1; | |
884 break; | |
885 | |
886 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
887 i = reg[rrr]; | |
888 j = XINT (ccl_prog[ic]); | |
889 if ((unsigned int) i < j) | |
890 { | |
891 i = XINT (ccl_prog[ic + 1 + i]); | |
892 CCL_WRITE_CHAR (i); | |
893 } | |
894 ic += j + 2; | |
895 CCL_READ_CHAR (reg[rrr]); | |
896 ic += ADDR - (j + 2); | |
897 break; | |
898 | |
899 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */ | |
900 CCL_READ_CHAR (reg[rrr]); | |
901 ic += ADDR; | |
902 break; | |
903 | |
904 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
905 CCL_READ_CHAR (reg[rrr]); | |
906 /* fall through ... */ | |
907 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
908 if ((unsigned int) reg[rrr] < field1) | |
909 ic += XINT (ccl_prog[ic + reg[rrr]]); | |
910 else | |
911 ic += XINT (ccl_prog[ic + field1]); | |
912 break; | |
913 | |
914 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */ | |
915 while (1) | |
916 { | |
917 CCL_READ_CHAR (reg[rrr]); | |
918 if (!field1) break; | |
919 code = XINT (ccl_prog[ic]); ic++; | |
920 field1 = code >> 8; | |
921 field2 = (code & 0xFF) >> 5; | |
922 } | |
923 break; | |
924 | |
925 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */ | |
926 rrr = 7; | |
927 i = reg[RRR]; | |
928 j = XINT (ccl_prog[ic]); | |
929 op = field1 >> 6; | |
930 ic++; | |
931 goto ccl_set_expr; | |
932 | |
933 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
934 while (1) | |
935 { | |
936 i = reg[rrr]; | |
937 CCL_WRITE_CHAR (i); | |
938 if (!field1) break; | |
939 code = XINT (ccl_prog[ic]); ic++; | |
940 field1 = code >> 8; | |
941 field2 = (code & 0xFF) >> 5; | |
942 } | |
943 break; | |
944 | |
945 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */ | |
946 rrr = 7; | |
947 i = reg[RRR]; | |
948 j = reg[Rrr]; | |
949 op = field1 >> 6; | |
950 goto ccl_set_expr; | |
951 | |
952 case CCL_Call: /* CCCCCCCCCCCCCCCCCCCC000XXXXX */ | |
953 { | |
954 Lisp_Object slot; | |
955 | |
956 if (stack_idx >= 256 | |
957 || field1 < 0 | |
958 || field1 >= XVECTOR_LENGTH (Vccl_program_table) | |
959 || (slot = XVECTOR_DATA (Vccl_program_table)[field1], | |
960 !CONSP (slot)) | |
961 || !VECTORP (XCDR (slot))) | |
962 { | |
963 if (stack_idx > 0) | |
964 { | |
965 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; | |
966 ic = ccl_prog_stack_struct[0].ic; | |
967 } | |
968 ccl->status = CCL_STAT_INVALID_CMD; | |
969 goto ccl_error_handler; | |
970 } | |
971 | |
972 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; | |
973 ccl_prog_stack_struct[stack_idx].ic = ic; | |
974 stack_idx++; | |
975 ccl_prog = XVECTOR_DATA (XCDR (slot)); | |
976 ic = CCL_HEADER_MAIN; | |
977 } | |
978 break; | |
979 | |
980 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
981 if (!rrr) | |
982 CCL_WRITE_CHAR (field1); | |
983 else | |
984 { | |
985 CCL_WRITE_STRING (field1); | |
986 ic += (field1 + 2) / 3; | |
987 } | |
988 break; | |
989 | |
990 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */ | |
991 i = reg[rrr]; | |
992 if ((unsigned int) i < field1) | |
993 { | |
994 j = XINT (ccl_prog[ic + i]); | |
995 CCL_WRITE_CHAR (j); | |
996 } | |
997 ic += field1; | |
998 break; | |
999 | |
1000 case CCL_End: /* 0000000000000000000000XXXXX */ | |
1001 if (stack_idx-- > 0) | |
1002 { | |
1003 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog; | |
1004 ic = ccl_prog_stack_struct[stack_idx].ic; | |
1005 break; | |
1006 } | |
1007 if (src) | |
1008 src = src_end; | |
1009 /* ccl->ic should points to this command code again to | |
1010 suppress further processing. */ | |
1011 ic--; | |
1012 /* Terminate CCL program successfully. */ | |
1013 ccl->status = CCL_STAT_SUCCESS; | |
1014 goto ccl_finish; | |
1015 | |
1016 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */ | |
1017 i = XINT (ccl_prog[ic]); | |
1018 ic++; | |
1019 op = field1 >> 6; | |
1020 goto ccl_expr_self; | |
1021 | |
1022 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */ | |
1023 i = reg[RRR]; | |
1024 op = field1 >> 6; | |
1025 | |
1026 ccl_expr_self: | |
1027 switch (op) | |
1028 { | |
1029 case CCL_PLUS: reg[rrr] += i; break; | |
1030 case CCL_MINUS: reg[rrr] -= i; break; | |
1031 case CCL_MUL: reg[rrr] *= i; break; | |
1032 case CCL_DIV: reg[rrr] /= i; break; | |
1033 case CCL_MOD: reg[rrr] %= i; break; | |
1034 case CCL_AND: reg[rrr] &= i; break; | |
1035 case CCL_OR: reg[rrr] |= i; break; | |
1036 case CCL_XOR: reg[rrr] ^= i; break; | |
1037 case CCL_LSH: reg[rrr] <<= i; break; | |
1038 case CCL_RSH: reg[rrr] >>= i; break; | |
1039 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break; | |
1040 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break; | |
1041 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break; | |
1042 case CCL_LS: reg[rrr] = reg[rrr] < i; break; | |
1043 case CCL_GT: reg[rrr] = reg[rrr] > i; break; | |
1044 case CCL_EQ: reg[rrr] = reg[rrr] == i; break; | |
1045 case CCL_LE: reg[rrr] = reg[rrr] <= i; break; | |
1046 case CCL_GE: reg[rrr] = reg[rrr] >= i; break; | |
1047 case CCL_NE: reg[rrr] = reg[rrr] != i; break; | |
1048 default: | |
1049 ccl->status = CCL_STAT_INVALID_CMD; | |
1050 goto ccl_error_handler; | |
1051 } | |
1052 break; | |
1053 | |
1054 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */ | |
1055 i = reg[RRR]; | |
1056 j = XINT (ccl_prog[ic]); | |
1057 op = field1 >> 6; | |
1058 jump_address = ++ic; | |
1059 goto ccl_set_expr; | |
1060 | |
1061 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */ | |
1062 i = reg[RRR]; | |
1063 j = reg[Rrr]; | |
1064 op = field1 >> 6; | |
1065 jump_address = ic; | |
1066 goto ccl_set_expr; | |
1067 | |
1068 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
1069 CCL_READ_CHAR (reg[rrr]); | |
1070 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
1071 i = reg[rrr]; | |
1072 op = XINT (ccl_prog[ic]); | |
1073 jump_address = ic++ + ADDR; | |
1074 j = XINT (ccl_prog[ic]); | |
1075 ic++; | |
1076 rrr = 7; | |
1077 goto ccl_set_expr; | |
1078 | |
1079 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */ | |
1080 CCL_READ_CHAR (reg[rrr]); | |
1081 case CCL_JumpCondExprReg: | |
1082 i = reg[rrr]; | |
1083 op = XINT (ccl_prog[ic]); | |
1084 jump_address = ic++ + ADDR; | |
1085 j = reg[XINT (ccl_prog[ic])]; | |
1086 ic++; | |
1087 rrr = 7; | |
1088 | |
1089 ccl_set_expr: | |
1090 switch (op) | |
1091 { | |
1092 case CCL_PLUS: reg[rrr] = i + j; break; | |
1093 case CCL_MINUS: reg[rrr] = i - j; break; | |
1094 case CCL_MUL: reg[rrr] = i * j; break; | |
1095 case CCL_DIV: reg[rrr] = i / j; break; | |
1096 case CCL_MOD: reg[rrr] = i % j; break; | |
1097 case CCL_AND: reg[rrr] = i & j; break; | |
1098 case CCL_OR: reg[rrr] = i | j; break; | |
1099 case CCL_XOR: reg[rrr] = i ^ j; break; | |
1100 case CCL_LSH: reg[rrr] = i << j; break; | |
1101 case CCL_RSH: reg[rrr] = i >> j; break; | |
1102 case CCL_LSH8: reg[rrr] = (i << 8) | j; break; | |
1103 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break; | |
1104 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break; | |
1105 case CCL_LS: reg[rrr] = i < j; break; | |
1106 case CCL_GT: reg[rrr] = i > j; break; | |
1107 case CCL_EQ: reg[rrr] = i == j; break; | |
1108 case CCL_LE: reg[rrr] = i <= j; break; | |
1109 case CCL_GE: reg[rrr] = i >= j; break; | |
1110 case CCL_NE: reg[rrr] = i != j; break; | |
1111 case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break; | |
1112 case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break; | |
1113 default: | |
1114 ccl->status = CCL_STAT_INVALID_CMD; | |
1115 goto ccl_error_handler; | |
1116 } | |
1117 code &= 0x1F; | |
1118 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister) | |
1119 { | |
1120 i = reg[rrr]; | |
1121 CCL_WRITE_CHAR (i); | |
1122 } | |
1123 else if (!reg[rrr]) | |
1124 ic = jump_address; | |
1125 break; | |
1126 | |
1127 case CCL_Extention: | |
1128 switch (EXCMD) | |
1129 { | |
1130 case CCL_ReadMultibyteChar2: | |
1131 if (!src) | |
1132 CCL_INVALID_CMD; | |
1133 | |
1134 do { | |
1135 if (src >= src_end) | |
1136 { | |
1137 src++; | |
1138 goto ccl_read_multibyte_character_suspend; | |
1139 } | |
1140 | |
1141 i = *src++; | |
1142 #if 0 | |
1143 if (i == LEADING_CODE_COMPOSITION) | |
1144 { | |
1145 if (src >= src_end) | |
1146 goto ccl_read_multibyte_character_suspend; | |
1147 if (*src == 0xFF) | |
1148 { | |
1149 ccl->private_state = COMPOSING_WITH_RULE_HEAD; | |
1150 src++; | |
1151 } | |
1152 else | |
1153 ccl->private_state = COMPOSING_NO_RULE_HEAD; | |
1154 | |
1155 continue; | |
1156 } | |
1157 if (ccl->private_state != COMPOSING_NO) | |
1158 { | |
1159 /* composite character */ | |
1160 if (i < 0xA0) | |
1161 ccl->private_state = COMPOSING_NO; | |
1162 else | |
1163 { | |
1164 if (COMPOSING_WITH_RULE_RULE == ccl->private_state) | |
1165 { | |
1166 ccl->private_state = COMPOSING_WITH_RULE_HEAD; | |
1167 continue; | |
1168 } | |
1169 else if (COMPOSING_WITH_RULE_HEAD == ccl->private_state) | |
1170 ccl->private_state = COMPOSING_WITH_RULE_RULE; | |
1171 | |
1172 if (i == 0xA0) | |
1173 { | |
1174 if (src >= src_end) | |
1175 goto ccl_read_multibyte_character_suspend; | |
1176 i = *src++ & 0x7F; | |
1177 } | |
1178 else | |
1179 i -= 0x20; | |
1180 } | |
1181 } | |
1182 #endif | |
1183 | |
1184 if (i < 0x80) | |
1185 { | |
1186 /* ASCII */ | |
1187 reg[rrr] = i; | |
1188 reg[RRR] = LEADING_BYTE_ASCII; | |
1189 } | |
1190 else if (i <= MAX_LEADING_BYTE_OFFICIAL_1) | |
1191 { | |
1192 if (src >= src_end) | |
1193 goto ccl_read_multibyte_character_suspend; | |
1194 reg[RRR] = i; | |
1195 reg[rrr] = (*src++ & 0x7F); | |
1196 } | |
1197 else if (i <= MAX_LEADING_BYTE_OFFICIAL_2) | |
1198 { | |
1199 if ((src + 1) >= src_end) | |
1200 goto ccl_read_multibyte_character_suspend; | |
1201 reg[RRR] = i; | |
1202 i = (*src++ & 0x7F); | |
1203 reg[rrr] = ((i << 7) | (*src & 0x7F)); | |
1204 src++; | |
1205 } | |
1206 else if (i == PRE_LEADING_BYTE_PRIVATE_1) | |
1207 { | |
1208 if ((src + 1) >= src_end) | |
1209 goto ccl_read_multibyte_character_suspend; | |
1210 reg[RRR] = *src++; | |
1211 reg[rrr] = (*src++ & 0x7F); | |
1212 } | |
1213 else if (i == PRE_LEADING_BYTE_PRIVATE_2) | |
1214 { | |
1215 if ((src + 2) >= src_end) | |
1216 goto ccl_read_multibyte_character_suspend; | |
1217 reg[RRR] = *src++; | |
1218 i = (*src++ & 0x7F); | |
1219 reg[rrr] = ((i << 7) | (*src & 0x7F)); | |
1220 src++; | |
1221 } | |
1222 else | |
1223 { | |
1224 /* INVALID CODE. Return a single byte character. */ | |
1225 reg[RRR] = LEADING_BYTE_ASCII; | |
1226 reg[rrr] = i; | |
1227 } | |
1228 break; | |
1229 } while (1); | |
1230 break; | |
1231 | |
1232 ccl_read_multibyte_character_suspend: | |
1233 src--; | |
1234 if (ccl->last_block) | |
1235 { | |
1236 ic = ccl->eof_ic; | |
1237 goto ccl_repeat; | |
1238 } | |
1239 else | |
1240 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); | |
1241 | |
1242 break; | |
1243 | |
1244 case CCL_WriteMultibyteChar2: | |
1245 i = reg[RRR]; /* charset */ | |
1246 if (i == LEADING_BYTE_ASCII) | |
1247 i = reg[rrr] & 0xFF; | |
1248 #if 0 | |
1249 else if (i == CHARSET_COMPOSITION) | |
1250 i = MAKE_COMPOSITE_CHAR (reg[rrr]); | |
1251 #endif | |
1252 else if (XCHARSET_DIMENSION (CHARSET_BY_LEADING_BYTE (i)) == 1) | |
1253 i = ((i - FIELD2_TO_OFFICIAL_LEADING_BYTE) << 7) | |
1254 | (reg[rrr] & 0x7F); | |
1255 else if (i < MIN_LEADING_BYTE_OFFICIAL_2) | |
1256 i = ((i - FIELD1_TO_OFFICIAL_LEADING_BYTE) << 14) | reg[rrr]; | |
1257 else | |
1258 i = ((i - FIELD1_TO_PRIVATE_LEADING_BYTE) << 14) | reg[rrr]; | |
1259 | |
1260 CCL_WRITE_CHAR (i); | |
1261 | |
1262 break; | |
1263 | |
1264 #if 0 | |
1265 case CCL_TranslateCharacter: | |
1266 i = reg[RRR]; /* charset */ | |
1267 if (i == LEADING_BYTE_ASCII) | |
1268 i = reg[rrr]; | |
1269 else if (i == CHARSET_COMPOSITION) | |
1270 { | |
1271 reg[RRR] = -1; | |
1272 break; | |
1273 } | |
1274 else if (CHARSET_DIMENSION (i) == 1) | |
1275 i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F); | |
1276 else if (i < MIN_LEADING_BYTE_OFFICIAL_2) | |
1277 i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF); | |
1278 else | |
1279 i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF); | |
1280 | |
1281 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), | |
1282 i, -1, 0, 0); | |
1283 SPLIT_CHAR (op, reg[RRR], i, j); | |
1284 if (j != -1) | |
1285 i = (i << 7) | j; | |
1286 | |
1287 reg[rrr] = i; | |
1288 break; | |
1289 | |
1290 case CCL_TranslateCharacterConstTbl: | |
1291 op = XINT (ccl_prog[ic]); /* table */ | |
1292 ic++; | |
1293 i = reg[RRR]; /* charset */ | |
1294 if (i == LEADING_BYTE_ASCII) | |
1295 i = reg[rrr]; | |
1296 else if (i == CHARSET_COMPOSITION) | |
1297 { | |
1298 reg[RRR] = -1; | |
1299 break; | |
1300 } | |
1301 else if (CHARSET_DIMENSION (i) == 1) | |
1302 i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F); | |
1303 else if (i < MIN_LEADING_BYTE_OFFICIAL_2) | |
1304 i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF); | |
1305 else | |
1306 i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF); | |
1307 | |
1308 op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0); | |
1309 SPLIT_CHAR (op, reg[RRR], i, j); | |
1310 if (j != -1) | |
1311 i = (i << 7) | j; | |
1312 | |
1313 reg[rrr] = i; | |
1314 break; | |
1315 | |
1316 case CCL_IterateMultipleMap: | |
1317 { | |
1318 Lisp_Object map, content, attrib, value; | |
1319 int point, size, fin_ic; | |
1320 | |
1321 j = XINT (ccl_prog[ic++]); /* number of maps. */ | |
1322 fin_ic = ic + j; | |
1323 op = reg[rrr]; | |
1324 if ((j > reg[RRR]) && (j >= 0)) | |
1325 { | |
1326 ic += reg[RRR]; | |
1327 i = reg[RRR]; | |
1328 } | |
1329 else | |
1330 { | |
1331 reg[RRR] = -1; | |
1332 ic = fin_ic; | |
1333 break; | |
1334 } | |
1335 | |
1336 for (;i < j;i++) | |
1337 { | |
1338 | |
1339 size = XVECTOR (Vcode_conversion_map_vector)->size; | |
1340 point = XINT (ccl_prog[ic++]); | |
1341 if (point >= size) continue; | |
1342 map = | |
1343 XVECTOR (Vcode_conversion_map_vector)->contents[point]; | |
1344 | |
1345 /* Check map varidity. */ | |
1346 if (!CONSP (map)) continue; | |
1347 map = XCONS(map)->cdr; | |
1348 if (!VECTORP (map)) continue; | |
1349 size = XVECTOR (map)->size; | |
1350 if (size <= 1) continue; | |
1351 | |
1352 content = XVECTOR (map)->contents[0]; | |
1353 | |
1354 /* check map type, | |
1355 [STARTPOINT VAL1 VAL2 ...] or | |
1356 [t ELELMENT STARTPOINT ENDPOINT] */ | |
1357 if (NUMBERP (content)) | |
1358 { | |
1359 point = XUINT (content); | |
1360 point = op - point + 1; | |
1361 if (!((point >= 1) && (point < size))) continue; | |
1362 content = XVECTOR (map)->contents[point]; | |
1363 } | |
1364 else if (EQ (content, Qt)) | |
1365 { | |
1366 if (size != 4) continue; | |
1367 if ((op >= XUINT (XVECTOR (map)->contents[2])) | |
1368 && (op < XUINT (XVECTOR (map)->contents[3]))) | |
1369 content = XVECTOR (map)->contents[1]; | |
1370 else | |
1371 continue; | |
1372 } | |
1373 else | |
1374 continue; | |
1375 | |
1376 if (NILP (content)) | |
1377 continue; | |
1378 else if (NUMBERP (content)) | |
1379 { | |
1380 reg[RRR] = i; | |
1381 reg[rrr] = XINT(content); | |
1382 break; | |
1383 } | |
1384 else if (EQ (content, Qt) || EQ (content, Qlambda)) | |
1385 { | |
1386 reg[RRR] = i; | |
1387 break; | |
1388 } | |
1389 else if (CONSP (content)) | |
1390 { | |
1391 attrib = XCONS (content)->car; | |
1392 value = XCONS (content)->cdr; | |
1393 if (!NUMBERP (attrib) || !NUMBERP (value)) | |
1394 continue; | |
1395 reg[RRR] = i; | |
1396 reg[rrr] = XUINT (value); | |
1397 break; | |
1398 } | |
1399 } | |
1400 if (i == j) | |
1401 reg[RRR] = -1; | |
1402 ic = fin_ic; | |
1403 } | |
1404 break; | |
1405 | |
1406 case CCL_MapMultiple: | |
1407 { | |
1408 Lisp_Object map, content, attrib, value; | |
1409 int point, size, map_vector_size; | |
1410 int map_set_rest_length, fin_ic; | |
1411 | |
1412 map_set_rest_length = | |
1413 XINT (ccl_prog[ic++]); /* number of maps and separators. */ | |
1414 fin_ic = ic + map_set_rest_length; | |
1415 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0)) | |
1416 { | |
1417 ic += reg[RRR]; | |
1418 i = reg[RRR]; | |
1419 map_set_rest_length -= i; | |
1420 } | |
1421 else | |
1422 { | |
1423 ic = fin_ic; | |
1424 reg[RRR] = -1; | |
1425 break; | |
1426 } | |
1427 mapping_stack_pointer = mapping_stack; | |
1428 op = reg[rrr]; | |
1429 PUSH_MAPPING_STACK (0, op); | |
1430 reg[RRR] = -1; | |
1431 map_vector_size = XVECTOR (Vcode_conversion_map_vector)->size; | |
1432 for (;map_set_rest_length > 0;i++, map_set_rest_length--) | |
1433 { | |
1434 point = XINT(ccl_prog[ic++]); | |
1435 if (point < 0) | |
1436 { | |
1437 point = -point; | |
1438 if (mapping_stack_pointer | |
1439 >= &mapping_stack[MAX_MAP_SET_LEVEL]) | |
1440 { | |
1441 CCL_INVALID_CMD; | |
1442 } | |
1443 PUSH_MAPPING_STACK (map_set_rest_length - point, | |
1444 reg[rrr]); | |
1445 map_set_rest_length = point + 1; | |
1446 reg[rrr] = op; | |
1447 continue; | |
1448 } | |
1449 | |
1450 if (point >= map_vector_size) continue; | |
1451 map = (XVECTOR (Vcode_conversion_map_vector) | |
1452 ->contents[point]); | |
1453 | |
1454 /* Check map varidity. */ | |
1455 if (!CONSP (map)) continue; | |
1456 map = XCONS (map)->cdr; | |
1457 if (!VECTORP (map)) continue; | |
1458 size = XVECTOR (map)->size; | |
1459 if (size <= 1) continue; | |
1460 | |
1461 content = XVECTOR (map)->contents[0]; | |
1462 | |
1463 /* check map type, | |
1464 [STARTPOINT VAL1 VAL2 ...] or | |
1465 [t ELEMENT STARTPOINT ENDPOINT] */ | |
1466 if (NUMBERP (content)) | |
1467 { | |
1468 point = XUINT (content); | |
1469 point = op - point + 1; | |
1470 if (!((point >= 1) && (point < size))) continue; | |
1471 content = XVECTOR (map)->contents[point]; | |
1472 } | |
1473 else if (EQ (content, Qt)) | |
1474 { | |
1475 if (size != 4) continue; | |
1476 if ((op >= XUINT (XVECTOR (map)->contents[2])) && | |
1477 (op < XUINT (XVECTOR (map)->contents[3]))) | |
1478 content = XVECTOR (map)->contents[1]; | |
1479 else | |
1480 continue; | |
1481 } | |
1482 else | |
1483 continue; | |
1484 | |
1485 if (NILP (content)) | |
1486 continue; | |
1487 else if (NUMBERP (content)) | |
1488 { | |
1489 op = XINT (content); | |
1490 reg[RRR] = i; | |
1491 i += map_set_rest_length; | |
1492 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
1493 } | |
1494 else if (CONSP (content)) | |
1495 { | |
1496 attrib = XCONS (content)->car; | |
1497 value = XCONS (content)->cdr; | |
1498 if (!NUMBERP (attrib) || !NUMBERP (value)) | |
1499 continue; | |
1500 reg[RRR] = i; | |
1501 op = XUINT (value); | |
1502 i += map_set_rest_length; | |
1503 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
1504 } | |
1505 else if (EQ (content, Qt)) | |
1506 { | |
1507 reg[RRR] = i; | |
1508 op = reg[rrr]; | |
1509 i += map_set_rest_length; | |
1510 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]); | |
1511 } | |
1512 else if (EQ (content, Qlambda)) | |
1513 { | |
1514 break; | |
1515 } | |
1516 else | |
1517 CCL_INVALID_CMD; | |
1518 } | |
1519 ic = fin_ic; | |
1520 } | |
1521 reg[rrr] = op; | |
1522 break; | |
1523 | |
1524 case CCL_MapSingle: | |
1525 { | |
1526 Lisp_Object map, attrib, value, content; | |
1527 int size, point; | |
1528 j = XINT (ccl_prog[ic++]); /* map_id */ | |
1529 op = reg[rrr]; | |
1530 if (j >= XVECTOR (Vcode_conversion_map_vector)->size) | |
1531 { | |
1532 reg[RRR] = -1; | |
1533 break; | |
1534 } | |
1535 map = XVECTOR (Vcode_conversion_map_vector)->contents[j]; | |
1536 if (!CONSP (map)) | |
1537 { | |
1538 reg[RRR] = -1; | |
1539 break; | |
1540 } | |
1541 map = XCONS(map)->cdr; | |
1542 if (!VECTORP (map)) | |
1543 { | |
1544 reg[RRR] = -1; | |
1545 break; | |
1546 } | |
1547 size = XVECTOR (map)->size; | |
1548 point = XUINT (XVECTOR (map)->contents[0]); | |
1549 point = op - point + 1; | |
1550 reg[RRR] = 0; | |
1551 if ((size <= 1) || | |
1552 (!((point >= 1) && (point < size)))) | |
1553 reg[RRR] = -1; | |
1554 else | |
1555 { | |
1556 content = XVECTOR (map)->contents[point]; | |
1557 if (NILP (content)) | |
1558 reg[RRR] = -1; | |
1559 else if (NUMBERP (content)) | |
1560 reg[rrr] = XINT (content); | |
1561 else if (EQ (content, Qt)) | |
1562 reg[RRR] = i; | |
1563 else if (CONSP (content)) | |
1564 { | |
1565 attrib = XCONS (content)->car; | |
1566 value = XCONS (content)->cdr; | |
1567 if (!NUMBERP (attrib) || !NUMBERP (value)) | |
1568 continue; | |
1569 reg[rrr] = XUINT(value); | |
1570 break; | |
1571 } | |
1572 else | |
1573 reg[RRR] = -1; | |
1574 } | |
1575 } | |
1576 break; | |
1577 #endif | |
1578 | |
1579 default: | |
1580 CCL_INVALID_CMD; | |
1581 } | |
1582 break; | |
1583 | |
1584 default: | |
1585 ccl->status = CCL_STAT_INVALID_CMD; | |
1586 goto ccl_error_handler; | |
1587 } | |
1588 } | |
1589 | |
1590 ccl_error_handler: | |
1591 if (destination) | |
1592 { | |
1593 /* We can insert an error message only if DESTINATION is | |
1594 specified and we still have a room to store the message | |
1595 there. */ | |
1596 char msg[256]; | |
1597 | |
1598 #if 0 /* not for XEmacs ? */ | |
1599 if (!dst) | |
1600 dst = destination; | |
1601 #endif | |
1602 | |
1603 switch (ccl->status) | |
1604 { | |
1605 /* Terminate CCL program because of invalid command. | |
1606 Should not occur in the normal case. */ | |
1607 case CCL_STAT_INVALID_CMD: | |
1608 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.", | |
1609 code & 0x1F, code, this_ic); | |
1610 #ifdef CCL_DEBUG | |
1611 { | |
1612 int i = ccl_backtrace_idx - 1; | |
1613 int j; | |
1614 | |
1615 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); | |
1616 | |
1617 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--) | |
1618 { | |
1619 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1; | |
1620 if (ccl_backtrace_table[i] == 0) | |
1621 break; | |
1622 sprintf(msg, " %d", ccl_backtrace_table[i]); | |
1623 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); | |
1624 } | |
1625 goto ccl_finish; | |
1626 } | |
1627 #endif | |
1628 break; | |
1629 | |
1630 case CCL_STAT_QUIT: | |
1631 sprintf(msg, "\nCCL: Quited."); | |
1632 break; | |
1633 | |
1634 default: | |
1635 sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status); | |
1636 } | |
1637 | |
1638 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg)); | |
1639 } | |
1640 | |
1641 ccl_finish: | |
1642 ccl->ic = ic; | |
1643 ccl->stack_idx = stack_idx; | |
1644 ccl->prog = ccl_prog; | |
1645 if (consumed) *consumed = src - source; | |
1646 if (destination) | |
1647 return Dynarr_length (destination); | |
1648 else | |
1649 return 0; | |
1650 } | |
1651 | |
1652 /* Setup fields of the structure pointed by CCL appropriately for the | |
1653 execution of compiled CCL code in VEC (vector of integer). | |
1654 If VEC is nil, we skip setting ups based on VEC. */ | |
1655 void | |
1656 setup_ccl_program (struct ccl_program *ccl, Lisp_Object vec) | |
1657 { | |
1658 int i; | |
1659 | |
1660 if (VECTORP (vec)) | |
1661 { | |
1662 ccl->size = XVECTOR_LENGTH (vec); | |
1663 ccl->prog = XVECTOR_DATA (vec); | |
1664 ccl->eof_ic = XINT (XVECTOR_DATA (vec)[CCL_HEADER_EOF]); | |
1665 ccl->buf_magnification = XINT (XVECTOR_DATA (vec)[CCL_HEADER_BUF_MAG]); | |
1666 } | |
1667 ccl->ic = CCL_HEADER_MAIN; | |
1668 for (i = 0; i < 8; i++) | |
1669 ccl->reg[i] = 0; | |
1670 ccl->last_block = 0; | |
1671 ccl->private_state = 0; | |
1672 ccl->status = 0; | |
1673 ccl->stack_idx = 0; | |
1674 } | |
1675 | |
1676 /* Resolve symbols in the specified CCL code (Lisp vector). This | |
1677 function converts symbols of code conversion maps and character | |
1678 translation tables embeded in the CCL code into their ID numbers. */ | |
1679 | |
1680 static Lisp_Object | |
1681 resolve_symbol_ccl_program (Lisp_Object ccl) | |
1682 { | |
1683 int i, veclen; | |
1684 Lisp_Object result, contents /*, prop */; | |
1685 | |
1686 result = ccl; | |
1687 veclen = XVECTOR_LENGTH (result); | |
1688 | |
1689 /* Set CCL program's table ID */ | |
1690 for (i = 0; i < veclen; i++) | |
1691 { | |
1692 contents = XVECTOR_DATA (result)[i]; | |
1693 if (SYMBOLP (contents)) | |
1694 { | |
1695 if (EQ(result, ccl)) | |
1696 result = Fcopy_sequence (ccl); | |
1697 | |
1698 #if 0 | |
1699 prop = Fget (contents, Qtranslation_table_id); | |
1700 if (NUMBERP (prop)) | |
1701 { | |
1702 XVECTOR_DATA (result)[i] = prop; | |
1703 continue; | |
1704 } | |
1705 prop = Fget (contents, Qcode_conversion_map_id); | |
1706 if (NUMBERP (prop)) | |
1707 { | |
1708 XVECTOR_DATA (result)[i] = prop; | |
1709 continue; | |
1710 } | |
1711 prop = Fget (contents, Qccl_program_idx); | |
1712 if (NUMBERP (prop)) | |
1713 { | |
1714 XVECTOR_DATA (result)[i] = prop; | |
1715 continue; | |
1716 } | |
1717 #endif | |
1718 } | |
1719 } | |
1720 | |
1721 return result; | |
1722 } | |
1723 | |
1724 | |
1725 #ifdef emacs | |
1726 | |
1727 DEFUN ("ccl-execute", Fccl_execute, 2, 2, 0, /* | |
1728 Execute CCL-PROGRAM with registers initialized by REGISTERS. | |
1729 | |
1730 CCL-PROGRAM is a symbol registered by register-ccl-program, | |
1731 or a compiled code generated by `ccl-compile' (for backward compatibility, | |
1732 in this case, the execution is slower). | |
1733 No I/O commands should appear in CCL-PROGRAM. | |
1734 | |
1735 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value | |
1736 of Nth register. | |
1737 | |
1738 As side effect, each element of REGISTER holds the value of | |
1739 corresponding register after the execution. | |
1740 */ | |
1741 (ccl_prog, reg)) | |
1742 { | |
1743 struct ccl_program ccl; | |
1744 int i; | |
1745 Lisp_Object ccl_id; | |
1746 | |
1747 if (SYMBOLP (ccl_prog) && | |
1748 !NILP (ccl_id = Fget (ccl_prog, Qccl_program_idx, Qnil))) | |
1749 { | |
1750 ccl_prog = XVECTOR_DATA (Vccl_program_table)[XUINT (ccl_id)]; | |
1751 CHECK_LIST (ccl_prog); | |
1752 ccl_prog = XCDR (ccl_prog); | |
1753 CHECK_VECTOR (ccl_prog); | |
1754 } | |
1755 else | |
1756 { | |
1757 CHECK_VECTOR (ccl_prog); | |
1758 ccl_prog = resolve_symbol_ccl_program (ccl_prog); | |
1759 } | |
1760 | |
1761 CHECK_VECTOR (reg); | |
1762 if (XVECTOR_LENGTH (reg) != 8) | |
1763 error ("Invalid length of vector REGISTERS"); | |
1764 | |
1765 setup_ccl_program (&ccl, ccl_prog); | |
1766 for (i = 0; i < 8; i++) | |
1767 ccl.reg[i] = (INTP (XVECTOR_DATA (reg)[i]) | |
1768 ? XINT (XVECTOR_DATA (reg)[i]) | |
1769 : 0); | |
1770 | |
1771 ccl_driver (&ccl, (CONST unsigned char *)0, (unsigned_char_dynarr *)0, | |
1772 0, (int *)0, CCL_MODE_ENCODING); | |
1773 QUIT; | |
1774 if (ccl.status != CCL_STAT_SUCCESS) | |
1775 error ("Error in CCL program at %dth code", ccl.ic); | |
1776 | |
1777 for (i = 0; i < 8; i++) | |
1778 XSETINT (XVECTOR_DATA (reg)[i], ccl.reg[i]); | |
1779 return Qnil; | |
1780 } | |
1781 | |
1782 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, 3, 4, 0, /* | |
1783 Execute CCL-PROGRAM with initial STATUS on STRING. | |
1784 | |
1785 CCL-PROGRAM is a symbol registered by register-ccl-program, | |
1786 or a compiled code generated by `ccl-compile' (for backward compatibility, | |
1787 in this case, the execution is slower). | |
1788 | |
1789 Read buffer is set to STRING, and write buffer is allocated automatically. | |
1790 | |
1791 If IC is nil, it is initialized to head of the CCL program.\n\ | |
1792 STATUS is a vector of [R0 R1 ... R7 IC], where | |
1793 R0..R7 are initial values of corresponding registers, | |
1794 IC is the instruction counter specifying from where to start the program. | |
1795 If R0..R7 are nil, they are initialized to 0. | |
1796 If IC is nil, it is initialized to head of the CCL program. | |
1797 | |
1798 If optional 4th arg CONTINUE is non-nil, keep IC on read operation | |
1799 when read buffer is exausted, else, IC is always set to the end of | |
1800 CCL-PROGRAM on exit. | |
1801 | |
1802 It returns the contents of write buffer as a string, | |
1803 and as side effect, STATUS is updated. | |
1804 */ | |
1805 (ccl_prog, status, str, contin)) | |
1806 { | |
1807 Lisp_Object val; | |
1808 struct ccl_program ccl; | |
1809 int i, produced; | |
1810 unsigned_char_dynarr *outbuf; | |
1811 struct gcpro gcpro1, gcpro2, gcpro3; | |
1812 Lisp_Object ccl_id; | |
1813 | |
1814 if (SYMBOLP (ccl_prog) && | |
1815 !NILP (ccl_id = Fget (ccl_prog, Qccl_program_idx, Qnil))) | |
1816 { | |
1817 ccl_prog = XVECTOR (Vccl_program_table)->contents[XUINT (ccl_id)]; | |
1818 CHECK_LIST (ccl_prog); | |
1819 ccl_prog = XCDR (ccl_prog); | |
1820 CHECK_VECTOR (ccl_prog); | |
1821 } | |
1822 else | |
1823 { | |
1824 CHECK_VECTOR (ccl_prog); | |
1825 ccl_prog = resolve_symbol_ccl_program (ccl_prog); | |
1826 } | |
1827 | |
1828 CHECK_VECTOR (status); | |
1829 if (XVECTOR_LENGTH (status) != 9) | |
1830 signal_simple_error ("Vector should be of length 9", status); | |
1831 CHECK_STRING (str); | |
1832 GCPRO3 (ccl_prog, status, str); | |
1833 | |
1834 setup_ccl_program (&ccl, ccl_prog); | |
1835 for (i = 0; i < 8; i++) | |
1836 { | |
1837 if (NILP (XVECTOR_DATA (status)[i])) | |
1838 XSETINT (XVECTOR_DATA (status)[i], 0); | |
1839 if (INTP (XVECTOR_DATA (status)[i])) | |
1840 ccl.reg[i] = XINT (XVECTOR_DATA (status)[i]); | |
1841 } | |
1842 if (INTP (XVECTOR_DATA (status)[8])) | |
1843 { | |
1844 i = XINT (XVECTOR_DATA (status)[8]); | |
1845 if (ccl.ic < i && i < ccl.size) | |
1846 ccl.ic = i; | |
1847 } | |
1848 outbuf = Dynarr_new (unsigned_char); | |
1849 ccl.last_block = NILP (contin); | |
1850 produced = ccl_driver (&ccl, XSTRING_DATA (str), outbuf, | |
1851 XSTRING_LENGTH (str), (int *)0, CCL_MODE_DECODING); | |
1852 for (i = 0; i < 8; i++) | |
1853 XVECTOR_DATA (status)[i] = make_int(ccl.reg[i]); | |
1854 XSETINT (XVECTOR_DATA (status)[8], ccl.ic); | |
1855 UNGCPRO; | |
1856 | |
1857 val = make_string (Dynarr_atp (outbuf, 0), produced); | |
1858 Dynarr_free (outbuf); | |
1859 QUIT; | |
1860 if (ccl.status != CCL_STAT_SUCCESS | |
1861 && ccl.status != CCL_STAT_SUSPEND_BY_SRC | |
1862 && ccl.status != CCL_STAT_SUSPEND_BY_DST) | |
1863 error ("Error in CCL program at %dth code", ccl.ic); | |
1864 | |
1865 return val; | |
1866 } | |
1867 | |
1868 DEFUN ("register-ccl-program", Fregister_ccl_program, 2, 2, 0, /* | |
1869 Register CCL program PROGRAM of NAME in `ccl-program-table'. | |
1870 PROGRAM should be a compiled code of CCL program, or nil. | |
1871 Return index number of the registered CCL program. | |
1872 */ | |
1873 (name, ccl_prog)) | |
1874 { | |
1875 int len = XVECTOR_LENGTH (Vccl_program_table); | |
1876 int i; | |
1877 | |
1878 CHECK_SYMBOL (name); | |
1879 if (!NILP (ccl_prog)) | |
1880 { | |
1881 CHECK_VECTOR (ccl_prog); | |
1882 ccl_prog = resolve_symbol_ccl_program (ccl_prog); | |
1883 } | |
1884 | |
1885 for (i = 0; i < len; i++) | |
1886 { | |
1887 Lisp_Object slot = XVECTOR_DATA (Vccl_program_table)[i]; | |
1888 | |
1889 if (!CONSP (slot)) | |
1890 break; | |
1891 | |
1892 if (EQ (name, XCAR (slot))) | |
1893 { | |
1894 XCDR (slot) = ccl_prog; | |
1895 return make_int (i); | |
1896 } | |
1897 } | |
1898 | |
1899 if (i == len) | |
1900 { | |
1901 Lisp_Object new_table = Fmake_vector (make_int (len * 2), Qnil); | |
1902 int j; | |
1903 | |
1904 for (j = 0; j < len; j++) | |
1905 XVECTOR_DATA (new_table)[j] | |
1906 = XVECTOR_DATA (Vccl_program_table)[j]; | |
1907 Vccl_program_table = new_table; | |
1908 } | |
1909 | |
1910 XVECTOR_DATA (Vccl_program_table)[i] = Fcons (name, ccl_prog); | |
1911 Fput (name, Qccl_program_idx, make_int (i)); | |
1912 return make_int (i); | |
1913 } | |
1914 | |
1915 #if 0 | |
1916 /* Register code conversion map. | |
1917 A code conversion map consists of numbers, Qt, Qnil, and Qlambda. | |
1918 The first element is start code point. | |
1919 The rest elements are mapped numbers. | |
1920 Symbol t means to map to an original number before mapping. | |
1921 Symbol nil means that the corresponding element is empty. | |
1922 Symbol lambda menas to terminate mapping here. | |
1923 */ | |
1924 | |
1925 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map, | |
1926 Sregister_code_conversion_map, | |
1927 2, 2, 0, | |
1928 "Register SYMBOL as code conversion map MAP.\n\ | |
1929 Return index number of the registered map.") | |
1930 (symbol, map) | |
1931 Lisp_Object symbol, map; | |
1932 { | |
1933 int len = XVECTOR (Vcode_conversion_map_vector)->size; | |
1934 int i; | |
1935 Lisp_Object index; | |
1936 | |
1937 CHECK_SYMBOL (symbol, 0); | |
1938 CHECK_VECTOR (map, 1); | |
1939 | |
1940 for (i = 0; i < len; i++) | |
1941 { | |
1942 Lisp_Object slot = XVECTOR (Vcode_conversion_map_vector)->contents[i]; | |
1943 | |
1944 if (!CONSP (slot)) | |
1945 break; | |
1946 | |
1947 if (EQ (symbol, XCONS (slot)->car)) | |
1948 { | |
1949 index = make_int (i); | |
1950 XCONS (slot)->cdr = map; | |
1951 Fput (symbol, Qcode_conversion_map, map); | |
1952 Fput (symbol, Qcode_conversion_map_id, index); | |
1953 return index; | |
1954 } | |
1955 } | |
1956 | |
1957 if (i == len) | |
1958 { | |
1959 Lisp_Object new_vector = Fmake_vector (make_int (len * 2), Qnil); | |
1960 int j; | |
1961 | |
1962 for (j = 0; j < len; j++) | |
1963 XVECTOR (new_vector)->contents[j] | |
1964 = XVECTOR (Vcode_conversion_map_vector)->contents[j]; | |
1965 Vcode_conversion_map_vector = new_vector; | |
1966 } | |
1967 | |
1968 index = make_int (i); | |
1969 Fput (symbol, Qcode_conversion_map, map); | |
1970 Fput (symbol, Qcode_conversion_map_id, index); | |
1971 XVECTOR (Vcode_conversion_map_vector)->contents[i] = Fcons (symbol, map); | |
1972 return index; | |
1973 } | |
1974 #endif | |
1975 | |
1976 | |
1977 void | |
1978 syms_of_mule_ccl (void) | |
1979 { | |
1980 DEFSUBR (Fccl_execute); | |
1981 DEFSUBR (Fccl_execute_on_string); | |
1982 DEFSUBR (Fregister_ccl_program); | |
1983 #if 0 | |
1984 DEFSUBR (&Fregister_code_conversion_map); | |
1985 #endif | |
1986 } | |
1987 | |
1988 void | |
1989 vars_of_mule_ccl (void) | |
1990 { | |
1991 staticpro (&Vccl_program_table); | |
1992 Vccl_program_table = Fmake_vector (make_int (32), Qnil); | |
1993 | |
1994 Qccl_program = intern ("ccl-program"); | |
1995 staticpro (&Qccl_program); | |
1996 | |
1997 Qccl_program_idx = intern ("ccl-program-idx"); | |
1998 staticpro (&Qccl_program_idx); | |
1999 | |
2000 #if 0 | |
2001 Qcode_conversion_map = intern ("code-conversion-map"); | |
2002 staticpro (&Qcode_conversion_map); | |
2003 | |
2004 Qcode_conversion_map_id = intern ("code-conversion-map-id"); | |
2005 staticpro (&Qcode_conversion_map_id); | |
2006 | |
2007 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector /* | |
2008 Vector of code conversion maps.*/ ); | |
2009 Vcode_conversion_map_vector = Fmake_vector (make_int (16), Qnil); | |
2010 #endif | |
2011 | |
2012 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist /* | |
2013 Alist of fontname patterns vs corresponding CCL program. | |
2014 Each element looks like (REGEXP . CCL-CODE), | |
2015 where CCL-CODE is a compiled CCL program. | |
2016 When a font whose name matches REGEXP is used for displaying a character, | |
2017 CCL-CODE is executed to calculate the code point in the font | |
2018 from the charset number and position code(s) of the character which are set | |
2019 in CCL registers R0, R1, and R2 before the execution. | |
2020 The code point in the font is set in CCL registers R1 and R2 | |
2021 when the execution terminated. | |
2022 If the font is single-byte font, the register R2 is not used. | |
2023 */ ); | |
2024 Vfont_ccl_encoder_alist = Qnil; | |
2025 } | |
2026 | |
2027 #endif /* emacs */ |