0
|
1 /* Random utility Lisp functions.
|
|
2 Copyright (C) 1985, 86, 87, 93, 94, 95 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995, 1996 Ben Wing.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: Mule 2.0, FSF 19.30. */
|
|
23
|
|
24 /* This file has been Mule-ized. */
|
|
25
|
|
26 /* Note: FSF 19.30 has bool vectors. We have bit vectors. */
|
|
27
|
|
28 /* Hacked on for Mule by Ben Wing, December 1994, January 1995. */
|
|
29
|
|
30 #include <config.h>
|
|
31
|
|
32 /* Note on some machines this defines `vector' as a typedef,
|
|
33 so make sure we don't use that name in this file. */
|
|
34 #undef vector
|
|
35 #define vector *****
|
|
36
|
|
37 #include "lisp.h"
|
|
38
|
272
|
39 #ifdef HAVE_UNISTD_H
|
|
40 #include <unistd.h>
|
|
41 #endif
|
278
|
42 #include <errno.h>
|
272
|
43
|
0
|
44 #include "buffer.h"
|
|
45 #include "bytecode.h"
|
|
46 #include "commands.h"
|
|
47 #include "device.h"
|
|
48 #include "events.h"
|
|
49 #include "extents.h"
|
|
50 #include "frame.h"
|
|
51 #include "systime.h"
|
|
52
|
140
|
53 /* NOTE: This symbol is also used in lread.c */
|
|
54 #define FEATUREP_SYNTAX
|
|
55
|
0
|
56 Lisp_Object Qstring_lessp;
|
|
57 Lisp_Object Qidentity;
|
|
58
|
272
|
59 static int internal_old_equal (Lisp_Object, Lisp_Object, int);
|
0
|
60
|
|
61 static Lisp_Object
|
|
62 mark_bit_vector (Lisp_Object obj, void (*markobj) (Lisp_Object))
|
|
63 {
|
149
|
64 return Qnil;
|
0
|
65 }
|
|
66
|
|
67 static void
|
|
68 print_bit_vector (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
|
|
69 {
|
|
70 int i;
|
|
71 struct Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
|
|
72 int len = bit_vector_length (v);
|
|
73 int last = len;
|
|
74
|
|
75 if (INTP (Vprint_length))
|
|
76 last = min (len, XINT (Vprint_length));
|
|
77 write_c_string ("#*", printcharfun);
|
|
78 for (i = 0; i < last; i++)
|
|
79 {
|
|
80 if (bit_vector_bit (v, i))
|
|
81 write_c_string ("1", printcharfun);
|
|
82 else
|
|
83 write_c_string ("0", printcharfun);
|
|
84 }
|
|
85
|
|
86 if (last != len)
|
|
87 write_c_string ("...", printcharfun);
|
|
88 }
|
|
89
|
|
90 static int
|
|
91 bit_vector_equal (Lisp_Object o1, Lisp_Object o2, int depth)
|
|
92 {
|
|
93 struct Lisp_Bit_Vector *v1 = XBIT_VECTOR (o1);
|
|
94 struct Lisp_Bit_Vector *v2 = XBIT_VECTOR (o2);
|
|
95
|
272
|
96 return ((bit_vector_length (v1) == bit_vector_length (v2)) &&
|
|
97 !memcmp (v1->bits, v2->bits,
|
|
98 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v1)) *
|
|
99 sizeof (long)));
|
0
|
100 }
|
|
101
|
|
102 static unsigned long
|
|
103 bit_vector_hash (Lisp_Object obj, int depth)
|
|
104 {
|
|
105 struct Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
|
|
106 return HASH2 (bit_vector_length (v),
|
|
107 memory_hash (v->bits,
|
|
108 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)) *
|
|
109 sizeof (long)));
|
|
110 }
|
|
111
|
272
|
112 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("bit-vector", bit_vector,
|
|
113 mark_bit_vector, print_bit_vector, 0,
|
|
114 bit_vector_equal, bit_vector_hash,
|
|
115 struct Lisp_Bit_Vector);
|
|
116
|
20
|
117 DEFUN ("identity", Fidentity, 1, 1, 0, /*
|
0
|
118 Return the argument unchanged.
|
20
|
119 */
|
|
120 (arg))
|
0
|
121 {
|
|
122 return arg;
|
|
123 }
|
|
124
|
|
125 extern long get_random (void);
|
|
126 extern void seed_random (long arg);
|
|
127
|
20
|
128 DEFUN ("random", Frandom, 0, 1, 0, /*
|
0
|
129 Return a pseudo-random number.
|
102
|
130 All integers representable in Lisp are equally likely.
|
|
131 On most systems, this is 28 bits' worth.
|
|
132 With positive integer argument N, return random number in interval [0,N).
|
0
|
133 With argument t, set the random number seed from the current time and pid.
|
20
|
134 */
|
|
135 (limit))
|
0
|
136 {
|
|
137 EMACS_INT val;
|
|
138 unsigned long denominator;
|
|
139
|
|
140 if (EQ (limit, Qt))
|
|
141 seed_random (getpid () + time (NULL));
|
|
142 if (NATNUMP (limit) && !ZEROP (limit))
|
|
143 {
|
|
144 /* Try to take our random number from the higher bits of VAL,
|
|
145 not the lower, since (says Gentzel) the low bits of `random'
|
|
146 are less random than the higher ones. We do this by using the
|
|
147 quotient rather than the remainder. At the high end of the RNG
|
|
148 it's possible to get a quotient larger than limit; discarding
|
|
149 these values eliminates the bias that would otherwise appear
|
|
150 when using a large limit. */
|
|
151 denominator = ((unsigned long)1 << VALBITS) / XINT (limit);
|
|
152 do
|
|
153 val = get_random () / denominator;
|
|
154 while (val >= XINT (limit));
|
|
155 }
|
|
156 else
|
|
157 val = get_random ();
|
272
|
158
|
|
159 return make_int (val);
|
0
|
160 }
|
|
161
|
|
162 /* Random data-structure functions */
|
|
163
|
|
164 #ifdef LOSING_BYTECODE
|
|
165
|
|
166 /* #### Delete this shit */
|
|
167
|
|
168 /* Charcount is a misnomer here as we might be dealing with the
|
|
169 length of a vector or list, but emphasizes that we're not dealing
|
|
170 with Bytecounts in strings */
|
|
171 static Charcount
|
|
172 length_with_bytecode_hack (Lisp_Object seq)
|
|
173 {
|
|
174 if (!COMPILED_FUNCTIONP (seq))
|
149
|
175 return XINT (Flength (seq));
|
0
|
176 else
|
|
177 {
|
|
178 struct Lisp_Compiled_Function *b = XCOMPILED_FUNCTION (seq);
|
173
|
179
|
149
|
180 return (b->flags.interactivep ? COMPILED_INTERACTIVE :
|
|
181 b->flags.domainp ? COMPILED_DOMAIN :
|
|
182 COMPILED_DOC_STRING)
|
|
183 + 1;
|
0
|
184 }
|
|
185 }
|
|
186
|
|
187 #endif /* LOSING_BYTECODE */
|
|
188
|
|
189 void
|
|
190 check_losing_bytecode (CONST char *function, Lisp_Object seq)
|
|
191 {
|
|
192 if (COMPILED_FUNCTIONP (seq))
|
|
193 error_with_frob
|
|
194 (seq,
|
169
|
195 "As of 20.3, `%s' no longer works with compiled-function objects",
|
0
|
196 function);
|
|
197 }
|
|
198
|
20
|
199 DEFUN ("length", Flength, 1, 1, 0, /*
|
0
|
200 Return the length of vector, bit vector, list or string SEQUENCE.
|
20
|
201 */
|
272
|
202 (sequence))
|
0
|
203 {
|
|
204 retry:
|
272
|
205 if (STRINGP (sequence))
|
|
206 return make_int (XSTRING_CHAR_LENGTH (sequence));
|
|
207 else if (CONSP (sequence))
|
0
|
208 {
|
272
|
209 Lisp_Object tail;
|
|
210 int i = 0;
|
|
211
|
|
212 EXTERNAL_LIST_LOOP (tail, sequence)
|
0
|
213 {
|
|
214 QUIT;
|
272
|
215 i++;
|
0
|
216 }
|
|
217
|
173
|
218 return make_int (i);
|
0
|
219 }
|
272
|
220 else if (VECTORP (sequence))
|
|
221 return make_int (XVECTOR_LENGTH (sequence));
|
|
222 else if (NILP (sequence))
|
|
223 return Qzero;
|
|
224 else if (BIT_VECTORP (sequence))
|
|
225 return make_int (bit_vector_length (XBIT_VECTOR (sequence)));
|
0
|
226 else
|
|
227 {
|
272
|
228 check_losing_bytecode ("length", sequence);
|
|
229 sequence = wrong_type_argument (Qsequencep, sequence);
|
0
|
230 goto retry;
|
|
231 }
|
|
232 }
|
|
233
|
|
234 /* This does not check for quits. That is safe
|
|
235 since it must terminate. */
|
|
236
|
20
|
237 DEFUN ("safe-length", Fsafe_length, 1, 1, 0, /*
|
0
|
238 Return the length of a list, but avoid error or infinite loop.
|
|
239 This function never gets an error. If LIST is not really a list,
|
|
240 it returns 0. If LIST is circular, it returns a finite value
|
|
241 which is at least the number of distinct elements.
|
20
|
242 */
|
|
243 (list))
|
0
|
244 {
|
272
|
245 Lisp_Object halftail = list; /* Used to detect circular lists. */
|
|
246 Lisp_Object tail;
|
0
|
247 int len = 0;
|
|
248
|
|
249 for (tail = list; CONSP (tail); tail = XCDR (tail))
|
|
250 {
|
|
251 if (EQ (tail, halftail) && len != 0)
|
|
252 break;
|
|
253 len++;
|
|
254 if ((len & 1) == 0)
|
|
255 halftail = XCDR (halftail);
|
|
256 }
|
|
257
|
272
|
258 return make_int (len);
|
0
|
259 }
|
|
260
|
|
261 /*** string functions. ***/
|
|
262
|
20
|
263 DEFUN ("string-equal", Fstring_equal, 2, 2, 0, /*
|
272
|
264 Return t if two strings have identical contents.
|
0
|
265 Case is significant. Text properties are ignored.
|
241
|
266 \(Under XEmacs, `equal' also ignores text properties and extents in
|
|
267 strings, but this is not the case under FSF Emacs 19. In FSF Emacs 20
|
|
268 `equal' is the same as in XEmacs, in that respect.)
|
0
|
269 Symbols are also allowed; their print names are used instead.
|
20
|
270 */
|
241
|
271 (s1, s2))
|
0
|
272 {
|
272
|
273 Bytecount len;
|
|
274 struct Lisp_String *p1, *p2;
|
0
|
275
|
|
276 if (SYMBOLP (s1))
|
272
|
277 p1 = XSYMBOL (s1)->name;
|
|
278 else
|
|
279 {
|
|
280 CHECK_STRING (s1);
|
|
281 p1 = XSTRING (s1);
|
|
282 }
|
|
283
|
0
|
284 if (SYMBOLP (s2))
|
272
|
285 p2 = XSYMBOL (s2)->name;
|
|
286 else
|
|
287 {
|
|
288 CHECK_STRING (s2);
|
|
289 p2 = XSTRING (s2);
|
|
290 }
|
|
291
|
|
292 return (((len = string_length (p1)) == string_length (p2)) &&
|
|
293 !memcmp (string_data (p1), string_data (p2), len)) ? Qt : Qnil;
|
0
|
294 }
|
|
295
|
|
296
|
20
|
297 DEFUN ("string-lessp", Fstring_lessp, 2, 2, 0, /*
|
272
|
298 Return t if first arg string is less than second in lexicographic order.
|
70
|
299 If I18N2 support (but not Mule support) was compiled in, ordering is
|
|
300 determined by the locale. (Case is significant for the default C locale.)
|
|
301 In all other cases, comparison is simply done on a character-by-
|
|
302 character basis using the numeric value of a character. (Note that
|
|
303 this may not produce particularly meaningful results under Mule if
|
|
304 characters from different charsets are being compared.)
|
|
305
|
0
|
306 Symbols are also allowed; their print names are used instead.
|
70
|
307
|
|
308 The reason that the I18N2 locale-specific collation is not used under
|
|
309 Mule is that the locale model of internationalization does not handle
|
|
310 multiple charsets and thus has no hope of working properly under Mule.
|
|
311 What we really should do is create a collation table over all built-in
|
|
312 charsets. This is extremely difficult to do from scratch, however.
|
|
313
|
|
314 Unicode is a good first step towards solving this problem. In fact,
|
|
315 it is quite likely that a collation table exists (or will exist) for
|
|
316 Unicode. When Unicode support is added to XEmacs/Mule, this problem
|
|
317 may be solved.
|
20
|
318 */
|
|
319 (s1, s2))
|
0
|
320 {
|
|
321 struct Lisp_String *p1, *p2;
|
|
322 Charcount end, len2;
|
272
|
323 int i;
|
0
|
324
|
|
325 if (SYMBOLP (s1))
|
272
|
326 p1 = XSYMBOL (s1)->name;
|
|
327 else
|
|
328 {
|
|
329 CHECK_STRING (s1);
|
|
330 p1 = XSTRING (s1);
|
|
331 }
|
|
332
|
0
|
333 if (SYMBOLP (s2))
|
272
|
334 p2 = XSYMBOL (s2)->name;
|
|
335 else
|
|
336 {
|
|
337 CHECK_STRING (s2);
|
|
338 p2 = XSTRING (s2);
|
|
339 }
|
|
340
|
|
341 end = string_char_length (p1);
|
|
342 len2 = string_char_length (p2);
|
0
|
343 if (end > len2)
|
|
344 end = len2;
|
|
345
|
70
|
346 #if defined (I18N2) && !defined (MULE)
|
272
|
347 /* There is no hope of this working under Mule. Even if we converted
|
|
348 the data into an external format so that strcoll() processed it
|
|
349 properly, it would still not work because strcoll() does not
|
|
350 handle multiple locales. This is the fundamental flaw in the
|
|
351 locale model. */
|
|
352 Bytecount bcend = charcount_to_bytecount (string_data (p1), end);
|
|
353 /* Compare strings using collation order of locale. */
|
|
354 /* Need to be tricky to handle embedded nulls. */
|
|
355
|
|
356 for (i = 0; i < bcend; i += strlen((char *) string_data (p1) + i) + 1)
|
|
357 {
|
|
358 int val = strcoll ((char *) string_data (p1) + i,
|
|
359 (char *) string_data (p2) + i);
|
|
360 if (val < 0)
|
|
361 return Qt;
|
|
362 if (val > 0)
|
|
363 return Qnil;
|
|
364 }
|
70
|
365 #else /* not I18N2, or MULE */
|
272
|
366 /* #### It is not really necessary to do this: We could compare
|
|
367 byte-by-byte and still get a reasonable comparison, since this
|
|
368 would compare characters with a charset in the same way.
|
|
369 With a little rearrangement of the leading bytes, we could
|
|
370 make most inter-charset comparisons work out the same, too;
|
|
371 even if some don't, this is not a big deal because inter-charset
|
|
372 comparisons aren't really well-defined anyway. */
|
|
373 for (i = 0; i < end; i++)
|
|
374 {
|
|
375 if (string_char (p1, i) != string_char (p2, i))
|
|
376 return string_char (p1, i) < string_char (p2, i) ? Qt : Qnil;
|
|
377 }
|
70
|
378 #endif /* not I18N2, or MULE */
|
272
|
379 /* Can't do i < len2 because then comparison between "foo" and "foo^@"
|
|
380 won't work right in I18N2 case */
|
|
381 return end < len2 ? Qt : Qnil;
|
0
|
382 }
|
|
383
|
20
|
384 DEFUN ("string-modified-tick", Fstring_modified_tick, 1, 1, 0, /*
|
0
|
385 Return STRING's tick counter, incremented for each change to the string.
|
|
386 Each string has a tick counter which is incremented each time the contents
|
|
387 of the string are changed (e.g. with `aset'). It wraps around occasionally.
|
20
|
388 */
|
|
389 (string))
|
0
|
390 {
|
|
391 struct Lisp_String *s;
|
|
392
|
|
393 CHECK_STRING (string);
|
|
394 s = XSTRING (string);
|
|
395 if (CONSP (s->plist) && INTP (XCAR (s->plist)))
|
|
396 return XCAR (s->plist);
|
|
397 else
|
|
398 return Qzero;
|
|
399 }
|
|
400
|
|
401 void
|
|
402 bump_string_modiff (Lisp_Object str)
|
|
403 {
|
|
404 struct Lisp_String *s = XSTRING (str);
|
|
405 Lisp_Object *ptr = &s->plist;
|
|
406
|
|
407 #ifdef I18N3
|
|
408 /* #### remove the `string-translatable' property from the string,
|
|
409 if there is one. */
|
|
410 #endif
|
|
411 /* skip over extent info if it's there */
|
|
412 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
|
|
413 ptr = &XCDR (*ptr);
|
|
414 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
|
|
415 XSETINT (XCAR (*ptr), 1+XINT (XCAR (*ptr)));
|
|
416 else
|
|
417 *ptr = Fcons (make_int (1), *ptr);
|
|
418 }
|
|
419
|
|
420
|
|
421 enum concat_target_type { c_cons, c_string, c_vector, c_bit_vector };
|
|
422 static Lisp_Object concat (int nargs, Lisp_Object *args,
|
|
423 enum concat_target_type target_type,
|
|
424 int last_special);
|
|
425
|
|
426 Lisp_Object
|
|
427 concat2 (Lisp_Object s1, Lisp_Object s2)
|
|
428 {
|
|
429 Lisp_Object args[2];
|
|
430 args[0] = s1;
|
|
431 args[1] = s2;
|
|
432 return concat (2, args, c_string, 0);
|
|
433 }
|
|
434
|
|
435 Lisp_Object
|
|
436 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
|
|
437 {
|
|
438 Lisp_Object args[3];
|
|
439 args[0] = s1;
|
|
440 args[1] = s2;
|
|
441 args[2] = s3;
|
|
442 return concat (3, args, c_string, 0);
|
|
443 }
|
|
444
|
|
445 Lisp_Object
|
|
446 vconcat2 (Lisp_Object s1, Lisp_Object s2)
|
|
447 {
|
|
448 Lisp_Object args[2];
|
|
449 args[0] = s1;
|
|
450 args[1] = s2;
|
|
451 return concat (2, args, c_vector, 0);
|
|
452 }
|
|
453
|
|
454 Lisp_Object
|
|
455 vconcat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
|
|
456 {
|
|
457 Lisp_Object args[3];
|
|
458 args[0] = s1;
|
|
459 args[1] = s2;
|
|
460 args[2] = s3;
|
|
461 return concat (3, args, c_vector, 0);
|
|
462 }
|
|
463
|
20
|
464 DEFUN ("append", Fappend, 0, MANY, 0, /*
|
0
|
465 Concatenate all the arguments and make the result a list.
|
|
466 The result is a list whose elements are the elements of all the arguments.
|
|
467 Each argument may be a list, vector, bit vector, or string.
|
|
468 The last argument is not copied, just used as the tail of the new list.
|
201
|
469 Also see: `nconc'.
|
20
|
470 */
|
|
471 (int nargs, Lisp_Object *args))
|
0
|
472 {
|
|
473 return concat (nargs, args, c_cons, 1);
|
|
474 }
|
|
475
|
20
|
476 DEFUN ("concat", Fconcat, 0, MANY, 0, /*
|
0
|
477 Concatenate all the arguments and make the result a string.
|
|
478 The result is a string whose elements are the elements of all the arguments.
|
120
|
479 Each argument may be a string or a list or vector of characters.
|
0
|
480
|
290
|
481 As of XEmacs 21.0, this function does NOT accept individual integers
|
|
482 as arguments. Old code that relies on, for example, (concat "foo" 50)
|
|
483 returning "foo50" will fail. To fix such code, either apply
|
|
484 `int-to-string' to the integer argument, or use `format'.
|
20
|
485 */
|
|
486 (int nargs, Lisp_Object *args))
|
0
|
487 {
|
|
488 return concat (nargs, args, c_string, 0);
|
|
489 }
|
|
490
|
20
|
491 DEFUN ("vconcat", Fvconcat, 0, MANY, 0, /*
|
0
|
492 Concatenate all the arguments and make the result a vector.
|
|
493 The result is a vector whose elements are the elements of all the arguments.
|
|
494 Each argument may be a list, vector, bit vector, or string.
|
20
|
495 */
|
|
496 (int nargs, Lisp_Object *args))
|
0
|
497 {
|
|
498 return concat (nargs, args, c_vector, 0);
|
|
499 }
|
|
500
|
20
|
501 DEFUN ("bvconcat", Fbvconcat, 0, MANY, 0, /*
|
0
|
502 Concatenate all the arguments and make the result a bit vector.
|
|
503 The result is a bit vector whose elements are the elements of all the
|
|
504 arguments. Each argument may be a list, vector, bit vector, or string.
|
20
|
505 */
|
|
506 (int nargs, Lisp_Object *args))
|
0
|
507 {
|
|
508 return concat (nargs, args, c_bit_vector, 0);
|
|
509 }
|
|
510
|
20
|
511 DEFUN ("copy-sequence", Fcopy_sequence, 1, 1, 0, /*
|
0
|
512 Return a copy of a list, vector, bit vector or string.
|
|
513 The elements of a list or vector are not copied; they are shared
|
|
514 with the original.
|
20
|
515 */
|
|
516 (arg))
|
0
|
517 {
|
|
518 again:
|
|
519 if (NILP (arg)) return arg;
|
|
520 /* We handle conses separately because concat() is big and hairy and
|
|
521 doesn't handle (copy-sequence '(a b . c)) and it's easier to redo this
|
|
522 than to fix concat() without worrying about breaking other things.
|
|
523 */
|
|
524 if (CONSP (arg))
|
|
525 {
|
169
|
526 Lisp_Object head = Fcons (XCAR (arg), XCDR (arg));
|
|
527 Lisp_Object tail = head;
|
|
528
|
|
529 for (arg = XCDR (arg); CONSP (arg); arg = XCDR (arg))
|
0
|
530 {
|
169
|
531 XCDR (tail) = Fcons (XCAR (arg), XCDR (arg));
|
|
532 tail = XCDR (tail);
|
0
|
533 QUIT;
|
|
534 }
|
|
535 return head;
|
|
536 }
|
169
|
537 if (STRINGP (arg)) return concat (1, &arg, c_string, 0);
|
|
538 if (VECTORP (arg)) return concat (1, &arg, c_vector, 0);
|
|
539 if (BIT_VECTORP (arg)) return concat (1, &arg, c_bit_vector, 0);
|
|
540
|
|
541 check_losing_bytecode ("copy-sequence", arg);
|
|
542 arg = wrong_type_argument (Qsequencep, arg);
|
|
543 goto again;
|
0
|
544 }
|
|
545
|
|
546 struct merge_string_extents_struct
|
|
547 {
|
|
548 Lisp_Object string;
|
|
549 Bytecount entry_offset;
|
|
550 Bytecount entry_length;
|
|
551 };
|
|
552
|
|
553 static Lisp_Object
|
|
554 concat (int nargs, Lisp_Object *args,
|
|
555 enum concat_target_type target_type,
|
|
556 int last_special)
|
|
557 {
|
|
558 Lisp_Object val;
|
|
559 Lisp_Object tail = Qnil;
|
|
560 int toindex;
|
|
561 int argnum;
|
|
562 Lisp_Object last_tail;
|
|
563 Lisp_Object prev;
|
|
564 struct merge_string_extents_struct *args_mse = 0;
|
|
565 Bufbyte *string_result = 0;
|
|
566 Bufbyte *string_result_ptr = 0;
|
|
567 struct gcpro gcpro1;
|
|
568
|
|
569 /* The modus operandi in Emacs is "caller gc-protects args".
|
|
570 However, concat is called many times in Emacs on freshly
|
|
571 created stuff. So we help those callers out by protecting
|
|
572 the args ourselves to save them a lot of temporary-variable
|
|
573 grief. */
|
|
574
|
|
575 GCPRO1 (args[0]);
|
|
576 gcpro1.nvars = nargs;
|
|
577
|
|
578 #ifdef I18N3
|
|
579 /* #### if the result is a string and any of the strings have a string
|
|
580 for the `string-translatable' property, then concat should also
|
|
581 concat the args but use the `string-translatable' strings, and store
|
|
582 the result in the returned string's `string-translatable' property. */
|
|
583 #endif
|
|
584 if (target_type == c_string)
|
185
|
585 args_mse = alloca_array (struct merge_string_extents_struct, nargs);
|
0
|
586
|
|
587 /* In append, the last arg isn't treated like the others */
|
|
588 if (last_special && nargs > 0)
|
|
589 {
|
|
590 nargs--;
|
|
591 last_tail = args[nargs];
|
|
592 }
|
|
593 else
|
|
594 last_tail = Qnil;
|
|
595
|
|
596 /* Check and coerce the arguments. */
|
|
597 for (argnum = 0; argnum < nargs; argnum++)
|
|
598 {
|
|
599 Lisp_Object seq = args[argnum];
|
272
|
600 if (LISTP (seq))
|
0
|
601 ;
|
|
602 else if (VECTORP (seq) || STRINGP (seq) || BIT_VECTORP (seq))
|
|
603 ;
|
|
604 #ifdef LOSING_BYTECODE
|
|
605 else if (COMPILED_FUNCTIONP (seq))
|
|
606 /* Urk! We allow this, for "compatibility"... */
|
|
607 ;
|
|
608 #endif
|
284
|
609 #if 0 /* removed for XEmacs 21 */
|
0
|
610 else if (INTP (seq))
|
|
611 /* This is too revolting to think about but maintains
|
|
612 compatibility with FSF (and lots and lots of old code). */
|
|
613 args[argnum] = Fnumber_to_string (seq);
|
284
|
614 #endif
|
0
|
615 else
|
|
616 {
|
|
617 check_losing_bytecode ("concat", seq);
|
|
618 args[argnum] = wrong_type_argument (Qsequencep, seq);
|
|
619 }
|
173
|
620
|
0
|
621 if (args_mse)
|
|
622 {
|
|
623 if (STRINGP (seq))
|
|
624 args_mse[argnum].string = seq;
|
|
625 else
|
|
626 args_mse[argnum].string = Qnil;
|
|
627 }
|
|
628 }
|
|
629
|
|
630 {
|
|
631 /* Charcount is a misnomer here as we might be dealing with the
|
|
632 length of a vector or list, but emphasizes that we're not dealing
|
|
633 with Bytecounts in strings */
|
|
634 Charcount total_length;
|
|
635
|
|
636 for (argnum = 0, total_length = 0; argnum < nargs; argnum++)
|
|
637 {
|
|
638 #ifdef LOSING_BYTECODE
|
|
639 Charcount thislen = length_with_bytecode_hack (args[argnum]);
|
|
640 #else
|
|
641 Charcount thislen = XINT (Flength (args[argnum]));
|
|
642 #endif
|
|
643 total_length += thislen;
|
|
644 }
|
|
645
|
|
646 switch (target_type)
|
|
647 {
|
|
648 case c_cons:
|
|
649 if (total_length == 0)
|
|
650 /* In append, if all but last arg are nil, return last arg */
|
|
651 RETURN_UNGCPRO (last_tail);
|
|
652 val = Fmake_list (make_int (total_length), Qnil);
|
|
653 break;
|
|
654 case c_vector:
|
|
655 val = make_vector (total_length, Qnil);
|
|
656 break;
|
|
657 case c_bit_vector:
|
|
658 val = make_bit_vector (total_length, Qzero);
|
|
659 break;
|
|
660 case c_string:
|
|
661 /* We don't make the string yet because we don't know the
|
|
662 actual number of bytes. This loop was formerly written
|
|
663 to call Fmake_string() here and then call set_string_char()
|
|
664 for each char. This seems logical enough but is waaaaaaaay
|
|
665 slow -- set_string_char() has to scan the whole string up
|
|
666 to the place where the substitution is called for in order
|
|
667 to find the place to change, and may have to do some
|
|
668 realloc()ing in order to make the char fit properly.
|
|
669 O(N^2) yuckage. */
|
|
670 val = Qnil;
|
|
671 string_result = (Bufbyte *) alloca (total_length * MAX_EMCHAR_LEN);
|
|
672 string_result_ptr = string_result;
|
|
673 break;
|
|
674 default:
|
|
675 abort ();
|
|
676 }
|
|
677 }
|
|
678
|
|
679
|
|
680 if (CONSP (val))
|
|
681 tail = val, toindex = -1; /* -1 in toindex is flag we are
|
|
682 making a list */
|
|
683 else
|
|
684 toindex = 0;
|
|
685
|
|
686 prev = Qnil;
|
|
687
|
|
688 for (argnum = 0; argnum < nargs; argnum++)
|
|
689 {
|
|
690 Charcount thisleni = 0;
|
|
691 Charcount thisindex = 0;
|
|
692 Lisp_Object seq = args[argnum];
|
|
693 Bufbyte *string_source_ptr = 0;
|
|
694 Bufbyte *string_prev_result_ptr = string_result_ptr;
|
|
695
|
|
696 if (!CONSP (seq))
|
|
697 {
|
|
698 #ifdef LOSING_BYTECODE
|
|
699 thisleni = length_with_bytecode_hack (seq);
|
|
700 #else
|
|
701 thisleni = XINT (Flength (seq));
|
|
702 #endif
|
|
703 }
|
|
704 if (STRINGP (seq))
|
14
|
705 string_source_ptr = XSTRING_DATA (seq);
|
0
|
706
|
|
707 while (1)
|
|
708 {
|
|
709 Lisp_Object elt;
|
|
710
|
|
711 /* We've come to the end of this arg, so exit. */
|
|
712 if (NILP (seq))
|
|
713 break;
|
|
714
|
|
715 /* Fetch next element of `seq' arg into `elt' */
|
|
716 if (CONSP (seq))
|
|
717 {
|
165
|
718 elt = XCAR (seq);
|
|
719 seq = XCDR (seq);
|
0
|
720 }
|
|
721 else
|
|
722 {
|
|
723 if (thisindex >= thisleni)
|
|
724 break;
|
|
725
|
|
726 if (STRINGP (seq))
|
|
727 {
|
|
728 elt = make_char (charptr_emchar (string_source_ptr));
|
|
729 INC_CHARPTR (string_source_ptr);
|
|
730 }
|
|
731 else if (VECTORP (seq))
|
173
|
732 elt = XVECTOR_DATA (seq)[thisindex];
|
0
|
733 else if (BIT_VECTORP (seq))
|
|
734 elt = make_int (bit_vector_bit (XBIT_VECTOR (seq),
|
|
735 thisindex));
|
|
736 else
|
|
737 elt = Felt (seq, make_int (thisindex));
|
|
738 thisindex++;
|
|
739 }
|
|
740
|
|
741 /* Store into result */
|
|
742 if (toindex < 0)
|
|
743 {
|
|
744 /* toindex negative means we are making a list */
|
|
745 XCAR (tail) = elt;
|
|
746 prev = tail;
|
|
747 tail = XCDR (tail);
|
|
748 }
|
|
749 else if (VECTORP (val))
|
173
|
750 XVECTOR_DATA (val)[toindex++] = elt;
|
0
|
751 else if (BIT_VECTORP (val))
|
|
752 {
|
|
753 CHECK_BIT (elt);
|
|
754 set_bit_vector_bit (XBIT_VECTOR (val), toindex++, XINT (elt));
|
|
755 }
|
|
756 else
|
|
757 {
|
|
758 CHECK_CHAR_COERCE_INT (elt);
|
|
759 string_result_ptr += set_charptr_emchar (string_result_ptr,
|
|
760 XCHAR (elt));
|
|
761 }
|
|
762 }
|
|
763 if (args_mse)
|
|
764 {
|
|
765 args_mse[argnum].entry_offset =
|
|
766 string_prev_result_ptr - string_result;
|
|
767 args_mse[argnum].entry_length =
|
|
768 string_result_ptr - string_prev_result_ptr;
|
|
769 }
|
|
770 }
|
|
771
|
|
772 /* Now we finally make the string. */
|
|
773 if (target_type == c_string)
|
|
774 {
|
|
775 val = make_string (string_result, string_result_ptr - string_result);
|
|
776 for (argnum = 0; argnum < nargs; argnum++)
|
|
777 {
|
|
778 if (STRINGP (args_mse[argnum].string))
|
|
779 copy_string_extents (val, args_mse[argnum].string,
|
|
780 args_mse[argnum].entry_offset, 0,
|
|
781 args_mse[argnum].entry_length);
|
|
782 }
|
|
783 }
|
|
784
|
|
785 if (!NILP (prev))
|
|
786 XCDR (prev) = last_tail;
|
|
787
|
173
|
788 RETURN_UNGCPRO (val);
|
0
|
789 }
|
|
790
|
20
|
791 DEFUN ("copy-alist", Fcopy_alist, 1, 1, 0, /*
|
0
|
792 Return a copy of ALIST.
|
|
793 This is an alist which represents the same mapping from objects to objects,
|
|
794 but does not share the alist structure with ALIST.
|
|
795 The objects mapped (cars and cdrs of elements of the alist)
|
|
796 are shared, however.
|
|
797 Elements of ALIST that are not conses are also shared.
|
20
|
798 */
|
|
799 (alist))
|
0
|
800 {
|
272
|
801 Lisp_Object tail;
|
|
802
|
0
|
803 if (NILP (alist))
|
|
804 return alist;
|
272
|
805 CHECK_CONS (alist);
|
|
806
|
0
|
807 alist = concat (1, &alist, c_cons, 0);
|
272
|
808 for (tail = alist; CONSP (tail); tail = XCDR (tail))
|
0
|
809 {
|
272
|
810 Lisp_Object car = XCAR (tail);
|
0
|
811
|
|
812 if (CONSP (car))
|
272
|
813 XCAR (tail) = Fcons (XCAR (car), XCDR (car));
|
0
|
814 }
|
|
815 return alist;
|
|
816 }
|
|
817
|
20
|
818 DEFUN ("copy-tree", Fcopy_tree, 1, 2, 0, /*
|
0
|
819 Return a copy of a list and substructures.
|
|
820 The argument is copied, and any lists contained within it are copied
|
|
821 recursively. Circularities and shared substructures are not preserved.
|
|
822 Second arg VECP causes vectors to be copied, too. Strings and bit vectors
|
|
823 are not copied.
|
20
|
824 */
|
|
825 (arg, vecp))
|
0
|
826 {
|
|
827 if (CONSP (arg))
|
|
828 {
|
|
829 Lisp_Object rest;
|
|
830 rest = arg = Fcopy_sequence (arg);
|
|
831 while (CONSP (rest))
|
|
832 {
|
|
833 Lisp_Object elt = XCAR (rest);
|
|
834 QUIT;
|
|
835 if (CONSP (elt) || VECTORP (elt))
|
|
836 XCAR (rest) = Fcopy_tree (elt, vecp);
|
|
837 if (VECTORP (XCDR (rest))) /* hack for (a b . [c d]) */
|
|
838 XCDR (rest) = Fcopy_tree (XCDR (rest), vecp);
|
|
839 rest = XCDR (rest);
|
|
840 }
|
|
841 }
|
|
842 else if (VECTORP (arg) && ! NILP (vecp))
|
|
843 {
|
173
|
844 int i = XVECTOR_LENGTH (arg);
|
0
|
845 int j;
|
|
846 arg = Fcopy_sequence (arg);
|
|
847 for (j = 0; j < i; j++)
|
|
848 {
|
173
|
849 Lisp_Object elt = XVECTOR_DATA (arg) [j];
|
0
|
850 QUIT;
|
|
851 if (CONSP (elt) || VECTORP (elt))
|
173
|
852 XVECTOR_DATA (arg) [j] = Fcopy_tree (elt, vecp);
|
0
|
853 }
|
|
854 }
|
|
855 return arg;
|
|
856 }
|
|
857
|
20
|
858 DEFUN ("substring", Fsubstring, 2, 3, 0, /*
|
0
|
859 Return a substring of STRING, starting at index FROM and ending before TO.
|
|
860 TO may be nil or omitted; then the substring runs to the end of STRING.
|
|
861 If FROM or TO is negative, it counts from the end.
|
|
862 Relevant parts of the string-extent-data are copied in the new string.
|
20
|
863 */
|
|
864 (string, from, to))
|
0
|
865 {
|
|
866 Charcount ccfr, ccto;
|
|
867 Bytecount bfr, bto;
|
|
868 Lisp_Object val;
|
|
869
|
|
870 CHECK_STRING (string);
|
|
871 /* Historically, FROM could not be omitted. Whatever ... */
|
|
872 CHECK_INT (from);
|
|
873 get_string_range_char (string, from, to, &ccfr, &ccto,
|
|
874 GB_HISTORICAL_STRING_BEHAVIOR);
|
14
|
875 bfr = charcount_to_bytecount (XSTRING_DATA (string), ccfr);
|
|
876 bto = charcount_to_bytecount (XSTRING_DATA (string), ccto);
|
|
877 val = make_string (XSTRING_DATA (string) + bfr, bto - bfr);
|
0
|
878 /* Copy any applicable extent information into the new string: */
|
|
879 copy_string_extents (val, string, 0, bfr, bto - bfr);
|
173
|
880 return val;
|
0
|
881 }
|
|
882
|
20
|
883 DEFUN ("subseq", Fsubseq, 2, 3, 0, /*
|
0
|
884 Return a subsequence of SEQ, starting at index FROM and ending before TO.
|
|
885 TO may be nil or omitted; then the subsequence runs to the end of SEQ.
|
|
886 If FROM or TO is negative, it counts from the end.
|
|
887 The resulting subsequence is always the same type as the original
|
|
888 sequence.
|
|
889 If SEQ is a string, relevant parts of the string-extent-data are copied
|
276
|
890 to the new string.
|
20
|
891 */
|
|
892 (seq, from, to))
|
0
|
893 {
|
|
894 int len, f, t;
|
|
895
|
|
896 if (STRINGP (seq))
|
|
897 return Fsubstring (seq, from, to);
|
|
898
|
272
|
899 if (!LISTP (seq) && !VECTORP (seq) && !BIT_VECTORP (seq))
|
0
|
900 {
|
|
901 check_losing_bytecode ("subseq", seq);
|
|
902 seq = wrong_type_argument (Qsequencep, seq);
|
|
903 }
|
173
|
904
|
0
|
905 len = XINT (Flength (seq));
|
276
|
906
|
0
|
907 CHECK_INT (from);
|
|
908 f = XINT (from);
|
|
909 if (f < 0)
|
|
910 f = len + f;
|
276
|
911
|
0
|
912 if (NILP (to))
|
|
913 t = len;
|
|
914 else
|
|
915 {
|
|
916 CHECK_INT (to);
|
|
917 t = XINT (to);
|
|
918 if (t < 0)
|
|
919 t = len + t;
|
|
920 }
|
173
|
921
|
0
|
922 if (!(0 <= f && f <= t && t <= len))
|
|
923 args_out_of_range_3 (seq, make_int (f), make_int (t));
|
|
924
|
|
925 if (VECTORP (seq))
|
|
926 {
|
|
927 Lisp_Object result = make_vector (t - f, Qnil);
|
|
928 int i;
|
173
|
929 Lisp_Object *in_elts = XVECTOR_DATA (seq);
|
|
930 Lisp_Object *out_elts = XVECTOR_DATA (result);
|
0
|
931
|
|
932 for (i = f; i < t; i++)
|
|
933 out_elts[i - f] = in_elts[i];
|
|
934 return result;
|
|
935 }
|
|
936
|
276
|
937 if (LISTP (seq))
|
0
|
938 {
|
|
939 Lisp_Object result = Qnil;
|
|
940 int i;
|
|
941
|
|
942 seq = Fnthcdr (make_int (f), seq);
|
|
943
|
|
944 for (i = f; i < t; i++)
|
|
945 {
|
|
946 result = Fcons (Fcar (seq), result);
|
|
947 seq = Fcdr (seq);
|
|
948 }
|
|
949
|
|
950 return Fnreverse (result);
|
|
951 }
|
|
952
|
|
953 /* bit vector */
|
|
954 {
|
|
955 Lisp_Object result = make_bit_vector (t - f, Qzero);
|
|
956 int i;
|
|
957
|
|
958 for (i = f; i < t; i++)
|
|
959 set_bit_vector_bit (XBIT_VECTOR (result), i - f,
|
|
960 bit_vector_bit (XBIT_VECTOR (seq), i));
|
|
961 return result;
|
|
962 }
|
|
963 }
|
|
964
|
|
965
|
20
|
966 DEFUN ("nthcdr", Fnthcdr, 2, 2, 0, /*
|
272
|
967 Take cdr N times on LIST, and return the result.
|
20
|
968 */
|
|
969 (n, list))
|
0
|
970 {
|
272
|
971 REGISTER int i;
|
274
|
972 REGISTER Lisp_Object tail = list;
|
272
|
973 CHECK_NATNUM (n);
|
|
974 for (i = XINT (n); i; i--)
|
0
|
975 {
|
274
|
976 if (CONSP (tail))
|
|
977 tail = XCDR (tail);
|
|
978 else if (NILP (tail))
|
|
979 return Qnil;
|
|
980 else
|
|
981 {
|
|
982 tail = wrong_type_argument (Qlistp, tail);
|
|
983 i++;
|
|
984 }
|
0
|
985 }
|
274
|
986 return tail;
|
0
|
987 }
|
|
988
|
20
|
989 DEFUN ("nth", Fnth, 2, 2, 0, /*
|
0
|
990 Return the Nth element of LIST.
|
|
991 N counts from zero. If LIST is not that long, nil is returned.
|
20
|
992 */
|
|
993 (n, list))
|
0
|
994 {
|
|
995 return Fcar (Fnthcdr (n, list));
|
|
996 }
|
|
997
|
20
|
998 DEFUN ("elt", Felt, 2, 2, 0, /*
|
0
|
999 Return element of SEQUENCE at index N.
|
20
|
1000 */
|
272
|
1001 (sequence, n))
|
0
|
1002 {
|
|
1003 retry:
|
|
1004 CHECK_INT_COERCE_CHAR (n); /* yuck! */
|
272
|
1005 if (LISTP (sequence))
|
0
|
1006 {
|
272
|
1007 Lisp_Object tem = Fnthcdr (n, sequence);
|
0
|
1008 /* #### Utterly, completely, fucking disgusting.
|
|
1009 * #### The whole point of "elt" is that it operates on
|
|
1010 * #### sequences, and does error- (bounds-) checking.
|
|
1011 */
|
|
1012 if (CONSP (tem))
|
173
|
1013 return XCAR (tem);
|
0
|
1014 else
|
|
1015 #if 1
|
|
1016 /* This is The Way It Has Always Been. */
|
|
1017 return Qnil;
|
|
1018 #else
|
274
|
1019 /* This is The Way Mly and Cltl2 say It Should Be. */
|
272
|
1020 args_out_of_range (sequence, n);
|
0
|
1021 #endif
|
|
1022 }
|
272
|
1023 else if (STRINGP (sequence)
|
|
1024 || VECTORP (sequence)
|
|
1025 || BIT_VECTORP (sequence))
|
|
1026 return Faref (sequence, n);
|
0
|
1027 #ifdef LOSING_BYTECODE
|
272
|
1028 else if (COMPILED_FUNCTIONP (sequence))
|
0
|
1029 {
|
|
1030 int idx = XINT (n);
|
|
1031 if (idx < 0)
|
|
1032 {
|
|
1033 lose:
|
272
|
1034 args_out_of_range (sequence, n);
|
0
|
1035 }
|
|
1036 /* Utter perversity */
|
|
1037 {
|
272
|
1038 struct Lisp_Compiled_Function *b = XCOMPILED_FUNCTION (sequence);
|
0
|
1039 switch (idx)
|
|
1040 {
|
|
1041 case COMPILED_ARGLIST:
|
173
|
1042 return b->arglist;
|
0
|
1043 case COMPILED_BYTECODE:
|
173
|
1044 return b->bytecodes;
|
0
|
1045 case COMPILED_CONSTANTS:
|
173
|
1046 return b->constants;
|
0
|
1047 case COMPILED_STACK_DEPTH:
|
173
|
1048 return make_int (b->maxdepth);
|
0
|
1049 case COMPILED_DOC_STRING:
|
173
|
1050 return compiled_function_documentation (b);
|
0
|
1051 case COMPILED_DOMAIN:
|
173
|
1052 return compiled_function_domain (b);
|
0
|
1053 case COMPILED_INTERACTIVE:
|
|
1054 if (b->flags.interactivep)
|
173
|
1055 return compiled_function_interactive (b);
|
0
|
1056 /* if we return nil, can't tell interactive with no args
|
|
1057 from noninteractive. */
|
|
1058 goto lose;
|
|
1059 default:
|
|
1060 goto lose;
|
|
1061 }
|
|
1062 }
|
|
1063 }
|
|
1064 #endif /* LOSING_BYTECODE */
|
|
1065 else
|
|
1066 {
|
272
|
1067 check_losing_bytecode ("elt", sequence);
|
|
1068 sequence = wrong_type_argument (Qsequencep, sequence);
|
0
|
1069 goto retry;
|
|
1070 }
|
|
1071 }
|
|
1072
|
20
|
1073 DEFUN ("member", Fmember, 2, 2, 0, /*
|
0
|
1074 Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
|
|
1075 The value is actually the tail of LIST whose car is ELT.
|
20
|
1076 */
|
|
1077 (elt, list))
|
0
|
1078 {
|
272
|
1079 REGISTER Lisp_Object tail;
|
|
1080 LIST_LOOP (tail, list)
|
0
|
1081 {
|
272
|
1082 CONCHECK_CONS (tail);
|
|
1083 if (internal_equal (elt, XCAR (tail), 0))
|
|
1084 return tail;
|
0
|
1085 QUIT;
|
|
1086 }
|
|
1087 return Qnil;
|
|
1088 }
|
|
1089
|
70
|
1090 DEFUN ("old-member", Fold_member, 2, 2, 0, /*
|
|
1091 Return non-nil if ELT is an element of LIST. Comparison done with `old-equal'.
|
|
1092 The value is actually the tail of LIST whose car is ELT.
|
|
1093 This function is provided only for byte-code compatibility with v19.
|
|
1094 Do not use it.
|
|
1095 */
|
|
1096 (elt, list))
|
|
1097 {
|
272
|
1098 REGISTER Lisp_Object tail;
|
|
1099 LIST_LOOP (tail, list)
|
70
|
1100 {
|
272
|
1101 CONCHECK_CONS (tail);
|
|
1102 if (internal_old_equal (elt, XCAR (tail), 0))
|
|
1103 return tail;
|
70
|
1104 QUIT;
|
|
1105 }
|
|
1106 return Qnil;
|
|
1107 }
|
|
1108
|
20
|
1109 DEFUN ("memq", Fmemq, 2, 2, 0, /*
|
0
|
1110 Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
|
|
1111 The value is actually the tail of LIST whose car is ELT.
|
20
|
1112 */
|
|
1113 (elt, list))
|
0
|
1114 {
|
272
|
1115 REGISTER Lisp_Object tail;
|
|
1116 LIST_LOOP (tail, list)
|
0
|
1117 {
|
272
|
1118 REGISTER Lisp_Object tem;
|
|
1119 CONCHECK_CONS (tail);
|
|
1120 if (tem = XCAR (tail), EQ_WITH_EBOLA_NOTICE (elt, tem))
|
|
1121 return tail;
|
70
|
1122 QUIT;
|
|
1123 }
|
|
1124 return Qnil;
|
|
1125 }
|
|
1126
|
|
1127 DEFUN ("old-memq", Fold_memq, 2, 2, 0, /*
|
|
1128 Return non-nil if ELT is an element of LIST. Comparison done with `old-eq'.
|
|
1129 The value is actually the tail of LIST whose car is ELT.
|
|
1130 This function is provided only for byte-code compatibility with v19.
|
|
1131 Do not use it.
|
|
1132 */
|
|
1133 (elt, list))
|
|
1134 {
|
272
|
1135 REGISTER Lisp_Object tail;
|
|
1136 LIST_LOOP (tail, list)
|
70
|
1137 {
|
272
|
1138 REGISTER Lisp_Object tem;
|
|
1139 CONCHECK_CONS (tail);
|
|
1140 if (tem = XCAR (tail), HACKEQ_UNSAFE (elt, tem))
|
|
1141 return tail;
|
0
|
1142 QUIT;
|
|
1143 }
|
|
1144 return Qnil;
|
|
1145 }
|
|
1146
|
|
1147 Lisp_Object
|
|
1148 memq_no_quit (Lisp_Object elt, Lisp_Object list)
|
|
1149 {
|
272
|
1150 REGISTER Lisp_Object tail;
|
0
|
1151 for (tail = list; CONSP (tail); tail = XCDR (tail))
|
|
1152 {
|
272
|
1153 REGISTER Lisp_Object tem;
|
|
1154 if (tem = XCAR (tail), EQ_WITH_EBOLA_NOTICE (elt, tem))
|
|
1155 return tail;
|
0
|
1156 }
|
|
1157 return Qnil;
|
|
1158 }
|
|
1159
|
20
|
1160 DEFUN ("assoc", Fassoc, 2, 2, 0, /*
|
0
|
1161 Return non-nil if KEY is `equal' to the car of an element of LIST.
|
|
1162 The value is actually the element of LIST whose car equals KEY.
|
20
|
1163 */
|
|
1164 (key, list))
|
0
|
1165 {
|
|
1166 /* This function can GC. */
|
272
|
1167 REGISTER Lisp_Object tail;
|
|
1168 LIST_LOOP (tail, list)
|
0
|
1169 {
|
272
|
1170 REGISTER Lisp_Object elt;
|
|
1171 CONCHECK_CONS (tail);
|
|
1172 elt = XCAR (tail);
|
|
1173 if (CONSP (elt) && internal_equal (XCAR (elt), key, 0))
|
195
|
1174 return elt;
|
0
|
1175 QUIT;
|
|
1176 }
|
|
1177 return Qnil;
|
|
1178 }
|
|
1179
|
70
|
1180 DEFUN ("old-assoc", Fold_assoc, 2, 2, 0, /*
|
|
1181 Return non-nil if KEY is `old-equal' to the car of an element of LIST.
|
|
1182 The value is actually the element of LIST whose car equals KEY.
|
|
1183 */
|
|
1184 (key, list))
|
|
1185 {
|
|
1186 /* This function can GC. */
|
272
|
1187 REGISTER Lisp_Object tail;
|
|
1188 LIST_LOOP (tail, list)
|
70
|
1189 {
|
272
|
1190 REGISTER Lisp_Object elt;
|
|
1191 CONCHECK_CONS (tail);
|
|
1192 elt = XCAR (tail);
|
|
1193 if (CONSP (elt) && internal_old_equal (XCAR (elt), key, 0))
|
195
|
1194 return elt;
|
70
|
1195 QUIT;
|
|
1196 }
|
|
1197 return Qnil;
|
|
1198 }
|
|
1199
|
0
|
1200 Lisp_Object
|
|
1201 assoc_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1202 {
|
|
1203 int speccount = specpdl_depth ();
|
|
1204 specbind (Qinhibit_quit, Qt);
|
149
|
1205 return unbind_to (speccount, Fassoc (key, list));
|
0
|
1206 }
|
|
1207
|
20
|
1208 DEFUN ("assq", Fassq, 2, 2, 0, /*
|
0
|
1209 Return non-nil if KEY is `eq' to the car of an element of LIST.
|
|
1210 The value is actually the element of LIST whose car is KEY.
|
|
1211 Elements of LIST that are not conses are ignored.
|
20
|
1212 */
|
|
1213 (key, list))
|
0
|
1214 {
|
272
|
1215 REGISTER Lisp_Object tail;
|
|
1216 LIST_LOOP (tail, list)
|
0
|
1217 {
|
272
|
1218 REGISTER Lisp_Object elt, tem;
|
|
1219 CONCHECK_CONS (tail);
|
|
1220 elt = XCAR (tail);
|
|
1221 if (CONSP (elt) && (tem = XCAR (elt), EQ_WITH_EBOLA_NOTICE (key, tem)))
|
195
|
1222 return elt;
|
70
|
1223 QUIT;
|
|
1224 }
|
|
1225 return Qnil;
|
|
1226 }
|
|
1227
|
|
1228 DEFUN ("old-assq", Fold_assq, 2, 2, 0, /*
|
|
1229 Return non-nil if KEY is `old-eq' to the car of an element of LIST.
|
|
1230 The value is actually the element of LIST whose car is KEY.
|
|
1231 Elements of LIST that are not conses are ignored.
|
|
1232 This function is provided only for byte-code compatibility with v19.
|
|
1233 Do not use it.
|
|
1234 */
|
|
1235 (key, list))
|
|
1236 {
|
272
|
1237 REGISTER Lisp_Object tail;
|
|
1238 LIST_LOOP (tail, list)
|
70
|
1239 {
|
272
|
1240 REGISTER Lisp_Object elt, tem;
|
|
1241 CONCHECK_CONS (tail);
|
|
1242 elt = XCAR (tail);
|
|
1243 if (CONSP (elt) && (tem = XCAR (elt), HACKEQ_UNSAFE (key, tem)))
|
195
|
1244 return elt;
|
0
|
1245 QUIT;
|
|
1246 }
|
|
1247 return Qnil;
|
|
1248 }
|
|
1249
|
|
1250 /* Like Fassq but never report an error and do not allow quits.
|
|
1251 Use only on lists known never to be circular. */
|
|
1252
|
|
1253 Lisp_Object
|
|
1254 assq_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1255 {
|
|
1256 /* This cannot GC. */
|
272
|
1257 REGISTER Lisp_Object tail;
|
0
|
1258 for (tail = list; CONSP (tail); tail = XCDR (tail))
|
|
1259 {
|
272
|
1260 REGISTER Lisp_Object tem, elt;
|
0
|
1261 elt = XCAR (tail);
|
272
|
1262 if (CONSP (elt) && (tem = XCAR (elt), EQ_WITH_EBOLA_NOTICE (key, tem)))
|
|
1263 return elt;
|
0
|
1264 }
|
|
1265 return Qnil;
|
|
1266 }
|
|
1267
|
20
|
1268 DEFUN ("rassoc", Frassoc, 2, 2, 0, /*
|
0
|
1269 Return non-nil if KEY is `equal' to the cdr of an element of LIST.
|
|
1270 The value is actually the element of LIST whose cdr equals KEY.
|
20
|
1271 */
|
|
1272 (key, list))
|
0
|
1273 {
|
|
1274 REGISTER Lisp_Object tail;
|
272
|
1275 LIST_LOOP (tail, list)
|
0
|
1276 {
|
195
|
1277 REGISTER Lisp_Object elt;
|
272
|
1278 CONCHECK_CONS (tail);
|
|
1279 elt = XCAR (tail);
|
|
1280 if (CONSP (elt) && internal_equal (XCDR (elt), key, 0))
|
195
|
1281 return elt;
|
0
|
1282 QUIT;
|
|
1283 }
|
|
1284 return Qnil;
|
|
1285 }
|
|
1286
|
70
|
1287 DEFUN ("old-rassoc", Fold_rassoc, 2, 2, 0, /*
|
|
1288 Return non-nil if KEY is `old-equal' to the cdr of an element of LIST.
|
|
1289 The value is actually the element of LIST whose cdr equals KEY.
|
|
1290 */
|
|
1291 (key, list))
|
|
1292 {
|
|
1293 REGISTER Lisp_Object tail;
|
272
|
1294 LIST_LOOP (tail, list)
|
70
|
1295 {
|
195
|
1296 REGISTER Lisp_Object elt;
|
272
|
1297 CONCHECK_CONS (tail);
|
|
1298 elt = XCAR (tail);
|
|
1299 if (CONSP (elt) && internal_old_equal (XCDR (elt), key, 0))
|
195
|
1300 return elt;
|
70
|
1301 QUIT;
|
|
1302 }
|
|
1303 return Qnil;
|
|
1304 }
|
|
1305
|
20
|
1306 DEFUN ("rassq", Frassq, 2, 2, 0, /*
|
0
|
1307 Return non-nil if KEY is `eq' to the cdr of an element of LIST.
|
|
1308 The value is actually the element of LIST whose cdr is KEY.
|
20
|
1309 */
|
|
1310 (key, list))
|
0
|
1311 {
|
272
|
1312 REGISTER Lisp_Object tail;
|
|
1313 LIST_LOOP (tail, list)
|
0
|
1314 {
|
272
|
1315 REGISTER Lisp_Object elt, tem;
|
|
1316 CONCHECK_CONS (tail);
|
|
1317 elt = XCAR (tail);
|
|
1318 if (CONSP (elt) && (tem = XCDR (elt), EQ_WITH_EBOLA_NOTICE (key, tem)))
|
195
|
1319 return elt;
|
70
|
1320 QUIT;
|
|
1321 }
|
|
1322 return Qnil;
|
|
1323 }
|
|
1324
|
|
1325 DEFUN ("old-rassq", Fold_rassq, 2, 2, 0, /*
|
|
1326 Return non-nil if KEY is `old-eq' to the cdr of an element of LIST.
|
|
1327 The value is actually the element of LIST whose cdr is KEY.
|
|
1328 */
|
|
1329 (key, list))
|
|
1330 {
|
272
|
1331 REGISTER Lisp_Object tail;
|
|
1332 LIST_LOOP (tail, list)
|
70
|
1333 {
|
272
|
1334 REGISTER Lisp_Object elt, tem;
|
|
1335 CONCHECK_CONS (tail);
|
|
1336 elt = XCAR (tail);
|
|
1337 if (CONSP (elt) && (tem = XCDR (elt), HACKEQ_UNSAFE (key, tem)))
|
195
|
1338 return elt;
|
0
|
1339 QUIT;
|
|
1340 }
|
|
1341 return Qnil;
|
|
1342 }
|
|
1343
|
|
1344 Lisp_Object
|
|
1345 rassq_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1346 {
|
272
|
1347 REGISTER Lisp_Object tail;
|
0
|
1348 for (tail = list; CONSP (tail); tail = XCDR (tail))
|
|
1349 {
|
272
|
1350 REGISTER Lisp_Object elt, tem;
|
0
|
1351 elt = XCAR (tail);
|
272
|
1352 if (CONSP (elt) && (tem = XCDR (elt), EQ_WITH_EBOLA_NOTICE (key, tem)))
|
|
1353 return elt;
|
0
|
1354 }
|
|
1355 return Qnil;
|
|
1356 }
|
|
1357
|
|
1358
|
20
|
1359 DEFUN ("delete", Fdelete, 2, 2, 0, /*
|
0
|
1360 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1361 The modified LIST is returned. Comparison is done with `equal'.
|
|
1362 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1363 effect; therefore, write `(setq foo (delete element foo))' to be sure
|
|
1364 of changing the value of `foo'.
|
201
|
1365 Also see: `remove'.
|
20
|
1366 */
|
|
1367 (elt, list))
|
0
|
1368 {
|
272
|
1369 REGISTER Lisp_Object tail = list;
|
|
1370 REGISTER Lisp_Object prev = Qnil;
|
|
1371
|
0
|
1372 while (!NILP (tail))
|
|
1373 {
|
272
|
1374 CONCHECK_CONS (tail);
|
|
1375 if (internal_equal (elt, XCAR (tail), 0))
|
0
|
1376 {
|
|
1377 if (NILP (prev))
|
272
|
1378 list = XCDR (tail);
|
0
|
1379 else
|
272
|
1380 XCDR (prev) = XCDR (tail);
|
0
|
1381 }
|
|
1382 else
|
|
1383 prev = tail;
|
272
|
1384 tail = XCDR (tail);
|
0
|
1385 QUIT;
|
|
1386 }
|
|
1387 return list;
|
|
1388 }
|
|
1389
|
70
|
1390 DEFUN ("old-delete", Fold_delete, 2, 2, 0, /*
|
|
1391 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1392 The modified LIST is returned. Comparison is done with `old-equal'.
|
|
1393 If the first member of LIST is ELT, there is no way to remove it by side
|
272
|
1394 effect; therefore, write `(setq foo (old-delete element foo))' to be sure
|
70
|
1395 of changing the value of `foo'.
|
|
1396 */
|
|
1397 (elt, list))
|
|
1398 {
|
272
|
1399 REGISTER Lisp_Object tail = list;
|
|
1400 REGISTER Lisp_Object prev = Qnil;
|
|
1401
|
70
|
1402 while (!NILP (tail))
|
|
1403 {
|
272
|
1404 CONCHECK_CONS (tail);
|
|
1405 if (internal_old_equal (elt, XCAR (tail), 0))
|
70
|
1406 {
|
|
1407 if (NILP (prev))
|
272
|
1408 list = XCDR (tail);
|
70
|
1409 else
|
272
|
1410 XCDR (prev) = XCDR (tail);
|
70
|
1411 }
|
|
1412 else
|
|
1413 prev = tail;
|
272
|
1414 tail = XCDR (tail);
|
70
|
1415 QUIT;
|
|
1416 }
|
|
1417 return list;
|
|
1418 }
|
|
1419
|
20
|
1420 DEFUN ("delq", Fdelq, 2, 2, 0, /*
|
0
|
1421 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1422 The modified LIST is returned. Comparison is done with `eq'.
|
|
1423 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1424 effect; therefore, write `(setq foo (delq element foo))' to be sure of
|
|
1425 changing the value of `foo'.
|
20
|
1426 */
|
|
1427 (elt, list))
|
0
|
1428 {
|
272
|
1429 REGISTER Lisp_Object tail = list;
|
|
1430 REGISTER Lisp_Object prev = Qnil;
|
|
1431
|
0
|
1432 while (!NILP (tail))
|
|
1433 {
|
272
|
1434 REGISTER Lisp_Object tem;
|
|
1435 CONCHECK_CONS (tail);
|
|
1436 if (tem = XCAR (tail), EQ_WITH_EBOLA_NOTICE (elt, tem))
|
70
|
1437 {
|
|
1438 if (NILP (prev))
|
272
|
1439 list = XCDR (tail);
|
70
|
1440 else
|
272
|
1441 XCDR (prev) = XCDR (tail);
|
70
|
1442 }
|
|
1443 else
|
|
1444 prev = tail;
|
272
|
1445 tail = XCDR (tail);
|
70
|
1446 QUIT;
|
|
1447 }
|
|
1448 return list;
|
|
1449 }
|
|
1450
|
|
1451 DEFUN ("old-delq", Fold_delq, 2, 2, 0, /*
|
|
1452 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1453 The modified LIST is returned. Comparison is done with `old-eq'.
|
|
1454 If the first member of LIST is ELT, there is no way to remove it by side
|
272
|
1455 effect; therefore, write `(setq foo (old-delq element foo))' to be sure of
|
70
|
1456 changing the value of `foo'.
|
|
1457 */
|
|
1458 (elt, list))
|
|
1459 {
|
272
|
1460 REGISTER Lisp_Object tail = list;
|
|
1461 REGISTER Lisp_Object prev = Qnil;
|
|
1462
|
70
|
1463 while (!NILP (tail))
|
|
1464 {
|
272
|
1465 REGISTER Lisp_Object tem;
|
|
1466 CONCHECK_CONS (tail);
|
|
1467 if (tem = XCAR (tail), HACKEQ_UNSAFE (elt, tem))
|
0
|
1468 {
|
|
1469 if (NILP (prev))
|
272
|
1470 list = XCDR (tail);
|
0
|
1471 else
|
272
|
1472 XCDR (prev) = XCDR (tail);
|
0
|
1473 }
|
|
1474 else
|
|
1475 prev = tail;
|
272
|
1476 tail = XCDR (tail);
|
0
|
1477 QUIT;
|
|
1478 }
|
|
1479 return list;
|
|
1480 }
|
|
1481
|
|
1482 /* no quit, no errors; be careful */
|
|
1483
|
|
1484 Lisp_Object
|
|
1485 delq_no_quit (Lisp_Object elt, Lisp_Object list)
|
|
1486 {
|
272
|
1487 REGISTER Lisp_Object tail = list;
|
|
1488 REGISTER Lisp_Object prev = Qnil;
|
|
1489
|
0
|
1490 while (CONSP (tail))
|
|
1491 {
|
272
|
1492 REGISTER Lisp_Object tem;
|
|
1493 if (tem = XCAR (tail), EQ_WITH_EBOLA_NOTICE (elt, tem))
|
0
|
1494 {
|
|
1495 if (NILP (prev))
|
|
1496 list = XCDR (tail);
|
|
1497 else
|
|
1498 XCDR (prev) = XCDR (tail);
|
|
1499 }
|
|
1500 else
|
|
1501 prev = tail;
|
|
1502 tail = XCDR (tail);
|
|
1503 }
|
|
1504 return list;
|
|
1505 }
|
|
1506
|
|
1507 /* Be VERY careful with this. This is like delq_no_quit() but
|
|
1508 also calls free_cons() on the removed conses. You must be SURE
|
|
1509 that no pointers to the freed conses remain around (e.g.
|
|
1510 someone else is pointing to part of the list). This function
|
|
1511 is useful on internal lists that are used frequently and where
|
|
1512 the actual list doesn't escape beyond known code bounds. */
|
|
1513
|
|
1514 Lisp_Object
|
|
1515 delq_no_quit_and_free_cons (Lisp_Object elt, Lisp_Object list)
|
|
1516 {
|
272
|
1517 REGISTER Lisp_Object tail = list;
|
|
1518 REGISTER Lisp_Object prev = Qnil;
|
|
1519 struct Lisp_Cons *cons_to_free = NULL;
|
|
1520
|
0
|
1521 while (CONSP (tail))
|
|
1522 {
|
272
|
1523 REGISTER Lisp_Object tem;
|
|
1524 if (tem = XCAR (tail), EQ_WITH_EBOLA_NOTICE (elt, tem))
|
0
|
1525 {
|
|
1526 if (NILP (prev))
|
|
1527 list = XCDR (tail);
|
|
1528 else
|
|
1529 XCDR (prev) = XCDR (tail);
|
272
|
1530 cons_to_free = XCONS (tail);
|
0
|
1531 }
|
|
1532 else
|
|
1533 prev = tail;
|
|
1534 tail = XCDR (tail);
|
272
|
1535 if (cons_to_free)
|
|
1536 {
|
|
1537 free_cons (cons_to_free);
|
|
1538 cons_to_free = NULL;
|
|
1539 }
|
0
|
1540 }
|
|
1541 return list;
|
|
1542 }
|
|
1543
|
20
|
1544 DEFUN ("remassoc", Fremassoc, 2, 2, 0, /*
|
0
|
1545 Delete by side effect any elements of LIST whose car is `equal' to KEY.
|
|
1546 The modified LIST is returned. If the first member of LIST has a car
|
|
1547 that is `equal' to KEY, there is no way to remove it by side effect;
|
|
1548 therefore, write `(setq foo (remassoc key foo))' to be sure of changing
|
|
1549 the value of `foo'.
|
20
|
1550 */
|
|
1551 (key, list))
|
0
|
1552 {
|
272
|
1553 REGISTER Lisp_Object tail = list;
|
|
1554 REGISTER Lisp_Object prev = Qnil;
|
|
1555
|
0
|
1556 while (!NILP (tail))
|
|
1557 {
|
272
|
1558 REGISTER Lisp_Object elt;
|
|
1559 CONCHECK_CONS (tail);
|
|
1560 elt = XCAR (tail);
|
195
|
1561 if (CONSP (elt) && internal_equal (key, XCAR (elt), 0))
|
0
|
1562 {
|
|
1563 if (NILP (prev))
|
272
|
1564 list = XCDR (tail);
|
0
|
1565 else
|
272
|
1566 XCDR (prev) = XCDR (tail);
|
0
|
1567 }
|
|
1568 else
|
|
1569 prev = tail;
|
272
|
1570 tail = XCDR (tail);
|
0
|
1571 QUIT;
|
|
1572 }
|
|
1573 return list;
|
|
1574 }
|
|
1575
|
|
1576 Lisp_Object
|
|
1577 remassoc_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1578 {
|
|
1579 int speccount = specpdl_depth ();
|
|
1580 specbind (Qinhibit_quit, Qt);
|
149
|
1581 return unbind_to (speccount, Fremassoc (key, list));
|
0
|
1582 }
|
|
1583
|
20
|
1584 DEFUN ("remassq", Fremassq, 2, 2, 0, /*
|
0
|
1585 Delete by side effect any elements of LIST whose car is `eq' to KEY.
|
|
1586 The modified LIST is returned. If the first member of LIST has a car
|
|
1587 that is `eq' to KEY, there is no way to remove it by side effect;
|
|
1588 therefore, write `(setq foo (remassq key foo))' to be sure of changing
|
|
1589 the value of `foo'.
|
20
|
1590 */
|
|
1591 (key, list))
|
0
|
1592 {
|
272
|
1593 REGISTER Lisp_Object tail = list;
|
|
1594 REGISTER Lisp_Object prev = Qnil;
|
|
1595
|
0
|
1596 while (!NILP (tail))
|
|
1597 {
|
272
|
1598 REGISTER Lisp_Object elt, tem;
|
|
1599 CONCHECK_CONS (tail);
|
|
1600 elt = XCAR (tail);
|
|
1601 if (CONSP (elt) && (tem = XCAR (elt), EQ_WITH_EBOLA_NOTICE (key, tem)))
|
0
|
1602 {
|
|
1603 if (NILP (prev))
|
272
|
1604 list = XCDR (tail);
|
0
|
1605 else
|
272
|
1606 XCDR (prev) = XCDR (tail);
|
0
|
1607 }
|
|
1608 else
|
|
1609 prev = tail;
|
272
|
1610 tail = XCDR (tail);
|
0
|
1611 QUIT;
|
|
1612 }
|
|
1613 return list;
|
|
1614 }
|
|
1615
|
|
1616 /* no quit, no errors; be careful */
|
|
1617
|
|
1618 Lisp_Object
|
|
1619 remassq_no_quit (Lisp_Object key, Lisp_Object list)
|
|
1620 {
|
272
|
1621 REGISTER Lisp_Object tail = list;
|
|
1622 REGISTER Lisp_Object prev = Qnil;
|
|
1623
|
0
|
1624 while (CONSP (tail))
|
|
1625 {
|
272
|
1626 REGISTER Lisp_Object elt, tem;
|
|
1627 elt = XCAR (tail);
|
|
1628 if (CONSP (elt) && (tem = XCAR (elt), EQ_WITH_EBOLA_NOTICE (key, tem)))
|
0
|
1629 {
|
|
1630 if (NILP (prev))
|
|
1631 list = XCDR (tail);
|
|
1632 else
|
|
1633 XCDR (prev) = XCDR (tail);
|
|
1634 }
|
|
1635 else
|
|
1636 prev = tail;
|
|
1637 tail = XCDR (tail);
|
|
1638 }
|
|
1639 return list;
|
|
1640 }
|
|
1641
|
20
|
1642 DEFUN ("remrassoc", Fremrassoc, 2, 2, 0, /*
|
0
|
1643 Delete by side effect any elements of LIST whose cdr is `equal' to VALUE.
|
|
1644 The modified LIST is returned. If the first member of LIST has a car
|
|
1645 that is `equal' to VALUE, there is no way to remove it by side effect;
|
|
1646 therefore, write `(setq foo (remrassoc value foo))' to be sure of changing
|
|
1647 the value of `foo'.
|
20
|
1648 */
|
|
1649 (value, list))
|
0
|
1650 {
|
272
|
1651 REGISTER Lisp_Object tail = list;
|
|
1652 REGISTER Lisp_Object prev = Qnil;
|
|
1653
|
0
|
1654 while (!NILP (tail))
|
|
1655 {
|
272
|
1656 REGISTER Lisp_Object elt;
|
|
1657 CONCHECK_CONS (tail);
|
|
1658 elt = XCAR (tail);
|
195
|
1659 if (CONSP (elt) && internal_equal (value, XCDR (elt), 0))
|
0
|
1660 {
|
|
1661 if (NILP (prev))
|
272
|
1662 list = XCDR (tail);
|
0
|
1663 else
|
272
|
1664 XCDR (prev) = XCDR (tail);
|
0
|
1665 }
|
|
1666 else
|
|
1667 prev = tail;
|
272
|
1668 tail = XCDR (tail);
|
0
|
1669 QUIT;
|
|
1670 }
|
|
1671 return list;
|
|
1672 }
|
|
1673
|
20
|
1674 DEFUN ("remrassq", Fremrassq, 2, 2, 0, /*
|
0
|
1675 Delete by side effect any elements of LIST whose cdr is `eq' to VALUE.
|
|
1676 The modified LIST is returned. If the first member of LIST has a car
|
|
1677 that is `eq' to VALUE, there is no way to remove it by side effect;
|
|
1678 therefore, write `(setq foo (remrassq value foo))' to be sure of changing
|
|
1679 the value of `foo'.
|
20
|
1680 */
|
|
1681 (value, list))
|
0
|
1682 {
|
272
|
1683 REGISTER Lisp_Object tail = list;
|
|
1684 REGISTER Lisp_Object prev = Qnil;
|
|
1685
|
0
|
1686 while (!NILP (tail))
|
|
1687 {
|
272
|
1688 REGISTER Lisp_Object elt, tem;
|
|
1689 CONCHECK_CONS (tail);
|
|
1690 elt = XCAR (tail);
|
310
|
1691 if (CONSP (elt) && (tem = XCDR (elt), EQ_WITH_EBOLA_NOTICE (value, tem)))
|
0
|
1692 {
|
|
1693 if (NILP (prev))
|
272
|
1694 list = XCDR (tail);
|
0
|
1695 else
|
272
|
1696 XCDR (prev) = XCDR (tail);
|
0
|
1697 }
|
|
1698 else
|
|
1699 prev = tail;
|
272
|
1700 tail = XCDR (tail);
|
0
|
1701 QUIT;
|
|
1702 }
|
|
1703 return list;
|
|
1704 }
|
|
1705
|
|
1706 /* no quit, no errors; be careful */
|
|
1707
|
|
1708 Lisp_Object
|
|
1709 remrassq_no_quit (Lisp_Object value, Lisp_Object list)
|
|
1710 {
|
272
|
1711 REGISTER Lisp_Object tail = list;
|
|
1712 REGISTER Lisp_Object prev = Qnil;
|
|
1713
|
0
|
1714 while (CONSP (tail))
|
|
1715 {
|
272
|
1716 REGISTER Lisp_Object elt, tem;
|
|
1717 elt = XCAR (tail);
|
310
|
1718 if (CONSP (elt) && (tem = XCDR (elt), EQ_WITH_EBOLA_NOTICE (value, tem)))
|
0
|
1719 {
|
|
1720 if (NILP (prev))
|
|
1721 list = XCDR (tail);
|
|
1722 else
|
|
1723 XCDR (prev) = XCDR (tail);
|
|
1724 }
|
|
1725 else
|
|
1726 prev = tail;
|
|
1727 tail = XCDR (tail);
|
|
1728 }
|
|
1729 return list;
|
|
1730 }
|
|
1731
|
20
|
1732 DEFUN ("nreverse", Fnreverse, 1, 1, 0, /*
|
272
|
1733 Reverse LIST by destructively modifying cdr pointers.
|
|
1734 Return the beginning of the reversed list.
|
201
|
1735 Also see: `reverse'.
|
20
|
1736 */
|
|
1737 (list))
|
0
|
1738 {
|
|
1739 struct gcpro gcpro1, gcpro2;
|
272
|
1740 REGISTER Lisp_Object prev = Qnil;
|
|
1741 REGISTER Lisp_Object tail = list;
|
0
|
1742
|
|
1743 /* We gcpro our args; see `nconc' */
|
|
1744 GCPRO2 (prev, tail);
|
|
1745 while (!NILP (tail))
|
|
1746 {
|
272
|
1747 REGISTER Lisp_Object next;
|
0
|
1748 QUIT;
|
272
|
1749 CONCHECK_CONS (tail);
|
165
|
1750 next = XCDR (tail);
|
|
1751 XCDR (tail) = prev;
|
0
|
1752 prev = tail;
|
|
1753 tail = next;
|
|
1754 }
|
|
1755 UNGCPRO;
|
|
1756 return prev;
|
|
1757 }
|
|
1758
|
20
|
1759 DEFUN ("reverse", Freverse, 1, 1, 0, /*
|
272
|
1760 Reverse LIST, copying. Return the beginning of the reversed list.
|
0
|
1761 See also the function `nreverse', which is used more often.
|
20
|
1762 */
|
|
1763 (list))
|
0
|
1764 {
|
272
|
1765 REGISTER Lisp_Object tail;
|
|
1766 Lisp_Object new = Qnil;
|
|
1767
|
|
1768 for (tail = list; CONSP (tail); tail = XCDR (tail))
|
|
1769 {
|
|
1770 new = Fcons (XCAR (tail), new);
|
|
1771 QUIT;
|
|
1772 }
|
|
1773 if (!NILP (tail))
|
|
1774 dead_wrong_type_argument (Qlistp, tail);
|
165
|
1775 return new;
|
0
|
1776 }
|
|
1777
|
173
|
1778 static Lisp_Object list_merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
|
1779 Lisp_Object lisp_arg,
|
0
|
1780 int (*pred_fn) (Lisp_Object, Lisp_Object,
|
|
1781 Lisp_Object lisp_arg));
|
|
1782
|
|
1783 Lisp_Object
|
|
1784 list_sort (Lisp_Object list,
|
173
|
1785 Lisp_Object lisp_arg,
|
0
|
1786 int (*pred_fn) (Lisp_Object, Lisp_Object,
|
|
1787 Lisp_Object lisp_arg))
|
|
1788 {
|
|
1789 struct gcpro gcpro1, gcpro2, gcpro3;
|
272
|
1790 Lisp_Object back, tem;
|
|
1791 Lisp_Object front = list;
|
|
1792 Lisp_Object len = Flength (list);
|
|
1793 int length = XINT (len);
|
|
1794
|
0
|
1795 if (length < 2)
|
|
1796 return list;
|
|
1797
|
|
1798 XSETINT (len, (length / 2) - 1);
|
|
1799 tem = Fnthcdr (len, list);
|
|
1800 back = Fcdr (tem);
|
|
1801 Fsetcdr (tem, Qnil);
|
|
1802
|
|
1803 GCPRO3 (front, back, lisp_arg);
|
|
1804 front = list_sort (front, lisp_arg, pred_fn);
|
|
1805 back = list_sort (back, lisp_arg, pred_fn);
|
|
1806 UNGCPRO;
|
|
1807 return list_merge (front, back, lisp_arg, pred_fn);
|
|
1808 }
|
|
1809
|
|
1810
|
|
1811 static int
|
173
|
1812 merge_pred_function (Lisp_Object obj1, Lisp_Object obj2,
|
0
|
1813 Lisp_Object pred)
|
|
1814 {
|
|
1815 Lisp_Object tmp;
|
|
1816
|
|
1817 /* prevents the GC from happening in call2 */
|
|
1818 int speccount = specpdl_depth ();
|
|
1819 /* Emacs' GC doesn't actually relocate pointers, so this probably
|
|
1820 isn't strictly necessary */
|
|
1821 record_unwind_protect (restore_gc_inhibit,
|
|
1822 make_int (gc_currently_forbidden));
|
|
1823 gc_currently_forbidden = 1;
|
|
1824 tmp = call2 (pred, obj1, obj2);
|
|
1825 unbind_to (speccount, Qnil);
|
|
1826
|
173
|
1827 if (NILP (tmp))
|
0
|
1828 return -1;
|
|
1829 else
|
|
1830 return 1;
|
|
1831 }
|
|
1832
|
20
|
1833 DEFUN ("sort", Fsort, 2, 2, 0, /*
|
0
|
1834 Sort LIST, stably, comparing elements using PREDICATE.
|
|
1835 Returns the sorted list. LIST is modified by side effects.
|
|
1836 PREDICATE is called with two elements of LIST, and should return T
|
185
|
1837 if the first element is "less" than the second.
|
20
|
1838 */
|
|
1839 (list, pred))
|
0
|
1840 {
|
|
1841 return list_sort (list, pred, merge_pred_function);
|
|
1842 }
|
|
1843
|
|
1844 Lisp_Object
|
173
|
1845 merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
0
|
1846 Lisp_Object pred)
|
|
1847 {
|
|
1848 return list_merge (org_l1, org_l2, pred, merge_pred_function);
|
|
1849 }
|
|
1850
|
|
1851
|
|
1852 static Lisp_Object
|
173
|
1853 list_merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
|
1854 Lisp_Object lisp_arg,
|
0
|
1855 int (*pred_fn) (Lisp_Object, Lisp_Object, Lisp_Object lisp_arg))
|
|
1856 {
|
|
1857 Lisp_Object value;
|
|
1858 Lisp_Object tail;
|
|
1859 Lisp_Object tem;
|
|
1860 Lisp_Object l1, l2;
|
|
1861 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
|
1862
|
|
1863 l1 = org_l1;
|
|
1864 l2 = org_l2;
|
|
1865 tail = Qnil;
|
|
1866 value = Qnil;
|
|
1867
|
|
1868 /* It is sufficient to protect org_l1 and org_l2.
|
|
1869 When l1 and l2 are updated, we copy the new values
|
|
1870 back into the org_ vars. */
|
173
|
1871
|
0
|
1872 GCPRO4 (org_l1, org_l2, lisp_arg, value);
|
|
1873
|
|
1874 while (1)
|
|
1875 {
|
|
1876 if (NILP (l1))
|
|
1877 {
|
|
1878 UNGCPRO;
|
|
1879 if (NILP (tail))
|
|
1880 return l2;
|
|
1881 Fsetcdr (tail, l2);
|
|
1882 return value;
|
|
1883 }
|
|
1884 if (NILP (l2))
|
|
1885 {
|
|
1886 UNGCPRO;
|
|
1887 if (NILP (tail))
|
|
1888 return l1;
|
|
1889 Fsetcdr (tail, l1);
|
|
1890 return value;
|
|
1891 }
|
|
1892
|
|
1893 if (((*pred_fn) (Fcar (l2), Fcar (l1), lisp_arg)) < 0)
|
|
1894 {
|
|
1895 tem = l1;
|
|
1896 l1 = Fcdr (l1);
|
|
1897 org_l1 = l1;
|
|
1898 }
|
|
1899 else
|
|
1900 {
|
|
1901 tem = l2;
|
|
1902 l2 = Fcdr (l2);
|
|
1903 org_l2 = l2;
|
|
1904 }
|
|
1905 if (NILP (tail))
|
|
1906 value = tem;
|
|
1907 else
|
|
1908 Fsetcdr (tail, tem);
|
|
1909 tail = tem;
|
|
1910 }
|
|
1911 }
|
|
1912
|
|
1913
|
|
1914 /************************************************************************/
|
|
1915 /* property-list functions */
|
|
1916 /************************************************************************/
|
|
1917
|
|
1918 /* For properties of text, we need to do order-insensitive comparison of
|
|
1919 plists. That is, we need to compare two plists such that they are the
|
|
1920 same if they have the same set of keys, and equivalent values.
|
|
1921 So (a 1 b 2) would be equal to (b 2 a 1).
|
|
1922
|
|
1923 NIL_MEANS_NOT_PRESENT is as in `plists-eq' etc.
|
|
1924 LAXP means use `equal' for comparisons.
|
|
1925 */
|
173
|
1926 int
|
0
|
1927 plists_differ (Lisp_Object a, Lisp_Object b, int nil_means_not_present,
|
|
1928 int laxp, int depth)
|
|
1929 {
|
359
|
1930 int eqp = (depth == -1); /* -1 as depth means use eq, not equal. */
|
0
|
1931 int la, lb, m, i, fill;
|
|
1932 Lisp_Object *keys, *vals;
|
|
1933 char *flags;
|
|
1934 Lisp_Object rest;
|
|
1935
|
|
1936 if (NILP (a) && NILP (b))
|
|
1937 return 0;
|
|
1938
|
|
1939 Fcheck_valid_plist (a);
|
|
1940 Fcheck_valid_plist (b);
|
|
1941
|
|
1942 la = XINT (Flength (a));
|
|
1943 lb = XINT (Flength (b));
|
|
1944 m = (la > lb ? la : lb);
|
|
1945 fill = 0;
|
185
|
1946 keys = alloca_array (Lisp_Object, m);
|
|
1947 vals = alloca_array (Lisp_Object, m);
|
|
1948 flags = alloca_array (char, m);
|
0
|
1949
|
|
1950 /* First extract the pairs from A. */
|
|
1951 for (rest = a; !NILP (rest); rest = XCDR (XCDR (rest)))
|
|
1952 {
|
|
1953 Lisp_Object k = XCAR (rest);
|
|
1954 Lisp_Object v = XCAR (XCDR (rest));
|
|
1955 /* Maybe be Ebolified. */
|
|
1956 if (nil_means_not_present && NILP (v)) continue;
|
|
1957 keys [fill] = k;
|
|
1958 vals [fill] = v;
|
|
1959 flags[fill] = 0;
|
|
1960 fill++;
|
|
1961 }
|
|
1962 /* Now iterate over B, and stop if we find something that's not in A,
|
|
1963 or that doesn't match. As we match, mark them. */
|
|
1964 for (rest = b; !NILP (rest); rest = XCDR (XCDR (rest)))
|
|
1965 {
|
|
1966 Lisp_Object k = XCAR (rest);
|
|
1967 Lisp_Object v = XCAR (XCDR (rest));
|
|
1968 /* Maybe be Ebolified. */
|
|
1969 if (nil_means_not_present && NILP (v)) continue;
|
|
1970 for (i = 0; i < fill; i++)
|
|
1971 {
|
|
1972 if (!laxp ? EQ (k, keys [i]) : internal_equal (k, keys [i], depth))
|
|
1973 {
|
|
1974 if ((eqp
|
70
|
1975 /* We narrowly escaped being Ebolified here. */
|
|
1976 ? !EQ_WITH_EBOLA_NOTICE (v, vals [i])
|
0
|
1977 : !internal_equal (v, vals [i], depth)))
|
|
1978 /* a property in B has a different value than in A */
|
|
1979 goto MISMATCH;
|
|
1980 flags [i] = 1;
|
|
1981 break;
|
|
1982 }
|
|
1983 }
|
|
1984 if (i == fill)
|
|
1985 /* there are some properties in B that are not in A */
|
|
1986 goto MISMATCH;
|
|
1987 }
|
|
1988 /* Now check to see that all the properties in A were also in B */
|
|
1989 for (i = 0; i < fill; i++)
|
|
1990 if (flags [i] == 0)
|
|
1991 goto MISMATCH;
|
|
1992
|
|
1993 /* Ok. */
|
|
1994 return 0;
|
|
1995
|
|
1996 MISMATCH:
|
|
1997 return 1;
|
|
1998 }
|
|
1999
|
20
|
2000 DEFUN ("plists-eq", Fplists_eq, 2, 3, 0, /*
|
0
|
2001 Return non-nil if property lists A and B are `eq'.
|
|
2002 A property list is an alternating list of keywords and values.
|
|
2003 This function does order-insensitive comparisons of the property lists:
|
|
2004 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
2005 Comparison between values is done using `eq'. See also `plists-equal'.
|
|
2006 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2007 a nil value is ignored. This feature is a virus that has infected
|
16
|
2008 old Lisp implementations, but should not be used except for backward
|
|
2009 compatibility.
|
20
|
2010 */
|
|
2011 (a, b, nil_means_not_present))
|
0
|
2012 {
|
|
2013 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, -1)
|
|
2014 ? Qnil : Qt);
|
|
2015 }
|
|
2016
|
20
|
2017 DEFUN ("plists-equal", Fplists_equal, 2, 3, 0, /*
|
0
|
2018 Return non-nil if property lists A and B are `equal'.
|
|
2019 A property list is an alternating list of keywords and values. This
|
|
2020 function does order-insensitive comparisons of the property lists: For
|
|
2021 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
2022 Comparison between values is done using `equal'. See also `plists-eq'.
|
|
2023 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2024 a nil value is ignored. This feature is a virus that has infected
|
16
|
2025 old Lisp implementations, but should not be used except for backward
|
|
2026 compatibility.
|
20
|
2027 */
|
|
2028 (a, b, nil_means_not_present))
|
0
|
2029 {
|
|
2030 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, 1)
|
|
2031 ? Qnil : Qt);
|
|
2032 }
|
|
2033
|
|
2034
|
20
|
2035 DEFUN ("lax-plists-eq", Flax_plists_eq, 2, 3, 0, /*
|
0
|
2036 Return non-nil if lax property lists A and B are `eq'.
|
|
2037 A property list is an alternating list of keywords and values.
|
|
2038 This function does order-insensitive comparisons of the property lists:
|
|
2039 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
2040 Comparison between values is done using `eq'. See also `plists-equal'.
|
|
2041 A lax property list is like a regular one except that comparisons between
|
|
2042 keywords is done using `equal' instead of `eq'.
|
|
2043 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2044 a nil value is ignored. This feature is a virus that has infected
|
16
|
2045 old Lisp implementations, but should not be used except for backward
|
|
2046 compatibility.
|
20
|
2047 */
|
|
2048 (a, b, nil_means_not_present))
|
0
|
2049 {
|
|
2050 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, -1)
|
|
2051 ? Qnil : Qt);
|
|
2052 }
|
|
2053
|
20
|
2054 DEFUN ("lax-plists-equal", Flax_plists_equal, 2, 3, 0, /*
|
0
|
2055 Return non-nil if lax property lists A and B are `equal'.
|
|
2056 A property list is an alternating list of keywords and values. This
|
|
2057 function does order-insensitive comparisons of the property lists: For
|
|
2058 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
2059 Comparison between values is done using `equal'. See also `plists-eq'.
|
|
2060 A lax property list is like a regular one except that comparisons between
|
|
2061 keywords is done using `equal' instead of `eq'.
|
|
2062 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2063 a nil value is ignored. This feature is a virus that has infected
|
16
|
2064 old Lisp implementations, but should not be used except for backward
|
|
2065 compatibility.
|
20
|
2066 */
|
|
2067 (a, b, nil_means_not_present))
|
0
|
2068 {
|
|
2069 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, 1)
|
|
2070 ? Qnil : Qt);
|
|
2071 }
|
|
2072
|
|
2073 /* Return the value associated with key PROPERTY in property list PLIST.
|
|
2074 Return nil if key not found. This function is used for internal
|
|
2075 property lists that cannot be directly manipulated by the user.
|
|
2076 */
|
|
2077
|
|
2078 Lisp_Object
|
|
2079 internal_plist_get (Lisp_Object plist, Lisp_Object property)
|
|
2080 {
|
|
2081 Lisp_Object tail = plist;
|
|
2082
|
|
2083 for (; !NILP (tail); tail = XCDR (XCDR (tail)))
|
|
2084 {
|
|
2085 struct Lisp_Cons *c = XCONS (tail);
|
|
2086 if (EQ (c->car, property))
|
|
2087 return XCAR (c->cdr);
|
|
2088 }
|
|
2089
|
|
2090 return Qunbound;
|
|
2091 }
|
|
2092
|
|
2093 /* Set PLIST's value for PROPERTY to VALUE. Analogous to
|
|
2094 internal_plist_get(). */
|
|
2095
|
|
2096 void
|
|
2097 internal_plist_put (Lisp_Object *plist, Lisp_Object property,
|
|
2098 Lisp_Object value)
|
|
2099 {
|
272
|
2100 Lisp_Object tail;
|
|
2101
|
|
2102 for (tail = *plist; !NILP (tail); tail = XCDR (XCDR (tail)))
|
0
|
2103 {
|
272
|
2104 if (EQ (XCAR (tail), property))
|
0
|
2105 {
|
272
|
2106 XCAR (XCDR (tail)) = value;
|
0
|
2107 return;
|
|
2108 }
|
|
2109 }
|
|
2110
|
|
2111 *plist = Fcons (property, Fcons (value, *plist));
|
|
2112 }
|
|
2113
|
|
2114 int
|
|
2115 internal_remprop (Lisp_Object *plist, Lisp_Object property)
|
|
2116 {
|
|
2117 Lisp_Object tail = *plist;
|
|
2118
|
|
2119 if (NILP (tail))
|
|
2120 return 0;
|
|
2121
|
|
2122 if (EQ (XCAR (tail), property))
|
|
2123 {
|
|
2124 *plist = XCDR (XCDR (tail));
|
|
2125 return 1;
|
|
2126 }
|
|
2127
|
|
2128 for (tail = XCDR (tail); !NILP (XCDR (tail));
|
|
2129 tail = XCDR (XCDR (tail)))
|
|
2130 {
|
|
2131 struct Lisp_Cons *c = XCONS (tail);
|
|
2132 if (EQ (XCAR (c->cdr), property))
|
|
2133 {
|
|
2134 c->cdr = XCDR (XCDR (c->cdr));
|
|
2135 return 1;
|
|
2136 }
|
|
2137 }
|
|
2138
|
|
2139 return 0;
|
|
2140 }
|
|
2141
|
|
2142 /* Called on a malformed property list. BADPLACE should be some
|
|
2143 place where truncating will form a good list -- i.e. we shouldn't
|
|
2144 result in a list with an odd length. */
|
|
2145
|
|
2146 static Lisp_Object
|
|
2147 bad_bad_bunny (Lisp_Object *plist, Lisp_Object *badplace, Error_behavior errb)
|
|
2148 {
|
|
2149 if (ERRB_EQ (errb, ERROR_ME))
|
|
2150 return Fsignal (Qmalformed_property_list, list2 (*plist, *badplace));
|
|
2151 else
|
|
2152 {
|
|
2153 if (ERRB_EQ (errb, ERROR_ME_WARN))
|
|
2154 {
|
|
2155 warn_when_safe_lispobj
|
|
2156 (Qlist, Qwarning,
|
|
2157 list2 (build_string
|
|
2158 ("Malformed property list -- list has been truncated"),
|
|
2159 *plist));
|
|
2160 *badplace = Qnil;
|
|
2161 }
|
|
2162 return Qunbound;
|
|
2163 }
|
|
2164 }
|
|
2165
|
|
2166 /* Called on a circular property list. BADPLACE should be some place
|
|
2167 where truncating will result in an even-length list, as above.
|
|
2168 If doesn't particularly matter where we truncate -- anywhere we
|
|
2169 truncate along the entire list will break the circularity, because
|
|
2170 it will create a terminus and the list currently doesn't have one.
|
|
2171 */
|
|
2172
|
|
2173 static Lisp_Object
|
|
2174 bad_bad_turtle (Lisp_Object *plist, Lisp_Object *badplace, Error_behavior errb)
|
|
2175 {
|
|
2176 if (ERRB_EQ (errb, ERROR_ME))
|
|
2177 /* #### Eek, this will probably result in another error
|
|
2178 when PLIST is printed out */
|
|
2179 return Fsignal (Qcircular_property_list, list1 (*plist));
|
|
2180 else
|
|
2181 {
|
|
2182 if (ERRB_EQ (errb, ERROR_ME_WARN))
|
|
2183 {
|
|
2184 warn_when_safe_lispobj
|
|
2185 (Qlist, Qwarning,
|
|
2186 list2 (build_string
|
|
2187 ("Circular property list -- list has been truncated"),
|
|
2188 *plist));
|
|
2189 *badplace = Qnil;
|
|
2190 }
|
|
2191 return Qunbound;
|
|
2192 }
|
|
2193 }
|
|
2194
|
|
2195 /* Advance the tortoise pointer by two (one iteration of a property-list
|
|
2196 loop) and the hare pointer by four and verify that no malformations
|
|
2197 or circularities exist. If so, return zero and store a value into
|
|
2198 RETVAL that should be returned by the calling function. Otherwise,
|
|
2199 return 1. See external_plist_get().
|
|
2200 */
|
|
2201
|
|
2202 static int
|
|
2203 advance_plist_pointers (Lisp_Object *plist,
|
|
2204 Lisp_Object **tortoise, Lisp_Object **hare,
|
|
2205 Error_behavior errb, Lisp_Object *retval)
|
|
2206 {
|
|
2207 int i;
|
|
2208 Lisp_Object *tortsave = *tortoise;
|
|
2209
|
|
2210 /* Note that our "fixing" may be more brutal than necessary,
|
|
2211 but it's the user's own problem, not ours. if they went in and
|
|
2212 manually fucked up a plist. */
|
173
|
2213
|
0
|
2214 for (i = 0; i < 2; i++)
|
|
2215 {
|
|
2216 /* This is a standard iteration of a defensive-loop-checking
|
|
2217 loop. We just do it twice because we want to advance past
|
|
2218 both the property and its value.
|
|
2219
|
|
2220 If the pointer indirection is confusing you, remember that
|
|
2221 one level of indirection on the hare and tortoise pointers
|
|
2222 is only due to pass-by-reference for this function. The other
|
|
2223 level is so that the plist can be fixed in place. */
|
|
2224
|
|
2225 /* When we reach the end of a well-formed plist, **HARE is
|
|
2226 nil. In that case, we don't do anything at all except
|
|
2227 advance TORTOISE by one. Otherwise, we advance HARE
|
|
2228 by two (making sure it's OK to do so), then advance
|
|
2229 TORTOISE by one (it will always be OK to do so because
|
|
2230 the HARE is always ahead of the TORTOISE and will have
|
|
2231 already verified the path), then make sure TORTOISE and
|
|
2232 HARE don't contain the same non-nil object -- if the
|
|
2233 TORTOISE and the HARE ever meet, then obviously we're
|
|
2234 in a circularity, and if we're in a circularity, then
|
|
2235 the TORTOISE and the HARE can't cross paths without
|
|
2236 meeting, since the HARE only gains one step over the
|
|
2237 TORTOISE per iteration. */
|
|
2238
|
|
2239 if (!NILP (**hare))
|
|
2240 {
|
|
2241 Lisp_Object *haresave = *hare;
|
|
2242 if (!CONSP (**hare))
|
|
2243 {
|
|
2244 *retval = bad_bad_bunny (plist, haresave, errb);
|
|
2245 return 0;
|
|
2246 }
|
|
2247 *hare = &XCDR (**hare);
|
|
2248 /* In a non-plist, we'd check here for a nil value for
|
|
2249 **HARE, which is OK (it just means the list has an
|
|
2250 odd number of elements). In a plist, it's not OK
|
|
2251 for the list to have an odd number of elements. */
|
|
2252 if (!CONSP (**hare))
|
|
2253 {
|
|
2254 *retval = bad_bad_bunny (plist, haresave, errb);
|
|
2255 return 0;
|
|
2256 }
|
|
2257 *hare = &XCDR (**hare);
|
|
2258 }
|
|
2259
|
|
2260 *tortoise = &XCDR (**tortoise);
|
|
2261 if (!NILP (**hare) && EQ (**tortoise, **hare))
|
|
2262 {
|
|
2263 *retval = bad_bad_turtle (plist, tortsave, errb);
|
|
2264 return 0;
|
|
2265 }
|
|
2266 }
|
|
2267
|
|
2268 return 1;
|
|
2269 }
|
|
2270
|
|
2271 /* Return the value of PROPERTY from PLIST, or Qunbound if
|
|
2272 property is not on the list.
|
|
2273
|
|
2274 PLIST is a Lisp-accessible property list, meaning that it
|
|
2275 has to be checked for malformations and circularities.
|
|
2276
|
|
2277 If ERRB is ERROR_ME, an error will be signalled. Otherwise, the
|
|
2278 function will never signal an error; and if ERRB is ERROR_ME_WARN,
|
|
2279 on finding a malformation or a circularity, it issues a warning and
|
|
2280 attempts to silently fix the problem.
|
|
2281
|
|
2282 A pointer to PLIST is passed in so that PLIST can be successfully
|
|
2283 "fixed" even if the error is at the beginning of the plist. */
|
|
2284
|
|
2285 Lisp_Object
|
|
2286 external_plist_get (Lisp_Object *plist, Lisp_Object property,
|
|
2287 int laxp, Error_behavior errb)
|
|
2288 {
|
|
2289 Lisp_Object *tortoise = plist;
|
|
2290 Lisp_Object *hare = plist;
|
|
2291
|
|
2292 while (!NILP (*tortoise))
|
|
2293 {
|
|
2294 Lisp_Object *tortsave = tortoise;
|
|
2295 Lisp_Object retval;
|
|
2296
|
|
2297 /* We do the standard tortoise/hare march. We isolate the
|
|
2298 grungy stuff to do this in advance_plist_pointers(), though.
|
|
2299 To us, all this function does is advance the tortoise
|
|
2300 pointer by two and the hare pointer by four and make sure
|
|
2301 everything's OK. We first advance the pointers and then
|
|
2302 check if a property matched; this ensures that our
|
|
2303 check for a matching property is safe. */
|
|
2304
|
|
2305 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2306 return retval;
|
|
2307
|
|
2308 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2309 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2310 return XCAR (XCDR (*tortsave));
|
|
2311 }
|
|
2312
|
|
2313 return Qunbound;
|
|
2314 }
|
|
2315
|
|
2316 /* Set PLIST's value for PROPERTY to VALUE, given a possibly
|
|
2317 malformed or circular plist. Analogous to external_plist_get(). */
|
|
2318
|
|
2319 void
|
|
2320 external_plist_put (Lisp_Object *plist, Lisp_Object property,
|
|
2321 Lisp_Object value, int laxp, Error_behavior errb)
|
|
2322 {
|
|
2323 Lisp_Object *tortoise = plist;
|
|
2324 Lisp_Object *hare = plist;
|
|
2325
|
|
2326 while (!NILP (*tortoise))
|
|
2327 {
|
|
2328 Lisp_Object *tortsave = tortoise;
|
|
2329 Lisp_Object retval;
|
|
2330
|
|
2331 /* See above */
|
|
2332 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2333 return;
|
|
2334
|
|
2335 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2336 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2337 {
|
|
2338 XCAR (XCDR (*tortsave)) = value;
|
|
2339 return;
|
|
2340 }
|
|
2341 }
|
|
2342
|
|
2343 *plist = Fcons (property, Fcons (value, *plist));
|
|
2344 }
|
|
2345
|
|
2346 int
|
|
2347 external_remprop (Lisp_Object *plist, Lisp_Object property,
|
|
2348 int laxp, Error_behavior errb)
|
|
2349 {
|
|
2350 Lisp_Object *tortoise = plist;
|
|
2351 Lisp_Object *hare = plist;
|
|
2352
|
|
2353 while (!NILP (*tortoise))
|
|
2354 {
|
|
2355 Lisp_Object *tortsave = tortoise;
|
|
2356 Lisp_Object retval;
|
|
2357
|
|
2358 /* See above */
|
|
2359 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2360 return 0;
|
|
2361
|
|
2362 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2363 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2364 {
|
|
2365 /* Now you see why it's so convenient to have that level
|
|
2366 of indirection. */
|
|
2367 *tortsave = XCDR (XCDR (*tortsave));
|
|
2368 return 1;
|
|
2369 }
|
|
2370 }
|
|
2371
|
|
2372 return 0;
|
|
2373 }
|
|
2374
|
20
|
2375 DEFUN ("plist-get", Fplist_get, 2, 3, 0, /*
|
0
|
2376 Extract a value from a property list.
|
|
2377 PLIST is a property list, which is a list of the form
|
|
2378 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
|
|
2379 corresponding to the given PROP, or DEFAULT if PROP is not
|
|
2380 one of the properties on the list.
|
20
|
2381 */
|
173
|
2382 (plist, prop, default_))
|
0
|
2383 {
|
|
2384 Lisp_Object val = external_plist_get (&plist, prop, 0, ERROR_ME);
|
|
2385 if (UNBOUNDP (val))
|
173
|
2386 return default_;
|
0
|
2387 return val;
|
|
2388 }
|
|
2389
|
20
|
2390 DEFUN ("plist-put", Fplist_put, 3, 3, 0, /*
|
0
|
2391 Change value in PLIST of PROP to VAL.
|
|
2392 PLIST is a property list, which is a list of the form \(PROP1 VALUE1
|
|
2393 PROP2 VALUE2 ...). PROP is usually a symbol and VAL is any object.
|
|
2394 If PROP is already a property on the list, its value is set to VAL,
|
|
2395 otherwise the new PROP VAL pair is added. The new plist is returned;
|
|
2396 use `(setq x (plist-put x prop val))' to be sure to use the new value.
|
|
2397 The PLIST is modified by side effects.
|
20
|
2398 */
|
|
2399 (plist, prop, val))
|
0
|
2400 {
|
|
2401 external_plist_put (&plist, prop, val, 0, ERROR_ME);
|
|
2402 return plist;
|
|
2403 }
|
|
2404
|
20
|
2405 DEFUN ("plist-remprop", Fplist_remprop, 2, 2, 0, /*
|
0
|
2406 Remove from PLIST the property PROP and its value.
|
|
2407 PLIST is a property list, which is a list of the form \(PROP1 VALUE1
|
|
2408 PROP2 VALUE2 ...). PROP is usually a symbol. The new plist is
|
|
2409 returned; use `(setq x (plist-remprop x prop val))' to be sure to use
|
|
2410 the new value. The PLIST is modified by side effects.
|
20
|
2411 */
|
|
2412 (plist, prop))
|
0
|
2413 {
|
|
2414 external_remprop (&plist, prop, 0, ERROR_ME);
|
|
2415 return plist;
|
|
2416 }
|
|
2417
|
20
|
2418 DEFUN ("plist-member", Fplist_member, 2, 2, 0, /*
|
0
|
2419 Return t if PROP has a value specified in PLIST.
|
20
|
2420 */
|
|
2421 (plist, prop))
|
0
|
2422 {
|
|
2423 return UNBOUNDP (Fplist_get (plist, prop, Qunbound)) ? Qnil : Qt;
|
|
2424 }
|
|
2425
|
20
|
2426 DEFUN ("check-valid-plist", Fcheck_valid_plist, 1, 1, 0, /*
|
0
|
2427 Given a plist, signal an error if there is anything wrong with it.
|
|
2428 This means that it's a malformed or circular plist.
|
20
|
2429 */
|
|
2430 (plist))
|
0
|
2431 {
|
|
2432 Lisp_Object *tortoise;
|
|
2433 Lisp_Object *hare;
|
|
2434
|
|
2435 start_over:
|
|
2436 tortoise = &plist;
|
|
2437 hare = &plist;
|
|
2438 while (!NILP (*tortoise))
|
|
2439 {
|
|
2440 Lisp_Object retval;
|
|
2441
|
|
2442 /* See above */
|
|
2443 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME,
|
|
2444 &retval))
|
|
2445 goto start_over;
|
|
2446 }
|
|
2447
|
|
2448 return Qnil;
|
|
2449 }
|
173
|
2450
|
20
|
2451 DEFUN ("valid-plist-p", Fvalid_plist_p, 1, 1, 0, /*
|
0
|
2452 Given a plist, return non-nil if its format is correct.
|
|
2453 If it returns nil, `check-valid-plist' will signal an error when given
|
|
2454 the plist; that means it's a malformed or circular plist or has non-symbols
|
|
2455 as keywords.
|
20
|
2456 */
|
|
2457 (plist))
|
0
|
2458 {
|
|
2459 Lisp_Object *tortoise;
|
|
2460 Lisp_Object *hare;
|
|
2461
|
|
2462 tortoise = &plist;
|
|
2463 hare = &plist;
|
|
2464 while (!NILP (*tortoise))
|
|
2465 {
|
|
2466 Lisp_Object retval;
|
|
2467
|
|
2468 /* See above */
|
|
2469 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME_NOT,
|
|
2470 &retval))
|
|
2471 return Qnil;
|
|
2472 }
|
|
2473
|
|
2474 return Qt;
|
|
2475 }
|
|
2476
|
20
|
2477 DEFUN ("canonicalize-plist", Fcanonicalize_plist, 1, 2, 0, /*
|
0
|
2478 Destructively remove any duplicate entries from a plist.
|
|
2479 In such cases, the first entry applies.
|
|
2480
|
|
2481 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2482 a nil value is removed. This feature is a virus that has infected
|
16
|
2483 old Lisp implementations, but should not be used except for backward
|
|
2484 compatibility.
|
0
|
2485
|
|
2486 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the
|
|
2487 return value may not be EQ to the passed-in value, so make sure to
|
|
2488 `setq' the value back into where it came from.
|
20
|
2489 */
|
|
2490 (plist, nil_means_not_present))
|
0
|
2491 {
|
|
2492 Lisp_Object head = plist;
|
|
2493
|
|
2494 Fcheck_valid_plist (plist);
|
|
2495
|
|
2496 while (!NILP (plist))
|
|
2497 {
|
|
2498 Lisp_Object prop = Fcar (plist);
|
|
2499 Lisp_Object next = Fcdr (plist);
|
|
2500
|
|
2501 CHECK_CONS (next); /* just make doubly sure we catch any errors */
|
|
2502 if (!NILP (nil_means_not_present) && NILP (Fcar (next)))
|
|
2503 {
|
|
2504 if (EQ (head, plist))
|
|
2505 head = Fcdr (next);
|
|
2506 plist = Fcdr (next);
|
|
2507 continue;
|
|
2508 }
|
|
2509 /* external_remprop returns 1 if it removed any property.
|
|
2510 We have to loop till it didn't remove anything, in case
|
|
2511 the property occurs many times. */
|
|
2512 while (external_remprop (&XCDR (next), prop, 0, ERROR_ME));
|
|
2513 plist = Fcdr (next);
|
|
2514 }
|
|
2515
|
|
2516 return head;
|
|
2517 }
|
|
2518
|
20
|
2519 DEFUN ("lax-plist-get", Flax_plist_get, 2, 3, 0, /*
|
0
|
2520 Extract a value from a lax property list.
|
|
2521
|
|
2522 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
|
2523 VALUE1 PROP2 VALUE2...), where comparions between properties is done
|
|
2524 using `equal' instead of `eq'. This function returns the value
|
|
2525 corresponding to the given PROP, or DEFAULT if PROP is not one of the
|
|
2526 properties on the list.
|
20
|
2527 */
|
173
|
2528 (lax_plist, prop, default_))
|
0
|
2529 {
|
|
2530 Lisp_Object val = external_plist_get (&lax_plist, prop, 1, ERROR_ME);
|
|
2531 if (UNBOUNDP (val))
|
173
|
2532 return default_;
|
0
|
2533 return val;
|
|
2534 }
|
|
2535
|
20
|
2536 DEFUN ("lax-plist-put", Flax_plist_put, 3, 3, 0, /*
|
0
|
2537 Change value in LAX-PLIST of PROP to VAL.
|
|
2538 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
|
2539 VALUE1 PROP2 VALUE2...), where comparions between properties is done
|
|
2540 using `equal' instead of `eq'. PROP is usually a symbol and VAL is
|
|
2541 any object. If PROP is already a property on the list, its value is
|
|
2542 set to VAL, otherwise the new PROP VAL pair is added. The new plist
|
|
2543 is returned; use `(setq x (lax-plist-put x prop val))' to be sure to
|
|
2544 use the new value. The LAX-PLIST is modified by side effects.
|
20
|
2545 */
|
|
2546 (lax_plist, prop, val))
|
0
|
2547 {
|
|
2548 external_plist_put (&lax_plist, prop, val, 1, ERROR_ME);
|
|
2549 return lax_plist;
|
|
2550 }
|
|
2551
|
20
|
2552 DEFUN ("lax-plist-remprop", Flax_plist_remprop, 2, 2, 0, /*
|
0
|
2553 Remove from LAX-PLIST the property PROP and its value.
|
|
2554 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
|
2555 VALUE1 PROP2 VALUE2...), where comparions between properties is done
|
|
2556 using `equal' instead of `eq'. PROP is usually a symbol. The new
|
|
2557 plist is returned; use `(setq x (lax-plist-remprop x prop val))' to be
|
|
2558 sure to use the new value. The LAX-PLIST is modified by side effects.
|
20
|
2559 */
|
|
2560 (lax_plist, prop))
|
0
|
2561 {
|
|
2562 external_remprop (&lax_plist, prop, 1, ERROR_ME);
|
|
2563 return lax_plist;
|
|
2564 }
|
|
2565
|
20
|
2566 DEFUN ("lax-plist-member", Flax_plist_member, 2, 2, 0, /*
|
0
|
2567 Return t if PROP has a value specified in LAX-PLIST.
|
|
2568 LAX-PLIST is a lax property list, which is a list of the form \(PROP1
|
|
2569 VALUE1 PROP2 VALUE2...), where comparions between properties is done
|
|
2570 using `equal' instead of `eq'.
|
20
|
2571 */
|
|
2572 (lax_plist, prop))
|
0
|
2573 {
|
|
2574 return UNBOUNDP (Flax_plist_get (lax_plist, prop, Qunbound)) ? Qnil : Qt;
|
|
2575 }
|
|
2576
|
20
|
2577 DEFUN ("canonicalize-lax-plist", Fcanonicalize_lax_plist, 1, 2, 0, /*
|
0
|
2578 Destructively remove any duplicate entries from a lax plist.
|
|
2579 In such cases, the first entry applies.
|
|
2580
|
|
2581 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2582 a nil value is removed. This feature is a virus that has infected
|
16
|
2583 old Lisp implementations, but should not be used except for backward
|
|
2584 compatibility.
|
0
|
2585
|
|
2586 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the
|
|
2587 return value may not be EQ to the passed-in value, so make sure to
|
|
2588 `setq' the value back into where it came from.
|
20
|
2589 */
|
|
2590 (lax_plist, nil_means_not_present))
|
0
|
2591 {
|
|
2592 Lisp_Object head = lax_plist;
|
|
2593
|
|
2594 Fcheck_valid_plist (lax_plist);
|
|
2595
|
|
2596 while (!NILP (lax_plist))
|
|
2597 {
|
|
2598 Lisp_Object prop = Fcar (lax_plist);
|
|
2599 Lisp_Object next = Fcdr (lax_plist);
|
|
2600
|
|
2601 CHECK_CONS (next); /* just make doubly sure we catch any errors */
|
|
2602 if (!NILP (nil_means_not_present) && NILP (Fcar (next)))
|
|
2603 {
|
|
2604 if (EQ (head, lax_plist))
|
|
2605 head = Fcdr (next);
|
|
2606 lax_plist = Fcdr (next);
|
|
2607 continue;
|
|
2608 }
|
|
2609 /* external_remprop returns 1 if it removed any property.
|
|
2610 We have to loop till it didn't remove anything, in case
|
|
2611 the property occurs many times. */
|
|
2612 while (external_remprop (&XCDR (next), prop, 1, ERROR_ME));
|
|
2613 lax_plist = Fcdr (next);
|
|
2614 }
|
|
2615
|
|
2616 return head;
|
|
2617 }
|
|
2618
|
|
2619 /* In C because the frame props stuff uses it */
|
|
2620
|
20
|
2621 DEFUN ("destructive-alist-to-plist", Fdestructive_alist_to_plist, 1, 1, 0, /*
|
0
|
2622 Convert association list ALIST into the equivalent property-list form.
|
|
2623 The plist is returned. This converts from
|
|
2624
|
|
2625 \((a . 1) (b . 2) (c . 3))
|
|
2626
|
|
2627 into
|
|
2628
|
|
2629 \(a 1 b 2 c 3)
|
|
2630
|
|
2631 The original alist is destroyed in the process of constructing the plist.
|
|
2632 See also `alist-to-plist'.
|
20
|
2633 */
|
|
2634 (alist))
|
0
|
2635 {
|
|
2636 Lisp_Object head = alist;
|
|
2637 while (!NILP (alist))
|
|
2638 {
|
|
2639 /* remember the alist element. */
|
|
2640 Lisp_Object el = Fcar (alist);
|
|
2641
|
|
2642 Fsetcar (alist, Fcar (el));
|
|
2643 Fsetcar (el, Fcdr (el));
|
|
2644 Fsetcdr (el, Fcdr (alist));
|
|
2645 Fsetcdr (alist, el);
|
|
2646 alist = Fcdr (Fcdr (alist));
|
|
2647 }
|
|
2648
|
|
2649 return head;
|
|
2650 }
|
|
2651
|
|
2652 /* Symbol plists are directly accessible, so we need to protect against
|
|
2653 invalid property list structure */
|
|
2654
|
|
2655 static Lisp_Object
|
173
|
2656 symbol_getprop (Lisp_Object sym, Lisp_Object propname, Lisp_Object default_)
|
0
|
2657 {
|
|
2658 Lisp_Object val = external_plist_get (&XSYMBOL (sym)->plist, propname,
|
|
2659 0, ERROR_ME);
|
272
|
2660 return UNBOUNDP (val) ? default_ : val;
|
0
|
2661 }
|
|
2662
|
|
2663 static void
|
|
2664 symbol_putprop (Lisp_Object sym, Lisp_Object propname, Lisp_Object value)
|
|
2665 {
|
|
2666 external_plist_put (&XSYMBOL (sym)->plist, propname, value, 0, ERROR_ME);
|
|
2667 }
|
|
2668
|
|
2669 static int
|
|
2670 symbol_remprop (Lisp_Object symbol, Lisp_Object propname)
|
|
2671 {
|
|
2672 return external_remprop (&XSYMBOL (symbol)->plist, propname, 0, ERROR_ME);
|
|
2673 }
|
|
2674
|
|
2675 /* We store the string's extent info as the first element of the string's
|
|
2676 property list; and the string's MODIFF as the first or second element
|
|
2677 of the string's property list (depending on whether the extent info
|
|
2678 is present), but only if the string has been modified. This is ugly
|
|
2679 but it reduces the memory allocated for the string in the vast
|
|
2680 majority of cases, where the string is never modified and has no
|
|
2681 extent info. */
|
|
2682
|
|
2683
|
|
2684 static Lisp_Object *
|
|
2685 string_plist_ptr (struct Lisp_String *s)
|
|
2686 {
|
|
2687 Lisp_Object *ptr = &s->plist;
|
|
2688
|
|
2689 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
|
|
2690 ptr = &XCDR (*ptr);
|
|
2691 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
|
|
2692 ptr = &XCDR (*ptr);
|
|
2693 return ptr;
|
|
2694 }
|
|
2695
|
272
|
2696 static Lisp_Object
|
0
|
2697 string_getprop (struct Lisp_String *s, Lisp_Object property,
|
173
|
2698 Lisp_Object default_)
|
0
|
2699 {
|
|
2700 Lisp_Object val = external_plist_get (string_plist_ptr (s), property, 0,
|
|
2701 ERROR_ME);
|
272
|
2702 return UNBOUNDP (val) ? default_ : val;
|
0
|
2703 }
|
|
2704
|
272
|
2705 static void
|
0
|
2706 string_putprop (struct Lisp_String *s, Lisp_Object property,
|
|
2707 Lisp_Object value)
|
|
2708 {
|
|
2709 external_plist_put (string_plist_ptr (s), property, value, 0, ERROR_ME);
|
|
2710 }
|
|
2711
|
|
2712 static int
|
|
2713 string_remprop (struct Lisp_String *s, Lisp_Object property)
|
|
2714 {
|
|
2715 return external_remprop (string_plist_ptr (s), property, 0, ERROR_ME);
|
|
2716 }
|
|
2717
|
|
2718 static Lisp_Object
|
|
2719 string_plist (struct Lisp_String *s)
|
|
2720 {
|
|
2721 return *string_plist_ptr (s);
|
|
2722 }
|
|
2723
|
20
|
2724 DEFUN ("get", Fget, 2, 3, 0, /*
|
0
|
2725 Return the value of OBJECT's PROPNAME property.
|
|
2726 This is the last VALUE stored with `(put OBJECT PROPNAME VALUE)'.
|
|
2727 If there is no such property, return optional third arg DEFAULT
|
173
|
2728 \(which defaults to `nil'). OBJECT can be a symbol, face, extent,
|
0
|
2729 or string. See also `put', `remprop', and `object-plist'.
|
20
|
2730 */
|
173
|
2731 (object, propname, default_))
|
0
|
2732 {
|
|
2733 Lisp_Object val;
|
|
2734
|
|
2735 /* Various places in emacs call Fget() and expect it not to quit,
|
|
2736 so don't quit. */
|
173
|
2737
|
0
|
2738 /* It's easiest to treat symbols specially because they may not
|
|
2739 be an lrecord */
|
|
2740 if (SYMBOLP (object))
|
173
|
2741 val = symbol_getprop (object, propname, default_);
|
0
|
2742 else if (STRINGP (object))
|
173
|
2743 val = string_getprop (XSTRING (object), propname, default_);
|
0
|
2744 else if (LRECORDP (object))
|
|
2745 {
|
|
2746 CONST struct lrecord_implementation
|
211
|
2747 *imp = XRECORD_LHEADER_IMPLEMENTATION (object);
|
0
|
2748 if (imp->getprop)
|
|
2749 {
|
|
2750 val = (imp->getprop) (object, propname);
|
|
2751 if (UNBOUNDP (val))
|
173
|
2752 val = default_;
|
0
|
2753 }
|
|
2754 else
|
|
2755 goto noprops;
|
|
2756 }
|
|
2757 else
|
|
2758 {
|
|
2759 noprops:
|
|
2760 signal_simple_error ("Object type has no properties", object);
|
|
2761 }
|
|
2762
|
|
2763 return val;
|
|
2764 }
|
|
2765
|
20
|
2766 DEFUN ("put", Fput, 3, 3, 0, /*
|
0
|
2767 Store OBJECT's PROPNAME property with value VALUE.
|
|
2768 It can be retrieved with `(get OBJECT PROPNAME)'. OBJECT can be a
|
|
2769 symbol, face, extent, or string.
|
|
2770
|
|
2771 For a string, no properties currently have predefined meanings.
|
|
2772 For the predefined properties for extents, see `set-extent-property'.
|
|
2773 For the predefined properties for faces, see `set-face-property'.
|
|
2774
|
|
2775 See also `get', `remprop', and `object-plist'.
|
20
|
2776 */
|
|
2777 (object, propname, value))
|
0
|
2778 {
|
|
2779 CHECK_SYMBOL (propname);
|
|
2780 CHECK_IMPURE (object);
|
|
2781
|
|
2782 if (SYMBOLP (object))
|
|
2783 symbol_putprop (object, propname, value);
|
|
2784 else if (STRINGP (object))
|
|
2785 string_putprop (XSTRING (object), propname, value);
|
|
2786 else if (LRECORDP (object))
|
|
2787 {
|
|
2788 CONST struct lrecord_implementation
|
211
|
2789 *imp = XRECORD_LHEADER_IMPLEMENTATION (object);
|
0
|
2790 if (imp->putprop)
|
|
2791 {
|
|
2792 if (! (imp->putprop) (object, propname, value))
|
|
2793 signal_simple_error ("Can't set property on object", propname);
|
|
2794 }
|
|
2795 else
|
|
2796 goto noprops;
|
|
2797 }
|
|
2798 else
|
|
2799 {
|
|
2800 noprops:
|
|
2801 signal_simple_error ("Object type has no settable properties", object);
|
|
2802 }
|
|
2803
|
|
2804 return value;
|
|
2805 }
|
|
2806
|
|
2807 void
|
|
2808 pure_put (Lisp_Object sym, Lisp_Object prop, Lisp_Object val)
|
|
2809 {
|
|
2810 Fput (sym, prop, Fpurecopy (val));
|
|
2811 }
|
|
2812
|
20
|
2813 DEFUN ("remprop", Fremprop, 2, 2, 0, /*
|
0
|
2814 Remove from OBJECT's property list the property PROPNAME and its
|
|
2815 value. OBJECT can be a symbol, face, extent, or string. Returns
|
|
2816 non-nil if the property list was actually changed (i.e. if PROPNAME
|
|
2817 was present in the property list). See also `get', `put', and
|
|
2818 `object-plist'.
|
20
|
2819 */
|
|
2820 (object, propname))
|
0
|
2821 {
|
|
2822 int retval = 0;
|
|
2823
|
|
2824 CHECK_SYMBOL (propname);
|
|
2825 CHECK_IMPURE (object);
|
|
2826
|
|
2827 if (SYMBOLP (object))
|
|
2828 retval = symbol_remprop (object, propname);
|
|
2829 else if (STRINGP (object))
|
|
2830 retval = string_remprop (XSTRING (object), propname);
|
|
2831 else if (LRECORDP (object))
|
|
2832 {
|
|
2833 CONST struct lrecord_implementation
|
211
|
2834 *imp = XRECORD_LHEADER_IMPLEMENTATION (object);
|
0
|
2835 if (imp->remprop)
|
|
2836 {
|
|
2837 retval = (imp->remprop) (object, propname);
|
|
2838 if (retval == -1)
|
|
2839 signal_simple_error ("Can't remove property from object",
|
|
2840 propname);
|
|
2841 }
|
|
2842 else
|
|
2843 goto noprops;
|
|
2844 }
|
|
2845 else
|
|
2846 {
|
|
2847 noprops:
|
|
2848 signal_simple_error ("Object type has no removable properties", object);
|
|
2849 }
|
|
2850
|
|
2851 return retval ? Qt : Qnil;
|
|
2852 }
|
|
2853
|
20
|
2854 DEFUN ("object-plist", Fobject_plist, 1, 1, 0, /*
|
0
|
2855 Return a property list of OBJECT's props.
|
|
2856 For a symbol this is equivalent to `symbol-plist'.
|
|
2857 Do not modify the property list directly; this may or may not have
|
|
2858 the desired effects. (In particular, for a property with a special
|
|
2859 interpretation, this will probably have no effect at all.)
|
20
|
2860 */
|
|
2861 (object))
|
0
|
2862 {
|
|
2863 if (SYMBOLP (object))
|
|
2864 return Fsymbol_plist (object);
|
|
2865 else if (STRINGP (object))
|
|
2866 return string_plist (XSTRING (object));
|
|
2867 else if (LRECORDP (object))
|
|
2868 {
|
|
2869 CONST struct lrecord_implementation
|
211
|
2870 *imp = XRECORD_LHEADER_IMPLEMENTATION (object);
|
0
|
2871 if (imp->plist)
|
|
2872 return (imp->plist) (object);
|
|
2873 else
|
|
2874 signal_simple_error ("Object type has no properties", object);
|
|
2875 }
|
|
2876 else
|
|
2877 signal_simple_error ("Object type has no properties", object);
|
|
2878
|
|
2879 return Qnil;
|
|
2880 }
|
|
2881
|
|
2882
|
|
2883 int
|
|
2884 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth)
|
|
2885 {
|
|
2886 if (depth > 200)
|
|
2887 error ("Stack overflow in equal");
|
223
|
2888 #ifndef LRECORD_CONS
|
0
|
2889 do_cdr:
|
223
|
2890 #endif
|
0
|
2891 QUIT;
|
70
|
2892 if (EQ_WITH_EBOLA_NOTICE (o1, o2))
|
149
|
2893 return 1;
|
0
|
2894 /* Note that (equal 20 20.0) should be nil */
|
173
|
2895 else if (XTYPE (o1) != XTYPE (o2))
|
149
|
2896 return 0;
|
207
|
2897 #ifndef LRECORD_CONS
|
0
|
2898 else if (CONSP (o1))
|
|
2899 {
|
165
|
2900 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1))
|
149
|
2901 return 0;
|
165
|
2902 o1 = XCDR (o1);
|
|
2903 o2 = XCDR (o2);
|
0
|
2904 goto do_cdr;
|
|
2905 }
|
207
|
2906 #endif
|
0
|
2907 #ifndef LRECORD_VECTOR
|
|
2908 else if (VECTORP (o1))
|
|
2909 {
|
272
|
2910 Lisp_Object *v1 = XVECTOR_DATA (o1);
|
|
2911 Lisp_Object *v2 = XVECTOR_DATA (o2);
|
173
|
2912 int len = XVECTOR_LENGTH (o1);
|
|
2913 if (len != XVECTOR_LENGTH (o2))
|
149
|
2914 return 0;
|
272
|
2915 while (len--)
|
|
2916 if (!internal_equal (*v1++, *v2++, depth + 1))
|
|
2917 return 0;
|
149
|
2918 return 1;
|
0
|
2919 }
|
207
|
2920 #endif
|
|
2921 #ifndef LRECORD_STRING
|
0
|
2922 else if (STRINGP (o1))
|
|
2923 {
|
272
|
2924 Bytecount len;
|
|
2925 return (((len = XSTRING_LENGTH (o1)) == XSTRING_LENGTH (o2)) &&
|
|
2926 !memcmp (XSTRING_DATA (o1), XSTRING_DATA (o2), len));
|
0
|
2927 }
|
207
|
2928 #endif
|
0
|
2929 else if (LRECORDP (o1))
|
|
2930 {
|
|
2931 CONST struct lrecord_implementation
|
211
|
2932 *imp1 = XRECORD_LHEADER_IMPLEMENTATION (o1),
|
|
2933 *imp2 = XRECORD_LHEADER_IMPLEMENTATION (o2);
|
0
|
2934 if (imp1 != imp2)
|
149
|
2935 return 0;
|
0
|
2936 else if (imp1->equal == 0)
|
|
2937 /* EQ-ness of the objects was noticed above */
|
149
|
2938 return 0;
|
0
|
2939 else
|
149
|
2940 return (imp1->equal) (o1, o2, depth);
|
0
|
2941 }
|
|
2942
|
149
|
2943 return 0;
|
0
|
2944 }
|
|
2945
|
70
|
2946 /* Note that we may be calling sub-objects that will use
|
|
2947 internal_equal() (instead of internal_old_equal()). Oh well.
|
|
2948 We will get an Ebola note if there's any possibility of confusion,
|
|
2949 but that seems unlikely. */
|
|
2950
|
|
2951 static int
|
|
2952 internal_old_equal (Lisp_Object o1, Lisp_Object o2, int depth)
|
|
2953 {
|
|
2954 if (depth > 200)
|
|
2955 error ("Stack overflow in equal");
|
223
|
2956 #ifndef LRECORD_CONS
|
70
|
2957 do_cdr:
|
223
|
2958 #endif
|
70
|
2959 QUIT;
|
|
2960 if (HACKEQ_UNSAFE (o1, o2))
|
149
|
2961 return 1;
|
70
|
2962 /* Note that (equal 20 20.0) should be nil */
|
173
|
2963 else if (XTYPE (o1) != XTYPE (o2))
|
149
|
2964 return 0;
|
207
|
2965 #ifndef LRECORD_CONS
|
70
|
2966 else if (CONSP (o1))
|
|
2967 {
|
165
|
2968 if (!internal_old_equal (XCAR (o1), XCAR (o2), depth + 1))
|
149
|
2969 return 0;
|
165
|
2970 o1 = XCDR (o1);
|
|
2971 o2 = XCDR (o2);
|
70
|
2972 goto do_cdr;
|
|
2973 }
|
207
|
2974 #endif
|
70
|
2975 #ifndef LRECORD_VECTOR
|
|
2976 else if (VECTORP (o1))
|
|
2977 {
|
173
|
2978 int indice;
|
|
2979 int len = XVECTOR_LENGTH (o1);
|
|
2980 if (len != XVECTOR_LENGTH (o2))
|
149
|
2981 return 0;
|
173
|
2982 for (indice = 0; indice < len; indice++)
|
70
|
2983 {
|
173
|
2984 if (!internal_old_equal (XVECTOR_DATA (o1) [indice],
|
|
2985 XVECTOR_DATA (o2) [indice],
|
|
2986 depth + 1))
|
149
|
2987 return 0;
|
70
|
2988 }
|
149
|
2989 return 1;
|
70
|
2990 }
|
207
|
2991 #endif
|
|
2992 #ifndef LRECORD_STRING
|
70
|
2993 else if (STRINGP (o1))
|
|
2994 {
|
|
2995 Bytecount len = XSTRING_LENGTH (o1);
|
|
2996 if (len != XSTRING_LENGTH (o2))
|
149
|
2997 return 0;
|
70
|
2998 if (memcmp (XSTRING_DATA (o1), XSTRING_DATA (o2), len))
|
149
|
2999 return 0;
|
|
3000 return 1;
|
70
|
3001 }
|
207
|
3002 #endif
|
70
|
3003 else if (LRECORDP (o1))
|
|
3004 {
|
|
3005 CONST struct lrecord_implementation
|
211
|
3006 *imp1 = XRECORD_LHEADER_IMPLEMENTATION (o1),
|
|
3007 *imp2 = XRECORD_LHEADER_IMPLEMENTATION (o2);
|
70
|
3008 if (imp1 != imp2)
|
149
|
3009 return 0;
|
70
|
3010 else if (imp1->equal == 0)
|
|
3011 /* EQ-ness of the objects was noticed above */
|
149
|
3012 return 0;
|
70
|
3013 else
|
173
|
3014 return (imp1->equal) (o1, o2, depth);
|
70
|
3015 }
|
|
3016
|
149
|
3017 return 0;
|
70
|
3018 }
|
|
3019
|
20
|
3020 DEFUN ("equal", Fequal, 2, 2, 0, /*
|
272
|
3021 Return t if two Lisp objects have similar structure and contents.
|
0
|
3022 They must have the same data type.
|
|
3023 Conses are compared by comparing the cars and the cdrs.
|
|
3024 Vectors and strings are compared element by element.
|
|
3025 Numbers are compared by value. Symbols must match exactly.
|
20
|
3026 */
|
|
3027 (o1, o2))
|
0
|
3028 {
|
149
|
3029 return internal_equal (o1, o2, 0) ? Qt : Qnil;
|
0
|
3030 }
|
|
3031
|
70
|
3032 DEFUN ("old-equal", Fold_equal, 2, 2, 0, /*
|
272
|
3033 Return t if two Lisp objects have similar structure and contents.
|
70
|
3034 They must have the same data type.
|
|
3035 \(Note, however, that an exception is made for characters and integers;
|
185
|
3036 this is known as the "char-int confoundance disease." See `eq' and
|
70
|
3037 `old-eq'.)
|
|
3038 This function is provided only for byte-code compatibility with v19.
|
|
3039 Do not use it.
|
|
3040 */
|
|
3041 (o1, o2))
|
|
3042 {
|
149
|
3043 return internal_old_equal (o1, o2, 0) ? Qt : Qnil;
|
70
|
3044 }
|
|
3045
|
0
|
3046
|
20
|
3047 DEFUN ("fillarray", Ffillarray, 2, 2, 0, /*
|
0
|
3048 Store each element of ARRAY with ITEM.
|
|
3049 ARRAY is a vector, bit vector, or string.
|
20
|
3050 */
|
|
3051 (array, item))
|
0
|
3052 {
|
|
3053 retry:
|
76
|
3054 if (STRINGP (array))
|
|
3055 {
|
272
|
3056 Emchar charval;
|
|
3057 struct Lisp_String *s = XSTRING (array);
|
|
3058 Charcount len = string_char_length (s);
|
76
|
3059 Charcount i;
|
|
3060 CHECK_CHAR_COERCE_INT (item);
|
|
3061 CHECK_IMPURE (array);
|
|
3062 charval = XCHAR (item);
|
173
|
3063 for (i = 0; i < len; i++)
|
76
|
3064 set_string_char (s, i, charval);
|
|
3065 bump_string_modiff (array);
|
|
3066 }
|
|
3067 else if (VECTORP (array))
|
10
|
3068 {
|
272
|
3069 Lisp_Object *p = XVECTOR_DATA (array);
|
|
3070 int len = XVECTOR_LENGTH (array);
|
10
|
3071 CHECK_IMPURE (array);
|
272
|
3072 while (len--)
|
|
3073 *p++ = item;
|
10
|
3074 }
|
76
|
3075 else if (BIT_VECTORP (array))
|
0
|
3076 {
|
272
|
3077 struct Lisp_Bit_Vector *v = XBIT_VECTOR (array);
|
|
3078 int len = bit_vector_length (v);
|
|
3079 int bit;
|
0
|
3080 CHECK_BIT (item);
|
|
3081 CHECK_IMPURE (array);
|
272
|
3082 bit = XINT (item);
|
|
3083 while (len--)
|
|
3084 set_bit_vector_bit (v, len, bit);
|
0
|
3085 }
|
|
3086 else
|
|
3087 {
|
|
3088 array = wrong_type_argument (Qarrayp, array);
|
|
3089 goto retry;
|
|
3090 }
|
|
3091 return array;
|
|
3092 }
|
|
3093
|
|
3094 Lisp_Object
|
|
3095 nconc2 (Lisp_Object s1, Lisp_Object s2)
|
|
3096 {
|
|
3097 Lisp_Object args[2];
|
|
3098 args[0] = s1;
|
|
3099 args[1] = s2;
|
|
3100 return Fnconc (2, args);
|
|
3101 }
|
|
3102
|
20
|
3103 DEFUN ("nconc", Fnconc, 0, MANY, 0, /*
|
0
|
3104 Concatenate any number of lists by altering them.
|
|
3105 Only the last argument is not altered, and need not be a list.
|
201
|
3106 Also see: `append'.
|
272
|
3107 If the first argument is nil, there is no way to modify it by side
|
|
3108 effect; therefore, write `(setq foo (nconc foo list))' to be sure of
|
|
3109 changing the value of `foo'.
|
20
|
3110 */
|
|
3111 (int nargs, Lisp_Object *args))
|
0
|
3112 {
|
272
|
3113 int argnum = 0;
|
0
|
3114 struct gcpro gcpro1;
|
|
3115
|
|
3116 /* The modus operandi in Emacs is "caller gc-protects args".
|
|
3117 However, nconc (particularly nconc2 ()) is called many times
|
|
3118 in Emacs on freshly created stuff (e.g. you see the idiom
|
|
3119 nconc2 (Fcopy_sequence (foo), bar) a lot). So we help those
|
|
3120 callers out by protecting the args ourselves to save them
|
|
3121 a lot of temporary-variable grief. */
|
|
3122
|
|
3123 GCPRO1 (args[0]);
|
|
3124 gcpro1.nvars = nargs;
|
173
|
3125
|
272
|
3126 while (argnum < nargs)
|
0
|
3127 {
|
272
|
3128 Lisp_Object val = args[argnum];
|
|
3129 if (CONSP (val))
|
173
|
3130 {
|
272
|
3131 /* Found the first cons, which will be our return value. */
|
|
3132 Lisp_Object last = val;
|
276
|
3133
|
272
|
3134 for (argnum++; argnum < nargs; argnum++)
|
|
3135 {
|
|
3136 Lisp_Object next = args[argnum];
|
|
3137 redo:
|
|
3138 if (CONSP (next) || argnum == nargs -1)
|
|
3139 {
|
|
3140 /* (setcdr (last val) next) */
|
|
3141 while (CONSP (XCDR (last)))
|
|
3142 {
|
|
3143 last = XCDR (last);
|
|
3144 QUIT;
|
|
3145 }
|
|
3146 XCDR (last) = next;
|
|
3147 }
|
|
3148 else if (NILP (next))
|
|
3149 {
|
|
3150 continue;
|
|
3151 }
|
|
3152 else
|
|
3153 {
|
|
3154 next = wrong_type_argument (next, Qlistp);
|
|
3155 goto redo;
|
|
3156 }
|
|
3157 }
|
|
3158 RETURN_UNGCPRO (val);
|
|
3159 }
|
|
3160 else if (NILP (val))
|
|
3161 argnum++;
|
|
3162 else if (argnum == nargs - 1) /* last arg? */
|
|
3163 RETURN_UNGCPRO (val);
|
|
3164 else
|
|
3165 args[argnum] = wrong_type_argument (val, Qlistp);
|
0
|
3166 }
|
272
|
3167 RETURN_UNGCPRO (Qnil); /* No non-nil args provided. */
|
0
|
3168 }
|
|
3169
|
|
3170
|
|
3171 /* This is the guts of all mapping functions.
|
|
3172 Apply fn to each element of seq, one by one,
|
|
3173 storing the results into elements of vals, a C vector of Lisp_Objects.
|
|
3174 leni is the length of vals, which should also be the length of seq.
|
|
3175
|
|
3176 If VALS is a null pointer, do not accumulate the results. */
|
|
3177
|
|
3178 static void
|
|
3179 mapcar1 (int leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
|
|
3180 {
|
|
3181 Lisp_Object tail;
|
|
3182 Lisp_Object dummy = Qnil;
|
|
3183 int i;
|
|
3184 struct gcpro gcpro1, gcpro2, gcpro3;
|
|
3185 Lisp_Object result;
|
|
3186
|
|
3187 GCPRO3 (dummy, fn, seq);
|
|
3188
|
|
3189 if (vals)
|
|
3190 {
|
|
3191 /* Don't let vals contain any garbage when GC happens. */
|
|
3192 for (i = 0; i < leni; i++)
|
|
3193 vals[i] = Qnil;
|
|
3194 gcpro1.var = vals;
|
|
3195 gcpro1.nvars = leni;
|
|
3196 }
|
|
3197
|
|
3198 /* We need not explicitly protect `tail' because it is used only on
|
|
3199 lists, and 1) lists are not relocated and 2) the list is marked
|
|
3200 via `seq' so will not be freed */
|
|
3201
|
|
3202 if (VECTORP (seq))
|
|
3203 {
|
|
3204 for (i = 0; i < leni; i++)
|
|
3205 {
|
173
|
3206 dummy = XVECTOR_DATA (seq)[i];
|
0
|
3207 result = call1 (fn, dummy);
|
|
3208 if (vals)
|
|
3209 vals[i] = result;
|
|
3210 }
|
|
3211 }
|
|
3212 else if (BIT_VECTORP (seq))
|
|
3213 {
|
|
3214 struct Lisp_Bit_Vector *v = XBIT_VECTOR (seq);
|
|
3215 for (i = 0; i < leni; i++)
|
|
3216 {
|
|
3217 XSETINT (dummy, bit_vector_bit (v, i));
|
|
3218 result = call1 (fn, dummy);
|
|
3219 if (vals)
|
|
3220 vals[i] = result;
|
|
3221 }
|
|
3222 }
|
|
3223 else if (STRINGP (seq))
|
|
3224 {
|
|
3225 for (i = 0; i < leni; i++)
|
|
3226 {
|
|
3227 result = call1 (fn, make_char (string_char (XSTRING (seq), i)));
|
|
3228 if (vals)
|
|
3229 vals[i] = result;
|
|
3230 }
|
|
3231 }
|
|
3232 else /* Must be a list, since Flength did not get an error */
|
|
3233 {
|
|
3234 tail = seq;
|
|
3235 for (i = 0; i < leni; i++)
|
|
3236 {
|
|
3237 result = call1 (fn, Fcar (tail));
|
|
3238 if (vals)
|
|
3239 vals[i] = result;
|
|
3240 tail = Fcdr (tail);
|
|
3241 }
|
|
3242 }
|
|
3243
|
|
3244 UNGCPRO;
|
|
3245 }
|
|
3246
|
20
|
3247 DEFUN ("mapconcat", Fmapconcat, 3, 3, 0, /*
|
0
|
3248 Apply FN to each element of SEQ, and concat the results as strings.
|
|
3249 In between each pair of results, stick in SEP.
|
185
|
3250 Thus, " " as SEP results in spaces between the values returned by FN.
|
20
|
3251 */
|
|
3252 (fn, seq, sep))
|
0
|
3253 {
|
16
|
3254 int len = XINT (Flength (seq));
|
0
|
3255 Lisp_Object *args;
|
|
3256 int i;
|
|
3257 struct gcpro gcpro1;
|
272
|
3258 int nargs = len + len - 1;
|
|
3259
|
0
|
3260 if (nargs < 0) return build_string ("");
|
|
3261
|
185
|
3262 args = alloca_array (Lisp_Object, nargs);
|
0
|
3263
|
|
3264 GCPRO1 (sep);
|
16
|
3265 mapcar1 (len, args, fn, seq);
|
0
|
3266 UNGCPRO;
|
|
3267
|
16
|
3268 for (i = len - 1; i >= 0; i--)
|
0
|
3269 args[i + i] = args[i];
|
173
|
3270
|
0
|
3271 for (i = 1; i < nargs; i += 2)
|
|
3272 args[i] = sep;
|
|
3273
|
|
3274 return Fconcat (nargs, args);
|
|
3275 }
|
|
3276
|
20
|
3277 DEFUN ("mapcar", Fmapcar, 2, 2, 0, /*
|
0
|
3278 Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
|
|
3279 The result is a list just as long as SEQUENCE.
|
|
3280 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
20
|
3281 */
|
|
3282 (fn, seq))
|
0
|
3283 {
|
16
|
3284 int len = XINT (Flength (seq));
|
185
|
3285 Lisp_Object *args = alloca_array (Lisp_Object, len);
|
16
|
3286
|
|
3287 mapcar1 (len, args, fn, seq);
|
|
3288
|
|
3289 return Flist (len, args);
|
0
|
3290 }
|
|
3291
|
163
|
3292 DEFUN ("mapvector", Fmapvector, 2, 2, 0, /*
|
|
3293 Apply FUNCTION to each element of SEQUENCE, making a vector of the results.
|
|
3294 The result is a vector of the same length as SEQUENCE.
|
|
3295 SEQUENCE may be a list, a vector or a string.
|
|
3296 */
|
|
3297 (fn, seq))
|
|
3298 {
|
|
3299 int len = XINT (Flength (seq));
|
219
|
3300 /* Ideally, this should call make_vector_internal, because we don't
|
|
3301 need initialization. */
|
|
3302 Lisp_Object result = make_vector (len, Qnil);
|
|
3303 struct gcpro gcpro1;
|
|
3304
|
|
3305 GCPRO1 (result);
|
|
3306 mapcar1 (len, XVECTOR_DATA (result), fn, seq);
|
|
3307 UNGCPRO;
|
|
3308
|
|
3309 return result;
|
163
|
3310 }
|
|
3311
|
187
|
3312 DEFUN ("mapc", Fmapc, 2, 2, 0, /*
|
0
|
3313 Apply FUNCTION to each element of SEQUENCE.
|
|
3314 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
|
3315 This function is like `mapcar' but does not accumulate the results,
|
|
3316 which is more efficient if you do not use the results.
|
20
|
3317 */
|
|
3318 (fn, seq))
|
0
|
3319 {
|
16
|
3320 mapcar1 (XINT (Flength (seq)), 0, fn, seq);
|
0
|
3321
|
187
|
3322 return seq;
|
0
|
3323 }
|
|
3324
|
|
3325
|
|
3326 /* #### this function doesn't belong in this file! */
|
|
3327
|
278
|
3328 DEFUN ("load-average", Fload_average, 0, 1, 0, /*
|
0
|
3329 Return list of 1 minute, 5 minute and 15 minute load averages.
|
|
3330 Each of the three load averages is multiplied by 100,
|
|
3331 then converted to integer.
|
|
3332
|
278
|
3333 When USE-FLOATS is non-nil, floats will be used instead of integers.
|
|
3334 These floats are not multiplied by 100.
|
|
3335
|
0
|
3336 If the 5-minute or 15-minute load averages are not available, return a
|
|
3337 shortened list, containing only those averages which are available.
|
|
3338
|
272
|
3339 On some systems, this won't work due to permissions on /dev/kmem,
|
|
3340 in which case you can't use this.
|
20
|
3341 */
|
278
|
3342 (use_floats))
|
0
|
3343 {
|
272
|
3344 double load_ave[3];
|
|
3345 int loads = getloadavg (load_ave, countof (load_ave));
|
278
|
3346 Lisp_Object ret = Qnil;
|
0
|
3347
|
|
3348 if (loads == -2)
|
278
|
3349 error ("load-average not implemented for this operating system");
|
0
|
3350 else if (loads < 0)
|
278
|
3351 signal_simple_error ("Could not get load-average",
|
|
3352 lisp_strerror (errno));
|
|
3353
|
|
3354 while (loads-- > 0)
|
|
3355 {
|
|
3356 Lisp_Object load = (NILP (use_floats) ?
|
|
3357 make_int ((int) (100.0 * load_ave[loads]))
|
|
3358 : make_float (load_ave[loads]));
|
|
3359 ret = Fcons (load, ret);
|
|
3360 }
|
|
3361 return ret;
|
0
|
3362 }
|
|
3363
|
|
3364
|
|
3365 Lisp_Object Vfeatures;
|
|
3366
|
20
|
3367 DEFUN ("featurep", Ffeaturep, 1, 1, 0, /*
|
207
|
3368 Return non-nil if feature FEXP is present in this Emacs.
|
70
|
3369 Use this to conditionalize execution of lisp code based on the
|
207
|
3370 presence or absence of emacs or environment extensions.
|
|
3371 FEXP can be a symbol, a number, or a list.
|
209
|
3372 If it is a symbol, that symbol is looked up in the `features' variable,
|
|
3373 and non-nil will be returned if found.
|
|
3374 If it is a number, the function will return non-nil if this Emacs
|
207
|
3375 has an equal or greater version number than FEXP.
|
209
|
3376 If it is a list whose car is the symbol `and', it will return
|
207
|
3377 non-nil if all the features in its cdr are non-nil.
|
209
|
3378 If it is a list whose car is the symbol `or', it will return non-nil
|
207
|
3379 if any of the features in its cdr are non-nil.
|
209
|
3380 If it is a list whose car is the symbol `not', it will return
|
207
|
3381 non-nil if the feature is not present.
|
209
|
3382
|
|
3383 Examples:
|
|
3384
|
|
3385 (featurep 'xemacs)
|
|
3386 => ; Non-nil on XEmacs.
|
|
3387
|
|
3388 (featurep '(and xemacs gnus))
|
|
3389 => ; Non-nil on XEmacs with Gnus loaded.
|
|
3390
|
|
3391 (featurep '(or tty-frames (and emacs 19.30)))
|
|
3392 => ; Non-nil if this Emacs supports TTY frames.
|
|
3393
|
|
3394 (featurep '(or (and xemacs 19.15) (and emacs 19.34)))
|
|
3395 => ; Non-nil on XEmacs 19.15 and later, or FSF Emacs 19.34 and later.
|
|
3396
|
|
3397 NOTE: The advanced arguments of this function (anything other than a
|
|
3398 symbol) are not yet supported by FSF Emacs. If you feel they are useful
|
|
3399 for supporting multiple Emacs variants, lobby Richard Stallman at
|
|
3400 <bug-gnu-emacs@prep.ai.mit.edu>.
|
163
|
3401 */
|
|
3402 (fexp))
|
|
3403 {
|
207
|
3404 #ifndef FEATUREP_SYNTAX
|
|
3405 CHECK_SYMBOL (fexp);
|
|
3406 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt;
|
|
3407 #else /* FEATUREP_SYNTAX */
|
163
|
3408 static double featurep_emacs_version;
|
|
3409
|
|
3410 /* Brute force translation from Erik Naggum's lisp function. */
|
272
|
3411 if (SYMBOLP (fexp))
|
163
|
3412 {
|
|
3413 /* Original definition */
|
|
3414 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt;
|
|
3415 }
|
272
|
3416 else if (INTP (fexp) || FLOATP (fexp))
|
163
|
3417 {
|
272
|
3418 double d = extract_float (fexp);
|
163
|
3419
|
|
3420 if (featurep_emacs_version == 0.0)
|
|
3421 {
|
167
|
3422 featurep_emacs_version = XINT (Vemacs_major_version) +
|
|
3423 (XINT (Vemacs_minor_version) / 100.0);
|
163
|
3424 }
|
173
|
3425 return featurep_emacs_version >= d ? Qt : Qnil;
|
163
|
3426 }
|
272
|
3427 else if (CONSP (fexp))
|
163
|
3428 {
|
272
|
3429 Lisp_Object tem = XCAR (fexp);
|
|
3430 if (EQ (tem, Qnot))
|
163
|
3431 {
|
207
|
3432 Lisp_Object negate;
|
|
3433
|
|
3434 tem = XCDR (fexp);
|
|
3435 negate = Fcar (tem);
|
|
3436 if (!NILP (tem))
|
209
|
3437 return NILP (call1 (Qfeaturep, negate)) ? Qt : Qnil;
|
163
|
3438 else
|
207
|
3439 return Fsignal (Qinvalid_read_syntax, list1 (tem));
|
163
|
3440 }
|
272
|
3441 else if (EQ (tem, Qand))
|
163
|
3442 {
|
272
|
3443 tem = XCDR (fexp);
|
207
|
3444 /* Use Fcar/Fcdr for error-checking. */
|
209
|
3445 while (!NILP (tem) && !NILP (call1 (Qfeaturep, Fcar (tem))))
|
163
|
3446 {
|
207
|
3447 tem = Fcdr (tem);
|
163
|
3448 }
|
272
|
3449 return NILP (tem) ? Qt : Qnil;
|
163
|
3450 }
|
272
|
3451 else if (EQ (tem, Qor))
|
163
|
3452 {
|
207
|
3453 tem = XCDR (fexp);
|
|
3454 /* Use Fcar/Fcdr for error-checking. */
|
209
|
3455 while (!NILP (tem) && NILP (call1 (Qfeaturep, Fcar (tem))))
|
163
|
3456 {
|
207
|
3457 tem = Fcdr (tem);
|
163
|
3458 }
|
272
|
3459 return NILP (tem) ? Qnil : Qt;
|
163
|
3460 }
|
|
3461 else
|
|
3462 {
|
272
|
3463 return Fsignal (Qinvalid_read_syntax, list1 (XCDR (fexp)));
|
163
|
3464 }
|
|
3465 }
|
|
3466 else
|
|
3467 {
|
272
|
3468 return Fsignal (Qinvalid_read_syntax, list1 (fexp));
|
163
|
3469 }
|
|
3470 }
|
167
|
3471 #endif /* FEATUREP_SYNTAX */
|
0
|
3472
|
20
|
3473 DEFUN ("provide", Fprovide, 1, 1, 0, /*
|
0
|
3474 Announce that FEATURE is a feature of the current Emacs.
|
2
|
3475 This function updates the value of the variable `features'.
|
20
|
3476 */
|
|
3477 (feature))
|
0
|
3478 {
|
|
3479 Lisp_Object tem;
|
|
3480 CHECK_SYMBOL (feature);
|
|
3481 if (!NILP (Vautoload_queue))
|
|
3482 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
|
|
3483 tem = Fmemq (feature, Vfeatures);
|
|
3484 if (NILP (tem))
|
|
3485 Vfeatures = Fcons (feature, Vfeatures);
|
|
3486 LOADHIST_ATTACH (Fcons (Qprovide, feature));
|
|
3487 return feature;
|
|
3488 }
|
|
3489
|
20
|
3490 DEFUN ("require", Frequire, 1, 2, 0, /*
|
0
|
3491 If feature FEATURE is not loaded, load it from FILENAME.
|
|
3492 If FEATURE is not a member of the list `features', then the feature
|
|
3493 is not loaded; so load the file FILENAME.
|
|
3494 If FILENAME is omitted, the printname of FEATURE is used as the file name.
|
20
|
3495 */
|
|
3496 (feature, file_name))
|
0
|
3497 {
|
|
3498 Lisp_Object tem;
|
|
3499 CHECK_SYMBOL (feature);
|
|
3500 tem = Fmemq (feature, Vfeatures);
|
|
3501 LOADHIST_ATTACH (Fcons (Qrequire, feature));
|
|
3502 if (!NILP (tem))
|
149
|
3503 return feature;
|
0
|
3504 else
|
|
3505 {
|
|
3506 int speccount = specpdl_depth ();
|
|
3507
|
|
3508 /* Value saved here is to be restored into Vautoload_queue */
|
|
3509 record_unwind_protect (un_autoload, Vautoload_queue);
|
|
3510 Vautoload_queue = Qt;
|
|
3511
|
|
3512 call4 (Qload, NILP (file_name) ? Fsymbol_name (feature) : file_name,
|
177
|
3513 Qnil, Qt, Qnil);
|
0
|
3514
|
|
3515 tem = Fmemq (feature, Vfeatures);
|
|
3516 if (NILP (tem))
|
|
3517 error ("Required feature %s was not provided",
|
|
3518 string_data (XSYMBOL (feature)->name));
|
|
3519
|
|
3520 /* Once loading finishes, don't undo it. */
|
|
3521 Vautoload_queue = Qt;
|
149
|
3522 return unbind_to (speccount, feature);
|
0
|
3523 }
|
|
3524 }
|
|
3525
|
|
3526
|
|
3527 Lisp_Object Qyes_or_no_p;
|
|
3528
|
|
3529 void
|
|
3530 syms_of_fns (void)
|
|
3531 {
|
|
3532 defsymbol (&Qstring_lessp, "string-lessp");
|
|
3533 defsymbol (&Qidentity, "identity");
|
|
3534 defsymbol (&Qyes_or_no_p, "yes-or-no-p");
|
|
3535
|
20
|
3536 DEFSUBR (Fidentity);
|
|
3537 DEFSUBR (Frandom);
|
|
3538 DEFSUBR (Flength);
|
|
3539 DEFSUBR (Fsafe_length);
|
|
3540 DEFSUBR (Fstring_equal);
|
|
3541 DEFSUBR (Fstring_lessp);
|
|
3542 DEFSUBR (Fstring_modified_tick);
|
|
3543 DEFSUBR (Fappend);
|
|
3544 DEFSUBR (Fconcat);
|
|
3545 DEFSUBR (Fvconcat);
|
|
3546 DEFSUBR (Fbvconcat);
|
|
3547 DEFSUBR (Fcopy_sequence);
|
|
3548 DEFSUBR (Fcopy_alist);
|
|
3549 DEFSUBR (Fcopy_tree);
|
|
3550 DEFSUBR (Fsubstring);
|
|
3551 DEFSUBR (Fsubseq);
|
|
3552 DEFSUBR (Fnthcdr);
|
|
3553 DEFSUBR (Fnth);
|
|
3554 DEFSUBR (Felt);
|
|
3555 DEFSUBR (Fmember);
|
70
|
3556 DEFSUBR (Fold_member);
|
20
|
3557 DEFSUBR (Fmemq);
|
70
|
3558 DEFSUBR (Fold_memq);
|
20
|
3559 DEFSUBR (Fassoc);
|
70
|
3560 DEFSUBR (Fold_assoc);
|
20
|
3561 DEFSUBR (Fassq);
|
70
|
3562 DEFSUBR (Fold_assq);
|
20
|
3563 DEFSUBR (Frassoc);
|
70
|
3564 DEFSUBR (Fold_rassoc);
|
20
|
3565 DEFSUBR (Frassq);
|
70
|
3566 DEFSUBR (Fold_rassq);
|
20
|
3567 DEFSUBR (Fdelete);
|
70
|
3568 DEFSUBR (Fold_delete);
|
20
|
3569 DEFSUBR (Fdelq);
|
70
|
3570 DEFSUBR (Fold_delq);
|
20
|
3571 DEFSUBR (Fremassoc);
|
|
3572 DEFSUBR (Fremassq);
|
|
3573 DEFSUBR (Fremrassoc);
|
|
3574 DEFSUBR (Fremrassq);
|
|
3575 DEFSUBR (Fnreverse);
|
|
3576 DEFSUBR (Freverse);
|
|
3577 DEFSUBR (Fsort);
|
|
3578 DEFSUBR (Fplists_eq);
|
|
3579 DEFSUBR (Fplists_equal);
|
|
3580 DEFSUBR (Flax_plists_eq);
|
|
3581 DEFSUBR (Flax_plists_equal);
|
|
3582 DEFSUBR (Fplist_get);
|
|
3583 DEFSUBR (Fplist_put);
|
|
3584 DEFSUBR (Fplist_remprop);
|
|
3585 DEFSUBR (Fplist_member);
|
|
3586 DEFSUBR (Fcheck_valid_plist);
|
|
3587 DEFSUBR (Fvalid_plist_p);
|
|
3588 DEFSUBR (Fcanonicalize_plist);
|
|
3589 DEFSUBR (Flax_plist_get);
|
|
3590 DEFSUBR (Flax_plist_put);
|
|
3591 DEFSUBR (Flax_plist_remprop);
|
|
3592 DEFSUBR (Flax_plist_member);
|
|
3593 DEFSUBR (Fcanonicalize_lax_plist);
|
|
3594 DEFSUBR (Fdestructive_alist_to_plist);
|
|
3595 DEFSUBR (Fget);
|
|
3596 DEFSUBR (Fput);
|
|
3597 DEFSUBR (Fremprop);
|
|
3598 DEFSUBR (Fobject_plist);
|
|
3599 DEFSUBR (Fequal);
|
70
|
3600 DEFSUBR (Fold_equal);
|
20
|
3601 DEFSUBR (Ffillarray);
|
|
3602 DEFSUBR (Fnconc);
|
|
3603 DEFSUBR (Fmapcar);
|
163
|
3604 DEFSUBR (Fmapvector);
|
187
|
3605 DEFSUBR (Fmapc);
|
20
|
3606 DEFSUBR (Fmapconcat);
|
|
3607 DEFSUBR (Fload_average);
|
|
3608 DEFSUBR (Ffeaturep);
|
|
3609 DEFSUBR (Frequire);
|
|
3610 DEFSUBR (Fprovide);
|
0
|
3611 }
|
|
3612
|
|
3613 void
|
|
3614 init_provide_once (void)
|
|
3615 {
|
|
3616 DEFVAR_LISP ("features", &Vfeatures /*
|
|
3617 A list of symbols which are the features of the executing emacs.
|
|
3618 Used by `featurep' and `require', and altered by `provide'.
|
|
3619 */ );
|
|
3620 Vfeatures = Qnil;
|
|
3621 }
|