Mercurial > hg > xemacs-beta
annotate src/mule-coding.c @ 4645:f2a991ff6db0
Do not #'split-path on nil #'getenv result. <877hz7lzrt.fsf@yahoo.com.cn>
| author | Jerry James <james@xemacs.org> |
|---|---|
| date | Mon, 29 Jun 2009 08:20:47 -0600 |
| parents | 726060ee587c |
| children | 257b468bf2ca |
| rev | line source |
|---|---|
| 771 | 1 /* Conversion functions for I18N encodings, but not Unicode (in separate file). |
| 2 Copyright (C) 1991, 1995 Free Software Foundation, Inc. | |
| 3 Copyright (C) 1995 Sun Microsystems, Inc. | |
| 4 Copyright (C) 2000, 2001, 2002 Ben Wing. | |
| 5 | |
| 6 This file is part of XEmacs. | |
| 7 | |
| 8 XEmacs is free software; you can redistribute it and/or modify it | |
| 9 under the terms of the GNU General Public License as published by the | |
| 10 Free Software Foundation; either version 2, or (at your option) any | |
| 11 later version. | |
| 12 | |
| 13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
| 14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
| 15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
| 16 for more details. | |
| 17 | |
| 18 You should have received a copy of the GNU General Public License | |
| 19 along with XEmacs; see the file COPYING. If not, write to | |
| 20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
| 21 Boston, MA 02111-1307, USA. */ | |
| 22 | |
| 23 /* Synched up with: Mule 2.3. Not in FSF. */ | |
| 24 | |
| 25 /* For previous history, see file-coding.c. | |
| 26 | |
| 27 September 10, 2001: Extracted from file-coding.c by Ben Wing. | |
| 28 | |
| 29 Later in September: Finished abstraction of detection system, rewrote | |
| 30 all the detectors to include multiple levels of likelihood. | |
| 31 */ | |
| 32 | |
| 33 #include <config.h> | |
| 34 #include "lisp.h" | |
| 35 | |
| 36 #include "charset.h" | |
| 37 #include "mule-ccl.h" | |
| 38 #include "file-coding.h" | |
| 39 | |
| 40 Lisp_Object Qshift_jis, Qiso2022, Qbig5, Qccl; | |
| 41 | |
| 42 Lisp_Object Qcharset_g0, Qcharset_g1, Qcharset_g2, Qcharset_g3; | |
| 43 Lisp_Object Qforce_g0_on_output, Qforce_g1_on_output; | |
| 44 Lisp_Object Qforce_g2_on_output, Qforce_g3_on_output; | |
| 45 Lisp_Object Qno_iso6429; | |
| 46 Lisp_Object Qinput_charset_conversion, Qoutput_charset_conversion; | |
| 47 Lisp_Object Qshort, Qno_ascii_eol, Qno_ascii_cntl, Qseven, Qlock_shift; | |
| 48 | |
| 49 Lisp_Object Qiso_7, Qiso_8_designate, Qiso_8_1, Qiso_8_2, Qiso_lock_shift; | |
| 50 | |
| 51 | |
| 52 /************************************************************************/ | |
| 53 /* Shift-JIS methods */ | |
| 54 /************************************************************************/ | |
| 55 | |
| 56 /* Shift-JIS; Hankaku (half-width) KANA is also supported. */ | |
| 57 DEFINE_CODING_SYSTEM_TYPE (shift_jis); | |
| 58 | |
| 59 /* Shift-JIS is a coding system encoding three character sets: ASCII, right | |
| 60 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded | |
| 61 as is. A character of JISX0201-Kana (DIMENSION1_CHARS94 character set) is | |
| 62 encoded by "position-code + 0x80". A character of JISX0208 | |
| 63 (DIMENSION2_CHARS94 character set) is encoded in 2-byte but two | |
| 64 position-codes are divided and shifted so that it fit in the range | |
| 65 below. | |
| 66 | |
| 67 --- CODE RANGE of Shift-JIS --- | |
| 68 (character set) (range) | |
| 69 ASCII 0x00 .. 0x7F | |
| 70 JISX0201-Kana 0xA0 .. 0xDF | |
| 71 JISX0208 (1st byte) 0x80 .. 0x9F and 0xE0 .. 0xEF | |
| 72 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC | |
| 73 ------------------------------- | |
| 74 | |
| 75 */ | |
| 76 | |
| 77 /* Is this the first byte of a Shift-JIS two-byte char? */ | |
| 78 | |
| 826 | 79 inline static int |
| 80 byte_shift_jis_two_byte_1_p (int c) | |
| 81 { | |
| 82 return (c >= 0x81 && c <= 0x9F) || (c >= 0xE0 && c <= 0xEF); | |
| 83 } | |
| 771 | 84 |
| 85 /* Is this the second byte of a Shift-JIS two-byte char? */ | |
| 86 | |
| 826 | 87 inline static int |
| 88 byte_shift_jis_two_byte_2_p (int c) | |
| 89 { | |
| 90 return (c >= 0x40 && c <= 0x7E) || (c >= 0x80 && c <= 0xFC); | |
| 91 } | |
| 92 | |
| 93 inline static int | |
| 94 byte_shift_jis_katakana_p (int c) | |
| 95 { | |
| 96 return c >= 0xA1 && c <= 0xDF; | |
| 97 } | |
| 771 | 98 |
| 3439 | 99 inline static void |
| 100 dynarr_add_2022_one_dimension (Lisp_Object charset, Ibyte c, | |
| 101 unsigned char charmask, | |
| 102 unsigned_char_dynarr *dst) | |
| 103 { | |
| 104 if (XCHARSET_ENCODE_AS_UTF_8 (charset)) | |
| 105 { | |
| 106 encode_unicode_char (charset, c & charmask, 0, | |
| 4096 | 107 dst, UNICODE_UTF_8, 0, 0); |
| 3439 | 108 } |
| 109 else | |
| 110 { | |
| 111 Dynarr_add (dst, c & charmask); | |
| 112 } | |
| 113 } | |
| 114 | |
| 115 inline static void | |
| 116 dynarr_add_2022_two_dimensions (Lisp_Object charset, Ibyte c, | |
| 117 unsigned int ch, | |
| 118 unsigned char charmask, | |
| 119 unsigned_char_dynarr *dst) | |
| 120 { | |
| 121 if (XCHARSET_ENCODE_AS_UTF_8 (charset)) | |
| 122 { | |
| 123 encode_unicode_char (charset, | |
| 124 ch & charmask, | |
| 125 c & charmask, dst, | |
| 4096 | 126 UNICODE_UTF_8, 0, 0); |
| 3439 | 127 } |
| 128 else | |
| 129 { | |
| 130 Dynarr_add (dst, ch & charmask); | |
| 131 Dynarr_add (dst, c & charmask); | |
| 132 } | |
| 133 } | |
| 134 | |
| 771 | 135 /* Convert Shift-JIS data to internal format. */ |
| 136 | |
| 137 static Bytecount | |
| 138 shift_jis_convert (struct coding_stream *str, const UExtbyte *src, | |
| 139 unsigned_char_dynarr *dst, Bytecount n) | |
| 140 { | |
| 141 unsigned int ch = str->ch; | |
| 142 Bytecount orign = n; | |
| 143 | |
| 144 if (str->direction == CODING_DECODE) | |
| 145 { | |
| 146 while (n--) | |
| 147 { | |
| 148 UExtbyte c = *src++; | |
| 149 | |
| 150 if (ch) | |
| 151 { | |
| 152 /* Previous character was first byte of Shift-JIS Kanji char. */ | |
| 826 | 153 if (byte_shift_jis_two_byte_2_p (c)) |
| 771 | 154 { |
| 867 | 155 Ibyte e1, e2; |
| 771 | 156 |
| 157 Dynarr_add (dst, LEADING_BYTE_JAPANESE_JISX0208); | |
| 158 DECODE_SHIFT_JIS (ch, c, e1, e2); | |
| 159 Dynarr_add (dst, e1); | |
| 160 Dynarr_add (dst, e2); | |
| 161 } | |
| 162 else | |
| 163 { | |
| 164 DECODE_ADD_BINARY_CHAR (ch, dst); | |
| 165 DECODE_ADD_BINARY_CHAR (c, dst); | |
| 166 } | |
| 167 ch = 0; | |
| 168 } | |
| 169 else | |
| 170 { | |
| 826 | 171 if (byte_shift_jis_two_byte_1_p (c)) |
| 771 | 172 ch = c; |
| 826 | 173 else if (byte_shift_jis_katakana_p (c)) |
| 771 | 174 { |
| 175 Dynarr_add (dst, LEADING_BYTE_KATAKANA_JISX0201); | |
| 176 Dynarr_add (dst, c); | |
| 177 } | |
| 178 else | |
| 179 DECODE_ADD_BINARY_CHAR (c, dst); | |
| 180 } | |
| 181 } | |
| 182 | |
| 183 if (str->eof) | |
| 184 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst); | |
| 185 } | |
| 186 else | |
| 187 { | |
| 188 while (n--) | |
| 189 { | |
| 867 | 190 Ibyte c = *src++; |
| 826 | 191 if (byte_ascii_p (c)) |
| 771 | 192 { |
| 193 Dynarr_add (dst, c); | |
| 194 ch = 0; | |
| 195 } | |
| 867 | 196 else if (ibyte_leading_byte_p (c)) |
| 771 | 197 ch = (c == LEADING_BYTE_KATAKANA_JISX0201 || |
| 198 c == LEADING_BYTE_JAPANESE_JISX0208_1978 || | |
| 199 c == LEADING_BYTE_JAPANESE_JISX0208) ? c : 0; | |
| 200 else if (ch) | |
| 201 { | |
| 202 if (ch == LEADING_BYTE_KATAKANA_JISX0201) | |
| 203 { | |
| 204 Dynarr_add (dst, c); | |
| 205 ch = 0; | |
| 206 } | |
| 207 else if (ch == LEADING_BYTE_JAPANESE_JISX0208_1978 || | |
| 208 ch == LEADING_BYTE_JAPANESE_JISX0208) | |
| 209 ch = c; | |
| 210 else | |
| 211 { | |
| 212 UExtbyte j1, j2; | |
| 213 ENCODE_SHIFT_JIS (ch, c, j1, j2); | |
| 214 Dynarr_add (dst, j1); | |
| 215 Dynarr_add (dst, j2); | |
| 216 ch = 0; | |
| 217 } | |
| 218 } | |
| 219 } | |
| 220 } | |
| 221 | |
| 222 str->ch = ch; | |
| 223 | |
| 224 return orign; | |
| 225 } | |
| 226 | |
| 227 DEFUN ("decode-shift-jis-char", Fdecode_shift_jis_char, 1, 1, 0, /* | |
| 228 Decode a JISX0208 character of Shift-JIS coding-system. | |
| 229 CODE is the character code in Shift-JIS as a cons of type bytes. | |
| 230 Return the corresponding character. | |
| 231 */ | |
| 232 (code)) | |
| 233 { | |
| 234 int c1, c2, s1, s2; | |
| 235 | |
| 236 CHECK_CONS (code); | |
| 237 CHECK_INT (XCAR (code)); | |
| 238 CHECK_INT (XCDR (code)); | |
| 239 s1 = XINT (XCAR (code)); | |
| 240 s2 = XINT (XCDR (code)); | |
| 826 | 241 if (byte_shift_jis_two_byte_1_p (s1) && |
| 242 byte_shift_jis_two_byte_2_p (s2)) | |
| 771 | 243 { |
| 244 DECODE_SHIFT_JIS (s1, s2, c1, c2); | |
| 867 | 245 return make_char (make_ichar (Vcharset_japanese_jisx0208, |
| 831 | 246 c1 & 0x7F, c2 & 0x7F)); |
| 771 | 247 } |
| 248 else | |
| 249 return Qnil; | |
| 250 } | |
| 251 | |
| 252 DEFUN ("encode-shift-jis-char", Fencode_shift_jis_char, 1, 1, 0, /* | |
| 253 Encode a JISX0208 character CHARACTER to SHIFT-JIS coding-system. | |
| 254 Return the corresponding character code in SHIFT-JIS as a cons of two bytes. | |
| 255 */ | |
| 256 (character)) | |
| 257 { | |
| 258 Lisp_Object charset; | |
| 259 int c1, c2, s1, s2; | |
| 260 | |
| 261 CHECK_CHAR_COERCE_INT (character); | |
| 867 | 262 BREAKUP_ICHAR (XCHAR (character), charset, c1, c2); |
| 771 | 263 if (EQ (charset, Vcharset_japanese_jisx0208)) |
| 264 { | |
| 265 ENCODE_SHIFT_JIS (c1 | 0x80, c2 | 0x80, s1, s2); | |
| 266 return Fcons (make_int (s1), make_int (s2)); | |
| 267 } | |
| 268 else | |
| 269 return Qnil; | |
| 270 } | |
| 271 | |
| 272 | |
| 273 /************************************************************************/ | |
| 274 /* Shift-JIS detector */ | |
| 275 /************************************************************************/ | |
| 276 | |
| 277 DEFINE_DETECTOR (shift_jis); | |
| 278 DEFINE_DETECTOR_CATEGORY (shift_jis, shift_jis); | |
| 279 | |
| 280 struct shift_jis_detector | |
| 281 { | |
| 282 int seen_jisx0208_char_in_c1; | |
| 283 int seen_jisx0208_char_in_upper; | |
| 284 int seen_jisx0201_char; | |
| 285 unsigned int seen_iso2022_esc:1; | |
| 286 unsigned int seen_bad_first_byte:1; | |
| 287 unsigned int seen_bad_second_byte:1; | |
| 288 /* temporary */ | |
| 289 unsigned int in_second_byte:1; | |
| 290 unsigned int first_byte_was_c1:1; | |
| 291 }; | |
| 292 | |
| 293 static void | |
| 294 shift_jis_detect (struct detection_state *st, const UExtbyte *src, | |
| 295 Bytecount n) | |
| 296 { | |
| 297 struct shift_jis_detector *data = DETECTION_STATE_DATA (st, shift_jis); | |
| 298 | |
| 299 while (n--) | |
| 300 { | |
| 301 UExtbyte c = *src++; | |
| 302 if (!data->in_second_byte) | |
| 303 { | |
| 304 if (c >= 0x80 && c <= 0x9F) | |
| 305 data->first_byte_was_c1 = 1; | |
| 306 if (c >= 0xA0 && c <= 0xDF) | |
| 307 data->seen_jisx0201_char++; | |
| 308 else if ((c >= 0x80 && c <= 0x9F) || (c >= 0xE0 && c <= 0xEF)) | |
| 309 data->in_second_byte = 1; | |
| 310 else if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) | |
| 311 data->seen_iso2022_esc = 1; | |
| 312 else if (c >= 0x80) | |
| 313 data->seen_bad_first_byte = 1; | |
| 314 } | |
| 315 else | |
| 316 { | |
| 317 if ((c >= 0x40 && c <= 0x7E) || (c >= 0x80 && c <= 0xFC)) | |
| 318 { | |
| 319 if (data->first_byte_was_c1 || (c >= 0x80 && c <= 0x9F)) | |
| 320 data->seen_jisx0208_char_in_c1++; | |
| 321 else | |
| 322 data->seen_jisx0208_char_in_upper++; | |
| 323 } | |
| 324 else | |
| 325 data->seen_bad_second_byte = 1; | |
| 326 data->in_second_byte = 0; | |
| 327 data->first_byte_was_c1 = 0; | |
| 328 } | |
| 329 } | |
| 330 | |
| 331 if (data->seen_bad_second_byte) | |
| 332 DET_RESULT (st, shift_jis) = DET_NEARLY_IMPOSSIBLE; | |
| 333 else if (data->seen_bad_first_byte) | |
| 334 DET_RESULT (st, shift_jis) = DET_QUITE_IMPROBABLE; | |
| 335 else if (data->seen_iso2022_esc) | |
| 336 DET_RESULT (st, shift_jis) = DET_SOMEWHAT_UNLIKELY; | |
| 337 else if (data->seen_jisx0208_char_in_c1 >= 20 || | |
| 338 (data->seen_jisx0208_char_in_c1 >= 10 && | |
| 339 data->seen_jisx0208_char_in_upper >= 10)) | |
| 340 DET_RESULT (st, shift_jis) = DET_QUITE_PROBABLE; | |
| 341 else if (data->seen_jisx0208_char_in_c1 > 3 || | |
| 342 data->seen_jisx0208_char_in_upper >= 10 || | |
| 343 /* Since the range is limited compared to what is often seen | |
| 344 is typical Latin-X charsets, the fact that we've seen a | |
| 345 bunch of them and none that are invalid is reasonably | |
| 346 strong statistical evidence of this encoding, or at least | |
| 347 not of the common Latin-X ones. */ | |
| 348 data->seen_jisx0201_char >= 100) | |
| 349 DET_RESULT (st, shift_jis) = DET_SOMEWHAT_LIKELY; | |
| 350 else if (data->seen_jisx0208_char_in_c1 > 0 || | |
| 351 data->seen_jisx0208_char_in_upper > 0 || | |
| 352 data->seen_jisx0201_char > 0) | |
| 353 DET_RESULT (st, shift_jis) = DET_SLIGHTLY_LIKELY; | |
| 354 else | |
| 355 DET_RESULT (st, shift_jis) = DET_AS_LIKELY_AS_UNLIKELY; | |
| 356 } | |
| 357 | |
| 358 | |
| 359 /************************************************************************/ | |
| 360 /* Big5 methods */ | |
| 361 /************************************************************************/ | |
| 362 | |
| 2819 | 363 /* BIG5 (used for Mandarin in Taiwan). */ |
| 771 | 364 DEFINE_CODING_SYSTEM_TYPE (big5); |
| 365 | |
| 366 /* BIG5 is a coding system encoding two character sets: ASCII and | |
| 367 Big5. An ASCII character is encoded as is. Big5 is a two-byte | |
| 368 character set and is encoded in two-byte. | |
| 369 | |
| 370 --- CODE RANGE of BIG5 --- | |
| 371 (character set) (range) | |
| 372 ASCII 0x00 .. 0x7F | |
| 373 Big5 (1st byte) 0xA1 .. 0xFE | |
| 374 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE | |
| 375 -------------------------- | |
| 376 | |
| 377 Since the number of characters in Big5 is larger than maximum | |
| 378 characters in Emacs' charset (96x96), it can't be handled as one | |
| 379 charset. So, in XEmacs, Big5 is divided into two: `charset-big5-1' | |
| 380 and `charset-big5-2'. Both <type>s are DIMENSION2_CHARS94. The former | |
| 381 contains frequently used characters and the latter contains less | |
| 382 frequently used characters. */ | |
| 383 | |
| 826 | 384 inline static int |
| 385 byte_big5_two_byte_1_p (int c) | |
| 386 { | |
| 387 return c >= 0xA1 && c <= 0xFE; | |
| 388 } | |
| 771 | 389 |
| 390 /* Is this the second byte of a Shift-JIS two-byte char? */ | |
| 391 | |
| 826 | 392 inline static int |
| 393 byte_big5_two_byte_2_p (int c) | |
| 394 { | |
| 395 return (c >= 0x40 && c <= 0x7E) || (c >= 0xA1 && c <= 0xFE); | |
| 396 } | |
| 771 | 397 |
| 398 /* Number of Big5 characters which have the same code in 1st byte. */ | |
| 399 | |
| 400 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40) | |
| 401 | |
| 402 /* Code conversion macros. These are macros because they are used in | |
| 403 inner loops during code conversion. | |
| 404 | |
| 405 Note that temporary variables in macros introduce the classic | |
| 406 dynamic-scoping problems with variable names. We use capital- | |
| 407 lettered variables in the assumption that XEmacs does not use | |
| 408 capital letters in variables except in a very formalized way | |
| 409 (e.g. Qstring). */ | |
| 410 | |
| 411 /* Convert Big5 code (b1, b2) into its internal string representation | |
| 412 (lb, c1, c2). */ | |
| 413 | |
| 414 /* There is a much simpler way to split the Big5 charset into two. | |
| 415 For the moment I'm going to leave the algorithm as-is because it | |
| 416 claims to separate out the most-used characters into a single | |
| 417 charset, which perhaps will lead to optimizations in various | |
| 418 places. | |
| 419 | |
| 420 The way the algorithm works is something like this: | |
| 421 | |
| 422 Big5 can be viewed as a 94x157 charset, where the row is | |
| 423 encoded into the bytes 0xA1 .. 0xFE and the column is encoded | |
| 424 into the bytes 0x40 .. 0x7E and 0xA1 .. 0xFE. As for frequency, | |
| 425 the split between low and high column numbers is apparently | |
| 426 meaningless; ascending rows produce less and less frequent chars. | |
| 427 Therefore, we assign the lower half of rows (0xA1 .. 0xC8) to | |
| 428 the first charset, and the upper half (0xC9 .. 0xFE) to the | |
| 429 second. To do the conversion, we convert the character into | |
| 430 a single number where 0 .. 156 is the first row, 157 .. 313 | |
| 431 is the second, etc. That way, the characters are ordered by | |
| 432 decreasing frequency. Then we just chop the space in two | |
| 433 and coerce the result into a 94x94 space. | |
| 434 */ | |
| 435 | |
| 436 #define DECODE_BIG5(b1, b2, lb, c1, c2) do \ | |
| 437 { \ | |
| 438 int B1 = b1, B2 = b2; \ | |
| 439 int I \ | |
| 440 = (B1 - 0xA1) * BIG5_SAME_ROW + B2 - (B2 < 0x7F ? 0x40 : 0x62); \ | |
| 441 \ | |
| 442 if (B1 < 0xC9) \ | |
| 443 { \ | |
| 444 lb = LEADING_BYTE_CHINESE_BIG5_1; \ | |
| 445 } \ | |
| 446 else \ | |
| 447 { \ | |
| 448 lb = LEADING_BYTE_CHINESE_BIG5_2; \ | |
| 449 I -= (BIG5_SAME_ROW) * (0xC9 - 0xA1); \ | |
| 450 } \ | |
| 451 c1 = I / (0xFF - 0xA1) + 0xA1; \ | |
| 452 c2 = I % (0xFF - 0xA1) + 0xA1; \ | |
| 453 } while (0) | |
| 454 | |
| 455 /* Convert the internal string representation of a Big5 character | |
| 456 (lb, c1, c2) into Big5 code (b1, b2). */ | |
| 457 | |
| 458 #define ENCODE_BIG5(lb, c1, c2, b1, b2) do \ | |
| 459 { \ | |
| 460 int I = ((c1) - 0xA1) * (0xFF - 0xA1) + ((c2) - 0xA1); \ | |
| 461 \ | |
| 462 if (lb == LEADING_BYTE_CHINESE_BIG5_2) \ | |
| 463 { \ | |
| 464 I += BIG5_SAME_ROW * (0xC9 - 0xA1); \ | |
| 465 } \ | |
| 466 b1 = I / BIG5_SAME_ROW + 0xA1; \ | |
| 467 b2 = I % BIG5_SAME_ROW; \ | |
| 468 b2 += b2 < 0x3F ? 0x40 : 0x62; \ | |
| 469 } while (0) | |
| 470 | |
| 471 /* Convert Big5 data to internal format. */ | |
| 472 | |
| 473 static Bytecount | |
| 474 big5_convert (struct coding_stream *str, const UExtbyte *src, | |
| 475 unsigned_char_dynarr *dst, Bytecount n) | |
| 476 { | |
| 477 unsigned int ch = str->ch; | |
| 478 Bytecount orign = n; | |
| 479 | |
| 480 if (str->direction == CODING_DECODE) | |
| 481 { | |
| 482 while (n--) | |
| 483 { | |
| 484 UExtbyte c = *src++; | |
| 485 if (ch) | |
| 486 { | |
| 487 /* Previous character was first byte of Big5 char. */ | |
| 826 | 488 if (byte_big5_two_byte_2_p (c)) |
| 771 | 489 { |
| 867 | 490 Ibyte b1, b2, b3; |
| 771 | 491 DECODE_BIG5 (ch, c, b1, b2, b3); |
| 492 Dynarr_add (dst, b1); | |
| 493 Dynarr_add (dst, b2); | |
| 494 Dynarr_add (dst, b3); | |
| 495 } | |
| 496 else | |
| 497 { | |
| 498 DECODE_ADD_BINARY_CHAR (ch, dst); | |
| 499 DECODE_ADD_BINARY_CHAR (c, dst); | |
| 500 } | |
| 501 ch = 0; | |
| 502 } | |
| 503 else | |
| 504 { | |
| 826 | 505 if (byte_big5_two_byte_1_p (c)) |
| 771 | 506 ch = c; |
| 507 else | |
| 508 DECODE_ADD_BINARY_CHAR (c, dst); | |
| 509 } | |
| 510 } | |
| 511 | |
| 512 if (str->eof) | |
| 513 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst); | |
| 514 } | |
| 515 else | |
| 516 { | |
| 517 while (n--) | |
| 518 { | |
| 867 | 519 Ibyte c = *src++; |
| 826 | 520 if (byte_ascii_p (c)) |
| 771 | 521 { |
| 522 /* ASCII. */ | |
| 523 Dynarr_add (dst, c); | |
| 524 } | |
| 867 | 525 else if (ibyte_leading_byte_p (c)) |
| 771 | 526 { |
| 527 if (c == LEADING_BYTE_CHINESE_BIG5_1 || | |
| 528 c == LEADING_BYTE_CHINESE_BIG5_2) | |
| 529 { | |
| 530 /* A recognized leading byte. */ | |
| 531 ch = c; | |
| 532 continue; /* not done with this character. */ | |
| 533 } | |
| 534 /* otherwise just ignore this character. */ | |
| 535 } | |
| 536 else if (ch == LEADING_BYTE_CHINESE_BIG5_1 || | |
| 537 ch == LEADING_BYTE_CHINESE_BIG5_2) | |
| 538 { | |
| 539 /* Previous char was a recognized leading byte. */ | |
| 540 ch = (ch << 8) | c; | |
| 541 continue; /* not done with this character. */ | |
| 542 } | |
| 543 else if (ch) | |
| 544 { | |
| 545 /* Encountering second byte of a Big5 character. */ | |
| 546 UExtbyte b1, b2; | |
| 547 | |
| 548 ENCODE_BIG5 (ch >> 8, ch & 0xFF, c, b1, b2); | |
| 549 Dynarr_add (dst, b1); | |
| 550 Dynarr_add (dst, b2); | |
| 551 } | |
| 552 | |
| 553 ch = 0; | |
| 554 } | |
| 555 } | |
| 556 | |
| 557 str->ch = ch; | |
| 558 return orign; | |
| 559 } | |
| 560 | |
| 867 | 561 Ichar |
| 771 | 562 decode_big5_char (int b1, int b2) |
| 563 { | |
| 826 | 564 if (byte_big5_two_byte_1_p (b1) && |
| 565 byte_big5_two_byte_2_p (b2)) | |
| 771 | 566 { |
| 567 int leading_byte; | |
| 568 Lisp_Object charset; | |
| 569 int c1, c2; | |
| 570 | |
| 571 DECODE_BIG5 (b1, b2, leading_byte, c1, c2); | |
| 826 | 572 charset = charset_by_leading_byte (leading_byte); |
| 867 | 573 return make_ichar (charset, c1 & 0x7F, c2 & 0x7F); |
| 771 | 574 } |
| 575 else | |
| 576 return -1; | |
| 577 } | |
| 578 | |
| 579 DEFUN ("decode-big5-char", Fdecode_big5_char, 1, 1, 0, /* | |
| 580 Convert Big Five character codes in CODE into a character. | |
| 581 CODE is a cons of two integers specifying the codepoints in Big Five. | |
| 582 Return the corresponding character, or nil if the codepoints are out of range. | |
| 583 | |
| 584 The term `decode' is used because the codepoints can be viewed as the | |
| 585 representation of the character in the external Big Five encoding, and thus | |
| 586 converting them to a character is analogous to any other operation that | |
| 587 decodes an external representation. | |
| 588 */ | |
| 589 (code)) | |
| 590 { | |
| 867 | 591 Ichar ch; |
| 771 | 592 |
| 593 CHECK_CONS (code); | |
| 594 CHECK_INT (XCAR (code)); | |
| 595 CHECK_INT (XCDR (code)); | |
| 596 ch = decode_big5_char (XINT (XCAR (code)), XINT (XCDR (code))); | |
| 597 if (ch == -1) | |
| 598 return Qnil; | |
| 599 else | |
| 600 return make_char (ch); | |
| 601 } | |
| 602 | |
| 603 DEFUN ("encode-big5-char", Fencode_big5_char, 1, 1, 0, /* | |
| 604 Convert the specified Big Five character into its codepoints. | |
| 605 The codepoints are returned as a cons of two integers, specifying the | |
| 606 Big Five codepoints. See `decode-big5-char' for the reason why the | |
| 607 term `encode' is used for this operation. | |
| 608 */ | |
| 609 (character)) | |
| 610 { | |
| 611 Lisp_Object charset; | |
| 612 int c1, c2, b1, b2; | |
| 613 | |
| 614 CHECK_CHAR_COERCE_INT (character); | |
| 867 | 615 BREAKUP_ICHAR (XCHAR (character), charset, c1, c2); |
| 771 | 616 if (EQ (charset, Vcharset_chinese_big5_1) || |
| 617 EQ (charset, Vcharset_chinese_big5_2)) | |
| 618 { | |
| 619 ENCODE_BIG5 (XCHARSET_LEADING_BYTE (charset), c1 | 0x80, c2 | 0x80, | |
| 620 b1, b2); | |
| 621 return Fcons (make_int (b1), make_int (b2)); | |
| 622 } | |
| 623 else | |
| 624 return Qnil; | |
| 625 } | |
| 626 | |
| 627 | |
| 628 /************************************************************************/ | |
| 629 /* Big5 detector */ | |
| 630 /************************************************************************/ | |
| 631 | |
| 632 DEFINE_DETECTOR (big5); | |
| 633 DEFINE_DETECTOR_CATEGORY (big5, big5); | |
| 634 | |
| 635 struct big5_detector | |
| 636 { | |
| 637 int seen_big5_char; | |
| 985 | 638 int seen_euc_char; |
| 771 | 639 unsigned int seen_iso2022_esc:1; |
| 640 unsigned int seen_bad_first_byte:1; | |
| 641 unsigned int seen_bad_second_byte:1; | |
| 642 | |
| 643 /* temporary */ | |
| 644 unsigned int in_second_byte:1; | |
| 645 }; | |
| 646 | |
| 647 static void | |
| 648 big5_detect (struct detection_state *st, const UExtbyte *src, | |
| 649 Bytecount n) | |
| 650 { | |
| 651 struct big5_detector *data = DETECTION_STATE_DATA (st, big5); | |
| 652 | |
| 653 while (n--) | |
| 654 { | |
| 655 UExtbyte c = *src++; | |
| 656 if (!data->in_second_byte) | |
| 657 { | |
| 658 if (c >= 0xA1 && c <= 0xFE) | |
| 659 data->in_second_byte = 1; | |
| 660 else if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) | |
| 661 data->seen_iso2022_esc = 1; | |
| 662 else if (c >= 0x80) | |
| 663 data->seen_bad_first_byte = 1; | |
| 664 } | |
| 665 else | |
| 666 { | |
| 667 data->in_second_byte = 0; | |
| 985 | 668 if (c >= 0xA1 && c <= 0xFE) |
| 669 data->seen_euc_char++; | |
| 670 else if (c >= 0x40 && c <= 0x7E) | |
| 771 | 671 data->seen_big5_char++; |
| 672 else | |
| 673 data->seen_bad_second_byte = 1; | |
| 674 } | |
| 675 } | |
| 676 | |
| 677 if (data->seen_bad_second_byte) | |
| 678 DET_RESULT (st, big5) = DET_NEARLY_IMPOSSIBLE; | |
| 679 else if (data->seen_bad_first_byte) | |
| 680 DET_RESULT (st, big5) = DET_QUITE_IMPROBABLE; | |
| 681 else if (data->seen_iso2022_esc) | |
| 682 DET_RESULT (st, big5) = DET_SOMEWHAT_UNLIKELY; | |
| 683 else if (data->seen_big5_char >= 4) | |
| 684 DET_RESULT (st, big5) = DET_SOMEWHAT_LIKELY; | |
| 985 | 685 else if (data->seen_euc_char) |
| 686 DET_RESULT (st, big5) = DET_SLIGHTLY_LIKELY; | |
| 771 | 687 else |
| 688 DET_RESULT (st, big5) = DET_AS_LIKELY_AS_UNLIKELY; | |
| 689 } | |
| 690 | |
| 691 | |
| 692 /************************************************************************/ | |
| 693 /* ISO2022 methods */ | |
| 694 /************************************************************************/ | |
| 695 | |
| 696 /* Any ISO-2022-compliant coding system. Includes JIS, EUC, CTEXT | |
| 697 (Compound Text, the encoding of selections in X Windows). See below for | |
| 698 a complete description of ISO-2022. */ | |
| 699 | |
| 700 /* Flags indicating what we've seen so far when parsing an | |
| 701 ISO2022 escape sequence. */ | |
| 702 enum iso_esc_flag | |
| 703 { | |
| 704 /* Partial sequences */ | |
| 705 ISO_ESC_NOTHING, /* Nothing has been seen. */ | |
| 706 ISO_ESC, /* We've seen ESC. */ | |
| 707 ISO_ESC_2_4, /* We've seen ESC $. This indicates | |
| 708 that we're designating a multi-byte, rather | |
| 709 than a single-byte, character set. */ | |
| 3439 | 710 ISO_ESC_2_5, /* We've seen ESC %. This indicates an escape to a |
| 711 Unicode coding system; the only one of these | |
| 712 we're prepared to deal with is UTF-8, which has | |
| 713 the next character as G. */ | |
| 771 | 714 ISO_ESC_2_8, /* We've seen ESC 0x28, i.e. ESC (. |
| 715 This means designate a 94-character | |
| 716 character set into G0. */ | |
| 717 ISO_ESC_2_9, /* We've seen ESC 0x29 -- designate a | |
| 718 94-character character set into G1. */ | |
| 719 ISO_ESC_2_10, /* We've seen ESC 0x2A. */ | |
| 720 ISO_ESC_2_11, /* We've seen ESC 0x2B. */ | |
| 721 ISO_ESC_2_12, /* We've seen ESC 0x2C -- designate a | |
| 722 96-character character set into G0. | |
| 723 (This is not ISO2022-standard. | |
| 724 The following 96-character | |
| 725 control sequences are standard, | |
| 726 though.) */ | |
| 727 ISO_ESC_2_13, /* We've seen ESC 0x2D -- designate a | |
| 728 96-character character set into G1. | |
| 729 */ | |
| 730 ISO_ESC_2_14, /* We've seen ESC 0x2E. */ | |
| 731 ISO_ESC_2_15, /* We've seen ESC 0x2F. */ | |
| 732 ISO_ESC_2_4_8, /* We've seen ESC $ 0x28 -- designate | |
| 733 a 94^N character set into G0. */ | |
| 734 ISO_ESC_2_4_9, /* We've seen ESC $ 0x29. */ | |
| 735 ISO_ESC_2_4_10, /* We've seen ESC $ 0x2A. */ | |
| 736 ISO_ESC_2_4_11, /* We've seen ESC $ 0x2B. */ | |
| 737 ISO_ESC_2_4_12, /* We've seen ESC $ 0x2C. */ | |
| 738 ISO_ESC_2_4_13, /* We've seen ESC $ 0x2D. */ | |
| 739 ISO_ESC_2_4_14, /* We've seen ESC $ 0x2E. */ | |
| 740 ISO_ESC_2_4_15, /* We've seen ESC $ 0x2F. */ | |
| 741 ISO_ESC_5_11, /* We've seen ESC [ or 0x9B. This | |
| 742 starts a directionality-control | |
| 743 sequence. The next character | |
| 744 must be 0, 1, 2, or ]. */ | |
| 745 ISO_ESC_5_11_0, /* We've seen 0x9B 0. The next character must be ]. */ | |
| 746 ISO_ESC_5_11_1, /* We've seen 0x9B 1. The next character must be ]. */ | |
| 747 ISO_ESC_5_11_2, /* We've seen 0x9B 2. The next character must be ]. */ | |
| 748 | |
| 749 /* Full sequences. */ | |
| 750 ISO_ESC_START_COMPOSITE, /* Private usage for START COMPOSING */ | |
| 751 ISO_ESC_END_COMPOSITE, /* Private usage for END COMPOSING */ | |
| 752 ISO_ESC_SINGLE_SHIFT, /* We've seen a complete single-shift sequence. */ | |
| 753 ISO_ESC_LOCKING_SHIFT,/* We've seen a complete locking-shift sequence. */ | |
| 754 ISO_ESC_DESIGNATE, /* We've seen a complete designation sequence. */ | |
| 755 ISO_ESC_DIRECTIONALITY,/* We've seen a complete ISO6429 directionality | |
| 756 sequence. */ | |
| 757 ISO_ESC_LITERAL /* We've seen a literal character ala | |
| 758 escape-quoting. */ | |
| 759 }; | |
| 760 | |
| 761 enum iso_error | |
| 762 { | |
| 763 ISO_ERROR_BAD_FINAL, | |
| 764 ISO_ERROR_UNKWOWN_ESC_SEQUENCE, | |
| 765 ISO_ERROR_INVALID_CODE_POINT_CHARACTER, | |
| 766 }; | |
| 767 | |
| 768 | |
| 769 /* Flags indicating current state while converting code. */ | |
| 770 | |
| 771 /************ Used during encoding and decoding: ************/ | |
| 772 /* If set, the current directionality is right-to-left. Otherwise, it's | |
| 773 left-to-right. */ | |
| 774 #define ISO_STATE_R2L (1 << 0) | |
| 775 | |
| 776 /************ Used during encoding: ************/ | |
| 777 /* If set, we just saw a CR. */ | |
| 778 #define ISO_STATE_CR (1 << 1) | |
| 779 | |
| 780 /************ Used during decoding: ************/ | |
| 781 /* If set, we're currently parsing an escape sequence and the upper 16 bits | |
| 782 should be looked at to indicate what partial escape sequence we've seen | |
| 783 so far. Otherwise, we're running through actual text. */ | |
| 784 #define ISO_STATE_ESCAPE (1 << 2) | |
| 785 /* If set, G2 is invoked into GL, but only for the next character. */ | |
| 786 #define ISO_STATE_SS2 (1 << 3) | |
| 787 /* If set, G3 is invoked into GL, but only for the next character. If both | |
| 788 ISO_STATE_SS2 and ISO_STATE_SS3 are set, ISO_STATE_SS2 overrides; but | |
| 789 this probably indicates an error in the text encoding. */ | |
| 790 #define ISO_STATE_SS3 (1 << 4) | |
| 791 /* If set, we're currently processing a composite character (i.e. a | |
| 792 character constructed by overstriking two or more characters). */ | |
| 793 #define ISO_STATE_COMPOSITE (1 << 5) | |
| 794 | |
| 3439 | 795 /* If set, we're processing UTF-8 encoded data within ISO-2022 |
| 796 processing. */ | |
| 797 #define ISO_STATE_UTF_8 (1 << 6) | |
| 798 | |
| 771 | 799 /* ISO_STATE_LOCK is the mask of flags that remain on until explicitly |
| 800 turned off when in the ISO2022 encoder/decoder. Other flags are turned | |
| 801 off at the end of processing each character or escape sequence. */ | |
| 802 # define ISO_STATE_LOCK \ | |
| 3439 | 803 (ISO_STATE_COMPOSITE | ISO_STATE_R2L | ISO_STATE_UTF_8) |
| 771 | 804 |
| 805 typedef struct charset_conversion_spec | |
| 806 { | |
| 807 Lisp_Object from_charset; | |
| 808 Lisp_Object to_charset; | |
| 809 } charset_conversion_spec; | |
| 810 | |
| 811 typedef struct | |
| 812 { | |
| 813 Dynarr_declare (charset_conversion_spec); | |
| 814 } charset_conversion_spec_dynarr; | |
| 815 | |
| 816 struct iso2022_coding_system | |
| 817 { | |
| 818 /* What are the charsets to be initially designated to G0, G1, | |
| 819 G2, G3? If t, no charset is initially designated. If nil, | |
| 820 no charset is initially designated and no charset is allowed | |
| 821 to be designated. */ | |
| 822 Lisp_Object initial_charset[4]; | |
| 823 | |
| 824 /* If true, a designation escape sequence needs to be sent on output | |
| 825 for the charset in G[0-3] before that charset is used. */ | |
| 826 unsigned char force_charset_on_output[4]; | |
| 827 | |
| 828 charset_conversion_spec_dynarr *input_conv; | |
| 829 charset_conversion_spec_dynarr *output_conv; | |
| 830 | |
| 831 unsigned int shoort :1; /* C makes you speak Dutch */ | |
| 832 unsigned int no_ascii_eol :1; | |
| 833 unsigned int no_ascii_cntl :1; | |
| 834 unsigned int seven :1; | |
| 835 unsigned int lock_shift :1; | |
| 836 unsigned int no_iso6429 :1; | |
| 837 unsigned int escape_quoted :1; | |
| 838 }; | |
| 839 | |
| 840 #define CODING_SYSTEM_ISO2022_INITIAL_CHARSET(codesys, g) \ | |
| 841 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->initial_charset[g]) | |
| 842 #define CODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT(codesys, g) \ | |
| 843 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->force_charset_on_output[g]) | |
| 844 #define CODING_SYSTEM_ISO2022_SHORT(codesys) \ | |
| 845 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->shoort) | |
| 846 #define CODING_SYSTEM_ISO2022_NO_ASCII_EOL(codesys) \ | |
| 847 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->no_ascii_eol) | |
| 848 #define CODING_SYSTEM_ISO2022_NO_ASCII_CNTL(codesys) \ | |
| 849 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->no_ascii_cntl) | |
| 850 #define CODING_SYSTEM_ISO2022_SEVEN(codesys) \ | |
| 851 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->seven) | |
| 852 #define CODING_SYSTEM_ISO2022_LOCK_SHIFT(codesys) \ | |
| 853 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->lock_shift) | |
| 854 #define CODING_SYSTEM_ISO2022_NO_ISO6429(codesys) \ | |
| 855 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->no_iso6429) | |
| 856 #define CODING_SYSTEM_ISO2022_ESCAPE_QUOTED(codesys) \ | |
| 857 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->escape_quoted) | |
| 858 #define CODING_SYSTEM_ISO2022_INPUT_CONV(codesys) \ | |
| 859 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->input_conv) | |
| 860 #define CODING_SYSTEM_ISO2022_OUTPUT_CONV(codesys) \ | |
| 861 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->output_conv) | |
| 862 | |
| 863 #define XCODING_SYSTEM_ISO2022_INITIAL_CHARSET(codesys, g) \ | |
| 864 CODING_SYSTEM_ISO2022_INITIAL_CHARSET (XCODING_SYSTEM (codesys), g) | |
| 865 #define XCODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT(codesys, g) \ | |
| 866 CODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT (XCODING_SYSTEM (codesys), g) | |
| 867 #define XCODING_SYSTEM_ISO2022_SHORT(codesys) \ | |
| 868 CODING_SYSTEM_ISO2022_SHORT (XCODING_SYSTEM (codesys)) | |
| 869 #define XCODING_SYSTEM_ISO2022_NO_ASCII_EOL(codesys) \ | |
| 870 CODING_SYSTEM_ISO2022_NO_ASCII_EOL (XCODING_SYSTEM (codesys)) | |
| 871 #define XCODING_SYSTEM_ISO2022_NO_ASCII_CNTL(codesys) \ | |
| 872 CODING_SYSTEM_ISO2022_NO_ASCII_CNTL (XCODING_SYSTEM (codesys)) | |
| 873 #define XCODING_SYSTEM_ISO2022_SEVEN(codesys) \ | |
| 874 CODING_SYSTEM_ISO2022_SEVEN (XCODING_SYSTEM (codesys)) | |
| 875 #define XCODING_SYSTEM_ISO2022_LOCK_SHIFT(codesys) \ | |
| 876 CODING_SYSTEM_ISO2022_LOCK_SHIFT (XCODING_SYSTEM (codesys)) | |
| 877 #define XCODING_SYSTEM_ISO2022_NO_ISO6429(codesys) \ | |
| 878 CODING_SYSTEM_ISO2022_NO_ISO6429 (XCODING_SYSTEM (codesys)) | |
| 879 #define XCODING_SYSTEM_ISO2022_ESCAPE_QUOTED(codesys) \ | |
| 880 CODING_SYSTEM_ISO2022_ESCAPE_QUOTED (XCODING_SYSTEM (codesys)) | |
| 881 #define XCODING_SYSTEM_ISO2022_INPUT_CONV(codesys) \ | |
| 882 CODING_SYSTEM_ISO2022_INPUT_CONV (XCODING_SYSTEM (codesys)) | |
| 883 #define XCODING_SYSTEM_ISO2022_OUTPUT_CONV(codesys) \ | |
| 884 CODING_SYSTEM_ISO2022_OUTPUT_CONV (XCODING_SYSTEM (codesys)) | |
| 885 | |
| 886 /* Additional information used by the ISO2022 decoder and detector. */ | |
| 887 struct iso2022_coding_stream | |
| 888 { | |
| 889 /* CHARSET holds the character sets currently assigned to the G0 | |
| 890 through G3 variables. It is initialized from the array | |
| 891 INITIAL_CHARSET in CODESYS. */ | |
| 892 Lisp_Object charset[4]; | |
| 893 | |
| 894 /* Which registers are currently invoked into the left (GL) and | |
| 895 right (GR) halves of the 8-bit encoding space? */ | |
| 896 int register_left, register_right; | |
| 897 | |
| 898 /* FLAGS holds flags indicating the current state of the encoding. Some of | |
| 899 these flags are actually part of the state-dependent data and should be | |
| 900 moved there. */ | |
| 901 unsigned int flags; | |
| 902 | |
| 903 /**************** for decoding ****************/ | |
| 904 | |
| 905 /* ISO_ESC holds a value indicating part of an escape sequence | |
| 906 that has already been seen. */ | |
| 907 enum iso_esc_flag esc; | |
| 908 | |
| 909 /* This records the bytes we've seen so far in an escape sequence, | |
| 910 in case the sequence is invalid (we spit out the bytes unchanged). */ | |
| 911 unsigned char esc_bytes[8]; | |
| 912 | |
| 913 /* Index for next byte to store in ISO escape sequence. */ | |
| 914 int esc_bytes_index; | |
| 915 | |
| 916 #ifdef ENABLE_COMPOSITE_CHARS | |
| 917 /* Stuff seen so far when composing a string. */ | |
| 918 unsigned_char_dynarr *composite_chars; | |
| 919 #endif | |
| 920 | |
| 921 /* If we saw an invalid designation sequence for a particular | |
| 922 register, we flag it here and switch to ASCII. The next time we | |
| 923 see a valid designation for this register, we turn off the flag | |
| 924 and do the designation normally, but pretend the sequence was | |
| 925 invalid. The effect of all this is that (most of the time) the | |
| 926 escape sequences for both the switch to the unknown charset, and | |
| 927 the switch back to the known charset, get inserted literally into | |
| 928 the buffer and saved out as such. The hope is that we can | |
| 929 preserve the escape sequences so that the resulting written out | |
| 930 file makes sense. If we don't do any of this, the designation | |
| 931 to the invalid charset will be preserved but that switch back | |
| 932 to the known charset will probably get eaten because it was | |
| 933 the same charset that was already present in the register. */ | |
| 934 unsigned char invalid_designated[4]; | |
| 935 | |
| 936 /* We try to do similar things as above for direction-switching | |
| 937 sequences. If we encountered a direction switch while an | |
| 938 invalid designation was present, or an invalid designation | |
| 939 just after a direction switch (i.e. no valid designation | |
| 940 encountered yet), we insert the direction-switch escape | |
| 941 sequence literally into the output stream, and later on | |
| 942 insert the corresponding direction-restoring escape sequence | |
| 943 literally also. */ | |
| 944 unsigned int switched_dir_and_no_valid_charset_yet :1; | |
| 945 unsigned int invalid_switch_dir :1; | |
| 946 | |
| 947 /* Tells the decoder to output the escape sequence literally | |
| 948 even though it was valid. Used in the games we play to | |
| 949 avoid lossage when we encounter invalid designations. */ | |
| 950 unsigned int output_literally :1; | |
| 951 /* We encountered a direction switch followed by an invalid | |
| 952 designation. We didn't output the direction switch | |
| 953 literally because we didn't know about the invalid designation; | |
| 954 but we have to do so now. */ | |
| 955 unsigned int output_direction_sequence :1; | |
| 956 | |
| 957 /**************** for encoding ****************/ | |
| 958 | |
| 959 /* Whether we need to explicitly designate the charset in the | |
| 960 G? register before using it. It is initialized from the | |
| 961 array FORCE_CHARSET_ON_OUTPUT in CODESYS. */ | |
| 962 unsigned char force_charset_on_output[4]; | |
| 963 | |
| 964 /* Other state variables that need to be preserved across | |
| 965 invocations. */ | |
| 966 Lisp_Object current_charset; | |
| 967 int current_half; | |
| 968 int current_char_boundary; | |
| 3439 | 969 |
| 970 /* Used for handling UTF-8. */ | |
| 971 unsigned char counter; | |
| 4096 | 972 unsigned char indicated_length; |
| 771 | 973 }; |
| 974 | |
| 1204 | 975 static const struct memory_description ccs_description_1[] = |
| 771 | 976 { |
| 977 { XD_LISP_OBJECT, offsetof (charset_conversion_spec, from_charset) }, | |
| 978 { XD_LISP_OBJECT, offsetof (charset_conversion_spec, to_charset) }, | |
| 979 { XD_END } | |
| 980 }; | |
| 981 | |
| 1204 | 982 static const struct sized_memory_description ccs_description = |
| 771 | 983 { |
| 984 sizeof (charset_conversion_spec), | |
| 985 ccs_description_1 | |
| 986 }; | |
| 987 | |
| 1204 | 988 static const struct memory_description ccsd_description_1[] = |
| 771 | 989 { |
| 990 XD_DYNARR_DESC (charset_conversion_spec_dynarr, &ccs_description), | |
| 991 { XD_END } | |
| 992 }; | |
| 993 | |
| 1204 | 994 static const struct sized_memory_description ccsd_description = |
| 771 | 995 { |
| 996 sizeof (charset_conversion_spec_dynarr), | |
| 997 ccsd_description_1 | |
| 998 }; | |
| 999 | |
| 1204 | 1000 static const struct memory_description iso2022_coding_system_description[] = { |
| 1001 { XD_LISP_OBJECT_ARRAY, offsetof (struct iso2022_coding_system, | |
| 1002 initial_charset), 4 }, | |
| 2367 | 1003 { XD_BLOCK_PTR, offsetof (struct iso2022_coding_system, input_conv), |
| 2551 | 1004 1, { &ccsd_description } }, |
| 2367 | 1005 { XD_BLOCK_PTR, offsetof (struct iso2022_coding_system, output_conv), |
| 2551 | 1006 1, { &ccsd_description } }, |
| 771 | 1007 { XD_END } |
| 1008 }; | |
| 1009 | |
| 1204 | 1010 DEFINE_CODING_SYSTEM_TYPE_WITH_DATA (iso2022); |
| 1011 | |
| 771 | 1012 /* The following note taken directly from FSF 21.0.103. */ |
| 1013 | |
| 1014 /* The following note describes the coding system ISO2022 briefly. | |
| 1015 Since the intention of this note is to help understand the | |
| 1016 functions in this file, some parts are NOT ACCURATE or are OVERLY | |
| 1017 SIMPLIFIED. For thorough understanding, please refer to the | |
| 1018 original document of ISO2022. This is equivalent to the standard | |
| 1019 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*). | |
| 1020 | |
| 1021 ISO2022 provides many mechanisms to encode several character sets | |
| 1022 in 7-bit and 8-bit environments. For 7-bit environments, all text | |
| 1023 is encoded using bytes less than 128. This may make the encoded | |
| 1024 text a little bit longer, but the text passes more easily through | |
| 1025 several types of gateway, some of which strip off the MSB (Most | |
| 1026 Significant Bit). | |
| 1027 | |
| 1028 There are two kinds of character sets: control character sets and | |
| 1029 graphic character sets. The former contain control characters such | |
| 1030 as `newline' and `escape' to provide control functions (control | |
| 1031 functions are also provided by escape sequences). The latter | |
| 1032 contain graphic characters such as 'A' and '-'. Emacs recognizes | |
| 1033 two control character sets and many graphic character sets. | |
| 1034 | |
| 1035 Graphic character sets are classified into one of the following | |
| 1036 four classes, according to the number of bytes (DIMENSION) and | |
| 1037 number of characters in one dimension (CHARS) of the set: | |
| 1038 - DIMENSION1_CHARS94 | |
| 1039 - DIMENSION1_CHARS96 | |
| 1040 - DIMENSION2_CHARS94 | |
| 1041 - DIMENSION2_CHARS96 | |
| 1042 | |
| 1043 In addition, each character set is assigned an identification tag, | |
| 1044 unique for each set, called the "final character" (denoted as <F> | |
| 1045 hereafter). The <F> of each character set is decided by ECMA(*) | |
| 1046 when it is registered in ISO. The code range of <F> is 0x30..0x7F | |
| 1047 (0x30..0x3F are for private use only). | |
| 1048 | |
| 1049 Note (*): ECMA = European Computer Manufacturers Association | |
| 1050 | |
| 1051 Here are examples of graphic character sets [NAME(<F>)]: | |
| 1052 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ... | |
| 1053 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ... | |
| 1054 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ... | |
| 1055 o DIMENSION2_CHARS96 -- none for the moment | |
| 1056 | |
| 1057 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR. | |
| 1058 C0 [0x00..0x1F] -- control character plane 0 | |
| 1059 GL [0x20..0x7F] -- graphic character plane 0 | |
| 1060 C1 [0x80..0x9F] -- control character plane 1 | |
| 1061 GR [0xA0..0xFF] -- graphic character plane 1 | |
| 1062 | |
| 1063 A control character set is directly designated and invoked to C0 or | |
| 1064 C1 by an escape sequence. The most common case is that: | |
| 1065 - ISO646's control character set is designated/invoked to C0, and | |
| 1066 - ISO6429's control character set is designated/invoked to C1, | |
| 1067 and usually these designations/invocations are omitted in encoded | |
| 1068 text. In a 7-bit environment, only C0 can be used, and a control | |
| 1069 character for C1 is encoded by an appropriate escape sequence to | |
| 1070 fit into the environment. All control characters for C1 are | |
| 1071 defined to have corresponding escape sequences. | |
| 1072 | |
| 1073 A graphic character set is at first designated to one of four | |
| 1074 graphic registers (G0 through G3), then these graphic registers are | |
| 1075 invoked to GL or GR. These designations and invocations can be | |
| 1076 done independently. The most common case is that G0 is invoked to | |
| 1077 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually | |
| 1078 these invocations and designations are omitted in encoded text. | |
| 1079 In a 7-bit environment, only GL can be used. | |
| 1080 | |
| 1081 When a graphic character set of CHARS94 is invoked to GL, codes | |
| 1082 0x20 and 0x7F of the GL area work as control characters SPACE and | |
| 1083 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not | |
| 1084 be used. | |
| 1085 | |
| 1086 There are two ways of invocation: locking-shift and single-shift. | |
| 1087 With locking-shift, the invocation lasts until the next different | |
| 1088 invocation, whereas with single-shift, the invocation affects the | |
| 1089 following character only and doesn't affect the locking-shift | |
| 1090 state. Invocations are done by the following control characters or | |
| 1091 escape sequences: | |
| 1092 | |
| 1093 ---------------------------------------------------------------------- | |
| 1094 abbrev function cntrl escape seq description | |
| 1095 ---------------------------------------------------------------------- | |
| 1096 SI/LS0 (shift-in) 0x0F none invoke G0 into GL | |
| 1097 SO/LS1 (shift-out) 0x0E none invoke G1 into GL | |
| 1098 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL | |
| 1099 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL | |
| 1100 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*) | |
| 1101 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*) | |
| 1102 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*) | |
| 1103 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char | |
| 1104 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char | |
| 1105 ---------------------------------------------------------------------- | |
| 1106 (*) These are not used by any known coding system. | |
| 1107 | |
| 1108 Control characters for these functions are defined by macros | |
| 1109 ISO_CODE_XXX in `coding.h'. | |
| 1110 | |
| 1111 Designations are done by the following escape sequences: | |
| 1112 ---------------------------------------------------------------------- | |
| 1113 escape sequence description | |
| 1114 ---------------------------------------------------------------------- | |
| 1115 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0 | |
| 1116 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1 | |
| 1117 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2 | |
| 1118 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3 | |
| 1119 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*) | |
| 1120 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1 | |
| 1121 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2 | |
| 1122 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3 | |
| 1123 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**) | |
| 1124 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1 | |
| 1125 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2 | |
| 1126 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3 | |
| 1127 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*) | |
| 1128 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1 | |
| 1129 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2 | |
| 1130 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3 | |
| 1131 ---------------------------------------------------------------------- | |
| 1132 | |
| 1133 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set | |
| 1134 of dimension 1, chars 94, and final character <F>, etc... | |
| 1135 | |
| 1136 Note (*): Although these designations are not allowed in ISO2022, | |
| 1137 Emacs accepts them on decoding, and produces them on encoding | |
| 1138 CHARS96 character sets in a coding system which is characterized as | |
| 1139 7-bit environment, non-locking-shift, and non-single-shift. | |
| 1140 | |
| 1141 Note (**): If <F> is '@', 'A', or 'B', the intermediate character | |
| 1142 '(' can be omitted. We refer to this as "short-form" hereafter. | |
| 1143 | |
| 1144 Now you may notice that there are a lot of ways of encoding the | |
| 1145 same multilingual text in ISO2022. Actually, there exist many | |
| 1146 coding systems such as Compound Text (used in X11's inter client | |
| 1147 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR | |
| 1148 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian | |
| 1149 localized platforms), and all of these are variants of ISO2022. | |
| 1150 | |
| 1151 In addition to the above, Emacs handles two more kinds of escape | |
| 1152 sequences: ISO6429's direction specification and Emacs' private | |
| 1153 sequence for specifying character composition. | |
| 1154 | |
| 1155 ISO6429's direction specification takes the following form: | |
| 1156 o CSI ']' -- end of the current direction | |
| 1157 o CSI '0' ']' -- end of the current direction | |
| 1158 o CSI '1' ']' -- start of left-to-right text | |
| 1159 o CSI '2' ']' -- start of right-to-left text | |
| 1160 The control character CSI (0x9B: control sequence introducer) is | |
| 1161 abbreviated to the escape sequence ESC '[' in a 7-bit environment. | |
| 1162 | |
| 1163 Character composition specification takes the following form: | |
| 1164 o ESC '0' -- start relative composition | |
| 1165 o ESC '1' -- end composition | |
| 1166 o ESC '2' -- start rule-base composition (*) | |
| 1167 o ESC '3' -- start relative composition with alternate chars (**) | |
| 1168 o ESC '4' -- start rule-base composition with alternate chars (**) | |
| 1169 Since these are not standard escape sequences of any ISO standard, | |
| 1170 the use of them with these meanings is restricted to Emacs only. | |
| 1171 | |
| 1172 (*) This form is used only in Emacs 20.5 and older versions, | |
| 1173 but the newer versions can safely decode it. | |
| 1174 (**) This form is used only in Emacs 21.1 and newer versions, | |
| 1175 and the older versions can't decode it. | |
| 1176 | |
| 1177 Here's a list of example usages of these composition escape | |
| 1178 sequences (categorized by `enum composition_method'). | |
| 1179 | |
| 1180 COMPOSITION_RELATIVE: | |
| 1181 ESC 0 CHAR [ CHAR ] ESC 1 | |
| 1182 COMPOSITION_WITH_RULE: | |
| 1183 ESC 2 CHAR [ RULE CHAR ] ESC 1 | |
| 1184 COMPOSITION_WITH_ALTCHARS: | |
| 1185 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 | |
| 1186 COMPOSITION_WITH_RULE_ALTCHARS: | |
| 1187 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */ | |
| 1188 | |
| 1189 static void | |
| 1190 reset_iso2022_decode (Lisp_Object coding_system, | |
| 1191 struct iso2022_coding_stream *data) | |
| 1192 { | |
| 1193 int i; | |
| 1194 #ifdef ENABLE_COMPOSITE_CHARS | |
| 1195 unsigned_char_dynarr *old_composite_chars = data->composite_chars; | |
| 1196 #endif | |
| 1197 | |
| 1198 xzero (*data); | |
| 1199 | |
| 1200 for (i = 0; i < 4; i++) | |
| 1201 { | |
| 1202 if (!NILP (coding_system)) | |
| 1203 data->charset[i] = | |
| 1204 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (coding_system, i); | |
| 1205 else | |
| 1206 data->charset[i] = Qt; | |
| 1207 } | |
| 1208 data->esc = ISO_ESC_NOTHING; | |
| 1209 data->register_right = 1; | |
| 1210 #ifdef ENABLE_COMPOSITE_CHARS | |
| 1211 if (old_composite_chars) | |
| 1212 { | |
| 1213 data->composite_chars = old_composite_chars; | |
| 1214 Dynarr_reset (data->composite_chars); | |
| 1215 } | |
| 1216 #endif | |
| 1217 } | |
| 1218 | |
| 1219 static void | |
| 1220 reset_iso2022_encode (Lisp_Object coding_system, | |
| 1221 struct iso2022_coding_stream *data) | |
| 1222 { | |
| 1223 int i; | |
| 1224 | |
| 1225 xzero (*data); | |
| 1226 | |
| 1227 for (i = 0; i < 4; i++) | |
| 1228 { | |
| 1229 data->charset[i] = | |
| 1230 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (coding_system, i); | |
| 1231 data->force_charset_on_output[i] = | |
| 1232 XCODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT (coding_system, i); | |
| 1233 } | |
| 1234 data->register_right = 1; | |
| 1235 data->current_charset = Qnil; | |
| 1236 data->current_char_boundary = 1; | |
| 1237 } | |
| 1238 | |
| 1239 static void | |
| 1240 iso2022_init_coding_stream (struct coding_stream *str) | |
| 1241 { | |
| 1242 if (str->direction == CODING_DECODE) | |
| 1243 reset_iso2022_decode (str->codesys, | |
| 1244 CODING_STREAM_TYPE_DATA (str, iso2022)); | |
| 1245 else | |
| 1246 reset_iso2022_encode (str->codesys, | |
| 1247 CODING_STREAM_TYPE_DATA (str, iso2022)); | |
| 1248 } | |
| 1249 | |
| 1250 static void | |
| 1251 iso2022_rewind_coding_stream (struct coding_stream *str) | |
| 1252 { | |
| 1253 iso2022_init_coding_stream (str); | |
| 1254 } | |
| 1255 | |
| 1256 static int | |
| 1257 fit_to_be_escape_quoted (unsigned char c) | |
| 1258 { | |
| 1259 switch (c) | |
| 1260 { | |
| 1261 case ISO_CODE_ESC: | |
| 1262 case ISO_CODE_CSI: | |
| 1263 case ISO_CODE_SS2: | |
| 1264 case ISO_CODE_SS3: | |
| 1265 case ISO_CODE_SO: | |
| 1266 case ISO_CODE_SI: | |
| 1267 return 1; | |
| 1268 | |
| 1269 default: | |
| 1270 return 0; | |
| 1271 } | |
| 1272 } | |
| 1273 | |
| 1274 static Lisp_Object | |
| 867 | 1275 charset_by_attributes_or_create_one (int type, Ibyte final, int dir) |
| 771 | 1276 { |
| 826 | 1277 Lisp_Object charset = charset_by_attributes (type, final, dir); |
| 771 | 1278 |
| 1279 if (NILP (charset)) | |
| 1280 { | |
| 1281 int chars, dim; | |
| 1282 | |
| 1283 switch (type) | |
| 1284 { | |
| 1285 case CHARSET_TYPE_94: | |
| 1286 chars = 94; dim = 1; | |
| 1287 break; | |
| 1288 case CHARSET_TYPE_96: | |
| 1289 chars = 96; dim = 1; | |
| 1290 break; | |
| 1291 case CHARSET_TYPE_94X94: | |
| 1292 chars = 94; dim = 2; | |
| 1293 break; | |
| 1294 case CHARSET_TYPE_96X96: | |
| 1295 chars = 96; dim = 2; | |
| 1296 break; | |
| 1297 default: | |
| 2500 | 1298 ABORT (); chars = 0; dim = 0; |
| 771 | 1299 } |
| 1300 | |
| 1301 charset = Fmake_charset (Qunbound, Qnil, | |
| 1302 nconc2 (list6 (Qfinal, make_char (final), | |
| 1303 Qchars, make_int (chars), | |
| 1304 Qdimension, make_int (dim)), | |
| 1305 list2 (Qdirection, | |
| 1306 dir == CHARSET_LEFT_TO_RIGHT ? | |
| 1307 Ql2r : Qr2l))); | |
| 1308 } | |
| 1309 | |
| 1310 return charset; | |
| 1311 } | |
| 1312 | |
| 1313 /* Parse one byte of an ISO2022 escape sequence. | |
| 1314 If the result is an invalid escape sequence, return 0 and | |
| 1315 do not change anything in STR. Otherwise, if the result is | |
| 1316 an incomplete escape sequence, update ISO2022.ESC and | |
| 1317 ISO2022.ESC_BYTES and return -1. Otherwise, update | |
| 1318 all the state variables (but not ISO2022.ESC_BYTES) and | |
| 1319 return 1. | |
| 1320 | |
| 1321 If CHECK_INVALID_CHARSETS is non-zero, check for designation | |
| 1322 or invocation of an invalid character set and treat that as | |
| 1323 an unrecognized escape sequence. | |
| 1324 | |
| 2367 | 1325 */ |
| 771 | 1326 |
| 1327 static int | |
| 1328 parse_iso2022_esc (Lisp_Object codesys, struct iso2022_coding_stream *iso, | |
| 1329 unsigned char c, unsigned int *flags, | |
| 1330 int check_invalid_charsets) | |
| 1331 { | |
| 1332 /* (1) If we're at the end of a designation sequence, CS is the | |
| 1333 charset being designated and REG is the register to designate | |
| 1334 it to. | |
| 1335 | |
| 1336 (2) If we're at the end of a locking-shift sequence, REG is | |
| 1337 the register to invoke and HALF (0 == left, 1 == right) is | |
| 1338 the half to invoke it into. | |
| 1339 | |
| 1340 (3) If we're at the end of a single-shift sequence, REG is | |
| 1341 the register to invoke. */ | |
| 1342 Lisp_Object cs = Qnil; | |
| 1343 int reg, half; | |
| 1344 | |
| 1345 /* NOTE: This code does goto's all over the fucking place. | |
| 1346 The reason for this is that we're basically implementing | |
| 1347 a state machine here, and hierarchical languages like C | |
| 1348 don't really provide a clean way of doing this. */ | |
| 1349 | |
| 1350 if (! (*flags & ISO_STATE_ESCAPE)) | |
| 1351 /* At beginning of escape sequence; we need to reset our | |
| 1352 escape-state variables. */ | |
| 1353 iso->esc = ISO_ESC_NOTHING; | |
| 1354 | |
| 1355 iso->output_literally = 0; | |
| 1356 iso->output_direction_sequence = 0; | |
| 1357 | |
| 1358 switch (iso->esc) | |
| 1359 { | |
| 1360 case ISO_ESC_NOTHING: | |
| 1361 iso->esc_bytes_index = 0; | |
| 1362 switch (c) | |
| 1363 { | |
| 1364 case ISO_CODE_ESC: /* Start escape sequence */ | |
| 1365 *flags |= ISO_STATE_ESCAPE; | |
| 1366 iso->esc = ISO_ESC; | |
| 1367 goto not_done; | |
| 1368 | |
| 1369 case ISO_CODE_CSI: /* ISO6429 (specifying directionality) */ | |
| 1370 *flags |= ISO_STATE_ESCAPE; | |
| 1371 iso->esc = ISO_ESC_5_11; | |
| 1372 goto not_done; | |
| 1373 | |
| 1374 case ISO_CODE_SO: /* locking shift 1 */ | |
| 1375 reg = 1; half = 0; | |
| 1376 goto locking_shift; | |
| 1377 case ISO_CODE_SI: /* locking shift 0 */ | |
| 1378 reg = 0; half = 0; | |
| 1379 goto locking_shift; | |
| 1380 | |
| 1381 case ISO_CODE_SS2: /* single shift */ | |
| 1382 reg = 2; | |
| 1383 goto single_shift; | |
| 1384 case ISO_CODE_SS3: /* single shift */ | |
| 1385 reg = 3; | |
| 1386 goto single_shift; | |
| 1387 | |
| 1388 default: /* Other control characters */ | |
| 1389 error: | |
| 1390 *flags &= ISO_STATE_LOCK; | |
| 1391 return 0; | |
| 1392 } | |
| 1393 | |
| 1394 case ISO_ESC: | |
| 3439 | 1395 |
| 1396 /* The only available ISO 2022 sequence in UTF-8 mode is ESC % @, to | |
| 1397 exit from it. If we see any other escape sequence, pass it through | |
| 1398 in the error handler. */ | |
| 1399 if (*flags & ISO_STATE_UTF_8 && '%' != c) | |
| 1400 { | |
| 1401 return 0; | |
| 1402 } | |
| 1403 | |
| 771 | 1404 switch (c) |
| 1405 { | |
| 1406 /**** single shift ****/ | |
| 1407 | |
| 1408 case 'N': /* single shift 2 */ | |
| 1409 reg = 2; | |
| 1410 goto single_shift; | |
| 1411 case 'O': /* single shift 3 */ | |
| 1412 reg = 3; | |
| 1413 goto single_shift; | |
| 1414 | |
| 1415 /**** locking shift ****/ | |
| 1416 | |
| 1417 case '~': /* locking shift 1 right */ | |
| 1418 reg = 1; half = 1; | |
| 1419 goto locking_shift; | |
| 1420 case 'n': /* locking shift 2 */ | |
| 1421 reg = 2; half = 0; | |
| 1422 goto locking_shift; | |
| 1423 case '}': /* locking shift 2 right */ | |
| 1424 reg = 2; half = 1; | |
| 1425 goto locking_shift; | |
| 1426 case 'o': /* locking shift 3 */ | |
| 1427 reg = 3; half = 0; | |
| 1428 goto locking_shift; | |
| 1429 case '|': /* locking shift 3 right */ | |
| 1430 reg = 3; half = 1; | |
| 1431 goto locking_shift; | |
| 1432 | |
| 1433 /**** composite ****/ | |
| 1434 | |
| 1435 #ifdef ENABLE_COMPOSITE_CHARS | |
| 1436 case '0': | |
| 1437 iso->esc = ISO_ESC_START_COMPOSITE; | |
| 1438 *flags = (*flags & ISO_STATE_LOCK) | | |
| 1439 ISO_STATE_COMPOSITE; | |
| 1440 return 1; | |
| 1441 | |
| 1442 case '1': | |
| 1443 iso->esc = ISO_ESC_END_COMPOSITE; | |
| 1444 *flags = (*flags & ISO_STATE_LOCK) & | |
| 1445 ~ISO_STATE_COMPOSITE; | |
| 1446 return 1; | |
| 1447 #else | |
| 1448 case '0': case '1': case '2': case '3': case '4': | |
| 1449 /* We simply return a flag indicating that some composite | |
| 1450 escape was seen. The caller will use the particular | |
| 1451 character to encode the appropriate "composite hack" | |
| 1452 character out of Vcharset_composite, so that we will | |
| 1453 preserve these values on output. */ | |
| 1454 iso->esc = ISO_ESC_START_COMPOSITE; | |
| 1455 *flags &= ISO_STATE_LOCK; | |
| 1456 return 1; | |
| 1457 #endif /* ENABLE_COMPOSITE_CHARS */ | |
| 1458 | |
| 1459 /**** directionality ****/ | |
| 1460 | |
| 1461 case '[': | |
| 1462 iso->esc = ISO_ESC_5_11; | |
| 1463 goto not_done; | |
| 1464 | |
| 1465 /**** designation ****/ | |
| 1466 | |
| 1467 case '$': /* multibyte charset prefix */ | |
| 1468 iso->esc = ISO_ESC_2_4; | |
| 1469 goto not_done; | |
| 1470 | |
| 3439 | 1471 case '%': /* Prefix to an escape to or from Unicode. */ |
| 1472 iso->esc = ISO_ESC_2_5; | |
| 1473 goto not_done; | |
| 1474 | |
| 771 | 1475 default: |
| 1476 if (0x28 <= c && c <= 0x2F) | |
| 1477 { | |
| 1478 iso->esc = (enum iso_esc_flag) (c - 0x28 + ISO_ESC_2_8); | |
| 1479 goto not_done; | |
| 1480 } | |
| 1481 | |
| 1482 /* This function is called with CODESYS equal to nil when | |
| 1483 doing coding-system detection. */ | |
| 1484 if (!NILP (codesys) | |
| 1485 && XCODING_SYSTEM_ISO2022_ESCAPE_QUOTED (codesys) | |
| 1486 && fit_to_be_escape_quoted (c)) | |
| 1487 { | |
| 1488 iso->esc = ISO_ESC_LITERAL; | |
| 1489 *flags &= ISO_STATE_LOCK; | |
| 1490 return 1; | |
| 1491 } | |
| 1492 | |
| 1493 /* bzzzt! */ | |
| 1494 goto error; | |
| 1495 } | |
| 1496 | |
| 3439 | 1497 /* ISO-IR 196 UTF-8 support. */ |
| 1498 case ISO_ESC_2_5: | |
| 1499 if ('G' == c) | |
| 1500 { | |
| 1501 /* Activate UTF-8 mode. */ | |
| 1502 *flags &= ISO_STATE_LOCK; | |
| 1503 *flags |= ISO_STATE_UTF_8; | |
| 1504 iso->esc = ISO_ESC_NOTHING; | |
| 1505 return 1; | |
| 1506 } | |
| 1507 else if ('@' == c) | |
| 1508 { | |
| 1509 /* Deactive UTF-8 mode. */ | |
| 1510 *flags &= ISO_STATE_LOCK; | |
| 1511 *flags &= ~(ISO_STATE_UTF_8); | |
| 1512 iso->esc = ISO_ESC_NOTHING; | |
| 1513 return 1; | |
| 1514 } | |
| 1515 else | |
| 1516 { | |
| 1517 /* Oops, we don't support the other UTF-? coding systems within | |
| 1518 ISO 2022, only in their own context. */ | |
| 1519 goto error; | |
| 1520 } | |
| 771 | 1521 /**** directionality ****/ |
| 1522 | |
| 1523 case ISO_ESC_5_11: /* ISO6429 direction control */ | |
| 1524 if (c == ']') | |
| 1525 { | |
| 1526 *flags &= (ISO_STATE_LOCK & ~ISO_STATE_R2L); | |
| 1527 goto directionality; | |
| 1528 } | |
| 1529 if (c == '0') iso->esc = ISO_ESC_5_11_0; | |
| 1530 else if (c == '1') iso->esc = ISO_ESC_5_11_1; | |
| 1531 else if (c == '2') iso->esc = ISO_ESC_5_11_2; | |
| 1532 else goto error; | |
| 1533 goto not_done; | |
| 1534 | |
| 1535 case ISO_ESC_5_11_0: | |
| 1536 if (c == ']') | |
| 1537 { | |
| 1538 *flags &= (ISO_STATE_LOCK & ~ISO_STATE_R2L); | |
| 1539 goto directionality; | |
| 1540 } | |
| 1541 goto error; | |
| 1542 | |
| 1543 case ISO_ESC_5_11_1: | |
| 1544 if (c == ']') | |
| 1545 { | |
| 1546 *flags = (ISO_STATE_LOCK & ~ISO_STATE_R2L); | |
| 1547 goto directionality; | |
| 1548 } | |
| 1549 goto error; | |
| 1550 | |
| 1551 case ISO_ESC_5_11_2: | |
| 1552 if (c == ']') | |
| 1553 { | |
| 1554 *flags = (*flags & ISO_STATE_LOCK) | ISO_STATE_R2L; | |
| 1555 goto directionality; | |
| 1556 } | |
| 1557 goto error; | |
| 1558 | |
| 1559 directionality: | |
| 1560 iso->esc = ISO_ESC_DIRECTIONALITY; | |
| 1561 /* Various junk here to attempt to preserve the direction sequences | |
| 1562 literally in the text if they would otherwise be swallowed due | |
| 1563 to invalid designations that don't show up as actual charset | |
| 1564 changes in the text. */ | |
| 1565 if (iso->invalid_switch_dir) | |
| 1566 { | |
| 1567 /* We already inserted a direction switch literally into the | |
| 1568 text. We assume (#### this may not be right) that the | |
| 1569 next direction switch is the one going the other way, | |
| 1570 and we need to output that literally as well. */ | |
| 1571 iso->output_literally = 1; | |
| 1572 iso->invalid_switch_dir = 0; | |
| 1573 } | |
| 1574 else | |
| 1575 { | |
| 1576 int jj; | |
| 1577 | |
| 1578 /* If we are in the thrall of an invalid designation, | |
| 1579 then stick the directionality sequence literally into the | |
| 1580 output stream so it ends up in the original text again. */ | |
| 1581 for (jj = 0; jj < 4; jj++) | |
| 1582 if (iso->invalid_designated[jj]) | |
| 1583 break; | |
| 1584 if (jj < 4) | |
| 1585 { | |
| 1586 iso->output_literally = 1; | |
| 1587 iso->invalid_switch_dir = 1; | |
| 1588 } | |
| 1589 else | |
| 1590 /* Indicate that we haven't yet seen a valid designation, | |
| 1591 so that if a switch-dir is directly followed by an | |
| 1592 invalid designation, both get inserted literally. */ | |
| 1593 iso->switched_dir_and_no_valid_charset_yet = 1; | |
| 1594 } | |
| 1595 return 1; | |
| 1596 | |
| 1597 | |
| 1598 /**** designation ****/ | |
| 1599 | |
| 1600 case ISO_ESC_2_4: | |
| 1601 if (0x28 <= c && c <= 0x2F) | |
| 1602 { | |
| 1603 iso->esc = (enum iso_esc_flag) (c - 0x28 + ISO_ESC_2_4_8); | |
| 1604 goto not_done; | |
| 1605 } | |
| 1606 if (0x40 <= c && c <= 0x42) | |
| 1607 { | |
| 1608 cs = charset_by_attributes_or_create_one (CHARSET_TYPE_94X94, c, | |
| 1609 *flags & ISO_STATE_R2L ? | |
| 1610 CHARSET_RIGHT_TO_LEFT : | |
| 1611 CHARSET_LEFT_TO_RIGHT); | |
| 1612 reg = 0; | |
| 1613 goto designated; | |
| 1614 } | |
| 1615 goto error; | |
| 1616 | |
| 1617 default: | |
| 1618 { | |
| 1619 int type = -1; | |
| 1620 | |
| 1621 if (iso->esc >= ISO_ESC_2_8 && | |
| 1622 iso->esc <= ISO_ESC_2_15) | |
| 1623 { | |
| 1624 type = ((iso->esc >= ISO_ESC_2_12) ? | |
| 1625 CHARSET_TYPE_96 : CHARSET_TYPE_94); | |
| 1626 reg = (iso->esc - ISO_ESC_2_8) & 3; | |
| 1627 } | |
| 1628 else if (iso->esc >= ISO_ESC_2_4_8 && | |
| 1629 iso->esc <= ISO_ESC_2_4_15) | |
| 1630 { | |
| 1631 type = ((iso->esc >= ISO_ESC_2_4_12) ? | |
| 1632 CHARSET_TYPE_96X96 : CHARSET_TYPE_94X94); | |
| 1633 reg = (iso->esc - ISO_ESC_2_4_8) & 3; | |
| 1634 } | |
| 1635 else | |
| 1636 { | |
| 1637 /* Can this ever be reached? -slb */ | |
| 2500 | 1638 ABORT (); |
| 771 | 1639 goto error; |
| 1640 } | |
| 1641 | |
| 1642 if (c < '0' || c > '~' || | |
| 1643 (c > 0x5F && (type == CHARSET_TYPE_94X94 || | |
| 1644 type == CHARSET_TYPE_96X96))) | |
| 1645 goto error; /* bad final byte */ | |
| 1646 | |
| 1647 cs = charset_by_attributes_or_create_one (type, c, | |
| 1648 *flags & ISO_STATE_R2L ? | |
| 1649 CHARSET_RIGHT_TO_LEFT : | |
| 1650 CHARSET_LEFT_TO_RIGHT); | |
| 1651 goto designated; | |
| 1652 } | |
| 1653 } | |
| 1654 | |
| 1655 not_done: | |
| 1656 iso->esc_bytes[iso->esc_bytes_index++] = (unsigned char) c; | |
| 1657 return -1; | |
| 1658 | |
| 1659 single_shift: | |
| 1660 if (check_invalid_charsets && !CHARSETP (iso->charset[reg])) | |
| 1661 /* can't invoke something that ain't there. */ | |
| 1662 goto error; | |
| 1663 iso->esc = ISO_ESC_SINGLE_SHIFT; | |
| 1664 *flags &= ISO_STATE_LOCK; | |
| 1665 if (reg == 2) | |
| 1666 *flags |= ISO_STATE_SS2; | |
| 1667 else | |
| 1668 *flags |= ISO_STATE_SS3; | |
| 1669 return 1; | |
| 1670 | |
| 1671 locking_shift: | |
| 1672 if (check_invalid_charsets && | |
| 1673 !CHARSETP (iso->charset[reg])) | |
| 1674 /* can't invoke something that ain't there. */ | |
| 1675 goto error; | |
| 1676 if (half) | |
| 1677 iso->register_right = reg; | |
| 1678 else | |
| 1679 iso->register_left = reg; | |
| 1680 *flags &= ISO_STATE_LOCK; | |
| 1681 iso->esc = ISO_ESC_LOCKING_SHIFT; | |
| 1682 return 1; | |
| 1683 | |
| 1684 designated: | |
| 1685 if (NILP (cs) && check_invalid_charsets) | |
| 1686 { | |
| 2500 | 1687 ABORT (); |
| 771 | 1688 /* #### This should never happen now that we automatically create |
| 1689 temporary charsets as necessary. We should probably remove | |
| 1690 this code. --ben */ | |
| 1691 iso->invalid_designated[reg] = 1; | |
| 1692 iso->charset[reg] = Vcharset_ascii; | |
| 1693 iso->esc = ISO_ESC_DESIGNATE; | |
| 1694 *flags &= ISO_STATE_LOCK; | |
| 1695 iso->output_literally = 1; | |
| 1696 if (iso->switched_dir_and_no_valid_charset_yet) | |
| 1697 { | |
| 1698 /* We encountered a switch-direction followed by an | |
| 1699 invalid designation. Ensure that the switch-direction | |
| 1700 gets outputted; otherwise it will probably get eaten | |
| 1701 when the text is written out again. */ | |
| 1702 iso->switched_dir_and_no_valid_charset_yet = 0; | |
| 1703 iso->output_direction_sequence = 1; | |
| 1704 /* And make sure that the switch-dir going the other | |
| 1705 way gets outputted, as well. */ | |
| 1706 iso->invalid_switch_dir = 1; | |
| 1707 } | |
| 1708 return 1; | |
| 1709 } | |
| 1710 /* This function is called with CODESYS equal to nil when | |
| 1711 doing coding-system detection. */ | |
| 1712 if (!NILP (codesys)) | |
| 1713 { | |
| 1714 charset_conversion_spec_dynarr *dyn = | |
| 1715 XCODING_SYSTEM_ISO2022_INPUT_CONV (codesys); | |
| 1716 | |
| 1717 if (dyn) | |
| 1718 { | |
| 1719 int i; | |
| 1720 | |
| 1721 for (i = 0; i < Dynarr_length (dyn); i++) | |
| 1722 { | |
| 1723 struct charset_conversion_spec *spec = Dynarr_atp (dyn, i); | |
| 1724 if (EQ (cs, spec->from_charset)) | |
| 1725 cs = spec->to_charset; | |
| 1726 } | |
| 1727 } | |
| 1728 } | |
| 1729 | |
| 1730 iso->charset[reg] = cs; | |
| 1731 iso->esc = ISO_ESC_DESIGNATE; | |
| 1732 *flags &= ISO_STATE_LOCK; | |
| 1733 if (iso->invalid_designated[reg]) | |
| 1734 { | |
| 1735 iso->invalid_designated[reg] = 0; | |
| 1736 iso->output_literally = 1; | |
| 1737 } | |
| 1738 if (iso->switched_dir_and_no_valid_charset_yet) | |
| 1739 iso->switched_dir_and_no_valid_charset_yet = 0; | |
| 1740 return 1; | |
| 1741 } | |
| 1742 | |
| 1743 /* If FLAGS is a null pointer or specifies right-to-left motion, | |
| 1744 output a switch-dir-to-left-to-right sequence to DST. | |
| 1745 Also update FLAGS if it is not a null pointer. | |
| 1746 If INTERNAL_P is set, we are outputting in internal format and | |
| 1747 need to handle the CSI differently. */ | |
| 1748 | |
| 1749 static void | |
| 1750 restore_left_to_right_direction (Lisp_Object codesys, | |
| 1751 unsigned_char_dynarr *dst, | |
| 1752 unsigned int *flags, | |
| 1753 int internal_p) | |
| 1754 { | |
| 1755 if (!flags || (*flags & ISO_STATE_R2L)) | |
| 1756 { | |
| 1757 if (XCODING_SYSTEM_ISO2022_SEVEN (codesys)) | |
| 1758 { | |
| 1759 Dynarr_add (dst, ISO_CODE_ESC); | |
| 1760 Dynarr_add (dst, '['); | |
| 1761 } | |
| 1762 else if (internal_p) | |
| 1763 DECODE_ADD_BINARY_CHAR (ISO_CODE_CSI, dst); | |
| 1764 else | |
| 1765 Dynarr_add (dst, ISO_CODE_CSI); | |
| 1766 Dynarr_add (dst, '0'); | |
| 1767 Dynarr_add (dst, ']'); | |
| 1768 if (flags) | |
| 1769 *flags &= ~ISO_STATE_R2L; | |
| 1770 } | |
| 1771 } | |
| 1772 | |
| 1773 /* If FLAGS is a null pointer or specifies a direction different from | |
| 1774 DIRECTION (which should be either CHARSET_RIGHT_TO_LEFT or | |
| 1775 CHARSET_LEFT_TO_RIGHT), output the appropriate switch-dir escape | |
| 1776 sequence to DST. Also update FLAGS if it is not a null pointer. | |
| 1777 If INTERNAL_P is set, we are outputting in internal format and | |
| 1778 need to handle the CSI differently. */ | |
| 1779 | |
| 1780 static void | |
| 1781 ensure_correct_direction (int direction, Lisp_Object codesys, | |
| 1782 unsigned_char_dynarr *dst, unsigned int *flags, | |
| 1783 int internal_p) | |
| 1784 { | |
| 1785 if ((!flags || (*flags & ISO_STATE_R2L)) && | |
| 1786 direction == CHARSET_LEFT_TO_RIGHT) | |
| 1787 restore_left_to_right_direction (codesys, dst, flags, internal_p); | |
| 1788 else if (!XCODING_SYSTEM_ISO2022_NO_ISO6429 (codesys) | |
| 1789 && (!flags || !(*flags & ISO_STATE_R2L)) && | |
| 1790 direction == CHARSET_RIGHT_TO_LEFT) | |
| 1791 { | |
| 1792 if (XCODING_SYSTEM_ISO2022_SEVEN (codesys)) | |
| 1793 { | |
| 1794 Dynarr_add (dst, ISO_CODE_ESC); | |
| 1795 Dynarr_add (dst, '['); | |
| 1796 } | |
| 1797 else if (internal_p) | |
| 1798 DECODE_ADD_BINARY_CHAR (ISO_CODE_CSI, dst); | |
| 1799 else | |
| 1800 Dynarr_add (dst, ISO_CODE_CSI); | |
| 1801 Dynarr_add (dst, '2'); | |
| 1802 Dynarr_add (dst, ']'); | |
| 1803 if (flags) | |
| 1804 *flags |= ISO_STATE_R2L; | |
| 1805 } | |
| 1806 } | |
| 1807 | |
| 4096 | 1808 /* Note that this name conflicts with a function in unicode.c. */ |
| 1809 static void | |
| 1810 decode_unicode_char (int ucs, unsigned_char_dynarr *dst) | |
| 1811 { | |
| 1812 Ibyte work[MAX_ICHAR_LEN]; | |
| 1813 int len; | |
| 1814 Lisp_Object chr; | |
| 1815 | |
| 1816 chr = Funicode_to_char(make_int(ucs), Qnil); | |
| 1817 assert (!NILP(chr)); | |
| 1818 len = set_itext_ichar (work, XCHAR(chr)); | |
| 1819 Dynarr_add_many (dst, work, len); | |
| 1820 } | |
| 1821 | |
| 1822 #define DECODE_ERROR_OCTET(octet, dst) \ | |
| 1823 decode_unicode_char ((octet) + UNICODE_ERROR_OCTET_RANGE_START, dst) | |
| 1824 | |
| 1825 static inline void | |
| 1826 indicate_invalid_utf_8 (unsigned char indicated_length, | |
| 1827 unsigned char counter, | |
| 1828 int ch, unsigned_char_dynarr *dst) | |
| 1829 { | |
| 1830 Binbyte stored = indicated_length - counter; | |
| 1831 Binbyte mask = "\x00\x00\xC0\xE0\xF0\xF8\xFC"[indicated_length]; | |
| 1832 | |
| 1833 while (stored > 0) | |
| 1834 { | |
| 1835 DECODE_ERROR_OCTET (((ch >> (6 * (stored - 1))) & 0x3f) | mask, | |
| 1836 dst); | |
| 1837 mask = 0x80, stored--; | |
| 1838 } | |
| 1839 } | |
| 1840 | |
| 771 | 1841 /* Convert ISO2022-format data to internal format. */ |
| 1842 | |
| 1843 static Bytecount | |
| 1844 iso2022_decode (struct coding_stream *str, const UExtbyte *src, | |
| 1845 unsigned_char_dynarr *dst, Bytecount n) | |
| 1846 { | |
| 1847 unsigned int ch = str->ch; | |
| 1848 #ifdef ENABLE_COMPOSITE_CHARS | |
| 1849 unsigned_char_dynarr *real_dst = dst; | |
| 1850 #endif | |
| 1851 struct iso2022_coding_stream *data = | |
| 1852 CODING_STREAM_TYPE_DATA (str, iso2022); | |
| 1853 unsigned int flags = data->flags; | |
| 1854 Bytecount orign = n; | |
| 1855 | |
| 1856 #ifdef ENABLE_COMPOSITE_CHARS | |
| 1857 if (flags & ISO_STATE_COMPOSITE) | |
| 1858 dst = data->composite_chars; | |
| 1859 #endif /* ENABLE_COMPOSITE_CHARS */ | |
| 1860 | |
| 1861 while (n--) | |
| 1862 { | |
| 1863 UExtbyte c = *src++; | |
| 1864 if (flags & ISO_STATE_ESCAPE) | |
| 1865 { /* Within ESC sequence */ | |
| 1866 int retval = parse_iso2022_esc (str->codesys, data, | |
| 1867 c, &flags, 1); | |
| 1868 | |
| 1869 if (retval) | |
| 1870 { | |
| 1871 switch (data->esc) | |
| 1872 { | |
| 1873 #ifdef ENABLE_COMPOSITE_CHARS | |
| 1874 case ISO_ESC_START_COMPOSITE: | |
| 1875 if (data->composite_chars) | |
| 1876 Dynarr_reset (data->composite_chars); | |
| 1877 else | |
| 1878 data->composite_chars = Dynarr_new (unsigned_char); | |
| 1879 dst = data->composite_chars; | |
| 1880 break; | |
| 1881 case ISO_ESC_END_COMPOSITE: | |
| 1882 { | |
| 867 | 1883 Ibyte comstr[MAX_ICHAR_LEN]; |
| 771 | 1884 Bytecount len; |
| 867 | 1885 Ichar emch = lookup_composite_char (Dynarr_atp (dst, 0), |
| 771 | 1886 Dynarr_length (dst)); |
| 1887 dst = real_dst; | |
| 867 | 1888 len = set_itext_ichar (comstr, emch); |
| 771 | 1889 Dynarr_add_many (dst, comstr, len); |
| 1890 break; | |
| 1891 } | |
| 1892 #else | |
| 1893 case ISO_ESC_START_COMPOSITE: | |
| 1894 { | |
| 867 | 1895 Ibyte comstr[MAX_ICHAR_LEN]; |
| 771 | 1896 Bytecount len; |
| 867 | 1897 Ichar emch = make_ichar (Vcharset_composite, c - '0' + ' ', |
| 771 | 1898 0); |
| 867 | 1899 len = set_itext_ichar (comstr, emch); |
| 771 | 1900 Dynarr_add_many (dst, comstr, len); |
| 1901 break; | |
| 1902 } | |
| 1903 #endif /* ENABLE_COMPOSITE_CHARS */ | |
| 1904 | |
| 1905 case ISO_ESC_LITERAL: | |
| 1906 DECODE_ADD_BINARY_CHAR (c, dst); | |
| 1907 break; | |
| 1908 | |
| 1909 default: | |
| 1910 /* Everything else handled already */ | |
| 1911 break; | |
| 1912 } | |
| 1913 } | |
| 1914 | |
| 1915 /* Attempted error recovery. */ | |
| 1916 if (data->output_direction_sequence) | |
| 1917 ensure_correct_direction (flags & ISO_STATE_R2L ? | |
| 1918 CHARSET_RIGHT_TO_LEFT : | |
| 1919 CHARSET_LEFT_TO_RIGHT, | |
| 1920 str->codesys, dst, 0, 1); | |
| 1921 /* More error recovery. */ | |
| 1922 if (!retval || data->output_literally) | |
| 1923 { | |
| 1924 /* Output the (possibly invalid) sequence */ | |
| 1925 int i; | |
| 1926 for (i = 0; i < data->esc_bytes_index; i++) | |
| 1927 DECODE_ADD_BINARY_CHAR (data->esc_bytes[i], dst); | |
| 1928 flags &= ISO_STATE_LOCK; | |
| 1929 if (!retval) | |
| 1930 n++, src--;/* Repeat the loop with the same character. */ | |
| 1931 else | |
| 1932 { | |
| 1933 /* No sense in reprocessing the final byte of the | |
| 1934 escape sequence; it could mess things up anyway. | |
| 1935 Just add it now. */ | |
| 1936 DECODE_ADD_BINARY_CHAR (c, dst); | |
| 1937 } | |
| 1938 } | |
| 1939 ch = 0; | |
| 1940 } | |
| 3439 | 1941 else if (flags & ISO_STATE_UTF_8) |
| 1942 { | |
| 1943 unsigned char counter = data->counter; | |
| 4096 | 1944 unsigned char indicated_length = data->indicated_length; |
| 3439 | 1945 |
| 1946 if (ISO_CODE_ESC == c) | |
| 1947 { | |
| 1948 /* Allow the escape sequence parser to end the UTF-8 state. */ | |
| 1949 flags |= ISO_STATE_ESCAPE; | |
| 1950 data->esc = ISO_ESC; | |
| 1951 data->esc_bytes_index = 1; | |
| 1952 continue; | |
| 1953 } | |
| 1954 | |
| 4096 | 1955 if (0 == counter) |
| 1956 { | |
| 1957 if (0 == (c & 0x80)) | |
| 1958 { | |
| 1959 /* ASCII. */ | |
| 1960 decode_unicode_char (c, dst); | |
| 1961 } | |
| 1962 else if (0 == (c & 0x40)) | |
| 1963 { | |
| 1964 /* Highest bit set, second highest not--there's | |
| 1965 something wrong. */ | |
| 1966 DECODE_ERROR_OCTET (c, dst); | |
| 1967 } | |
| 1968 else if (0 == (c & 0x20)) | |
| 1969 { | |
| 1970 ch = c & 0x1f; | |
| 1971 counter = 1; | |
| 1972 indicated_length = 2; | |
| 1973 } | |
| 1974 else if (0 == (c & 0x10)) | |
| 1975 { | |
| 1976 ch = c & 0x0f; | |
| 1977 counter = 2; | |
| 1978 indicated_length = 3; | |
| 1979 } | |
| 1980 else if (0 == (c & 0x08)) | |
| 1981 { | |
| 1982 ch = c & 0x0f; | |
| 1983 counter = 3; | |
| 1984 indicated_length = 4; | |
| 1985 } | |
| 1986 /* We support lengths longer than 4 here, since we want to | |
| 1987 represent UTF-8 error chars as distinct from the | |
| 1988 corresponding ISO 8859-1 characters in escape-quoted. | |
| 1989 | |
| 1990 However, we can't differentiate UTF-8 error chars as | |
| 1991 written to disk, and UTF-8 errors in escape-quoted. This | |
| 1992 is not a big problem; | |
| 1993 non-Unicode-chars-encoded-as-UTF-8-in-ISO-2022 is not | |
| 1994 deployed, in practice, so if such a sequence of octets | |
| 1995 occurs, XEmacs generated it. */ | |
| 1996 else if (0 == (c & 0x04)) | |
| 1997 { | |
| 1998 ch = c & 0x03; | |
| 1999 counter = 4; | |
| 2000 indicated_length = 5; | |
| 2001 } | |
| 2002 else if (0 == (c & 0x02)) | |
| 2003 { | |
| 2004 ch = c & 0x01; | |
| 2005 counter = 5; | |
| 2006 indicated_length = 6; | |
| 2007 } | |
| 2008 else | |
| 2009 { | |
| 2010 /* #xFF is not a valid leading byte in any form of | |
| 2011 UTF-8. */ | |
| 2012 DECODE_ERROR_OCTET (c, dst); | |
| 2013 | |
| 2014 } | |
| 2015 } | |
| 2016 else | |
| 2017 { | |
| 2018 /* counter != 0 */ | |
| 2019 if ((0 == (c & 0x80)) || (0 != (c & 0x40))) | |
| 2020 { | |
| 2021 indicate_invalid_utf_8(indicated_length, | |
| 2022 counter, | |
| 2023 ch, dst); | |
| 2024 if (c & 0x80) | |
| 2025 { | |
| 2026 DECODE_ERROR_OCTET (c, dst); | |
| 2027 } | |
| 2028 else | |
| 2029 { | |
| 2030 /* The character just read is ASCII. Treat it as | |
| 2031 such. */ | |
| 2032 decode_unicode_char (c, dst); | |
| 2033 } | |
| 2034 ch = 0; | |
| 2035 counter = 0; | |
| 2036 } | |
| 2037 else | |
| 2038 { | |
| 2039 ch = (ch << 6) | (c & 0x3f); | |
| 2040 counter--; | |
| 2041 | |
| 2042 /* Just processed the final byte. Emit the character. */ | |
| 2043 if (!counter) | |
| 2044 { | |
| 2045 /* Don't accept over-long sequences, or surrogates. */ | |
| 2046 if ((ch < 0x80) || | |
| 2047 ((ch < 0x800) && indicated_length > 2) || | |
| 2048 ((ch < 0x10000) && indicated_length > 3) || | |
| 2049 /* We accept values above #x110000 in | |
| 2050 escape-quoted, though not in UTF-8. */ | |
| 2051 /* (ch > 0x110000) || */ | |
| 2052 valid_utf_16_surrogate(ch)) | |
| 2053 { | |
| 2054 indicate_invalid_utf_8(indicated_length, | |
| 2055 counter, | |
| 2056 ch, dst); | |
| 2057 } | |
| 2058 else | |
| 2059 { | |
| 2060 decode_unicode_char (ch, dst); | |
| 2061 } | |
| 2062 ch = 0; | |
| 2063 } | |
| 2064 } | |
| 2065 } | |
| 2066 | |
| 2067 if (str->eof && ch) | |
| 2068 { | |
| 2069 DECODE_ERROR_OCTET (ch, dst); | |
| 2070 ch = 0; | |
| 2071 } | |
| 3439 | 2072 |
| 2073 data->counter = counter; | |
| 4096 | 2074 data->indicated_length = indicated_length; |
| 3439 | 2075 } |
| 826 | 2076 else if (byte_c0_p (c) || byte_c1_p (c)) |
| 771 | 2077 { /* Control characters */ |
| 2078 | |
| 2079 /***** Error-handling *****/ | |
| 2080 | |
| 2081 /* If we were in the middle of a character, dump out the | |
| 2082 partial character. */ | |
| 2083 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst); | |
| 2084 | |
| 2085 /* If we just saw a single-shift character, dump it out. | |
| 2086 This may dump out the wrong sort of single-shift character, | |
| 2087 but least it will give an indication that something went | |
| 2088 wrong. */ | |
| 2089 if (flags & ISO_STATE_SS2) | |
| 2090 { | |
| 2091 DECODE_ADD_BINARY_CHAR (ISO_CODE_SS2, dst); | |
| 2092 flags &= ~ISO_STATE_SS2; | |
| 2093 } | |
| 2094 if (flags & ISO_STATE_SS3) | |
| 2095 { | |
| 2096 DECODE_ADD_BINARY_CHAR (ISO_CODE_SS3, dst); | |
| 2097 flags &= ~ISO_STATE_SS3; | |
| 2098 } | |
| 2099 | |
| 2100 /***** Now handle the control characters. *****/ | |
| 2101 | |
| 2102 flags &= ISO_STATE_LOCK; | |
| 2103 | |
| 2104 if (!parse_iso2022_esc (str->codesys, data, c, &flags, 1)) | |
| 2105 DECODE_ADD_BINARY_CHAR (c, dst); | |
| 2106 } | |
| 2107 else | |
| 2108 { /* Graphic characters */ | |
| 2109 Lisp_Object charset; | |
| 2110 int lb; | |
| 2111 int reg; | |
| 2112 | |
| 2113 /* Now determine the charset. */ | |
| 2114 reg = ((flags & ISO_STATE_SS2) ? 2 | |
| 2115 : (flags & ISO_STATE_SS3) ? 3 | |
| 826 | 2116 : !byte_ascii_p (c) ? data->register_right |
| 771 | 2117 : data->register_left); |
| 2118 charset = data->charset[reg]; | |
| 2119 | |
| 2120 /* Error checking: */ | |
| 2121 if (! CHARSETP (charset) | |
| 2122 || data->invalid_designated[reg] | |
| 2123 || (((c & 0x7F) == ' ' || (c & 0x7F) == ISO_CODE_DEL) | |
| 2124 && XCHARSET_CHARS (charset) == 94)) | |
| 2125 /* Mrmph. We are trying to invoke a register that has no | |
| 2126 or an invalid charset in it, or trying to add a character | |
| 2127 outside the range of the charset. Insert that char literally | |
| 2128 to preserve it for the output. */ | |
| 2129 { | |
| 2130 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst); | |
| 2131 DECODE_ADD_BINARY_CHAR (c, dst); | |
| 2132 } | |
| 2133 | |
| 2134 else | |
| 2135 { | |
| 2136 /* Things are probably hunky-dorey. */ | |
| 2137 | |
| 2138 /* Fetch reverse charset, maybe. */ | |
| 2139 if (((flags & ISO_STATE_R2L) && | |
| 2140 XCHARSET_DIRECTION (charset) == CHARSET_LEFT_TO_RIGHT) | |
| 2141 || | |
| 2142 (!(flags & ISO_STATE_R2L) && | |
| 2143 XCHARSET_DIRECTION (charset) == CHARSET_RIGHT_TO_LEFT)) | |
| 2144 { | |
| 2145 Lisp_Object new_charset = | |
| 2146 XCHARSET_REVERSE_DIRECTION_CHARSET (charset); | |
| 2147 if (!NILP (new_charset)) | |
| 2148 charset = new_charset; | |
| 2149 } | |
| 2150 | |
| 2151 lb = XCHARSET_LEADING_BYTE (charset); | |
| 2152 switch (XCHARSET_REP_BYTES (charset)) | |
| 2153 { | |
| 2154 case 1: /* ASCII */ | |
| 2155 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst); | |
| 2156 Dynarr_add (dst, c & 0x7F); | |
| 2157 break; | |
| 2158 | |
| 2159 case 2: /* one-byte official */ | |
| 2160 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst); | |
| 2161 Dynarr_add (dst, lb); | |
| 2162 Dynarr_add (dst, c | 0x80); | |
| 2163 break; | |
| 2164 | |
| 2165 case 3: /* one-byte private or two-byte official */ | |
| 2166 if (XCHARSET_PRIVATE_P (charset)) | |
| 2167 { | |
| 2168 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst); | |
| 2169 Dynarr_add (dst, PRE_LEADING_BYTE_PRIVATE_1); | |
| 2170 Dynarr_add (dst, lb); | |
| 2171 Dynarr_add (dst, c | 0x80); | |
| 2172 } | |
| 2173 else | |
| 2174 { | |
| 2175 if (ch) | |
| 2176 { | |
| 2177 Dynarr_add (dst, lb); | |
| 2178 Dynarr_add (dst, ch | 0x80); | |
| 2179 Dynarr_add (dst, c | 0x80); | |
| 2180 ch = 0; | |
| 2181 } | |
| 2182 else | |
| 2183 ch = c; | |
| 2184 } | |
| 2185 break; | |
| 2186 | |
| 2187 default: /* two-byte private */ | |
| 2188 if (ch) | |
| 2189 { | |
| 2190 Dynarr_add (dst, PRE_LEADING_BYTE_PRIVATE_2); | |
| 2191 Dynarr_add (dst, lb); | |
| 2192 Dynarr_add (dst, ch | 0x80); | |
| 2193 Dynarr_add (dst, c | 0x80); | |
| 2194 ch = 0; | |
| 2195 } | |
| 2196 else | |
| 2197 ch = c; | |
| 2198 } | |
| 2199 } | |
| 2200 | |
| 2201 if (!ch) | |
| 2202 flags &= ISO_STATE_LOCK; | |
| 2203 } | |
| 2204 | |
| 2205 } | |
| 2206 | |
| 2207 if (str->eof) | |
| 2208 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst); | |
| 2209 | |
| 2210 data->flags = flags; | |
| 2211 str->ch = ch; | |
| 2212 return orign; | |
| 2213 } | |
| 2214 | |
| 2215 | |
| 2216 /***** ISO2022 encoder *****/ | |
| 2217 | |
| 2218 /* Designate CHARSET into register REG. */ | |
| 2219 | |
| 2220 static void | |
| 2221 iso2022_designate (Lisp_Object charset, int reg, | |
| 2222 struct coding_stream *str, unsigned_char_dynarr *dst) | |
| 2223 { | |
| 2224 static const char inter94[] = "()*+"; | |
| 2225 static const char inter96[] = ",-./"; | |
| 2226 int type; | |
| 2227 unsigned char final; | |
| 2228 struct iso2022_coding_stream *data = | |
| 2229 CODING_STREAM_TYPE_DATA (str, iso2022); | |
| 2230 Lisp_Object old_charset = data->charset[reg]; | |
| 2231 | |
| 2232 data->charset[reg] = charset; | |
| 2233 if (!CHARSETP (charset)) | |
| 2234 /* charset might be an initial nil or t. */ | |
| 2235 return; | |
| 2236 type = XCHARSET_TYPE (charset); | |
| 2237 final = XCHARSET_FINAL (charset); | |
| 2238 if (!data->force_charset_on_output[reg] && | |
| 2239 CHARSETP (old_charset) && | |
| 2240 XCHARSET_TYPE (old_charset) == type && | |
| 2241 XCHARSET_FINAL (old_charset) == final) | |
| 2242 return; | |
| 2243 | |
| 2244 data->force_charset_on_output[reg] = 0; | |
| 2245 | |
| 2246 { | |
| 2247 charset_conversion_spec_dynarr *dyn = | |
| 2248 XCODING_SYSTEM_ISO2022_OUTPUT_CONV (str->codesys); | |
| 2249 | |
| 2250 if (dyn) | |
| 2251 { | |
| 2252 int i; | |
| 2253 | |
| 2254 for (i = 0; i < Dynarr_length (dyn); i++) | |
| 2255 { | |
| 2256 struct charset_conversion_spec *spec = Dynarr_atp (dyn, i); | |
| 2257 if (EQ (charset, spec->from_charset)) | |
| 2258 charset = spec->to_charset; | |
| 2259 } | |
| 2260 } | |
| 2261 } | |
| 2262 | |
| 2263 Dynarr_add (dst, ISO_CODE_ESC); | |
| 3439 | 2264 |
| 771 | 2265 switch (type) |
| 2266 { | |
| 2267 case CHARSET_TYPE_94: | |
| 2268 Dynarr_add (dst, inter94[reg]); | |
| 2269 break; | |
| 2270 case CHARSET_TYPE_96: | |
| 2271 Dynarr_add (dst, inter96[reg]); | |
| 2272 break; | |
| 2273 case CHARSET_TYPE_94X94: | |
| 2274 Dynarr_add (dst, '$'); | |
| 2275 if (reg != 0 | |
| 2276 || !(XCODING_SYSTEM_ISO2022_SHORT (str->codesys)) | |
| 2277 || final < '@' | |
| 2278 || final > 'B') | |
| 2279 Dynarr_add (dst, inter94[reg]); | |
| 2280 break; | |
| 2281 case CHARSET_TYPE_96X96: | |
| 2282 Dynarr_add (dst, '$'); | |
| 2283 Dynarr_add (dst, inter96[reg]); | |
| 2284 break; | |
| 2285 } | |
| 2286 Dynarr_add (dst, final); | |
| 2287 } | |
| 2288 | |
| 2289 static void | |
| 2290 ensure_normal_shift (struct coding_stream *str, unsigned_char_dynarr *dst) | |
| 2291 { | |
| 2292 struct iso2022_coding_stream *data = | |
| 2293 CODING_STREAM_TYPE_DATA (str, iso2022); | |
| 2294 | |
| 2295 if (data->register_left != 0) | |
| 2296 { | |
| 2297 Dynarr_add (dst, ISO_CODE_SI); | |
| 2298 data->register_left = 0; | |
| 2299 } | |
| 2300 } | |
| 2301 | |
| 2302 static void | |
| 2303 ensure_shift_out (struct coding_stream *str, unsigned_char_dynarr *dst) | |
| 2304 { | |
| 2305 struct iso2022_coding_stream *data = | |
| 2306 CODING_STREAM_TYPE_DATA (str, iso2022); | |
| 2307 | |
| 2308 if (data->register_left != 1) | |
| 2309 { | |
| 2310 Dynarr_add (dst, ISO_CODE_SO); | |
| 2311 data->register_left = 1; | |
| 2312 } | |
| 2313 } | |
| 2314 | |
| 2315 /* Convert internally-formatted data to ISO2022 format. */ | |
| 2316 | |
| 2317 static Bytecount | |
| 867 | 2318 iso2022_encode (struct coding_stream *str, const Ibyte *src, |
| 771 | 2319 unsigned_char_dynarr *dst, Bytecount n) |
| 2320 { | |
| 2321 unsigned char charmask; | |
| 867 | 2322 Ibyte c; |
| 771 | 2323 unsigned char char_boundary; |
| 2324 unsigned int ch = str->ch; | |
| 2325 Lisp_Object codesys = str->codesys; | |
| 2326 int i; | |
| 2327 Lisp_Object charset; | |
| 2328 int half; | |
| 2329 struct iso2022_coding_stream *data = | |
| 2330 CODING_STREAM_TYPE_DATA (str, iso2022); | |
| 2331 unsigned int flags = data->flags; | |
| 2332 Bytecount orign = n; | |
| 2333 | |
| 2334 #ifdef ENABLE_COMPOSITE_CHARS | |
| 2335 /* flags for handling composite chars. We do a little switcheroo | |
| 2336 on the source while we're outputting the composite char. */ | |
| 2337 Bytecount saved_n = 0; | |
| 867 | 2338 const Ibyte *saved_src = NULL; |
| 771 | 2339 int in_composite = 0; |
| 2340 #endif /* ENABLE_COMPOSITE_CHARS */ | |
| 2341 | |
| 2342 char_boundary = data->current_char_boundary; | |
| 2343 charset = data->current_charset; | |
| 2344 half = data->current_half; | |
| 2345 | |
| 2346 #ifdef ENABLE_COMPOSITE_CHARS | |
| 2347 back_to_square_n: | |
| 2348 #endif | |
| 2349 while (n--) | |
| 2350 { | |
| 2351 c = *src++; | |
| 2352 | |
| 826 | 2353 if (byte_ascii_p (c)) |
| 771 | 2354 { /* Processing ASCII character */ |
| 2355 ch = 0; | |
| 2356 | |
| 3439 | 2357 if (flags & ISO_STATE_UTF_8) |
| 2358 { | |
| 2359 Dynarr_add (dst, ISO_CODE_ESC); | |
| 2360 Dynarr_add (dst, '%'); | |
| 2361 Dynarr_add (dst, '@'); | |
| 2362 flags &= ~(ISO_STATE_UTF_8); | |
| 2363 } | |
| 2364 | |
| 771 | 2365 restore_left_to_right_direction (codesys, dst, &flags, 0); |
| 2366 | |
| 2367 /* Make sure G0 contains ASCII */ | |
| 2368 if ((c > ' ' && c < ISO_CODE_DEL) || | |
| 2369 !XCODING_SYSTEM_ISO2022_NO_ASCII_CNTL (codesys)) | |
| 2370 { | |
| 2371 ensure_normal_shift (str, dst); | |
| 2372 iso2022_designate (Vcharset_ascii, 0, str, dst); | |
| 2373 } | |
| 2374 | |
| 2375 /* If necessary, restore everything to the default state | |
| 2376 at end-of-line */ | |
| 2377 if (!(XCODING_SYSTEM_ISO2022_NO_ASCII_EOL (codesys))) | |
| 2378 { | |
| 2379 /* NOTE: CRLF encoding happens *BEFORE* other encoding. | |
| 2380 Thus, even though we're working with internal-format | |
| 2381 data, there may be CR's or CRLF sequences representing | |
| 2382 newlines. */ | |
| 2383 if (c == '\r' || (c == '\n' && !(flags & ISO_STATE_CR))) | |
| 2384 { | |
| 2385 restore_left_to_right_direction (codesys, dst, &flags, 0); | |
| 2386 | |
| 2387 ensure_normal_shift (str, dst); | |
| 2388 | |
| 2389 for (i = 0; i < 4; i++) | |
| 2390 { | |
| 2391 Lisp_Object initial_charset = | |
| 2392 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i); | |
| 2393 iso2022_designate (initial_charset, i, str, dst); | |
| 2394 } | |
| 2395 } | |
| 2396 if (c == '\r') | |
| 2397 flags |= ISO_STATE_CR; | |
| 2398 else | |
| 2399 flags &= ~ISO_STATE_CR; | |
| 2400 } | |
| 2401 | |
| 2402 if (XCODING_SYSTEM_ISO2022_ESCAPE_QUOTED (codesys) | |
| 2403 && fit_to_be_escape_quoted (c)) | |
| 2404 Dynarr_add (dst, ISO_CODE_ESC); | |
| 2405 Dynarr_add (dst, c); | |
| 2406 char_boundary = 1; | |
| 2407 } | |
| 867 | 2408 else if (ibyte_leading_byte_p (c) || ibyte_leading_byte_p (ch)) |
| 771 | 2409 { /* Processing Leading Byte */ |
| 2410 ch = 0; | |
| 826 | 2411 charset = charset_by_leading_byte (c); |
| 2412 if (leading_byte_prefix_p (c)) | |
| 3439 | 2413 { |
| 2414 ch = c; | |
| 2415 } | |
| 2416 else if (XCHARSET_ENCODE_AS_UTF_8 (charset)) | |
| 2417 { | |
| 2418 assert (!EQ (charset, Vcharset_control_1) | |
| 2419 && !EQ (charset, Vcharset_composite)); | |
| 2420 | |
| 2421 /* If the character set is to be encoded as UTF-8, the escape | |
| 2422 is always the same. */ | |
| 2423 if (!(flags & ISO_STATE_UTF_8)) | |
| 2424 { | |
| 2425 Dynarr_add (dst, ISO_CODE_ESC); | |
| 2426 Dynarr_add (dst, '%'); | |
| 2427 Dynarr_add (dst, 'G'); | |
| 2428 flags |= ISO_STATE_UTF_8; | |
| 2429 } | |
| 2430 } | |
| 771 | 2431 else if (!EQ (charset, Vcharset_control_1) |
| 2432 && !EQ (charset, Vcharset_composite)) | |
| 2433 { | |
| 2434 int reg; | |
| 2435 | |
| 3439 | 2436 /* End the UTF-8 state. */ |
| 2437 if (flags & ISO_STATE_UTF_8) | |
| 2438 { | |
| 2439 Dynarr_add (dst, ISO_CODE_ESC); | |
| 2440 Dynarr_add (dst, '%'); | |
| 2441 Dynarr_add (dst, '@'); | |
| 2442 flags &= ~(ISO_STATE_UTF_8); | |
| 2443 } | |
| 2444 | |
| 771 | 2445 ensure_correct_direction (XCHARSET_DIRECTION (charset), |
| 2446 codesys, dst, &flags, 0); | |
| 2447 | |
| 2448 /* Now determine which register to use. */ | |
| 2449 reg = -1; | |
| 2450 for (i = 0; i < 4; i++) | |
| 2451 { | |
| 2452 if (EQ (charset, data->charset[i]) || | |
| 2453 EQ (charset, | |
| 2454 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i))) | |
| 2455 { | |
| 2456 reg = i; | |
| 2457 break; | |
| 2458 } | |
| 2459 } | |
| 2460 | |
| 2461 if (reg == -1) | |
| 2462 { | |
| 2463 if (XCHARSET_GRAPHIC (charset) != 0) | |
| 2464 { | |
| 2465 if (!NILP (data->charset[1]) && | |
| 2466 (!XCODING_SYSTEM_ISO2022_SEVEN (codesys) || | |
| 2467 XCODING_SYSTEM_ISO2022_LOCK_SHIFT (codesys))) | |
| 2468 reg = 1; | |
| 2469 else if (!NILP (data->charset[2])) | |
| 2470 reg = 2; | |
| 2471 else if (!NILP (data->charset[3])) | |
| 2472 reg = 3; | |
| 2473 else | |
| 2474 reg = 0; | |
| 2475 } | |
| 2476 else | |
| 2477 reg = 0; | |
| 2478 } | |
| 2479 | |
| 2480 iso2022_designate (charset, reg, str, dst); | |
| 2481 | |
| 2482 /* Now invoke that register. */ | |
| 2483 switch (reg) | |
| 2484 { | |
| 2485 case 0: | |
| 2486 ensure_normal_shift (str, dst); | |
| 2487 half = 0; | |
| 2488 break; | |
| 2489 | |
| 2490 case 1: | |
| 2491 if (XCODING_SYSTEM_ISO2022_SEVEN (codesys)) | |
| 2492 { | |
| 2493 ensure_shift_out (str, dst); | |
| 2494 half = 0; | |
| 2495 } | |
| 2496 else | |
| 2497 half = 1; | |
| 2498 break; | |
| 2499 | |
| 2500 case 2: | |
| 2501 if (XCODING_SYSTEM_ISO2022_SEVEN (str->codesys)) | |
| 2502 { | |
| 2503 Dynarr_add (dst, ISO_CODE_ESC); | |
| 2504 Dynarr_add (dst, 'N'); | |
| 2505 half = 0; | |
| 2506 } | |
| 2507 else | |
| 2508 { | |
| 2509 Dynarr_add (dst, ISO_CODE_SS2); | |
| 2510 half = 1; | |
| 2511 } | |
| 2512 break; | |
| 2513 | |
| 2514 case 3: | |
| 2515 if (XCODING_SYSTEM_ISO2022_SEVEN (str->codesys)) | |
| 2516 { | |
| 2517 Dynarr_add (dst, ISO_CODE_ESC); | |
| 2518 Dynarr_add (dst, 'O'); | |
| 2519 half = 0; | |
| 2520 } | |
| 2521 else | |
| 2522 { | |
| 2523 Dynarr_add (dst, ISO_CODE_SS3); | |
| 2524 half = 1; | |
| 2525 } | |
| 2526 break; | |
| 2527 | |
| 2528 default: | |
| 2500 | 2529 ABORT (); |
| 771 | 2530 } |
| 2531 } | |
| 2532 char_boundary = 0; | |
| 2533 } | |
| 2534 else | |
| 2535 { /* Processing Non-ASCII character */ | |
| 2536 charmask = (half == 0 ? 0x7F : 0xFF); | |
| 2537 char_boundary = 1; | |
| 2538 if (EQ (charset, Vcharset_control_1)) | |
| 2539 { | |
| 2540 if (XCODING_SYSTEM_ISO2022_ESCAPE_QUOTED (codesys) | |
| 2541 && fit_to_be_escape_quoted (c)) | |
| 2542 Dynarr_add (dst, ISO_CODE_ESC); | |
| 2543 /* you asked for it ... */ | |
| 2544 Dynarr_add (dst, c - 0x20); | |
| 2545 } | |
| 2546 #ifndef ENABLE_COMPOSITE_CHARS | |
| 2547 else if (EQ (charset, Vcharset_composite)) | |
| 2548 { | |
| 2549 if (c >= 160 || c <= 164) /* Someone might have stuck in | |
| 2550 something else */ | |
| 2551 { | |
| 2552 Dynarr_add (dst, ISO_CODE_ESC); | |
| 2553 Dynarr_add (dst, c - 160 + '0'); | |
| 2554 } | |
| 2555 } | |
| 2556 #endif | |
| 2557 else | |
| 2558 { | |
| 2559 switch (XCHARSET_REP_BYTES (charset)) | |
| 2560 { | |
| 2561 case 2: | |
| 3439 | 2562 dynarr_add_2022_one_dimension (charset, c, |
| 2563 charmask, dst); | |
| 771 | 2564 break; |
| 2565 case 3: | |
| 2566 if (XCHARSET_PRIVATE_P (charset)) | |
| 2567 { | |
| 3439 | 2568 dynarr_add_2022_one_dimension (charset, c, |
| 2569 charmask, dst); | |
| 771 | 2570 ch = 0; |
| 2571 } | |
| 2572 else if (ch) | |
| 2573 { | |
| 2574 #ifdef ENABLE_COMPOSITE_CHARS | |
| 2575 if (EQ (charset, Vcharset_composite)) | |
| 2576 { | |
| 3439 | 2577 /* #### Hasn't been written to handle composite |
| 2578 characters yet. */ | |
| 2579 assert(!XCHARSET_ENCODE_AS_UTF_8 (charset)) | |
| 771 | 2580 if (in_composite) |
| 2581 { | |
| 2582 /* #### Bother! We don't know how to | |
| 2583 handle this yet. */ | |
| 2584 Dynarr_add (dst, '~'); | |
| 2585 } | |
| 2586 else | |
| 2587 { | |
| 867 | 2588 Ichar emch = make_ichar (Vcharset_composite, |
| 771 | 2589 ch & 0x7F, c & 0x7F); |
| 2590 Lisp_Object lstr = composite_char_string (emch); | |
| 2591 saved_n = n; | |
| 2592 saved_src = src; | |
| 2593 in_composite = 1; | |
| 2594 src = XSTRING_DATA (lstr); | |
| 2595 n = XSTRING_LENGTH (lstr); | |
| 2596 Dynarr_add (dst, ISO_CODE_ESC); | |
| 2597 Dynarr_add (dst, '0'); /* start composing */ | |
| 2598 } | |
| 2599 } | |
| 2600 else | |
| 2601 #endif /* ENABLE_COMPOSITE_CHARS */ | |
| 2602 { | |
| 3439 | 2603 dynarr_add_2022_two_dimensions (charset, c, ch, |
| 2604 charmask, dst); | |
| 771 | 2605 } |
| 2606 ch = 0; | |
| 2607 } | |
| 2608 else | |
| 2609 { | |
| 2610 ch = c; | |
| 2611 char_boundary = 0; | |
| 2612 } | |
| 2613 break; | |
| 2614 case 4: | |
| 2615 if (ch) | |
| 2616 { | |
| 3439 | 2617 dynarr_add_2022_two_dimensions (charset, c, ch, |
| 2618 charmask, dst); | |
| 771 | 2619 ch = 0; |
| 2620 } | |
| 2621 else | |
| 2622 { | |
| 2623 ch = c; | |
| 2624 char_boundary = 0; | |
| 2625 } | |
| 2626 break; | |
| 2627 default: | |
| 2500 | 2628 ABORT (); |
| 771 | 2629 } |
| 2630 } | |
| 2631 } | |
| 2632 } | |
| 2633 | |
| 2634 #ifdef ENABLE_COMPOSITE_CHARS | |
| 2635 if (in_composite) | |
| 2636 { | |
| 2637 n = saved_n; | |
| 2638 src = saved_src; | |
| 2639 in_composite = 0; | |
| 2640 Dynarr_add (dst, ISO_CODE_ESC); | |
| 2641 Dynarr_add (dst, '1'); /* end composing */ | |
| 2642 goto back_to_square_n; /* Wheeeeeeeee ..... */ | |
| 2643 } | |
| 2644 #endif /* ENABLE_COMPOSITE_CHARS */ | |
| 2645 | |
| 2646 if (char_boundary && str->eof) | |
| 2647 { | |
| 2648 restore_left_to_right_direction (codesys, dst, &flags, 0); | |
| 2649 ensure_normal_shift (str, dst); | |
| 2650 for (i = 0; i < 4; i++) | |
| 2651 { | |
| 2652 Lisp_Object initial_charset = | |
| 2653 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i); | |
| 2654 iso2022_designate (initial_charset, i, str, dst); | |
| 2655 } | |
| 2656 } | |
| 2657 | |
| 2658 data->flags = flags; | |
| 2659 str->ch = ch; | |
| 2660 data->current_char_boundary = char_boundary; | |
| 2661 data->current_charset = charset; | |
| 2662 data->current_half = half; | |
| 2663 | |
| 2664 /* Verbum caro factum est! */ | |
| 2665 return orign; | |
| 2666 } | |
| 2667 | |
| 2668 static Bytecount | |
| 2669 iso2022_convert (struct coding_stream *str, | |
| 2670 const UExtbyte *src, | |
| 2671 unsigned_char_dynarr *dst, Bytecount n) | |
| 2672 { | |
| 2673 if (str->direction == CODING_DECODE) | |
| 2674 return iso2022_decode (str, src, dst, n); | |
| 2675 else | |
| 2676 return iso2022_encode (str, src, dst, n); | |
| 2677 } | |
| 2678 | |
| 2679 static void | |
| 2680 iso2022_mark (Lisp_Object codesys) | |
| 2681 { | |
| 2682 int i; | |
| 2683 | |
| 2684 for (i = 0; i < 4; i++) | |
| 2685 mark_object (XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i)); | |
| 2686 if (XCODING_SYSTEM_ISO2022_INPUT_CONV (codesys)) | |
| 2687 { | |
| 2688 for (i = 0; | |
| 2689 i < Dynarr_length (XCODING_SYSTEM_ISO2022_INPUT_CONV (codesys)); | |
| 2690 i++) | |
| 2691 { | |
| 2692 struct charset_conversion_spec *ccs = | |
| 2693 Dynarr_atp (XCODING_SYSTEM_ISO2022_INPUT_CONV (codesys), i); | |
| 2694 mark_object (ccs->from_charset); | |
| 2695 mark_object (ccs->to_charset); | |
| 2696 } | |
| 2697 } | |
| 2698 if (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (codesys)) | |
| 2699 { | |
| 2700 for (i = 0; | |
| 2701 i < Dynarr_length (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (codesys)); | |
| 2702 i++) | |
| 2703 { | |
| 2704 struct charset_conversion_spec *ccs = | |
| 2705 Dynarr_atp (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (codesys), i); | |
| 2706 mark_object (ccs->from_charset); | |
| 2707 mark_object (ccs->to_charset); | |
| 2708 } | |
| 2709 } | |
| 2710 } | |
| 2711 | |
| 2712 static void | |
| 2713 iso2022_finalize (Lisp_Object cs) | |
| 2714 { | |
| 2715 if (XCODING_SYSTEM_ISO2022_INPUT_CONV (cs)) | |
| 2716 { | |
| 2717 Dynarr_free (XCODING_SYSTEM_ISO2022_INPUT_CONV (cs)); | |
| 2718 XCODING_SYSTEM_ISO2022_INPUT_CONV (cs) = 0; | |
| 2719 } | |
| 2720 if (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (cs)) | |
| 2721 { | |
| 2722 Dynarr_free (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (cs)); | |
| 2723 XCODING_SYSTEM_ISO2022_OUTPUT_CONV (cs) = 0; | |
| 2724 } | |
| 2725 } | |
| 2726 | |
| 2727 /* Given a list of charset conversion specs as specified in a Lisp | |
| 2728 program, parse it into STORE_HERE. */ | |
| 2729 | |
| 2730 static void | |
| 2731 parse_charset_conversion_specs (charset_conversion_spec_dynarr *store_here, | |
| 2732 Lisp_Object spec_list) | |
| 2733 { | |
| 2367 | 2734 EXTERNAL_LIST_LOOP_2 (car, spec_list) |
| 771 | 2735 { |
| 2736 Lisp_Object from, to; | |
| 2737 struct charset_conversion_spec spec; | |
| 2738 | |
| 2739 if (!CONSP (car) || !CONSP (XCDR (car)) || !NILP (XCDR (XCDR (car)))) | |
| 2740 invalid_argument ("Invalid charset conversion spec", car); | |
| 2741 from = Fget_charset (XCAR (car)); | |
| 2742 to = Fget_charset (XCAR (XCDR (car))); | |
| 2743 if (XCHARSET_TYPE (from) != XCHARSET_TYPE (to)) | |
| 2744 invalid_operation_2 | |
| 2745 ("Attempted conversion between different charset types", | |
| 2746 from, to); | |
| 2747 spec.from_charset = from; | |
| 2748 spec.to_charset = to; | |
| 2749 | |
| 2750 Dynarr_add (store_here, spec); | |
| 2751 } | |
| 2752 } | |
| 2753 | |
| 2754 /* Given a dynarr LOAD_HERE of internally-stored charset conversion | |
| 2755 specs, return the equivalent as the Lisp programmer would see it. | |
| 2756 | |
| 2757 If LOAD_HERE is 0, return Qnil. */ | |
| 2758 | |
| 2759 static Lisp_Object | |
| 2760 unparse_charset_conversion_specs (charset_conversion_spec_dynarr *load_here, | |
| 2761 int names) | |
| 2762 { | |
| 2763 int i; | |
| 2764 Lisp_Object result; | |
| 2765 | |
| 2766 if (!load_here) | |
| 2767 return Qnil; | |
| 2768 for (i = 0, result = Qnil; i < Dynarr_length (load_here); i++) | |
| 2769 { | |
| 2770 struct charset_conversion_spec *ccs = Dynarr_atp (load_here, i); | |
| 2771 if (names) | |
| 2772 result = Fcons (list2 (XCHARSET_NAME (ccs->from_charset), | |
| 2773 XCHARSET_NAME (ccs->to_charset)), result); | |
| 2774 else | |
| 2775 result = Fcons (list2 (ccs->from_charset, ccs->to_charset), result); | |
| 2776 } | |
| 2777 | |
| 2778 return Fnreverse (result); | |
| 2779 } | |
| 2780 | |
| 2781 static int | |
| 2782 iso2022_putprop (Lisp_Object codesys, | |
| 2783 Lisp_Object key, | |
| 2784 Lisp_Object value) | |
| 2785 { | |
| 2786 #define FROB_INITIAL_CHARSET(charset_num) \ | |
| 2787 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, charset_num) = \ | |
| 2788 ((EQ (value, Qt) || EQ (value, Qnil)) ? value : Fget_charset (value)) | |
| 2789 | |
| 2790 if (EQ (key, Qcharset_g0)) FROB_INITIAL_CHARSET (0); | |
| 2791 else if (EQ (key, Qcharset_g1)) FROB_INITIAL_CHARSET (1); | |
| 2792 else if (EQ (key, Qcharset_g2)) FROB_INITIAL_CHARSET (2); | |
| 2793 else if (EQ (key, Qcharset_g3)) FROB_INITIAL_CHARSET (3); | |
| 2794 | |
| 2795 #define FROB_FORCE_CHARSET(charset_num) \ | |
| 2796 XCODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT (codesys, charset_num) = \ | |
| 2797 !NILP (value) | |
| 2798 | |
| 2799 else if (EQ (key, Qforce_g0_on_output)) FROB_FORCE_CHARSET (0); | |
| 2800 else if (EQ (key, Qforce_g1_on_output)) FROB_FORCE_CHARSET (1); | |
| 2801 else if (EQ (key, Qforce_g2_on_output)) FROB_FORCE_CHARSET (2); | |
| 2802 else if (EQ (key, Qforce_g3_on_output)) FROB_FORCE_CHARSET (3); | |
| 2803 | |
| 2804 #define FROB_BOOLEAN_PROPERTY(prop) \ | |
| 2805 XCODING_SYSTEM_ISO2022_##prop (codesys) = !NILP (value) | |
| 2806 | |
| 2807 else if (EQ (key, Qshort)) FROB_BOOLEAN_PROPERTY (SHORT); | |
| 2808 else if (EQ (key, Qno_ascii_eol)) FROB_BOOLEAN_PROPERTY (NO_ASCII_EOL); | |
| 2809 else if (EQ (key, Qno_ascii_cntl)) FROB_BOOLEAN_PROPERTY (NO_ASCII_CNTL); | |
| 2810 else if (EQ (key, Qseven)) FROB_BOOLEAN_PROPERTY (SEVEN); | |
| 2811 else if (EQ (key, Qlock_shift)) FROB_BOOLEAN_PROPERTY (LOCK_SHIFT); | |
| 2812 else if (EQ (key, Qno_iso6429)) FROB_BOOLEAN_PROPERTY (NO_ISO6429); | |
| 2813 else if (EQ (key, Qescape_quoted)) FROB_BOOLEAN_PROPERTY (ESCAPE_QUOTED); | |
| 2814 | |
| 2815 else if (EQ (key, Qinput_charset_conversion)) | |
| 2816 { | |
| 2817 XCODING_SYSTEM_ISO2022_INPUT_CONV (codesys) = | |
| 2818 Dynarr_new (charset_conversion_spec); | |
| 2819 parse_charset_conversion_specs | |
| 2820 (XCODING_SYSTEM_ISO2022_INPUT_CONV (codesys), value); | |
| 2821 } | |
| 2822 else if (EQ (key, Qoutput_charset_conversion)) | |
| 2823 { | |
| 2824 XCODING_SYSTEM_ISO2022_OUTPUT_CONV (codesys) = | |
| 2825 Dynarr_new (charset_conversion_spec); | |
| 2826 parse_charset_conversion_specs | |
| 2827 (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (codesys), value); | |
| 2828 } | |
| 2829 else | |
| 2830 return 0; | |
| 2831 | |
| 2832 return 1; | |
| 2833 } | |
| 2834 | |
| 2835 static void | |
| 2286 | 2836 iso2022_finalize_coding_stream ( |
| 2837 #ifdef ENABLE_COMPOSITE_CHARS | |
| 2838 struct coding_stream *str | |
| 2839 #else | |
| 2840 struct coding_stream *UNUSED (str) | |
| 2841 #endif | |
| 2842 ) | |
| 771 | 2843 { |
| 2844 #ifdef ENABLE_COMPOSITE_CHARS | |
| 2845 struct iso2022_coding_stream *data = | |
| 2846 CODING_STREAM_TYPE_DATA (str, iso2022); | |
| 2847 | |
| 2848 if (data->composite_chars) | |
| 2849 Dynarr_free (data->composite_chars); | |
| 2850 #endif | |
| 2851 } | |
| 2852 | |
| 2853 static void | |
| 2854 iso2022_init (Lisp_Object codesys) | |
| 2855 { | |
| 2856 int i; | |
| 2857 for (i = 0; i < 4; i++) | |
| 2858 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i) = Qnil; | |
| 2859 } | |
| 2860 | |
| 2861 static Lisp_Object | |
| 2862 coding_system_charset (Lisp_Object coding_system, int gnum) | |
| 2863 { | |
| 2864 Lisp_Object cs | |
| 2865 = XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (coding_system, gnum); | |
| 2866 | |
| 2867 return CHARSETP (cs) ? XCHARSET_NAME (cs) : Qnil; | |
| 2868 } | |
| 2869 | |
| 2870 static Lisp_Object | |
| 2871 iso2022_getprop (Lisp_Object coding_system, Lisp_Object prop) | |
| 2872 { | |
| 2873 if (EQ (prop, Qcharset_g0)) | |
| 2874 return coding_system_charset (coding_system, 0); | |
| 2875 else if (EQ (prop, Qcharset_g1)) | |
| 2876 return coding_system_charset (coding_system, 1); | |
| 2877 else if (EQ (prop, Qcharset_g2)) | |
| 2878 return coding_system_charset (coding_system, 2); | |
| 2879 else if (EQ (prop, Qcharset_g3)) | |
| 2880 return coding_system_charset (coding_system, 3); | |
| 2881 | |
| 2882 #define FORCE_CHARSET(charset_num) \ | |
| 2883 (XCODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT \ | |
| 2884 (coding_system, charset_num) ? Qt : Qnil) | |
| 2885 | |
| 2886 else if (EQ (prop, Qforce_g0_on_output)) | |
| 2887 return FORCE_CHARSET (0); | |
| 2888 else if (EQ (prop, Qforce_g1_on_output)) | |
| 2889 return FORCE_CHARSET (1); | |
| 2890 else if (EQ (prop, Qforce_g2_on_output)) | |
| 2891 return FORCE_CHARSET (2); | |
| 2892 else if (EQ (prop, Qforce_g3_on_output)) | |
| 2893 return FORCE_CHARSET (3); | |
| 2894 | |
| 2895 #define LISP_BOOLEAN(prop) \ | |
| 2896 (XCODING_SYSTEM_ISO2022_##prop (coding_system) ? Qt : Qnil) | |
| 2897 | |
| 2898 else if (EQ (prop, Qshort)) return LISP_BOOLEAN (SHORT); | |
| 2899 else if (EQ (prop, Qno_ascii_eol)) return LISP_BOOLEAN (NO_ASCII_EOL); | |
| 2900 else if (EQ (prop, Qno_ascii_cntl)) return LISP_BOOLEAN (NO_ASCII_CNTL); | |
| 2901 else if (EQ (prop, Qseven)) return LISP_BOOLEAN (SEVEN); | |
| 2902 else if (EQ (prop, Qlock_shift)) return LISP_BOOLEAN (LOCK_SHIFT); | |
| 2903 else if (EQ (prop, Qno_iso6429)) return LISP_BOOLEAN (NO_ISO6429); | |
| 2904 else if (EQ (prop, Qescape_quoted)) return LISP_BOOLEAN (ESCAPE_QUOTED); | |
| 2905 | |
| 2906 else if (EQ (prop, Qinput_charset_conversion)) | |
| 2907 return | |
| 2908 unparse_charset_conversion_specs | |
| 2909 (XCODING_SYSTEM_ISO2022_INPUT_CONV (coding_system), 0); | |
| 2910 else if (EQ (prop, Qoutput_charset_conversion)) | |
| 2911 return | |
| 2912 unparse_charset_conversion_specs | |
| 2913 (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (coding_system), 0); | |
| 2914 else | |
| 2915 return Qunbound; | |
| 2916 } | |
| 2917 | |
| 2918 static void | |
| 2286 | 2919 iso2022_print (Lisp_Object cs, Lisp_Object printcharfun, |
| 2920 int UNUSED (escapeflag)) | |
| 771 | 2921 { |
| 2922 int i; | |
| 2923 | |
| 826 | 2924 write_c_string (printcharfun, "("); |
| 771 | 2925 for (i = 0; i < 4; i++) |
| 2926 { | |
| 2927 Lisp_Object charset = coding_system_charset (cs, i); | |
| 2928 if (i > 0) | |
| 826 | 2929 write_c_string (printcharfun, ", "); |
| 771 | 2930 write_fmt_string (printcharfun, "g%d=", i); |
| 800 | 2931 print_internal (CHARSETP (charset) ? XCHARSET_NAME (charset) : charset, printcharfun, 0); |
| 771 | 2932 if (XCODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT (cs, i)) |
| 826 | 2933 write_c_string (printcharfun, "(force)"); |
| 771 | 2934 } |
| 2935 | |
| 3084 | 2936 #define FROB(prop) \ |
| 2937 if (!NILP (iso2022_getprop (cs, prop))) \ | |
| 2938 { \ | |
| 2939 write_fmt_string_lisp (printcharfun, ", %s", 1, prop); \ | |
| 771 | 2940 } |
| 2941 | |
| 2942 FROB (Qshort); | |
| 2943 FROB (Qno_ascii_eol); | |
| 2944 FROB (Qno_ascii_cntl); | |
| 2945 FROB (Qseven); | |
| 2946 FROB (Qlock_shift); | |
| 2947 FROB (Qno_iso6429); | |
| 2948 FROB (Qescape_quoted); | |
| 2949 | |
| 2950 { | |
| 2951 Lisp_Object val = | |
| 2952 unparse_charset_conversion_specs | |
| 2953 (XCODING_SYSTEM_ISO2022_INPUT_CONV (cs), 1); | |
| 2954 if (!NILP (val)) | |
| 2955 { | |
| 800 | 2956 write_fmt_string_lisp (printcharfun, ", input-charset-conversion=%s", 1, val); |
| 771 | 2957 } |
| 2958 val = | |
| 2959 unparse_charset_conversion_specs | |
| 2960 (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (cs), 1); | |
| 2961 if (!NILP (val)) | |
| 2962 { | |
| 800 | 2963 write_fmt_string_lisp (printcharfun, ", output-charset-conversion=%s", 1, val); |
| 771 | 2964 } |
| 826 | 2965 write_c_string (printcharfun, ")"); |
| 771 | 2966 } |
| 2967 } | |
| 2968 | |
| 2969 | |
| 2970 /************************************************************************/ | |
| 2971 /* ISO2022 detector */ | |
| 2972 /************************************************************************/ | |
| 2973 | |
| 2974 DEFINE_DETECTOR (iso2022); | |
| 2975 /* ISO2022 system using only seven-bit bytes, no locking shift */ | |
| 2976 DEFINE_DETECTOR_CATEGORY (iso2022, iso_7); | |
| 2977 /* ISO2022 system using eight-bit bytes, no locking shift, no single shift, | |
| 2978 using designation to switch charsets */ | |
| 2979 DEFINE_DETECTOR_CATEGORY (iso2022, iso_8_designate); | |
| 2980 /* ISO2022 system using eight-bit bytes, no locking shift, no designation | |
| 2981 sequences, one-dimension characters in the upper half. */ | |
| 2982 DEFINE_DETECTOR_CATEGORY (iso2022, iso_8_1); | |
| 2983 /* ISO2022 system using eight-bit bytes, no locking shift, no designation | |
| 2984 sequences, two-dimension characters in the upper half. */ | |
| 2985 DEFINE_DETECTOR_CATEGORY (iso2022, iso_8_2); | |
| 2986 /* ISO2022 system using locking shift */ | |
| 2987 DEFINE_DETECTOR_CATEGORY (iso2022, iso_lock_shift); | |
| 2988 | |
| 2989 struct iso2022_detector | |
| 2990 { | |
| 2991 int initted; | |
| 2992 struct iso2022_coding_stream *iso; | |
| 2993 unsigned int flags; | |
| 2994 | |
| 2995 /* for keeping temporary track of high-byte groups */ | |
| 2996 int high_byte_count; | |
| 2997 unsigned int saw_single_shift_just_now:1; | |
| 2998 | |
| 2999 /* running state; we set the likelihoods at the end */ | |
| 3000 unsigned int seen_high_byte:1; | |
| 3001 unsigned int seen_single_shift:1; | |
| 3002 unsigned int seen_locking_shift:1; | |
| 3003 unsigned int seen_designate:1; | |
| 3004 unsigned int bad_single_byte_sequences; | |
| 3005 unsigned int bad_multibyte_escape_sequences; | |
| 3006 unsigned int good_multibyte_escape_sequences; | |
| 3007 int even_high_byte_groups; | |
| 985 | 3008 int longest_even_high_byte; |
| 771 | 3009 int odd_high_byte_groups; |
| 3010 }; | |
| 3011 | |
| 3012 static void | |
| 3013 iso2022_detect (struct detection_state *st, const UExtbyte *src, | |
| 3014 Bytecount n) | |
| 3015 { | |
| 3016 Bytecount orign = n; | |
| 3017 struct iso2022_detector *data = DETECTION_STATE_DATA (st, iso2022); | |
| 3018 | |
| 3019 /* #### There are serious deficiencies in the recognition mechanism | |
| 3020 here. This needs to be much smarter if it's going to cut it. | |
| 3021 The sequence "\xff\x0f" is currently detected as LOCK_SHIFT while | |
| 3022 it should be detected as Latin-1. | |
| 3023 All the ISO2022 stuff in this file should be synced up with the | |
| 3024 code from FSF Emacs-21.0, in which Mule should be more or less stable. | |
| 3025 Perhaps we should wait till R2L works in FSF Emacs? */ | |
| 3026 | |
| 3027 /* We keep track of running state on our own, and set the categories at the | |
| 3028 end; that way we can reflect the correct state each time we finish, but | |
| 3029 not get confused by those results the next time around. */ | |
| 3030 | |
| 3031 if (!data->initted) | |
| 3032 { | |
| 3033 xzero (*data); | |
| 3034 data->iso = xnew_and_zero (struct iso2022_coding_stream); | |
| 3035 reset_iso2022_decode (Qnil, data->iso); | |
| 3036 data->initted = 1; | |
| 3037 } | |
| 3038 | |
| 3039 while (n--) | |
| 3040 { | |
| 3041 UExtbyte c = *src++; | |
| 3042 if (c >= 0x80) | |
| 3043 data->seen_high_byte = 1; | |
| 3044 if (c >= 0xA0) | |
| 3045 data->high_byte_count++; | |
| 3046 else | |
| 3047 { | |
| 3048 if (data->high_byte_count && | |
| 3049 !data->saw_single_shift_just_now) | |
| 3050 { | |
| 3051 if (data->high_byte_count & 1) | |
| 3052 data->odd_high_byte_groups++; | |
| 3053 else | |
| 985 | 3054 { |
| 3055 data->even_high_byte_groups++; | |
| 3056 if (data->longest_even_high_byte < data->high_byte_count) | |
| 3057 data->longest_even_high_byte = data->high_byte_count; | |
| 3058 } | |
| 771 | 3059 } |
| 3060 data->high_byte_count = 0; | |
| 3061 data->saw_single_shift_just_now = 0; | |
| 3062 } | |
| 3063 if (!(data->flags & ISO_STATE_ESCAPE) | |
| 826 | 3064 && (byte_c0_p (c) || byte_c1_p (c))) |
| 771 | 3065 { /* control chars */ |
| 3066 switch (c) | |
| 3067 { | |
| 3068 /* Allow and ignore control characters that you might | |
| 3069 reasonably see in a text file */ | |
| 3070 case '\r': | |
| 3071 case '\n': | |
| 3072 case '\t': | |
| 3073 case 7: /* bell */ | |
| 3074 case 8: /* backspace */ | |
| 3075 case 11: /* vertical tab */ | |
| 3076 case 12: /* form feed */ | |
| 3077 case 26: /* MS-DOS C-z junk */ | |
| 3078 case 31: /* '^_' -- for info */ | |
| 3079 goto label_continue_loop; | |
| 3080 | |
| 3081 default: | |
| 3082 break; | |
| 3083 } | |
| 3084 } | |
| 3085 | |
| 826 | 3086 if ((data->flags & ISO_STATE_ESCAPE) || byte_c0_p (c) |
| 3087 || byte_c1_p (c)) | |
| 771 | 3088 { |
| 3089 switch (parse_iso2022_esc (Qnil, data->iso, c, | |
| 3090 &data->flags, 0)) | |
| 3091 { | |
| 3092 case 1: /* done */ | |
| 3093 if (data->iso->esc_bytes_index > 0) | |
| 3094 data->good_multibyte_escape_sequences++; | |
| 3095 switch (data->iso->esc) | |
| 3096 { | |
| 3097 case ISO_ESC_DESIGNATE: | |
| 3098 data->seen_designate = 1; | |
| 3099 break; | |
| 3100 case ISO_ESC_LOCKING_SHIFT: | |
| 3101 data->seen_locking_shift = 1; | |
| 3102 break; | |
| 3103 case ISO_ESC_SINGLE_SHIFT: | |
| 3104 data->saw_single_shift_just_now = 1; | |
| 3105 data->seen_single_shift = 1; | |
| 3106 break; | |
| 3107 default: | |
| 3108 break; | |
| 3109 } | |
| 3110 break; | |
| 3111 | |
| 3112 case -1: /* not done */ | |
| 3113 break; | |
| 3114 | |
| 3115 case 0: /* error */ | |
| 3116 if (data->iso->esc == ISO_ESC_NOTHING) | |
| 3117 data->bad_single_byte_sequences++; | |
| 3118 else | |
| 3119 data->bad_multibyte_escape_sequences++; | |
| 3120 } | |
| 3121 } | |
| 3122 label_continue_loop:; | |
| 3123 } | |
| 3124 | |
| 985 | 3125 if (data->high_byte_count && |
| 3126 !data->saw_single_shift_just_now) | |
| 3127 { | |
| 3128 if (data->high_byte_count & 1) | |
| 3129 data->odd_high_byte_groups++; | |
| 3130 else | |
| 3131 { | |
| 3132 data->even_high_byte_groups++; | |
| 3133 if (data->longest_even_high_byte < data->high_byte_count) | |
| 3134 data->longest_even_high_byte = data->high_byte_count; | |
| 3135 } | |
| 3136 } | |
| 3137 | |
| 771 | 3138 if (data->bad_multibyte_escape_sequences > 2 || |
| 3139 (data->bad_multibyte_escape_sequences > 0 && | |
| 3140 data->good_multibyte_escape_sequences / | |
| 3141 data->bad_multibyte_escape_sequences < 10)) | |
| 3142 /* Just making it up ... */ | |
| 3143 SET_DET_RESULTS (st, iso2022, DET_NEARLY_IMPOSSIBLE); | |
| 3144 else if (data->bad_single_byte_sequences > 5 || | |
| 3145 (data->bad_single_byte_sequences > 0 && | |
| 3146 (data->good_multibyte_escape_sequences + | |
| 3147 data->even_high_byte_groups + | |
| 3148 data->odd_high_byte_groups) / | |
| 3149 data->bad_single_byte_sequences < 10)) | |
| 3150 SET_DET_RESULTS (st, iso2022, DET_SOMEWHAT_UNLIKELY); | |
| 3151 else if (data->seen_locking_shift) | |
| 3152 { | |
| 3153 SET_DET_RESULTS (st, iso2022, DET_QUITE_IMPROBABLE); | |
| 3154 DET_RESULT (st, iso_lock_shift) = DET_QUITE_PROBABLE; | |
| 3155 } | |
| 3156 else if (!data->seen_high_byte) | |
| 3157 { | |
| 3158 SET_DET_RESULTS (st, iso2022, DET_SOMEWHAT_UNLIKELY); | |
| 3159 if (data->good_multibyte_escape_sequences) | |
| 3160 DET_RESULT (st, iso_7) = DET_QUITE_PROBABLE; | |
| 3161 else if (data->seen_single_shift) | |
| 3162 DET_RESULT (st, iso_7) = DET_SOMEWHAT_LIKELY; | |
| 3163 else | |
| 3164 { | |
| 3165 /* If we've just seen pure 7-bit data, no escape sequences, | |
| 3166 then we can't give much likelihood; but if we've seen enough | |
| 3167 of this data, we can assume some unlikelihood of any 8-bit | |
| 3168 encoding */ | |
| 3169 if (orign + st->bytes_seen >= 1000) | |
| 3170 DET_RESULT (st, iso_7) = DET_AS_LIKELY_AS_UNLIKELY; | |
| 3171 else | |
| 3172 SET_DET_RESULTS (st, iso2022, DET_AS_LIKELY_AS_UNLIKELY); | |
| 3173 } | |
| 3174 } | |
| 3175 else if (data->seen_designate) | |
| 3176 { | |
| 3177 SET_DET_RESULTS (st, iso2022, DET_QUITE_IMPROBABLE); | |
| 3178 if (data->seen_single_shift) | |
| 3179 /* #### Does this really make sense? */ | |
| 3180 DET_RESULT (st, iso_8_designate) = DET_SOMEWHAT_UNLIKELY; | |
| 3181 else | |
| 3182 DET_RESULT (st, iso_8_designate) = DET_QUITE_PROBABLE; | |
| 3183 } | |
| 3184 else if (data->odd_high_byte_groups > 0 && | |
| 3185 data->even_high_byte_groups == 0) | |
| 3186 { | |
| 3187 SET_DET_RESULTS (st, iso2022, DET_SOMEWHAT_UNLIKELY); | |
| 3188 if (data->seen_single_shift) | |
| 3189 DET_RESULT (st, iso_8_1) = DET_QUITE_PROBABLE; | |
| 3190 else | |
| 3191 DET_RESULT (st, iso_8_1) = DET_SOMEWHAT_LIKELY; | |
| 3192 } | |
| 3193 else if (data->odd_high_byte_groups == 0 && | |
| 3194 data->even_high_byte_groups > 0) | |
| 3195 { | |
| 985 | 3196 #if 0 |
| 771 | 3197 SET_DET_RESULTS (st, iso2022, DET_SOMEWHAT_UNLIKELY); |
| 3198 if (data->even_high_byte_groups > 10) | |
| 3199 { | |
| 3200 if (data->seen_single_shift) | |
| 3201 DET_RESULT (st, iso_8_2) = DET_QUITE_PROBABLE; | |
| 3202 else | |
| 3203 DET_RESULT (st, iso_8_2) = DET_SOMEWHAT_LIKELY; | |
| 3204 if (data->even_high_byte_groups < 50) | |
| 3205 DET_RESULT (st, iso_8_1) = DET_SOMEWHAT_UNLIKELY; | |
| 3206 /* else it stays at quite improbable */ | |
| 3207 } | |
| 985 | 3208 #else |
| 3209 SET_DET_RESULTS (st, iso2022, DET_SOMEWHAT_UNLIKELY); | |
| 3210 if (data->seen_single_shift) | |
| 3211 DET_RESULT (st, iso_8_2) = DET_QUITE_PROBABLE; | |
| 3212 else if (data->even_high_byte_groups > 10) | |
| 3213 DET_RESULT (st, iso_8_2) = DET_SOMEWHAT_LIKELY; | |
| 3214 else if (data->longest_even_high_byte > 6) | |
| 3215 DET_RESULT (st, iso_8_2) = DET_SLIGHTLY_LIKELY; | |
| 3216 #endif | |
| 771 | 3217 } |
| 3218 else if (data->odd_high_byte_groups > 0 && | |
| 3219 data->even_high_byte_groups > 0) | |
| 3393 | 3220 { |
| 3221 /* Well, this could be a Latin-1 text, with most high-byte | |
| 3222 characters single, but sometimes two are together, though | |
| 3223 this happens not as often. This is common for Western | |
| 3224 European languages like German, French, Danish, Swedish, etc. | |
| 3225 Then we would either have a rather small file and | |
| 3226 even_high_byte_groups would be low. | |
| 3227 Or we would have a larger file and the ratio of odd to even | |
| 3228 groups would be very high. */ | |
| 3229 SET_DET_RESULTS (st, iso2022, DET_SOMEWHAT_UNLIKELY); | |
| 3230 if (data->even_high_byte_groups <= 3 || | |
| 3231 data->odd_high_byte_groups >= 10 * data->even_high_byte_groups) | |
| 3232 DET_RESULT (st, iso_8_1) = DET_SOMEWHAT_LIKELY; | |
| 3233 } | |
| 771 | 3234 else |
| 3235 SET_DET_RESULTS (st, iso2022, DET_AS_LIKELY_AS_UNLIKELY); | |
| 3236 } | |
| 3237 | |
| 3238 static void | |
| 3239 iso2022_finalize_detection_state (struct detection_state *st) | |
| 3240 { | |
| 3241 struct iso2022_detector *data = DETECTION_STATE_DATA (st, iso2022); | |
| 3242 if (data->iso) | |
| 1726 | 3243 xfree (data->iso, struct iso2022_coding_stream *); |
| 771 | 3244 } |
| 3245 | |
| 3246 | |
| 3247 /************************************************************************/ | |
| 3248 /* CCL methods */ | |
| 3249 /************************************************************************/ | |
| 3250 | |
| 3251 /* Converter written in CCL. */ | |
| 3252 | |
| 3253 struct ccl_coding_system | |
| 3254 { | |
| 3255 /* For a CCL coding system, these specify the CCL programs used for | |
| 3256 decoding (input) and encoding (output). */ | |
| 3257 Lisp_Object decode; | |
| 3258 Lisp_Object encode; | |
| 3259 }; | |
| 3260 | |
| 3261 #define CODING_SYSTEM_CCL_DECODE(codesys) \ | |
| 3262 (CODING_SYSTEM_TYPE_DATA (codesys, ccl)->decode) | |
| 3263 #define CODING_SYSTEM_CCL_ENCODE(codesys) \ | |
| 3264 (CODING_SYSTEM_TYPE_DATA (codesys, ccl)->encode) | |
| 3265 #define XCODING_SYSTEM_CCL_DECODE(codesys) \ | |
| 3266 CODING_SYSTEM_CCL_DECODE (XCODING_SYSTEM (codesys)) | |
| 3267 #define XCODING_SYSTEM_CCL_ENCODE(codesys) \ | |
| 3268 CODING_SYSTEM_CCL_ENCODE (XCODING_SYSTEM (codesys)) | |
| 3269 | |
| 3270 struct ccl_coding_stream | |
| 3271 { | |
| 3272 /* state of the running CCL program */ | |
| 3273 struct ccl_program ccl; | |
| 3274 }; | |
| 3275 | |
| 1204 | 3276 static const struct memory_description ccl_coding_system_description[] = { |
| 3277 { XD_LISP_OBJECT, offsetof (struct ccl_coding_system, decode) }, | |
| 3278 { XD_LISP_OBJECT, offsetof (struct ccl_coding_system, encode) }, | |
| 771 | 3279 { XD_END } |
| 3280 }; | |
| 3281 | |
| 1204 | 3282 DEFINE_CODING_SYSTEM_TYPE_WITH_DATA (ccl); |
| 3283 | |
| 771 | 3284 static void |
| 3285 ccl_mark (Lisp_Object codesys) | |
| 3286 { | |
| 3287 mark_object (XCODING_SYSTEM_CCL_DECODE (codesys)); | |
| 3288 mark_object (XCODING_SYSTEM_CCL_ENCODE (codesys)); | |
| 3289 } | |
| 3290 | |
| 3291 static Bytecount | |
| 3292 ccl_convert (struct coding_stream *str, const UExtbyte *src, | |
| 3293 unsigned_char_dynarr *dst, Bytecount n) | |
| 3294 { | |
| 3295 struct ccl_coding_stream *data = | |
| 3296 CODING_STREAM_TYPE_DATA (str, ccl); | |
| 3297 Bytecount orign = n; | |
| 3298 | |
| 3299 data->ccl.last_block = str->eof; | |
| 3300 /* When applying a CCL program to a stream, SRC must not be NULL -- this | |
| 3301 is a special signal to the driver that read and write operations are | |
| 3302 not allowed. The code does not actually look at what SRC points to if | |
| 3303 N == 0. | |
| 3304 */ | |
| 3305 ccl_driver (&data->ccl, src ? src : (const unsigned char *) "", | |
| 3306 dst, n, 0, | |
| 3307 str->direction == CODING_DECODE ? CCL_MODE_DECODING : | |
| 3308 CCL_MODE_ENCODING); | |
| 3309 return orign; | |
| 3310 } | |
| 3311 | |
| 3312 static void | |
| 3313 ccl_init_coding_stream (struct coding_stream *str) | |
| 3314 { | |
| 3315 struct ccl_coding_stream *data = | |
| 3316 CODING_STREAM_TYPE_DATA (str, ccl); | |
| 3317 | |
| 3318 setup_ccl_program (&data->ccl, | |
| 3319 str->direction == CODING_DECODE ? | |
| 3320 XCODING_SYSTEM_CCL_DECODE (str->codesys) : | |
| 3321 XCODING_SYSTEM_CCL_ENCODE (str->codesys)); | |
| 3322 } | |
| 3323 | |
| 3324 static void | |
| 3325 ccl_rewind_coding_stream (struct coding_stream *str) | |
| 3326 { | |
| 3327 ccl_init_coding_stream (str); | |
| 3328 } | |
| 3329 | |
| 3330 static void | |
| 3331 ccl_init (Lisp_Object codesys) | |
| 3332 { | |
| 3333 XCODING_SYSTEM_CCL_DECODE (codesys) = Qnil; | |
| 3334 XCODING_SYSTEM_CCL_ENCODE (codesys) = Qnil; | |
| 3335 } | |
| 3336 | |
| 3337 static int | |
| 3338 ccl_putprop (Lisp_Object codesys, Lisp_Object key, Lisp_Object value) | |
| 3339 { | |
| 3340 Lisp_Object sym; | |
| 3341 struct ccl_program test_ccl; | |
|
4528
726060ee587c
First draft of g++ 4.3 warning removal patch. Builds. *Needs ChangeLogs.*
Stephen J. Turnbull <stephen@xemacs.org>
parents:
4522
diff
changeset
|
3342 const Ascbyte *suffix; |
| 771 | 3343 |
| 3344 /* Check key first. */ | |
| 3345 if (EQ (key, Qdecode)) | |
| 3346 suffix = "-ccl-decode"; | |
| 3347 else if (EQ (key, Qencode)) | |
| 3348 suffix = "-ccl-encode"; | |
| 3349 else | |
| 3350 return 0; | |
| 3351 | |
| 3352 /* If value is vector, register it as a ccl program | |
| 3353 associated with a newly created symbol for | |
| 3354 backward compatibility. | |
| 3355 | |
| 3356 #### Bogosity alert! Do we really have to do this crap???? --ben */ | |
| 3357 if (VECTORP (value)) | |
| 3358 { | |
| 3359 sym = Fintern (concat2 (Fsymbol_name (XCODING_SYSTEM_NAME (codesys)), | |
| 3360 build_string (suffix)), | |
| 3361 Qnil); | |
| 3362 Fregister_ccl_program (sym, value); | |
| 3363 } | |
| 3364 else | |
| 3365 { | |
| 3366 CHECK_SYMBOL (value); | |
| 3367 sym = value; | |
| 3368 } | |
| 3369 /* check if the given ccl programs are valid. */ | |
| 3370 if (setup_ccl_program (&test_ccl, sym) < 0) | |
| 3371 invalid_argument ("Invalid CCL program", value); | |
| 3372 | |
| 3373 if (EQ (key, Qdecode)) | |
| 3374 XCODING_SYSTEM_CCL_DECODE (codesys) = sym; | |
| 3375 else if (EQ (key, Qencode)) | |
| 3376 XCODING_SYSTEM_CCL_ENCODE (codesys) = sym; | |
| 3377 | |
| 3378 return 1; | |
| 3379 } | |
| 3380 | |
| 3381 static Lisp_Object | |
| 3382 ccl_getprop (Lisp_Object coding_system, Lisp_Object prop) | |
| 3383 { | |
| 3384 if (EQ (prop, Qdecode)) | |
| 3385 return XCODING_SYSTEM_CCL_DECODE (coding_system); | |
| 3386 else if (EQ (prop, Qencode)) | |
| 3387 return XCODING_SYSTEM_CCL_ENCODE (coding_system); | |
| 3388 else | |
| 3389 return Qunbound; | |
| 3390 } | |
| 3391 | |
| 3392 | |
| 3393 /************************************************************************/ | |
| 3394 /* Initialization */ | |
| 3395 /************************************************************************/ | |
| 3396 | |
| 3397 void | |
| 3398 syms_of_mule_coding (void) | |
| 3399 { | |
| 3400 DEFSUBR (Fdecode_shift_jis_char); | |
| 3401 DEFSUBR (Fencode_shift_jis_char); | |
| 3402 DEFSUBR (Fdecode_big5_char); | |
| 3403 DEFSUBR (Fencode_big5_char); | |
| 3404 | |
| 3405 DEFSYMBOL (Qbig5); | |
| 3406 DEFSYMBOL (Qshift_jis); | |
| 3407 DEFSYMBOL (Qccl); | |
| 3408 DEFSYMBOL (Qiso2022); | |
| 3409 | |
| 3410 DEFSYMBOL (Qcharset_g0); | |
| 3411 DEFSYMBOL (Qcharset_g1); | |
| 3412 DEFSYMBOL (Qcharset_g2); | |
| 3413 DEFSYMBOL (Qcharset_g3); | |
| 3414 DEFSYMBOL (Qforce_g0_on_output); | |
| 3415 DEFSYMBOL (Qforce_g1_on_output); | |
| 3416 DEFSYMBOL (Qforce_g2_on_output); | |
| 3417 DEFSYMBOL (Qforce_g3_on_output); | |
| 3418 DEFSYMBOL (Qno_iso6429); | |
| 3419 DEFSYMBOL (Qinput_charset_conversion); | |
| 3420 DEFSYMBOL (Qoutput_charset_conversion); | |
| 3421 | |
| 3422 DEFSYMBOL (Qshort); | |
| 3423 DEFSYMBOL (Qno_ascii_eol); | |
| 3424 DEFSYMBOL (Qno_ascii_cntl); | |
| 3425 DEFSYMBOL (Qseven); | |
| 3426 DEFSYMBOL (Qlock_shift); | |
| 3427 | |
| 3428 DEFSYMBOL (Qiso_7); | |
| 3429 DEFSYMBOL (Qiso_8_designate); | |
| 3430 DEFSYMBOL (Qiso_8_1); | |
| 3431 DEFSYMBOL (Qiso_8_2); | |
| 3432 DEFSYMBOL (Qiso_lock_shift); | |
| 3433 } | |
| 3434 | |
| 3435 void | |
| 3436 coding_system_type_create_mule_coding (void) | |
| 3437 { | |
| 3438 INITIALIZE_CODING_SYSTEM_TYPE_WITH_DATA (iso2022, "iso2022-coding-system-p"); | |
| 3439 CODING_SYSTEM_HAS_METHOD (iso2022, mark); | |
| 3440 CODING_SYSTEM_HAS_METHOD (iso2022, convert); | |
| 3441 CODING_SYSTEM_HAS_METHOD (iso2022, finalize_coding_stream); | |
| 3442 CODING_SYSTEM_HAS_METHOD (iso2022, init_coding_stream); | |
| 3443 CODING_SYSTEM_HAS_METHOD (iso2022, rewind_coding_stream); | |
| 3444 CODING_SYSTEM_HAS_METHOD (iso2022, init); | |
| 3445 CODING_SYSTEM_HAS_METHOD (iso2022, print); | |
| 3446 CODING_SYSTEM_HAS_METHOD (iso2022, finalize); | |
| 3447 CODING_SYSTEM_HAS_METHOD (iso2022, putprop); | |
| 3448 CODING_SYSTEM_HAS_METHOD (iso2022, getprop); | |
| 3449 | |
| 3450 INITIALIZE_DETECTOR (iso2022); | |
| 3451 DETECTOR_HAS_METHOD (iso2022, detect); | |
| 3452 DETECTOR_HAS_METHOD (iso2022, finalize_detection_state); | |
| 3453 INITIALIZE_DETECTOR_CATEGORY (iso2022, iso_7); | |
| 3454 INITIALIZE_DETECTOR_CATEGORY (iso2022, iso_8_designate); | |
| 3455 INITIALIZE_DETECTOR_CATEGORY (iso2022, iso_8_1); | |
| 3456 INITIALIZE_DETECTOR_CATEGORY (iso2022, iso_8_2); | |
| 3457 INITIALIZE_DETECTOR_CATEGORY (iso2022, iso_lock_shift); | |
| 3458 | |
| 3459 INITIALIZE_CODING_SYSTEM_TYPE_WITH_DATA (ccl, "ccl-coding-system-p"); | |
| 3460 CODING_SYSTEM_HAS_METHOD (ccl, mark); | |
| 3461 CODING_SYSTEM_HAS_METHOD (ccl, convert); | |
| 3462 CODING_SYSTEM_HAS_METHOD (ccl, init); | |
| 3463 CODING_SYSTEM_HAS_METHOD (ccl, init_coding_stream); | |
| 3464 CODING_SYSTEM_HAS_METHOD (ccl, rewind_coding_stream); | |
| 3465 CODING_SYSTEM_HAS_METHOD (ccl, putprop); | |
| 3466 CODING_SYSTEM_HAS_METHOD (ccl, getprop); | |
| 3467 | |
| 3468 INITIALIZE_CODING_SYSTEM_TYPE (shift_jis, "shift-jis-coding-system-p"); | |
| 3469 CODING_SYSTEM_HAS_METHOD (shift_jis, convert); | |
| 3470 | |
| 3471 INITIALIZE_DETECTOR (shift_jis); | |
| 3472 DETECTOR_HAS_METHOD (shift_jis, detect); | |
| 3473 INITIALIZE_DETECTOR_CATEGORY (shift_jis, shift_jis); | |
| 3474 | |
| 3475 INITIALIZE_CODING_SYSTEM_TYPE (big5, "big5-coding-system-p"); | |
| 3476 CODING_SYSTEM_HAS_METHOD (big5, convert); | |
| 3477 | |
| 3478 INITIALIZE_DETECTOR (big5); | |
| 3479 DETECTOR_HAS_METHOD (big5, detect); | |
| 3480 INITIALIZE_DETECTOR_CATEGORY (big5, big5); | |
| 3481 } | |
| 3482 | |
| 3483 void | |
| 3484 reinit_coding_system_type_create_mule_coding (void) | |
| 3485 { | |
| 3486 REINITIALIZE_CODING_SYSTEM_TYPE (iso2022); | |
| 3487 REINITIALIZE_CODING_SYSTEM_TYPE (ccl); | |
| 3488 REINITIALIZE_CODING_SYSTEM_TYPE (shift_jis); | |
| 3489 REINITIALIZE_CODING_SYSTEM_TYPE (big5); | |
| 3490 } | |
| 3491 | |
| 3492 void | |
| 3493 reinit_vars_of_mule_coding (void) | |
| 3494 { | |
| 3495 } | |
| 3496 | |
| 3497 void | |
| 3498 vars_of_mule_coding (void) | |
| 3499 { | |
| 3500 } |
