4080
+ − 1 ;;; ccl.el --- CCL (Code Conversion Language) compiler -*- coding: iso-2022-7bit; -*-
+ − 2
+ − 3 ;; Copyright (C) 1995 Electrotechnical Laboratory, JAPAN.
+ − 4 ;; Licensed to the Free Software Foundation.
+ − 5 ;; Copyright (C) 2002, 2007 Free Software Foundation, Inc.
+ − 6
+ − 7 ;; Keywords: CCL, mule, multilingual, character set, coding-system
+ − 8
+ − 9 ;; This file is part of XEmacs.
+ − 10
+ − 11 ;; XEmacs is free software; you can redistribute it and/or modify
+ − 12 ;; it under the terms of the GNU General Public License as published by
+ − 13 ;; the Free Software Foundation; either version 2, or (at your option)
+ − 14 ;; any later version.
+ − 15
+ − 16 ;; XEmacs is distributed in the hope that it will be useful,
+ − 17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
+ − 18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ − 19 ;; GNU General Public License for more details.
+ − 20
+ − 21 ;; You should have received a copy of the GNU General Public License
+ − 22 ;; along with XEmacs; see the file COPYING. If not, write to the
+ − 23 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ − 24 ;; Boston, MA 02111-1307, USA.
+ − 25
+ − 26 ;; Synched up with: FSF 21.0.90
+ − 27
+ − 28 ;;; Commentary:
+ − 29
+ − 30 ;; CCL (Code Conversion Language) is a simple programming language to
+ − 31 ;; be used for various kind of code conversion. CCL program is
+ − 32 ;; compiled to CCL code (vector of integers) and executed by CCL
+ − 33 ;; interpreter of Emacs.
+ − 34 ;;
+ − 35 ;; CCL is used for code conversion at process I/O and file I/O for
+ − 36 ;; non-standard coding-system. In addition, it is used for
+ − 37 ;; calculating a code point of X's font from a character code.
+ − 38 ;; However, since CCL is designed as a powerful programming language,
+ − 39 ;; it can be used for more generic calculation. For instance,
+ − 40 ;; combination of three or more arithmetic operations can be
+ − 41 ;; calculated faster than Emacs Lisp.
+ − 42 ;;
+ − 43 ;; Syntax and semantics of CCL program is described in the
+ − 44 ;; documentation of `define-ccl-program'.
+ − 45
+ − 46 ;;; Code:
+ − 47
+ − 48 (defconst ccl-command-table
+ − 49 [if branch loop break repeat write-repeat write-read-repeat
+ − 50 read read-if read-branch write call end
+ − 51 read-multibyte-character write-multibyte-character
+ − 52 translate-character mule-to-unicode unicode-to-mule
+ − 53 iterate-multiple-map map-multiple map-single lookup-integer
+ − 54 lookup-character]
+ − 55 "Vector of CCL commands (symbols).")
+ − 56
+ − 57 ;; Put a property to each symbol of CCL commands for the compiler.
+ − 58 (let (op (i 0) (len (length ccl-command-table)))
+ − 59 (while (< i len)
+ − 60 (setq op (aref ccl-command-table i))
+ − 61 (put op 'ccl-compile-function (intern (format "ccl-compile-%s" op)))
+ − 62 (setq i (1+ i))))
+ − 63
+ − 64 (defconst ccl-code-table
+ − 65 [set-register
+ − 66 set-short-const
+ − 67 set-const
+ − 68 set-array
+ − 69 jump
+ − 70 jump-cond
+ − 71 write-register-jump
+ − 72 write-register-read-jump
+ − 73 write-const-jump
+ − 74 write-const-read-jump
+ − 75 write-string-jump
+ − 76 write-array-read-jump
+ − 77 read-jump
+ − 78 branch
+ − 79 read-register
+ − 80 write-expr-const
+ − 81 read-branch
+ − 82 write-register
+ − 83 write-expr-register
+ − 84 call
+ − 85 write-const-string
+ − 86 write-array
+ − 87 end
+ − 88 set-assign-expr-const
+ − 89 set-assign-expr-register
+ − 90 set-expr-const
+ − 91 set-expr-register
+ − 92 jump-cond-expr-const
+ − 93 jump-cond-expr-register
+ − 94 read-jump-cond-expr-const
+ − 95 read-jump-cond-expr-register
+ − 96 ex-cmd
+ − 97 ]
+ − 98 "Vector of CCL compiled codes (symbols).")
+ − 99
+ − 100 (defconst ccl-extended-code-table
+ − 101 [read-multibyte-character
+ − 102 write-multibyte-character
+ − 103 translate-character
+ − 104 translate-character-const-tbl
+ − 105 mule-to-unicode
+ − 106 unicode-to-mule
+ − 107 nil nil nil nil nil nil nil nil nil nil ; 0x06-0x0f
+ − 108 iterate-multiple-map
+ − 109 map-multiple
+ − 110 map-single
+ − 111 lookup-int-const-tbl
+ − 112 lookup-char-const-tbl
+ − 113 ]
+ − 114 "Vector of CCL extended compiled codes (symbols).")
+ − 115
+ − 116 ;; Put a property to each symbol of CCL codes for the disassembler.
+ − 117 (let (code (i 0) (len (length ccl-code-table)))
+ − 118 (while (< i len)
+ − 119 (setq code (aref ccl-code-table i))
+ − 120 (put code 'ccl-code i)
+ − 121 (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))
+ − 122 (setq i (1+ i))))
+ − 123
+ − 124 (let (code (i 0) (len (length ccl-extended-code-table)))
+ − 125 (while (< i len)
+ − 126 (setq code (aref ccl-extended-code-table i))
+ − 127 (if code
+ − 128 (progn
+ − 129 (put code 'ccl-ex-code i)
+ − 130 (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))))
+ − 131 (setq i (1+ i))))
+ − 132
+ − 133 (defconst ccl-jump-code-list
+ − 134 '(jump jump-cond write-register-jump write-register-read-jump
+ − 135 write-const-jump write-const-read-jump write-string-jump
+ − 136 write-array-read-jump read-jump))
+ − 137
+ − 138 ;; Put a property `jump-flag' to each CCL code which execute jump in
+ − 139 ;; some way.
+ − 140 (let ((l ccl-jump-code-list))
+ − 141 (while l
+ − 142 (put (car l) 'jump-flag t)
+ − 143 (setq l (cdr l))))
+ − 144
+ − 145 (defconst ccl-register-table
+ − 146 [r0 r1 r2 r3 r4 r5 r6 r7]
+ − 147 "Vector of CCL registers (symbols).")
+ − 148
+ − 149 ;; Put a property to indicate register number to each symbol of CCL.
+ − 150 ;; registers.
+ − 151 (let (reg (i 0) (len (length ccl-register-table)))
+ − 152 (while (< i len)
+ − 153 (setq reg (aref ccl-register-table i))
+ − 154 (put reg 'ccl-register-number i)
+ − 155 (setq i (1+ i))))
+ − 156
+ − 157 (defconst ccl-arith-table
+ − 158 [+ - * / % & | ^ << >> <8 >8 // nil nil nil
+ − 159 < > == <= >= != de-sjis en-sjis]
+ − 160 "Vector of CCL arithmetic/logical operators (symbols).")
+ − 161
+ − 162 ;; Put a property to each symbol of CCL operators for the compiler.
+ − 163 (let (arith (i 0) (len (length ccl-arith-table)))
+ − 164 (while (< i len)
+ − 165 (setq arith (aref ccl-arith-table i))
+ − 166 (if arith (put arith 'ccl-arith-code i))
+ − 167 (setq i (1+ i))))
+ − 168
+ − 169 (defconst ccl-assign-arith-table
+ − 170 [+= -= *= /= %= &= |= ^= <<= >>= <8= >8= //=]
+ − 171 "Vector of CCL assignment operators (symbols).")
+ − 172
+ − 173 ;; Put a property to each symbol of CCL assignment operators for the compiler.
+ − 174 (let (arith (i 0) (len (length ccl-assign-arith-table)))
+ − 175 (while (< i len)
+ − 176 (setq arith (aref ccl-assign-arith-table i))
+ − 177 (put arith 'ccl-self-arith-code i)
+ − 178 (setq i (1+ i))))
+ − 179
+ − 180 (defvar ccl-program-vector nil
+ − 181 "Working vector of CCL codes produced by CCL compiler.")
+ − 182 (defvar ccl-current-ic 0
+ − 183 "The current index for `ccl-program-vector'.")
+ − 184
+ − 185 ;; Embed integer DATA in `ccl-program-vector' at `ccl-current-ic' and
+ − 186 ;; increment it. If IC is specified, embed DATA at IC.
+ − 187 (defun ccl-embed-data (data &optional ic)
+ − 188 ;; XEmacs: Embed characters as characters, since their integer values vary at
+ − 189 ;; runtime.
+ − 190 ; (if (characterp data)
+ − 191 ; (setq data (char-int data)))
+ − 192 (if ic
+ − 193 (aset ccl-program-vector ic data)
+ − 194 (let ((len (length ccl-program-vector)))
+ − 195 (if (>= ccl-current-ic len)
+ − 196 (let ((new (make-vector (* len 2) nil)))
+ − 197 (while (> len 0)
+ − 198 (setq len (1- len))
+ − 199 (aset new len (aref ccl-program-vector len)))
+ − 200 (setq ccl-program-vector new))))
+ − 201 (aset ccl-program-vector ccl-current-ic data)
+ − 202 (setq ccl-current-ic (1+ ccl-current-ic))))
+ − 203
+ − 204 ;; Embed pair of SYMBOL and PROP where (get SYMBOL PROP) should give
+ − 205 ;; proper index number for SYMBOL. PROP should be
+ − 206 ;; `translation-table-id', `translation-hash-table-id'
+ − 207 ;; `code-conversion-map-id', or `ccl-program-idx'.
+ − 208 (defun ccl-embed-symbol (symbol prop)
+ − 209 (ccl-embed-data (cons symbol prop)))
+ − 210
+ − 211 ;; Embed string STR of length LEN in `ccl-program-vector' at
+ − 212 ;; `ccl-current-ic'.
+ − 213 (defun ccl-embed-string (len str)
+ − 214 (let ((i 0))
+ − 215 (while (< i len)
+ − 216 (ccl-embed-data (logior (ash (aref str i) 16)
+ − 217 (if (< (1+ i) len)
+ − 218 (ash (aref str (1+ i)) 8)
+ − 219 0)
+ − 220 (if (< (+ i 2) len)
+ − 221 (aref str (+ i 2))
+ − 222 0)))
+ − 223 (setq i (+ i 3)))))
+ − 224
+ − 225 ;; Embed a relative jump address to `ccl-current-ic' in
+ − 226 ;; `ccl-program-vector' at IC without altering the other bit field.
+ − 227 (defun ccl-embed-current-address (ic)
+ − 228 (let ((relative (- ccl-current-ic (1+ ic))))
+ − 229 (aset ccl-program-vector ic
+ − 230 (logior (aref ccl-program-vector ic) (ash relative 8)))))
+ − 231
+ − 232 ;; Embed CCL code for the operation OP and arguments REG and DATA in
+ − 233 ;; `ccl-program-vector' at `ccl-current-ic' in the following format.
+ − 234 ;; |----------------- integer (28-bit) ------------------|
+ − 235 ;; |------------ 20-bit ------------|- 3-bit --|- 5-bit -|
+ − 236 ;; |------------- DATA -------------|-- REG ---|-- OP ---|
+ − 237 ;; If REG2 is specified, embed a code in the following format.
+ − 238 ;; |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
+ − 239 ;; |-------- DATA -------|-- REG2 --|-- REG ---|-- OP ---|
+ − 240
+ − 241 ;; If REG is a CCL register symbol (e.g. r0, r1...), the register
+ − 242 ;; number is embedded. If OP is one of unconditional jumps, DATA is
+ − 243 ;; changed to an relative jump address.
+ − 244
+ − 245 (defun ccl-embed-code (op reg data &optional reg2)
+ − 246 (if (and (> data 0) (get op 'jump-flag))
+ − 247 ;; DATA is an absolute jump address. Make it relative to the
+ − 248 ;; next of jump code.
+ − 249 (setq data (- data (1+ ccl-current-ic))))
+ − 250 (let ((code (logior (get op 'ccl-code)
+ − 251 (ash
+ − 252 (if (symbolp reg) (get reg 'ccl-register-number) reg) 5)
+ − 253 (if reg2
+ − 254 (logior (ash (get reg2 'ccl-register-number) 8)
+ − 255 (ash data 11))
+ − 256 (ash data 8)))))
+ − 257 (ccl-embed-data code)))
+ − 258
+ − 259 ;; extended ccl command format
+ − 260 ;; |- 14-bit -|- 3-bit --|- 3-bit --|- 3-bit --|- 5-bit -|
+ − 261 ;; |- EX-OP --|-- REG3 --|-- REG2 --|-- REG ---|-- OP ---|
+ − 262 (defun ccl-embed-extended-command (ex-op reg reg2 reg3)
+ − 263 (let ((data (logior (ash (get ex-op 'ccl-ex-code) 3)
+ − 264 (if (symbolp reg3)
+ − 265 (get reg3 'ccl-register-number)
+ − 266 0))))
+ − 267 (ccl-embed-code 'ex-cmd reg data reg2)))
+ − 268
+ − 269 ;; Just advance `ccl-current-ic' by INC.
+ − 270 (defun ccl-increment-ic (inc)
+ − 271 (setq ccl-current-ic (+ ccl-current-ic inc)))
+ − 272
+ − 273 ;; If non-nil, index of the start of the current loop.
+ − 274 (defvar ccl-loop-head nil)
+ − 275 ;; If non-nil, list of absolute addresses of the breaking points of
+ − 276 ;; the current loop.
+ − 277 (defvar ccl-breaks nil)
+ − 278
+ − 279 ;;;###autoload
+ − 280 (defun ccl-compile (ccl-program)
+ − 281 "Return a compiled code of CCL-PROGRAM as a vector of integer."
+ − 282 (if (or (null (consp ccl-program))
+ − 283 (null (integerp (car ccl-program)))
+ − 284 (null (listp (car (cdr ccl-program)))))
+ − 285 (error "CCL: Invalid CCL program: %s" ccl-program))
+ − 286 (if (null (vectorp ccl-program-vector))
+ − 287 (setq ccl-program-vector (make-vector 8192 0)))
+ − 288 (setq ccl-loop-head nil ccl-breaks nil)
+ − 289 (setq ccl-current-ic 0)
+ − 290
+ − 291 ;; The first element is the buffer magnification.
+ − 292 (ccl-embed-data (car ccl-program))
+ − 293
+ − 294 ;; The second element is the address of the start CCL code for
+ − 295 ;; processing end of input buffer (we call it eof-processor). We
+ − 296 ;; set it later.
+ − 297 (ccl-increment-ic 1)
+ − 298
+ − 299 ;; Compile the main body of the CCL program.
+ − 300 (ccl-compile-1 (car (cdr ccl-program)))
+ − 301
+ − 302 ;; Embed the address of eof-processor.
+ − 303 (ccl-embed-data ccl-current-ic 1)
+ − 304
+ − 305 ;; Then compile eof-processor.
+ − 306 (if (nth 2 ccl-program)
+ − 307 (ccl-compile-1 (nth 2 ccl-program)))
+ − 308
+ − 309 ;; At last, embed termination code.
+ − 310 (ccl-embed-code 'end 0 0)
+ − 311
+ − 312 (let ((vec (make-vector ccl-current-ic 0))
+ − 313 (i 0))
+ − 314 (while (< i ccl-current-ic)
+ − 315 (aset vec i (aref ccl-program-vector i))
+ − 316 (setq i (1+ i)))
+ − 317 vec))
+ − 318
+ − 319 ;; Signal syntax error.
+ − 320 (defun ccl-syntax-error (cmd)
+ − 321 (error "CCL: Syntax error: %s" cmd))
+ − 322
+ − 323 ;; Check if ARG is a valid CCL register.
+ − 324 (defun ccl-check-register (arg cmd)
+ − 325 (if (get arg 'ccl-register-number)
+ − 326 arg
+ − 327 (error "CCL: Invalid register %s in %s." arg cmd)))
+ − 328
+ − 329 ;; Check if ARG is a valid CCL command.
+ − 330 (defun ccl-check-compile-function (arg cmd)
+ − 331 (or (get arg 'ccl-compile-function)
+ − 332 (error "CCL: Invalid command: %s" cmd)))
+ − 333
+ − 334 ;; In the following code, most ccl-compile-XXXX functions return t if
+ − 335 ;; they end with unconditional jump, else return nil.
+ − 336
+ − 337 ;; Compile CCL-BLOCK (see the syntax above).
+ − 338 (defun ccl-compile-1 (ccl-block)
+ − 339 (let (unconditional-jump
+ − 340 cmd)
+ − 341 (if (or (integer-or-char-p ccl-block)
+ − 342 (stringp ccl-block)
+ − 343 (and ccl-block (symbolp (car ccl-block))))
+ − 344 ;; This block consists of single statement.
+ − 345 (setq ccl-block (list ccl-block)))
+ − 346
+ − 347 ;; Now CCL-BLOCK is a list of statements. Compile them one by
+ − 348 ;; one.
+ − 349 (while ccl-block
+ − 350 (setq cmd (car ccl-block))
+ − 351 (setq unconditional-jump
+ − 352 (cond ((integer-or-char-p cmd)
+ − 353 ;; SET statement for the register 0.
+ − 354 (ccl-compile-set (list 'r0 '= cmd)))
+ − 355
+ − 356 ((stringp cmd)
+ − 357 ;; WRITE statement of string argument.
+ − 358 (ccl-compile-write-string cmd))
+ − 359
+ − 360 ((listp cmd)
+ − 361 ;; The other statements.
+ − 362 (cond ((eq (nth 1 cmd) '=)
+ − 363 ;; SET statement of the form `(REG = EXPRESSION)'.
+ − 364 (ccl-compile-set cmd))
+ − 365
+ − 366 ((and (symbolp (nth 1 cmd))
+ − 367 (get (nth 1 cmd) 'ccl-self-arith-code))
+ − 368 ;; SET statement with an assignment operation.
+ − 369 (ccl-compile-self-set cmd))
+ − 370
+ − 371 (t
+ − 372 (funcall (ccl-check-compile-function (car cmd) cmd)
+ − 373 cmd))))
+ − 374
+ − 375 (t
+ − 376 (ccl-syntax-error cmd))))
+ − 377 (setq ccl-block (cdr ccl-block)))
+ − 378 unconditional-jump))
+ − 379
+ − 380 (defconst ccl-max-short-const (ash 1 19))
+ − 381 (defconst ccl-min-short-const (ash -1 19))
+ − 382
+ − 383 ;; Compile SET statement.
+ − 384 (defun ccl-compile-set (cmd)
+ − 385 (let ((rrr (ccl-check-register (car cmd) cmd))
+ − 386 (right (nth 2 cmd)))
+ − 387 (cond ((listp right)
+ − 388 ;; CMD has the form `(RRR = (XXX OP YYY))'.
+ − 389 (ccl-compile-expression rrr right))
+ − 390
+ − 391 ((integer-or-char-p right)
+ − 392 ;; CMD has the form `(RRR = integer)'.
+ − 393 (if (and (<= right ccl-max-short-const)
+ − 394 (>= right ccl-min-short-const))
+ − 395 (ccl-embed-code 'set-short-const rrr right)
+ − 396 (ccl-embed-code 'set-const rrr 0)
+ − 397 (ccl-embed-data right)))
+ − 398
+ − 399 (t
+ − 400 ;; CMD has the form `(RRR = rrr [ array ])'.
+ − 401 (ccl-check-register right cmd)
+ − 402 (let ((ary (nth 3 cmd)))
+ − 403 (if (vectorp ary)
+ − 404 (let ((i 0) (len (length ary)))
+ − 405 (ccl-embed-code 'set-array rrr len right)
+ − 406 (while (< i len)
+ − 407 (ccl-embed-data (aref ary i))
+ − 408 (setq i (1+ i))))
+ − 409 (ccl-embed-code 'set-register rrr 0 right))))))
+ − 410 nil)
+ − 411
+ − 412 ;; Compile SET statement with ASSIGNMENT_OPERATOR.
+ − 413 (defun ccl-compile-self-set (cmd)
+ − 414 (let ((rrr (ccl-check-register (car cmd) cmd))
+ − 415 (right (nth 2 cmd)))
+ − 416 (if (listp right)
+ − 417 ;; CMD has the form `(RRR ASSIGN_OP (XXX OP YYY))', compile
+ − 418 ;; the right hand part as `(r7 = (XXX OP YYY))' (note: the
+ − 419 ;; register 7 can be used for storing temporary value).
+ − 420 (progn
+ − 421 (ccl-compile-expression 'r7 right)
+ − 422 (setq right 'r7)))
+ − 423 ;; Now CMD has the form `(RRR ASSIGN_OP ARG)'. Compile it as
+ − 424 ;; `(RRR = (RRR OP ARG))'.
+ − 425 (ccl-compile-expression
+ − 426 rrr
+ − 427 (list rrr (intern (substring (symbol-name (nth 1 cmd)) 0 -1)) right)))
+ − 428 nil)
+ − 429
+ − 430 ;; Compile SET statement of the form `(RRR = EXPR)'.
+ − 431 (defun ccl-compile-expression (rrr expr)
+ − 432 (let ((left (car expr))
+ − 433 (op (get (nth 1 expr) 'ccl-arith-code))
+ − 434 (right (nth 2 expr)))
+ − 435 (if (listp left)
+ − 436 (progn
+ − 437 ;; EXPR has the form `((EXPR2 OP2 ARG) OP RIGHT)'. Compile
+ − 438 ;; the first term as `(r7 = (EXPR2 OP2 ARG)).'
+ − 439 (ccl-compile-expression 'r7 left)
+ − 440 (setq left 'r7)))
+ − 441
+ − 442 ;; Now EXPR has the form (LEFT OP RIGHT).
+ − 443 (if (and (eq rrr left)
+ − 444 (< op (length ccl-assign-arith-table)))
+ − 445 ;; Compile this SET statement as `(RRR OP= RIGHT)'.
+ − 446 (if (integer-or-char-p right)
+ − 447 (progn
+ − 448 (ccl-embed-code 'set-assign-expr-const rrr (ash op 3) 'r0)
+ − 449 (ccl-embed-data right))
+ − 450 (ccl-check-register right expr)
+ − 451 (ccl-embed-code 'set-assign-expr-register rrr (ash op 3) right))
+ − 452
+ − 453 ;; Compile this SET statement as `(RRR = (LEFT OP RIGHT))'.
+ − 454 (if (integer-or-char-p right)
+ − 455 (progn
+ − 456 (ccl-embed-code 'set-expr-const rrr (ash op 3) left)
+ − 457 (ccl-embed-data right))
+ − 458 (ccl-check-register right expr)
+ − 459 (ccl-embed-code 'set-expr-register
+ − 460 rrr
+ − 461 (logior (ash op 3) (get right 'ccl-register-number))
+ − 462 left)))))
+ − 463
+ − 464 ;; Compile WRITE statement with string argument.
+ − 465 (defun ccl-compile-write-string (str)
+ − 466 (setq str (encode-coding-string str 'binary))
+ − 467 (let ((len (length str)))
+ − 468 (ccl-embed-code 'write-const-string 1 len)
+ − 469 (ccl-embed-string len str))
+ − 470 nil)
+ − 471
+ − 472 ;; Compile IF statement of the form `(if CONDITION TRUE-PART FALSE-PART)'.
+ − 473 ;; If READ-FLAG is non-nil, this statement has the form
+ − 474 ;; `(read-if (REG OPERATOR ARG) TRUE-PART FALSE-PART)'.
+ − 475 (defun ccl-compile-if (cmd &optional read-flag)
+ − 476 (if (and (/= (length cmd) 3) (/= (length cmd) 4))
+ − 477 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 478 (let ((condition (nth 1 cmd))
+ − 479 (true-cmds (nth 2 cmd))
+ − 480 (false-cmds (nth 3 cmd))
+ − 481 jump-cond-address)
+ − 482 (if (and (listp condition)
+ − 483 (listp (car condition)))
+ − 484 ;; If CONDITION is a nested expression, the inner expression
+ − 485 ;; should be compiled at first as SET statement, i.e.:
+ − 486 ;; `(if ((X OP2 Y) OP Z) ...)' is compiled into two statements:
+ − 487 ;; `(r7 = (X OP2 Y)) (if (r7 OP Z) ...)'.
+ − 488 (progn
+ − 489 (ccl-compile-expression 'r7 (car condition))
+ − 490 (setq condition (cons 'r7 (cdr condition)))
+ − 491 (setq cmd (cons (car cmd)
+ − 492 (cons condition (cdr (cdr cmd)))))))
+ − 493
+ − 494 (setq jump-cond-address ccl-current-ic)
+ − 495 ;; Compile CONDITION.
+ − 496 (if (symbolp condition)
+ − 497 ;; CONDITION is a register.
+ − 498 (progn
+ − 499 (ccl-check-register condition cmd)
+ − 500 (ccl-embed-code 'jump-cond condition 0))
+ − 501 ;; CONDITION is a simple expression of the form (RRR OP ARG).
+ − 502 (let ((rrr (car condition))
+ − 503 (op (get (nth 1 condition) 'ccl-arith-code))
+ − 504 (arg (nth 2 condition)))
+ − 505 (ccl-check-register rrr cmd)
+ − 506 (if (integer-or-char-p arg)
+ − 507 (progn
+ − 508 (ccl-embed-code (if read-flag 'read-jump-cond-expr-const
+ − 509 'jump-cond-expr-const)
+ − 510 rrr 0)
+ − 511 (ccl-embed-data op)
+ − 512 (ccl-embed-data arg))
+ − 513 (ccl-check-register arg cmd)
+ − 514 (ccl-embed-code (if read-flag 'read-jump-cond-expr-register
+ − 515 'jump-cond-expr-register)
+ − 516 rrr 0)
+ − 517 (ccl-embed-data op)
+ − 518 (ccl-embed-data (get arg 'ccl-register-number)))))
+ − 519
+ − 520 ;; Compile TRUE-PART.
+ − 521 (let ((unconditional-jump (ccl-compile-1 true-cmds)))
+ − 522 (if (null false-cmds)
+ − 523 ;; This is the place to jump to if condition is false.
+ − 524 (progn
+ − 525 (ccl-embed-current-address jump-cond-address)
+ − 526 (setq unconditional-jump nil))
+ − 527 (let (end-true-part-address)
+ − 528 (if (not unconditional-jump)
+ − 529 (progn
+ − 530 ;; If TRUE-PART does not end with unconditional jump, we
+ − 531 ;; have to jump to the end of FALSE-PART from here.
+ − 532 (setq end-true-part-address ccl-current-ic)
+ − 533 (ccl-embed-code 'jump 0 0)))
+ − 534 ;; This is the place to jump to if CONDITION is false.
+ − 535 (ccl-embed-current-address jump-cond-address)
+ − 536 ;; Compile FALSE-PART.
+ − 537 (setq unconditional-jump
+ − 538 (and (ccl-compile-1 false-cmds) unconditional-jump))
+ − 539 (if end-true-part-address
+ − 540 ;; This is the place to jump to after the end of TRUE-PART.
+ − 541 (ccl-embed-current-address end-true-part-address))))
+ − 542 unconditional-jump)))
+ − 543
+ − 544 ;; Compile BRANCH statement.
+ − 545 (defun ccl-compile-branch (cmd)
+ − 546 (if (< (length cmd) 3)
+ − 547 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 548 (ccl-compile-branch-blocks 'branch
+ − 549 (ccl-compile-branch-expression (nth 1 cmd) cmd)
+ − 550 (cdr (cdr cmd))))
+ − 551
+ − 552 ;; Compile READ statement of the form `(read-branch EXPR BLOCK0 BLOCK1 ...)'.
+ − 553 (defun ccl-compile-read-branch (cmd)
+ − 554 (if (< (length cmd) 3)
+ − 555 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 556 (ccl-compile-branch-blocks 'read-branch
+ − 557 (ccl-compile-branch-expression (nth 1 cmd) cmd)
+ − 558 (cdr (cdr cmd))))
+ − 559
+ − 560 ;; Compile EXPRESSION part of BRANCH statement and return register
+ − 561 ;; which holds a value of the expression.
+ − 562 (defun ccl-compile-branch-expression (expr cmd)
+ − 563 (if (listp expr)
+ − 564 ;; EXPR has the form `(EXPR2 OP ARG)'. Compile it as SET
+ − 565 ;; statement of the form `(r7 = (EXPR2 OP ARG))'.
+ − 566 (progn
+ − 567 (ccl-compile-expression 'r7 expr)
+ − 568 'r7)
+ − 569 (ccl-check-register expr cmd)))
+ − 570
+ − 571 ;; Compile BLOCKs of BRANCH statement. CODE is 'branch or 'read-branch.
+ − 572 ;; REG is a register which holds a value of EXPRESSION part. BLOCKs
+ − 573 ;; is a list of CCL-BLOCKs.
+ − 574 (defun ccl-compile-branch-blocks (code rrr blocks)
+ − 575 (let ((branches (length blocks))
+ − 576 branch-idx
+ − 577 jump-table-head-address
+ − 578 empty-block-indexes
+ − 579 block-tail-addresses
+ − 580 block-unconditional-jump)
+ − 581 (ccl-embed-code code rrr branches)
+ − 582 (setq jump-table-head-address ccl-current-ic)
+ − 583 ;; The size of jump table is the number of blocks plus 1 (for the
+ − 584 ;; case RRR is out of range).
+ − 585 (ccl-increment-ic (1+ branches))
+ − 586 (setq empty-block-indexes (list branches))
+ − 587 ;; Compile each block.
+ − 588 (setq branch-idx 0)
+ − 589 (while blocks
+ − 590 (if (null (car blocks))
+ − 591 ;; This block is empty.
+ − 592 (setq empty-block-indexes (cons branch-idx empty-block-indexes)
+ − 593 block-unconditional-jump t)
+ − 594 ;; This block is not empty.
+ − 595 (ccl-embed-data (- ccl-current-ic jump-table-head-address)
+ − 596 (+ jump-table-head-address branch-idx))
+ − 597 (setq block-unconditional-jump (ccl-compile-1 (car blocks)))
+ − 598 (if (not block-unconditional-jump)
+ − 599 (progn
+ − 600 ;; Jump address of the end of branches are embedded later.
+ − 601 ;; For the moment, just remember where to embed them.
+ − 602 (setq block-tail-addresses
+ − 603 (cons ccl-current-ic block-tail-addresses))
+ − 604 (ccl-embed-code 'jump 0 0))))
+ − 605 (setq branch-idx (1+ branch-idx))
+ − 606 (setq blocks (cdr blocks)))
+ − 607 (if (not block-unconditional-jump)
+ − 608 ;; We don't need jump code at the end of the last block.
+ − 609 (setq block-tail-addresses (cdr block-tail-addresses)
+ − 610 ccl-current-ic (1- ccl-current-ic)))
+ − 611 ;; Embed jump address at the tailing jump commands of blocks.
+ − 612 (while block-tail-addresses
+ − 613 (ccl-embed-current-address (car block-tail-addresses))
+ − 614 (setq block-tail-addresses (cdr block-tail-addresses)))
+ − 615 ;; For empty blocks, make entries in the jump table point directly here.
+ − 616 (while empty-block-indexes
+ − 617 (ccl-embed-data (- ccl-current-ic jump-table-head-address)
+ − 618 (+ jump-table-head-address (car empty-block-indexes)))
+ − 619 (setq empty-block-indexes (cdr empty-block-indexes))))
+ − 620 ;; Branch command ends by unconditional jump if RRR is out of range.
+ − 621 nil)
+ − 622
+ − 623 ;; Compile LOOP statement.
+ − 624 (defun ccl-compile-loop (cmd)
+ − 625 (if (< (length cmd) 2)
+ − 626 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 627 (let* ((ccl-loop-head ccl-current-ic)
+ − 628 (ccl-breaks nil)
+ − 629 unconditional-jump)
+ − 630 (setq cmd (cdr cmd))
+ − 631 (if cmd
+ − 632 (progn
+ − 633 (setq unconditional-jump t)
+ − 634 (while cmd
+ − 635 (setq unconditional-jump
+ − 636 (and (ccl-compile-1 (car cmd)) unconditional-jump))
+ − 637 (setq cmd (cdr cmd)))
+ − 638 (if (not ccl-breaks)
+ − 639 unconditional-jump
+ − 640 ;; Embed jump address for break statements encountered in
+ − 641 ;; this loop.
+ − 642 (while ccl-breaks
+ − 643 (ccl-embed-current-address (car ccl-breaks))
+ − 644 (setq ccl-breaks (cdr ccl-breaks))))
+ − 645 nil))))
+ − 646
+ − 647 ;; Compile BREAK statement.
+ − 648 (defun ccl-compile-break (cmd)
+ − 649 (if (/= (length cmd) 1)
+ − 650 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 651 (if (null ccl-loop-head)
+ − 652 (error "CCL: No outer loop: %s" cmd))
+ − 653 (setq ccl-breaks (cons ccl-current-ic ccl-breaks))
+ − 654 (ccl-embed-code 'jump 0 0)
+ − 655 t)
+ − 656
+ − 657 ;; Compile REPEAT statement.
+ − 658 (defun ccl-compile-repeat (cmd)
+ − 659 (if (/= (length cmd) 1)
+ − 660 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 661 (if (null ccl-loop-head)
+ − 662 (error "CCL: No outer loop: %s" cmd))
+ − 663 (ccl-embed-code 'jump 0 ccl-loop-head)
+ − 664 t)
+ − 665
+ − 666 ;; Compile WRITE-REPEAT statement.
+ − 667 (defun ccl-compile-write-repeat (cmd)
+ − 668 (if (/= (length cmd) 2)
+ − 669 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 670 (if (null ccl-loop-head)
+ − 671 (error "CCL: No outer loop: %s" cmd))
+ − 672 (let ((arg (nth 1 cmd)))
+ − 673 (cond ((integer-or-char-p arg)
+ − 674 (ccl-embed-code 'write-const-jump 0 ccl-loop-head)
+ − 675 (ccl-embed-data arg))
+ − 676 ((stringp arg)
+ − 677 (setq arg (encode-coding-string arg 'binary))
+ − 678 (let ((len (length arg)))
+ − 679 (ccl-embed-code 'write-string-jump 0 ccl-loop-head)
+ − 680 (ccl-embed-data len)
+ − 681 (ccl-embed-string len arg)))
+ − 682 (t
+ − 683 (ccl-check-register arg cmd)
+ − 684 (ccl-embed-code 'write-register-jump arg ccl-loop-head))))
+ − 685 t)
+ − 686
+ − 687 ;; Compile WRITE-READ-REPEAT statement.
+ − 688 (defun ccl-compile-write-read-repeat (cmd)
+ − 689 (if (or (< (length cmd) 2) (> (length cmd) 3))
+ − 690 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 691 (if (null ccl-loop-head)
+ − 692 (error "CCL: No outer loop: %s" cmd))
+ − 693 (let ((rrr (ccl-check-register (nth 1 cmd) cmd))
+ − 694 (arg (nth 2 cmd)))
+ − 695 (cond ((null arg)
+ − 696 (ccl-embed-code 'write-register-read-jump rrr ccl-loop-head))
+ − 697 ((integer-or-char-p arg)
+ − 698 (ccl-embed-code 'write-const-read-jump rrr arg ccl-loop-head))
+ − 699 ((vectorp arg)
+ − 700 (let ((len (length arg))
+ − 701 (i 0))
+ − 702 (ccl-embed-code 'write-array-read-jump rrr ccl-loop-head)
+ − 703 (ccl-embed-data len)
+ − 704 (while (< i len)
+ − 705 (ccl-embed-data (aref arg i))
+ − 706 (setq i (1+ i)))))
+ − 707 (t
+ − 708 (error "CCL: Invalid argument %s: %s" arg cmd)))
+ − 709 (ccl-embed-code 'read-jump rrr ccl-loop-head))
+ − 710 t)
+ − 711
+ − 712 ;; Compile READ statement.
+ − 713 (defun ccl-compile-read (cmd)
+ − 714 (if (< (length cmd) 2)
+ − 715 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 716 (let* ((args (cdr cmd))
+ − 717 (i (1- (length args))))
+ − 718 (while args
+ − 719 (let ((rrr (ccl-check-register (car args) cmd)))
+ − 720 (ccl-embed-code 'read-register rrr i)
+ − 721 (setq args (cdr args) i (1- i)))))
+ − 722 nil)
+ − 723
+ − 724 ;; Compile READ-IF statement.
+ − 725 (defun ccl-compile-read-if (cmd)
+ − 726 (ccl-compile-if cmd 'read))
+ − 727
+ − 728 ;; Compile WRITE statement.
+ − 729 (defun ccl-compile-write (cmd)
+ − 730 (if (< (length cmd) 2)
+ − 731 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 732 (let ((rrr (nth 1 cmd)))
+ − 733 (cond ((integer-or-char-p rrr)
+ − 734 (ccl-embed-code 'write-const-string 0 rrr))
+ − 735 ((stringp rrr)
+ − 736 (ccl-compile-write-string rrr))
+ − 737 ((and (symbolp rrr) (vectorp (nth 2 cmd)))
+ − 738 (ccl-check-register rrr cmd)
+ − 739 ;; CMD has the form `(write REG ARRAY)'.
+ − 740 (let* ((arg (nth 2 cmd))
+ − 741 (len (length arg))
+ − 742 (i 0))
+ − 743 (ccl-embed-code 'write-array rrr len)
+ − 744 (while (< i len)
+ − 745 (if (not (integer-or-char-p (aref arg i)))
+ − 746 (error "CCL: Invalid argument %s: %s" arg cmd))
+ − 747 (ccl-embed-data (aref arg i))
+ − 748 (setq i (1+ i)))))
+ − 749
+ − 750 ((symbolp rrr)
+ − 751 ;; CMD has the form `(write REG ...)'.
+ − 752 (let* ((args (cdr cmd))
+ − 753 (i (1- (length args))))
+ − 754 (while args
+ − 755 (setq rrr (ccl-check-register (car args) cmd))
+ − 756 (ccl-embed-code 'write-register rrr i)
+ − 757 (setq args (cdr args) i (1- i)))))
+ − 758
+ − 759 ((listp rrr)
+ − 760 ;; CMD has the form `(write (LEFT OP RIGHT))'.
+ − 761 (let ((left (car rrr))
+ − 762 (op (get (nth 1 rrr) 'ccl-arith-code))
+ − 763 (right (nth 2 rrr)))
+ − 764 (if (listp left)
+ − 765 (progn
+ − 766 ;; RRR has the form `((EXPR OP2 ARG) OP RIGHT)'.
+ − 767 ;; Compile the first term as `(r7 = (EXPR OP2 ARG))'.
+ − 768 (ccl-compile-expression 'r7 left)
+ − 769 (setq left 'r7)))
+ − 770 ;; Now RRR has the form `(ARG OP RIGHT)'.
+ − 771 (if (integer-or-char-p right)
+ − 772 (progn
+ − 773 (ccl-embed-code 'write-expr-const 0 (ash op 3) left)
+ − 774 (ccl-embed-data right))
+ − 775 (ccl-check-register right rrr)
+ − 776 (ccl-embed-code 'write-expr-register 0
+ − 777 (logior (ash op 3)
+ − 778 (get right 'ccl-register-number))))))
+ − 779
+ − 780 (t
+ − 781 (error "CCL: Invalid argument: %s" cmd))))
+ − 782 nil)
+ − 783
+ − 784 ;; Compile CALL statement.
+ − 785 (defun ccl-compile-call (cmd)
+ − 786 (if (/= (length cmd) 2)
+ − 787 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 788 (if (not (symbolp (nth 1 cmd)))
+ − 789 (error "CCL: Subroutine should be a symbol: %s" cmd))
+ − 790 (ccl-embed-code 'call 1 0)
+ − 791 (ccl-embed-symbol (nth 1 cmd) 'ccl-program-idx)
+ − 792 nil)
+ − 793
+ − 794 ;; Compile END statement.
+ − 795 (defun ccl-compile-end (cmd)
+ − 796 (if (/= (length cmd) 1)
+ − 797 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 798 (ccl-embed-code 'end 0 0)
+ − 799 t)
+ − 800
+ − 801 ;; Compile read-multibyte-character
+ − 802 (defun ccl-compile-read-multibyte-character (cmd)
+ − 803 (if (/= (length cmd) 3)
+ − 804 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 805 (let ((RRR (nth 1 cmd))
+ − 806 (rrr (nth 2 cmd)))
+ − 807 (ccl-check-register rrr cmd)
+ − 808 (ccl-check-register RRR cmd)
+ − 809 (ccl-embed-extended-command 'read-multibyte-character rrr RRR 0))
+ − 810 nil)
+ − 811
+ − 812 ;; Compile write-multibyte-character
+ − 813 (defun ccl-compile-write-multibyte-character (cmd)
+ − 814 (if (/= (length cmd) 3)
+ − 815 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 816 (let ((RRR (nth 1 cmd))
+ − 817 (rrr (nth 2 cmd)))
+ − 818 (ccl-check-register rrr cmd)
+ − 819 (ccl-check-register RRR cmd)
+ − 820 (ccl-embed-extended-command 'write-multibyte-character rrr RRR 0))
+ − 821 nil)
+ − 822
+ − 823 ;; Compile translate-character
+ − 824 (defun ccl-compile-translate-character (cmd)
+ − 825 (if (/= (length cmd) 4)
+ − 826 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 827 (let ((Rrr (nth 1 cmd))
+ − 828 (RRR (nth 2 cmd))
+ − 829 (rrr (nth 3 cmd)))
+ − 830 (ccl-check-register rrr cmd)
+ − 831 (ccl-check-register RRR cmd)
+ − 832 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
+ − 833 (ccl-embed-extended-command 'translate-character-const-tbl
+ − 834 rrr RRR 0)
+ − 835 (ccl-embed-symbol Rrr 'translation-table-id))
+ − 836 (t
+ − 837 (ccl-check-register Rrr cmd)
+ − 838 (ccl-embed-extended-command 'translate-character rrr RRR Rrr))))
+ − 839 nil)
+ − 840
+ − 841 ;; Compile mule-to-unicode
+ − 842 (defun ccl-compile-mule-to-unicode (cmd)
+ − 843 (if (/= (length cmd) 3)
+ − 844 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 845 (let ((RRR (nth 1 cmd))
+ − 846 (rrr (nth 2 cmd)))
+ − 847 (ccl-check-register RRR cmd)
+ − 848 (ccl-check-register rrr cmd)
+ − 849 (ccl-embed-extended-command 'mule-to-unicode RRR rrr 0))
+ − 850 nil)
+ − 851
+ − 852 ;; Given a Unicode code point in register rrr, write the charset ID of the
+ − 853 ;; corresponding character in RRR, and the Mule-CCL form of its code in rrr.
+ − 854 (defun ccl-compile-unicode-to-mule (cmd)
+ − 855 (if (/= (length cmd) 3)
+ − 856 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 857 (let ((rrr (nth 1 cmd))
+ − 858 (RRR (nth 2 cmd)))
+ − 859 (ccl-check-register rrr cmd)
+ − 860 (ccl-check-register RRR cmd)
+ − 861 (ccl-embed-extended-command 'unicode-to-mule rrr RRR 0))
+ − 862 nil)
+ − 863
+ − 864 ;; Compile lookup-integer
+ − 865 (defun ccl-compile-lookup-integer (cmd)
+ − 866 (if (/= (length cmd) 4)
+ − 867 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 868 (let ((Rrr (nth 1 cmd))
+ − 869 (RRR (nth 2 cmd))
+ − 870 (rrr (nth 3 cmd)))
+ − 871 (ccl-check-register RRR cmd)
+ − 872 (ccl-check-register rrr cmd)
+ − 873 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
+ − 874 (ccl-embed-extended-command 'lookup-int-const-tbl
+ − 875 rrr RRR 0)
+ − 876 (ccl-embed-symbol Rrr 'translation-hash-table-id))
+ − 877 (t
+ − 878 (error "CCL: non-constant table: %s" cmd)
+ − 879 ;; not implemented:
+ − 880 (ccl-check-register Rrr cmd)
+ − 881 (ccl-embed-extended-command 'lookup-int rrr RRR 0))))
+ − 882 nil)
+ − 883
+ − 884 ;; Compile lookup-character
+ − 885 (defun ccl-compile-lookup-character (cmd)
+ − 886 (if (/= (length cmd) 4)
+ − 887 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 888 (let ((Rrr (nth 1 cmd))
+ − 889 (RRR (nth 2 cmd))
+ − 890 (rrr (nth 3 cmd)))
+ − 891 (ccl-check-register RRR cmd)
+ − 892 (ccl-check-register rrr cmd)
+ − 893 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
+ − 894 (ccl-embed-extended-command 'lookup-char-const-tbl
+ − 895 rrr RRR 0)
+ − 896 (ccl-embed-symbol Rrr 'translation-hash-table-id))
+ − 897 (t
+ − 898 (error "CCL: non-constant table: %s" cmd)
+ − 899 ;; not implemented:
+ − 900 (ccl-check-register Rrr cmd)
+ − 901 (ccl-embed-extended-command 'lookup-char rrr RRR 0))))
+ − 902 nil)
+ − 903
+ − 904 (defun ccl-compile-iterate-multiple-map (cmd)
+ − 905 (ccl-compile-multiple-map-function 'iterate-multiple-map cmd)
+ − 906 nil)
+ − 907
+ − 908 (defun ccl-compile-map-multiple (cmd)
+ − 909 (if (/= (length cmd) 4)
+ − 910 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 911 (let (func arg)
+ − 912 (setq func
+ − 913 (lambda (arg mp)
+ − 914 (let ((len 0) result add)
+ − 915 (while arg
+ − 916 (if (consp (car arg))
+ − 917 (setq add (funcall func (car arg) t)
+ − 918 result (append result add)
+ − 919 add (+ (- (car add)) 1))
+ − 920 (setq result
+ − 921 (append result
+ − 922 (list (car arg)))
+ − 923 add 1))
+ − 924 (setq arg (cdr arg)
+ − 925 len (+ len add)))
+ − 926 (if mp
+ − 927 (cons (- len) result)
+ − 928 result))))
+ − 929 (setq arg (append (list (nth 0 cmd) (nth 1 cmd) (nth 2 cmd))
+ − 930 (funcall func (nth 3 cmd) nil)))
+ − 931 (ccl-compile-multiple-map-function 'map-multiple arg))
+ − 932 nil)
+ − 933
+ − 934 (defun ccl-compile-map-single (cmd)
+ − 935 (if (/= (length cmd) 4)
+ − 936 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 937 (let ((RRR (nth 1 cmd))
+ − 938 (rrr (nth 2 cmd))
+ − 939 (map (nth 3 cmd)))
+ − 940 (ccl-check-register rrr cmd)
+ − 941 (ccl-check-register RRR cmd)
+ − 942 (ccl-embed-extended-command 'map-single rrr RRR 0)
+ − 943 (cond ((symbolp map)
+ − 944 (if (get map 'code-conversion-map)
+ − 945 (ccl-embed-symbol map 'code-conversion-map-id)
+ − 946 (error "CCL: Invalid map: %s" map)))
+ − 947 (t
+ − 948 (error "CCL: Invalid type of arguments: %s" cmd))))
+ − 949 nil)
+ − 950
+ − 951 (defun ccl-compile-multiple-map-function (command cmd)
+ − 952 (if (< (length cmd) 4)
+ − 953 (error "CCL: Invalid number of arguments: %s" cmd))
+ − 954 (let ((RRR (nth 1 cmd))
+ − 955 (rrr (nth 2 cmd))
+ − 956 (args (nthcdr 3 cmd))
+ − 957 map)
+ − 958 (ccl-check-register rrr cmd)
+ − 959 (ccl-check-register RRR cmd)
+ − 960 (ccl-embed-extended-command command rrr RRR 0)
+ − 961 (ccl-embed-data (length args))
+ − 962 (while args
+ − 963 (setq map (car args))
+ − 964 (cond ((symbolp map)
+ − 965 (if (get map 'code-conversion-map)
+ − 966 (ccl-embed-symbol map 'code-conversion-map-id)
+ − 967 (error "CCL: Invalid map: %s" map)))
+ − 968 ((numberp map)
+ − 969 (ccl-embed-data map))
+ − 970 (t
+ − 971 (error "CCL: Invalid type of arguments: %s" cmd)))
+ − 972 (setq args (cdr args)))))
+ − 973
+ − 974
+ − 975 ;;; CCL dump staffs
+ − 976
+ − 977 ;; To avoid byte-compiler warning.
+ − 978 (defvar ccl-code)
+ − 979
+ − 980 ;;;###autoload
+ − 981 (defun ccl-dump (ccl-code)
+ − 982 "Disassemble compiled CCL-CODE."
+ − 983 (let ((len (length ccl-code))
+ − 984 (buffer-mag (aref ccl-code 0)))
+ − 985 (cond ((= buffer-mag 0)
+ − 986 (insert "Don't output anything.\n"))
+ − 987 ((= buffer-mag 1)
+ − 988 (insert "Out-buffer must be as large as in-buffer.\n"))
+ − 989 (t
+ − 990 (insert
+ − 991 (format "Out-buffer must be %d times bigger than in-buffer.\n"
+ − 992 buffer-mag))))
+ − 993 (insert "Main-body:\n")
+ − 994 (setq ccl-current-ic 2)
+ − 995 (if (> (aref ccl-code 1) 0)
+ − 996 (progn
+ − 997 (while (< ccl-current-ic (aref ccl-code 1))
+ − 998 (ccl-dump-1))
+ − 999 (insert "At EOF:\n")))
+ − 1000 (while (< ccl-current-ic len)
+ − 1001 (ccl-dump-1))
+ − 1002 ))
+ − 1003
+ − 1004 ;; Return a CCL code in `ccl-code' at `ccl-current-ic'.
+ − 1005 (defun ccl-get-next-code ()
+ − 1006 (prog1
+ − 1007 (aref ccl-code ccl-current-ic)
+ − 1008 (setq ccl-current-ic (1+ ccl-current-ic))))
+ − 1009
+ − 1010 (defun ccl-dump-1 ()
+ − 1011 (let* ((code (ccl-get-next-code))
+ − 1012 (cmd (aref ccl-code-table (logand code 31)))
+ − 1013 (rrr (ash (logand code 255) -5))
+ − 1014 (cc (ash code -8)))
+ − 1015 (insert (format "%5d:[%s] " (1- ccl-current-ic) cmd))
+ − 1016 (funcall (get cmd 'ccl-dump-function) rrr cc)))
+ − 1017
+ − 1018 (defun ccl-dump-set-register (rrr cc)
+ − 1019 (insert (format "r%d = r%d\n" rrr cc)))
+ − 1020
+ − 1021 (defun ccl-dump-set-short-const (rrr cc)
+ − 1022 (insert (format "r%d = %d\n" rrr cc)))
+ − 1023
+ − 1024 (defun ccl-dump-set-const (rrr ignore)
+ − 1025 (insert (format "r%d = %d\n" rrr (ccl-get-next-code))))
+ − 1026
+ − 1027 (defun ccl-dump-set-array (rrr cc)
+ − 1028 (let ((rrr2 (logand cc 7))
+ − 1029 (len (ash cc -3))
+ − 1030 (i 0))
+ − 1031 (insert (format "r%d = array[r%d] of length %d\n\t"
+ − 1032 rrr rrr2 len))
+ − 1033 (while (< i len)
+ − 1034 (insert (format "%d " (ccl-get-next-code)))
+ − 1035 (setq i (1+ i)))
+ − 1036 (insert "\n")))
+ − 1037
+ − 1038 (defun ccl-dump-jump (ignore cc &optional address)
+ − 1039 (insert (format "jump to %d(" (+ (or address ccl-current-ic) cc)))
+ − 1040 (if (>= cc 0)
+ − 1041 (insert "+"))
+ − 1042 (insert (format "%d)\n" (1+ cc))))
+ − 1043
+ − 1044 (defun ccl-dump-jump-cond (rrr cc)
+ − 1045 (insert (format "if (r%d == 0), " rrr))
+ − 1046 (ccl-dump-jump nil cc))
+ − 1047
+ − 1048 (defun ccl-dump-write-register-jump (rrr cc)
+ − 1049 (insert (format "write r%d, " rrr))
+ − 1050 (ccl-dump-jump nil cc))
+ − 1051
+ − 1052 (defun ccl-dump-write-register-read-jump (rrr cc)
+ − 1053 (insert (format "write r%d, read r%d, " rrr rrr))
+ − 1054 (ccl-dump-jump nil cc)
+ − 1055 (ccl-get-next-code) ; Skip dummy READ-JUMP
+ − 1056 )
+ − 1057
+ − 1058 (defun ccl-extract-arith-op (cc)
+ − 1059 (aref ccl-arith-table (ash cc -6)))
+ − 1060
+ − 1061 (defun ccl-dump-write-expr-const (ignore cc)
+ − 1062 (insert (format "write (r%d %s %d)\n"
+ − 1063 (logand cc 7)
+ − 1064 (ccl-extract-arith-op cc)
+ − 1065 (ccl-get-next-code))))
+ − 1066
+ − 1067 (defun ccl-dump-write-expr-register (ignore cc)
+ − 1068 (insert (format "write (r%d %s r%d)\n"
+ − 1069 (logand cc 7)
+ − 1070 (ccl-extract-arith-op cc)
+ − 1071 (logand (ash cc -3) 7))))
+ − 1072
+ − 1073 (defun ccl-dump-insert-char (cc)
+ − 1074 (cond ((= cc ?\t) (insert " \"^I\""))
+ − 1075 ((= cc ?\n) (insert " \"^J\""))
+ − 1076 (t (insert (format " \"%c\"" cc)))))
+ − 1077
+ − 1078 (defun ccl-dump-write-const-jump (ignore cc)
+ − 1079 (let ((address ccl-current-ic))
+ − 1080 (insert "write char")
+ − 1081 (ccl-dump-insert-char (ccl-get-next-code))
+ − 1082 (insert ", ")
+ − 1083 (ccl-dump-jump nil cc address)))
+ − 1084
+ − 1085 (defun ccl-dump-write-const-read-jump (rrr cc)
+ − 1086 (let ((address ccl-current-ic))
+ − 1087 (insert "write char")
+ − 1088 (ccl-dump-insert-char (ccl-get-next-code))
+ − 1089 (insert (format ", read r%d, " rrr))
+ − 1090 (ccl-dump-jump cc address)
+ − 1091 (ccl-get-next-code) ; Skip dummy READ-JUMP
+ − 1092 ))
+ − 1093
+ − 1094 (defun ccl-dump-write-string-jump (ignore cc)
+ − 1095 (let ((address ccl-current-ic)
+ − 1096 (len (ccl-get-next-code))
+ − 1097 (i 0))
+ − 1098 (insert "write \"")
+ − 1099 (while (< i len)
+ − 1100 (let ((code (ccl-get-next-code)))
+ − 1101 (insert (ash code -16))
+ − 1102 (if (< (1+ i) len) (insert (logand (ash code -8) 255)))
+ − 1103 (if (< (+ i 2) len) (insert (logand code 255))))
+ − 1104 (setq i (+ i 3)))
+ − 1105 (insert "\", ")
+ − 1106 (ccl-dump-jump nil cc address)))
+ − 1107
+ − 1108 (defun ccl-dump-write-array-read-jump (rrr cc)
+ − 1109 (let ((address ccl-current-ic)
+ − 1110 (len (ccl-get-next-code))
+ − 1111 (i 0))
+ − 1112 (insert (format "write array[r%d] of length %d,\n\t" rrr len))
+ − 1113 (while (< i len)
+ − 1114 (ccl-dump-insert-char (ccl-get-next-code))
+ − 1115 (setq i (1+ i)))
+ − 1116 (insert (format "\n\tthen read r%d, " rrr))
+ − 1117 (ccl-dump-jump nil cc address)
+ − 1118 (ccl-get-next-code) ; Skip dummy READ-JUMP.
+ − 1119 ))
+ − 1120
+ − 1121 (defun ccl-dump-read-jump (rrr cc)
+ − 1122 (insert (format "read r%d, " rrr))
+ − 1123 (ccl-dump-jump nil cc))
+ − 1124
+ − 1125 (defun ccl-dump-branch (rrr len)
+ − 1126 (let ((jump-table-head ccl-current-ic)
+ − 1127 (i 0))
+ − 1128 (insert (format "jump to array[r%d] of length %d\n\t" rrr len))
+ − 1129 (while (<= i len)
+ − 1130 (insert (format "%d " (+ jump-table-head (ccl-get-next-code))))
+ − 1131 (setq i (1+ i)))
+ − 1132 (insert "\n")))
+ − 1133
+ − 1134 (defun ccl-dump-read-register (rrr cc)
+ − 1135 (insert (format "read r%d (%d remaining)\n" rrr cc)))
+ − 1136
+ − 1137 (defun ccl-dump-read-branch (rrr len)
+ − 1138 (insert (format "read r%d, " rrr))
+ − 1139 (ccl-dump-branch rrr len))
+ − 1140
+ − 1141 (defun ccl-dump-write-register (rrr cc)
+ − 1142 (insert (format "write r%d (%d remaining)\n" rrr cc)))
+ − 1143
+ − 1144 (defun ccl-dump-call (ignore cc)
+ − 1145 (insert (format "call subroutine #%d\n" cc)))
+ − 1146
+ − 1147 (defun ccl-dump-write-const-string (rrr cc)
+ − 1148 (if (= rrr 0)
+ − 1149 (progn
+ − 1150 (insert "write char")
+ − 1151 (ccl-dump-insert-char cc)
+ − 1152 (newline))
+ − 1153 (let ((len cc)
+ − 1154 (i 0))
+ − 1155 (insert "write \"")
+ − 1156 (while (< i len)
+ − 1157 (let ((code (ccl-get-next-code)))
+ − 1158 (insert (format "%c" (lsh code -16)))
+ − 1159 (if (< (1+ i) len)
+ − 1160 (insert (format "%c" (logand (lsh code -8) 255))))
+ − 1161 (if (< (+ i 2) len)
+ − 1162 (insert (format "%c" (logand code 255))))
+ − 1163 (setq i (+ i 3))))
+ − 1164 (insert "\"\n"))))
+ − 1165
+ − 1166 (defun ccl-dump-write-array (rrr cc)
+ − 1167 (let ((i 0))
+ − 1168 (insert (format "write array[r%d] of length %d\n\t" rrr cc))
+ − 1169 (while (< i cc)
+ − 1170 (ccl-dump-insert-char (ccl-get-next-code))
+ − 1171 (setq i (1+ i)))
+ − 1172 (insert "\n")))
+ − 1173
+ − 1174 (defun ccl-dump-end (&rest ignore)
+ − 1175 (insert "end\n"))
+ − 1176
+ − 1177 (defun ccl-dump-set-assign-expr-const (rrr cc)
+ − 1178 (insert (format "r%d %s= %d\n"
+ − 1179 rrr
+ − 1180 (ccl-extract-arith-op cc)
+ − 1181 (ccl-get-next-code))))
+ − 1182
+ − 1183 (defun ccl-dump-set-assign-expr-register (rrr cc)
+ − 1184 (insert (format "r%d %s= r%d\n"
+ − 1185 rrr
+ − 1186 (ccl-extract-arith-op cc)
+ − 1187 (logand cc 7))))
+ − 1188
+ − 1189 (defun ccl-dump-set-expr-const (rrr cc)
+ − 1190 (insert (format "r%d = r%d %s %d\n"
+ − 1191 rrr
+ − 1192 (logand cc 7)
+ − 1193 (ccl-extract-arith-op cc)
+ − 1194 (ccl-get-next-code))))
+ − 1195
+ − 1196 (defun ccl-dump-set-expr-register (rrr cc)
+ − 1197 (insert (format "r%d = r%d %s r%d\n"
+ − 1198 rrr
+ − 1199 (logand cc 7)
+ − 1200 (ccl-extract-arith-op cc)
+ − 1201 (logand (ash cc -3) 7))))
+ − 1202
+ − 1203 (defun ccl-dump-jump-cond-expr-const (rrr cc)
+ − 1204 (let ((address ccl-current-ic))
+ − 1205 (insert (format "if !(r%d %s %d), "
+ − 1206 rrr
+ − 1207 (aref ccl-arith-table (ccl-get-next-code))
+ − 1208 (ccl-get-next-code)))
+ − 1209 (ccl-dump-jump nil cc address)))
+ − 1210
+ − 1211 (defun ccl-dump-jump-cond-expr-register (rrr cc)
+ − 1212 (let ((address ccl-current-ic))
+ − 1213 (insert (format "if !(r%d %s r%d), "
+ − 1214 rrr
+ − 1215 (aref ccl-arith-table (ccl-get-next-code))
+ − 1216 (ccl-get-next-code)))
+ − 1217 (ccl-dump-jump nil cc address)))
+ − 1218
+ − 1219 (defun ccl-dump-read-jump-cond-expr-const (rrr cc)
+ − 1220 (insert (format "read r%d, " rrr))
+ − 1221 (ccl-dump-jump-cond-expr-const rrr cc))
+ − 1222
+ − 1223 (defun ccl-dump-read-jump-cond-expr-register (rrr cc)
+ − 1224 (insert (format "read r%d, " rrr))
+ − 1225 (ccl-dump-jump-cond-expr-register rrr cc))
+ − 1226
+ − 1227 (defun ccl-dump-binary (ccl-code)
+ − 1228 (let ((len (length ccl-code))
+ − 1229 (i 2))
+ − 1230 (while (< i len)
+ − 1231 (let ((code (aref ccl-code i))
+ − 1232 (j 27))
+ − 1233 (while (>= j 0)
+ − 1234 (insert (if (= (logand code (ash 1 j)) 0) ?0 ?1))
+ − 1235 (setq j (1- j)))
+ − 1236 (setq code (logand code 31))
+ − 1237 (if (< code (length ccl-code-table))
+ − 1238 (insert (format ":%s" (aref ccl-code-table code))))
+ − 1239 (insert "\n"))
+ − 1240 (setq i (1+ i)))))
+ − 1241
+ − 1242 (defun ccl-dump-ex-cmd (rrr cc)
+ − 1243 (let* ((RRR (logand cc #x7))
+ − 1244 (Rrr (logand (ash cc -3) #x7))
+ − 1245 (ex-op (aref ccl-extended-code-table (logand (ash cc -6) #x3fff))))
+ − 1246 (insert (format "<%s> " ex-op))
+ − 1247 (funcall (get ex-op 'ccl-dump-function) rrr RRR Rrr)))
+ − 1248
+ − 1249 (defun ccl-dump-read-multibyte-character (rrr RRR Rrr)
+ − 1250 (insert (format "read-multibyte-character r%d r%d\n" RRR rrr)))
+ − 1251
+ − 1252 (defun ccl-dump-write-multibyte-character (rrr RRR Rrr)
+ − 1253 (insert (format "write-multibyte-character r%d r%d\n" RRR rrr)))
+ − 1254
+ − 1255 (defun ccl-dump-translate-character (rrr RRR Rrr)
+ − 1256 (insert (format "translation table(r%d) r%d r%d\n" Rrr RRR rrr)))
+ − 1257
+ − 1258 (defun ccl-dump-translate-character-const-tbl (rrr RRR Rrr)
+ − 1259 (let ((tbl (ccl-get-next-code)))
+ − 1260 (insert (format "translation table(%S) r%d r%d\n" tbl RRR rrr))))
+ − 1261
+ − 1262 (defun ccl-dump-lookup-int-const-tbl (rrr RRR Rrr)
+ − 1263 (let ((tbl (ccl-get-next-code)))
+ − 1264 (insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr))))
+ − 1265
+ − 1266 (defun ccl-dump-lookup-char-const-tbl (rrr RRR Rrr)
+ − 1267 (let ((tbl (ccl-get-next-code)))
+ − 1268 (insert (format "hash table(%S) r%d r%d\n" tbl RRR rrr))))
+ − 1269
+ − 1270 (defun ccl-dump-mule-to-unicode (rrr RRR Rrr)
+ − 1271 (insert (format "change chars in r%d and r%d to unicode\n" RRR rrr)))
+ − 1272
+ − 1273 (defun ccl-dump-unicode-to-mule (rrr RRR Rrr)
+ − 1274 (insert (format "converter UCS code %d to a Mule char\n" rrr)))
+ − 1275
+ − 1276 (defun ccl-dump-iterate-multiple-map (rrr RRR Rrr)
+ − 1277 (let ((notbl (ccl-get-next-code))
+ − 1278 (i 0) id)
+ − 1279 (insert (format "iterate-multiple-map r%d r%d\n" RRR rrr))
+ − 1280 (insert (format "\tnumber of maps is %d .\n\t [" notbl))
+ − 1281 (while (< i notbl)
+ − 1282 (setq id (ccl-get-next-code))
+ − 1283 (insert (format "%S" id))
+ − 1284 (setq i (1+ i)))
+ − 1285 (insert "]\n")))
+ − 1286
+ − 1287 (defun ccl-dump-map-multiple (rrr RRR Rrr)
+ − 1288 (let ((notbl (ccl-get-next-code))
+ − 1289 (i 0) id)
+ − 1290 (insert (format "map-multiple r%d r%d\n" RRR rrr))
+ − 1291 (insert (format "\tnumber of maps and separators is %d\n\t [" notbl))
+ − 1292 (while (< i notbl)
+ − 1293 (setq id (ccl-get-next-code))
+ − 1294 (if (= id -1)
+ − 1295 (insert "]\n\t [")
+ − 1296 (insert (format "%S " id)))
+ − 1297 (setq i (1+ i)))
+ − 1298 (insert "]\n")))
+ − 1299
+ − 1300 (defun ccl-dump-map-single (rrr RRR Rrr)
+ − 1301 (let ((id (ccl-get-next-code)))
+ − 1302 (insert (format "map-single r%d r%d map(%S)\n" RRR rrr id))))
+ − 1303
+ − 1304
+ − 1305 ;; CCL emulation staffs
+ − 1306
+ − 1307 ;; Not yet implemented.
+ − 1308
+ − 1309 ;; Auto-loaded functions.
+ − 1310
+ − 1311 ;;;###autoload
+ − 1312 (defmacro declare-ccl-program (name &optional vector)
+ − 1313 "Declare NAME as a name of CCL program.
+ − 1314
+ − 1315 This macro exists for backward compatibility. In the old version of
+ − 1316 Emacs, to compile a CCL program which calls another CCL program not
+ − 1317 yet defined, it must be declared as a CCL program in advance. But,
+ − 1318 now CCL program names are resolved not at compile time but before
+ − 1319 execution.
+ − 1320
+ − 1321 Optional arg VECTOR is a compiled CCL code of the CCL program."
+ − 1322 `(put ',name 'ccl-program-idx (register-ccl-program ',name ,vector)))
+ − 1323
+ − 1324 ;;;###autoload
+ − 1325 (defmacro define-ccl-program (name ccl-program &optional doc)
+ − 1326 "Set NAME to be the compiled CCL code of CCL-PROGRAM.
+ − 1327
+ − 1328 CCL-PROGRAM has this form:
+ − 1329 (BUFFER_MAGNIFICATION
+ − 1330 CCL_MAIN_CODE
+ − 1331 [ CCL_EOF_CODE ])
+ − 1332
+ − 1333 BUFFER_MAGNIFICATION is an integer value specifying the approximate
+ − 1334 output buffer magnification size compared with the bytes of input data
+ − 1335 text. If the value is zero, the CCL program can't execute `read' and
+ − 1336 `write' commands.
+ − 1337
+ − 1338 CCL_MAIN_CODE and CCL_EOF_CODE are CCL program codes. CCL_MAIN_CODE is
+ − 1339 executed first. If there are no more input data when a `read' command is
+ − 1340 executed in CCL_MAIN_CODE, CCL_EOF_CODE is executed. If CCL_MAIN_CODE is
+ − 1341 terminated, CCL_EOF_CODE is not executed.
+ − 1342
+ − 1343 Here's the syntax of CCL program code in BNF notation. The lines starting
+ − 1344 with two semicolons (and optional leading spaces) describe the semantics.
+ − 1345
+ − 1346 CCL_MAIN_CODE := CCL_BLOCK
+ − 1347
+ − 1348 CCL_EOF_CODE := CCL_BLOCK
+ − 1349
+ − 1350 CCL_BLOCK := STATEMENT | (STATEMENT [STATEMENT ...])
+ − 1351
+ − 1352 STATEMENT :=
+ − 1353 SET | IF | BRANCH | LOOP | REPEAT | BREAK | READ | WRITE | CALL
+ − 1354 | TRANSLATE | MAP | LOOKUP | END
+ − 1355
+ − 1356 SET := (REG = EXPRESSION)
+ − 1357 | (REG ASSIGNMENT_OPERATOR EXPRESSION)
+ − 1358 ;; The following form is the same as (r0 = INT-OR-CHAR).
+ − 1359 | INT-OR-CHAR
+ − 1360
+ − 1361 EXPRESSION := ARG | (EXPRESSION OPERATOR ARG)
+ − 1362
+ − 1363 ;; Evaluate EXPRESSION. If the result is nonzero, execute
+ − 1364 ;; CCL_BLOCK_0. Otherwise, execute CCL_BLOCK_1.
+ − 1365 IF := (if EXPRESSION CCL_BLOCK_0 [CCL_BLOCK_1])
+ − 1366
+ − 1367 ;; Evaluate EXPRESSION. Provided that the result is N, execute
+ − 1368 ;; CCL_BLOCK_N.
+ − 1369 BRANCH := (branch EXPRESSION CCL_BLOCK_0 [CCL_BLOCK_1 ...])
+ − 1370
+ − 1371 ;; Execute STATEMENTs until (break) or (end) is executed.
+ − 1372 LOOP := (loop STATEMENT [STATEMENT ...])
+ − 1373
+ − 1374 ;; Terminate the innermost loop.
+ − 1375 BREAK := (break)
+ − 1376
+ − 1377 REPEAT :=
+ − 1378 ;; Jump to the head of the innermost loop.
+ − 1379 (repeat)
+ − 1380 ;; Same as: ((write [REG | INT-OR-CHAR | string])
+ − 1381 ;; (repeat))
+ − 1382 | (write-repeat [REG | INT-OR-CHAR | string])
+ − 1383 ;; Same as: ((write REG [ARRAY])
+ − 1384 ;; (read REG)
+ − 1385 ;; (repeat))
+ − 1386 | (write-read-repeat REG [ARRAY])
+ − 1387 ;; Same as: ((write INT-OR-CHAR)
+ − 1388 ;; (read REG)
+ − 1389 ;; (repeat))
+ − 1390 | (write-read-repeat REG INT-OR-CHAR)
+ − 1391
+ − 1392 READ := ;; Set REG_0 to a byte read from the input text, set REG_1
+ − 1393 ;; to the next byte read, and so on. Note that \"byte\" here means
+ − 1394 ;; \"some octet from XEmacs' internal representation\", which may
+ − 1395 ;; not be that useful to you when non-ASCII characters are involved.
+ − 1396 ;;
+ − 1397 ;; Yes, this is exactly the opposite of what (write ...) does.
+ − 1398 (read REG_0 [REG_1 ...])
+ − 1399 ;; Same as: ((read REG)
+ − 1400 ;; (if (REG OPERATOR ARG) CCL_BLOCK_0 CCL_BLOCK_1))
+ − 1401 | (read-if (REG OPERATOR ARG) CCL_BLOCK_0 [CCL_BLOCK_1])
+ − 1402 ;; Same as: ((read REG)
+ − 1403 ;; (branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...]))
+ − 1404 | (read-branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...])
+ − 1405 ;; Read a character from the input text, splitting it into its
+ − 1406 ;; multibyte representation. Set REG_0 to the charset ID of the
+ − 1407 ;; character, and set REG_1 to the code point of the character. If
+ − 1408 ;; the dimension of charset is two, set REG_1 to ((CODE0 << 7) |
+ − 1409 ;; CODE1), where CODE0 is the first code point and CODE1 is the
+ − 1410 ;; second code point.
+ − 1411 | (read-multibyte-character REG_0 REG_1)
+ − 1412
+ − 1413 WRITE :=
+ − 1414 ;; Write REG_0, REG_1, ... to the output buffer. If REG_N is
+ − 1415 ;; a multibyte character, write the corresponding multibyte
+ − 1416 ;; representation.
+ − 1417 (write REG_0 [REG_1 ...])
+ − 1418 ;; Same as: ((r7 = EXPRESSION)
+ − 1419 ;; (write r7))
+ − 1420 | (write EXPRESSION)
+ − 1421 ;; Write the value of `INT-OR-CHAR' to the output buffer. If it
+ − 1422 ;; is a multibyte character, write the corresponding multibyte
+ − 1423 ;; representation.
+ − 1424 | (write INT-OR-CHAR)
+ − 1425 ;; Write the byte sequence of `string' as is to the output
+ − 1426 ;; buffer. It is encoded by binary coding system, thus,
+ − 1427 ;; by this operation, you cannot write multibyte string
+ − 1428 ;; as it is.
+ − 1429 | (write string)
+ − 1430 ;; Same as: (write string)
+ − 1431 | string
+ − 1432 ;; Provided that the value of REG is N, write Nth element of
+ − 1433 ;; ARRAY to the output buffer. If it is a multibyte
+ − 1434 ;; character, write the corresponding multibyte
+ − 1435 ;; representation.
+ − 1436 | (write REG ARRAY)
+ − 1437 ;; Write a multibyte representation of a character whose
+ − 1438 ;; charset ID is REG_0 and code point is REG_1. If the
+ − 1439 ;; dimension of the charset is two, REG_1 should be ((CODE0 <<
+ − 1440 ;; 7) | CODE1), where CODE0 is the first code point and CODE1
+ − 1441 ;; is the second code point of the character.
+ − 1442 | (write-multibyte-character REG_0 REG_1)
+ − 1443
+ − 1444 ;; Call CCL program whose name is ccl-program-name.
+ − 1445 CALL := (call ccl-program-name)
+ − 1446
+ − 1447 TRANSLATE := ;; Not implemented under XEmacs, except mule-to-unicode and
+ − 1448 ;; unicode-to-mule.
+ − 1449 (translate-character REG(table) REG(charset) REG(codepoint))
+ − 1450 | (translate-character SYMBOL REG(charset) REG(codepoint))
+ − 1451 | (mule-to-unicode REG(charset) REG(codepoint))
+ − 1452 | (unicode-to-mule REG(unicode,code) REG(CHARSET))
+ − 1453
+ − 1454 LOOKUP :=
+ − 1455 (lookup-character SYMBOL REG(charset) REG(codepoint))
+ − 1456 | (lookup-integer SYMBOL REG(integer))
+ − 1457 ;; SYMBOL refers to a table defined by `define-hash-translation-table'.
+ − 1458
+ − 1459 MAP :=
+ − 1460 (iterate-multiple-map REG REG MAP-IDs)
+ − 1461 | (map-multiple REG REG (MAP-SET))
+ − 1462 | (map-single REG REG MAP-ID)
+ − 1463 MAP-IDs := MAP-ID ...
+ − 1464 MAP-SET := MAP-IDs | (MAP-IDs) MAP-SET
+ − 1465 MAP-ID := INT-OR-CHAR
+ − 1466
+ − 1467 ;; Terminate the CCL program.
+ − 1468 END := (end)
+ − 1469
+ − 1470 ;; CCL registers. These can contain any integer value. As r7 is used by the
+ − 1471 ;; CCL interpreter itself, its value can change unexpectedly.
+ − 1472 REG := r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7
+ − 1473
+ − 1474 ARG := REG | INT-OR-CHAR
+ − 1475
+ − 1476 OPERATOR :=
+ − 1477 ;; Normal arithmetical operators (same meaning as C code).
+ − 1478 + | - | * | / | %
+ − 1479
+ − 1480 ;; Bitwise operators (same meaning as C code)
+ − 1481 | & | `|' | ^
+ − 1482
+ − 1483 ;; Shifting operators (same meaning as C code)
+ − 1484 | << | >>
+ − 1485
+ − 1486 ;; (REG = ARG_0 <8 ARG_1) means:
+ − 1487 ;; (REG = ((ARG_0 << 8) | ARG_1))
+ − 1488 | <8
+ − 1489
+ − 1490 ;; (REG = ARG_0 >8 ARG_1) means:
+ − 1491 ;; ((REG = (ARG_0 >> 8))
+ − 1492 ;; (r7 = (ARG_0 & 255)))
+ − 1493 | >8
+ − 1494
+ − 1495 ;; (REG = ARG_0 // ARG_1) means:
+ − 1496 ;; ((REG = (ARG_0 / ARG_1))
+ − 1497 ;; (r7 = (ARG_0 % ARG_1)))
+ − 1498 | //
+ − 1499
+ − 1500 ;; Normal comparing operators (same meaning as C code)
+ − 1501 | < | > | == | <= | >= | !=
+ − 1502
+ − 1503 ;; If ARG_0 and ARG_1 are higher and lower byte of Shift-JIS
+ − 1504 ;; code, and CHAR is the corresponding JISX0208 character,
+ − 1505 ;; (REG = ARG_0 de-sjis ARG_1) means:
+ − 1506 ;; ((REG = CODE0)
+ − 1507 ;; (r7 = CODE1))
+ − 1508 ;; where CODE0 is the first code point of CHAR, CODE1 is the
+ − 1509 ;; second code point of CHAR.
+ − 1510 | de-sjis
+ − 1511
+ − 1512 ;; If ARG_0 and ARG_1 are the first and second code point of
+ − 1513 ;; JISX0208 character CHAR, and SJIS is the correponding
+ − 1514 ;; Shift-JIS code,
+ − 1515 ;; (REG = ARG_0 en-sjis ARG_1) means:
+ − 1516 ;; ((REG = HIGH)
+ − 1517 ;; (r7 = LOW))
+ − 1518 ;; where HIGH is the higher byte of SJIS, LOW is the lower
+ − 1519 ;; byte of SJIS.
+ − 1520 | en-sjis
+ − 1521
+ − 1522 ASSIGNMENT_OPERATOR :=
+ − 1523 ;; Same meaning as C code
+ − 1524 += | -= | *= | /= | %= | &= | `|=' | ^= | <<= | >>=
+ − 1525
+ − 1526 ;; (REG <8= ARG) is the same as:
+ − 1527 ;; ((REG <<= 8)
+ − 1528 ;; (REG |= ARG))
+ − 1529 | <8=
+ − 1530
+ − 1531 ;; (REG >8= ARG) is the same as:
+ − 1532 ;; ((r7 = (REG & 255))
+ − 1533 ;; (REG >>= 8))
+ − 1534
+ − 1535 ;; (REG //= ARG) is the same as:
+ − 1536 ;; ((r7 = (REG % ARG))
+ − 1537 ;; (REG /= ARG))
+ − 1538 | //=
+ − 1539
+ − 1540 ARRAY := `[' INT-OR-CHAR ... `]'
+ − 1541
+ − 1542 INT-OR-CHAR := integer | character
+ − 1543 "
+ − 1544 `(let ((prog ,(ccl-compile (eval ccl-program))))
+ − 1545 (defconst ,name prog ,doc)
+ − 1546 (put ',name 'ccl-program-idx (register-ccl-program ',name prog))
+ − 1547 nil))
+ − 1548
+ − 1549 ;;;###autoload
+ − 1550 (defmacro check-ccl-program (ccl-program &optional name)
+ − 1551 "Check validity of CCL-PROGRAM.
+ − 1552 If CCL-PROGRAM is a symbol denoting a CCL program, return
+ − 1553 CCL-PROGRAM, else return nil.
+ − 1554 If CCL-PROGRAM is a vector and optional arg NAME (symbol) is supplied,
+ − 1555 register CCL-PROGRAM by name NAME, and return NAME."
+ − 1556 `(if (ccl-program-p ,ccl-program)
+ − 1557 (if (vectorp ,ccl-program)
+ − 1558 (progn
+ − 1559 (register-ccl-program ,name ,ccl-program)
+ − 1560 ,name)
+ − 1561 ,ccl-program)))
+ − 1562
+ − 1563 (provide 'ccl)
+ − 1564
+ − 1565 ;; ccl.el ends here