428
|
1 /* Definitions for the new event model;
|
|
2 created 16-jul-91 by Jamie Zawinski
|
|
3 Copyright (C) 1991, 1992, 1993 Free Software Foundation, Inc.
|
788
|
4 Copyright (C) 1995, 1996, 2002 Ben Wing.
|
428
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: Not in FSF. */
|
|
24
|
440
|
25 #ifndef INCLUDED_events_h_
|
|
26 #define INCLUDED_events_h_
|
428
|
27
|
|
28 #include "systime.h"
|
|
29
|
|
30 /* There is one object called an event_stream. This object contains
|
|
31 callback functions for doing the window-system-dependent operations
|
|
32 that XEmacs requires.
|
|
33
|
|
34 If XEmacs is compiled with support for X11 and the X Toolkit, then this
|
|
35 event_stream structure will contain functions that can cope with input
|
|
36 on XEmacs windows on multiple displays, as well as input from dumb tty
|
|
37 frames.
|
|
38
|
|
39 If it is desired to have XEmacs able to open frames on the displays of
|
|
40 multiple heterogeneous machines, X11 and SunView, or X11 and NeXT, for
|
|
41 example, then it will be necessary to construct an event_stream structure
|
|
42 that can cope with the given types. Currently, the only implemented
|
440
|
43 event_streams are for dumb-ttys, and for X11 plus dumb-ttys,
|
|
44 and for mswindows.
|
428
|
45
|
|
46 To implement this for one window system is relatively simple.
|
|
47 To implement this for multiple window systems is trickier and may
|
|
48 not be possible in all situations, but it's been done for X and TTY.
|
|
49
|
|
50 Note that these callbacks are *NOT* console methods; that's because
|
|
51 the routines are not specific to a particular console type but must
|
|
52 be able to simultaneously cope with all allowable console types.
|
|
53
|
|
54 The slots of the event_stream structure:
|
|
55
|
|
56 next_event_cb A function which fills in an XEmacs_event structure
|
|
57 with the next event available. If there is no event
|
|
58 available, then this should block.
|
|
59
|
|
60 IMPORTANT: timer events and especially process
|
|
61 events *must not* be returned if there are
|
|
62 events of other types available; otherwise you
|
|
63 can end up with an infinite loop in Fdiscard_input().
|
|
64
|
|
65 event_pending_cb A function which says whether there are events to be
|
|
66 read. If called with an argument of 0, then this
|
|
67 should say whether calling the next_event_cb will
|
1268
|
68 block. If called with a non-zero argument, then this
|
|
69 should say whether there are that many user-generated
|
|
70 events pending (that is, keypresses, mouse-clicks,
|
|
71 dialog-box selection events, etc.). (This is used for
|
|
72 redisplay optimization, among other things.) The
|
|
73 difference is that the former includes process events
|
|
74 and timer events, but the latter doesn't.
|
428
|
75
|
|
76 If this function is not sure whether there are events
|
|
77 to be read, it *must* return 0. Otherwise various
|
|
78 undesirable effects will occur, such as redisplay
|
|
79 not occurring until the next event occurs.
|
|
80
|
|
81 handle_magic_event_cb XEmacs calls this with an event structure which
|
|
82 contains window-system dependent information that
|
|
83 XEmacs doesn't need to know about, but which must
|
|
84 happen in order. If the next_event_cb never returns
|
|
85 an event of type "magic", this will never be used.
|
|
86
|
788
|
87 format_magic_event_cb Called with a magic event; print a representation of
|
|
88 the innards of the event to PSTREAM.
|
|
89
|
|
90 compare_magic_event_cb Called with two magic events; return non-zero if
|
|
91 the innards of the two are equal, zero otherwise.
|
|
92
|
|
93 hash_magic_event_cb Called with a magic event; return a hash of the
|
|
94 innards of the event.
|
|
95
|
428
|
96 add_timeout_cb Called with an EMACS_TIME, the absolute time at
|
|
97 which a wakeup event should be generated; and a
|
|
98 void *, which is an arbitrary value that will be
|
|
99 returned in the timeout event. The timeouts
|
|
100 generated by this function should be one-shots:
|
|
101 they fire once and then disappear. This callback
|
|
102 should return an int id-number which uniquely
|
|
103 identifies this wakeup. If an implementation
|
|
104 doesn't have microseconds or millisecond
|
|
105 granularity, it should round up to the closest
|
|
106 value it can deal with.
|
|
107
|
|
108 remove_timeout_cb Called with an int, the id number of a wakeup to
|
|
109 discard. This id number must have been returned by
|
|
110 the add_timeout_cb. If the given wakeup has
|
|
111 already expired, this should do nothing.
|
|
112
|
|
113 select_process_cb These callbacks tell the underlying implementation to
|
|
114 unselect_process_cb add or remove a file descriptor from the list of fds
|
|
115 which are polled for inferior-process input. When
|
|
116 input becomes available on the given process
|
|
117 connection, an event of type "process" should be
|
|
118 generated.
|
|
119
|
|
120 select_console_cb These callbacks tell the underlying implementation
|
|
121 unselect_console_cb to add or remove a console from the list of consoles
|
|
122 which are polled for user-input.
|
|
123
|
|
124 select_device_cb These callbacks are used by Unixoid event loops
|
|
125 unselect_device_cb (those that use select() and file descriptors and
|
|
126 have a separate input fd per device).
|
|
127
|
853
|
128 create_io_streams_cb These callbacks are called by process code to
|
|
129 delete_io_streams_cb create the input and output lstreams which are used
|
|
130 for subprocess I/O.
|
428
|
131
|
|
132 quitp_cb A handler function called from the `QUIT' macro which
|
|
133 should check whether the quit character has been
|
|
134 typed. On systems with SIGIO, this will not be called
|
|
135 unless the `sigio_happened' flag is true (it is set
|
|
136 from the SIGIO handler).
|
|
137
|
|
138 XEmacs has its own event structures, which are distinct from the event
|
|
139 structures used by X or any other window system. It is the job of the
|
|
140 event_stream layer to translate to this format.
|
|
141 */
|
|
142
|
|
143 /*
|
|
144 Stream pairs description
|
|
145 ------------------------
|
|
146
|
1204
|
147 Since there are many possible processes/event loop combinations, the
|
|
148 event code is responsible for creating an appropriate lstream type. The
|
|
149 process implementation does not care about that implementation.
|
428
|
150
|
1204
|
151 The Create stream pair function is passed two void* values, which
|
|
152 identify process-dependent 'handles'. The process implementation uses
|
|
153 these handles to communicate with child processes. The function must be
|
|
154 prepared to receive handle types of any process implementation. Since
|
|
155 only one process implementation exists in a particular XEmacs
|
|
156 configuration, preprocessing is a means of compiling in the support for
|
|
157 the code which deals with particular handle types.
|
428
|
158
|
|
159 For example, a unixoid type loop, which relies on file descriptors, may be
|
|
160 asked to create a pair of streams by a unix-style process implementation.
|
|
161 In this case, the handles passed are unix file descriptors, and the code
|
|
162 may deal with these directly. Although, the same code may be used on Win32
|
|
163 system with X-Windows. In this case, Win32 process implementation passes
|
853
|
164 handles of type HANDLE, and the create_io_streams function must call
|
428
|
165 appropriate function to get file descriptors given HANDLEs, so that these
|
|
166 descriptors may be passed to XtAddInput.
|
|
167
|
|
168 The handle given may have special denying value, in which case the
|
|
169 corresponding lstream should not be created.
|
|
170
|
|
171 The return value of the function is a unique stream identifier. It is used
|
|
172 by processes implementation, in its platform-independent part. There is
|
|
173 the get_process_from_usid function, which returns process object given its
|
|
174 USID. The event stream is responsible for converting its internal handle
|
|
175 type into USID.
|
|
176
|
|
177 Example is the TTY event stream. When a file descriptor signals input, the
|
|
178 event loop must determine process to which the input is destined. Thus,
|
|
179 the implementation uses process input stream file descriptor as USID, by
|
|
180 simply casting the fd value to USID type.
|
|
181
|
|
182 There are two special USID values. One, USID_ERROR, indicates that the stream
|
|
183 pair cannot be created. The second, USID_DONTHASH, indicates that streams are
|
|
184 created, but the event stream does not wish to be able to find the process
|
|
185 by its USID. Specifically, if an event stream implementation never calls
|
|
186 get_process_from_usid, this value should always be returned, to prevent
|
|
187 accumulating useless information on USID to process relationship.
|
|
188 */
|
|
189
|
|
190 /* typedef unsigned int USID; in lisp.h */
|
|
191 #define USID_ERROR ((USID)-1)
|
|
192 #define USID_DONTHASH ((USID)0)
|
|
193
|
|
194
|
|
195 struct event_stream
|
|
196 {
|
|
197 int (*event_pending_p) (int);
|
440
|
198 void (*next_event_cb) (Lisp_Event *);
|
|
199 void (*handle_magic_event_cb) (Lisp_Event *);
|
788
|
200 void (*format_magic_event_cb) (Lisp_Event *, Lisp_Object pstream);
|
|
201 int (*compare_magic_event_cb) (Lisp_Event *, Lisp_Event *);
|
|
202 Hashcode (*hash_magic_event_cb)(Lisp_Event *);
|
428
|
203 int (*add_timeout_cb) (EMACS_TIME);
|
|
204 void (*remove_timeout_cb) (int);
|
|
205 void (*select_console_cb) (struct console *);
|
|
206 void (*unselect_console_cb) (struct console *);
|
853
|
207 void (*select_process_cb) (Lisp_Process *, int doin, int doerr);
|
|
208 void (*unselect_process_cb) (Lisp_Process *, int doin, int doerr);
|
1204
|
209 void (*drain_queue_cb) (void);
|
|
210 void (*force_event_pending_cb)(struct frame* f);
|
853
|
211 void (*create_io_streams_cb) (void* /* inhandle*/, void* /*outhandle*/ ,
|
|
212 void * /* errhandle*/,
|
428
|
213 Lisp_Object* /* instream */,
|
|
214 Lisp_Object* /* outstream */,
|
853
|
215 Lisp_Object* /* errstream */,
|
|
216 USID * /* in_usid */, USID * /* err_usid */,
|
428
|
217 int /* flags */);
|
853
|
218 void (*delete_io_streams_cb) (Lisp_Object /* instream */,
|
|
219 Lisp_Object /* outstream */,
|
|
220 Lisp_Object /* errstream */,
|
|
221 USID * /* in_usid */, USID * /* err_usid */);
|
442
|
222 int (*current_event_timestamp_cb) (struct console *);
|
428
|
223 };
|
|
224
|
853
|
225 /* Flags for create_io_streams_cb() FLAGS parameter */
|
428
|
226 #define STREAM_PTY_FLUSHING 0x0001
|
|
227 #define STREAM_NETWORK_CONNECTION 0x0002
|
|
228
|
|
229 extern struct event_stream *event_stream;
|
|
230
|
1204
|
231 #ifdef EVENT_DATA_AS_OBJECTS
|
|
232 #define EVENT_FOO_BAR_1(extractor, field) ((extractor)->field)
|
|
233 #define EVENT_FOO_BAR(e, uptype, downtype, field) EVENT_FOO_BAR_1 (X##uptype##_DATA (EVENT_DATA (e)), field)
|
|
234 #define SET_EVENT_FOO_BAR_1(extractor, field, val) \
|
|
235 do { (extractor)->field = (val); } while (0)
|
|
236 #define SET_EVENT_FOO_BAR(e, uptype, downtype, field, val) SET_EVENT_FOO_BAR_1 (X##uptype##_DATA (EVENT_DATA (e)), field, val)
|
|
237 #else
|
|
238 #define EVENT_FOO_BAR(e, uptype, downtype, field) ((e)->event.downtype.field)
|
|
239 #define SET_EVENT_FOO_BAR(e, uptype, downtype, field, val) \
|
|
240 do { (e)->event.downtype.field = (val); } while (0)
|
|
241 #endif
|
934
|
242
|
428
|
243 typedef enum emacs_event_type
|
|
244 {
|
|
245 empty_event,
|
|
246 key_press_event,
|
|
247 button_press_event,
|
|
248 button_release_event,
|
|
249 pointer_motion_event,
|
|
250 process_event,
|
|
251 timeout_event,
|
|
252 magic_event,
|
|
253 magic_eval_event,
|
|
254 eval_event,
|
|
255 misc_user_event,
|
|
256 dead_event
|
|
257 } emacs_event_type;
|
|
258
|
|
259 #define first_event_type empty_event
|
|
260 #define last_event_type dead_event
|
|
261
|
771
|
262 #ifdef MULE
|
|
263
|
|
264 enum alternative_key_chars
|
|
265 {
|
|
266 KEYCHAR_CURRENT_LANGENV,
|
|
267 KEYCHAR_DEFAULT_USER,
|
|
268 KEYCHAR_DEFAULT_SYSTEM,
|
|
269 KEYCHAR_UNDERLYING_VIRTUAL_KEY_CURRENT_LANGENV,
|
|
270 KEYCHAR_UNDERLYING_VIRTUAL_KEY_DEFAULT_USER,
|
|
271 KEYCHAR_UNDERLYING_VIRTUAL_KEY_DEFAULT_SYSTEM,
|
|
272 KEYCHAR_QWERTY,
|
|
273 KEYCHAR_LAST
|
|
274 };
|
|
275
|
|
276 #endif /* MULE */
|
428
|
277
|
934
|
278 struct Lisp_Key_Data
|
428
|
279 {
|
1204
|
280 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
281 struct lrecord_header lheader;
|
1204
|
282 #endif /* EVENT_DATA_AS_OBJECTS */
|
771
|
283 /* What keysym this is; a character or a symbol. */
|
|
284 Lisp_Object keysym;
|
|
285 /* Modifiers held down when key was pressed: control, meta, etc.
|
|
286 Also includes buttons. For many keys, Shift is not a bit; that
|
|
287 is implicit in the keyboard layout. */
|
|
288 int modifiers;
|
|
289 #ifdef MULE
|
|
290 /* Alternate character interpretations for this key in different
|
|
291 keyboard layouts. This deals with the problem of pressing C-x in
|
|
292 the Russian layout (the so-called "Russian C-x problem"), for
|
|
293 example: `x' gets mapped to a Cyrillic character, so what do we
|
|
294 do? For that matter, what about `C-x b'? What we do is look the
|
|
295 key up in the default locales (current language environment, user
|
|
296 default, system default), then check to see if the underlying
|
|
297 virtual key is alphabetic in the same three defaults, then
|
|
298 finally check US ASCII. We ignore the underlying virtual key for
|
|
299 the current layout to avoid the problem of a French speaker
|
|
300 (AZERTY layout) who temporarily switches to Russian: The virtual
|
|
301 keys underlying Russian are US-ASCII, so what the French speaker
|
|
302 things of as C-a (the key just to the right of TAB) appears as
|
|
303 C-q. (#### We should probably ignore the current char and look
|
|
304 *ONLY* in alt_keychars for all control keys. What about the
|
|
305 English speaker who temporarily switches to the French layout and
|
|
306 finds C-q mapped to C-a?) */
|
867
|
307 Ichar alt_keychars[KEYCHAR_LAST];
|
771
|
308 #endif /* MULE */
|
428
|
309 };
|
|
310
|
934
|
311 typedef struct Lisp_Key_Data Lisp_Key_Data;
|
|
312
|
1204
|
313 #define KEY_DATA_KEYSYM(d) ((d)->keysym)
|
|
314 #define KEY_DATA_MODIFIERS(d) ((d)->modifiers)
|
|
315 #define SET_KEY_DATA_KEYSYM(d, k) ((d)->keysym = k)
|
|
316 #define SET_KEY_DATA_MODIFIERS(d, m) ((d)->modifiers = m)
|
|
317
|
|
318 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
319 DECLARE_LRECORD (key_data, Lisp_Key_Data);
|
|
320 #define XKEY_DATA(x) XRECORD (x, key_data, Lisp_Key_Data)
|
|
321 #define wrap_key_data(p) wrap_record (p, key_data)
|
|
322 #define KEY_DATAP(x) RECORDP (x, key_data)
|
|
323 #define CHECK_KEY_DATA(x) CHECK_RECORD (x, key_data)
|
|
324 #define CONCHECK_KEY_DATA(x) CONCHECK_RECORD (x, key_data)
|
1204
|
325 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
326
|
1204
|
327 #define EVENT_KEY_KEYSYM(e) EVENT_FOO_BAR (e, KEY, key, keysym)
|
|
328 #define XEVENT_KEY_KEYSYM(e) EVENT_KEY_KEYSYM (XEVENT (e))
|
|
329 #define SET_EVENT_KEY_KEYSYM(e, val) \
|
|
330 SET_EVENT_FOO_BAR (e, KEY, key, keysym, val)
|
|
331 #define XSET_EVENT_KEY_KEYSYM(e, val) \
|
|
332 SET_EVENT_KEY_KEYSYM (XEVENT (e), val)
|
934
|
333
|
1204
|
334 #define EVENT_KEY_MODIFIERS(e) EVENT_FOO_BAR (e, KEY, key, modifiers)
|
|
335 #define XEVENT_KEY_MODIFIERS(e) EVENT_KEY_MODIFIERS (XEVENT (e))
|
|
336 #define SET_EVENT_KEY_MODIFIERS(e, val) \
|
|
337 SET_EVENT_FOO_BAR (e, KEY, key, modifiers, val)
|
|
338 #define XSET_EVENT_KEY_MODIFIERS(e, val) \
|
|
339 SET_EVENT_KEY_MODIFIERS (XEVENT (e), val)
|
934
|
340
|
1204
|
341 #define EVENT_KEY_ALT_KEYCHARS(e, n) \
|
|
342 EVENT_FOO_BAR (e, KEY, key, alt_keychars[n])
|
|
343 #define XEVENT_KEY_ALT_KEYCHARS(e, n) EVENT_KEY_ALT_KEYCHARS (XEVENT (e), n)
|
|
344 #define SET_EVENT_KEY_ALT_KEYCHARS(e, n, val) \
|
|
345 SET_EVENT_FOO_BAR (e, KEY, key, alt_keychars[n], val)
|
|
346 #define XSET_EVENT_KEY_ALT_KEYCHARS(e, n, val) \
|
|
347 SET_EVENT_KEY_ALT_KEYCHARS (XEVENT (e), n, val)
|
|
348
|
934
|
349 struct Lisp_Button_Data
|
428
|
350 {
|
1204
|
351 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
352 struct lrecord_header lheader;
|
1204
|
353 #endif /* EVENT_DATA_AS_OBJECTS */
|
771
|
354 /* What button went down or up. */
|
|
355 int button;
|
|
356 /* Bucky-bits on that button: shift, control, meta, etc. Also
|
|
357 includes other buttons (not the one pressed). */
|
|
358 int modifiers;
|
|
359 /* Where it was at the button-state-change (in pixels). */
|
|
360 int x, y;
|
428
|
361 };
|
934
|
362 typedef struct Lisp_Button_Data Lisp_Button_Data;
|
428
|
363
|
1204
|
364 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
365 DECLARE_LRECORD (button_data, Lisp_Button_Data);
|
|
366 #define XBUTTON_DATA(x) XRECORD (x, button_data, Lisp_Button_Data)
|
|
367 #define wrap_button_data(p) wrap_record (p, button_data)
|
|
368 #define BUTTON_DATAP(x) RECORDP (x, button_data)
|
|
369 #define CHECK_BUTTON_DATA(x) CHECK_RECORD (x, button_data)
|
|
370 #define CONCHECK_BUTTON_DATA(x) CONCHECK_RECORD (x, button_data)
|
1204
|
371 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
372
|
1204
|
373 #define EVENT_BUTTON_BUTTON(e) EVENT_FOO_BAR (e, BUTTON, button, button)
|
|
374 #define XEVENT_BUTTON_BUTTON(e) EVENT_BUTTON_BUTTON (XEVENT (e))
|
|
375 #define SET_EVENT_BUTTON_BUTTON(e, val) \
|
|
376 SET_EVENT_FOO_BAR (e, BUTTON, button, button, val)
|
|
377 #define XSET_EVENT_BUTTON_BUTTON(e, val) \
|
|
378 SET_EVENT_BUTTON_BUTTON (XEVENT (e), val)
|
|
379
|
|
380 #define EVENT_BUTTON_MODIFIERS(e) EVENT_FOO_BAR (e, BUTTON, button, modifiers)
|
|
381 #define XEVENT_BUTTON_MODIFIERS(e) EVENT_BUTTON_MODIFIERS (XEVENT (e))
|
|
382 #define SET_EVENT_BUTTON_MODIFIERS(e, val) \
|
|
383 SET_EVENT_FOO_BAR (e, BUTTON, button, modifiers, val)
|
|
384 #define XSET_EVENT_BUTTON_MODIFIERS(e, val) \
|
|
385 SET_EVENT_BUTTON_MODIFIERS (XEVENT (e), val)
|
934
|
386
|
1204
|
387 #define EVENT_BUTTON_X(e) EVENT_FOO_BAR (e, BUTTON, button, x)
|
|
388 #define XEVENT_BUTTON_X(e) EVENT_BUTTON_X (XEVENT (e))
|
|
389 #define SET_EVENT_BUTTON_X(e, val) \
|
|
390 SET_EVENT_FOO_BAR (e, BUTTON, button, x, val)
|
|
391 #define XSET_EVENT_BUTTON_X(e, val) \
|
|
392 SET_EVENT_BUTTON_X (XEVENT (e), val)
|
934
|
393
|
1204
|
394 #define EVENT_BUTTON_Y(e) EVENT_FOO_BAR (e, BUTTON, button, y)
|
|
395 #define XEVENT_BUTTON_Y(e) EVENT_BUTTON_Y (XEVENT (e))
|
|
396 #define SET_EVENT_BUTTON_Y(e, val) \
|
|
397 SET_EVENT_FOO_BAR (e, BUTTON, button, y, val)
|
|
398 #define XSET_EVENT_BUTTON_Y(e, val) \
|
|
399 SET_EVENT_BUTTON_Y (XEVENT (e), val)
|
|
400
|
934
|
401 struct Lisp_Motion_Data
|
428
|
402 {
|
1204
|
403 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
404 struct lrecord_header lheader;
|
1204
|
405 #endif /* EVENT_DATA_AS_OBJECTS */
|
771
|
406 /* Where it was after it moved (in pixels). */
|
|
407 int x, y;
|
|
408 /* Bucky-bits down when the motion was detected. */
|
|
409 int modifiers;
|
428
|
410 };
|
934
|
411 typedef struct Lisp_Motion_Data Lisp_Motion_Data;
|
428
|
412
|
1204
|
413 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
414 DECLARE_LRECORD (motion_data, Lisp_Motion_Data);
|
|
415 #define XMOTION_DATA(x) XRECORD (x, motion_data, Lisp_Motion_Data)
|
|
416 #define wrap_motion_data(p) wrap_record (p, motion_data)
|
|
417 #define MOTION_DATAP(x) RECORDP (x, motion_data)
|
|
418 #define CHECK_MOTION_DATA(x) CHECK_RECORD (x, motion_data)
|
|
419 #define CONCHECK_MOTION_DATA(x) CONCHECK_RECORD (x, motion_data)
|
1204
|
420 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
421
|
1204
|
422 #define EVENT_MOTION_X(e) EVENT_FOO_BAR (e, MOTION, motion, x)
|
|
423 #define XEVENT_MOTION_X(e) EVENT_MOTION_X (XEVENT (e))
|
|
424 #define SET_EVENT_MOTION_X(e, val) \
|
|
425 SET_EVENT_FOO_BAR (e, MOTION, motion, x, val)
|
|
426 #define XSET_EVENT_MOTION_X(e, val) \
|
|
427 SET_EVENT_MOTION_X (XEVENT (e), val)
|
934
|
428
|
1204
|
429 #define EVENT_MOTION_Y(e) EVENT_FOO_BAR (e, MOTION, motion, y)
|
|
430 #define XEVENT_MOTION_Y(e) EVENT_MOTION_Y (XEVENT (e))
|
|
431 #define SET_EVENT_MOTION_Y(e, val) \
|
|
432 SET_EVENT_FOO_BAR (e, MOTION, motion, y, val)
|
|
433 #define XSET_EVENT_MOTION_Y(e, val) \
|
|
434 SET_EVENT_MOTION_Y (XEVENT (e), val)
|
|
435
|
|
436 #define EVENT_MOTION_MODIFIERS(e) EVENT_FOO_BAR (e, MOTION, motion, modifiers)
|
|
437 #define XEVENT_MOTION_MODIFIERS(e) EVENT_MOTION_MODIFIERS (XEVENT (e))
|
|
438 #define SET_EVENT_MOTION_MODIFIERS(e, val) \
|
|
439 SET_EVENT_FOO_BAR (e, MOTION, motion, modifiers, val)
|
|
440 #define XSET_EVENT_MOTION_MODIFIERS(e, val) \
|
|
441 SET_EVENT_MOTION_MODIFIERS (XEVENT (e), val)
|
|
442
|
934
|
443 struct Lisp_Process_Data
|
428
|
444 {
|
1204
|
445 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
446 struct lrecord_header lheader;
|
1204
|
447 #endif /* EVENT_DATA_AS_OBJECTS */
|
771
|
448 /* the XEmacs "process" object in question */
|
|
449 Lisp_Object process;
|
428
|
450 };
|
934
|
451 typedef struct Lisp_Process_Data Lisp_Process_Data;
|
428
|
452
|
1204
|
453 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
454 DECLARE_LRECORD (process_data, Lisp_Process_Data);
|
|
455 #define XPROCESS_DATA(x) XRECORD (x, process_data, Lisp_Process_Data)
|
|
456 #define wrap_process_data(p) wrap_record (p, process_data)
|
|
457 #define PROCESS_DATAP(x) RECORDP (x, process_data)
|
|
458 #define CHECK_PROCESS_DATA(x) CHECK_RECORD (x, process_data)
|
|
459 #define CONCHECK_PROCESS_DATA(x) CONCHECK_RECORD (x, process_data)
|
1204
|
460 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
461
|
1204
|
462 #define EVENT_PROCESS_PROCESS(e) EVENT_FOO_BAR (e, PROCESS, process, process)
|
|
463 #define XEVENT_PROCESS_PROCESS(e) EVENT_PROCESS_PROCESS (XEVENT (e))
|
|
464 #define SET_EVENT_PROCESS_PROCESS(e, val) \
|
|
465 SET_EVENT_FOO_BAR (e, PROCESS, process, process, val)
|
|
466 #define XSET_EVENT_PROCESS_PROCESS(e, val) \
|
|
467 SET_EVENT_PROCESS_PROCESS (XEVENT (e), val)
|
|
468
|
934
|
469 struct Lisp_Timeout_Data
|
428
|
470 {
|
771
|
471 /*
|
|
472 interval_id The ID returned when the associated call to
|
|
473 add_timeout_cb() was made
|
|
474 ------ the rest of the fields are filled in by XEmacs -----
|
|
475 id_number The XEmacs timeout ID for this timeout (more
|
|
476 than one timeout event can have the same value
|
|
477 here, since XEmacs timeouts, as opposed to
|
|
478 add_timeout_cb() timeouts, can resignal
|
|
479 themselves)
|
|
480 function An elisp function to call when this timeout is
|
|
481 processed.
|
|
482 object The object passed to that function.
|
|
483 */
|
1204
|
484 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
485 struct lrecord_header lheader;
|
1204
|
486 #endif /* EVENT_DATA_AS_OBJECTS */
|
771
|
487 int interval_id;
|
|
488 int id_number;
|
|
489 Lisp_Object function;
|
|
490 Lisp_Object object;
|
428
|
491 };
|
934
|
492 typedef struct Lisp_Timeout_Data Lisp_Timeout_Data;
|
428
|
493
|
1204
|
494 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
495 DECLARE_LRECORD (timeout_data, Lisp_Timeout_Data);
|
|
496 #define XTIMEOUT_DATA(x) XRECORD (x, timeout_data, Lisp_Timeout_Data)
|
|
497 #define wrap_timeout_data(p) wrap_record(p, timeout_data)
|
|
498 #define TIMEOUT_DATAP(x) RECORDP (x, timeout_data)
|
|
499 #define CHECK_TIMEOUT_DATA(x) CHECK_RECORD (x, timeout_data)
|
|
500 #define CONCHECK_TIMEOUT_DATA(x) CONCHECK_RECORD (x, timeout_data)
|
1204
|
501 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
502
|
1204
|
503 #define EVENT_TIMEOUT_INTERVAL_ID(e) EVENT_FOO_BAR (e, TIMEOUT, timeout, interval_id)
|
|
504 #define XEVENT_TIMEOUT_INTERVAL_ID(e) EVENT_TIMEOUT_INTERVAL_ID (XEVENT (e))
|
|
505 #define SET_EVENT_TIMEOUT_INTERVAL_ID(e, val) \
|
|
506 SET_EVENT_FOO_BAR (e, TIMEOUT, timeout, interval_id, val)
|
|
507 #define XSET_EVENT_TIMEOUT_INTERVAL_ID(e, val) \
|
|
508 SET_EVENT_TIMEOUT_INTERVAL_ID (XEVENT (e), val)
|
|
509
|
|
510 #define EVENT_TIMEOUT_ID_NUMBER(e) EVENT_FOO_BAR (e, TIMEOUT, timeout, id_number)
|
|
511 #define XEVENT_TIMEOUT_ID_NUMBER(e) EVENT_TIMEOUT_ID_NUMBER (XEVENT (e))
|
|
512 #define SET_EVENT_TIMEOUT_ID_NUMBER(e, val) \
|
|
513 SET_EVENT_FOO_BAR (e, TIMEOUT, timeout, id_number, val)
|
|
514 #define XSET_EVENT_TIMEOUT_ID_NUMBER(e, val) \
|
|
515 SET_EVENT_TIMEOUT_ID_NUMBER (XEVENT (e), val)
|
934
|
516
|
1204
|
517 #define EVENT_TIMEOUT_FUNCTION(e) EVENT_FOO_BAR (e, TIMEOUT, timeout, function)
|
|
518 #define XEVENT_TIMEOUT_FUNCTION(e) EVENT_TIMEOUT_FUNCTION (XEVENT (e))
|
|
519 #define SET_EVENT_TIMEOUT_FUNCTION(e, val) \
|
|
520 SET_EVENT_FOO_BAR (e, TIMEOUT, timeout, function, val)
|
|
521 #define XSET_EVENT_TIMEOUT_FUNCTION(e, val) \
|
|
522 SET_EVENT_TIMEOUT_FUNCTION (XEVENT (e), val)
|
934
|
523
|
1204
|
524 #define EVENT_TIMEOUT_OBJECT(e) EVENT_FOO_BAR (e, TIMEOUT, timeout, object)
|
|
525 #define XEVENT_TIMEOUT_OBJECT(e) EVENT_TIMEOUT_OBJECT (XEVENT (e))
|
|
526 #define SET_EVENT_TIMEOUT_OBJECT(e, val) \
|
|
527 SET_EVENT_FOO_BAR (e, TIMEOUT, timeout, object, val)
|
|
528 #define XSET_EVENT_TIMEOUT_OBJECT(e, val) \
|
|
529 SET_EVENT_TIMEOUT_OBJECT (XEVENT (e), val)
|
|
530
|
934
|
531 struct Lisp_Eval_Data
|
428
|
532 {
|
771
|
533 /* This kind of event is used internally; sometimes the window system
|
|
534 interface would like to inform XEmacs of some user action (such as
|
|
535 focusing on another frame) but needs that to happen synchronously
|
|
536 with the other user input, like keypresses. This is useful when
|
|
537 events are reported through callbacks rather than in the standard
|
|
538 event stream.
|
|
539
|
|
540 function An elisp function to call with this event object.
|
|
541 object Argument of function.
|
|
542 */
|
1204
|
543 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
544 struct lrecord_header lheader;
|
1204
|
545 #endif /* EVENT_DATA_AS_OBJECTS */
|
771
|
546 Lisp_Object function;
|
|
547 Lisp_Object object;
|
428
|
548 };
|
934
|
549 typedef struct Lisp_Eval_Data Lisp_Eval_Data;
|
428
|
550
|
1204
|
551 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
552 DECLARE_LRECORD (eval_data, Lisp_Eval_Data);
|
|
553 #define XEVAL_DATA(x) XRECORD (x, eval_data, Lisp_Eval_Data)
|
|
554 #define wrap_eval_data(p) wrap_record(p, eval_data)
|
|
555 #define EVAL_DATAP(x) RECORDP (x, eval_data)
|
|
556 #define CHECK_EVAL_DATA(x) CHECK_RECORD (x, eval_data)
|
|
557 #define CONCHECK_EVAL_DATA(x) CONCHECK_RECORD (x, eval_data)
|
1204
|
558 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
559
|
1204
|
560 #define EVENT_EVAL_FUNCTION(e) EVENT_FOO_BAR (e, EVAL, eval, function)
|
|
561 #define XEVENT_EVAL_FUNCTION(e) EVENT_EVAL_FUNCTION (XEVENT (e))
|
|
562 #define SET_EVENT_EVAL_FUNCTION(e, val) \
|
|
563 SET_EVENT_FOO_BAR (e, EVAL, eval, function, val)
|
|
564 #define XSET_EVENT_EVAL_FUNCTION(e, val) \
|
|
565 SET_EVENT_EVAL_FUNCTION (XEVENT (e), val)
|
934
|
566
|
1204
|
567 #define EVENT_EVAL_OBJECT(e) EVENT_FOO_BAR (e, EVAL, eval, object)
|
|
568 #define XEVENT_EVAL_OBJECT(e) EVENT_EVAL_OBJECT (XEVENT (e))
|
|
569 #define SET_EVENT_EVAL_OBJECT(e, val) \
|
|
570 SET_EVENT_FOO_BAR (e, EVAL, eval, object, val)
|
|
571 #define XSET_EVENT_EVAL_OBJECT(e, val) \
|
|
572 SET_EVENT_EVAL_OBJECT (XEVENT (e), val)
|
934
|
573
|
|
574 struct Lisp_Misc_User_Data
|
428
|
575 {
|
771
|
576 /* #### The misc-user type is serious junk. It should be separated
|
|
577 out into different events. There's no reason to create
|
|
578 sub-subtypes of events.
|
|
579
|
|
580 function An elisp function to call with this event object.
|
|
581 object Argument of function.
|
|
582 button What button went down or up.
|
|
583 modifiers Bucky-bits on that button: shift, control, meta, etc.
|
|
584 x, y Where it was at the button-state-change (in pixels).
|
|
585 This is similar to an eval_event, except that it is
|
|
586 generated by user actions: selections in the
|
|
587 menubar, scrollbar actions, or drag and drop actions.
|
|
588 It is a "command" event, like key and mouse presses
|
|
589 (and unlike mouse motion, process output, and enter
|
|
590 and leave window hooks). In many ways, eval_events
|
|
591 are not the same as keypresses or misc_user_events.
|
|
592 The button, modifiers, x, and y parts are only used
|
|
593 by the XEmacs Drag'n'Drop system. Don't depend on their
|
|
594 values for other types of misc_user_events.
|
|
595 */
|
1204
|
596 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
597 struct lrecord_header lheader;
|
1204
|
598 #endif /* EVENT_DATA_AS_OBJECTS */
|
771
|
599 Lisp_Object function;
|
|
600 Lisp_Object object;
|
|
601 int button;
|
|
602 int modifiers;
|
|
603 int x, y;
|
428
|
604 };
|
934
|
605 typedef struct Lisp_Misc_User_Data Lisp_Misc_User_Data;
|
428
|
606
|
1204
|
607 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
608 DECLARE_LRECORD (misc_user_data, Lisp_Misc_User_Data);
|
|
609 #define XMISC_USER_DATA(x) XRECORD (x, misc_user_data, Lisp_Misc_User_Data)
|
|
610 #define wrap_misc_user_data(p) wrap_record(p, misc_user_data)
|
|
611 #define MISC_USER_DATAP(x) RECORDP (x, misc_user_data)
|
|
612 #define CHECK_MISC_USER_DATA(x) CHECK_RECORD (x, misc_user_data)
|
|
613 #define CONCHECK_MISC_USER_DATA(x) CONCHECK_RECORD (x, misc_user_data)
|
1204
|
614 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
615
|
1204
|
616 #define EVENT_MISC_USER_FUNCTION(e) EVENT_FOO_BAR (e, MISC_USER, misc_user, function)
|
|
617 #define XEVENT_MISC_USER_FUNCTION(e) EVENT_MISC_USER_FUNCTION (XEVENT (e))
|
|
618 #define SET_EVENT_MISC_USER_FUNCTION(e, val) \
|
|
619 SET_EVENT_FOO_BAR (e, MISC_USER, misc_user, function, val)
|
|
620 #define XSET_EVENT_MISC_USER_FUNCTION(e, val) \
|
|
621 SET_EVENT_MISC_USER_FUNCTION (XEVENT (e), val)
|
|
622
|
|
623 #define EVENT_MISC_USER_OBJECT(e) EVENT_FOO_BAR (e, MISC_USER, misc_user, object)
|
|
624 #define XEVENT_MISC_USER_OBJECT(e) EVENT_MISC_USER_OBJECT (XEVENT (e))
|
|
625 #define SET_EVENT_MISC_USER_OBJECT(e, val) \
|
|
626 SET_EVENT_FOO_BAR (e, MISC_USER, misc_user, object, val)
|
|
627 #define XSET_EVENT_MISC_USER_OBJECT(e, val) \
|
|
628 SET_EVENT_MISC_USER_OBJECT (XEVENT (e), val)
|
934
|
629
|
1204
|
630 #define EVENT_MISC_USER_BUTTON(e) EVENT_FOO_BAR (e, MISC_USER, misc_user, button)
|
|
631 #define XEVENT_MISC_USER_BUTTON(e) EVENT_MISC_USER_BUTTON (XEVENT (e))
|
|
632 #define SET_EVENT_MISC_USER_BUTTON(e, val) \
|
|
633 SET_EVENT_FOO_BAR (e, MISC_USER, misc_user, button, val)
|
|
634 #define XSET_EVENT_MISC_USER_BUTTON(e, val) \
|
|
635 SET_EVENT_MISC_USER_BUTTON (XEVENT (e), val)
|
|
636
|
|
637 #define EVENT_MISC_USER_MODIFIERS(e) EVENT_FOO_BAR (e, MISC_USER, misc_user, modifiers)
|
|
638 #define XEVENT_MISC_USER_MODIFIERS(e) EVENT_MISC_USER_MODIFIERS (XEVENT (e))
|
|
639 #define SET_EVENT_MISC_USER_MODIFIERS(e, val) \
|
|
640 SET_EVENT_FOO_BAR (e, MISC_USER, misc_user, modifiers, val)
|
|
641 #define XSET_EVENT_MISC_USER_MODIFIERS(e, val) \
|
|
642 SET_EVENT_MISC_USER_MODIFIERS (XEVENT (e), val)
|
934
|
643
|
1204
|
644 #define EVENT_MISC_USER_X(e) EVENT_FOO_BAR (e, MISC_USER, misc_user, x)
|
|
645 #define XEVENT_MISC_USER_X(e) EVENT_MISC_USER_X (XEVENT (e))
|
|
646 #define SET_EVENT_MISC_USER_X(e, val) \
|
|
647 SET_EVENT_FOO_BAR (e, MISC_USER, misc_user, x, val)
|
|
648 #define XSET_EVENT_MISC_USER_X(e, val) \
|
|
649 SET_EVENT_MISC_USER_X (XEVENT (e), val)
|
934
|
650
|
1204
|
651 #define EVENT_MISC_USER_Y(e) EVENT_FOO_BAR (e, MISC_USER, misc_user, y)
|
|
652 #define XEVENT_MISC_USER_Y(e) EVENT_MISC_USER_Y (XEVENT (e))
|
|
653 #define SET_EVENT_MISC_USER_Y(e, val) \
|
|
654 SET_EVENT_FOO_BAR (e, MISC_USER, misc_user, y, val)
|
|
655 #define XSET_EVENT_MISC_USER_Y(e, val) \
|
|
656 SET_EVENT_MISC_USER_Y (XEVENT (e), val)
|
934
|
657
|
|
658 struct Lisp_Magic_Eval_Data
|
428
|
659 {
|
771
|
660 /* This is like an eval event but its contents are not
|
|
661 Lisp-accessible. This allows for "internal eval events" that call
|
|
662 non-Lisp-accessible functions. Externally, a magic_eval_event just
|
|
663 appears as a magic_event; the Lisp programmer need not know
|
|
664 anything more.
|
|
665
|
|
666 internal_function An unexported function to call with this event
|
|
667 object. This allows eval events to call internal
|
|
668 functions. For a normal eval event, this field
|
|
669 will always be 0.
|
|
670 object Argument of function.
|
|
671
|
|
672 */
|
1204
|
673 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
674 struct lrecord_header lheader;
|
1204
|
675 #endif /* EVENT_DATA_AS_OBJECTS */
|
771
|
676 void (*internal_function) (Lisp_Object);
|
|
677 Lisp_Object object;
|
428
|
678 };
|
934
|
679 typedef struct Lisp_Magic_Eval_Data Lisp_Magic_Eval_Data;
|
|
680
|
1204
|
681 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
682 DECLARE_LRECORD (magic_eval_data, Lisp_Magic_Eval_Data);
|
|
683 #define XMAGIC_EVAL_DATA(x) XRECORD (x, magic_eval_data, Lisp_Magic_Eval_Data)
|
|
684 #define wrap_magic_eval_data(p) wrap_record(p, magic_eval_data)
|
|
685 #define MAGIC_EVAL_DATAP(x) RECORDP (x, magic_eval_data)
|
|
686 #define CHECK_MAGIC_EVAL_DATA(x) CHECK_RECORD (x, magic_eval_data)
|
|
687 #define CONCHECK_MAGIC_EVAL_DATA(x) CONCHECK_RECORD (x, magic_eval_data)
|
1204
|
688 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
689
|
1204
|
690 #define EVENT_MAGIC_EVAL_INTERNAL_FUNCTION(e) EVENT_FOO_BAR (e, MAGIC_EVAL, magic_eval, internal_function)
|
|
691 #define XEVENT_MAGIC_EVAL_INTERNAL_FUNCTION(e) EVENT_MAGIC_EVAL_INTERNAL_FUNCTION (XEVENT (e))
|
|
692 #define SET_EVENT_MAGIC_EVAL_INTERNAL_FUNCTION(e, val) \
|
|
693 SET_EVENT_FOO_BAR (e, MAGIC_EVAL, magic_eval, internal_function, val)
|
|
694 #define XSET_EVENT_MAGIC_EVAL_INTERNAL_FUNCTION(e, val) \
|
|
695 SET_EVENT_MAGIC_EVAL_INTERNAL_FUNCTION (XEVENT (e), val)
|
|
696
|
|
697 #define EVENT_MAGIC_EVAL_OBJECT(e) EVENT_FOO_BAR (e, MAGIC_EVAL, magic_eval, object)
|
|
698 #define XEVENT_MAGIC_EVAL_OBJECT(e) EVENT_MAGIC_EVAL_OBJECT (XEVENT (e))
|
|
699 #define SET_EVENT_MAGIC_EVAL_OBJECT(e, val) \
|
|
700 SET_EVENT_FOO_BAR (e, MAGIC_EVAL, magic_eval, object, val)
|
|
701 #define XSET_EVENT_MAGIC_EVAL_OBJECT(e, val) \
|
|
702 SET_EVENT_MAGIC_EVAL_OBJECT (XEVENT (e), val)
|
428
|
703
|
|
704 #if defined (HAVE_X_WINDOWS) && defined(emacs)
|
|
705 # include <X11/Xlib.h>
|
|
706 #endif
|
|
707
|
462
|
708 #ifdef HAVE_GTK
|
|
709 #include <gdk/gdk.h>
|
|
710 #endif
|
|
711
|
934
|
712
|
|
713 struct Lisp_Magic_Data
|
|
714 {
|
1204
|
715 /* No user-serviceable parts within. This is for things like
|
|
716 KeymapNotify and ExposeRegion events and so on that XEmacs itself
|
|
717 doesn't care about, but which it must do something with for proper
|
|
718 interaction with the window system.
|
|
719
|
|
720 Magic_events are handled somewhat asynchronously, just like
|
|
721 subprocess filters. However, occasionally a magic_event needs to
|
|
722 be handled synchronously; in that case, the asynchronous handling
|
|
723 of the magic_event will push an eval_event back onto the queue,
|
|
724 which will be handled synchronously later. This is one of the
|
|
725 reasons why eval_events exist; I'm not entirely happy with this
|
|
726 aspect of this event model.
|
|
727 */
|
|
728
|
|
729 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
730 struct lrecord_header lheader;
|
1204
|
731 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
732
|
|
733 union {
|
|
734 #ifdef HAVE_GTK
|
|
735 GdkEvent gdk_event;
|
|
736 #endif
|
|
737 #ifdef HAVE_X_WINDOWS
|
|
738 XEvent x_event;
|
|
739 #endif
|
|
740 #ifdef HAVE_MS_WINDOWS
|
|
741 int mswindows_event;
|
|
742 #endif
|
|
743 } underlying;
|
|
744 };
|
|
745
|
|
746 typedef struct Lisp_Magic_Data Lisp_Magic_Data;
|
|
747
|
1204
|
748 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
749 DECLARE_LRECORD (magic_data, Lisp_Magic_Data);
|
|
750 #define XMAGIC_DATA(x) XRECORD (x, magic_data, Lisp_Magic_Data)
|
|
751 #define wrap_magic_data(p) wrap_record(p, magic_data)
|
|
752 #define MAGIC_DATAP(x) RECORDP (x, magic_data)
|
|
753 #define CHECK_MAGIC_DATA(x) CHECK_RECORD (x, magic_data)
|
|
754 #define CONCHECK_MAGIC_DATA(x) CONCHECK_RECORD (x, magic_data)
|
1204
|
755 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
756
|
1204
|
757 #define EVENT_MAGIC_UNDERLYING(e) EVENT_FOO_BAR (e, MAGIC, magic, underlying)
|
|
758 #define XEVENT_MAGIC_UNDERLYING(e) EVENT_MAGIC_UNDERLYING (XEVENT (e))
|
|
759 #define SET_EVENT_MAGIC_UNDERLYING(e, val) \
|
|
760 SET_EVENT_FOO_BAR (e, MAGIC, magic, underlying, val)
|
|
761 #define XSET_EVENT_MAGIC_UNDERLYING(e, val) \
|
|
762 SET_EVENT_MAGIC_UNDERLYING (XEVENT (e), val)
|
934
|
763
|
|
764 #ifdef HAVE_GTK
|
1204
|
765 #define EVENT_MAGIC_GDK_EVENT(e) EVENT_FOO_BAR (e, MAGIC, magic, underlying.gdk_event)
|
|
766 #define XEVENT_MAGIC_GDK_EVENT(e) EVENT_MAGIC_GDK_EVENT (XEVENT (e))
|
|
767 #define SET_EVENT_MAGIC_GDK_EVENT(e, val) \
|
|
768 SET_EVENT_FOO_BAR (e, MAGIC, magic, underlying.gdk_event, val)
|
|
769 #define XSET_EVENT_MAGIC_GDK_EVENT(e, val) \
|
|
770 SET_EVENT_MAGIC_GDK_EVENT (XEVENT (e), val)
|
|
771 #endif
|
934
|
772
|
|
773 #ifdef HAVE_X_WINDOWS
|
1204
|
774 #define EVENT_MAGIC_X_EVENT(e) EVENT_FOO_BAR (e, MAGIC, magic, underlying.x_event)
|
|
775 #define XEVENT_MAGIC_X_EVENT(e) EVENT_MAGIC_X_EVENT (XEVENT (e))
|
|
776 #define SET_EVENT_MAGIC_X_EVENT(e, val) \
|
|
777 SET_EVENT_FOO_BAR (e, MAGIC, magic, underlying.x_event, val)
|
|
778 #define XSET_EVENT_MAGIC_X_EVENT(e, val) \
|
|
779 SET_EVENT_MAGIC_X_EVENT (XEVENT (e), val)
|
934
|
780 #endif
|
|
781
|
|
782 #ifdef HAVE_MS_WINDOWS
|
1204
|
783 #define EVENT_MAGIC_MSWINDOWS_EVENT(e) EVENT_FOO_BAR (e, MAGIC, magic, underlying.mswindows_event)
|
|
784 #define XEVENT_MAGIC_MSWINDOWS_EVENT(e) EVENT_MAGIC_MSWINDOWS_EVENT (XEVENT (e))
|
|
785 #define SET_EVENT_MAGIC_MSWINDOWS_EVENT(e, val) \
|
|
786 SET_EVENT_FOO_BAR (e, MAGIC, magic, underlying.mswindows_event, val)
|
|
787 #define XSET_EVENT_MAGIC_MSWINDOWS_EVENT(e, val) \
|
|
788 SET_EVENT_MAGIC_MSWINDOWS_EVENT (XEVENT (e), val)
|
934
|
789 #endif
|
|
790
|
428
|
791 struct Lisp_Timeout
|
|
792 {
|
432
|
793 struct lcrecord_header header;
|
428
|
794 int id; /* Id we use to identify the timeout over its lifetime */
|
|
795 int interval_id; /* Id for this particular interval; this may
|
771
|
796 be different each time the timeout is
|
|
797 signalled.*/
|
428
|
798 Lisp_Object function, object; /* Function and object associated
|
771
|
799 with timeout. */
|
428
|
800 EMACS_TIME next_signal_time; /* Absolute time when the timeout
|
771
|
801 is next going to be signalled. */
|
428
|
802 unsigned int resignal_msecs; /* How far after the next timeout
|
771
|
803 should the one after that
|
|
804 occur? */
|
428
|
805 };
|
440
|
806 typedef struct Lisp_Timeout Lisp_Timeout;
|
428
|
807
|
440
|
808 DECLARE_LRECORD (timeout, Lisp_Timeout);
|
|
809 #define XTIMEOUT(x) XRECORD (x, timeout, Lisp_Timeout)
|
617
|
810 #define wrap_timeout(p) wrap_record (p, timeout)
|
428
|
811 #define TIMEOUTP(x) RECORDP (x, timeout)
|
|
812 #define CHECK_TIMEOUT(x) CHECK_RECORD (x, timeout)
|
|
813 #define CONCHECK_TIMEOUT(x) CONCHECK_RECORD (x, timeout)
|
|
814
|
|
815 struct Lisp_Event
|
|
816 {
|
|
817 /* header->next (aka XEVENT_NEXT ()) is used as follows:
|
|
818 - For dead events, this is the next dead one.
|
|
819 - For events on the command_event_queue, the next one on the queue.
|
|
820 - Likewise for events chained in the command builder.
|
|
821 - Otherwise it's Qnil.
|
|
822 */
|
|
823 struct lrecord_header lheader;
|
771
|
824 Lisp_Object next;
|
|
825 emacs_event_type event_type;
|
|
826
|
|
827 /* Where this event occurred on. This will be a frame, device,
|
|
828 console, or nil, depending on the event type. It is important
|
|
829 that an object of a more specific type than is actually generated
|
|
830 is not substituted -- e.g. there should not be a frame inserted
|
|
831 when a key-press event occurs, because events on dead channels
|
|
832 are automatically ignored.
|
|
833
|
|
834 Specifically:
|
|
835
|
|
836 -- for button and mouse-motion events, channel will be a
|
|
837 frame. (The translation to a window occurs later.)
|
|
838
|
|
839 -- for keyboard events, channel will be a console. Note that
|
|
840 fake keyboard events (generated by `character-to-event' or
|
|
841 something that calls this, such as macros) need to have the
|
|
842 selected console stored into them when the event is created.
|
|
843 This is so that the correct console-local variables (e.g. the
|
|
844 command builder) will get affected.
|
|
845
|
|
846 -- for timer, process, magic-eval, and eval events, channel will
|
|
847 be nil.
|
|
848
|
|
849 -- for misc-user events, channel will be a frame.
|
|
850
|
|
851 -- for magic events, channel will be a frame (usually) or a
|
|
852 device. */
|
|
853 Lisp_Object channel;
|
|
854
|
|
855 /* When this event occurred -- if not known, this is made up. ####
|
|
856 All timestamps should be measured as milliseconds since XEmacs
|
|
857 started. Currently they are raw server timestamps. (The X
|
|
858 protocol doesn't provide any easy way of translating between
|
|
859 server time and real process time; yuck.) */
|
934
|
860 unsigned int timestamp;
|
771
|
861
|
1204
|
862 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
863 Lisp_Object event_data;
|
1204
|
864 #else /* not EVENT_DATA_AS_OBJECTS */
|
428
|
865 union
|
|
866 {
|
1204
|
867 Lisp_Key_Data key;
|
|
868 Lisp_Button_Data button;
|
|
869 Lisp_Motion_Data motion;
|
|
870 Lisp_Process_Data process;
|
|
871 Lisp_Timeout_Data timeout;
|
|
872 Lisp_Eval_Data eval; /* misc_user_event no longer uses this */
|
|
873 Lisp_Misc_User_Data misc_user;/* because it needs position information */
|
|
874 Lisp_Magic_Data magic;
|
|
875 Lisp_Magic_Eval_Data magic_eval;
|
428
|
876 } event;
|
1204
|
877 #endif /* not EVENT_DATA_AS_OBJECTS */
|
428
|
878 };
|
|
879
|
440
|
880 DECLARE_LRECORD (event, Lisp_Event);
|
|
881 #define XEVENT(x) XRECORD (x, event, Lisp_Event)
|
617
|
882 #define wrap_event(p) wrap_record (p, event)
|
428
|
883 #define EVENTP(x) RECORDP (x, event)
|
|
884 #define CHECK_EVENT(x) CHECK_RECORD (x, event)
|
|
885 #define CONCHECK_EVENT(x) CONCHECK_RECORD (x, event)
|
|
886
|
|
887 DECLARE_LRECORD (command_builder, struct command_builder);
|
|
888
|
|
889 #define EVENT_CHANNEL(a) ((a)->channel)
|
1204
|
890 #define XEVENT_CHANNEL(ev) (XEVENT (ev)->channel)
|
428
|
891 #define EVENT_TYPE(a) ((a)->event_type)
|
|
892 #define XEVENT_TYPE(a) (XEVENT (a)->event_type)
|
|
893 #define EVENT_NEXT(a) ((a)->next)
|
|
894 #define XEVENT_NEXT(e) (XEVENT (e)->next)
|
1204
|
895 #define EVENT_TIMESTAMP(ev) ((ev)->timestamp)
|
|
896 #define XEVENT_TIMESTAMP(ev) EVENT_TIMESTAMP (XEVENT (ev))
|
934
|
897
|
1204
|
898 #ifdef EVENT_DATA_AS_OBJECTS
|
934
|
899 #define XEVENT_DATA(ev) (XEVENT (ev)->event_data)
|
|
900 #define EVENT_DATA(ev) ((ev)->event_data)
|
1204
|
901 #define SET_EVENT_DATA(ev, d) \
|
|
902 do { \
|
|
903 Lisp_Event *mac_event = (ev); \
|
|
904 mac_event->event_data = (d); \
|
|
905 } while (0)
|
|
906 #define XSET_EVENT_DATA(ev, d) SET_EVENT_DATA (XEVENT (ev), d)
|
|
907 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
908
|
1204
|
909 #define SET_EVENT_TIMESTAMP_ZERO(ev) ((ev)->timestamp = 0)
|
|
910 #define SET_EVENT_TIMESTAMP(ev, t) ((ev)->timestamp = (t))
|
934
|
911 #define XSET_EVENT_TIMESTAMP(ev, t) SET_EVENT_TIMESTAMP (XEVENT (ev), t)
|
|
912
|
|
913 #define SET_EVENT_CHANNEL(ev, c) \
|
|
914 do { \
|
|
915 Lisp_Event *mac_event = (ev); \
|
|
916 mac_event->channel = (c); \
|
|
917 } while (0)
|
|
918 #define XSET_EVENT_CHANNEL(ev, c) SET_EVENT_CHANNEL (XEVENT (ev), c)
|
|
919
|
1204
|
920 DECLARE_INLINE_HEADER (
|
|
921 void
|
|
922 set_event_type (struct Lisp_Event *event, emacs_event_type t)
|
|
923 )
|
|
924 {
|
|
925 #ifdef EVENT_DATA_AS_OBJECTS
|
|
926 switch (EVENT_TYPE (event))
|
|
927 {
|
|
928 case key_press_event:
|
|
929 free_key_data (event->event_data);
|
|
930 break;
|
|
931 case button_press_event:
|
|
932 case button_release_event:
|
|
933 free_button_data (event->event_data);
|
|
934 break;
|
|
935 case pointer_motion_event:
|
|
936 free_motion_data (event->event_data);
|
|
937 break;
|
|
938 case process_event:
|
|
939 free_process_data (event->event_data);
|
|
940 break;
|
|
941 case timeout_event:
|
|
942 free_timeout_data (event->event_data);
|
|
943 break;
|
|
944 case magic_event:
|
|
945 free_magic_data (event->event_data);
|
|
946 break;
|
|
947 case magic_eval_event:
|
|
948 free_magic_eval_data (event->event_data);
|
|
949 break;
|
|
950 case eval_event:
|
|
951 free_eval_data (event->event_data);
|
|
952 break;
|
|
953 case misc_user_event:
|
|
954 free_misc_user_data (event->event_data);
|
|
955 break;
|
|
956 default:
|
|
957 break;
|
|
958 }
|
|
959 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
960
|
|
961 event->event_type = t;
|
|
962
|
1204
|
963 #ifdef EVENT_DATA_AS_OBJECTS
|
|
964 switch (t)
|
|
965 {
|
|
966 case key_press_event:
|
|
967 event->event_data = make_key_data ();
|
|
968 break;
|
|
969 case button_press_event:
|
|
970 case button_release_event:
|
|
971 event->event_data = make_button_data ();
|
|
972 break;
|
|
973 case pointer_motion_event:
|
|
974 event->event_data = make_motion_data ();
|
|
975 break;
|
|
976 case process_event:
|
|
977 event->event_data = make_process_data ();
|
|
978 break;
|
|
979 case timeout_event:
|
|
980 event->event_data = make_timeout_data ();
|
|
981 break;
|
|
982 case magic_event:
|
|
983 event->event_data = make_magic_data ();
|
|
984 break;
|
|
985 case magic_eval_event:
|
|
986 event->event_data = make_magic_eval_data ();
|
|
987 break;
|
|
988 case eval_event:
|
|
989 event->event_data = make_eval_data ();
|
|
990 break;
|
|
991 case misc_user_event:
|
|
992 event->event_data = make_misc_user_data ();
|
|
993 break;
|
|
994 default:
|
|
995 event->event_data = Qnil;
|
|
996 break;
|
|
997 }
|
|
998 #endif /* EVENT_DATA_AS_OBJECTS */
|
934
|
999 }
|
1204
|
1000
|
|
1001 #define SET_EVENT_NEXT(ev, n) do { (ev)->next = (n); } while (0)
|
|
1002 #define XSET_EVENT_NEXT(ev, n) SET_EVENT_NEXT (XEVENT (ev), n)
|
|
1003
|
934
|
1004 #define XSET_EVENT_TYPE(ev, t) set_event_type (XEVENT (ev), t)
|
|
1005 #define SET_EVENT_TYPE(ev, t) set_event_type (ev, t)
|
|
1006
|
428
|
1007 #define EVENT_CHAIN_LOOP(event, chain) \
|
|
1008 for (event = chain; !NILP (event); event = XEVENT_NEXT (event))
|
|
1009
|
|
1010 #define EVENT_LIVE_P(a) (EVENT_TYPE (a) != dead_event)
|
|
1011
|
771
|
1012 #define CHECK_LIVE_EVENT(x) do { \
|
|
1013 CHECK_EVENT (x); \
|
|
1014 if (! EVENT_LIVE_P (XEVENT (x))) \
|
|
1015 dead_wrong_type_argument (Qevent_live_p, (x)); \
|
428
|
1016 } while (0)
|
771
|
1017 #define CONCHECK_LIVE_EVENT(x) do { \
|
|
1018 CONCHECK_EVENT (x); \
|
|
1019 if (! EVENT_LIVE_P (XEVENT (x))) \
|
|
1020 x = wrong_type_argument (Qevent_live_p, (x)); \
|
428
|
1021 } while (0)
|
|
1022
|
|
1023
|
|
1024 EXFUN (Fcharacter_to_event, 4);
|
|
1025 EXFUN (Fdeallocate_event, 1);
|
|
1026 EXFUN (Fevent_glyph_extent, 1);
|
|
1027 EXFUN (Fevent_modeline_position, 1);
|
|
1028 EXFUN (Fevent_over_modeline_p, 1);
|
|
1029 EXFUN (Fevent_over_toolbar_p, 1);
|
|
1030 EXFUN (Fevent_over_vertical_divider_p, 1);
|
|
1031 EXFUN (Fevent_point, 1);
|
|
1032 EXFUN (Fevent_window, 1);
|
|
1033 EXFUN (Fmake_event, 2);
|
1268
|
1034 EXFUN (Fnext_command_event, 2);
|
428
|
1035
|
|
1036 extern Lisp_Object QKbackspace, QKdelete, QKescape, QKlinefeed, QKreturn;
|
|
1037 extern Lisp_Object QKspace, QKtab, Qmouse_event_p, Vcharacter_set_property;
|
|
1038 extern Lisp_Object Qcancel_mode_internal;
|
444
|
1039 extern Lisp_Object Vmodifier_keys_sticky_time;
|
428
|
1040
|
502
|
1041 /* The modifiers XEmacs knows about; these appear in key and button events. */
|
|
1042
|
771
|
1043 #define XEMACS_MOD_CONTROL (1<<0)
|
|
1044 #define XEMACS_MOD_META (1<<1)
|
|
1045 #define XEMACS_MOD_SUPER (1<<2)
|
|
1046 #define XEMACS_MOD_HYPER (1<<3)
|
|
1047 #define XEMACS_MOD_ALT (1<<4)
|
|
1048 #define XEMACS_MOD_SHIFT (1<<5) /* not used for dual-case characters */
|
|
1049 #define XEMACS_MOD_BUTTON1 (1<<6)
|
|
1050 #define XEMACS_MOD_BUTTON2 (1<<7)
|
|
1051 #define XEMACS_MOD_BUTTON3 (1<<8)
|
|
1052 #define XEMACS_MOD_BUTTON4 (1<<9)
|
|
1053 #define XEMACS_MOD_BUTTON5 (1<<10)
|
502
|
1054
|
|
1055 /* Note: under X Windows, XEMACS_MOD_ALT is generated by the Alt key
|
|
1056 if there are both Alt and Meta keys. If there are no Meta keys,
|
|
1057 then Alt generates XEMACS_MOD_META instead.
|
428
|
1058 */
|
|
1059
|
|
1060 /* Maybe this should be trickier */
|
|
1061 #define KEYSYM(x) (intern (x))
|
|
1062
|
|
1063 /* from events.c */
|
934
|
1064 void format_event_object (Eistring *buf, Lisp_Object event, int brief);
|
1229
|
1065 /*void format_event_data_object (Eistring *buf, Lisp_Object data, int brief);*/
|
867
|
1066 void character_to_event (Ichar c, Lisp_Event *event,
|
771
|
1067 struct console *con,
|
|
1068 int use_console_meta_flag,
|
|
1069 int do_backspace_mapping);
|
440
|
1070 void zero_event (Lisp_Event *e);
|
1204
|
1071
|
|
1072 #define MECR_DEALLOCATE_EVENT 1
|
|
1073
|
428
|
1074 void deallocate_event_chain (Lisp_Object event);
|
|
1075 Lisp_Object event_chain_tail (Lisp_Object event);
|
|
1076 void enqueue_event (Lisp_Object event, Lisp_Object *head, Lisp_Object *tail);
|
|
1077 Lisp_Object dequeue_event (Lisp_Object *head, Lisp_Object *tail);
|
|
1078 void enqueue_event_chain (Lisp_Object event_chain, Lisp_Object *head,
|
771
|
1079 Lisp_Object *tail);
|
1204
|
1080 int map_event_chain_remove (int (*fn) (Lisp_Object ev, void *user_data),
|
|
1081 Lisp_Object *head, Lisp_Object *tail,
|
|
1082 void *user_data, int flags);
|
428
|
1083 int event_chain_count (Lisp_Object event_chain);
|
|
1084 Lisp_Object event_chain_find_previous (Lisp_Object event_chain,
|
771
|
1085 Lisp_Object event);
|
428
|
1086 Lisp_Object event_chain_nth (Lisp_Object event_chain, int n);
|
|
1087 Lisp_Object copy_event_chain (Lisp_Object event_chain);
|
1204
|
1088 Lisp_Object transfer_event_chain_pointer (Lisp_Object pointer,
|
|
1089 Lisp_Object old_chain,
|
|
1090 Lisp_Object new_chain);
|
|
1091
|
|
1092
|
|
1093 void nth_of_key_sequence_as_event (Lisp_Object seq, int n, Lisp_Object event);
|
|
1094 Lisp_Object key_sequence_to_event_chain (Lisp_Object seq);
|
428
|
1095 /* True if this is a non-internal event
|
|
1096 (keyboard press, menu, scrollbar, mouse button) */
|
|
1097 int command_event_p (Lisp_Object event);
|
440
|
1098 void define_self_inserting_symbol (Lisp_Object, Lisp_Object);
|
1204
|
1099 Ichar event_to_character (Lisp_Object, int, int, int);
|
428
|
1100 struct console *event_console_or_selected (Lisp_Object event);
|
1204
|
1101 void upshift_event (Lisp_Object event);
|
|
1102 void downshift_event (Lisp_Object event);
|
|
1103 int event_upshifted_p (Lisp_Object event);
|
428
|
1104
|
|
1105 /* from event-stream.c */
|
1204
|
1106 extern Lisp_Object dispatch_event_queue;
|
771
|
1107 Lisp_Object allocate_command_builder (Lisp_Object console, int with_echo_buf);
|
1204
|
1108 void enqueue_dispatch_event (Lisp_Object event);
|
|
1109 Lisp_Object dequeue_dispatch_event (void);
|
428
|
1110 void enqueue_magic_eval_event (void (*fun) (Lisp_Object), Lisp_Object object);
|
440
|
1111 void event_stream_handle_magic_event (Lisp_Event *event);
|
788
|
1112 void event_stream_format_magic_event (Lisp_Event *event, Lisp_Object pstream);
|
|
1113 int event_stream_compare_magic_event (Lisp_Event *e1, Lisp_Event *e2);
|
|
1114 Hashcode event_stream_hash_magic_event (Lisp_Event *e);
|
428
|
1115 void event_stream_select_console (struct console *con);
|
|
1116 void event_stream_unselect_console (struct console *con);
|
853
|
1117 void event_stream_select_process (Lisp_Process *proc, int doin, int doerr);
|
|
1118 void event_stream_unselect_process (Lisp_Process *proc, int doin, int doerr);
|
|
1119 void event_stream_create_io_streams (void* inhandle, void* outhandle,
|
|
1120 void *errhandle, Lisp_Object* instream,
|
|
1121 Lisp_Object* outstream,
|
|
1122 Lisp_Object* errstream,
|
|
1123 USID* in_usid,
|
|
1124 USID* err_usid,
|
|
1125 int flags);
|
|
1126 void event_stream_delete_io_streams (Lisp_Object instream,
|
|
1127 Lisp_Object outstream,
|
|
1128 Lisp_Object errstream,
|
|
1129 USID* in_usid,
|
|
1130 USID* err_usid);
|
1268
|
1131 Lisp_Object event_stream_protect_modal_loop (const char *error_string,
|
|
1132 Lisp_Object (*bfun) (void *barg),
|
|
1133 void *barg, int flags);
|
|
1134 void event_stream_drain_queue (void);
|
428
|
1135 void event_stream_quit_p (void);
|
853
|
1136 void run_pre_idle_hook (void);
|
428
|
1137
|
|
1138 struct low_level_timeout
|
|
1139 {
|
|
1140 int id;
|
|
1141 EMACS_TIME time;
|
|
1142 struct low_level_timeout *next;
|
|
1143 };
|
|
1144
|
|
1145 int add_low_level_timeout (struct low_level_timeout **timeout_list,
|
771
|
1146 EMACS_TIME thyme);
|
428
|
1147 void remove_low_level_timeout (struct low_level_timeout **timeout_list,
|
771
|
1148 int id);
|
428
|
1149 int get_low_level_timeout_interval (struct low_level_timeout *
|
771
|
1150 timeout_list, EMACS_TIME *interval);
|
428
|
1151 int pop_low_level_timeout (struct low_level_timeout **timeout_list,
|
771
|
1152 EMACS_TIME *time_out);
|
428
|
1153 int event_stream_generate_wakeup (unsigned int milliseconds,
|
771
|
1154 unsigned int vanilliseconds,
|
|
1155 Lisp_Object function,
|
|
1156 Lisp_Object object,
|
|
1157 int async_p);
|
593
|
1158 int event_stream_resignal_wakeup (int interval_id, int async_p,
|
771
|
1159 Lisp_Object *function, Lisp_Object *object);
|
428
|
1160 void event_stream_disable_wakeup (int id, int async_p);
|
|
1161
|
593
|
1162 /* from signal.c */
|
|
1163 int signal_add_async_interval_timeout (EMACS_TIME thyme);
|
|
1164 void signal_remove_async_interval_timeout (int id);
|
428
|
1165
|
|
1166 /* from event-stream.c -- focus sanity */
|
|
1167 extern int focus_follows_mouse;
|
|
1168 void investigate_frame_change (void);
|
|
1169
|
|
1170 void emacs_handle_focus_change_preliminary (Lisp_Object frame_inp_and_dev);
|
|
1171 void emacs_handle_focus_change_final (Lisp_Object frame_inp_and_dev);
|
|
1172
|
|
1173 Lisp_Object extract_this_command_keys_nth_mouse_event (int n);
|
|
1174 Lisp_Object extract_vector_nth_mouse_event (Lisp_Object vector, int n);
|
|
1175
|
|
1176 void single_console_state (void);
|
|
1177 void any_console_state (void);
|
|
1178 int in_single_console_state (void);
|
|
1179
|
|
1180 extern int emacs_is_blocking;
|
1268
|
1181 extern int in_modal_loop;
|
428
|
1182 extern volatile int sigint_happened;
|
|
1183
|
|
1184 #ifdef HAVE_UNIXOID_EVENT_LOOP
|
|
1185 /* from event-unixoid.c */
|
|
1186
|
|
1187 /* Ceci n'est pas un pipe. */
|
|
1188 extern int signal_event_pipe[];
|
|
1189
|
|
1190 void signal_fake_event (void);
|
|
1191 void drain_signal_event_pipe (void);
|
1204
|
1192 void drain_tty_devices (void);
|
428
|
1193
|
|
1194 extern int fake_event_occurred;
|
|
1195
|
|
1196 int event_stream_unixoid_select_console (struct console *con);
|
|
1197 int event_stream_unixoid_unselect_console (struct console *con);
|
853
|
1198 void event_stream_unixoid_select_process (Lisp_Process *proc, int doin,
|
|
1199 int doerr, int *infd, int *errfd);
|
|
1200 void event_stream_unixoid_unselect_process (Lisp_Process *proc, int doin,
|
|
1201 int doerr, int *infd, int *errfd);
|
1204
|
1202 struct console *find_tty_or_stream_console_from_fd (int fd);
|
440
|
1203 int read_event_from_tty_or_stream_desc (Lisp_Event *event,
|
771
|
1204 struct console *con);
|
853
|
1205 void event_stream_unixoid_create_io_streams (void* inhandle, void* outhandle,
|
|
1206 void *errhandle,
|
|
1207 Lisp_Object* instream,
|
|
1208 Lisp_Object* outstream,
|
|
1209 Lisp_Object* errstream,
|
|
1210 USID* in_usid,
|
|
1211 USID* err_usid,
|
|
1212 int flags);
|
|
1213 void event_stream_unixoid_delete_io_streams (Lisp_Object instream,
|
|
1214 Lisp_Object outstream,
|
|
1215 Lisp_Object errstream,
|
|
1216 USID* in_usid,
|
|
1217 USID* err_usid);
|
428
|
1218
|
1204
|
1219 #endif /* HAVE_UNIXOID_EVENT_LOOP */
|
|
1220
|
|
1221 /* The following is not inside of HAVE_UNIXOID_EVENT_LOOP because of the
|
|
1222 possibility of combiling XEmacs with no-MSW, no-X, no-TTY --
|
|
1223 process-unix.c is still compiled. #### Should we still compile
|
|
1224 subprocesses with no event loops? */
|
428
|
1225 /* Beware: this evil macro evaluates its arg many times */
|
|
1226 #define FD_TO_USID(fd) ((fd)==0 ? (USID)999999 : ((fd)<0 ? USID_DONTHASH : (USID)(fd)))
|
|
1227
|
|
1228 /* Define this if you want the tty event stream to be used when the
|
|
1229 first console is tty, even if HAVE_X_WINDOWS is defined */
|
|
1230 /* #define DEBUG_TTY_EVENT_STREAM */
|
|
1231
|
|
1232
|
442
|
1233 /* #### a hack, until accelerator shit is cleaned up */
|
|
1234
|
|
1235 /* This structure is what we use to encapsulate the state of a command sequence
|
|
1236 being composed; key events are executed by adding themselves to the command
|
|
1237 builder; if the command builder is then complete (does not still represent
|
|
1238 a prefix key sequence) it executes the corresponding command.
|
|
1239 */
|
|
1240 struct command_builder
|
|
1241 {
|
|
1242 struct lcrecord_header header;
|
|
1243 Lisp_Object console; /* back pointer to the console this command
|
771
|
1244 builder is for */
|
|
1245 #if 0
|
|
1246 /* #### Not implemented: nil, or an event representing the first
|
|
1247 event read after the last command completed. Threaded. */
|
442
|
1248 Lisp_Object prefix_events;
|
771
|
1249 #endif /* 0 */
|
|
1250 /* nil, or an event chain representing the events in the current
|
|
1251 keymap-lookup sequence. NOTE: All events in the chain MUST be
|
|
1252 freshly allocated, with no pointers to them elsewhere. */
|
442
|
1253 Lisp_Object current_events;
|
771
|
1254 /* Last elt of current_events */
|
442
|
1255 Lisp_Object most_current_event;
|
771
|
1256 /* Last elt before function map code took over. What this means is:
|
442
|
1257 All prefixes up to (but not including) this event have non-nil
|
|
1258 bindings, but the prefix including this event has a nil binding.
|
|
1259 Any events in the chain after this one were read solely because
|
|
1260 we're part of a possible function key. If we end up with
|
|
1261 something that's not part of a possible function key, we have to
|
|
1262 unread all of those events. */
|
|
1263 Lisp_Object last_non_munged_event;
|
1204
|
1264 /* One value for function-key-map, one for key-translation-map:
|
|
1265 First event that can begin a possible function key sequence
|
|
1266 (to be translated according to function-key-map). Normally
|
|
1267 this is the first event in the chain. However, once we've
|
|
1268 translated a sequence through function-key-map, this will point
|
|
1269 to the first event after the translated sequence: we don't ever
|
|
1270 want to translate any events twice through function-key-map, or
|
|
1271 things could get really screwed up (e.g. if the user created a
|
|
1272 translation loop). If this is nil, then the next-read event is
|
|
1273 the first that can begin a function key sequence. */
|
|
1274 Lisp_Object first_mungeable_event[2];
|
934
|
1275 Ibyte *echo_buf;
|
442
|
1276
|
|
1277 Bytecount echo_buf_length; /* size of echo_buf */
|
|
1278 Bytecount echo_buf_index; /* index into echo_buf
|
771
|
1279 * -1 before doing echoing for new cmd */
|
442
|
1280 /* Self-insert-command is magic in that it doesn't always push an undo-
|
|
1281 boundary: up to 20 consecutive self-inserts can happen before an undo-
|
|
1282 boundary is pushed. This variable is that counter.
|
|
1283 */
|
|
1284 int self_insert_countdown;
|
|
1285 };
|
|
1286
|
440
|
1287 #endif /* INCLUDED_events_h_ */
|