771
|
1 /* Conversion functions for I18N encodings, but not Unicode (in separate file).
|
|
2 Copyright (C) 1991, 1995 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
4 Copyright (C) 2000, 2001, 2002 Ben Wing.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: Mule 2.3. Not in FSF. */
|
|
24
|
|
25 /* For previous history, see file-coding.c.
|
|
26
|
|
27 September 10, 2001: Extracted from file-coding.c by Ben Wing.
|
|
28
|
|
29 Later in September: Finished abstraction of detection system, rewrote
|
|
30 all the detectors to include multiple levels of likelihood.
|
|
31 */
|
|
32
|
|
33 #include <config.h>
|
|
34 #include "lisp.h"
|
|
35
|
|
36 #include "charset.h"
|
|
37 #include "mule-ccl.h"
|
|
38 #include "file-coding.h"
|
|
39
|
|
40 Lisp_Object Qshift_jis, Qiso2022, Qbig5, Qccl;
|
|
41
|
|
42 Lisp_Object Qcharset_g0, Qcharset_g1, Qcharset_g2, Qcharset_g3;
|
|
43 Lisp_Object Qforce_g0_on_output, Qforce_g1_on_output;
|
|
44 Lisp_Object Qforce_g2_on_output, Qforce_g3_on_output;
|
|
45 Lisp_Object Qno_iso6429;
|
|
46 Lisp_Object Qinput_charset_conversion, Qoutput_charset_conversion;
|
|
47 Lisp_Object Qshort, Qno_ascii_eol, Qno_ascii_cntl, Qseven, Qlock_shift;
|
|
48
|
|
49 Lisp_Object Qiso_7, Qiso_8_designate, Qiso_8_1, Qiso_8_2, Qiso_lock_shift;
|
|
50
|
|
51
|
|
52 /************************************************************************/
|
|
53 /* Shift-JIS methods */
|
|
54 /************************************************************************/
|
|
55
|
|
56 /* Shift-JIS; Hankaku (half-width) KANA is also supported. */
|
|
57 DEFINE_CODING_SYSTEM_TYPE (shift_jis);
|
|
58
|
|
59 /* Shift-JIS is a coding system encoding three character sets: ASCII, right
|
|
60 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
|
|
61 as is. A character of JISX0201-Kana (DIMENSION1_CHARS94 character set) is
|
|
62 encoded by "position-code + 0x80". A character of JISX0208
|
|
63 (DIMENSION2_CHARS94 character set) is encoded in 2-byte but two
|
|
64 position-codes are divided and shifted so that it fit in the range
|
|
65 below.
|
|
66
|
|
67 --- CODE RANGE of Shift-JIS ---
|
|
68 (character set) (range)
|
|
69 ASCII 0x00 .. 0x7F
|
|
70 JISX0201-Kana 0xA0 .. 0xDF
|
|
71 JISX0208 (1st byte) 0x80 .. 0x9F and 0xE0 .. 0xEF
|
|
72 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
|
|
73 -------------------------------
|
|
74
|
|
75 */
|
|
76
|
|
77 /* Is this the first byte of a Shift-JIS two-byte char? */
|
|
78
|
|
79 #define BYTE_SHIFT_JIS_TWO_BYTE_1_P(c) \
|
|
80 (((c) >= 0x81 && (c) <= 0x9F) || ((c) >= 0xE0 && (c) <= 0xEF))
|
|
81
|
|
82 /* Is this the second byte of a Shift-JIS two-byte char? */
|
|
83
|
|
84 #define BYTE_SHIFT_JIS_TWO_BYTE_2_P(c) \
|
|
85 (((c) >= 0x40 && (c) <= 0x7E) || ((c) >= 0x80 && (c) <= 0xFC))
|
|
86
|
|
87 #define BYTE_SHIFT_JIS_KATAKANA_P(c) \
|
|
88 ((c) >= 0xA1 && (c) <= 0xDF)
|
|
89
|
|
90 /* Convert Shift-JIS data to internal format. */
|
|
91
|
|
92 static Bytecount
|
|
93 shift_jis_convert (struct coding_stream *str, const UExtbyte *src,
|
|
94 unsigned_char_dynarr *dst, Bytecount n)
|
|
95 {
|
|
96 unsigned int ch = str->ch;
|
|
97 Bytecount orign = n;
|
|
98
|
|
99 if (str->direction == CODING_DECODE)
|
|
100 {
|
|
101 while (n--)
|
|
102 {
|
|
103 UExtbyte c = *src++;
|
|
104
|
|
105 if (ch)
|
|
106 {
|
|
107 /* Previous character was first byte of Shift-JIS Kanji char. */
|
|
108 if (BYTE_SHIFT_JIS_TWO_BYTE_2_P (c))
|
|
109 {
|
|
110 Intbyte e1, e2;
|
|
111
|
|
112 Dynarr_add (dst, LEADING_BYTE_JAPANESE_JISX0208);
|
|
113 DECODE_SHIFT_JIS (ch, c, e1, e2);
|
|
114 Dynarr_add (dst, e1);
|
|
115 Dynarr_add (dst, e2);
|
|
116 }
|
|
117 else
|
|
118 {
|
|
119 DECODE_ADD_BINARY_CHAR (ch, dst);
|
|
120 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
121 }
|
|
122 ch = 0;
|
|
123 }
|
|
124 else
|
|
125 {
|
|
126 if (BYTE_SHIFT_JIS_TWO_BYTE_1_P (c))
|
|
127 ch = c;
|
|
128 else if (BYTE_SHIFT_JIS_KATAKANA_P (c))
|
|
129 {
|
|
130 Dynarr_add (dst, LEADING_BYTE_KATAKANA_JISX0201);
|
|
131 Dynarr_add (dst, c);
|
|
132 }
|
|
133 else
|
|
134 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
135 }
|
|
136 }
|
|
137
|
|
138 if (str->eof)
|
|
139 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst);
|
|
140 }
|
|
141 else
|
|
142 {
|
|
143 while (n--)
|
|
144 {
|
|
145 Intbyte c = *src++;
|
|
146 if (BYTE_ASCII_P (c))
|
|
147 {
|
|
148 Dynarr_add (dst, c);
|
|
149 ch = 0;
|
|
150 }
|
|
151 else if (INTBYTE_LEADING_BYTE_P (c))
|
|
152 ch = (c == LEADING_BYTE_KATAKANA_JISX0201 ||
|
|
153 c == LEADING_BYTE_JAPANESE_JISX0208_1978 ||
|
|
154 c == LEADING_BYTE_JAPANESE_JISX0208) ? c : 0;
|
|
155 else if (ch)
|
|
156 {
|
|
157 if (ch == LEADING_BYTE_KATAKANA_JISX0201)
|
|
158 {
|
|
159 Dynarr_add (dst, c);
|
|
160 ch = 0;
|
|
161 }
|
|
162 else if (ch == LEADING_BYTE_JAPANESE_JISX0208_1978 ||
|
|
163 ch == LEADING_BYTE_JAPANESE_JISX0208)
|
|
164 ch = c;
|
|
165 else
|
|
166 {
|
|
167 UExtbyte j1, j2;
|
|
168 ENCODE_SHIFT_JIS (ch, c, j1, j2);
|
|
169 Dynarr_add (dst, j1);
|
|
170 Dynarr_add (dst, j2);
|
|
171 ch = 0;
|
|
172 }
|
|
173 }
|
|
174 }
|
|
175 }
|
|
176
|
|
177 str->ch = ch;
|
|
178
|
|
179 return orign;
|
|
180 }
|
|
181
|
|
182 DEFUN ("decode-shift-jis-char", Fdecode_shift_jis_char, 1, 1, 0, /*
|
|
183 Decode a JISX0208 character of Shift-JIS coding-system.
|
|
184 CODE is the character code in Shift-JIS as a cons of type bytes.
|
|
185 Return the corresponding character.
|
|
186 */
|
|
187 (code))
|
|
188 {
|
|
189 int c1, c2, s1, s2;
|
|
190
|
|
191 CHECK_CONS (code);
|
|
192 CHECK_INT (XCAR (code));
|
|
193 CHECK_INT (XCDR (code));
|
|
194 s1 = XINT (XCAR (code));
|
|
195 s2 = XINT (XCDR (code));
|
|
196 if (BYTE_SHIFT_JIS_TWO_BYTE_1_P (s1) &&
|
|
197 BYTE_SHIFT_JIS_TWO_BYTE_2_P (s2))
|
|
198 {
|
|
199 DECODE_SHIFT_JIS (s1, s2, c1, c2);
|
|
200 return make_char (MAKE_CHAR (Vcharset_japanese_jisx0208,
|
|
201 c1 & 0x7F, c2 & 0x7F));
|
|
202 }
|
|
203 else
|
|
204 return Qnil;
|
|
205 }
|
|
206
|
|
207 DEFUN ("encode-shift-jis-char", Fencode_shift_jis_char, 1, 1, 0, /*
|
|
208 Encode a JISX0208 character CHARACTER to SHIFT-JIS coding-system.
|
|
209 Return the corresponding character code in SHIFT-JIS as a cons of two bytes.
|
|
210 */
|
|
211 (character))
|
|
212 {
|
|
213 Lisp_Object charset;
|
|
214 int c1, c2, s1, s2;
|
|
215
|
|
216 CHECK_CHAR_COERCE_INT (character);
|
|
217 BREAKUP_CHAR (XCHAR (character), charset, c1, c2);
|
|
218 if (EQ (charset, Vcharset_japanese_jisx0208))
|
|
219 {
|
|
220 ENCODE_SHIFT_JIS (c1 | 0x80, c2 | 0x80, s1, s2);
|
|
221 return Fcons (make_int (s1), make_int (s2));
|
|
222 }
|
|
223 else
|
|
224 return Qnil;
|
|
225 }
|
|
226
|
|
227
|
|
228 /************************************************************************/
|
|
229 /* Shift-JIS detector */
|
|
230 /************************************************************************/
|
|
231
|
|
232 DEFINE_DETECTOR (shift_jis);
|
|
233 DEFINE_DETECTOR_CATEGORY (shift_jis, shift_jis);
|
|
234
|
|
235 struct shift_jis_detector
|
|
236 {
|
|
237 int seen_jisx0208_char_in_c1;
|
|
238 int seen_jisx0208_char_in_upper;
|
|
239 int seen_jisx0201_char;
|
|
240 unsigned int seen_iso2022_esc:1;
|
|
241 unsigned int seen_bad_first_byte:1;
|
|
242 unsigned int seen_bad_second_byte:1;
|
|
243 /* temporary */
|
|
244 unsigned int in_second_byte:1;
|
|
245 unsigned int first_byte_was_c1:1;
|
|
246 };
|
|
247
|
|
248 static void
|
|
249 shift_jis_detect (struct detection_state *st, const UExtbyte *src,
|
|
250 Bytecount n)
|
|
251 {
|
|
252 struct shift_jis_detector *data = DETECTION_STATE_DATA (st, shift_jis);
|
|
253
|
|
254 while (n--)
|
|
255 {
|
|
256 UExtbyte c = *src++;
|
|
257 if (!data->in_second_byte)
|
|
258 {
|
|
259 if (c >= 0x80 && c <= 0x9F)
|
|
260 data->first_byte_was_c1 = 1;
|
|
261 if (c >= 0xA0 && c <= 0xDF)
|
|
262 data->seen_jisx0201_char++;
|
|
263 else if ((c >= 0x80 && c <= 0x9F) || (c >= 0xE0 && c <= 0xEF))
|
|
264 data->in_second_byte = 1;
|
|
265 else if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
|
|
266 data->seen_iso2022_esc = 1;
|
|
267 else if (c >= 0x80)
|
|
268 data->seen_bad_first_byte = 1;
|
|
269 }
|
|
270 else
|
|
271 {
|
|
272 if ((c >= 0x40 && c <= 0x7E) || (c >= 0x80 && c <= 0xFC))
|
|
273 {
|
|
274 if (data->first_byte_was_c1 || (c >= 0x80 && c <= 0x9F))
|
|
275 data->seen_jisx0208_char_in_c1++;
|
|
276 else
|
|
277 data->seen_jisx0208_char_in_upper++;
|
|
278 }
|
|
279 else
|
|
280 data->seen_bad_second_byte = 1;
|
|
281 data->in_second_byte = 0;
|
|
282 data->first_byte_was_c1 = 0;
|
|
283 }
|
|
284 }
|
|
285
|
|
286 if (data->seen_bad_second_byte)
|
|
287 DET_RESULT (st, shift_jis) = DET_NEARLY_IMPOSSIBLE;
|
|
288 else if (data->seen_bad_first_byte)
|
|
289 DET_RESULT (st, shift_jis) = DET_QUITE_IMPROBABLE;
|
|
290 else if (data->seen_iso2022_esc)
|
|
291 DET_RESULT (st, shift_jis) = DET_SOMEWHAT_UNLIKELY;
|
|
292 else if (data->seen_jisx0208_char_in_c1 >= 20 ||
|
|
293 (data->seen_jisx0208_char_in_c1 >= 10 &&
|
|
294 data->seen_jisx0208_char_in_upper >= 10))
|
|
295 DET_RESULT (st, shift_jis) = DET_QUITE_PROBABLE;
|
|
296 else if (data->seen_jisx0208_char_in_c1 > 3 ||
|
|
297 data->seen_jisx0208_char_in_upper >= 10 ||
|
|
298 /* Since the range is limited compared to what is often seen
|
|
299 is typical Latin-X charsets, the fact that we've seen a
|
|
300 bunch of them and none that are invalid is reasonably
|
|
301 strong statistical evidence of this encoding, or at least
|
|
302 not of the common Latin-X ones. */
|
|
303 data->seen_jisx0201_char >= 100)
|
|
304 DET_RESULT (st, shift_jis) = DET_SOMEWHAT_LIKELY;
|
|
305 else if (data->seen_jisx0208_char_in_c1 > 0 ||
|
|
306 data->seen_jisx0208_char_in_upper > 0 ||
|
|
307 data->seen_jisx0201_char > 0)
|
|
308 DET_RESULT (st, shift_jis) = DET_SLIGHTLY_LIKELY;
|
|
309 else
|
|
310 DET_RESULT (st, shift_jis) = DET_AS_LIKELY_AS_UNLIKELY;
|
|
311 }
|
|
312
|
|
313
|
|
314 /************************************************************************/
|
|
315 /* Big5 methods */
|
|
316 /************************************************************************/
|
|
317
|
|
318 /* BIG5 (used for Taiwanese). */
|
|
319 DEFINE_CODING_SYSTEM_TYPE (big5);
|
|
320
|
|
321 /* BIG5 is a coding system encoding two character sets: ASCII and
|
|
322 Big5. An ASCII character is encoded as is. Big5 is a two-byte
|
|
323 character set and is encoded in two-byte.
|
|
324
|
|
325 --- CODE RANGE of BIG5 ---
|
|
326 (character set) (range)
|
|
327 ASCII 0x00 .. 0x7F
|
|
328 Big5 (1st byte) 0xA1 .. 0xFE
|
|
329 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
|
|
330 --------------------------
|
|
331
|
|
332 Since the number of characters in Big5 is larger than maximum
|
|
333 characters in Emacs' charset (96x96), it can't be handled as one
|
|
334 charset. So, in XEmacs, Big5 is divided into two: `charset-big5-1'
|
|
335 and `charset-big5-2'. Both <type>s are DIMENSION2_CHARS94. The former
|
|
336 contains frequently used characters and the latter contains less
|
|
337 frequently used characters. */
|
|
338
|
|
339 #define BYTE_BIG5_TWO_BYTE_1_P(c) \
|
|
340 ((c) >= 0xA1 && (c) <= 0xFE)
|
|
341
|
|
342 /* Is this the second byte of a Shift-JIS two-byte char? */
|
|
343
|
|
344 #define BYTE_BIG5_TWO_BYTE_2_P(c) \
|
|
345 (((c) >= 0x40 && (c) <= 0x7E) || ((c) >= 0xA1 && (c) <= 0xFE))
|
|
346
|
|
347 /* Number of Big5 characters which have the same code in 1st byte. */
|
|
348
|
|
349 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
|
|
350
|
|
351 /* Code conversion macros. These are macros because they are used in
|
|
352 inner loops during code conversion.
|
|
353
|
|
354 Note that temporary variables in macros introduce the classic
|
|
355 dynamic-scoping problems with variable names. We use capital-
|
|
356 lettered variables in the assumption that XEmacs does not use
|
|
357 capital letters in variables except in a very formalized way
|
|
358 (e.g. Qstring). */
|
|
359
|
|
360 /* Convert Big5 code (b1, b2) into its internal string representation
|
|
361 (lb, c1, c2). */
|
|
362
|
|
363 /* There is a much simpler way to split the Big5 charset into two.
|
|
364 For the moment I'm going to leave the algorithm as-is because it
|
|
365 claims to separate out the most-used characters into a single
|
|
366 charset, which perhaps will lead to optimizations in various
|
|
367 places.
|
|
368
|
|
369 The way the algorithm works is something like this:
|
|
370
|
|
371 Big5 can be viewed as a 94x157 charset, where the row is
|
|
372 encoded into the bytes 0xA1 .. 0xFE and the column is encoded
|
|
373 into the bytes 0x40 .. 0x7E and 0xA1 .. 0xFE. As for frequency,
|
|
374 the split between low and high column numbers is apparently
|
|
375 meaningless; ascending rows produce less and less frequent chars.
|
|
376 Therefore, we assign the lower half of rows (0xA1 .. 0xC8) to
|
|
377 the first charset, and the upper half (0xC9 .. 0xFE) to the
|
|
378 second. To do the conversion, we convert the character into
|
|
379 a single number where 0 .. 156 is the first row, 157 .. 313
|
|
380 is the second, etc. That way, the characters are ordered by
|
|
381 decreasing frequency. Then we just chop the space in two
|
|
382 and coerce the result into a 94x94 space.
|
|
383 */
|
|
384
|
|
385 #define DECODE_BIG5(b1, b2, lb, c1, c2) do \
|
|
386 { \
|
|
387 int B1 = b1, B2 = b2; \
|
|
388 int I \
|
|
389 = (B1 - 0xA1) * BIG5_SAME_ROW + B2 - (B2 < 0x7F ? 0x40 : 0x62); \
|
|
390 \
|
|
391 if (B1 < 0xC9) \
|
|
392 { \
|
|
393 lb = LEADING_BYTE_CHINESE_BIG5_1; \
|
|
394 } \
|
|
395 else \
|
|
396 { \
|
|
397 lb = LEADING_BYTE_CHINESE_BIG5_2; \
|
|
398 I -= (BIG5_SAME_ROW) * (0xC9 - 0xA1); \
|
|
399 } \
|
|
400 c1 = I / (0xFF - 0xA1) + 0xA1; \
|
|
401 c2 = I % (0xFF - 0xA1) + 0xA1; \
|
|
402 } while (0)
|
|
403
|
|
404 /* Convert the internal string representation of a Big5 character
|
|
405 (lb, c1, c2) into Big5 code (b1, b2). */
|
|
406
|
|
407 #define ENCODE_BIG5(lb, c1, c2, b1, b2) do \
|
|
408 { \
|
|
409 int I = ((c1) - 0xA1) * (0xFF - 0xA1) + ((c2) - 0xA1); \
|
|
410 \
|
|
411 if (lb == LEADING_BYTE_CHINESE_BIG5_2) \
|
|
412 { \
|
|
413 I += BIG5_SAME_ROW * (0xC9 - 0xA1); \
|
|
414 } \
|
|
415 b1 = I / BIG5_SAME_ROW + 0xA1; \
|
|
416 b2 = I % BIG5_SAME_ROW; \
|
|
417 b2 += b2 < 0x3F ? 0x40 : 0x62; \
|
|
418 } while (0)
|
|
419
|
|
420 /* Convert Big5 data to internal format. */
|
|
421
|
|
422 static Bytecount
|
|
423 big5_convert (struct coding_stream *str, const UExtbyte *src,
|
|
424 unsigned_char_dynarr *dst, Bytecount n)
|
|
425 {
|
|
426 unsigned int ch = str->ch;
|
|
427 Bytecount orign = n;
|
|
428
|
|
429 if (str->direction == CODING_DECODE)
|
|
430 {
|
|
431 while (n--)
|
|
432 {
|
|
433 UExtbyte c = *src++;
|
|
434 if (ch)
|
|
435 {
|
|
436 /* Previous character was first byte of Big5 char. */
|
|
437 if (BYTE_BIG5_TWO_BYTE_2_P (c))
|
|
438 {
|
|
439 Intbyte b1, b2, b3;
|
|
440 DECODE_BIG5 (ch, c, b1, b2, b3);
|
|
441 Dynarr_add (dst, b1);
|
|
442 Dynarr_add (dst, b2);
|
|
443 Dynarr_add (dst, b3);
|
|
444 }
|
|
445 else
|
|
446 {
|
|
447 DECODE_ADD_BINARY_CHAR (ch, dst);
|
|
448 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
449 }
|
|
450 ch = 0;
|
|
451 }
|
|
452 else
|
|
453 {
|
|
454 if (BYTE_BIG5_TWO_BYTE_1_P (c))
|
|
455 ch = c;
|
|
456 else
|
|
457 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
458 }
|
|
459 }
|
|
460
|
|
461 if (str->eof)
|
|
462 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst);
|
|
463 }
|
|
464 else
|
|
465 {
|
|
466 while (n--)
|
|
467 {
|
|
468 Intbyte c = *src++;
|
|
469 if (BYTE_ASCII_P (c))
|
|
470 {
|
|
471 /* ASCII. */
|
|
472 Dynarr_add (dst, c);
|
|
473 }
|
|
474 else if (INTBYTE_LEADING_BYTE_P (c))
|
|
475 {
|
|
476 if (c == LEADING_BYTE_CHINESE_BIG5_1 ||
|
|
477 c == LEADING_BYTE_CHINESE_BIG5_2)
|
|
478 {
|
|
479 /* A recognized leading byte. */
|
|
480 ch = c;
|
|
481 continue; /* not done with this character. */
|
|
482 }
|
|
483 /* otherwise just ignore this character. */
|
|
484 }
|
|
485 else if (ch == LEADING_BYTE_CHINESE_BIG5_1 ||
|
|
486 ch == LEADING_BYTE_CHINESE_BIG5_2)
|
|
487 {
|
|
488 /* Previous char was a recognized leading byte. */
|
|
489 ch = (ch << 8) | c;
|
|
490 continue; /* not done with this character. */
|
|
491 }
|
|
492 else if (ch)
|
|
493 {
|
|
494 /* Encountering second byte of a Big5 character. */
|
|
495 UExtbyte b1, b2;
|
|
496
|
|
497 ENCODE_BIG5 (ch >> 8, ch & 0xFF, c, b1, b2);
|
|
498 Dynarr_add (dst, b1);
|
|
499 Dynarr_add (dst, b2);
|
|
500 }
|
|
501
|
|
502 ch = 0;
|
|
503 }
|
|
504 }
|
|
505
|
|
506 str->ch = ch;
|
|
507 return orign;
|
|
508 }
|
|
509
|
|
510 Emchar
|
|
511 decode_big5_char (int b1, int b2)
|
|
512 {
|
|
513 if (BYTE_BIG5_TWO_BYTE_1_P (b1) &&
|
|
514 BYTE_BIG5_TWO_BYTE_2_P (b2))
|
|
515 {
|
|
516 int leading_byte;
|
|
517 Lisp_Object charset;
|
|
518 int c1, c2;
|
|
519
|
|
520 DECODE_BIG5 (b1, b2, leading_byte, c1, c2);
|
|
521 charset = CHARSET_BY_LEADING_BYTE (leading_byte);
|
|
522 return MAKE_CHAR (charset, c1 & 0x7F, c2 & 0x7F);
|
|
523 }
|
|
524 else
|
|
525 return -1;
|
|
526 }
|
|
527
|
|
528 DEFUN ("decode-big5-char", Fdecode_big5_char, 1, 1, 0, /*
|
|
529 Convert Big Five character codes in CODE into a character.
|
|
530 CODE is a cons of two integers specifying the codepoints in Big Five.
|
|
531 Return the corresponding character, or nil if the codepoints are out of range.
|
|
532
|
|
533 The term `decode' is used because the codepoints can be viewed as the
|
|
534 representation of the character in the external Big Five encoding, and thus
|
|
535 converting them to a character is analogous to any other operation that
|
|
536 decodes an external representation.
|
|
537 */
|
|
538 (code))
|
|
539 {
|
|
540 Emchar ch;
|
|
541
|
|
542 CHECK_CONS (code);
|
|
543 CHECK_INT (XCAR (code));
|
|
544 CHECK_INT (XCDR (code));
|
|
545 ch = decode_big5_char (XINT (XCAR (code)), XINT (XCDR (code)));
|
|
546 if (ch == -1)
|
|
547 return Qnil;
|
|
548 else
|
|
549 return make_char (ch);
|
|
550 }
|
|
551
|
|
552 DEFUN ("encode-big5-char", Fencode_big5_char, 1, 1, 0, /*
|
|
553 Convert the specified Big Five character into its codepoints.
|
|
554 The codepoints are returned as a cons of two integers, specifying the
|
|
555 Big Five codepoints. See `decode-big5-char' for the reason why the
|
|
556 term `encode' is used for this operation.
|
|
557 */
|
|
558 (character))
|
|
559 {
|
|
560 Lisp_Object charset;
|
|
561 int c1, c2, b1, b2;
|
|
562
|
|
563 CHECK_CHAR_COERCE_INT (character);
|
|
564 BREAKUP_CHAR (XCHAR (character), charset, c1, c2);
|
|
565 if (EQ (charset, Vcharset_chinese_big5_1) ||
|
|
566 EQ (charset, Vcharset_chinese_big5_2))
|
|
567 {
|
|
568 ENCODE_BIG5 (XCHARSET_LEADING_BYTE (charset), c1 | 0x80, c2 | 0x80,
|
|
569 b1, b2);
|
|
570 return Fcons (make_int (b1), make_int (b2));
|
|
571 }
|
|
572 else
|
|
573 return Qnil;
|
|
574 }
|
|
575
|
|
576
|
|
577 /************************************************************************/
|
|
578 /* Big5 detector */
|
|
579 /************************************************************************/
|
|
580
|
|
581 DEFINE_DETECTOR (big5);
|
|
582 DEFINE_DETECTOR_CATEGORY (big5, big5);
|
|
583
|
|
584 struct big5_detector
|
|
585 {
|
|
586 int seen_big5_char;
|
|
587 unsigned int seen_iso2022_esc:1;
|
|
588 unsigned int seen_bad_first_byte:1;
|
|
589 unsigned int seen_bad_second_byte:1;
|
|
590
|
|
591 /* temporary */
|
|
592 unsigned int in_second_byte:1;
|
|
593 };
|
|
594
|
|
595 static void
|
|
596 big5_detect (struct detection_state *st, const UExtbyte *src,
|
|
597 Bytecount n)
|
|
598 {
|
|
599 struct big5_detector *data = DETECTION_STATE_DATA (st, big5);
|
|
600
|
|
601 while (n--)
|
|
602 {
|
|
603 UExtbyte c = *src++;
|
|
604 if (!data->in_second_byte)
|
|
605 {
|
|
606 if (c >= 0xA1 && c <= 0xFE)
|
|
607 data->in_second_byte = 1;
|
|
608 else if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
|
|
609 data->seen_iso2022_esc = 1;
|
|
610 else if (c >= 0x80)
|
|
611 data->seen_bad_first_byte = 1;
|
|
612 }
|
|
613 else
|
|
614 {
|
|
615 data->in_second_byte = 0;
|
|
616 if ((c >= 0x40 && c <= 0x7E) || (c >= 0xA1 && c <= 0xFE))
|
|
617 data->seen_big5_char++;
|
|
618 else
|
|
619 data->seen_bad_second_byte = 1;
|
|
620 }
|
|
621 }
|
|
622
|
|
623 if (data->seen_bad_second_byte)
|
|
624 DET_RESULT (st, big5) = DET_NEARLY_IMPOSSIBLE;
|
|
625 else if (data->seen_bad_first_byte)
|
|
626 DET_RESULT (st, big5) = DET_QUITE_IMPROBABLE;
|
|
627 else if (data->seen_iso2022_esc)
|
|
628 DET_RESULT (st, big5) = DET_SOMEWHAT_UNLIKELY;
|
|
629 else if (data->seen_big5_char >= 4)
|
|
630 DET_RESULT (st, big5) = DET_SOMEWHAT_LIKELY;
|
|
631 else
|
|
632 DET_RESULT (st, big5) = DET_AS_LIKELY_AS_UNLIKELY;
|
|
633 }
|
|
634
|
|
635
|
|
636 /************************************************************************/
|
|
637 /* ISO2022 methods */
|
|
638 /************************************************************************/
|
|
639
|
|
640 /* Any ISO-2022-compliant coding system. Includes JIS, EUC, CTEXT
|
|
641 (Compound Text, the encoding of selections in X Windows). See below for
|
|
642 a complete description of ISO-2022. */
|
|
643 DEFINE_CODING_SYSTEM_TYPE (iso2022);
|
|
644
|
|
645 /* Flags indicating what we've seen so far when parsing an
|
|
646 ISO2022 escape sequence. */
|
|
647 enum iso_esc_flag
|
|
648 {
|
|
649 /* Partial sequences */
|
|
650 ISO_ESC_NOTHING, /* Nothing has been seen. */
|
|
651 ISO_ESC, /* We've seen ESC. */
|
|
652 ISO_ESC_2_4, /* We've seen ESC $. This indicates
|
|
653 that we're designating a multi-byte, rather
|
|
654 than a single-byte, character set. */
|
|
655 ISO_ESC_2_8, /* We've seen ESC 0x28, i.e. ESC (.
|
|
656 This means designate a 94-character
|
|
657 character set into G0. */
|
|
658 ISO_ESC_2_9, /* We've seen ESC 0x29 -- designate a
|
|
659 94-character character set into G1. */
|
|
660 ISO_ESC_2_10, /* We've seen ESC 0x2A. */
|
|
661 ISO_ESC_2_11, /* We've seen ESC 0x2B. */
|
|
662 ISO_ESC_2_12, /* We've seen ESC 0x2C -- designate a
|
|
663 96-character character set into G0.
|
|
664 (This is not ISO2022-standard.
|
|
665 The following 96-character
|
|
666 control sequences are standard,
|
|
667 though.) */
|
|
668 ISO_ESC_2_13, /* We've seen ESC 0x2D -- designate a
|
|
669 96-character character set into G1.
|
|
670 */
|
|
671 ISO_ESC_2_14, /* We've seen ESC 0x2E. */
|
|
672 ISO_ESC_2_15, /* We've seen ESC 0x2F. */
|
|
673 ISO_ESC_2_4_8, /* We've seen ESC $ 0x28 -- designate
|
|
674 a 94^N character set into G0. */
|
|
675 ISO_ESC_2_4_9, /* We've seen ESC $ 0x29. */
|
|
676 ISO_ESC_2_4_10, /* We've seen ESC $ 0x2A. */
|
|
677 ISO_ESC_2_4_11, /* We've seen ESC $ 0x2B. */
|
|
678 ISO_ESC_2_4_12, /* We've seen ESC $ 0x2C. */
|
|
679 ISO_ESC_2_4_13, /* We've seen ESC $ 0x2D. */
|
|
680 ISO_ESC_2_4_14, /* We've seen ESC $ 0x2E. */
|
|
681 ISO_ESC_2_4_15, /* We've seen ESC $ 0x2F. */
|
|
682 ISO_ESC_5_11, /* We've seen ESC [ or 0x9B. This
|
|
683 starts a directionality-control
|
|
684 sequence. The next character
|
|
685 must be 0, 1, 2, or ]. */
|
|
686 ISO_ESC_5_11_0, /* We've seen 0x9B 0. The next character must be ]. */
|
|
687 ISO_ESC_5_11_1, /* We've seen 0x9B 1. The next character must be ]. */
|
|
688 ISO_ESC_5_11_2, /* We've seen 0x9B 2. The next character must be ]. */
|
|
689
|
|
690 /* Full sequences. */
|
|
691 ISO_ESC_START_COMPOSITE, /* Private usage for START COMPOSING */
|
|
692 ISO_ESC_END_COMPOSITE, /* Private usage for END COMPOSING */
|
|
693 ISO_ESC_SINGLE_SHIFT, /* We've seen a complete single-shift sequence. */
|
|
694 ISO_ESC_LOCKING_SHIFT,/* We've seen a complete locking-shift sequence. */
|
|
695 ISO_ESC_DESIGNATE, /* We've seen a complete designation sequence. */
|
|
696 ISO_ESC_DIRECTIONALITY,/* We've seen a complete ISO6429 directionality
|
|
697 sequence. */
|
|
698 ISO_ESC_LITERAL /* We've seen a literal character ala
|
|
699 escape-quoting. */
|
|
700 };
|
|
701
|
|
702 enum iso_error
|
|
703 {
|
|
704 ISO_ERROR_BAD_FINAL,
|
|
705 ISO_ERROR_UNKWOWN_ESC_SEQUENCE,
|
|
706 ISO_ERROR_INVALID_CODE_POINT_CHARACTER,
|
|
707 };
|
|
708
|
|
709
|
|
710 /* Flags indicating current state while converting code. */
|
|
711
|
|
712 /************ Used during encoding and decoding: ************/
|
|
713 /* If set, the current directionality is right-to-left. Otherwise, it's
|
|
714 left-to-right. */
|
|
715 #define ISO_STATE_R2L (1 << 0)
|
|
716
|
|
717 /************ Used during encoding: ************/
|
|
718 /* If set, we just saw a CR. */
|
|
719 #define ISO_STATE_CR (1 << 1)
|
|
720
|
|
721 /************ Used during decoding: ************/
|
|
722 /* If set, we're currently parsing an escape sequence and the upper 16 bits
|
|
723 should be looked at to indicate what partial escape sequence we've seen
|
|
724 so far. Otherwise, we're running through actual text. */
|
|
725 #define ISO_STATE_ESCAPE (1 << 2)
|
|
726 /* If set, G2 is invoked into GL, but only for the next character. */
|
|
727 #define ISO_STATE_SS2 (1 << 3)
|
|
728 /* If set, G3 is invoked into GL, but only for the next character. If both
|
|
729 ISO_STATE_SS2 and ISO_STATE_SS3 are set, ISO_STATE_SS2 overrides; but
|
|
730 this probably indicates an error in the text encoding. */
|
|
731 #define ISO_STATE_SS3 (1 << 4)
|
|
732 /* If set, we're currently processing a composite character (i.e. a
|
|
733 character constructed by overstriking two or more characters). */
|
|
734 #define ISO_STATE_COMPOSITE (1 << 5)
|
|
735
|
|
736 /* ISO_STATE_LOCK is the mask of flags that remain on until explicitly
|
|
737 turned off when in the ISO2022 encoder/decoder. Other flags are turned
|
|
738 off at the end of processing each character or escape sequence. */
|
|
739 # define ISO_STATE_LOCK \
|
|
740 (ISO_STATE_COMPOSITE | ISO_STATE_R2L)
|
|
741
|
|
742 typedef struct charset_conversion_spec
|
|
743 {
|
|
744 Lisp_Object from_charset;
|
|
745 Lisp_Object to_charset;
|
|
746 } charset_conversion_spec;
|
|
747
|
|
748 typedef struct
|
|
749 {
|
|
750 Dynarr_declare (charset_conversion_spec);
|
|
751 } charset_conversion_spec_dynarr;
|
|
752
|
|
753 struct iso2022_coding_system
|
|
754 {
|
|
755 /* What are the charsets to be initially designated to G0, G1,
|
|
756 G2, G3? If t, no charset is initially designated. If nil,
|
|
757 no charset is initially designated and no charset is allowed
|
|
758 to be designated. */
|
|
759 Lisp_Object initial_charset[4];
|
|
760
|
|
761 /* If true, a designation escape sequence needs to be sent on output
|
|
762 for the charset in G[0-3] before that charset is used. */
|
|
763 unsigned char force_charset_on_output[4];
|
|
764
|
|
765 charset_conversion_spec_dynarr *input_conv;
|
|
766 charset_conversion_spec_dynarr *output_conv;
|
|
767
|
|
768 unsigned int shoort :1; /* C makes you speak Dutch */
|
|
769 unsigned int no_ascii_eol :1;
|
|
770 unsigned int no_ascii_cntl :1;
|
|
771 unsigned int seven :1;
|
|
772 unsigned int lock_shift :1;
|
|
773 unsigned int no_iso6429 :1;
|
|
774 unsigned int escape_quoted :1;
|
|
775 };
|
|
776
|
|
777 #define CODING_SYSTEM_ISO2022_INITIAL_CHARSET(codesys, g) \
|
|
778 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->initial_charset[g])
|
|
779 #define CODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT(codesys, g) \
|
|
780 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->force_charset_on_output[g])
|
|
781 #define CODING_SYSTEM_ISO2022_SHORT(codesys) \
|
|
782 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->shoort)
|
|
783 #define CODING_SYSTEM_ISO2022_NO_ASCII_EOL(codesys) \
|
|
784 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->no_ascii_eol)
|
|
785 #define CODING_SYSTEM_ISO2022_NO_ASCII_CNTL(codesys) \
|
|
786 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->no_ascii_cntl)
|
|
787 #define CODING_SYSTEM_ISO2022_SEVEN(codesys) \
|
|
788 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->seven)
|
|
789 #define CODING_SYSTEM_ISO2022_LOCK_SHIFT(codesys) \
|
|
790 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->lock_shift)
|
|
791 #define CODING_SYSTEM_ISO2022_NO_ISO6429(codesys) \
|
|
792 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->no_iso6429)
|
|
793 #define CODING_SYSTEM_ISO2022_ESCAPE_QUOTED(codesys) \
|
|
794 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->escape_quoted)
|
|
795 #define CODING_SYSTEM_ISO2022_INPUT_CONV(codesys) \
|
|
796 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->input_conv)
|
|
797 #define CODING_SYSTEM_ISO2022_OUTPUT_CONV(codesys) \
|
|
798 (CODING_SYSTEM_TYPE_DATA (codesys, iso2022)->output_conv)
|
|
799
|
|
800 #define XCODING_SYSTEM_ISO2022_INITIAL_CHARSET(codesys, g) \
|
|
801 CODING_SYSTEM_ISO2022_INITIAL_CHARSET (XCODING_SYSTEM (codesys), g)
|
|
802 #define XCODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT(codesys, g) \
|
|
803 CODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT (XCODING_SYSTEM (codesys), g)
|
|
804 #define XCODING_SYSTEM_ISO2022_SHORT(codesys) \
|
|
805 CODING_SYSTEM_ISO2022_SHORT (XCODING_SYSTEM (codesys))
|
|
806 #define XCODING_SYSTEM_ISO2022_NO_ASCII_EOL(codesys) \
|
|
807 CODING_SYSTEM_ISO2022_NO_ASCII_EOL (XCODING_SYSTEM (codesys))
|
|
808 #define XCODING_SYSTEM_ISO2022_NO_ASCII_CNTL(codesys) \
|
|
809 CODING_SYSTEM_ISO2022_NO_ASCII_CNTL (XCODING_SYSTEM (codesys))
|
|
810 #define XCODING_SYSTEM_ISO2022_SEVEN(codesys) \
|
|
811 CODING_SYSTEM_ISO2022_SEVEN (XCODING_SYSTEM (codesys))
|
|
812 #define XCODING_SYSTEM_ISO2022_LOCK_SHIFT(codesys) \
|
|
813 CODING_SYSTEM_ISO2022_LOCK_SHIFT (XCODING_SYSTEM (codesys))
|
|
814 #define XCODING_SYSTEM_ISO2022_NO_ISO6429(codesys) \
|
|
815 CODING_SYSTEM_ISO2022_NO_ISO6429 (XCODING_SYSTEM (codesys))
|
|
816 #define XCODING_SYSTEM_ISO2022_ESCAPE_QUOTED(codesys) \
|
|
817 CODING_SYSTEM_ISO2022_ESCAPE_QUOTED (XCODING_SYSTEM (codesys))
|
|
818 #define XCODING_SYSTEM_ISO2022_INPUT_CONV(codesys) \
|
|
819 CODING_SYSTEM_ISO2022_INPUT_CONV (XCODING_SYSTEM (codesys))
|
|
820 #define XCODING_SYSTEM_ISO2022_OUTPUT_CONV(codesys) \
|
|
821 CODING_SYSTEM_ISO2022_OUTPUT_CONV (XCODING_SYSTEM (codesys))
|
|
822
|
|
823 /* Additional information used by the ISO2022 decoder and detector. */
|
|
824 struct iso2022_coding_stream
|
|
825 {
|
|
826 /* CHARSET holds the character sets currently assigned to the G0
|
|
827 through G3 variables. It is initialized from the array
|
|
828 INITIAL_CHARSET in CODESYS. */
|
|
829 Lisp_Object charset[4];
|
|
830
|
|
831 /* Which registers are currently invoked into the left (GL) and
|
|
832 right (GR) halves of the 8-bit encoding space? */
|
|
833 int register_left, register_right;
|
|
834
|
|
835 /* FLAGS holds flags indicating the current state of the encoding. Some of
|
|
836 these flags are actually part of the state-dependent data and should be
|
|
837 moved there. */
|
|
838 unsigned int flags;
|
|
839
|
|
840 /**************** for decoding ****************/
|
|
841
|
|
842 /* ISO_ESC holds a value indicating part of an escape sequence
|
|
843 that has already been seen. */
|
|
844 enum iso_esc_flag esc;
|
|
845
|
|
846 /* This records the bytes we've seen so far in an escape sequence,
|
|
847 in case the sequence is invalid (we spit out the bytes unchanged). */
|
|
848 unsigned char esc_bytes[8];
|
|
849
|
|
850 /* Index for next byte to store in ISO escape sequence. */
|
|
851 int esc_bytes_index;
|
|
852
|
|
853 #ifdef ENABLE_COMPOSITE_CHARS
|
|
854 /* Stuff seen so far when composing a string. */
|
|
855 unsigned_char_dynarr *composite_chars;
|
|
856 #endif
|
|
857
|
|
858 /* If we saw an invalid designation sequence for a particular
|
|
859 register, we flag it here and switch to ASCII. The next time we
|
|
860 see a valid designation for this register, we turn off the flag
|
|
861 and do the designation normally, but pretend the sequence was
|
|
862 invalid. The effect of all this is that (most of the time) the
|
|
863 escape sequences for both the switch to the unknown charset, and
|
|
864 the switch back to the known charset, get inserted literally into
|
|
865 the buffer and saved out as such. The hope is that we can
|
|
866 preserve the escape sequences so that the resulting written out
|
|
867 file makes sense. If we don't do any of this, the designation
|
|
868 to the invalid charset will be preserved but that switch back
|
|
869 to the known charset will probably get eaten because it was
|
|
870 the same charset that was already present in the register. */
|
|
871 unsigned char invalid_designated[4];
|
|
872
|
|
873 /* We try to do similar things as above for direction-switching
|
|
874 sequences. If we encountered a direction switch while an
|
|
875 invalid designation was present, or an invalid designation
|
|
876 just after a direction switch (i.e. no valid designation
|
|
877 encountered yet), we insert the direction-switch escape
|
|
878 sequence literally into the output stream, and later on
|
|
879 insert the corresponding direction-restoring escape sequence
|
|
880 literally also. */
|
|
881 unsigned int switched_dir_and_no_valid_charset_yet :1;
|
|
882 unsigned int invalid_switch_dir :1;
|
|
883
|
|
884 /* Tells the decoder to output the escape sequence literally
|
|
885 even though it was valid. Used in the games we play to
|
|
886 avoid lossage when we encounter invalid designations. */
|
|
887 unsigned int output_literally :1;
|
|
888 /* We encountered a direction switch followed by an invalid
|
|
889 designation. We didn't output the direction switch
|
|
890 literally because we didn't know about the invalid designation;
|
|
891 but we have to do so now. */
|
|
892 unsigned int output_direction_sequence :1;
|
|
893
|
|
894 /**************** for encoding ****************/
|
|
895
|
|
896 /* Whether we need to explicitly designate the charset in the
|
|
897 G? register before using it. It is initialized from the
|
|
898 array FORCE_CHARSET_ON_OUTPUT in CODESYS. */
|
|
899 unsigned char force_charset_on_output[4];
|
|
900
|
|
901 /* Other state variables that need to be preserved across
|
|
902 invocations. */
|
|
903 Lisp_Object current_charset;
|
|
904 int current_half;
|
|
905 int current_char_boundary;
|
|
906 };
|
|
907
|
|
908 static const struct lrecord_description ccs_description_1[] =
|
|
909 {
|
|
910 { XD_LISP_OBJECT, offsetof (charset_conversion_spec, from_charset) },
|
|
911 { XD_LISP_OBJECT, offsetof (charset_conversion_spec, to_charset) },
|
|
912 { XD_END }
|
|
913 };
|
|
914
|
|
915 static const struct struct_description ccs_description =
|
|
916 {
|
|
917 sizeof (charset_conversion_spec),
|
|
918 ccs_description_1
|
|
919 };
|
|
920
|
|
921 static const struct lrecord_description ccsd_description_1[] =
|
|
922 {
|
|
923 XD_DYNARR_DESC (charset_conversion_spec_dynarr, &ccs_description),
|
|
924 { XD_END }
|
|
925 };
|
|
926
|
|
927 static const struct struct_description ccsd_description =
|
|
928 {
|
|
929 sizeof (charset_conversion_spec_dynarr),
|
|
930 ccsd_description_1
|
|
931 };
|
|
932
|
|
933 static const struct lrecord_description iso2022_coding_system_description[] = {
|
|
934 { XD_LISP_OBJECT_ARRAY,
|
|
935 coding_system_data_offset + offsetof (struct iso2022_coding_system,
|
|
936 initial_charset), 4 },
|
|
937 { XD_STRUCT_PTR,
|
|
938 coding_system_data_offset + offsetof (struct iso2022_coding_system,
|
|
939 input_conv),
|
|
940 1, &ccsd_description },
|
|
941 { XD_STRUCT_PTR,
|
|
942 coding_system_data_offset + offsetof (struct iso2022_coding_system,
|
|
943 output_conv),
|
|
944 1, &ccsd_description },
|
|
945 { XD_END }
|
|
946 };
|
|
947
|
|
948 /* The following note taken directly from FSF 21.0.103. */
|
|
949
|
|
950 /* The following note describes the coding system ISO2022 briefly.
|
|
951 Since the intention of this note is to help understand the
|
|
952 functions in this file, some parts are NOT ACCURATE or are OVERLY
|
|
953 SIMPLIFIED. For thorough understanding, please refer to the
|
|
954 original document of ISO2022. This is equivalent to the standard
|
|
955 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
|
|
956
|
|
957 ISO2022 provides many mechanisms to encode several character sets
|
|
958 in 7-bit and 8-bit environments. For 7-bit environments, all text
|
|
959 is encoded using bytes less than 128. This may make the encoded
|
|
960 text a little bit longer, but the text passes more easily through
|
|
961 several types of gateway, some of which strip off the MSB (Most
|
|
962 Significant Bit).
|
|
963
|
|
964 There are two kinds of character sets: control character sets and
|
|
965 graphic character sets. The former contain control characters such
|
|
966 as `newline' and `escape' to provide control functions (control
|
|
967 functions are also provided by escape sequences). The latter
|
|
968 contain graphic characters such as 'A' and '-'. Emacs recognizes
|
|
969 two control character sets and many graphic character sets.
|
|
970
|
|
971 Graphic character sets are classified into one of the following
|
|
972 four classes, according to the number of bytes (DIMENSION) and
|
|
973 number of characters in one dimension (CHARS) of the set:
|
|
974 - DIMENSION1_CHARS94
|
|
975 - DIMENSION1_CHARS96
|
|
976 - DIMENSION2_CHARS94
|
|
977 - DIMENSION2_CHARS96
|
|
978
|
|
979 In addition, each character set is assigned an identification tag,
|
|
980 unique for each set, called the "final character" (denoted as <F>
|
|
981 hereafter). The <F> of each character set is decided by ECMA(*)
|
|
982 when it is registered in ISO. The code range of <F> is 0x30..0x7F
|
|
983 (0x30..0x3F are for private use only).
|
|
984
|
|
985 Note (*): ECMA = European Computer Manufacturers Association
|
|
986
|
|
987 Here are examples of graphic character sets [NAME(<F>)]:
|
|
988 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
|
|
989 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
|
|
990 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
|
|
991 o DIMENSION2_CHARS96 -- none for the moment
|
|
992
|
|
993 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
|
|
994 C0 [0x00..0x1F] -- control character plane 0
|
|
995 GL [0x20..0x7F] -- graphic character plane 0
|
|
996 C1 [0x80..0x9F] -- control character plane 1
|
|
997 GR [0xA0..0xFF] -- graphic character plane 1
|
|
998
|
|
999 A control character set is directly designated and invoked to C0 or
|
|
1000 C1 by an escape sequence. The most common case is that:
|
|
1001 - ISO646's control character set is designated/invoked to C0, and
|
|
1002 - ISO6429's control character set is designated/invoked to C1,
|
|
1003 and usually these designations/invocations are omitted in encoded
|
|
1004 text. In a 7-bit environment, only C0 can be used, and a control
|
|
1005 character for C1 is encoded by an appropriate escape sequence to
|
|
1006 fit into the environment. All control characters for C1 are
|
|
1007 defined to have corresponding escape sequences.
|
|
1008
|
|
1009 A graphic character set is at first designated to one of four
|
|
1010 graphic registers (G0 through G3), then these graphic registers are
|
|
1011 invoked to GL or GR. These designations and invocations can be
|
|
1012 done independently. The most common case is that G0 is invoked to
|
|
1013 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
|
|
1014 these invocations and designations are omitted in encoded text.
|
|
1015 In a 7-bit environment, only GL can be used.
|
|
1016
|
|
1017 When a graphic character set of CHARS94 is invoked to GL, codes
|
|
1018 0x20 and 0x7F of the GL area work as control characters SPACE and
|
|
1019 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
|
|
1020 be used.
|
|
1021
|
|
1022 There are two ways of invocation: locking-shift and single-shift.
|
|
1023 With locking-shift, the invocation lasts until the next different
|
|
1024 invocation, whereas with single-shift, the invocation affects the
|
|
1025 following character only and doesn't affect the locking-shift
|
|
1026 state. Invocations are done by the following control characters or
|
|
1027 escape sequences:
|
|
1028
|
|
1029 ----------------------------------------------------------------------
|
|
1030 abbrev function cntrl escape seq description
|
|
1031 ----------------------------------------------------------------------
|
|
1032 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
|
|
1033 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
|
|
1034 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
|
|
1035 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
|
|
1036 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
|
|
1037 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
|
|
1038 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
|
|
1039 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
|
|
1040 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
|
|
1041 ----------------------------------------------------------------------
|
|
1042 (*) These are not used by any known coding system.
|
|
1043
|
|
1044 Control characters for these functions are defined by macros
|
|
1045 ISO_CODE_XXX in `coding.h'.
|
|
1046
|
|
1047 Designations are done by the following escape sequences:
|
|
1048 ----------------------------------------------------------------------
|
|
1049 escape sequence description
|
|
1050 ----------------------------------------------------------------------
|
|
1051 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
|
|
1052 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
|
|
1053 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
|
|
1054 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
|
|
1055 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
|
|
1056 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
|
|
1057 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
|
|
1058 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
|
|
1059 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
|
|
1060 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
|
|
1061 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
|
|
1062 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
|
|
1063 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
|
|
1064 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
|
|
1065 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
|
|
1066 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
|
|
1067 ----------------------------------------------------------------------
|
|
1068
|
|
1069 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
|
|
1070 of dimension 1, chars 94, and final character <F>, etc...
|
|
1071
|
|
1072 Note (*): Although these designations are not allowed in ISO2022,
|
|
1073 Emacs accepts them on decoding, and produces them on encoding
|
|
1074 CHARS96 character sets in a coding system which is characterized as
|
|
1075 7-bit environment, non-locking-shift, and non-single-shift.
|
|
1076
|
|
1077 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
|
|
1078 '(' can be omitted. We refer to this as "short-form" hereafter.
|
|
1079
|
|
1080 Now you may notice that there are a lot of ways of encoding the
|
|
1081 same multilingual text in ISO2022. Actually, there exist many
|
|
1082 coding systems such as Compound Text (used in X11's inter client
|
|
1083 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
|
|
1084 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
|
|
1085 localized platforms), and all of these are variants of ISO2022.
|
|
1086
|
|
1087 In addition to the above, Emacs handles two more kinds of escape
|
|
1088 sequences: ISO6429's direction specification and Emacs' private
|
|
1089 sequence for specifying character composition.
|
|
1090
|
|
1091 ISO6429's direction specification takes the following form:
|
|
1092 o CSI ']' -- end of the current direction
|
|
1093 o CSI '0' ']' -- end of the current direction
|
|
1094 o CSI '1' ']' -- start of left-to-right text
|
|
1095 o CSI '2' ']' -- start of right-to-left text
|
|
1096 The control character CSI (0x9B: control sequence introducer) is
|
|
1097 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
|
|
1098
|
|
1099 Character composition specification takes the following form:
|
|
1100 o ESC '0' -- start relative composition
|
|
1101 o ESC '1' -- end composition
|
|
1102 o ESC '2' -- start rule-base composition (*)
|
|
1103 o ESC '3' -- start relative composition with alternate chars (**)
|
|
1104 o ESC '4' -- start rule-base composition with alternate chars (**)
|
|
1105 Since these are not standard escape sequences of any ISO standard,
|
|
1106 the use of them with these meanings is restricted to Emacs only.
|
|
1107
|
|
1108 (*) This form is used only in Emacs 20.5 and older versions,
|
|
1109 but the newer versions can safely decode it.
|
|
1110 (**) This form is used only in Emacs 21.1 and newer versions,
|
|
1111 and the older versions can't decode it.
|
|
1112
|
|
1113 Here's a list of example usages of these composition escape
|
|
1114 sequences (categorized by `enum composition_method').
|
|
1115
|
|
1116 COMPOSITION_RELATIVE:
|
|
1117 ESC 0 CHAR [ CHAR ] ESC 1
|
|
1118 COMPOSITION_WITH_RULE:
|
|
1119 ESC 2 CHAR [ RULE CHAR ] ESC 1
|
|
1120 COMPOSITION_WITH_ALTCHARS:
|
|
1121 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
|
|
1122 COMPOSITION_WITH_RULE_ALTCHARS:
|
|
1123 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
|
|
1124
|
|
1125 static void
|
|
1126 reset_iso2022_decode (Lisp_Object coding_system,
|
|
1127 struct iso2022_coding_stream *data)
|
|
1128 {
|
|
1129 int i;
|
|
1130 #ifdef ENABLE_COMPOSITE_CHARS
|
|
1131 unsigned_char_dynarr *old_composite_chars = data->composite_chars;
|
|
1132 #endif
|
|
1133
|
|
1134 xzero (*data);
|
|
1135
|
|
1136 for (i = 0; i < 4; i++)
|
|
1137 {
|
|
1138 if (!NILP (coding_system))
|
|
1139 data->charset[i] =
|
|
1140 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (coding_system, i);
|
|
1141 else
|
|
1142 data->charset[i] = Qt;
|
|
1143 }
|
|
1144 data->esc = ISO_ESC_NOTHING;
|
|
1145 data->register_right = 1;
|
|
1146 #ifdef ENABLE_COMPOSITE_CHARS
|
|
1147 if (old_composite_chars)
|
|
1148 {
|
|
1149 data->composite_chars = old_composite_chars;
|
|
1150 Dynarr_reset (data->composite_chars);
|
|
1151 }
|
|
1152 #endif
|
|
1153 }
|
|
1154
|
|
1155 static void
|
|
1156 reset_iso2022_encode (Lisp_Object coding_system,
|
|
1157 struct iso2022_coding_stream *data)
|
|
1158 {
|
|
1159 int i;
|
|
1160
|
|
1161 xzero (*data);
|
|
1162
|
|
1163 for (i = 0; i < 4; i++)
|
|
1164 {
|
|
1165 data->charset[i] =
|
|
1166 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (coding_system, i);
|
|
1167 data->force_charset_on_output[i] =
|
|
1168 XCODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT (coding_system, i);
|
|
1169 }
|
|
1170 data->register_right = 1;
|
|
1171 data->current_charset = Qnil;
|
|
1172 data->current_char_boundary = 1;
|
|
1173 }
|
|
1174
|
|
1175 static void
|
|
1176 iso2022_init_coding_stream (struct coding_stream *str)
|
|
1177 {
|
|
1178 if (str->direction == CODING_DECODE)
|
|
1179 reset_iso2022_decode (str->codesys,
|
|
1180 CODING_STREAM_TYPE_DATA (str, iso2022));
|
|
1181 else
|
|
1182 reset_iso2022_encode (str->codesys,
|
|
1183 CODING_STREAM_TYPE_DATA (str, iso2022));
|
|
1184 }
|
|
1185
|
|
1186 static void
|
|
1187 iso2022_rewind_coding_stream (struct coding_stream *str)
|
|
1188 {
|
|
1189 iso2022_init_coding_stream (str);
|
|
1190 }
|
|
1191
|
|
1192 static int
|
|
1193 fit_to_be_escape_quoted (unsigned char c)
|
|
1194 {
|
|
1195 switch (c)
|
|
1196 {
|
|
1197 case ISO_CODE_ESC:
|
|
1198 case ISO_CODE_CSI:
|
|
1199 case ISO_CODE_SS2:
|
|
1200 case ISO_CODE_SS3:
|
|
1201 case ISO_CODE_SO:
|
|
1202 case ISO_CODE_SI:
|
|
1203 return 1;
|
|
1204
|
|
1205 default:
|
|
1206 return 0;
|
|
1207 }
|
|
1208 }
|
|
1209
|
|
1210 static Lisp_Object
|
|
1211 charset_by_attributes_or_create_one (int type, Intbyte final, int dir)
|
|
1212 {
|
|
1213 Lisp_Object charset = CHARSET_BY_ATTRIBUTES (type, final, dir);
|
|
1214
|
|
1215 if (NILP (charset))
|
|
1216 {
|
|
1217 int chars, dim;
|
|
1218
|
|
1219 switch (type)
|
|
1220 {
|
|
1221 case CHARSET_TYPE_94:
|
|
1222 chars = 94; dim = 1;
|
|
1223 break;
|
|
1224 case CHARSET_TYPE_96:
|
|
1225 chars = 96; dim = 1;
|
|
1226 break;
|
|
1227 case CHARSET_TYPE_94X94:
|
|
1228 chars = 94; dim = 2;
|
|
1229 break;
|
|
1230 case CHARSET_TYPE_96X96:
|
|
1231 chars = 96; dim = 2;
|
|
1232 break;
|
|
1233 default:
|
|
1234 abort (); chars = 0; dim = 0;
|
|
1235 }
|
|
1236
|
|
1237 charset = Fmake_charset (Qunbound, Qnil,
|
|
1238 nconc2 (list6 (Qfinal, make_char (final),
|
|
1239 Qchars, make_int (chars),
|
|
1240 Qdimension, make_int (dim)),
|
|
1241 list2 (Qdirection,
|
|
1242 dir == CHARSET_LEFT_TO_RIGHT ?
|
|
1243 Ql2r : Qr2l)));
|
|
1244 }
|
|
1245
|
|
1246 return charset;
|
|
1247 }
|
|
1248
|
|
1249 /* Parse one byte of an ISO2022 escape sequence.
|
|
1250 If the result is an invalid escape sequence, return 0 and
|
|
1251 do not change anything in STR. Otherwise, if the result is
|
|
1252 an incomplete escape sequence, update ISO2022.ESC and
|
|
1253 ISO2022.ESC_BYTES and return -1. Otherwise, update
|
|
1254 all the state variables (but not ISO2022.ESC_BYTES) and
|
|
1255 return 1.
|
|
1256
|
|
1257 If CHECK_INVALID_CHARSETS is non-zero, check for designation
|
|
1258 or invocation of an invalid character set and treat that as
|
|
1259 an unrecognized escape sequence.
|
|
1260
|
|
1261 ********************************************************************
|
|
1262
|
|
1263 #### Strategies for error annotation and coding orthogonalization
|
|
1264
|
|
1265 We really want to separate out a number of things. Conceptually,
|
|
1266 there is a nested syntax.
|
|
1267
|
|
1268 At the top level is the ISO 2022 extension syntax, including charset
|
|
1269 designation and invocation, and certain auxiliary controls such as the
|
|
1270 ISO 6429 direction specification. These are octet-oriented, with the
|
|
1271 single exception (AFAIK) of the "exit Unicode" sequence which uses the
|
|
1272 UTF's natural width (1 byte for UTF-7 and UTF-8, 2 bytes for UCS-2 and
|
|
1273 UTF-16, and 4 bytes for UCS-4 and UTF-32). This will be treated as a
|
|
1274 (deprecated) special case in Unicode processing.
|
|
1275
|
|
1276 The middle layer is ISO 2022 character interpretation. This will depend
|
|
1277 on the current state of the ISO 2022 registers, and assembles octets
|
|
1278 into the character's internal representation.
|
|
1279
|
|
1280 The lowest level is translating system control conventions. At present
|
|
1281 this is restricted to newline translation, but one could imagine doing
|
|
1282 tab conversion or line wrapping here. "Escape from Unicode" processing
|
|
1283 would be done at this level.
|
|
1284
|
|
1285 At each level the parser will verify the syntax. In the case of a
|
|
1286 syntax error or warning (such as a redundant escape sequence that affects
|
|
1287 no characters), the parser will take some action, typically inserting the
|
|
1288 erroneous octets directly into the output and creating an annotation
|
|
1289 which can be used by higher level I/O to mark the affected region.
|
|
1290
|
|
1291 This should make it possible to do something sensible about separating
|
|
1292 newline convention processing from character construction, and about
|
|
1293 preventing ISO 2022 escape sequences from being recognized
|
|
1294 inappropriately.
|
|
1295
|
|
1296 The basic strategy will be to have octet classification tables, and
|
|
1297 switch processing according to the table entry.
|
|
1298
|
|
1299 It's possible that, by doing the processing with tables of functions or
|
|
1300 the like, the parser can be used for both detection and translation. */
|
|
1301
|
|
1302 static int
|
|
1303 parse_iso2022_esc (Lisp_Object codesys, struct iso2022_coding_stream *iso,
|
|
1304 unsigned char c, unsigned int *flags,
|
|
1305 int check_invalid_charsets)
|
|
1306 {
|
|
1307 /* (1) If we're at the end of a designation sequence, CS is the
|
|
1308 charset being designated and REG is the register to designate
|
|
1309 it to.
|
|
1310
|
|
1311 (2) If we're at the end of a locking-shift sequence, REG is
|
|
1312 the register to invoke and HALF (0 == left, 1 == right) is
|
|
1313 the half to invoke it into.
|
|
1314
|
|
1315 (3) If we're at the end of a single-shift sequence, REG is
|
|
1316 the register to invoke. */
|
|
1317 Lisp_Object cs = Qnil;
|
|
1318 int reg, half;
|
|
1319
|
|
1320 /* NOTE: This code does goto's all over the fucking place.
|
|
1321 The reason for this is that we're basically implementing
|
|
1322 a state machine here, and hierarchical languages like C
|
|
1323 don't really provide a clean way of doing this. */
|
|
1324
|
|
1325 if (! (*flags & ISO_STATE_ESCAPE))
|
|
1326 /* At beginning of escape sequence; we need to reset our
|
|
1327 escape-state variables. */
|
|
1328 iso->esc = ISO_ESC_NOTHING;
|
|
1329
|
|
1330 iso->output_literally = 0;
|
|
1331 iso->output_direction_sequence = 0;
|
|
1332
|
|
1333 switch (iso->esc)
|
|
1334 {
|
|
1335 case ISO_ESC_NOTHING:
|
|
1336 iso->esc_bytes_index = 0;
|
|
1337 switch (c)
|
|
1338 {
|
|
1339 case ISO_CODE_ESC: /* Start escape sequence */
|
|
1340 *flags |= ISO_STATE_ESCAPE;
|
|
1341 iso->esc = ISO_ESC;
|
|
1342 goto not_done;
|
|
1343
|
|
1344 case ISO_CODE_CSI: /* ISO6429 (specifying directionality) */
|
|
1345 *flags |= ISO_STATE_ESCAPE;
|
|
1346 iso->esc = ISO_ESC_5_11;
|
|
1347 goto not_done;
|
|
1348
|
|
1349 case ISO_CODE_SO: /* locking shift 1 */
|
|
1350 reg = 1; half = 0;
|
|
1351 goto locking_shift;
|
|
1352 case ISO_CODE_SI: /* locking shift 0 */
|
|
1353 reg = 0; half = 0;
|
|
1354 goto locking_shift;
|
|
1355
|
|
1356 case ISO_CODE_SS2: /* single shift */
|
|
1357 reg = 2;
|
|
1358 goto single_shift;
|
|
1359 case ISO_CODE_SS3: /* single shift */
|
|
1360 reg = 3;
|
|
1361 goto single_shift;
|
|
1362
|
|
1363 default: /* Other control characters */
|
|
1364 error:
|
|
1365 *flags &= ISO_STATE_LOCK;
|
|
1366 return 0;
|
|
1367 }
|
|
1368
|
|
1369 case ISO_ESC:
|
|
1370 switch (c)
|
|
1371 {
|
|
1372 /**** single shift ****/
|
|
1373
|
|
1374 case 'N': /* single shift 2 */
|
|
1375 reg = 2;
|
|
1376 goto single_shift;
|
|
1377 case 'O': /* single shift 3 */
|
|
1378 reg = 3;
|
|
1379 goto single_shift;
|
|
1380
|
|
1381 /**** locking shift ****/
|
|
1382
|
|
1383 case '~': /* locking shift 1 right */
|
|
1384 reg = 1; half = 1;
|
|
1385 goto locking_shift;
|
|
1386 case 'n': /* locking shift 2 */
|
|
1387 reg = 2; half = 0;
|
|
1388 goto locking_shift;
|
|
1389 case '}': /* locking shift 2 right */
|
|
1390 reg = 2; half = 1;
|
|
1391 goto locking_shift;
|
|
1392 case 'o': /* locking shift 3 */
|
|
1393 reg = 3; half = 0;
|
|
1394 goto locking_shift;
|
|
1395 case '|': /* locking shift 3 right */
|
|
1396 reg = 3; half = 1;
|
|
1397 goto locking_shift;
|
|
1398
|
|
1399 /**** composite ****/
|
|
1400
|
|
1401 #ifdef ENABLE_COMPOSITE_CHARS
|
|
1402 case '0':
|
|
1403 iso->esc = ISO_ESC_START_COMPOSITE;
|
|
1404 *flags = (*flags & ISO_STATE_LOCK) |
|
|
1405 ISO_STATE_COMPOSITE;
|
|
1406 return 1;
|
|
1407
|
|
1408 case '1':
|
|
1409 iso->esc = ISO_ESC_END_COMPOSITE;
|
|
1410 *flags = (*flags & ISO_STATE_LOCK) &
|
|
1411 ~ISO_STATE_COMPOSITE;
|
|
1412 return 1;
|
|
1413 #else
|
|
1414 case '0': case '1': case '2': case '3': case '4':
|
|
1415 /* We simply return a flag indicating that some composite
|
|
1416 escape was seen. The caller will use the particular
|
|
1417 character to encode the appropriate "composite hack"
|
|
1418 character out of Vcharset_composite, so that we will
|
|
1419 preserve these values on output. */
|
|
1420 iso->esc = ISO_ESC_START_COMPOSITE;
|
|
1421 *flags &= ISO_STATE_LOCK;
|
|
1422 return 1;
|
|
1423 #endif /* ENABLE_COMPOSITE_CHARS */
|
|
1424
|
|
1425 /**** directionality ****/
|
|
1426
|
|
1427 case '[':
|
|
1428 iso->esc = ISO_ESC_5_11;
|
|
1429 goto not_done;
|
|
1430
|
|
1431 /**** designation ****/
|
|
1432
|
|
1433 case '$': /* multibyte charset prefix */
|
|
1434 iso->esc = ISO_ESC_2_4;
|
|
1435 goto not_done;
|
|
1436
|
|
1437 default:
|
|
1438 if (0x28 <= c && c <= 0x2F)
|
|
1439 {
|
|
1440 iso->esc = (enum iso_esc_flag) (c - 0x28 + ISO_ESC_2_8);
|
|
1441 goto not_done;
|
|
1442 }
|
|
1443
|
|
1444 /* This function is called with CODESYS equal to nil when
|
|
1445 doing coding-system detection. */
|
|
1446 if (!NILP (codesys)
|
|
1447 && XCODING_SYSTEM_ISO2022_ESCAPE_QUOTED (codesys)
|
|
1448 && fit_to_be_escape_quoted (c))
|
|
1449 {
|
|
1450 iso->esc = ISO_ESC_LITERAL;
|
|
1451 *flags &= ISO_STATE_LOCK;
|
|
1452 return 1;
|
|
1453 }
|
|
1454
|
|
1455 /* bzzzt! */
|
|
1456 goto error;
|
|
1457 }
|
|
1458
|
|
1459
|
|
1460
|
|
1461 /**** directionality ****/
|
|
1462
|
|
1463 case ISO_ESC_5_11: /* ISO6429 direction control */
|
|
1464 if (c == ']')
|
|
1465 {
|
|
1466 *flags &= (ISO_STATE_LOCK & ~ISO_STATE_R2L);
|
|
1467 goto directionality;
|
|
1468 }
|
|
1469 if (c == '0') iso->esc = ISO_ESC_5_11_0;
|
|
1470 else if (c == '1') iso->esc = ISO_ESC_5_11_1;
|
|
1471 else if (c == '2') iso->esc = ISO_ESC_5_11_2;
|
|
1472 else goto error;
|
|
1473 goto not_done;
|
|
1474
|
|
1475 case ISO_ESC_5_11_0:
|
|
1476 if (c == ']')
|
|
1477 {
|
|
1478 *flags &= (ISO_STATE_LOCK & ~ISO_STATE_R2L);
|
|
1479 goto directionality;
|
|
1480 }
|
|
1481 goto error;
|
|
1482
|
|
1483 case ISO_ESC_5_11_1:
|
|
1484 if (c == ']')
|
|
1485 {
|
|
1486 *flags = (ISO_STATE_LOCK & ~ISO_STATE_R2L);
|
|
1487 goto directionality;
|
|
1488 }
|
|
1489 goto error;
|
|
1490
|
|
1491 case ISO_ESC_5_11_2:
|
|
1492 if (c == ']')
|
|
1493 {
|
|
1494 *flags = (*flags & ISO_STATE_LOCK) | ISO_STATE_R2L;
|
|
1495 goto directionality;
|
|
1496 }
|
|
1497 goto error;
|
|
1498
|
|
1499 directionality:
|
|
1500 iso->esc = ISO_ESC_DIRECTIONALITY;
|
|
1501 /* Various junk here to attempt to preserve the direction sequences
|
|
1502 literally in the text if they would otherwise be swallowed due
|
|
1503 to invalid designations that don't show up as actual charset
|
|
1504 changes in the text. */
|
|
1505 if (iso->invalid_switch_dir)
|
|
1506 {
|
|
1507 /* We already inserted a direction switch literally into the
|
|
1508 text. We assume (#### this may not be right) that the
|
|
1509 next direction switch is the one going the other way,
|
|
1510 and we need to output that literally as well. */
|
|
1511 iso->output_literally = 1;
|
|
1512 iso->invalid_switch_dir = 0;
|
|
1513 }
|
|
1514 else
|
|
1515 {
|
|
1516 int jj;
|
|
1517
|
|
1518 /* If we are in the thrall of an invalid designation,
|
|
1519 then stick the directionality sequence literally into the
|
|
1520 output stream so it ends up in the original text again. */
|
|
1521 for (jj = 0; jj < 4; jj++)
|
|
1522 if (iso->invalid_designated[jj])
|
|
1523 break;
|
|
1524 if (jj < 4)
|
|
1525 {
|
|
1526 iso->output_literally = 1;
|
|
1527 iso->invalid_switch_dir = 1;
|
|
1528 }
|
|
1529 else
|
|
1530 /* Indicate that we haven't yet seen a valid designation,
|
|
1531 so that if a switch-dir is directly followed by an
|
|
1532 invalid designation, both get inserted literally. */
|
|
1533 iso->switched_dir_and_no_valid_charset_yet = 1;
|
|
1534 }
|
|
1535 return 1;
|
|
1536
|
|
1537
|
|
1538 /**** designation ****/
|
|
1539
|
|
1540 case ISO_ESC_2_4:
|
|
1541 if (0x28 <= c && c <= 0x2F)
|
|
1542 {
|
|
1543 iso->esc = (enum iso_esc_flag) (c - 0x28 + ISO_ESC_2_4_8);
|
|
1544 goto not_done;
|
|
1545 }
|
|
1546 if (0x40 <= c && c <= 0x42)
|
|
1547 {
|
|
1548 cs = charset_by_attributes_or_create_one (CHARSET_TYPE_94X94, c,
|
|
1549 *flags & ISO_STATE_R2L ?
|
|
1550 CHARSET_RIGHT_TO_LEFT :
|
|
1551 CHARSET_LEFT_TO_RIGHT);
|
|
1552 reg = 0;
|
|
1553 goto designated;
|
|
1554 }
|
|
1555 goto error;
|
|
1556
|
|
1557 default:
|
|
1558 {
|
|
1559 int type = -1;
|
|
1560
|
|
1561 if (iso->esc >= ISO_ESC_2_8 &&
|
|
1562 iso->esc <= ISO_ESC_2_15)
|
|
1563 {
|
|
1564 type = ((iso->esc >= ISO_ESC_2_12) ?
|
|
1565 CHARSET_TYPE_96 : CHARSET_TYPE_94);
|
|
1566 reg = (iso->esc - ISO_ESC_2_8) & 3;
|
|
1567 }
|
|
1568 else if (iso->esc >= ISO_ESC_2_4_8 &&
|
|
1569 iso->esc <= ISO_ESC_2_4_15)
|
|
1570 {
|
|
1571 type = ((iso->esc >= ISO_ESC_2_4_12) ?
|
|
1572 CHARSET_TYPE_96X96 : CHARSET_TYPE_94X94);
|
|
1573 reg = (iso->esc - ISO_ESC_2_4_8) & 3;
|
|
1574 }
|
|
1575 else
|
|
1576 {
|
|
1577 /* Can this ever be reached? -slb */
|
|
1578 abort ();
|
|
1579 goto error;
|
|
1580 }
|
|
1581
|
|
1582 if (c < '0' || c > '~' ||
|
|
1583 (c > 0x5F && (type == CHARSET_TYPE_94X94 ||
|
|
1584 type == CHARSET_TYPE_96X96)))
|
|
1585 goto error; /* bad final byte */
|
|
1586
|
|
1587 cs = charset_by_attributes_or_create_one (type, c,
|
|
1588 *flags & ISO_STATE_R2L ?
|
|
1589 CHARSET_RIGHT_TO_LEFT :
|
|
1590 CHARSET_LEFT_TO_RIGHT);
|
|
1591 goto designated;
|
|
1592 }
|
|
1593 }
|
|
1594
|
|
1595 not_done:
|
|
1596 iso->esc_bytes[iso->esc_bytes_index++] = (unsigned char) c;
|
|
1597 return -1;
|
|
1598
|
|
1599 single_shift:
|
|
1600 if (check_invalid_charsets && !CHARSETP (iso->charset[reg]))
|
|
1601 /* can't invoke something that ain't there. */
|
|
1602 goto error;
|
|
1603 iso->esc = ISO_ESC_SINGLE_SHIFT;
|
|
1604 *flags &= ISO_STATE_LOCK;
|
|
1605 if (reg == 2)
|
|
1606 *flags |= ISO_STATE_SS2;
|
|
1607 else
|
|
1608 *flags |= ISO_STATE_SS3;
|
|
1609 return 1;
|
|
1610
|
|
1611 locking_shift:
|
|
1612 if (check_invalid_charsets &&
|
|
1613 !CHARSETP (iso->charset[reg]))
|
|
1614 /* can't invoke something that ain't there. */
|
|
1615 goto error;
|
|
1616 if (half)
|
|
1617 iso->register_right = reg;
|
|
1618 else
|
|
1619 iso->register_left = reg;
|
|
1620 *flags &= ISO_STATE_LOCK;
|
|
1621 iso->esc = ISO_ESC_LOCKING_SHIFT;
|
|
1622 return 1;
|
|
1623
|
|
1624 designated:
|
|
1625 if (NILP (cs) && check_invalid_charsets)
|
|
1626 {
|
|
1627 abort ();
|
|
1628 /* #### This should never happen now that we automatically create
|
|
1629 temporary charsets as necessary. We should probably remove
|
|
1630 this code. --ben */
|
|
1631 iso->invalid_designated[reg] = 1;
|
|
1632 iso->charset[reg] = Vcharset_ascii;
|
|
1633 iso->esc = ISO_ESC_DESIGNATE;
|
|
1634 *flags &= ISO_STATE_LOCK;
|
|
1635 iso->output_literally = 1;
|
|
1636 if (iso->switched_dir_and_no_valid_charset_yet)
|
|
1637 {
|
|
1638 /* We encountered a switch-direction followed by an
|
|
1639 invalid designation. Ensure that the switch-direction
|
|
1640 gets outputted; otherwise it will probably get eaten
|
|
1641 when the text is written out again. */
|
|
1642 iso->switched_dir_and_no_valid_charset_yet = 0;
|
|
1643 iso->output_direction_sequence = 1;
|
|
1644 /* And make sure that the switch-dir going the other
|
|
1645 way gets outputted, as well. */
|
|
1646 iso->invalid_switch_dir = 1;
|
|
1647 }
|
|
1648 return 1;
|
|
1649 }
|
|
1650 /* This function is called with CODESYS equal to nil when
|
|
1651 doing coding-system detection. */
|
|
1652 if (!NILP (codesys))
|
|
1653 {
|
|
1654 charset_conversion_spec_dynarr *dyn =
|
|
1655 XCODING_SYSTEM_ISO2022_INPUT_CONV (codesys);
|
|
1656
|
|
1657 if (dyn)
|
|
1658 {
|
|
1659 int i;
|
|
1660
|
|
1661 for (i = 0; i < Dynarr_length (dyn); i++)
|
|
1662 {
|
|
1663 struct charset_conversion_spec *spec = Dynarr_atp (dyn, i);
|
|
1664 if (EQ (cs, spec->from_charset))
|
|
1665 cs = spec->to_charset;
|
|
1666 }
|
|
1667 }
|
|
1668 }
|
|
1669
|
|
1670 iso->charset[reg] = cs;
|
|
1671 iso->esc = ISO_ESC_DESIGNATE;
|
|
1672 *flags &= ISO_STATE_LOCK;
|
|
1673 if (iso->invalid_designated[reg])
|
|
1674 {
|
|
1675 iso->invalid_designated[reg] = 0;
|
|
1676 iso->output_literally = 1;
|
|
1677 }
|
|
1678 if (iso->switched_dir_and_no_valid_charset_yet)
|
|
1679 iso->switched_dir_and_no_valid_charset_yet = 0;
|
|
1680 return 1;
|
|
1681 }
|
|
1682
|
|
1683 /* If FLAGS is a null pointer or specifies right-to-left motion,
|
|
1684 output a switch-dir-to-left-to-right sequence to DST.
|
|
1685 Also update FLAGS if it is not a null pointer.
|
|
1686 If INTERNAL_P is set, we are outputting in internal format and
|
|
1687 need to handle the CSI differently. */
|
|
1688
|
|
1689 static void
|
|
1690 restore_left_to_right_direction (Lisp_Object codesys,
|
|
1691 unsigned_char_dynarr *dst,
|
|
1692 unsigned int *flags,
|
|
1693 int internal_p)
|
|
1694 {
|
|
1695 if (!flags || (*flags & ISO_STATE_R2L))
|
|
1696 {
|
|
1697 if (XCODING_SYSTEM_ISO2022_SEVEN (codesys))
|
|
1698 {
|
|
1699 Dynarr_add (dst, ISO_CODE_ESC);
|
|
1700 Dynarr_add (dst, '[');
|
|
1701 }
|
|
1702 else if (internal_p)
|
|
1703 DECODE_ADD_BINARY_CHAR (ISO_CODE_CSI, dst);
|
|
1704 else
|
|
1705 Dynarr_add (dst, ISO_CODE_CSI);
|
|
1706 Dynarr_add (dst, '0');
|
|
1707 Dynarr_add (dst, ']');
|
|
1708 if (flags)
|
|
1709 *flags &= ~ISO_STATE_R2L;
|
|
1710 }
|
|
1711 }
|
|
1712
|
|
1713 /* If FLAGS is a null pointer or specifies a direction different from
|
|
1714 DIRECTION (which should be either CHARSET_RIGHT_TO_LEFT or
|
|
1715 CHARSET_LEFT_TO_RIGHT), output the appropriate switch-dir escape
|
|
1716 sequence to DST. Also update FLAGS if it is not a null pointer.
|
|
1717 If INTERNAL_P is set, we are outputting in internal format and
|
|
1718 need to handle the CSI differently. */
|
|
1719
|
|
1720 static void
|
|
1721 ensure_correct_direction (int direction, Lisp_Object codesys,
|
|
1722 unsigned_char_dynarr *dst, unsigned int *flags,
|
|
1723 int internal_p)
|
|
1724 {
|
|
1725 if ((!flags || (*flags & ISO_STATE_R2L)) &&
|
|
1726 direction == CHARSET_LEFT_TO_RIGHT)
|
|
1727 restore_left_to_right_direction (codesys, dst, flags, internal_p);
|
|
1728 else if (!XCODING_SYSTEM_ISO2022_NO_ISO6429 (codesys)
|
|
1729 && (!flags || !(*flags & ISO_STATE_R2L)) &&
|
|
1730 direction == CHARSET_RIGHT_TO_LEFT)
|
|
1731 {
|
|
1732 if (XCODING_SYSTEM_ISO2022_SEVEN (codesys))
|
|
1733 {
|
|
1734 Dynarr_add (dst, ISO_CODE_ESC);
|
|
1735 Dynarr_add (dst, '[');
|
|
1736 }
|
|
1737 else if (internal_p)
|
|
1738 DECODE_ADD_BINARY_CHAR (ISO_CODE_CSI, dst);
|
|
1739 else
|
|
1740 Dynarr_add (dst, ISO_CODE_CSI);
|
|
1741 Dynarr_add (dst, '2');
|
|
1742 Dynarr_add (dst, ']');
|
|
1743 if (flags)
|
|
1744 *flags |= ISO_STATE_R2L;
|
|
1745 }
|
|
1746 }
|
|
1747
|
|
1748 /* Convert ISO2022-format data to internal format. */
|
|
1749
|
|
1750 static Bytecount
|
|
1751 iso2022_decode (struct coding_stream *str, const UExtbyte *src,
|
|
1752 unsigned_char_dynarr *dst, Bytecount n)
|
|
1753 {
|
|
1754 unsigned int ch = str->ch;
|
|
1755 #ifdef ENABLE_COMPOSITE_CHARS
|
|
1756 unsigned_char_dynarr *real_dst = dst;
|
|
1757 #endif
|
|
1758 struct iso2022_coding_stream *data =
|
|
1759 CODING_STREAM_TYPE_DATA (str, iso2022);
|
|
1760 unsigned int flags = data->flags;
|
|
1761 Bytecount orign = n;
|
|
1762
|
|
1763 #ifdef ENABLE_COMPOSITE_CHARS
|
|
1764 if (flags & ISO_STATE_COMPOSITE)
|
|
1765 dst = data->composite_chars;
|
|
1766 #endif /* ENABLE_COMPOSITE_CHARS */
|
|
1767
|
|
1768 while (n--)
|
|
1769 {
|
|
1770 UExtbyte c = *src++;
|
|
1771 if (flags & ISO_STATE_ESCAPE)
|
|
1772 { /* Within ESC sequence */
|
|
1773 int retval = parse_iso2022_esc (str->codesys, data,
|
|
1774 c, &flags, 1);
|
|
1775
|
|
1776 if (retval)
|
|
1777 {
|
|
1778 switch (data->esc)
|
|
1779 {
|
|
1780 #ifdef ENABLE_COMPOSITE_CHARS
|
|
1781 case ISO_ESC_START_COMPOSITE:
|
|
1782 if (data->composite_chars)
|
|
1783 Dynarr_reset (data->composite_chars);
|
|
1784 else
|
|
1785 data->composite_chars = Dynarr_new (unsigned_char);
|
|
1786 dst = data->composite_chars;
|
|
1787 break;
|
|
1788 case ISO_ESC_END_COMPOSITE:
|
|
1789 {
|
|
1790 Intbyte comstr[MAX_EMCHAR_LEN];
|
|
1791 Bytecount len;
|
|
1792 Emchar emch = lookup_composite_char (Dynarr_atp (dst, 0),
|
|
1793 Dynarr_length (dst));
|
|
1794 dst = real_dst;
|
|
1795 len = set_charptr_emchar (comstr, emch);
|
|
1796 Dynarr_add_many (dst, comstr, len);
|
|
1797 break;
|
|
1798 }
|
|
1799 #else
|
|
1800 case ISO_ESC_START_COMPOSITE:
|
|
1801 {
|
|
1802 Intbyte comstr[MAX_EMCHAR_LEN];
|
|
1803 Bytecount len;
|
|
1804 Emchar emch = MAKE_CHAR (Vcharset_composite, c - '0' + ' ',
|
|
1805 0);
|
|
1806 len = set_charptr_emchar (comstr, emch);
|
|
1807 Dynarr_add_many (dst, comstr, len);
|
|
1808 break;
|
|
1809 }
|
|
1810 #endif /* ENABLE_COMPOSITE_CHARS */
|
|
1811
|
|
1812 case ISO_ESC_LITERAL:
|
|
1813 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
1814 break;
|
|
1815
|
|
1816 default:
|
|
1817 /* Everything else handled already */
|
|
1818 break;
|
|
1819 }
|
|
1820 }
|
|
1821
|
|
1822 /* Attempted error recovery. */
|
|
1823 if (data->output_direction_sequence)
|
|
1824 ensure_correct_direction (flags & ISO_STATE_R2L ?
|
|
1825 CHARSET_RIGHT_TO_LEFT :
|
|
1826 CHARSET_LEFT_TO_RIGHT,
|
|
1827 str->codesys, dst, 0, 1);
|
|
1828 /* More error recovery. */
|
|
1829 if (!retval || data->output_literally)
|
|
1830 {
|
|
1831 /* Output the (possibly invalid) sequence */
|
|
1832 int i;
|
|
1833 for (i = 0; i < data->esc_bytes_index; i++)
|
|
1834 DECODE_ADD_BINARY_CHAR (data->esc_bytes[i], dst);
|
|
1835 flags &= ISO_STATE_LOCK;
|
|
1836 if (!retval)
|
|
1837 n++, src--;/* Repeat the loop with the same character. */
|
|
1838 else
|
|
1839 {
|
|
1840 /* No sense in reprocessing the final byte of the
|
|
1841 escape sequence; it could mess things up anyway.
|
|
1842 Just add it now. */
|
|
1843 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
1844 }
|
|
1845 }
|
|
1846 ch = 0;
|
|
1847 }
|
|
1848 else if (BYTE_C0_P (c) || BYTE_C1_P (c))
|
|
1849 { /* Control characters */
|
|
1850
|
|
1851 /***** Error-handling *****/
|
|
1852
|
|
1853 /* If we were in the middle of a character, dump out the
|
|
1854 partial character. */
|
|
1855 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst);
|
|
1856
|
|
1857 /* If we just saw a single-shift character, dump it out.
|
|
1858 This may dump out the wrong sort of single-shift character,
|
|
1859 but least it will give an indication that something went
|
|
1860 wrong. */
|
|
1861 if (flags & ISO_STATE_SS2)
|
|
1862 {
|
|
1863 DECODE_ADD_BINARY_CHAR (ISO_CODE_SS2, dst);
|
|
1864 flags &= ~ISO_STATE_SS2;
|
|
1865 }
|
|
1866 if (flags & ISO_STATE_SS3)
|
|
1867 {
|
|
1868 DECODE_ADD_BINARY_CHAR (ISO_CODE_SS3, dst);
|
|
1869 flags &= ~ISO_STATE_SS3;
|
|
1870 }
|
|
1871
|
|
1872 /***** Now handle the control characters. *****/
|
|
1873
|
|
1874 flags &= ISO_STATE_LOCK;
|
|
1875
|
|
1876 if (!parse_iso2022_esc (str->codesys, data, c, &flags, 1))
|
|
1877 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
1878 }
|
|
1879 else
|
|
1880 { /* Graphic characters */
|
|
1881 Lisp_Object charset;
|
|
1882 int lb;
|
|
1883 int reg;
|
|
1884
|
|
1885 /* Now determine the charset. */
|
|
1886 reg = ((flags & ISO_STATE_SS2) ? 2
|
|
1887 : (flags & ISO_STATE_SS3) ? 3
|
|
1888 : !BYTE_ASCII_P (c) ? data->register_right
|
|
1889 : data->register_left);
|
|
1890 charset = data->charset[reg];
|
|
1891
|
|
1892 /* Error checking: */
|
|
1893 if (! CHARSETP (charset)
|
|
1894 || data->invalid_designated[reg]
|
|
1895 || (((c & 0x7F) == ' ' || (c & 0x7F) == ISO_CODE_DEL)
|
|
1896 && XCHARSET_CHARS (charset) == 94))
|
|
1897 /* Mrmph. We are trying to invoke a register that has no
|
|
1898 or an invalid charset in it, or trying to add a character
|
|
1899 outside the range of the charset. Insert that char literally
|
|
1900 to preserve it for the output. */
|
|
1901 {
|
|
1902 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst);
|
|
1903 DECODE_ADD_BINARY_CHAR (c, dst);
|
|
1904 }
|
|
1905
|
|
1906 else
|
|
1907 {
|
|
1908 /* Things are probably hunky-dorey. */
|
|
1909
|
|
1910 /* Fetch reverse charset, maybe. */
|
|
1911 if (((flags & ISO_STATE_R2L) &&
|
|
1912 XCHARSET_DIRECTION (charset) == CHARSET_LEFT_TO_RIGHT)
|
|
1913 ||
|
|
1914 (!(flags & ISO_STATE_R2L) &&
|
|
1915 XCHARSET_DIRECTION (charset) == CHARSET_RIGHT_TO_LEFT))
|
|
1916 {
|
|
1917 Lisp_Object new_charset =
|
|
1918 XCHARSET_REVERSE_DIRECTION_CHARSET (charset);
|
|
1919 if (!NILP (new_charset))
|
|
1920 charset = new_charset;
|
|
1921 }
|
|
1922
|
|
1923 lb = XCHARSET_LEADING_BYTE (charset);
|
|
1924 switch (XCHARSET_REP_BYTES (charset))
|
|
1925 {
|
|
1926 case 1: /* ASCII */
|
|
1927 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst);
|
|
1928 Dynarr_add (dst, c & 0x7F);
|
|
1929 break;
|
|
1930
|
|
1931 case 2: /* one-byte official */
|
|
1932 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst);
|
|
1933 Dynarr_add (dst, lb);
|
|
1934 Dynarr_add (dst, c | 0x80);
|
|
1935 break;
|
|
1936
|
|
1937 case 3: /* one-byte private or two-byte official */
|
|
1938 if (XCHARSET_PRIVATE_P (charset))
|
|
1939 {
|
|
1940 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst);
|
|
1941 Dynarr_add (dst, PRE_LEADING_BYTE_PRIVATE_1);
|
|
1942 Dynarr_add (dst, lb);
|
|
1943 Dynarr_add (dst, c | 0x80);
|
|
1944 }
|
|
1945 else
|
|
1946 {
|
|
1947 if (ch)
|
|
1948 {
|
|
1949 Dynarr_add (dst, lb);
|
|
1950 Dynarr_add (dst, ch | 0x80);
|
|
1951 Dynarr_add (dst, c | 0x80);
|
|
1952 ch = 0;
|
|
1953 }
|
|
1954 else
|
|
1955 ch = c;
|
|
1956 }
|
|
1957 break;
|
|
1958
|
|
1959 default: /* two-byte private */
|
|
1960 if (ch)
|
|
1961 {
|
|
1962 Dynarr_add (dst, PRE_LEADING_BYTE_PRIVATE_2);
|
|
1963 Dynarr_add (dst, lb);
|
|
1964 Dynarr_add (dst, ch | 0x80);
|
|
1965 Dynarr_add (dst, c | 0x80);
|
|
1966 ch = 0;
|
|
1967 }
|
|
1968 else
|
|
1969 ch = c;
|
|
1970 }
|
|
1971 }
|
|
1972
|
|
1973 if (!ch)
|
|
1974 flags &= ISO_STATE_LOCK;
|
|
1975 }
|
|
1976
|
|
1977 }
|
|
1978
|
|
1979 if (str->eof)
|
|
1980 DECODE_OUTPUT_PARTIAL_CHAR (ch, dst);
|
|
1981
|
|
1982 data->flags = flags;
|
|
1983 str->ch = ch;
|
|
1984 return orign;
|
|
1985 }
|
|
1986
|
|
1987
|
|
1988 /***** ISO2022 encoder *****/
|
|
1989
|
|
1990 /* Designate CHARSET into register REG. */
|
|
1991
|
|
1992 static void
|
|
1993 iso2022_designate (Lisp_Object charset, int reg,
|
|
1994 struct coding_stream *str, unsigned_char_dynarr *dst)
|
|
1995 {
|
|
1996 static const char inter94[] = "()*+";
|
|
1997 static const char inter96[] = ",-./";
|
|
1998 int type;
|
|
1999 unsigned char final;
|
|
2000 struct iso2022_coding_stream *data =
|
|
2001 CODING_STREAM_TYPE_DATA (str, iso2022);
|
|
2002 Lisp_Object old_charset = data->charset[reg];
|
|
2003
|
|
2004 data->charset[reg] = charset;
|
|
2005 if (!CHARSETP (charset))
|
|
2006 /* charset might be an initial nil or t. */
|
|
2007 return;
|
|
2008 type = XCHARSET_TYPE (charset);
|
|
2009 final = XCHARSET_FINAL (charset);
|
|
2010 if (!data->force_charset_on_output[reg] &&
|
|
2011 CHARSETP (old_charset) &&
|
|
2012 XCHARSET_TYPE (old_charset) == type &&
|
|
2013 XCHARSET_FINAL (old_charset) == final)
|
|
2014 return;
|
|
2015
|
|
2016 data->force_charset_on_output[reg] = 0;
|
|
2017
|
|
2018 {
|
|
2019 charset_conversion_spec_dynarr *dyn =
|
|
2020 XCODING_SYSTEM_ISO2022_OUTPUT_CONV (str->codesys);
|
|
2021
|
|
2022 if (dyn)
|
|
2023 {
|
|
2024 int i;
|
|
2025
|
|
2026 for (i = 0; i < Dynarr_length (dyn); i++)
|
|
2027 {
|
|
2028 struct charset_conversion_spec *spec = Dynarr_atp (dyn, i);
|
|
2029 if (EQ (charset, spec->from_charset))
|
|
2030 charset = spec->to_charset;
|
|
2031 }
|
|
2032 }
|
|
2033 }
|
|
2034
|
|
2035 Dynarr_add (dst, ISO_CODE_ESC);
|
|
2036 switch (type)
|
|
2037 {
|
|
2038 case CHARSET_TYPE_94:
|
|
2039 Dynarr_add (dst, inter94[reg]);
|
|
2040 break;
|
|
2041 case CHARSET_TYPE_96:
|
|
2042 Dynarr_add (dst, inter96[reg]);
|
|
2043 break;
|
|
2044 case CHARSET_TYPE_94X94:
|
|
2045 Dynarr_add (dst, '$');
|
|
2046 if (reg != 0
|
|
2047 || !(XCODING_SYSTEM_ISO2022_SHORT (str->codesys))
|
|
2048 || final < '@'
|
|
2049 || final > 'B')
|
|
2050 Dynarr_add (dst, inter94[reg]);
|
|
2051 break;
|
|
2052 case CHARSET_TYPE_96X96:
|
|
2053 Dynarr_add (dst, '$');
|
|
2054 Dynarr_add (dst, inter96[reg]);
|
|
2055 break;
|
|
2056 }
|
|
2057 Dynarr_add (dst, final);
|
|
2058 }
|
|
2059
|
|
2060 static void
|
|
2061 ensure_normal_shift (struct coding_stream *str, unsigned_char_dynarr *dst)
|
|
2062 {
|
|
2063 struct iso2022_coding_stream *data =
|
|
2064 CODING_STREAM_TYPE_DATA (str, iso2022);
|
|
2065
|
|
2066 if (data->register_left != 0)
|
|
2067 {
|
|
2068 Dynarr_add (dst, ISO_CODE_SI);
|
|
2069 data->register_left = 0;
|
|
2070 }
|
|
2071 }
|
|
2072
|
|
2073 static void
|
|
2074 ensure_shift_out (struct coding_stream *str, unsigned_char_dynarr *dst)
|
|
2075 {
|
|
2076 struct iso2022_coding_stream *data =
|
|
2077 CODING_STREAM_TYPE_DATA (str, iso2022);
|
|
2078
|
|
2079 if (data->register_left != 1)
|
|
2080 {
|
|
2081 Dynarr_add (dst, ISO_CODE_SO);
|
|
2082 data->register_left = 1;
|
|
2083 }
|
|
2084 }
|
|
2085
|
|
2086 /* Convert internally-formatted data to ISO2022 format. */
|
|
2087
|
|
2088 static Bytecount
|
|
2089 iso2022_encode (struct coding_stream *str, const Intbyte *src,
|
|
2090 unsigned_char_dynarr *dst, Bytecount n)
|
|
2091 {
|
|
2092 unsigned char charmask;
|
|
2093 Intbyte c;
|
|
2094 unsigned char char_boundary;
|
|
2095 unsigned int ch = str->ch;
|
|
2096 Lisp_Object codesys = str->codesys;
|
|
2097 int i;
|
|
2098 Lisp_Object charset;
|
|
2099 int half;
|
|
2100 struct iso2022_coding_stream *data =
|
|
2101 CODING_STREAM_TYPE_DATA (str, iso2022);
|
|
2102 unsigned int flags = data->flags;
|
|
2103 Bytecount orign = n;
|
|
2104
|
|
2105 #ifdef ENABLE_COMPOSITE_CHARS
|
|
2106 /* flags for handling composite chars. We do a little switcheroo
|
|
2107 on the source while we're outputting the composite char. */
|
|
2108 Bytecount saved_n = 0;
|
|
2109 const Intbyte *saved_src = NULL;
|
|
2110 int in_composite = 0;
|
|
2111 #endif /* ENABLE_COMPOSITE_CHARS */
|
|
2112
|
|
2113 char_boundary = data->current_char_boundary;
|
|
2114 charset = data->current_charset;
|
|
2115 half = data->current_half;
|
|
2116
|
|
2117 #ifdef ENABLE_COMPOSITE_CHARS
|
|
2118 back_to_square_n:
|
|
2119 #endif
|
|
2120 while (n--)
|
|
2121 {
|
|
2122 c = *src++;
|
|
2123
|
|
2124 if (BYTE_ASCII_P (c))
|
|
2125 { /* Processing ASCII character */
|
|
2126 ch = 0;
|
|
2127
|
|
2128 restore_left_to_right_direction (codesys, dst, &flags, 0);
|
|
2129
|
|
2130 /* Make sure G0 contains ASCII */
|
|
2131 if ((c > ' ' && c < ISO_CODE_DEL) ||
|
|
2132 !XCODING_SYSTEM_ISO2022_NO_ASCII_CNTL (codesys))
|
|
2133 {
|
|
2134 ensure_normal_shift (str, dst);
|
|
2135 iso2022_designate (Vcharset_ascii, 0, str, dst);
|
|
2136 }
|
|
2137
|
|
2138 /* If necessary, restore everything to the default state
|
|
2139 at end-of-line */
|
|
2140 if (!(XCODING_SYSTEM_ISO2022_NO_ASCII_EOL (codesys)))
|
|
2141 {
|
|
2142 /* NOTE: CRLF encoding happens *BEFORE* other encoding.
|
|
2143 Thus, even though we're working with internal-format
|
|
2144 data, there may be CR's or CRLF sequences representing
|
|
2145 newlines. */
|
|
2146 if (c == '\r' || (c == '\n' && !(flags & ISO_STATE_CR)))
|
|
2147 {
|
|
2148 restore_left_to_right_direction (codesys, dst, &flags, 0);
|
|
2149
|
|
2150 ensure_normal_shift (str, dst);
|
|
2151
|
|
2152 for (i = 0; i < 4; i++)
|
|
2153 {
|
|
2154 Lisp_Object initial_charset =
|
|
2155 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i);
|
|
2156 iso2022_designate (initial_charset, i, str, dst);
|
|
2157 }
|
|
2158 }
|
|
2159 if (c == '\r')
|
|
2160 flags |= ISO_STATE_CR;
|
|
2161 else
|
|
2162 flags &= ~ISO_STATE_CR;
|
|
2163 }
|
|
2164
|
|
2165 if (XCODING_SYSTEM_ISO2022_ESCAPE_QUOTED (codesys)
|
|
2166 && fit_to_be_escape_quoted (c))
|
|
2167 Dynarr_add (dst, ISO_CODE_ESC);
|
|
2168 Dynarr_add (dst, c);
|
|
2169 char_boundary = 1;
|
|
2170 }
|
|
2171
|
|
2172 else if (INTBYTE_LEADING_BYTE_P (c) || INTBYTE_LEADING_BYTE_P (ch))
|
|
2173 { /* Processing Leading Byte */
|
|
2174 ch = 0;
|
|
2175 charset = CHARSET_BY_LEADING_BYTE (c);
|
|
2176 if (LEADING_BYTE_PREFIX_P (c))
|
|
2177 ch = c;
|
|
2178 else if (!EQ (charset, Vcharset_control_1)
|
|
2179 && !EQ (charset, Vcharset_composite))
|
|
2180 {
|
|
2181 int reg;
|
|
2182
|
|
2183 ensure_correct_direction (XCHARSET_DIRECTION (charset),
|
|
2184 codesys, dst, &flags, 0);
|
|
2185
|
|
2186 /* Now determine which register to use. */
|
|
2187 reg = -1;
|
|
2188 for (i = 0; i < 4; i++)
|
|
2189 {
|
|
2190 if (EQ (charset, data->charset[i]) ||
|
|
2191 EQ (charset,
|
|
2192 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i)))
|
|
2193 {
|
|
2194 reg = i;
|
|
2195 break;
|
|
2196 }
|
|
2197 }
|
|
2198
|
|
2199 if (reg == -1)
|
|
2200 {
|
|
2201 if (XCHARSET_GRAPHIC (charset) != 0)
|
|
2202 {
|
|
2203 if (!NILP (data->charset[1]) &&
|
|
2204 (!XCODING_SYSTEM_ISO2022_SEVEN (codesys) ||
|
|
2205 XCODING_SYSTEM_ISO2022_LOCK_SHIFT (codesys)))
|
|
2206 reg = 1;
|
|
2207 else if (!NILP (data->charset[2]))
|
|
2208 reg = 2;
|
|
2209 else if (!NILP (data->charset[3]))
|
|
2210 reg = 3;
|
|
2211 else
|
|
2212 reg = 0;
|
|
2213 }
|
|
2214 else
|
|
2215 reg = 0;
|
|
2216 }
|
|
2217
|
|
2218 iso2022_designate (charset, reg, str, dst);
|
|
2219
|
|
2220 /* Now invoke that register. */
|
|
2221 switch (reg)
|
|
2222 {
|
|
2223 case 0:
|
|
2224 ensure_normal_shift (str, dst);
|
|
2225 half = 0;
|
|
2226 break;
|
|
2227
|
|
2228 case 1:
|
|
2229 if (XCODING_SYSTEM_ISO2022_SEVEN (codesys))
|
|
2230 {
|
|
2231 ensure_shift_out (str, dst);
|
|
2232 half = 0;
|
|
2233 }
|
|
2234 else
|
|
2235 half = 1;
|
|
2236 break;
|
|
2237
|
|
2238 case 2:
|
|
2239 if (XCODING_SYSTEM_ISO2022_SEVEN (str->codesys))
|
|
2240 {
|
|
2241 Dynarr_add (dst, ISO_CODE_ESC);
|
|
2242 Dynarr_add (dst, 'N');
|
|
2243 half = 0;
|
|
2244 }
|
|
2245 else
|
|
2246 {
|
|
2247 Dynarr_add (dst, ISO_CODE_SS2);
|
|
2248 half = 1;
|
|
2249 }
|
|
2250 break;
|
|
2251
|
|
2252 case 3:
|
|
2253 if (XCODING_SYSTEM_ISO2022_SEVEN (str->codesys))
|
|
2254 {
|
|
2255 Dynarr_add (dst, ISO_CODE_ESC);
|
|
2256 Dynarr_add (dst, 'O');
|
|
2257 half = 0;
|
|
2258 }
|
|
2259 else
|
|
2260 {
|
|
2261 Dynarr_add (dst, ISO_CODE_SS3);
|
|
2262 half = 1;
|
|
2263 }
|
|
2264 break;
|
|
2265
|
|
2266 default:
|
|
2267 abort ();
|
|
2268 }
|
|
2269 }
|
|
2270 char_boundary = 0;
|
|
2271 }
|
|
2272 else
|
|
2273 { /* Processing Non-ASCII character */
|
|
2274 charmask = (half == 0 ? 0x7F : 0xFF);
|
|
2275 char_boundary = 1;
|
|
2276 if (EQ (charset, Vcharset_control_1))
|
|
2277 {
|
|
2278 if (XCODING_SYSTEM_ISO2022_ESCAPE_QUOTED (codesys)
|
|
2279 && fit_to_be_escape_quoted (c))
|
|
2280 Dynarr_add (dst, ISO_CODE_ESC);
|
|
2281 /* you asked for it ... */
|
|
2282 Dynarr_add (dst, c - 0x20);
|
|
2283 }
|
|
2284 #ifndef ENABLE_COMPOSITE_CHARS
|
|
2285 else if (EQ (charset, Vcharset_composite))
|
|
2286 {
|
|
2287 if (c >= 160 || c <= 164) /* Someone might have stuck in
|
|
2288 something else */
|
|
2289 {
|
|
2290 Dynarr_add (dst, ISO_CODE_ESC);
|
|
2291 Dynarr_add (dst, c - 160 + '0');
|
|
2292 }
|
|
2293 }
|
|
2294 #endif
|
|
2295 else
|
|
2296 {
|
|
2297 switch (XCHARSET_REP_BYTES (charset))
|
|
2298 {
|
|
2299 case 2:
|
|
2300 Dynarr_add (dst, c & charmask);
|
|
2301 break;
|
|
2302 case 3:
|
|
2303 if (XCHARSET_PRIVATE_P (charset))
|
|
2304 {
|
|
2305 Dynarr_add (dst, c & charmask);
|
|
2306 ch = 0;
|
|
2307 }
|
|
2308 else if (ch)
|
|
2309 {
|
|
2310 #ifdef ENABLE_COMPOSITE_CHARS
|
|
2311 if (EQ (charset, Vcharset_composite))
|
|
2312 {
|
|
2313 if (in_composite)
|
|
2314 {
|
|
2315 /* #### Bother! We don't know how to
|
|
2316 handle this yet. */
|
|
2317 Dynarr_add (dst, '~');
|
|
2318 }
|
|
2319 else
|
|
2320 {
|
|
2321 Emchar emch = MAKE_CHAR (Vcharset_composite,
|
|
2322 ch & 0x7F, c & 0x7F);
|
|
2323 Lisp_Object lstr = composite_char_string (emch);
|
|
2324 saved_n = n;
|
|
2325 saved_src = src;
|
|
2326 in_composite = 1;
|
|
2327 src = XSTRING_DATA (lstr);
|
|
2328 n = XSTRING_LENGTH (lstr);
|
|
2329 Dynarr_add (dst, ISO_CODE_ESC);
|
|
2330 Dynarr_add (dst, '0'); /* start composing */
|
|
2331 }
|
|
2332 }
|
|
2333 else
|
|
2334 #endif /* ENABLE_COMPOSITE_CHARS */
|
|
2335 {
|
|
2336 Dynarr_add (dst, ch & charmask);
|
|
2337 Dynarr_add (dst, c & charmask);
|
|
2338 }
|
|
2339 ch = 0;
|
|
2340 }
|
|
2341 else
|
|
2342 {
|
|
2343 ch = c;
|
|
2344 char_boundary = 0;
|
|
2345 }
|
|
2346 break;
|
|
2347 case 4:
|
|
2348 if (ch)
|
|
2349 {
|
|
2350 Dynarr_add (dst, ch & charmask);
|
|
2351 Dynarr_add (dst, c & charmask);
|
|
2352 ch = 0;
|
|
2353 }
|
|
2354 else
|
|
2355 {
|
|
2356 ch = c;
|
|
2357 char_boundary = 0;
|
|
2358 }
|
|
2359 break;
|
|
2360 default:
|
|
2361 abort ();
|
|
2362 }
|
|
2363 }
|
|
2364 }
|
|
2365 }
|
|
2366
|
|
2367 #ifdef ENABLE_COMPOSITE_CHARS
|
|
2368 if (in_composite)
|
|
2369 {
|
|
2370 n = saved_n;
|
|
2371 src = saved_src;
|
|
2372 in_composite = 0;
|
|
2373 Dynarr_add (dst, ISO_CODE_ESC);
|
|
2374 Dynarr_add (dst, '1'); /* end composing */
|
|
2375 goto back_to_square_n; /* Wheeeeeeeee ..... */
|
|
2376 }
|
|
2377 #endif /* ENABLE_COMPOSITE_CHARS */
|
|
2378
|
|
2379 if (char_boundary && str->eof)
|
|
2380 {
|
|
2381 restore_left_to_right_direction (codesys, dst, &flags, 0);
|
|
2382 ensure_normal_shift (str, dst);
|
|
2383 for (i = 0; i < 4; i++)
|
|
2384 {
|
|
2385 Lisp_Object initial_charset =
|
|
2386 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i);
|
|
2387 iso2022_designate (initial_charset, i, str, dst);
|
|
2388 }
|
|
2389 }
|
|
2390
|
|
2391 data->flags = flags;
|
|
2392 str->ch = ch;
|
|
2393 data->current_char_boundary = char_boundary;
|
|
2394 data->current_charset = charset;
|
|
2395 data->current_half = half;
|
|
2396
|
|
2397 /* Verbum caro factum est! */
|
|
2398 return orign;
|
|
2399 }
|
|
2400
|
|
2401 static Bytecount
|
|
2402 iso2022_convert (struct coding_stream *str,
|
|
2403 const UExtbyte *src,
|
|
2404 unsigned_char_dynarr *dst, Bytecount n)
|
|
2405 {
|
|
2406 if (str->direction == CODING_DECODE)
|
|
2407 return iso2022_decode (str, src, dst, n);
|
|
2408 else
|
|
2409 return iso2022_encode (str, src, dst, n);
|
|
2410 }
|
|
2411
|
|
2412 static void
|
|
2413 iso2022_mark (Lisp_Object codesys)
|
|
2414 {
|
|
2415 int i;
|
|
2416
|
|
2417 for (i = 0; i < 4; i++)
|
|
2418 mark_object (XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i));
|
|
2419 if (XCODING_SYSTEM_ISO2022_INPUT_CONV (codesys))
|
|
2420 {
|
|
2421 for (i = 0;
|
|
2422 i < Dynarr_length (XCODING_SYSTEM_ISO2022_INPUT_CONV (codesys));
|
|
2423 i++)
|
|
2424 {
|
|
2425 struct charset_conversion_spec *ccs =
|
|
2426 Dynarr_atp (XCODING_SYSTEM_ISO2022_INPUT_CONV (codesys), i);
|
|
2427 mark_object (ccs->from_charset);
|
|
2428 mark_object (ccs->to_charset);
|
|
2429 }
|
|
2430 }
|
|
2431 if (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (codesys))
|
|
2432 {
|
|
2433 for (i = 0;
|
|
2434 i < Dynarr_length (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (codesys));
|
|
2435 i++)
|
|
2436 {
|
|
2437 struct charset_conversion_spec *ccs =
|
|
2438 Dynarr_atp (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (codesys), i);
|
|
2439 mark_object (ccs->from_charset);
|
|
2440 mark_object (ccs->to_charset);
|
|
2441 }
|
|
2442 }
|
|
2443 }
|
|
2444
|
|
2445 static void
|
|
2446 iso2022_finalize (Lisp_Object cs)
|
|
2447 {
|
|
2448 if (XCODING_SYSTEM_ISO2022_INPUT_CONV (cs))
|
|
2449 {
|
|
2450 Dynarr_free (XCODING_SYSTEM_ISO2022_INPUT_CONV (cs));
|
|
2451 XCODING_SYSTEM_ISO2022_INPUT_CONV (cs) = 0;
|
|
2452 }
|
|
2453 if (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (cs))
|
|
2454 {
|
|
2455 Dynarr_free (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (cs));
|
|
2456 XCODING_SYSTEM_ISO2022_OUTPUT_CONV (cs) = 0;
|
|
2457 }
|
|
2458 }
|
|
2459
|
|
2460 /* Given a list of charset conversion specs as specified in a Lisp
|
|
2461 program, parse it into STORE_HERE. */
|
|
2462
|
|
2463 static void
|
|
2464 parse_charset_conversion_specs (charset_conversion_spec_dynarr *store_here,
|
|
2465 Lisp_Object spec_list)
|
|
2466 {
|
|
2467 Lisp_Object rest;
|
|
2468
|
|
2469 EXTERNAL_LIST_LOOP (rest, spec_list)
|
|
2470 {
|
|
2471 Lisp_Object car = XCAR (rest);
|
|
2472 Lisp_Object from, to;
|
|
2473 struct charset_conversion_spec spec;
|
|
2474
|
|
2475 if (!CONSP (car) || !CONSP (XCDR (car)) || !NILP (XCDR (XCDR (car))))
|
|
2476 invalid_argument ("Invalid charset conversion spec", car);
|
|
2477 from = Fget_charset (XCAR (car));
|
|
2478 to = Fget_charset (XCAR (XCDR (car)));
|
|
2479 if (XCHARSET_TYPE (from) != XCHARSET_TYPE (to))
|
|
2480 invalid_operation_2
|
|
2481 ("Attempted conversion between different charset types",
|
|
2482 from, to);
|
|
2483 spec.from_charset = from;
|
|
2484 spec.to_charset = to;
|
|
2485
|
|
2486 Dynarr_add (store_here, spec);
|
|
2487 }
|
|
2488 }
|
|
2489
|
|
2490 /* Given a dynarr LOAD_HERE of internally-stored charset conversion
|
|
2491 specs, return the equivalent as the Lisp programmer would see it.
|
|
2492
|
|
2493 If LOAD_HERE is 0, return Qnil. */
|
|
2494
|
|
2495 static Lisp_Object
|
|
2496 unparse_charset_conversion_specs (charset_conversion_spec_dynarr *load_here,
|
|
2497 int names)
|
|
2498 {
|
|
2499 int i;
|
|
2500 Lisp_Object result;
|
|
2501
|
|
2502 if (!load_here)
|
|
2503 return Qnil;
|
|
2504 for (i = 0, result = Qnil; i < Dynarr_length (load_here); i++)
|
|
2505 {
|
|
2506 struct charset_conversion_spec *ccs = Dynarr_atp (load_here, i);
|
|
2507 if (names)
|
|
2508 result = Fcons (list2 (XCHARSET_NAME (ccs->from_charset),
|
|
2509 XCHARSET_NAME (ccs->to_charset)), result);
|
|
2510 else
|
|
2511 result = Fcons (list2 (ccs->from_charset, ccs->to_charset), result);
|
|
2512 }
|
|
2513
|
|
2514 return Fnreverse (result);
|
|
2515 }
|
|
2516
|
|
2517 static int
|
|
2518 iso2022_putprop (Lisp_Object codesys,
|
|
2519 Lisp_Object key,
|
|
2520 Lisp_Object value)
|
|
2521 {
|
|
2522 #define FROB_INITIAL_CHARSET(charset_num) \
|
|
2523 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, charset_num) = \
|
|
2524 ((EQ (value, Qt) || EQ (value, Qnil)) ? value : Fget_charset (value))
|
|
2525
|
|
2526 if (EQ (key, Qcharset_g0)) FROB_INITIAL_CHARSET (0);
|
|
2527 else if (EQ (key, Qcharset_g1)) FROB_INITIAL_CHARSET (1);
|
|
2528 else if (EQ (key, Qcharset_g2)) FROB_INITIAL_CHARSET (2);
|
|
2529 else if (EQ (key, Qcharset_g3)) FROB_INITIAL_CHARSET (3);
|
|
2530
|
|
2531 #define FROB_FORCE_CHARSET(charset_num) \
|
|
2532 XCODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT (codesys, charset_num) = \
|
|
2533 !NILP (value)
|
|
2534
|
|
2535 else if (EQ (key, Qforce_g0_on_output)) FROB_FORCE_CHARSET (0);
|
|
2536 else if (EQ (key, Qforce_g1_on_output)) FROB_FORCE_CHARSET (1);
|
|
2537 else if (EQ (key, Qforce_g2_on_output)) FROB_FORCE_CHARSET (2);
|
|
2538 else if (EQ (key, Qforce_g3_on_output)) FROB_FORCE_CHARSET (3);
|
|
2539
|
|
2540 #define FROB_BOOLEAN_PROPERTY(prop) \
|
|
2541 XCODING_SYSTEM_ISO2022_##prop (codesys) = !NILP (value)
|
|
2542
|
|
2543 else if (EQ (key, Qshort)) FROB_BOOLEAN_PROPERTY (SHORT);
|
|
2544 else if (EQ (key, Qno_ascii_eol)) FROB_BOOLEAN_PROPERTY (NO_ASCII_EOL);
|
|
2545 else if (EQ (key, Qno_ascii_cntl)) FROB_BOOLEAN_PROPERTY (NO_ASCII_CNTL);
|
|
2546 else if (EQ (key, Qseven)) FROB_BOOLEAN_PROPERTY (SEVEN);
|
|
2547 else if (EQ (key, Qlock_shift)) FROB_BOOLEAN_PROPERTY (LOCK_SHIFT);
|
|
2548 else if (EQ (key, Qno_iso6429)) FROB_BOOLEAN_PROPERTY (NO_ISO6429);
|
|
2549 else if (EQ (key, Qescape_quoted)) FROB_BOOLEAN_PROPERTY (ESCAPE_QUOTED);
|
|
2550
|
|
2551 else if (EQ (key, Qinput_charset_conversion))
|
|
2552 {
|
|
2553 XCODING_SYSTEM_ISO2022_INPUT_CONV (codesys) =
|
|
2554 Dynarr_new (charset_conversion_spec);
|
|
2555 parse_charset_conversion_specs
|
|
2556 (XCODING_SYSTEM_ISO2022_INPUT_CONV (codesys), value);
|
|
2557 }
|
|
2558 else if (EQ (key, Qoutput_charset_conversion))
|
|
2559 {
|
|
2560 XCODING_SYSTEM_ISO2022_OUTPUT_CONV (codesys) =
|
|
2561 Dynarr_new (charset_conversion_spec);
|
|
2562 parse_charset_conversion_specs
|
|
2563 (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (codesys), value);
|
|
2564 }
|
|
2565 else
|
|
2566 return 0;
|
|
2567
|
|
2568 return 1;
|
|
2569 }
|
|
2570
|
|
2571 static void
|
|
2572 iso2022_finalize_coding_stream (struct coding_stream *str)
|
|
2573 {
|
|
2574 #ifdef ENABLE_COMPOSITE_CHARS
|
|
2575 struct iso2022_coding_stream *data =
|
|
2576 CODING_STREAM_TYPE_DATA (str, iso2022);
|
|
2577
|
|
2578 if (data->composite_chars)
|
|
2579 Dynarr_free (data->composite_chars);
|
|
2580 #endif
|
|
2581 }
|
|
2582
|
|
2583 static void
|
|
2584 iso2022_init (Lisp_Object codesys)
|
|
2585 {
|
|
2586 int i;
|
|
2587 for (i = 0; i < 4; i++)
|
|
2588 XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (codesys, i) = Qnil;
|
|
2589 }
|
|
2590
|
|
2591 static Lisp_Object
|
|
2592 coding_system_charset (Lisp_Object coding_system, int gnum)
|
|
2593 {
|
|
2594 Lisp_Object cs
|
|
2595 = XCODING_SYSTEM_ISO2022_INITIAL_CHARSET (coding_system, gnum);
|
|
2596
|
|
2597 return CHARSETP (cs) ? XCHARSET_NAME (cs) : Qnil;
|
|
2598 }
|
|
2599
|
|
2600 static Lisp_Object
|
|
2601 iso2022_getprop (Lisp_Object coding_system, Lisp_Object prop)
|
|
2602 {
|
|
2603 if (EQ (prop, Qcharset_g0))
|
|
2604 return coding_system_charset (coding_system, 0);
|
|
2605 else if (EQ (prop, Qcharset_g1))
|
|
2606 return coding_system_charset (coding_system, 1);
|
|
2607 else if (EQ (prop, Qcharset_g2))
|
|
2608 return coding_system_charset (coding_system, 2);
|
|
2609 else if (EQ (prop, Qcharset_g3))
|
|
2610 return coding_system_charset (coding_system, 3);
|
|
2611
|
|
2612 #define FORCE_CHARSET(charset_num) \
|
|
2613 (XCODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT \
|
|
2614 (coding_system, charset_num) ? Qt : Qnil)
|
|
2615
|
|
2616 else if (EQ (prop, Qforce_g0_on_output))
|
|
2617 return FORCE_CHARSET (0);
|
|
2618 else if (EQ (prop, Qforce_g1_on_output))
|
|
2619 return FORCE_CHARSET (1);
|
|
2620 else if (EQ (prop, Qforce_g2_on_output))
|
|
2621 return FORCE_CHARSET (2);
|
|
2622 else if (EQ (prop, Qforce_g3_on_output))
|
|
2623 return FORCE_CHARSET (3);
|
|
2624
|
|
2625 #define LISP_BOOLEAN(prop) \
|
|
2626 (XCODING_SYSTEM_ISO2022_##prop (coding_system) ? Qt : Qnil)
|
|
2627
|
|
2628 else if (EQ (prop, Qshort)) return LISP_BOOLEAN (SHORT);
|
|
2629 else if (EQ (prop, Qno_ascii_eol)) return LISP_BOOLEAN (NO_ASCII_EOL);
|
|
2630 else if (EQ (prop, Qno_ascii_cntl)) return LISP_BOOLEAN (NO_ASCII_CNTL);
|
|
2631 else if (EQ (prop, Qseven)) return LISP_BOOLEAN (SEVEN);
|
|
2632 else if (EQ (prop, Qlock_shift)) return LISP_BOOLEAN (LOCK_SHIFT);
|
|
2633 else if (EQ (prop, Qno_iso6429)) return LISP_BOOLEAN (NO_ISO6429);
|
|
2634 else if (EQ (prop, Qescape_quoted)) return LISP_BOOLEAN (ESCAPE_QUOTED);
|
|
2635
|
|
2636 else if (EQ (prop, Qinput_charset_conversion))
|
|
2637 return
|
|
2638 unparse_charset_conversion_specs
|
|
2639 (XCODING_SYSTEM_ISO2022_INPUT_CONV (coding_system), 0);
|
|
2640 else if (EQ (prop, Qoutput_charset_conversion))
|
|
2641 return
|
|
2642 unparse_charset_conversion_specs
|
|
2643 (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (coding_system), 0);
|
|
2644 else
|
|
2645 return Qunbound;
|
|
2646 }
|
|
2647
|
|
2648 static void
|
|
2649 iso2022_print (Lisp_Object cs, Lisp_Object printcharfun, int escapeflag)
|
|
2650 {
|
|
2651 int i;
|
|
2652
|
|
2653 write_c_string ("(", printcharfun);
|
|
2654 for (i = 0; i < 4; i++)
|
|
2655 {
|
|
2656 Lisp_Object charset = coding_system_charset (cs, i);
|
|
2657 if (i > 0)
|
|
2658 write_c_string (", ", printcharfun);
|
|
2659 write_fmt_string (printcharfun, "g%d=", i);
|
800
|
2660 print_internal (CHARSETP (charset) ? XCHARSET_NAME (charset) : charset, printcharfun, 0);
|
771
|
2661 if (XCODING_SYSTEM_ISO2022_FORCE_CHARSET_ON_OUTPUT (cs, i))
|
|
2662 write_c_string ("(force)", printcharfun);
|
|
2663 }
|
|
2664
|
800
|
2665 #define FROB(prop) \
|
|
2666 if (!NILP (iso2022_getprop (cs, prop))) \
|
|
2667 { \
|
|
2668 write_fmt_string (printcharfun, ", %s", prop); \
|
771
|
2669 }
|
|
2670
|
|
2671 FROB (Qshort);
|
|
2672 FROB (Qno_ascii_eol);
|
|
2673 FROB (Qno_ascii_cntl);
|
|
2674 FROB (Qseven);
|
|
2675 FROB (Qlock_shift);
|
|
2676 FROB (Qno_iso6429);
|
|
2677 FROB (Qescape_quoted);
|
|
2678
|
|
2679 {
|
|
2680 Lisp_Object val =
|
|
2681 unparse_charset_conversion_specs
|
|
2682 (XCODING_SYSTEM_ISO2022_INPUT_CONV (cs), 1);
|
|
2683 if (!NILP (val))
|
|
2684 {
|
800
|
2685 write_fmt_string_lisp (printcharfun, ", input-charset-conversion=%s", 1, val);
|
771
|
2686 }
|
|
2687 val =
|
|
2688 unparse_charset_conversion_specs
|
|
2689 (XCODING_SYSTEM_ISO2022_OUTPUT_CONV (cs), 1);
|
|
2690 if (!NILP (val))
|
|
2691 {
|
800
|
2692 write_fmt_string_lisp (printcharfun, ", output-charset-conversion=%s", 1, val);
|
771
|
2693 }
|
|
2694 write_c_string (")", printcharfun);
|
|
2695 }
|
|
2696 }
|
|
2697
|
|
2698
|
|
2699 /************************************************************************/
|
|
2700 /* ISO2022 detector */
|
|
2701 /************************************************************************/
|
|
2702
|
|
2703 DEFINE_DETECTOR (iso2022);
|
|
2704 /* ISO2022 system using only seven-bit bytes, no locking shift */
|
|
2705 DEFINE_DETECTOR_CATEGORY (iso2022, iso_7);
|
|
2706 /* ISO2022 system using eight-bit bytes, no locking shift, no single shift,
|
|
2707 using designation to switch charsets */
|
|
2708 DEFINE_DETECTOR_CATEGORY (iso2022, iso_8_designate);
|
|
2709 /* ISO2022 system using eight-bit bytes, no locking shift, no designation
|
|
2710 sequences, one-dimension characters in the upper half. */
|
|
2711 DEFINE_DETECTOR_CATEGORY (iso2022, iso_8_1);
|
|
2712 /* ISO2022 system using eight-bit bytes, no locking shift, no designation
|
|
2713 sequences, two-dimension characters in the upper half. */
|
|
2714 DEFINE_DETECTOR_CATEGORY (iso2022, iso_8_2);
|
|
2715 /* ISO2022 system using locking shift */
|
|
2716 DEFINE_DETECTOR_CATEGORY (iso2022, iso_lock_shift);
|
|
2717
|
|
2718 struct iso2022_detector
|
|
2719 {
|
|
2720 int initted;
|
|
2721 struct iso2022_coding_stream *iso;
|
|
2722 unsigned int flags;
|
|
2723
|
|
2724 /* for keeping temporary track of high-byte groups */
|
|
2725 int high_byte_count;
|
|
2726 unsigned int saw_single_shift_just_now:1;
|
|
2727
|
|
2728 /* running state; we set the likelihoods at the end */
|
|
2729 unsigned int seen_high_byte:1;
|
|
2730 unsigned int seen_single_shift:1;
|
|
2731 unsigned int seen_locking_shift:1;
|
|
2732 unsigned int seen_designate:1;
|
|
2733 unsigned int bad_single_byte_sequences;
|
|
2734 unsigned int bad_multibyte_escape_sequences;
|
|
2735 unsigned int good_multibyte_escape_sequences;
|
|
2736 int even_high_byte_groups;
|
|
2737 int odd_high_byte_groups;
|
|
2738 };
|
|
2739
|
|
2740 static void
|
|
2741 iso2022_detect (struct detection_state *st, const UExtbyte *src,
|
|
2742 Bytecount n)
|
|
2743 {
|
|
2744 Bytecount orign = n;
|
|
2745 struct iso2022_detector *data = DETECTION_STATE_DATA (st, iso2022);
|
|
2746
|
|
2747 /* #### There are serious deficiencies in the recognition mechanism
|
|
2748 here. This needs to be much smarter if it's going to cut it.
|
|
2749 The sequence "\xff\x0f" is currently detected as LOCK_SHIFT while
|
|
2750 it should be detected as Latin-1.
|
|
2751 All the ISO2022 stuff in this file should be synced up with the
|
|
2752 code from FSF Emacs-21.0, in which Mule should be more or less stable.
|
|
2753 Perhaps we should wait till R2L works in FSF Emacs? */
|
|
2754
|
|
2755 /* We keep track of running state on our own, and set the categories at the
|
|
2756 end; that way we can reflect the correct state each time we finish, but
|
|
2757 not get confused by those results the next time around. */
|
|
2758
|
|
2759 if (!data->initted)
|
|
2760 {
|
|
2761 xzero (*data);
|
|
2762 data->iso = xnew_and_zero (struct iso2022_coding_stream);
|
|
2763 reset_iso2022_decode (Qnil, data->iso);
|
|
2764 data->initted = 1;
|
|
2765 }
|
|
2766
|
|
2767 while (n--)
|
|
2768 {
|
|
2769 UExtbyte c = *src++;
|
|
2770 if (c >= 0x80)
|
|
2771 data->seen_high_byte = 1;
|
|
2772 if (c >= 0xA0)
|
|
2773 data->high_byte_count++;
|
|
2774 else
|
|
2775 {
|
|
2776 if (data->high_byte_count &&
|
|
2777 !data->saw_single_shift_just_now)
|
|
2778 {
|
|
2779 if (data->high_byte_count & 1)
|
|
2780 data->odd_high_byte_groups++;
|
|
2781 else
|
|
2782 data->even_high_byte_groups++;
|
|
2783 }
|
|
2784 data->high_byte_count = 0;
|
|
2785 data->saw_single_shift_just_now = 0;
|
|
2786 }
|
|
2787 if (!(data->flags & ISO_STATE_ESCAPE)
|
|
2788 && (BYTE_C0_P (c) || BYTE_C1_P (c)))
|
|
2789 { /* control chars */
|
|
2790 switch (c)
|
|
2791 {
|
|
2792 /* Allow and ignore control characters that you might
|
|
2793 reasonably see in a text file */
|
|
2794 case '\r':
|
|
2795 case '\n':
|
|
2796 case '\t':
|
|
2797 case 7: /* bell */
|
|
2798 case 8: /* backspace */
|
|
2799 case 11: /* vertical tab */
|
|
2800 case 12: /* form feed */
|
|
2801 case 26: /* MS-DOS C-z junk */
|
|
2802 case 31: /* '^_' -- for info */
|
|
2803 goto label_continue_loop;
|
|
2804
|
|
2805 default:
|
|
2806 break;
|
|
2807 }
|
|
2808 }
|
|
2809
|
|
2810 if ((data->flags & ISO_STATE_ESCAPE) || BYTE_C0_P (c)
|
|
2811 || BYTE_C1_P (c))
|
|
2812 {
|
|
2813 switch (parse_iso2022_esc (Qnil, data->iso, c,
|
|
2814 &data->flags, 0))
|
|
2815 {
|
|
2816 case 1: /* done */
|
|
2817 if (data->iso->esc_bytes_index > 0)
|
|
2818 data->good_multibyte_escape_sequences++;
|
|
2819 switch (data->iso->esc)
|
|
2820 {
|
|
2821 case ISO_ESC_DESIGNATE:
|
|
2822 data->seen_designate = 1;
|
|
2823 break;
|
|
2824 case ISO_ESC_LOCKING_SHIFT:
|
|
2825 data->seen_locking_shift = 1;
|
|
2826 break;
|
|
2827 case ISO_ESC_SINGLE_SHIFT:
|
|
2828 data->saw_single_shift_just_now = 1;
|
|
2829 data->seen_single_shift = 1;
|
|
2830 break;
|
|
2831 default:
|
|
2832 break;
|
|
2833 }
|
|
2834 break;
|
|
2835
|
|
2836 case -1: /* not done */
|
|
2837 break;
|
|
2838
|
|
2839 case 0: /* error */
|
|
2840 if (data->iso->esc == ISO_ESC_NOTHING)
|
|
2841 data->bad_single_byte_sequences++;
|
|
2842 else
|
|
2843 data->bad_multibyte_escape_sequences++;
|
|
2844 }
|
|
2845 }
|
|
2846 label_continue_loop:;
|
|
2847 }
|
|
2848
|
|
2849 if (data->bad_multibyte_escape_sequences > 2 ||
|
|
2850 (data->bad_multibyte_escape_sequences > 0 &&
|
|
2851 data->good_multibyte_escape_sequences /
|
|
2852 data->bad_multibyte_escape_sequences < 10))
|
|
2853 /* Just making it up ... */
|
|
2854 SET_DET_RESULTS (st, iso2022, DET_NEARLY_IMPOSSIBLE);
|
|
2855 else if (data->bad_single_byte_sequences > 5 ||
|
|
2856 (data->bad_single_byte_sequences > 0 &&
|
|
2857 (data->good_multibyte_escape_sequences +
|
|
2858 data->even_high_byte_groups +
|
|
2859 data->odd_high_byte_groups) /
|
|
2860 data->bad_single_byte_sequences < 10))
|
|
2861 SET_DET_RESULTS (st, iso2022, DET_SOMEWHAT_UNLIKELY);
|
|
2862 else if (data->seen_locking_shift)
|
|
2863 {
|
|
2864 SET_DET_RESULTS (st, iso2022, DET_QUITE_IMPROBABLE);
|
|
2865 DET_RESULT (st, iso_lock_shift) = DET_QUITE_PROBABLE;
|
|
2866 }
|
|
2867 else if (!data->seen_high_byte)
|
|
2868 {
|
|
2869 SET_DET_RESULTS (st, iso2022, DET_SOMEWHAT_UNLIKELY);
|
|
2870 if (data->good_multibyte_escape_sequences)
|
|
2871 DET_RESULT (st, iso_7) = DET_QUITE_PROBABLE;
|
|
2872 else if (data->seen_single_shift)
|
|
2873 DET_RESULT (st, iso_7) = DET_SOMEWHAT_LIKELY;
|
|
2874 else
|
|
2875 {
|
|
2876 /* If we've just seen pure 7-bit data, no escape sequences,
|
|
2877 then we can't give much likelihood; but if we've seen enough
|
|
2878 of this data, we can assume some unlikelihood of any 8-bit
|
|
2879 encoding */
|
|
2880 if (orign + st->bytes_seen >= 1000)
|
|
2881 DET_RESULT (st, iso_7) = DET_AS_LIKELY_AS_UNLIKELY;
|
|
2882 else
|
|
2883 SET_DET_RESULTS (st, iso2022, DET_AS_LIKELY_AS_UNLIKELY);
|
|
2884 }
|
|
2885 }
|
|
2886 else if (data->seen_designate)
|
|
2887 {
|
|
2888 SET_DET_RESULTS (st, iso2022, DET_QUITE_IMPROBABLE);
|
|
2889 if (data->seen_single_shift)
|
|
2890 /* #### Does this really make sense? */
|
|
2891 DET_RESULT (st, iso_8_designate) = DET_SOMEWHAT_UNLIKELY;
|
|
2892 else
|
|
2893 DET_RESULT (st, iso_8_designate) = DET_QUITE_PROBABLE;
|
|
2894 }
|
|
2895 else if (data->odd_high_byte_groups > 0 &&
|
|
2896 data->even_high_byte_groups == 0)
|
|
2897 {
|
|
2898 SET_DET_RESULTS (st, iso2022, DET_SOMEWHAT_UNLIKELY);
|
|
2899 if (data->seen_single_shift)
|
|
2900 DET_RESULT (st, iso_8_1) = DET_QUITE_PROBABLE;
|
|
2901 else
|
|
2902 DET_RESULT (st, iso_8_1) = DET_SOMEWHAT_LIKELY;
|
|
2903 }
|
|
2904 else if (data->odd_high_byte_groups == 0 &&
|
|
2905 data->even_high_byte_groups > 0)
|
|
2906 {
|
|
2907 SET_DET_RESULTS (st, iso2022, DET_SOMEWHAT_UNLIKELY);
|
|
2908 if (data->even_high_byte_groups > 10)
|
|
2909 {
|
|
2910 if (data->seen_single_shift)
|
|
2911 DET_RESULT (st, iso_8_2) = DET_QUITE_PROBABLE;
|
|
2912 else
|
|
2913 DET_RESULT (st, iso_8_2) = DET_SOMEWHAT_LIKELY;
|
|
2914 if (data->even_high_byte_groups < 50)
|
|
2915 DET_RESULT (st, iso_8_1) = DET_SOMEWHAT_UNLIKELY;
|
|
2916 /* else it stays at quite improbable */
|
|
2917 }
|
|
2918 }
|
|
2919 else if (data->odd_high_byte_groups > 0 &&
|
|
2920 data->even_high_byte_groups > 0)
|
|
2921 SET_DET_RESULTS (st, iso2022, DET_SOMEWHAT_UNLIKELY);
|
|
2922 else
|
|
2923 SET_DET_RESULTS (st, iso2022, DET_AS_LIKELY_AS_UNLIKELY);
|
|
2924 }
|
|
2925
|
|
2926 static void
|
|
2927 iso2022_finalize_detection_state (struct detection_state *st)
|
|
2928 {
|
|
2929 struct iso2022_detector *data = DETECTION_STATE_DATA (st, iso2022);
|
|
2930 if (data->iso)
|
|
2931 xfree (data->iso);
|
|
2932 }
|
|
2933
|
|
2934
|
|
2935 /************************************************************************/
|
|
2936 /* CCL methods */
|
|
2937 /************************************************************************/
|
|
2938
|
|
2939 /* Converter written in CCL. */
|
|
2940 DEFINE_CODING_SYSTEM_TYPE (ccl);
|
|
2941
|
|
2942 struct ccl_coding_system
|
|
2943 {
|
|
2944 /* For a CCL coding system, these specify the CCL programs used for
|
|
2945 decoding (input) and encoding (output). */
|
|
2946 Lisp_Object decode;
|
|
2947 Lisp_Object encode;
|
|
2948 };
|
|
2949
|
|
2950 #define CODING_SYSTEM_CCL_DECODE(codesys) \
|
|
2951 (CODING_SYSTEM_TYPE_DATA (codesys, ccl)->decode)
|
|
2952 #define CODING_SYSTEM_CCL_ENCODE(codesys) \
|
|
2953 (CODING_SYSTEM_TYPE_DATA (codesys, ccl)->encode)
|
|
2954 #define XCODING_SYSTEM_CCL_DECODE(codesys) \
|
|
2955 CODING_SYSTEM_CCL_DECODE (XCODING_SYSTEM (codesys))
|
|
2956 #define XCODING_SYSTEM_CCL_ENCODE(codesys) \
|
|
2957 CODING_SYSTEM_CCL_ENCODE (XCODING_SYSTEM (codesys))
|
|
2958
|
|
2959 struct ccl_coding_stream
|
|
2960 {
|
|
2961 /* state of the running CCL program */
|
|
2962 struct ccl_program ccl;
|
|
2963 };
|
|
2964
|
|
2965 static const struct lrecord_description ccl_coding_system_description[] = {
|
|
2966 { XD_LISP_OBJECT,
|
|
2967 coding_system_data_offset + offsetof (struct ccl_coding_system,
|
|
2968 decode) },
|
|
2969 { XD_LISP_OBJECT,
|
|
2970 coding_system_data_offset + offsetof (struct ccl_coding_system,
|
|
2971 encode) },
|
|
2972 { XD_END }
|
|
2973 };
|
|
2974
|
|
2975 static void
|
|
2976 ccl_mark (Lisp_Object codesys)
|
|
2977 {
|
|
2978 mark_object (XCODING_SYSTEM_CCL_DECODE (codesys));
|
|
2979 mark_object (XCODING_SYSTEM_CCL_ENCODE (codesys));
|
|
2980 }
|
|
2981
|
|
2982 static Bytecount
|
|
2983 ccl_convert (struct coding_stream *str, const UExtbyte *src,
|
|
2984 unsigned_char_dynarr *dst, Bytecount n)
|
|
2985 {
|
|
2986 struct ccl_coding_stream *data =
|
|
2987 CODING_STREAM_TYPE_DATA (str, ccl);
|
|
2988 Bytecount orign = n;
|
|
2989
|
|
2990 data->ccl.last_block = str->eof;
|
|
2991 /* When applying a CCL program to a stream, SRC must not be NULL -- this
|
|
2992 is a special signal to the driver that read and write operations are
|
|
2993 not allowed. The code does not actually look at what SRC points to if
|
|
2994 N == 0.
|
|
2995 */
|
|
2996 ccl_driver (&data->ccl, src ? src : (const unsigned char *) "",
|
|
2997 dst, n, 0,
|
|
2998 str->direction == CODING_DECODE ? CCL_MODE_DECODING :
|
|
2999 CCL_MODE_ENCODING);
|
|
3000 return orign;
|
|
3001 }
|
|
3002
|
|
3003 static void
|
|
3004 ccl_init_coding_stream (struct coding_stream *str)
|
|
3005 {
|
|
3006 struct ccl_coding_stream *data =
|
|
3007 CODING_STREAM_TYPE_DATA (str, ccl);
|
|
3008
|
|
3009 setup_ccl_program (&data->ccl,
|
|
3010 str->direction == CODING_DECODE ?
|
|
3011 XCODING_SYSTEM_CCL_DECODE (str->codesys) :
|
|
3012 XCODING_SYSTEM_CCL_ENCODE (str->codesys));
|
|
3013 }
|
|
3014
|
|
3015 static void
|
|
3016 ccl_rewind_coding_stream (struct coding_stream *str)
|
|
3017 {
|
|
3018 ccl_init_coding_stream (str);
|
|
3019 }
|
|
3020
|
|
3021 static void
|
|
3022 ccl_init (Lisp_Object codesys)
|
|
3023 {
|
|
3024 XCODING_SYSTEM_CCL_DECODE (codesys) = Qnil;
|
|
3025 XCODING_SYSTEM_CCL_ENCODE (codesys) = Qnil;
|
|
3026 }
|
|
3027
|
|
3028 static int
|
|
3029 ccl_putprop (Lisp_Object codesys, Lisp_Object key, Lisp_Object value)
|
|
3030 {
|
|
3031 Lisp_Object sym;
|
|
3032 struct ccl_program test_ccl;
|
|
3033 Char_ASCII *suffix;
|
|
3034
|
|
3035 /* Check key first. */
|
|
3036 if (EQ (key, Qdecode))
|
|
3037 suffix = "-ccl-decode";
|
|
3038 else if (EQ (key, Qencode))
|
|
3039 suffix = "-ccl-encode";
|
|
3040 else
|
|
3041 return 0;
|
|
3042
|
|
3043 /* If value is vector, register it as a ccl program
|
|
3044 associated with a newly created symbol for
|
|
3045 backward compatibility.
|
|
3046
|
|
3047 #### Bogosity alert! Do we really have to do this crap???? --ben */
|
|
3048 if (VECTORP (value))
|
|
3049 {
|
|
3050 sym = Fintern (concat2 (Fsymbol_name (XCODING_SYSTEM_NAME (codesys)),
|
|
3051 build_string (suffix)),
|
|
3052 Qnil);
|
|
3053 Fregister_ccl_program (sym, value);
|
|
3054 }
|
|
3055 else
|
|
3056 {
|
|
3057 CHECK_SYMBOL (value);
|
|
3058 sym = value;
|
|
3059 }
|
|
3060 /* check if the given ccl programs are valid. */
|
|
3061 if (setup_ccl_program (&test_ccl, sym) < 0)
|
|
3062 invalid_argument ("Invalid CCL program", value);
|
|
3063
|
|
3064 if (EQ (key, Qdecode))
|
|
3065 XCODING_SYSTEM_CCL_DECODE (codesys) = sym;
|
|
3066 else if (EQ (key, Qencode))
|
|
3067 XCODING_SYSTEM_CCL_ENCODE (codesys) = sym;
|
|
3068
|
|
3069 return 1;
|
|
3070 }
|
|
3071
|
|
3072 static Lisp_Object
|
|
3073 ccl_getprop (Lisp_Object coding_system, Lisp_Object prop)
|
|
3074 {
|
|
3075 if (EQ (prop, Qdecode))
|
|
3076 return XCODING_SYSTEM_CCL_DECODE (coding_system);
|
|
3077 else if (EQ (prop, Qencode))
|
|
3078 return XCODING_SYSTEM_CCL_ENCODE (coding_system);
|
|
3079 else
|
|
3080 return Qunbound;
|
|
3081 }
|
|
3082
|
|
3083
|
|
3084 /************************************************************************/
|
|
3085 /* Initialization */
|
|
3086 /************************************************************************/
|
|
3087
|
|
3088 void
|
|
3089 syms_of_mule_coding (void)
|
|
3090 {
|
|
3091 DEFSUBR (Fdecode_shift_jis_char);
|
|
3092 DEFSUBR (Fencode_shift_jis_char);
|
|
3093 DEFSUBR (Fdecode_big5_char);
|
|
3094 DEFSUBR (Fencode_big5_char);
|
|
3095
|
|
3096 DEFSYMBOL (Qbig5);
|
|
3097 DEFSYMBOL (Qshift_jis);
|
|
3098 DEFSYMBOL (Qccl);
|
|
3099 DEFSYMBOL (Qiso2022);
|
|
3100
|
|
3101 DEFSYMBOL (Qcharset_g0);
|
|
3102 DEFSYMBOL (Qcharset_g1);
|
|
3103 DEFSYMBOL (Qcharset_g2);
|
|
3104 DEFSYMBOL (Qcharset_g3);
|
|
3105 DEFSYMBOL (Qforce_g0_on_output);
|
|
3106 DEFSYMBOL (Qforce_g1_on_output);
|
|
3107 DEFSYMBOL (Qforce_g2_on_output);
|
|
3108 DEFSYMBOL (Qforce_g3_on_output);
|
|
3109 DEFSYMBOL (Qno_iso6429);
|
|
3110 DEFSYMBOL (Qinput_charset_conversion);
|
|
3111 DEFSYMBOL (Qoutput_charset_conversion);
|
|
3112
|
|
3113 DEFSYMBOL (Qshort);
|
|
3114 DEFSYMBOL (Qno_ascii_eol);
|
|
3115 DEFSYMBOL (Qno_ascii_cntl);
|
|
3116 DEFSYMBOL (Qseven);
|
|
3117 DEFSYMBOL (Qlock_shift);
|
|
3118
|
|
3119 DEFSYMBOL (Qiso_7);
|
|
3120 DEFSYMBOL (Qiso_8_designate);
|
|
3121 DEFSYMBOL (Qiso_8_1);
|
|
3122 DEFSYMBOL (Qiso_8_2);
|
|
3123 DEFSYMBOL (Qiso_lock_shift);
|
|
3124 }
|
|
3125
|
|
3126 void
|
|
3127 coding_system_type_create_mule_coding (void)
|
|
3128 {
|
|
3129 INITIALIZE_CODING_SYSTEM_TYPE_WITH_DATA (iso2022, "iso2022-coding-system-p");
|
|
3130 CODING_SYSTEM_HAS_METHOD (iso2022, mark);
|
|
3131 CODING_SYSTEM_HAS_METHOD (iso2022, convert);
|
|
3132 CODING_SYSTEM_HAS_METHOD (iso2022, finalize_coding_stream);
|
|
3133 CODING_SYSTEM_HAS_METHOD (iso2022, init_coding_stream);
|
|
3134 CODING_SYSTEM_HAS_METHOD (iso2022, rewind_coding_stream);
|
|
3135 CODING_SYSTEM_HAS_METHOD (iso2022, init);
|
|
3136 CODING_SYSTEM_HAS_METHOD (iso2022, print);
|
|
3137 CODING_SYSTEM_HAS_METHOD (iso2022, finalize);
|
|
3138 CODING_SYSTEM_HAS_METHOD (iso2022, putprop);
|
|
3139 CODING_SYSTEM_HAS_METHOD (iso2022, getprop);
|
|
3140
|
|
3141 INITIALIZE_DETECTOR (iso2022);
|
|
3142 DETECTOR_HAS_METHOD (iso2022, detect);
|
|
3143 DETECTOR_HAS_METHOD (iso2022, finalize_detection_state);
|
|
3144 INITIALIZE_DETECTOR_CATEGORY (iso2022, iso_7);
|
|
3145 INITIALIZE_DETECTOR_CATEGORY (iso2022, iso_8_designate);
|
|
3146 INITIALIZE_DETECTOR_CATEGORY (iso2022, iso_8_1);
|
|
3147 INITIALIZE_DETECTOR_CATEGORY (iso2022, iso_8_2);
|
|
3148 INITIALIZE_DETECTOR_CATEGORY (iso2022, iso_lock_shift);
|
|
3149
|
|
3150 INITIALIZE_CODING_SYSTEM_TYPE_WITH_DATA (ccl, "ccl-coding-system-p");
|
|
3151 CODING_SYSTEM_HAS_METHOD (ccl, mark);
|
|
3152 CODING_SYSTEM_HAS_METHOD (ccl, convert);
|
|
3153 CODING_SYSTEM_HAS_METHOD (ccl, init);
|
|
3154 CODING_SYSTEM_HAS_METHOD (ccl, init_coding_stream);
|
|
3155 CODING_SYSTEM_HAS_METHOD (ccl, rewind_coding_stream);
|
|
3156 CODING_SYSTEM_HAS_METHOD (ccl, putprop);
|
|
3157 CODING_SYSTEM_HAS_METHOD (ccl, getprop);
|
|
3158
|
|
3159 INITIALIZE_CODING_SYSTEM_TYPE (shift_jis, "shift-jis-coding-system-p");
|
|
3160 CODING_SYSTEM_HAS_METHOD (shift_jis, convert);
|
|
3161
|
|
3162 INITIALIZE_DETECTOR (shift_jis);
|
|
3163 DETECTOR_HAS_METHOD (shift_jis, detect);
|
|
3164 INITIALIZE_DETECTOR_CATEGORY (shift_jis, shift_jis);
|
|
3165
|
|
3166 INITIALIZE_CODING_SYSTEM_TYPE (big5, "big5-coding-system-p");
|
|
3167 CODING_SYSTEM_HAS_METHOD (big5, convert);
|
|
3168
|
|
3169 INITIALIZE_DETECTOR (big5);
|
|
3170 DETECTOR_HAS_METHOD (big5, detect);
|
|
3171 INITIALIZE_DETECTOR_CATEGORY (big5, big5);
|
|
3172 }
|
|
3173
|
|
3174 void
|
|
3175 reinit_coding_system_type_create_mule_coding (void)
|
|
3176 {
|
|
3177 REINITIALIZE_CODING_SYSTEM_TYPE (iso2022);
|
|
3178 REINITIALIZE_CODING_SYSTEM_TYPE (ccl);
|
|
3179 REINITIALIZE_CODING_SYSTEM_TYPE (shift_jis);
|
|
3180 REINITIALIZE_CODING_SYSTEM_TYPE (big5);
|
|
3181 }
|
|
3182
|
|
3183 void
|
|
3184 reinit_vars_of_mule_coding (void)
|
|
3185 {
|
|
3186 }
|
|
3187
|
|
3188 void
|
|
3189 vars_of_mule_coding (void)
|
|
3190 {
|
|
3191 }
|