Mercurial > hg > xemacs-beta
annotate src/fns.c @ 5118:e0db3c197671 ben-lisp-object
merge up to latest default branch, doesn't compile yet
author | Ben Wing <ben@xemacs.org> |
---|---|
date | Sat, 26 Dec 2009 21:18:49 -0600 |
parents | 3742ea8250b5 80cd90837ac5 |
children | 623d57b7fbe8 |
rev | line source |
---|---|
428 | 1 /* Random utility Lisp functions. |
2 Copyright (C) 1985, 86, 87, 93, 94, 95 Free Software Foundation, Inc. | |
1261 | 3 Copyright (C) 1995, 1996, 2000, 2001, 2002, 2003 Ben Wing. |
428 | 4 |
5 This file is part of XEmacs. | |
6 | |
7 XEmacs is free software; you can redistribute it and/or modify it | |
8 under the terms of the GNU General Public License as published by the | |
9 Free Software Foundation; either version 2, or (at your option) any | |
10 later version. | |
11 | |
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
15 for more details. | |
16 | |
17 You should have received a copy of the GNU General Public License | |
18 along with XEmacs; see the file COPYING. If not, write to | |
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
20 Boston, MA 02111-1307, USA. */ | |
21 | |
22 /* Synched up with: Mule 2.0, FSF 19.30. */ | |
23 | |
24 /* This file has been Mule-ized. */ | |
25 | |
26 /* Note: FSF 19.30 has bool vectors. We have bit vectors. */ | |
27 | |
28 /* Hacked on for Mule by Ben Wing, December 1994, January 1995. */ | |
29 | |
30 #include <config.h> | |
31 | |
32 /* Note on some machines this defines `vector' as a typedef, | |
33 so make sure we don't use that name in this file. */ | |
34 #undef vector | |
35 #define vector ***** | |
36 | |
37 #include "lisp.h" | |
38 | |
442 | 39 #include "sysfile.h" |
771 | 40 #include "sysproc.h" /* for qxe_getpid() */ |
428 | 41 |
42 #include "buffer.h" | |
43 #include "bytecode.h" | |
44 #include "device.h" | |
45 #include "events.h" | |
46 #include "extents.h" | |
47 #include "frame.h" | |
872 | 48 #include "process.h" |
428 | 49 #include "systime.h" |
50 #include "insdel.h" | |
51 #include "lstream.h" | |
52 #include "opaque.h" | |
53 | |
54 /* NOTE: This symbol is also used in lread.c */ | |
55 #define FEATUREP_SYNTAX | |
56 | |
57 Lisp_Object Qstring_lessp; | |
58 Lisp_Object Qidentity; | |
59 | |
563 | 60 Lisp_Object Qbase64_conversion_error; |
61 | |
771 | 62 Lisp_Object Vpath_separator; |
63 | |
428 | 64 static int internal_old_equal (Lisp_Object, Lisp_Object, int); |
454 | 65 Lisp_Object safe_copy_tree (Lisp_Object arg, Lisp_Object vecp, int depth); |
428 | 66 |
67 static Lisp_Object | |
2286 | 68 mark_bit_vector (Lisp_Object UNUSED (obj)) |
428 | 69 { |
70 return Qnil; | |
71 } | |
72 | |
73 static void | |
2286 | 74 print_bit_vector (Lisp_Object obj, Lisp_Object printcharfun, |
75 int UNUSED (escapeflag)) | |
428 | 76 { |
665 | 77 Elemcount i; |
440 | 78 Lisp_Bit_Vector *v = XBIT_VECTOR (obj); |
665 | 79 Elemcount len = bit_vector_length (v); |
80 Elemcount last = len; | |
428 | 81 |
82 if (INTP (Vprint_length)) | |
83 last = min (len, XINT (Vprint_length)); | |
826 | 84 write_c_string (printcharfun, "#*"); |
428 | 85 for (i = 0; i < last; i++) |
86 { | |
87 if (bit_vector_bit (v, i)) | |
826 | 88 write_c_string (printcharfun, "1"); |
428 | 89 else |
826 | 90 write_c_string (printcharfun, "0"); |
428 | 91 } |
92 | |
93 if (last != len) | |
826 | 94 write_c_string (printcharfun, "..."); |
428 | 95 } |
96 | |
97 static int | |
2286 | 98 bit_vector_equal (Lisp_Object obj1, Lisp_Object obj2, int UNUSED (depth)) |
428 | 99 { |
440 | 100 Lisp_Bit_Vector *v1 = XBIT_VECTOR (obj1); |
101 Lisp_Bit_Vector *v2 = XBIT_VECTOR (obj2); | |
428 | 102 |
103 return ((bit_vector_length (v1) == bit_vector_length (v2)) && | |
104 !memcmp (v1->bits, v2->bits, | |
105 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v1)) * | |
106 sizeof (long))); | |
107 } | |
108 | |
665 | 109 static Hashcode |
2286 | 110 bit_vector_hash (Lisp_Object obj, int UNUSED (depth)) |
428 | 111 { |
440 | 112 Lisp_Bit_Vector *v = XBIT_VECTOR (obj); |
428 | 113 return HASH2 (bit_vector_length (v), |
114 memory_hash (v->bits, | |
115 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)) * | |
116 sizeof (long))); | |
117 } | |
118 | |
665 | 119 static Bytecount |
442 | 120 size_bit_vector (const void *lheader) |
121 { | |
122 Lisp_Bit_Vector *v = (Lisp_Bit_Vector *) lheader; | |
456 | 123 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, unsigned long, bits, |
442 | 124 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v))); |
125 } | |
126 | |
1204 | 127 static const struct memory_description bit_vector_description[] = { |
428 | 128 { XD_END } |
129 }; | |
130 | |
131 | |
5118
e0db3c197671
merge up to latest default branch, doesn't compile yet
Ben Wing <ben@xemacs.org>
diff
changeset
|
132 DEFINE_DUMPABLE_SIZABLE_LISP_OBJECT ("bit-vector", bit_vector, |
5117
3742ea8250b5
Checking in final CVS version of workspace 'ben-lisp-object'
Ben Wing <ben@xemacs.org>
parents:
3025
diff
changeset
|
133 mark_bit_vector, |
3742ea8250b5
Checking in final CVS version of workspace 'ben-lisp-object'
Ben Wing <ben@xemacs.org>
parents:
3025
diff
changeset
|
134 print_bit_vector, 0, |
3742ea8250b5
Checking in final CVS version of workspace 'ben-lisp-object'
Ben Wing <ben@xemacs.org>
parents:
3025
diff
changeset
|
135 bit_vector_equal, |
3742ea8250b5
Checking in final CVS version of workspace 'ben-lisp-object'
Ben Wing <ben@xemacs.org>
parents:
3025
diff
changeset
|
136 bit_vector_hash, |
3742ea8250b5
Checking in final CVS version of workspace 'ben-lisp-object'
Ben Wing <ben@xemacs.org>
parents:
3025
diff
changeset
|
137 bit_vector_description, |
3742ea8250b5
Checking in final CVS version of workspace 'ben-lisp-object'
Ben Wing <ben@xemacs.org>
parents:
3025
diff
changeset
|
138 size_bit_vector, |
3742ea8250b5
Checking in final CVS version of workspace 'ben-lisp-object'
Ben Wing <ben@xemacs.org>
parents:
3025
diff
changeset
|
139 Lisp_Bit_Vector); |
934 | 140 |
428 | 141 |
142 DEFUN ("identity", Fidentity, 1, 1, 0, /* | |
143 Return the argument unchanged. | |
144 */ | |
145 (arg)) | |
146 { | |
147 return arg; | |
148 } | |
149 | |
150 DEFUN ("random", Frandom, 0, 1, 0, /* | |
151 Return a pseudo-random number. | |
1983 | 152 All fixnums are equally likely. On most systems, this is 31 bits' worth. |
428 | 153 With positive integer argument N, return random number in interval [0,N). |
1983 | 154 N can be a bignum, in which case the range of possible values is extended. |
428 | 155 With argument t, set the random number seed from the current time and pid. |
156 */ | |
157 (limit)) | |
158 { | |
159 EMACS_INT val; | |
160 unsigned long denominator; | |
161 | |
162 if (EQ (limit, Qt)) | |
771 | 163 seed_random (qxe_getpid () + time (NULL)); |
428 | 164 if (NATNUMP (limit) && !ZEROP (limit)) |
165 { | |
166 /* Try to take our random number from the higher bits of VAL, | |
167 not the lower, since (says Gentzel) the low bits of `random' | |
168 are less random than the higher ones. We do this by using the | |
169 quotient rather than the remainder. At the high end of the RNG | |
170 it's possible to get a quotient larger than limit; discarding | |
171 these values eliminates the bias that would otherwise appear | |
172 when using a large limit. */ | |
2039 | 173 denominator = ((unsigned long)1 << INT_VALBITS) / XINT (limit); |
428 | 174 do |
175 val = get_random () / denominator; | |
176 while (val >= XINT (limit)); | |
177 } | |
1983 | 178 #ifdef HAVE_BIGNUM |
179 else if (BIGNUMP (limit)) | |
180 { | |
181 bignum_random (scratch_bignum, XBIGNUM_DATA (limit)); | |
182 return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); | |
183 } | |
184 #endif | |
428 | 185 else |
186 val = get_random (); | |
187 | |
188 return make_int (val); | |
189 } | |
190 | |
191 /* Random data-structure functions */ | |
192 | |
193 #ifdef LOSING_BYTECODE | |
194 | |
195 /* #### Delete this shit */ | |
196 | |
197 /* Charcount is a misnomer here as we might be dealing with the | |
198 length of a vector or list, but emphasizes that we're not dealing | |
199 with Bytecounts in strings */ | |
200 static Charcount | |
201 length_with_bytecode_hack (Lisp_Object seq) | |
202 { | |
203 if (!COMPILED_FUNCTIONP (seq)) | |
204 return XINT (Flength (seq)); | |
205 else | |
206 { | |
440 | 207 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (seq); |
428 | 208 |
209 return (f->flags.interactivep ? COMPILED_INTERACTIVE : | |
210 f->flags.domainp ? COMPILED_DOMAIN : | |
211 COMPILED_DOC_STRING) | |
212 + 1; | |
213 } | |
214 } | |
215 | |
216 #endif /* LOSING_BYTECODE */ | |
217 | |
218 void | |
442 | 219 check_losing_bytecode (const char *function, Lisp_Object seq) |
428 | 220 { |
221 if (COMPILED_FUNCTIONP (seq)) | |
563 | 222 signal_ferror_with_frob |
223 (Qinvalid_argument, seq, | |
428 | 224 "As of 20.3, `%s' no longer works with compiled-function objects", |
225 function); | |
226 } | |
227 | |
228 DEFUN ("length", Flength, 1, 1, 0, /* | |
229 Return the length of vector, bit vector, list or string SEQUENCE. | |
230 */ | |
231 (sequence)) | |
232 { | |
233 retry: | |
234 if (STRINGP (sequence)) | |
826 | 235 return make_int (string_char_length (sequence)); |
428 | 236 else if (CONSP (sequence)) |
237 { | |
665 | 238 Elemcount len; |
428 | 239 GET_EXTERNAL_LIST_LENGTH (sequence, len); |
240 return make_int (len); | |
241 } | |
242 else if (VECTORP (sequence)) | |
243 return make_int (XVECTOR_LENGTH (sequence)); | |
244 else if (NILP (sequence)) | |
245 return Qzero; | |
246 else if (BIT_VECTORP (sequence)) | |
247 return make_int (bit_vector_length (XBIT_VECTOR (sequence))); | |
248 else | |
249 { | |
250 check_losing_bytecode ("length", sequence); | |
251 sequence = wrong_type_argument (Qsequencep, sequence); | |
252 goto retry; | |
253 } | |
254 } | |
255 | |
256 DEFUN ("safe-length", Fsafe_length, 1, 1, 0, /* | |
257 Return the length of a list, but avoid error or infinite loop. | |
258 This function never gets an error. If LIST is not really a list, | |
259 it returns 0. If LIST is circular, it returns a finite value | |
260 which is at least the number of distinct elements. | |
261 */ | |
262 (list)) | |
263 { | |
264 Lisp_Object hare, tortoise; | |
665 | 265 Elemcount len; |
428 | 266 |
267 for (hare = tortoise = list, len = 0; | |
268 CONSP (hare) && (! EQ (hare, tortoise) || len == 0); | |
269 hare = XCDR (hare), len++) | |
270 { | |
271 if (len & 1) | |
272 tortoise = XCDR (tortoise); | |
273 } | |
274 | |
275 return make_int (len); | |
276 } | |
277 | |
278 /*** string functions. ***/ | |
279 | |
280 DEFUN ("string-equal", Fstring_equal, 2, 2, 0, /* | |
281 Return t if two strings have identical contents. | |
282 Case is significant. Text properties are ignored. | |
283 \(Under XEmacs, `equal' also ignores text properties and extents in | |
284 strings, but this is not the case under FSF Emacs 19. In FSF Emacs 20 | |
285 `equal' is the same as in XEmacs, in that respect.) | |
286 Symbols are also allowed; their print names are used instead. | |
287 */ | |
444 | 288 (string1, string2)) |
428 | 289 { |
290 Bytecount len; | |
793 | 291 Lisp_Object p1, p2; |
428 | 292 |
444 | 293 if (SYMBOLP (string1)) |
294 p1 = XSYMBOL (string1)->name; | |
428 | 295 else |
296 { | |
444 | 297 CHECK_STRING (string1); |
793 | 298 p1 = string1; |
428 | 299 } |
300 | |
444 | 301 if (SYMBOLP (string2)) |
302 p2 = XSYMBOL (string2)->name; | |
428 | 303 else |
304 { | |
444 | 305 CHECK_STRING (string2); |
793 | 306 p2 = string2; |
428 | 307 } |
308 | |
793 | 309 return (((len = XSTRING_LENGTH (p1)) == XSTRING_LENGTH (p2)) && |
310 !memcmp (XSTRING_DATA (p1), XSTRING_DATA (p2), len)) ? Qt : Qnil; | |
428 | 311 } |
312 | |
801 | 313 DEFUN ("compare-strings", Fcompare_strings, 6, 7, 0, /* |
314 Compare the contents of two strings, maybe ignoring case. | |
315 In string STR1, skip the first START1 characters and stop at END1. | |
316 In string STR2, skip the first START2 characters and stop at END2. | |
317 END1 and END2 default to the full lengths of the respective strings. | |
318 | |
319 Case is significant in this comparison if IGNORE-CASE is nil. | |
320 | |
321 The value is t if the strings (or specified portions) match. | |
322 If string STR1 is less, the value is a negative number N; | |
323 - 1 - N is the number of characters that match at the beginning. | |
324 If string STR1 is greater, the value is a positive number N; | |
325 N - 1 is the number of characters that match at the beginning. | |
326 */ | |
327 (str1, start1, end1, str2, start2, end2, ignore_case)) | |
328 { | |
329 Charcount ccstart1, ccend1, ccstart2, ccend2; | |
330 Bytecount bstart1, blen1, bstart2, blen2; | |
331 Charcount matching; | |
332 int res; | |
333 | |
334 CHECK_STRING (str1); | |
335 CHECK_STRING (str2); | |
336 get_string_range_char (str1, start1, end1, &ccstart1, &ccend1, | |
337 GB_HISTORICAL_STRING_BEHAVIOR); | |
338 get_string_range_char (str2, start2, end2, &ccstart2, &ccend2, | |
339 GB_HISTORICAL_STRING_BEHAVIOR); | |
340 | |
341 bstart1 = string_index_char_to_byte (str1, ccstart1); | |
342 blen1 = string_offset_char_to_byte_len (str1, bstart1, ccend1 - ccstart1); | |
343 bstart2 = string_index_char_to_byte (str2, ccstart2); | |
344 blen2 = string_offset_char_to_byte_len (str2, bstart2, ccend2 - ccstart2); | |
345 | |
346 res = ((NILP (ignore_case) ? qxetextcmp_matching : qxetextcasecmp_matching) | |
347 (XSTRING_DATA (str1) + bstart1, blen1, | |
348 XSTRING_DATA (str2) + bstart2, blen2, | |
349 &matching)); | |
350 | |
351 if (!res) | |
352 return Qt; | |
353 else if (res > 0) | |
354 return make_int (1 + matching); | |
355 else | |
356 return make_int (-1 - matching); | |
357 } | |
358 | |
428 | 359 DEFUN ("string-lessp", Fstring_lessp, 2, 2, 0, /* |
360 Return t if first arg string is less than second in lexicographic order. | |
771 | 361 Comparison is simply done on a character-by-character basis using the |
362 numeric value of a character. (Note that this may not produce | |
363 particularly meaningful results under Mule if characters from | |
364 different charsets are being compared.) | |
428 | 365 |
366 Symbols are also allowed; their print names are used instead. | |
367 | |
771 | 368 Currently we don't do proper language-specific collation or handle |
369 multiple character sets. This may be changed when Unicode support | |
370 is implemented. | |
428 | 371 */ |
444 | 372 (string1, string2)) |
428 | 373 { |
793 | 374 Lisp_Object p1, p2; |
428 | 375 Charcount end, len2; |
376 int i; | |
377 | |
444 | 378 if (SYMBOLP (string1)) |
379 p1 = XSYMBOL (string1)->name; | |
793 | 380 else |
381 { | |
444 | 382 CHECK_STRING (string1); |
793 | 383 p1 = string1; |
428 | 384 } |
385 | |
444 | 386 if (SYMBOLP (string2)) |
387 p2 = XSYMBOL (string2)->name; | |
428 | 388 else |
389 { | |
444 | 390 CHECK_STRING (string2); |
793 | 391 p2 = string2; |
428 | 392 } |
393 | |
826 | 394 end = string_char_length (p1); |
395 len2 = string_char_length (p2); | |
428 | 396 if (end > len2) |
397 end = len2; | |
398 | |
399 { | |
867 | 400 Ibyte *ptr1 = XSTRING_DATA (p1); |
401 Ibyte *ptr2 = XSTRING_DATA (p2); | |
428 | 402 |
403 /* #### It is not really necessary to do this: We could compare | |
404 byte-by-byte and still get a reasonable comparison, since this | |
405 would compare characters with a charset in the same way. With | |
406 a little rearrangement of the leading bytes, we could make most | |
407 inter-charset comparisons work out the same, too; even if some | |
408 don't, this is not a big deal because inter-charset comparisons | |
409 aren't really well-defined anyway. */ | |
410 for (i = 0; i < end; i++) | |
411 { | |
867 | 412 if (itext_ichar (ptr1) != itext_ichar (ptr2)) |
413 return itext_ichar (ptr1) < itext_ichar (ptr2) ? Qt : Qnil; | |
414 INC_IBYTEPTR (ptr1); | |
415 INC_IBYTEPTR (ptr2); | |
428 | 416 } |
417 } | |
418 /* Can't do i < len2 because then comparison between "foo" and "foo^@" | |
419 won't work right in I18N2 case */ | |
420 return end < len2 ? Qt : Qnil; | |
421 } | |
422 | |
423 DEFUN ("string-modified-tick", Fstring_modified_tick, 1, 1, 0, /* | |
424 Return STRING's tick counter, incremented for each change to the string. | |
425 Each string has a tick counter which is incremented each time the contents | |
426 of the string are changed (e.g. with `aset'). It wraps around occasionally. | |
427 */ | |
428 (string)) | |
429 { | |
430 CHECK_STRING (string); | |
793 | 431 if (CONSP (XSTRING_PLIST (string)) && INTP (XCAR (XSTRING_PLIST (string)))) |
432 return XCAR (XSTRING_PLIST (string)); | |
428 | 433 else |
434 return Qzero; | |
435 } | |
436 | |
437 void | |
438 bump_string_modiff (Lisp_Object str) | |
439 { | |
793 | 440 Lisp_Object *ptr = &XSTRING_PLIST (str); |
428 | 441 |
442 #ifdef I18N3 | |
443 /* #### remove the `string-translatable' property from the string, | |
444 if there is one. */ | |
445 #endif | |
446 /* skip over extent info if it's there */ | |
447 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr))) | |
448 ptr = &XCDR (*ptr); | |
449 if (CONSP (*ptr) && INTP (XCAR (*ptr))) | |
793 | 450 XCAR (*ptr) = make_int (1+XINT (XCAR (*ptr))); |
428 | 451 else |
452 *ptr = Fcons (make_int (1), *ptr); | |
453 } | |
454 | |
455 | |
456 enum concat_target_type { c_cons, c_string, c_vector, c_bit_vector }; | |
457 static Lisp_Object concat (int nargs, Lisp_Object *args, | |
458 enum concat_target_type target_type, | |
459 int last_special); | |
460 | |
461 Lisp_Object | |
444 | 462 concat2 (Lisp_Object string1, Lisp_Object string2) |
428 | 463 { |
464 Lisp_Object args[2]; | |
444 | 465 args[0] = string1; |
466 args[1] = string2; | |
428 | 467 return concat (2, args, c_string, 0); |
468 } | |
469 | |
470 Lisp_Object | |
444 | 471 concat3 (Lisp_Object string1, Lisp_Object string2, Lisp_Object string3) |
428 | 472 { |
473 Lisp_Object args[3]; | |
444 | 474 args[0] = string1; |
475 args[1] = string2; | |
476 args[2] = string3; | |
428 | 477 return concat (3, args, c_string, 0); |
478 } | |
479 | |
480 Lisp_Object | |
444 | 481 vconcat2 (Lisp_Object vec1, Lisp_Object vec2) |
428 | 482 { |
483 Lisp_Object args[2]; | |
444 | 484 args[0] = vec1; |
485 args[1] = vec2; | |
428 | 486 return concat (2, args, c_vector, 0); |
487 } | |
488 | |
489 Lisp_Object | |
444 | 490 vconcat3 (Lisp_Object vec1, Lisp_Object vec2, Lisp_Object vec3) |
428 | 491 { |
492 Lisp_Object args[3]; | |
444 | 493 args[0] = vec1; |
494 args[1] = vec2; | |
495 args[2] = vec3; | |
428 | 496 return concat (3, args, c_vector, 0); |
497 } | |
498 | |
499 DEFUN ("append", Fappend, 0, MANY, 0, /* | |
500 Concatenate all the arguments and make the result a list. | |
501 The result is a list whose elements are the elements of all the arguments. | |
502 Each argument may be a list, vector, bit vector, or string. | |
503 The last argument is not copied, just used as the tail of the new list. | |
504 Also see: `nconc'. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
505 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
506 arguments: (&rest ARGS) |
428 | 507 */ |
508 (int nargs, Lisp_Object *args)) | |
509 { | |
510 return concat (nargs, args, c_cons, 1); | |
511 } | |
512 | |
513 DEFUN ("concat", Fconcat, 0, MANY, 0, /* | |
514 Concatenate all the arguments and make the result a string. | |
515 The result is a string whose elements are the elements of all the arguments. | |
516 Each argument may be a string or a list or vector of characters. | |
517 | |
518 As of XEmacs 21.0, this function does NOT accept individual integers | |
519 as arguments. Old code that relies on, for example, (concat "foo" 50) | |
520 returning "foo50" will fail. To fix such code, either apply | |
521 `int-to-string' to the integer argument, or use `format'. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
522 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
523 arguments: (&rest ARGS) |
428 | 524 */ |
525 (int nargs, Lisp_Object *args)) | |
526 { | |
527 return concat (nargs, args, c_string, 0); | |
528 } | |
529 | |
530 DEFUN ("vconcat", Fvconcat, 0, MANY, 0, /* | |
531 Concatenate all the arguments and make the result a vector. | |
532 The result is a vector whose elements are the elements of all the arguments. | |
533 Each argument may be a list, vector, bit vector, or string. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
534 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
535 arguments: (&rest ARGS) |
428 | 536 */ |
537 (int nargs, Lisp_Object *args)) | |
538 { | |
539 return concat (nargs, args, c_vector, 0); | |
540 } | |
541 | |
542 DEFUN ("bvconcat", Fbvconcat, 0, MANY, 0, /* | |
543 Concatenate all the arguments and make the result a bit vector. | |
544 The result is a bit vector whose elements are the elements of all the | |
545 arguments. Each argument may be a list, vector, bit vector, or string. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
546 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
547 arguments: (&rest ARGS) |
428 | 548 */ |
549 (int nargs, Lisp_Object *args)) | |
550 { | |
551 return concat (nargs, args, c_bit_vector, 0); | |
552 } | |
553 | |
554 /* Copy a (possibly dotted) list. LIST must be a cons. | |
555 Can't use concat (1, &alist, c_cons, 0) - doesn't handle dotted lists. */ | |
556 static Lisp_Object | |
557 copy_list (Lisp_Object list) | |
558 { | |
559 Lisp_Object list_copy = Fcons (XCAR (list), XCDR (list)); | |
560 Lisp_Object last = list_copy; | |
561 Lisp_Object hare, tortoise; | |
665 | 562 Elemcount len; |
428 | 563 |
564 for (tortoise = hare = XCDR (list), len = 1; | |
565 CONSP (hare); | |
566 hare = XCDR (hare), len++) | |
567 { | |
568 XCDR (last) = Fcons (XCAR (hare), XCDR (hare)); | |
569 last = XCDR (last); | |
570 | |
571 if (len < CIRCULAR_LIST_SUSPICION_LENGTH) | |
572 continue; | |
573 if (len & 1) | |
574 tortoise = XCDR (tortoise); | |
575 if (EQ (tortoise, hare)) | |
576 signal_circular_list_error (list); | |
577 } | |
578 | |
579 return list_copy; | |
580 } | |
581 | |
582 DEFUN ("copy-list", Fcopy_list, 1, 1, 0, /* | |
583 Return a copy of list LIST, which may be a dotted list. | |
584 The elements of LIST are not copied; they are shared | |
585 with the original. | |
586 */ | |
587 (list)) | |
588 { | |
589 again: | |
590 if (NILP (list)) return list; | |
591 if (CONSP (list)) return copy_list (list); | |
592 | |
593 list = wrong_type_argument (Qlistp, list); | |
594 goto again; | |
595 } | |
596 | |
597 DEFUN ("copy-sequence", Fcopy_sequence, 1, 1, 0, /* | |
598 Return a copy of list, vector, bit vector or string SEQUENCE. | |
599 The elements of a list or vector are not copied; they are shared | |
600 with the original. SEQUENCE may be a dotted list. | |
601 */ | |
602 (sequence)) | |
603 { | |
604 again: | |
605 if (NILP (sequence)) return sequence; | |
606 if (CONSP (sequence)) return copy_list (sequence); | |
607 if (STRINGP (sequence)) return concat (1, &sequence, c_string, 0); | |
608 if (VECTORP (sequence)) return concat (1, &sequence, c_vector, 0); | |
609 if (BIT_VECTORP (sequence)) return concat (1, &sequence, c_bit_vector, 0); | |
610 | |
611 check_losing_bytecode ("copy-sequence", sequence); | |
612 sequence = wrong_type_argument (Qsequencep, sequence); | |
613 goto again; | |
614 } | |
615 | |
616 struct merge_string_extents_struct | |
617 { | |
618 Lisp_Object string; | |
619 Bytecount entry_offset; | |
620 Bytecount entry_length; | |
621 }; | |
622 | |
623 static Lisp_Object | |
624 concat (int nargs, Lisp_Object *args, | |
625 enum concat_target_type target_type, | |
626 int last_special) | |
627 { | |
628 Lisp_Object val; | |
629 Lisp_Object tail = Qnil; | |
630 int toindex; | |
631 int argnum; | |
632 Lisp_Object last_tail; | |
633 Lisp_Object prev; | |
634 struct merge_string_extents_struct *args_mse = 0; | |
867 | 635 Ibyte *string_result = 0; |
636 Ibyte *string_result_ptr = 0; | |
428 | 637 struct gcpro gcpro1; |
851 | 638 int sdep = specpdl_depth (); |
428 | 639 |
640 /* The modus operandi in Emacs is "caller gc-protects args". | |
641 However, concat is called many times in Emacs on freshly | |
642 created stuff. So we help those callers out by protecting | |
643 the args ourselves to save them a lot of temporary-variable | |
644 grief. */ | |
645 | |
646 GCPRO1 (args[0]); | |
647 gcpro1.nvars = nargs; | |
648 | |
649 #ifdef I18N3 | |
650 /* #### if the result is a string and any of the strings have a string | |
651 for the `string-translatable' property, then concat should also | |
652 concat the args but use the `string-translatable' strings, and store | |
653 the result in the returned string's `string-translatable' property. */ | |
654 #endif | |
655 if (target_type == c_string) | |
656 args_mse = alloca_array (struct merge_string_extents_struct, nargs); | |
657 | |
658 /* In append, the last arg isn't treated like the others */ | |
659 if (last_special && nargs > 0) | |
660 { | |
661 nargs--; | |
662 last_tail = args[nargs]; | |
663 } | |
664 else | |
665 last_tail = Qnil; | |
666 | |
667 /* Check and coerce the arguments. */ | |
668 for (argnum = 0; argnum < nargs; argnum++) | |
669 { | |
670 Lisp_Object seq = args[argnum]; | |
671 if (LISTP (seq)) | |
672 ; | |
673 else if (VECTORP (seq) || STRINGP (seq) || BIT_VECTORP (seq)) | |
674 ; | |
675 #ifdef LOSING_BYTECODE | |
676 else if (COMPILED_FUNCTIONP (seq)) | |
677 /* Urk! We allow this, for "compatibility"... */ | |
678 ; | |
679 #endif | |
680 #if 0 /* removed for XEmacs 21 */ | |
681 else if (INTP (seq)) | |
682 /* This is too revolting to think about but maintains | |
683 compatibility with FSF (and lots and lots of old code). */ | |
684 args[argnum] = Fnumber_to_string (seq); | |
685 #endif | |
686 else | |
687 { | |
688 check_losing_bytecode ("concat", seq); | |
689 args[argnum] = wrong_type_argument (Qsequencep, seq); | |
690 } | |
691 | |
692 if (args_mse) | |
693 { | |
694 if (STRINGP (seq)) | |
695 args_mse[argnum].string = seq; | |
696 else | |
697 args_mse[argnum].string = Qnil; | |
698 } | |
699 } | |
700 | |
701 { | |
702 /* Charcount is a misnomer here as we might be dealing with the | |
703 length of a vector or list, but emphasizes that we're not dealing | |
704 with Bytecounts in strings */ | |
705 Charcount total_length; | |
706 | |
707 for (argnum = 0, total_length = 0; argnum < nargs; argnum++) | |
708 { | |
709 #ifdef LOSING_BYTECODE | |
710 Charcount thislen = length_with_bytecode_hack (args[argnum]); | |
711 #else | |
712 Charcount thislen = XINT (Flength (args[argnum])); | |
713 #endif | |
714 total_length += thislen; | |
715 } | |
716 | |
717 switch (target_type) | |
718 { | |
719 case c_cons: | |
720 if (total_length == 0) | |
851 | 721 { |
722 unbind_to (sdep); | |
723 /* In append, if all but last arg are nil, return last arg */ | |
724 RETURN_UNGCPRO (last_tail); | |
725 } | |
428 | 726 val = Fmake_list (make_int (total_length), Qnil); |
727 break; | |
728 case c_vector: | |
729 val = make_vector (total_length, Qnil); | |
730 break; | |
731 case c_bit_vector: | |
732 val = make_bit_vector (total_length, Qzero); | |
733 break; | |
734 case c_string: | |
735 /* We don't make the string yet because we don't know the | |
736 actual number of bytes. This loop was formerly written | |
737 to call Fmake_string() here and then call set_string_char() | |
738 for each char. This seems logical enough but is waaaaaaaay | |
739 slow -- set_string_char() has to scan the whole string up | |
740 to the place where the substitution is called for in order | |
741 to find the place to change, and may have to do some | |
742 realloc()ing in order to make the char fit properly. | |
743 O(N^2) yuckage. */ | |
744 val = Qnil; | |
851 | 745 string_result = |
867 | 746 (Ibyte *) MALLOC_OR_ALLOCA (total_length * MAX_ICHAR_LEN); |
428 | 747 string_result_ptr = string_result; |
748 break; | |
749 default: | |
442 | 750 val = Qnil; |
2500 | 751 ABORT (); |
428 | 752 } |
753 } | |
754 | |
755 | |
756 if (CONSP (val)) | |
757 tail = val, toindex = -1; /* -1 in toindex is flag we are | |
758 making a list */ | |
759 else | |
760 toindex = 0; | |
761 | |
762 prev = Qnil; | |
763 | |
764 for (argnum = 0; argnum < nargs; argnum++) | |
765 { | |
766 Charcount thisleni = 0; | |
767 Charcount thisindex = 0; | |
768 Lisp_Object seq = args[argnum]; | |
867 | 769 Ibyte *string_source_ptr = 0; |
770 Ibyte *string_prev_result_ptr = string_result_ptr; | |
428 | 771 |
772 if (!CONSP (seq)) | |
773 { | |
774 #ifdef LOSING_BYTECODE | |
775 thisleni = length_with_bytecode_hack (seq); | |
776 #else | |
777 thisleni = XINT (Flength (seq)); | |
778 #endif | |
779 } | |
780 if (STRINGP (seq)) | |
781 string_source_ptr = XSTRING_DATA (seq); | |
782 | |
783 while (1) | |
784 { | |
785 Lisp_Object elt; | |
786 | |
787 /* We've come to the end of this arg, so exit. */ | |
788 if (NILP (seq)) | |
789 break; | |
790 | |
791 /* Fetch next element of `seq' arg into `elt' */ | |
792 if (CONSP (seq)) | |
793 { | |
794 elt = XCAR (seq); | |
795 seq = XCDR (seq); | |
796 } | |
797 else | |
798 { | |
799 if (thisindex >= thisleni) | |
800 break; | |
801 | |
802 if (STRINGP (seq)) | |
803 { | |
867 | 804 elt = make_char (itext_ichar (string_source_ptr)); |
805 INC_IBYTEPTR (string_source_ptr); | |
428 | 806 } |
807 else if (VECTORP (seq)) | |
808 elt = XVECTOR_DATA (seq)[thisindex]; | |
809 else if (BIT_VECTORP (seq)) | |
810 elt = make_int (bit_vector_bit (XBIT_VECTOR (seq), | |
811 thisindex)); | |
812 else | |
813 elt = Felt (seq, make_int (thisindex)); | |
814 thisindex++; | |
815 } | |
816 | |
817 /* Store into result */ | |
818 if (toindex < 0) | |
819 { | |
820 /* toindex negative means we are making a list */ | |
821 XCAR (tail) = elt; | |
822 prev = tail; | |
823 tail = XCDR (tail); | |
824 } | |
825 else if (VECTORP (val)) | |
826 XVECTOR_DATA (val)[toindex++] = elt; | |
827 else if (BIT_VECTORP (val)) | |
828 { | |
829 CHECK_BIT (elt); | |
830 set_bit_vector_bit (XBIT_VECTOR (val), toindex++, XINT (elt)); | |
831 } | |
832 else | |
833 { | |
834 CHECK_CHAR_COERCE_INT (elt); | |
867 | 835 string_result_ptr += set_itext_ichar (string_result_ptr, |
428 | 836 XCHAR (elt)); |
837 } | |
838 } | |
839 if (args_mse) | |
840 { | |
841 args_mse[argnum].entry_offset = | |
842 string_prev_result_ptr - string_result; | |
843 args_mse[argnum].entry_length = | |
844 string_result_ptr - string_prev_result_ptr; | |
845 } | |
846 } | |
847 | |
848 /* Now we finally make the string. */ | |
849 if (target_type == c_string) | |
850 { | |
851 val = make_string (string_result, string_result_ptr - string_result); | |
852 for (argnum = 0; argnum < nargs; argnum++) | |
853 { | |
854 if (STRINGP (args_mse[argnum].string)) | |
855 copy_string_extents (val, args_mse[argnum].string, | |
856 args_mse[argnum].entry_offset, 0, | |
857 args_mse[argnum].entry_length); | |
858 } | |
859 } | |
860 | |
861 if (!NILP (prev)) | |
862 XCDR (prev) = last_tail; | |
863 | |
851 | 864 unbind_to (sdep); |
428 | 865 RETURN_UNGCPRO (val); |
866 } | |
867 | |
868 DEFUN ("copy-alist", Fcopy_alist, 1, 1, 0, /* | |
869 Return a copy of ALIST. | |
870 This is an alist which represents the same mapping from objects to objects, | |
871 but does not share the alist structure with ALIST. | |
872 The objects mapped (cars and cdrs of elements of the alist) | |
873 are shared, however. | |
874 Elements of ALIST that are not conses are also shared. | |
875 */ | |
876 (alist)) | |
877 { | |
878 Lisp_Object tail; | |
879 | |
880 if (NILP (alist)) | |
881 return alist; | |
882 CHECK_CONS (alist); | |
883 | |
884 alist = concat (1, &alist, c_cons, 0); | |
885 for (tail = alist; CONSP (tail); tail = XCDR (tail)) | |
886 { | |
887 Lisp_Object car = XCAR (tail); | |
888 | |
889 if (CONSP (car)) | |
890 XCAR (tail) = Fcons (XCAR (car), XCDR (car)); | |
891 } | |
892 return alist; | |
893 } | |
894 | |
895 DEFUN ("copy-tree", Fcopy_tree, 1, 2, 0, /* | |
896 Return a copy of a list and substructures. | |
897 The argument is copied, and any lists contained within it are copied | |
898 recursively. Circularities and shared substructures are not preserved. | |
899 Second arg VECP causes vectors to be copied, too. Strings and bit vectors | |
900 are not copied. | |
901 */ | |
902 (arg, vecp)) | |
903 { | |
454 | 904 return safe_copy_tree (arg, vecp, 0); |
905 } | |
906 | |
907 Lisp_Object | |
908 safe_copy_tree (Lisp_Object arg, Lisp_Object vecp, int depth) | |
909 { | |
910 if (depth > 200) | |
563 | 911 stack_overflow ("Stack overflow in copy-tree", arg); |
454 | 912 |
428 | 913 if (CONSP (arg)) |
914 { | |
915 Lisp_Object rest; | |
916 rest = arg = Fcopy_sequence (arg); | |
917 while (CONSP (rest)) | |
918 { | |
919 Lisp_Object elt = XCAR (rest); | |
920 QUIT; | |
921 if (CONSP (elt) || VECTORP (elt)) | |
454 | 922 XCAR (rest) = safe_copy_tree (elt, vecp, depth + 1); |
428 | 923 if (VECTORP (XCDR (rest))) /* hack for (a b . [c d]) */ |
454 | 924 XCDR (rest) = safe_copy_tree (XCDR (rest), vecp, depth +1); |
428 | 925 rest = XCDR (rest); |
926 } | |
927 } | |
928 else if (VECTORP (arg) && ! NILP (vecp)) | |
929 { | |
930 int i = XVECTOR_LENGTH (arg); | |
931 int j; | |
932 arg = Fcopy_sequence (arg); | |
933 for (j = 0; j < i; j++) | |
934 { | |
935 Lisp_Object elt = XVECTOR_DATA (arg) [j]; | |
936 QUIT; | |
937 if (CONSP (elt) || VECTORP (elt)) | |
454 | 938 XVECTOR_DATA (arg) [j] = safe_copy_tree (elt, vecp, depth + 1); |
428 | 939 } |
940 } | |
941 return arg; | |
942 } | |
943 | |
944 DEFUN ("substring", Fsubstring, 2, 3, 0, /* | |
444 | 945 Return the substring of STRING starting at START and ending before END. |
946 END may be nil or omitted; then the substring runs to the end of STRING. | |
947 If START or END is negative, it counts from the end. | |
948 Relevant parts of the string-extent-data are copied to the new string. | |
428 | 949 */ |
444 | 950 (string, start, end)) |
428 | 951 { |
444 | 952 Charcount ccstart, ccend; |
953 Bytecount bstart, blen; | |
428 | 954 Lisp_Object val; |
955 | |
956 CHECK_STRING (string); | |
444 | 957 CHECK_INT (start); |
958 get_string_range_char (string, start, end, &ccstart, &ccend, | |
428 | 959 GB_HISTORICAL_STRING_BEHAVIOR); |
793 | 960 bstart = string_index_char_to_byte (string, ccstart); |
961 blen = string_offset_char_to_byte_len (string, bstart, ccend - ccstart); | |
444 | 962 val = make_string (XSTRING_DATA (string) + bstart, blen); |
963 /* Copy any applicable extent information into the new string. */ | |
964 copy_string_extents (val, string, 0, bstart, blen); | |
428 | 965 return val; |
966 } | |
967 | |
968 DEFUN ("subseq", Fsubseq, 2, 3, 0, /* | |
442 | 969 Return the subsequence of SEQUENCE starting at START and ending before END. |
970 END may be omitted; then the subsequence runs to the end of SEQUENCE. | |
971 If START or END is negative, it counts from the end. | |
972 The returned subsequence is always of the same type as SEQUENCE. | |
973 If SEQUENCE is a string, relevant parts of the string-extent-data | |
974 are copied to the new string. | |
428 | 975 */ |
442 | 976 (sequence, start, end)) |
428 | 977 { |
442 | 978 EMACS_INT len, s, e; |
979 | |
980 if (STRINGP (sequence)) | |
981 return Fsubstring (sequence, start, end); | |
982 | |
983 len = XINT (Flength (sequence)); | |
984 | |
985 CHECK_INT (start); | |
986 s = XINT (start); | |
987 if (s < 0) | |
988 s = len + s; | |
989 | |
990 if (NILP (end)) | |
991 e = len; | |
428 | 992 else |
993 { | |
442 | 994 CHECK_INT (end); |
995 e = XINT (end); | |
996 if (e < 0) | |
997 e = len + e; | |
428 | 998 } |
999 | |
442 | 1000 if (!(0 <= s && s <= e && e <= len)) |
1001 args_out_of_range_3 (sequence, make_int (s), make_int (e)); | |
1002 | |
1003 if (VECTORP (sequence)) | |
428 | 1004 { |
442 | 1005 Lisp_Object result = make_vector (e - s, Qnil); |
428 | 1006 EMACS_INT i; |
442 | 1007 Lisp_Object *in_elts = XVECTOR_DATA (sequence); |
428 | 1008 Lisp_Object *out_elts = XVECTOR_DATA (result); |
1009 | |
442 | 1010 for (i = s; i < e; i++) |
1011 out_elts[i - s] = in_elts[i]; | |
428 | 1012 return result; |
1013 } | |
442 | 1014 else if (LISTP (sequence)) |
428 | 1015 { |
1016 Lisp_Object result = Qnil; | |
1017 EMACS_INT i; | |
1018 | |
442 | 1019 sequence = Fnthcdr (make_int (s), sequence); |
1020 | |
1021 for (i = s; i < e; i++) | |
428 | 1022 { |
442 | 1023 result = Fcons (Fcar (sequence), result); |
1024 sequence = Fcdr (sequence); | |
428 | 1025 } |
1026 | |
1027 return Fnreverse (result); | |
1028 } | |
442 | 1029 else if (BIT_VECTORP (sequence)) |
1030 { | |
1031 Lisp_Object result = make_bit_vector (e - s, Qzero); | |
1032 EMACS_INT i; | |
1033 | |
1034 for (i = s; i < e; i++) | |
1035 set_bit_vector_bit (XBIT_VECTOR (result), i - s, | |
1036 bit_vector_bit (XBIT_VECTOR (sequence), i)); | |
1037 return result; | |
1038 } | |
1039 else | |
1040 { | |
2500 | 1041 ABORT (); /* unreachable, since Flength (sequence) did not get |
442 | 1042 an error */ |
1043 return Qnil; | |
1044 } | |
428 | 1045 } |
1046 | |
771 | 1047 /* Split STRING into a list of substrings. The substrings are the |
1048 parts of original STRING separated by SEPCHAR. */ | |
1049 static Lisp_Object | |
867 | 1050 split_string_by_ichar_1 (const Ibyte *string, Bytecount size, |
1051 Ichar sepchar) | |
771 | 1052 { |
1053 Lisp_Object result = Qnil; | |
867 | 1054 const Ibyte *end = string + size; |
771 | 1055 |
1056 while (1) | |
1057 { | |
867 | 1058 const Ibyte *p = string; |
771 | 1059 while (p < end) |
1060 { | |
867 | 1061 if (itext_ichar (p) == sepchar) |
771 | 1062 break; |
867 | 1063 INC_IBYTEPTR (p); |
771 | 1064 } |
1065 result = Fcons (make_string (string, p - string), result); | |
1066 if (p < end) | |
1067 { | |
1068 string = p; | |
867 | 1069 INC_IBYTEPTR (string); /* skip sepchar */ |
771 | 1070 } |
1071 else | |
1072 break; | |
1073 } | |
1074 return Fnreverse (result); | |
1075 } | |
1076 | |
1077 /* The same as the above, except PATH is an external C string (it is | |
1078 converted using Qfile_name), and sepchar is hardcoded to SEPCHAR | |
1079 (':' or whatever). */ | |
1080 Lisp_Object | |
1081 split_external_path (const Extbyte *path) | |
1082 { | |
1083 Bytecount newlen; | |
867 | 1084 Ibyte *newpath; |
771 | 1085 if (!path) |
1086 return Qnil; | |
1087 | |
1088 TO_INTERNAL_FORMAT (C_STRING, path, ALLOCA, (newpath, newlen), Qfile_name); | |
1089 | |
1090 /* #### Does this make sense? It certainly does for | |
1091 split_env_path(), but it looks dubious here. Does any code | |
1092 depend on split_external_path("") returning nil instead of an empty | |
1093 string? */ | |
1094 if (!newlen) | |
1095 return Qnil; | |
1096 | |
867 | 1097 return split_string_by_ichar_1 (newpath, newlen, SEPCHAR); |
771 | 1098 } |
1099 | |
1100 Lisp_Object | |
867 | 1101 split_env_path (const CIbyte *evarname, const Ibyte *default_) |
771 | 1102 { |
867 | 1103 const Ibyte *path = 0; |
771 | 1104 if (evarname) |
1105 path = egetenv (evarname); | |
1106 if (!path) | |
1107 path = default_; | |
1108 if (!path) | |
1109 return Qnil; | |
867 | 1110 return split_string_by_ichar_1 (path, qxestrlen (path), SEPCHAR); |
771 | 1111 } |
1112 | |
1113 /* Ben thinks this function should not exist or be exported to Lisp. | |
1114 We use it to define split-path-string in subr.el (not!). */ | |
1115 | |
949 | 1116 DEFUN ("split-string-by-char", Fsplit_string_by_char, 2, 2, 0, /* |
771 | 1117 Split STRING into a list of substrings originally separated by SEPCHAR. |
1118 */ | |
1119 (string, sepchar)) | |
1120 { | |
1121 CHECK_STRING (string); | |
1122 CHECK_CHAR (sepchar); | |
867 | 1123 return split_string_by_ichar_1 (XSTRING_DATA (string), |
771 | 1124 XSTRING_LENGTH (string), |
1125 XCHAR (sepchar)); | |
1126 } | |
1127 | |
1128 /* #### This was supposed to be in subr.el, but is used VERY early in | |
1129 the bootstrap process, so it goes here. Damn. */ | |
1130 | |
1131 DEFUN ("split-path", Fsplit_path, 1, 1, 0, /* | |
1132 Explode a search path into a list of strings. | |
1133 The path components are separated with the characters specified | |
1134 with `path-separator'. | |
1135 */ | |
1136 (path)) | |
1137 { | |
1138 CHECK_STRING (path); | |
1139 | |
1140 while (!STRINGP (Vpath_separator) | |
826 | 1141 || (string_char_length (Vpath_separator) != 1)) |
771 | 1142 Vpath_separator = signal_continuable_error |
1143 (Qinvalid_state, | |
1144 "`path-separator' should be set to a single-character string", | |
1145 Vpath_separator); | |
1146 | |
867 | 1147 return (split_string_by_ichar_1 |
771 | 1148 (XSTRING_DATA (path), XSTRING_LENGTH (path), |
867 | 1149 itext_ichar (XSTRING_DATA (Vpath_separator)))); |
771 | 1150 } |
1151 | |
428 | 1152 |
1153 DEFUN ("nthcdr", Fnthcdr, 2, 2, 0, /* | |
1154 Take cdr N times on LIST, and return the result. | |
1155 */ | |
1156 (n, list)) | |
1157 { | |
1920 | 1158 /* This function can GC */ |
647 | 1159 REGISTER EMACS_INT i; |
428 | 1160 REGISTER Lisp_Object tail = list; |
1161 CHECK_NATNUM (n); | |
1162 for (i = XINT (n); i; i--) | |
1163 { | |
1164 if (CONSP (tail)) | |
1165 tail = XCDR (tail); | |
1166 else if (NILP (tail)) | |
1167 return Qnil; | |
1168 else | |
1169 { | |
1170 tail = wrong_type_argument (Qlistp, tail); | |
1171 i++; | |
1172 } | |
1173 } | |
1174 return tail; | |
1175 } | |
1176 | |
1177 DEFUN ("nth", Fnth, 2, 2, 0, /* | |
1178 Return the Nth element of LIST. | |
1179 N counts from zero. If LIST is not that long, nil is returned. | |
1180 */ | |
1181 (n, list)) | |
1182 { | |
1920 | 1183 /* This function can GC */ |
428 | 1184 return Fcar (Fnthcdr (n, list)); |
1185 } | |
1186 | |
1187 DEFUN ("elt", Felt, 2, 2, 0, /* | |
1188 Return element of SEQUENCE at index N. | |
1189 */ | |
1190 (sequence, n)) | |
1191 { | |
1920 | 1192 /* This function can GC */ |
428 | 1193 retry: |
1194 CHECK_INT_COERCE_CHAR (n); /* yuck! */ | |
1195 if (LISTP (sequence)) | |
1196 { | |
1197 Lisp_Object tem = Fnthcdr (n, sequence); | |
1198 /* #### Utterly, completely, fucking disgusting. | |
1199 * #### The whole point of "elt" is that it operates on | |
1200 * #### sequences, and does error- (bounds-) checking. | |
1201 */ | |
1202 if (CONSP (tem)) | |
1203 return XCAR (tem); | |
1204 else | |
1205 #if 1 | |
1206 /* This is The Way It Has Always Been. */ | |
1207 return Qnil; | |
1208 #else | |
1209 /* This is The Way Mly and Cltl2 say It Should Be. */ | |
1210 args_out_of_range (sequence, n); | |
1211 #endif | |
1212 } | |
1213 else if (STRINGP (sequence) || | |
1214 VECTORP (sequence) || | |
1215 BIT_VECTORP (sequence)) | |
1216 return Faref (sequence, n); | |
1217 #ifdef LOSING_BYTECODE | |
1218 else if (COMPILED_FUNCTIONP (sequence)) | |
1219 { | |
1220 EMACS_INT idx = XINT (n); | |
1221 if (idx < 0) | |
1222 { | |
1223 lose: | |
1224 args_out_of_range (sequence, n); | |
1225 } | |
1226 /* Utter perversity */ | |
1227 { | |
1228 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (sequence); | |
1229 switch (idx) | |
1230 { | |
1231 case COMPILED_ARGLIST: | |
1232 return compiled_function_arglist (f); | |
1233 case COMPILED_INSTRUCTIONS: | |
1234 return compiled_function_instructions (f); | |
1235 case COMPILED_CONSTANTS: | |
1236 return compiled_function_constants (f); | |
1237 case COMPILED_STACK_DEPTH: | |
1238 return compiled_function_stack_depth (f); | |
1239 case COMPILED_DOC_STRING: | |
1240 return compiled_function_documentation (f); | |
1241 case COMPILED_DOMAIN: | |
1242 return compiled_function_domain (f); | |
1243 case COMPILED_INTERACTIVE: | |
1244 if (f->flags.interactivep) | |
1245 return compiled_function_interactive (f); | |
1246 /* if we return nil, can't tell interactive with no args | |
1247 from noninteractive. */ | |
1248 goto lose; | |
1249 default: | |
1250 goto lose; | |
1251 } | |
1252 } | |
1253 } | |
1254 #endif /* LOSING_BYTECODE */ | |
1255 else | |
1256 { | |
1257 check_losing_bytecode ("elt", sequence); | |
1258 sequence = wrong_type_argument (Qsequencep, sequence); | |
1259 goto retry; | |
1260 } | |
1261 } | |
1262 | |
1263 DEFUN ("last", Flast, 1, 2, 0, /* | |
1264 Return the tail of list LIST, of length N (default 1). | |
1265 LIST may be a dotted list, but not a circular list. | |
1266 Optional argument N must be a non-negative integer. | |
1267 If N is zero, then the atom that terminates the list is returned. | |
1268 If N is greater than the length of LIST, then LIST itself is returned. | |
1269 */ | |
1270 (list, n)) | |
1271 { | |
1272 EMACS_INT int_n, count; | |
1273 Lisp_Object retval, tortoise, hare; | |
1274 | |
1275 CHECK_LIST (list); | |
1276 | |
1277 if (NILP (n)) | |
1278 int_n = 1; | |
1279 else | |
1280 { | |
1281 CHECK_NATNUM (n); | |
1282 int_n = XINT (n); | |
1283 } | |
1284 | |
1285 for (retval = tortoise = hare = list, count = 0; | |
1286 CONSP (hare); | |
1287 hare = XCDR (hare), | |
1288 (int_n-- <= 0 ? ((void) (retval = XCDR (retval))) : (void)0), | |
1289 count++) | |
1290 { | |
1291 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue; | |
1292 | |
1293 if (count & 1) | |
1294 tortoise = XCDR (tortoise); | |
1295 if (EQ (hare, tortoise)) | |
1296 signal_circular_list_error (list); | |
1297 } | |
1298 | |
1299 return retval; | |
1300 } | |
1301 | |
1302 DEFUN ("nbutlast", Fnbutlast, 1, 2, 0, /* | |
1303 Modify LIST to remove the last N (default 1) elements. | |
1304 If LIST has N or fewer elements, nil is returned and LIST is unmodified. | |
1305 */ | |
1306 (list, n)) | |
1307 { | |
1308 EMACS_INT int_n; | |
1309 | |
1310 CHECK_LIST (list); | |
1311 | |
1312 if (NILP (n)) | |
1313 int_n = 1; | |
1314 else | |
1315 { | |
1316 CHECK_NATNUM (n); | |
1317 int_n = XINT (n); | |
1318 } | |
1319 | |
1320 { | |
1321 Lisp_Object last_cons = list; | |
1322 | |
1323 EXTERNAL_LIST_LOOP_1 (list) | |
1324 { | |
1325 if (int_n-- < 0) | |
1326 last_cons = XCDR (last_cons); | |
1327 } | |
1328 | |
1329 if (int_n >= 0) | |
1330 return Qnil; | |
1331 | |
1332 XCDR (last_cons) = Qnil; | |
1333 return list; | |
1334 } | |
1335 } | |
1336 | |
1337 DEFUN ("butlast", Fbutlast, 1, 2, 0, /* | |
1338 Return a copy of LIST with the last N (default 1) elements removed. | |
1339 If LIST has N or fewer elements, nil is returned. | |
1340 */ | |
1341 (list, n)) | |
1342 { | |
444 | 1343 EMACS_INT int_n; |
428 | 1344 |
1345 CHECK_LIST (list); | |
1346 | |
1347 if (NILP (n)) | |
1348 int_n = 1; | |
1349 else | |
1350 { | |
1351 CHECK_NATNUM (n); | |
1352 int_n = XINT (n); | |
1353 } | |
1354 | |
1355 { | |
1356 Lisp_Object retval = Qnil; | |
1357 Lisp_Object tail = list; | |
1358 | |
1359 EXTERNAL_LIST_LOOP_1 (list) | |
1360 { | |
1361 if (--int_n < 0) | |
1362 { | |
1363 retval = Fcons (XCAR (tail), retval); | |
1364 tail = XCDR (tail); | |
1365 } | |
1366 } | |
1367 | |
1368 return Fnreverse (retval); | |
1369 } | |
1370 } | |
1371 | |
1372 DEFUN ("member", Fmember, 2, 2, 0, /* | |
1373 Return non-nil if ELT is an element of LIST. Comparison done with `equal'. | |
1374 The value is actually the tail of LIST whose car is ELT. | |
1375 */ | |
1376 (elt, list)) | |
1377 { | |
1378 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1379 { | |
1380 if (internal_equal (elt, list_elt, 0)) | |
1381 return tail; | |
1382 } | |
1383 return Qnil; | |
1384 } | |
1385 | |
1386 DEFUN ("old-member", Fold_member, 2, 2, 0, /* | |
1387 Return non-nil if ELT is an element of LIST. Comparison done with `old-equal'. | |
1388 The value is actually the tail of LIST whose car is ELT. | |
1389 This function is provided only for byte-code compatibility with v19. | |
1390 Do not use it. | |
1391 */ | |
1392 (elt, list)) | |
1393 { | |
1394 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1395 { | |
1396 if (internal_old_equal (elt, list_elt, 0)) | |
1397 return tail; | |
1398 } | |
1399 return Qnil; | |
1400 } | |
1401 | |
1402 DEFUN ("memq", Fmemq, 2, 2, 0, /* | |
1403 Return non-nil if ELT is an element of LIST. Comparison done with `eq'. | |
1404 The value is actually the tail of LIST whose car is ELT. | |
1405 */ | |
1406 (elt, list)) | |
1407 { | |
1408 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1409 { | |
1410 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt)) | |
1411 return tail; | |
1412 } | |
1413 return Qnil; | |
1414 } | |
1415 | |
1416 DEFUN ("old-memq", Fold_memq, 2, 2, 0, /* | |
1417 Return non-nil if ELT is an element of LIST. Comparison done with `old-eq'. | |
1418 The value is actually the tail of LIST whose car is ELT. | |
1419 This function is provided only for byte-code compatibility with v19. | |
1420 Do not use it. | |
1421 */ | |
1422 (elt, list)) | |
1423 { | |
1424 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail) | |
1425 { | |
1426 if (HACKEQ_UNSAFE (elt, list_elt)) | |
1427 return tail; | |
1428 } | |
1429 return Qnil; | |
1430 } | |
1431 | |
1432 Lisp_Object | |
1433 memq_no_quit (Lisp_Object elt, Lisp_Object list) | |
1434 { | |
1435 LIST_LOOP_3 (list_elt, list, tail) | |
1436 { | |
1437 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt)) | |
1438 return tail; | |
1439 } | |
1440 return Qnil; | |
1441 } | |
1442 | |
1443 DEFUN ("assoc", Fassoc, 2, 2, 0, /* | |
444 | 1444 Return non-nil if KEY is `equal' to the car of an element of ALIST. |
1445 The value is actually the element of ALIST whose car equals KEY. | |
428 | 1446 */ |
444 | 1447 (key, alist)) |
428 | 1448 { |
1449 /* This function can GC. */ | |
444 | 1450 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1451 { |
1452 if (internal_equal (key, elt_car, 0)) | |
1453 return elt; | |
1454 } | |
1455 return Qnil; | |
1456 } | |
1457 | |
1458 DEFUN ("old-assoc", Fold_assoc, 2, 2, 0, /* | |
444 | 1459 Return non-nil if KEY is `old-equal' to the car of an element of ALIST. |
1460 The value is actually the element of ALIST whose car equals KEY. | |
428 | 1461 */ |
444 | 1462 (key, alist)) |
428 | 1463 { |
1464 /* This function can GC. */ | |
444 | 1465 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1466 { |
1467 if (internal_old_equal (key, elt_car, 0)) | |
1468 return elt; | |
1469 } | |
1470 return Qnil; | |
1471 } | |
1472 | |
1473 Lisp_Object | |
444 | 1474 assoc_no_quit (Lisp_Object key, Lisp_Object alist) |
428 | 1475 { |
1476 int speccount = specpdl_depth (); | |
1477 specbind (Qinhibit_quit, Qt); | |
771 | 1478 return unbind_to_1 (speccount, Fassoc (key, alist)); |
428 | 1479 } |
1480 | |
1481 DEFUN ("assq", Fassq, 2, 2, 0, /* | |
444 | 1482 Return non-nil if KEY is `eq' to the car of an element of ALIST. |
1483 The value is actually the element of ALIST whose car is KEY. | |
1484 Elements of ALIST that are not conses are ignored. | |
428 | 1485 */ |
444 | 1486 (key, alist)) |
428 | 1487 { |
444 | 1488 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1489 { |
1490 if (EQ_WITH_EBOLA_NOTICE (key, elt_car)) | |
1491 return elt; | |
1492 } | |
1493 return Qnil; | |
1494 } | |
1495 | |
1496 DEFUN ("old-assq", Fold_assq, 2, 2, 0, /* | |
444 | 1497 Return non-nil if KEY is `old-eq' to the car of an element of ALIST. |
1498 The value is actually the element of ALIST whose car is KEY. | |
1499 Elements of ALIST that are not conses are ignored. | |
428 | 1500 This function is provided only for byte-code compatibility with v19. |
1501 Do not use it. | |
1502 */ | |
444 | 1503 (key, alist)) |
428 | 1504 { |
444 | 1505 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1506 { |
1507 if (HACKEQ_UNSAFE (key, elt_car)) | |
1508 return elt; | |
1509 } | |
1510 return Qnil; | |
1511 } | |
1512 | |
1513 /* Like Fassq but never report an error and do not allow quits. | |
1514 Use only on lists known never to be circular. */ | |
1515 | |
1516 Lisp_Object | |
444 | 1517 assq_no_quit (Lisp_Object key, Lisp_Object alist) |
428 | 1518 { |
1519 /* This cannot GC. */ | |
444 | 1520 LIST_LOOP_2 (elt, alist) |
428 | 1521 { |
1522 Lisp_Object elt_car = XCAR (elt); | |
1523 if (EQ_WITH_EBOLA_NOTICE (key, elt_car)) | |
1524 return elt; | |
1525 } | |
1526 return Qnil; | |
1527 } | |
1528 | |
1529 DEFUN ("rassoc", Frassoc, 2, 2, 0, /* | |
444 | 1530 Return non-nil if VALUE is `equal' to the cdr of an element of ALIST. |
1531 The value is actually the element of ALIST whose cdr equals VALUE. | |
428 | 1532 */ |
444 | 1533 (value, alist)) |
428 | 1534 { |
444 | 1535 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1536 { |
444 | 1537 if (internal_equal (value, elt_cdr, 0)) |
428 | 1538 return elt; |
1539 } | |
1540 return Qnil; | |
1541 } | |
1542 | |
1543 DEFUN ("old-rassoc", Fold_rassoc, 2, 2, 0, /* | |
444 | 1544 Return non-nil if VALUE is `old-equal' to the cdr of an element of ALIST. |
1545 The value is actually the element of ALIST whose cdr equals VALUE. | |
428 | 1546 */ |
444 | 1547 (value, alist)) |
428 | 1548 { |
444 | 1549 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1550 { |
444 | 1551 if (internal_old_equal (value, elt_cdr, 0)) |
428 | 1552 return elt; |
1553 } | |
1554 return Qnil; | |
1555 } | |
1556 | |
1557 DEFUN ("rassq", Frassq, 2, 2, 0, /* | |
444 | 1558 Return non-nil if VALUE is `eq' to the cdr of an element of ALIST. |
1559 The value is actually the element of ALIST whose cdr is VALUE. | |
428 | 1560 */ |
444 | 1561 (value, alist)) |
428 | 1562 { |
444 | 1563 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1564 { |
444 | 1565 if (EQ_WITH_EBOLA_NOTICE (value, elt_cdr)) |
428 | 1566 return elt; |
1567 } | |
1568 return Qnil; | |
1569 } | |
1570 | |
1571 DEFUN ("old-rassq", Fold_rassq, 2, 2, 0, /* | |
444 | 1572 Return non-nil if VALUE is `old-eq' to the cdr of an element of ALIST. |
1573 The value is actually the element of ALIST whose cdr is VALUE. | |
428 | 1574 */ |
444 | 1575 (value, alist)) |
428 | 1576 { |
444 | 1577 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist) |
428 | 1578 { |
444 | 1579 if (HACKEQ_UNSAFE (value, elt_cdr)) |
428 | 1580 return elt; |
1581 } | |
1582 return Qnil; | |
1583 } | |
1584 | |
444 | 1585 /* Like Frassq, but caller must ensure that ALIST is properly |
428 | 1586 nil-terminated and ebola-free. */ |
1587 Lisp_Object | |
444 | 1588 rassq_no_quit (Lisp_Object value, Lisp_Object alist) |
428 | 1589 { |
444 | 1590 LIST_LOOP_2 (elt, alist) |
428 | 1591 { |
1592 Lisp_Object elt_cdr = XCDR (elt); | |
444 | 1593 if (EQ_WITH_EBOLA_NOTICE (value, elt_cdr)) |
428 | 1594 return elt; |
1595 } | |
1596 return Qnil; | |
1597 } | |
1598 | |
1599 | |
1600 DEFUN ("delete", Fdelete, 2, 2, 0, /* | |
1601 Delete by side effect any occurrences of ELT as a member of LIST. | |
1602 The modified LIST is returned. Comparison is done with `equal'. | |
1603 If the first member of LIST is ELT, there is no way to remove it by side | |
1604 effect; therefore, write `(setq foo (delete element foo))' to be sure | |
1605 of changing the value of `foo'. | |
1606 Also see: `remove'. | |
1607 */ | |
1608 (elt, list)) | |
1609 { | |
1610 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1611 (internal_equal (elt, list_elt, 0))); | |
1612 return list; | |
1613 } | |
1614 | |
1615 DEFUN ("old-delete", Fold_delete, 2, 2, 0, /* | |
1616 Delete by side effect any occurrences of ELT as a member of LIST. | |
1617 The modified LIST is returned. Comparison is done with `old-equal'. | |
1618 If the first member of LIST is ELT, there is no way to remove it by side | |
1619 effect; therefore, write `(setq foo (old-delete element foo))' to be sure | |
1620 of changing the value of `foo'. | |
1621 */ | |
1622 (elt, list)) | |
1623 { | |
1624 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1625 (internal_old_equal (elt, list_elt, 0))); | |
1626 return list; | |
1627 } | |
1628 | |
1629 DEFUN ("delq", Fdelq, 2, 2, 0, /* | |
1630 Delete by side effect any occurrences of ELT as a member of LIST. | |
1631 The modified LIST is returned. Comparison is done with `eq'. | |
1632 If the first member of LIST is ELT, there is no way to remove it by side | |
1633 effect; therefore, write `(setq foo (delq element foo))' to be sure of | |
1634 changing the value of `foo'. | |
1635 */ | |
1636 (elt, list)) | |
1637 { | |
1638 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1639 (EQ_WITH_EBOLA_NOTICE (elt, list_elt))); | |
1640 return list; | |
1641 } | |
1642 | |
1643 DEFUN ("old-delq", Fold_delq, 2, 2, 0, /* | |
1644 Delete by side effect any occurrences of ELT as a member of LIST. | |
1645 The modified LIST is returned. Comparison is done with `old-eq'. | |
1646 If the first member of LIST is ELT, there is no way to remove it by side | |
1647 effect; therefore, write `(setq foo (old-delq element foo))' to be sure of | |
1648 changing the value of `foo'. | |
1649 */ | |
1650 (elt, list)) | |
1651 { | |
1652 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list, | |
1653 (HACKEQ_UNSAFE (elt, list_elt))); | |
1654 return list; | |
1655 } | |
1656 | |
1657 /* Like Fdelq, but caller must ensure that LIST is properly | |
1658 nil-terminated and ebola-free. */ | |
1659 | |
1660 Lisp_Object | |
1661 delq_no_quit (Lisp_Object elt, Lisp_Object list) | |
1662 { | |
1663 LIST_LOOP_DELETE_IF (list_elt, list, | |
1664 (EQ_WITH_EBOLA_NOTICE (elt, list_elt))); | |
1665 return list; | |
1666 } | |
1667 | |
1668 /* Be VERY careful with this. This is like delq_no_quit() but | |
1669 also calls free_cons() on the removed conses. You must be SURE | |
1670 that no pointers to the freed conses remain around (e.g. | |
1671 someone else is pointing to part of the list). This function | |
1672 is useful on internal lists that are used frequently and where | |
1673 the actual list doesn't escape beyond known code bounds. */ | |
1674 | |
1675 Lisp_Object | |
1676 delq_no_quit_and_free_cons (Lisp_Object elt, Lisp_Object list) | |
1677 { | |
1678 REGISTER Lisp_Object tail = list; | |
1679 REGISTER Lisp_Object prev = Qnil; | |
1680 | |
1681 while (!NILP (tail)) | |
1682 { | |
1683 REGISTER Lisp_Object tem = XCAR (tail); | |
1684 if (EQ (elt, tem)) | |
1685 { | |
1686 Lisp_Object cons_to_free = tail; | |
1687 if (NILP (prev)) | |
1688 list = XCDR (tail); | |
1689 else | |
1690 XCDR (prev) = XCDR (tail); | |
1691 tail = XCDR (tail); | |
853 | 1692 free_cons (cons_to_free); |
428 | 1693 } |
1694 else | |
1695 { | |
1696 prev = tail; | |
1697 tail = XCDR (tail); | |
1698 } | |
1699 } | |
1700 return list; | |
1701 } | |
1702 | |
1703 DEFUN ("remassoc", Fremassoc, 2, 2, 0, /* | |
444 | 1704 Delete by side effect any elements of ALIST whose car is `equal' to KEY. |
1705 The modified ALIST is returned. If the first member of ALIST has a car | |
428 | 1706 that is `equal' to KEY, there is no way to remove it by side effect; |
1707 therefore, write `(setq foo (remassoc key foo))' to be sure of changing | |
1708 the value of `foo'. | |
1709 */ | |
444 | 1710 (key, alist)) |
428 | 1711 { |
444 | 1712 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1713 (CONSP (elt) && |
1714 internal_equal (key, XCAR (elt), 0))); | |
444 | 1715 return alist; |
428 | 1716 } |
1717 | |
1718 Lisp_Object | |
444 | 1719 remassoc_no_quit (Lisp_Object key, Lisp_Object alist) |
428 | 1720 { |
1721 int speccount = specpdl_depth (); | |
1722 specbind (Qinhibit_quit, Qt); | |
771 | 1723 return unbind_to_1 (speccount, Fremassoc (key, alist)); |
428 | 1724 } |
1725 | |
1726 DEFUN ("remassq", Fremassq, 2, 2, 0, /* | |
444 | 1727 Delete by side effect any elements of ALIST whose car is `eq' to KEY. |
1728 The modified ALIST is returned. If the first member of ALIST has a car | |
428 | 1729 that is `eq' to KEY, there is no way to remove it by side effect; |
1730 therefore, write `(setq foo (remassq key foo))' to be sure of changing | |
1731 the value of `foo'. | |
1732 */ | |
444 | 1733 (key, alist)) |
428 | 1734 { |
444 | 1735 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1736 (CONSP (elt) && |
1737 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt)))); | |
444 | 1738 return alist; |
428 | 1739 } |
1740 | |
1741 /* no quit, no errors; be careful */ | |
1742 | |
1743 Lisp_Object | |
444 | 1744 remassq_no_quit (Lisp_Object key, Lisp_Object alist) |
428 | 1745 { |
444 | 1746 LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1747 (CONSP (elt) && |
1748 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt)))); | |
444 | 1749 return alist; |
428 | 1750 } |
1751 | |
1752 DEFUN ("remrassoc", Fremrassoc, 2, 2, 0, /* | |
444 | 1753 Delete by side effect any elements of ALIST whose cdr is `equal' to VALUE. |
1754 The modified ALIST is returned. If the first member of ALIST has a car | |
428 | 1755 that is `equal' to VALUE, there is no way to remove it by side effect; |
1756 therefore, write `(setq foo (remrassoc value foo))' to be sure of changing | |
1757 the value of `foo'. | |
1758 */ | |
444 | 1759 (value, alist)) |
428 | 1760 { |
444 | 1761 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1762 (CONSP (elt) && |
1763 internal_equal (value, XCDR (elt), 0))); | |
444 | 1764 return alist; |
428 | 1765 } |
1766 | |
1767 DEFUN ("remrassq", Fremrassq, 2, 2, 0, /* | |
444 | 1768 Delete by side effect any elements of ALIST whose cdr is `eq' to VALUE. |
1769 The modified ALIST is returned. If the first member of ALIST has a car | |
428 | 1770 that is `eq' to VALUE, there is no way to remove it by side effect; |
1771 therefore, write `(setq foo (remrassq value foo))' to be sure of changing | |
1772 the value of `foo'. | |
1773 */ | |
444 | 1774 (value, alist)) |
428 | 1775 { |
444 | 1776 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1777 (CONSP (elt) && |
1778 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt)))); | |
444 | 1779 return alist; |
428 | 1780 } |
1781 | |
1782 /* Like Fremrassq, fast and unsafe; be careful */ | |
1783 Lisp_Object | |
444 | 1784 remrassq_no_quit (Lisp_Object value, Lisp_Object alist) |
428 | 1785 { |
444 | 1786 LIST_LOOP_DELETE_IF (elt, alist, |
428 | 1787 (CONSP (elt) && |
1788 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt)))); | |
444 | 1789 return alist; |
428 | 1790 } |
1791 | |
1792 DEFUN ("nreverse", Fnreverse, 1, 1, 0, /* | |
1793 Reverse LIST by destructively modifying cdr pointers. | |
1794 Return the beginning of the reversed list. | |
1795 Also see: `reverse'. | |
1796 */ | |
1797 (list)) | |
1798 { | |
1799 struct gcpro gcpro1, gcpro2; | |
1849 | 1800 Lisp_Object prev = Qnil; |
1801 Lisp_Object tail = list; | |
428 | 1802 |
1803 /* We gcpro our args; see `nconc' */ | |
1804 GCPRO2 (prev, tail); | |
1805 while (!NILP (tail)) | |
1806 { | |
1807 REGISTER Lisp_Object next; | |
1808 CONCHECK_CONS (tail); | |
1809 next = XCDR (tail); | |
1810 XCDR (tail) = prev; | |
1811 prev = tail; | |
1812 tail = next; | |
1813 } | |
1814 UNGCPRO; | |
1815 return prev; | |
1816 } | |
1817 | |
1818 DEFUN ("reverse", Freverse, 1, 1, 0, /* | |
1819 Reverse LIST, copying. Return the beginning of the reversed list. | |
1820 See also the function `nreverse', which is used more often. | |
1821 */ | |
1822 (list)) | |
1823 { | |
1824 Lisp_Object reversed_list = Qnil; | |
1825 EXTERNAL_LIST_LOOP_2 (elt, list) | |
1826 { | |
1827 reversed_list = Fcons (elt, reversed_list); | |
1828 } | |
1829 return reversed_list; | |
1830 } | |
1831 | |
1832 static Lisp_Object list_merge (Lisp_Object org_l1, Lisp_Object org_l2, | |
1833 Lisp_Object lisp_arg, | |
1834 int (*pred_fn) (Lisp_Object, Lisp_Object, | |
1835 Lisp_Object lisp_arg)); | |
1836 | |
872 | 1837 /* The sort function should return > 0 if OBJ1 < OBJ2, < 0 otherwise. |
1838 NOTE: This is backwards from the way qsort() works. */ | |
1839 | |
428 | 1840 Lisp_Object |
1841 list_sort (Lisp_Object list, | |
1842 Lisp_Object lisp_arg, | |
872 | 1843 int (*pred_fn) (Lisp_Object obj1, Lisp_Object obj2, |
428 | 1844 Lisp_Object lisp_arg)) |
1845 { | |
1846 struct gcpro gcpro1, gcpro2, gcpro3; | |
1847 Lisp_Object back, tem; | |
1848 Lisp_Object front = list; | |
1849 Lisp_Object len = Flength (list); | |
444 | 1850 |
1851 if (XINT (len) < 2) | |
428 | 1852 return list; |
1853 | |
444 | 1854 len = make_int (XINT (len) / 2 - 1); |
428 | 1855 tem = Fnthcdr (len, list); |
1856 back = Fcdr (tem); | |
1857 Fsetcdr (tem, Qnil); | |
1858 | |
1859 GCPRO3 (front, back, lisp_arg); | |
1860 front = list_sort (front, lisp_arg, pred_fn); | |
1861 back = list_sort (back, lisp_arg, pred_fn); | |
1862 UNGCPRO; | |
1863 return list_merge (front, back, lisp_arg, pred_fn); | |
1864 } | |
1865 | |
1866 | |
1867 static int | |
1868 merge_pred_function (Lisp_Object obj1, Lisp_Object obj2, | |
1869 Lisp_Object pred) | |
1870 { | |
1871 Lisp_Object tmp; | |
1872 | |
1873 /* prevents the GC from happening in call2 */ | |
853 | 1874 /* Emacs' GC doesn't actually relocate pointers, so this probably |
1875 isn't strictly necessary */ | |
771 | 1876 int speccount = begin_gc_forbidden (); |
428 | 1877 tmp = call2 (pred, obj1, obj2); |
771 | 1878 unbind_to (speccount); |
428 | 1879 |
1880 if (NILP (tmp)) | |
1881 return -1; | |
1882 else | |
1883 return 1; | |
1884 } | |
1885 | |
1886 DEFUN ("sort", Fsort, 2, 2, 0, /* | |
1887 Sort LIST, stably, comparing elements using PREDICATE. | |
1888 Returns the sorted list. LIST is modified by side effects. | |
1889 PREDICATE is called with two elements of LIST, and should return T | |
1890 if the first element is "less" than the second. | |
1891 */ | |
444 | 1892 (list, predicate)) |
428 | 1893 { |
444 | 1894 return list_sort (list, predicate, merge_pred_function); |
428 | 1895 } |
1896 | |
1897 Lisp_Object | |
1898 merge (Lisp_Object org_l1, Lisp_Object org_l2, | |
1899 Lisp_Object pred) | |
1900 { | |
1901 return list_merge (org_l1, org_l2, pred, merge_pred_function); | |
1902 } | |
1903 | |
1904 | |
1905 static Lisp_Object | |
1906 list_merge (Lisp_Object org_l1, Lisp_Object org_l2, | |
1907 Lisp_Object lisp_arg, | |
1908 int (*pred_fn) (Lisp_Object, Lisp_Object, Lisp_Object lisp_arg)) | |
1909 { | |
1910 Lisp_Object value; | |
1911 Lisp_Object tail; | |
1912 Lisp_Object tem; | |
1913 Lisp_Object l1, l2; | |
1914 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; | |
1915 | |
1916 l1 = org_l1; | |
1917 l2 = org_l2; | |
1918 tail = Qnil; | |
1919 value = Qnil; | |
1920 | |
1921 /* It is sufficient to protect org_l1 and org_l2. | |
1922 When l1 and l2 are updated, we copy the new values | |
1923 back into the org_ vars. */ | |
1924 | |
1925 GCPRO4 (org_l1, org_l2, lisp_arg, value); | |
1926 | |
1927 while (1) | |
1928 { | |
1929 if (NILP (l1)) | |
1930 { | |
1931 UNGCPRO; | |
1932 if (NILP (tail)) | |
1933 return l2; | |
1934 Fsetcdr (tail, l2); | |
1935 return value; | |
1936 } | |
1937 if (NILP (l2)) | |
1938 { | |
1939 UNGCPRO; | |
1940 if (NILP (tail)) | |
1941 return l1; | |
1942 Fsetcdr (tail, l1); | |
1943 return value; | |
1944 } | |
1945 | |
1946 if (((*pred_fn) (Fcar (l2), Fcar (l1), lisp_arg)) < 0) | |
1947 { | |
1948 tem = l1; | |
1949 l1 = Fcdr (l1); | |
1950 org_l1 = l1; | |
1951 } | |
1952 else | |
1953 { | |
1954 tem = l2; | |
1955 l2 = Fcdr (l2); | |
1956 org_l2 = l2; | |
1957 } | |
1958 if (NILP (tail)) | |
1959 value = tem; | |
1960 else | |
1961 Fsetcdr (tail, tem); | |
1962 tail = tem; | |
1963 } | |
1964 } | |
1965 | |
1966 | |
1967 /************************************************************************/ | |
1968 /* property-list functions */ | |
1969 /************************************************************************/ | |
1970 | |
1971 /* For properties of text, we need to do order-insensitive comparison of | |
1972 plists. That is, we need to compare two plists such that they are the | |
1973 same if they have the same set of keys, and equivalent values. | |
1974 So (a 1 b 2) would be equal to (b 2 a 1). | |
1975 | |
1976 NIL_MEANS_NOT_PRESENT is as in `plists-eq' etc. | |
1977 LAXP means use `equal' for comparisons. | |
1978 */ | |
1979 int | |
1980 plists_differ (Lisp_Object a, Lisp_Object b, int nil_means_not_present, | |
1981 int laxp, int depth) | |
1982 { | |
438 | 1983 int eqp = (depth == -1); /* -1 as depth means use eq, not equal. */ |
428 | 1984 int la, lb, m, i, fill; |
1985 Lisp_Object *keys, *vals; | |
1986 char *flags; | |
1987 Lisp_Object rest; | |
1988 | |
1989 if (NILP (a) && NILP (b)) | |
1990 return 0; | |
1991 | |
1992 Fcheck_valid_plist (a); | |
1993 Fcheck_valid_plist (b); | |
1994 | |
1995 la = XINT (Flength (a)); | |
1996 lb = XINT (Flength (b)); | |
1997 m = (la > lb ? la : lb); | |
1998 fill = 0; | |
1999 keys = alloca_array (Lisp_Object, m); | |
2000 vals = alloca_array (Lisp_Object, m); | |
2001 flags = alloca_array (char, m); | |
2002 | |
2003 /* First extract the pairs from A. */ | |
2004 for (rest = a; !NILP (rest); rest = XCDR (XCDR (rest))) | |
2005 { | |
2006 Lisp_Object k = XCAR (rest); | |
2007 Lisp_Object v = XCAR (XCDR (rest)); | |
2008 /* Maybe be Ebolified. */ | |
2009 if (nil_means_not_present && NILP (v)) continue; | |
2010 keys [fill] = k; | |
2011 vals [fill] = v; | |
2012 flags[fill] = 0; | |
2013 fill++; | |
2014 } | |
2015 /* Now iterate over B, and stop if we find something that's not in A, | |
2016 or that doesn't match. As we match, mark them. */ | |
2017 for (rest = b; !NILP (rest); rest = XCDR (XCDR (rest))) | |
2018 { | |
2019 Lisp_Object k = XCAR (rest); | |
2020 Lisp_Object v = XCAR (XCDR (rest)); | |
2021 /* Maybe be Ebolified. */ | |
2022 if (nil_means_not_present && NILP (v)) continue; | |
2023 for (i = 0; i < fill; i++) | |
2024 { | |
2025 if (!laxp ? EQ (k, keys [i]) : internal_equal (k, keys [i], depth)) | |
2026 { | |
434 | 2027 if (eqp |
2028 /* We narrowly escaped being Ebolified here. */ | |
2029 ? !EQ_WITH_EBOLA_NOTICE (v, vals [i]) | |
2030 : !internal_equal (v, vals [i], depth)) | |
428 | 2031 /* a property in B has a different value than in A */ |
2032 goto MISMATCH; | |
2033 flags [i] = 1; | |
2034 break; | |
2035 } | |
2036 } | |
2037 if (i == fill) | |
2038 /* there are some properties in B that are not in A */ | |
2039 goto MISMATCH; | |
2040 } | |
2041 /* Now check to see that all the properties in A were also in B */ | |
2042 for (i = 0; i < fill; i++) | |
2043 if (flags [i] == 0) | |
2044 goto MISMATCH; | |
2045 | |
2046 /* Ok. */ | |
2047 return 0; | |
2048 | |
2049 MISMATCH: | |
2050 return 1; | |
2051 } | |
2052 | |
2053 DEFUN ("plists-eq", Fplists_eq, 2, 3, 0, /* | |
2054 Return non-nil if property lists A and B are `eq'. | |
2055 A property list is an alternating list of keywords and values. | |
2056 This function does order-insensitive comparisons of the property lists: | |
2057 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
2058 Comparison between values is done using `eq'. See also `plists-equal'. | |
2059 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2060 a nil value is ignored. This feature is a virus that has infected | |
2061 old Lisp implementations, but should not be used except for backward | |
2062 compatibility. | |
2063 */ | |
2064 (a, b, nil_means_not_present)) | |
2065 { | |
2066 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, -1) | |
2067 ? Qnil : Qt); | |
2068 } | |
2069 | |
2070 DEFUN ("plists-equal", Fplists_equal, 2, 3, 0, /* | |
2071 Return non-nil if property lists A and B are `equal'. | |
2072 A property list is an alternating list of keywords and values. This | |
2073 function does order-insensitive comparisons of the property lists: For | |
2074 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
2075 Comparison between values is done using `equal'. See also `plists-eq'. | |
2076 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2077 a nil value is ignored. This feature is a virus that has infected | |
2078 old Lisp implementations, but should not be used except for backward | |
2079 compatibility. | |
2080 */ | |
2081 (a, b, nil_means_not_present)) | |
2082 { | |
2083 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, 1) | |
2084 ? Qnil : Qt); | |
2085 } | |
2086 | |
2087 | |
2088 DEFUN ("lax-plists-eq", Flax_plists_eq, 2, 3, 0, /* | |
2089 Return non-nil if lax property lists A and B are `eq'. | |
2090 A property list is an alternating list of keywords and values. | |
2091 This function does order-insensitive comparisons of the property lists: | |
2092 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
2093 Comparison between values is done using `eq'. See also `plists-equal'. | |
2094 A lax property list is like a regular one except that comparisons between | |
2095 keywords is done using `equal' instead of `eq'. | |
2096 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2097 a nil value is ignored. This feature is a virus that has infected | |
2098 old Lisp implementations, but should not be used except for backward | |
2099 compatibility. | |
2100 */ | |
2101 (a, b, nil_means_not_present)) | |
2102 { | |
2103 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, -1) | |
2104 ? Qnil : Qt); | |
2105 } | |
2106 | |
2107 DEFUN ("lax-plists-equal", Flax_plists_equal, 2, 3, 0, /* | |
2108 Return non-nil if lax property lists A and B are `equal'. | |
2109 A property list is an alternating list of keywords and values. This | |
2110 function does order-insensitive comparisons of the property lists: For | |
2111 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal. | |
2112 Comparison between values is done using `equal'. See also `plists-eq'. | |
2113 A lax property list is like a regular one except that comparisons between | |
2114 keywords is done using `equal' instead of `eq'. | |
2115 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2116 a nil value is ignored. This feature is a virus that has infected | |
2117 old Lisp implementations, but should not be used except for backward | |
2118 compatibility. | |
2119 */ | |
2120 (a, b, nil_means_not_present)) | |
2121 { | |
2122 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, 1) | |
2123 ? Qnil : Qt); | |
2124 } | |
2125 | |
2126 /* Return the value associated with key PROPERTY in property list PLIST. | |
2127 Return nil if key not found. This function is used for internal | |
2128 property lists that cannot be directly manipulated by the user. | |
2129 */ | |
2130 | |
2131 Lisp_Object | |
2132 internal_plist_get (Lisp_Object plist, Lisp_Object property) | |
2133 { | |
2134 Lisp_Object tail; | |
2135 | |
2136 for (tail = plist; !NILP (tail); tail = XCDR (XCDR (tail))) | |
2137 { | |
2138 if (EQ (XCAR (tail), property)) | |
2139 return XCAR (XCDR (tail)); | |
2140 } | |
2141 | |
2142 return Qunbound; | |
2143 } | |
2144 | |
2145 /* Set PLIST's value for PROPERTY to VALUE. Analogous to | |
2146 internal_plist_get(). */ | |
2147 | |
2148 void | |
2149 internal_plist_put (Lisp_Object *plist, Lisp_Object property, | |
2150 Lisp_Object value) | |
2151 { | |
2152 Lisp_Object tail; | |
2153 | |
2154 for (tail = *plist; !NILP (tail); tail = XCDR (XCDR (tail))) | |
2155 { | |
2156 if (EQ (XCAR (tail), property)) | |
2157 { | |
2158 XCAR (XCDR (tail)) = value; | |
2159 return; | |
2160 } | |
2161 } | |
2162 | |
2163 *plist = Fcons (property, Fcons (value, *plist)); | |
2164 } | |
2165 | |
2166 int | |
2167 internal_remprop (Lisp_Object *plist, Lisp_Object property) | |
2168 { | |
2169 Lisp_Object tail, prev; | |
2170 | |
2171 for (tail = *plist, prev = Qnil; | |
2172 !NILP (tail); | |
2173 tail = XCDR (XCDR (tail))) | |
2174 { | |
2175 if (EQ (XCAR (tail), property)) | |
2176 { | |
2177 if (NILP (prev)) | |
2178 *plist = XCDR (XCDR (tail)); | |
2179 else | |
2180 XCDR (XCDR (prev)) = XCDR (XCDR (tail)); | |
2181 return 1; | |
2182 } | |
2183 else | |
2184 prev = tail; | |
2185 } | |
2186 | |
2187 return 0; | |
2188 } | |
2189 | |
2190 /* Called on a malformed property list. BADPLACE should be some | |
2191 place where truncating will form a good list -- i.e. we shouldn't | |
2192 result in a list with an odd length. */ | |
2193 | |
2194 static Lisp_Object | |
578 | 2195 bad_bad_bunny (Lisp_Object *plist, Lisp_Object *badplace, Error_Behavior errb) |
428 | 2196 { |
2197 if (ERRB_EQ (errb, ERROR_ME)) | |
2198 return Fsignal (Qmalformed_property_list, list2 (*plist, *badplace)); | |
2199 else | |
2200 { | |
2201 if (ERRB_EQ (errb, ERROR_ME_WARN)) | |
2202 { | |
2203 warn_when_safe_lispobj | |
2204 (Qlist, Qwarning, | |
771 | 2205 list2 (build_msg_string |
428 | 2206 ("Malformed property list -- list has been truncated"), |
2207 *plist)); | |
793 | 2208 /* #### WARNING: This is more dangerous than it seems; perhaps |
2209 not a good idea. It also violates the principle of least | |
2210 surprise -- passing in ERROR_ME_WARN causes truncation, but | |
2211 ERROR_ME and ERROR_ME_NOT don't. */ | |
428 | 2212 *badplace = Qnil; |
2213 } | |
2214 return Qunbound; | |
2215 } | |
2216 } | |
2217 | |
2218 /* Called on a circular property list. BADPLACE should be some place | |
2219 where truncating will result in an even-length list, as above. | |
2220 If doesn't particularly matter where we truncate -- anywhere we | |
2221 truncate along the entire list will break the circularity, because | |
2222 it will create a terminus and the list currently doesn't have one. | |
2223 */ | |
2224 | |
2225 static Lisp_Object | |
578 | 2226 bad_bad_turtle (Lisp_Object *plist, Lisp_Object *badplace, Error_Behavior errb) |
428 | 2227 { |
2228 if (ERRB_EQ (errb, ERROR_ME)) | |
2229 return Fsignal (Qcircular_property_list, list1 (*plist)); | |
2230 else | |
2231 { | |
2232 if (ERRB_EQ (errb, ERROR_ME_WARN)) | |
2233 { | |
2234 warn_when_safe_lispobj | |
2235 (Qlist, Qwarning, | |
771 | 2236 list2 (build_msg_string |
428 | 2237 ("Circular property list -- list has been truncated"), |
2238 *plist)); | |
793 | 2239 /* #### WARNING: This is more dangerous than it seems; perhaps |
2240 not a good idea. It also violates the principle of least | |
2241 surprise -- passing in ERROR_ME_WARN causes truncation, but | |
2242 ERROR_ME and ERROR_ME_NOT don't. */ | |
428 | 2243 *badplace = Qnil; |
2244 } | |
2245 return Qunbound; | |
2246 } | |
2247 } | |
2248 | |
2249 /* Advance the tortoise pointer by two (one iteration of a property-list | |
2250 loop) and the hare pointer by four and verify that no malformations | |
2251 or circularities exist. If so, return zero and store a value into | |
2252 RETVAL that should be returned by the calling function. Otherwise, | |
2253 return 1. See external_plist_get(). | |
2254 */ | |
2255 | |
2256 static int | |
2257 advance_plist_pointers (Lisp_Object *plist, | |
2258 Lisp_Object **tortoise, Lisp_Object **hare, | |
578 | 2259 Error_Behavior errb, Lisp_Object *retval) |
428 | 2260 { |
2261 int i; | |
2262 Lisp_Object *tortsave = *tortoise; | |
2263 | |
2264 /* Note that our "fixing" may be more brutal than necessary, | |
2265 but it's the user's own problem, not ours, if they went in and | |
2266 manually fucked up a plist. */ | |
2267 | |
2268 for (i = 0; i < 2; i++) | |
2269 { | |
2270 /* This is a standard iteration of a defensive-loop-checking | |
2271 loop. We just do it twice because we want to advance past | |
2272 both the property and its value. | |
2273 | |
2274 If the pointer indirection is confusing you, remember that | |
2275 one level of indirection on the hare and tortoise pointers | |
2276 is only due to pass-by-reference for this function. The other | |
2277 level is so that the plist can be fixed in place. */ | |
2278 | |
2279 /* When we reach the end of a well-formed plist, **HARE is | |
2280 nil. In that case, we don't do anything at all except | |
2281 advance TORTOISE by one. Otherwise, we advance HARE | |
2282 by two (making sure it's OK to do so), then advance | |
2283 TORTOISE by one (it will always be OK to do so because | |
2284 the HARE is always ahead of the TORTOISE and will have | |
2285 already verified the path), then make sure TORTOISE and | |
2286 HARE don't contain the same non-nil object -- if the | |
2287 TORTOISE and the HARE ever meet, then obviously we're | |
2288 in a circularity, and if we're in a circularity, then | |
2289 the TORTOISE and the HARE can't cross paths without | |
2290 meeting, since the HARE only gains one step over the | |
2291 TORTOISE per iteration. */ | |
2292 | |
2293 if (!NILP (**hare)) | |
2294 { | |
2295 Lisp_Object *haresave = *hare; | |
2296 if (!CONSP (**hare)) | |
2297 { | |
2298 *retval = bad_bad_bunny (plist, haresave, errb); | |
2299 return 0; | |
2300 } | |
2301 *hare = &XCDR (**hare); | |
2302 /* In a non-plist, we'd check here for a nil value for | |
2303 **HARE, which is OK (it just means the list has an | |
2304 odd number of elements). In a plist, it's not OK | |
2305 for the list to have an odd number of elements. */ | |
2306 if (!CONSP (**hare)) | |
2307 { | |
2308 *retval = bad_bad_bunny (plist, haresave, errb); | |
2309 return 0; | |
2310 } | |
2311 *hare = &XCDR (**hare); | |
2312 } | |
2313 | |
2314 *tortoise = &XCDR (**tortoise); | |
2315 if (!NILP (**hare) && EQ (**tortoise, **hare)) | |
2316 { | |
2317 *retval = bad_bad_turtle (plist, tortsave, errb); | |
2318 return 0; | |
2319 } | |
2320 } | |
2321 | |
2322 return 1; | |
2323 } | |
2324 | |
2325 /* Return the value of PROPERTY from PLIST, or Qunbound if | |
2326 property is not on the list. | |
2327 | |
2328 PLIST is a Lisp-accessible property list, meaning that it | |
2329 has to be checked for malformations and circularities. | |
2330 | |
2331 If ERRB is ERROR_ME, an error will be signalled. Otherwise, the | |
2332 function will never signal an error; and if ERRB is ERROR_ME_WARN, | |
2333 on finding a malformation or a circularity, it issues a warning and | |
2334 attempts to silently fix the problem. | |
2335 | |
2336 A pointer to PLIST is passed in so that PLIST can be successfully | |
2337 "fixed" even if the error is at the beginning of the plist. */ | |
2338 | |
2339 Lisp_Object | |
2340 external_plist_get (Lisp_Object *plist, Lisp_Object property, | |
578 | 2341 int laxp, Error_Behavior errb) |
428 | 2342 { |
2343 Lisp_Object *tortoise = plist; | |
2344 Lisp_Object *hare = plist; | |
2345 | |
2346 while (!NILP (*tortoise)) | |
2347 { | |
2348 Lisp_Object *tortsave = tortoise; | |
2349 Lisp_Object retval; | |
2350 | |
2351 /* We do the standard tortoise/hare march. We isolate the | |
2352 grungy stuff to do this in advance_plist_pointers(), though. | |
2353 To us, all this function does is advance the tortoise | |
2354 pointer by two and the hare pointer by four and make sure | |
2355 everything's OK. We first advance the pointers and then | |
2356 check if a property matched; this ensures that our | |
2357 check for a matching property is safe. */ | |
2358 | |
2359 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval)) | |
2360 return retval; | |
2361 | |
2362 if (!laxp ? EQ (XCAR (*tortsave), property) | |
2363 : internal_equal (XCAR (*tortsave), property, 0)) | |
2364 return XCAR (XCDR (*tortsave)); | |
2365 } | |
2366 | |
2367 return Qunbound; | |
2368 } | |
2369 | |
2370 /* Set PLIST's value for PROPERTY to VALUE, given a possibly | |
2371 malformed or circular plist. Analogous to external_plist_get(). */ | |
2372 | |
2373 void | |
2374 external_plist_put (Lisp_Object *plist, Lisp_Object property, | |
578 | 2375 Lisp_Object value, int laxp, Error_Behavior errb) |
428 | 2376 { |
2377 Lisp_Object *tortoise = plist; | |
2378 Lisp_Object *hare = plist; | |
2379 | |
2380 while (!NILP (*tortoise)) | |
2381 { | |
2382 Lisp_Object *tortsave = tortoise; | |
2383 Lisp_Object retval; | |
2384 | |
2385 /* See above */ | |
2386 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval)) | |
2387 return; | |
2388 | |
2389 if (!laxp ? EQ (XCAR (*tortsave), property) | |
2390 : internal_equal (XCAR (*tortsave), property, 0)) | |
2391 { | |
2392 XCAR (XCDR (*tortsave)) = value; | |
2393 return; | |
2394 } | |
2395 } | |
2396 | |
2397 *plist = Fcons (property, Fcons (value, *plist)); | |
2398 } | |
2399 | |
2400 int | |
2401 external_remprop (Lisp_Object *plist, Lisp_Object property, | |
578 | 2402 int laxp, Error_Behavior errb) |
428 | 2403 { |
2404 Lisp_Object *tortoise = plist; | |
2405 Lisp_Object *hare = plist; | |
2406 | |
2407 while (!NILP (*tortoise)) | |
2408 { | |
2409 Lisp_Object *tortsave = tortoise; | |
2410 Lisp_Object retval; | |
2411 | |
2412 /* See above */ | |
2413 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval)) | |
2414 return 0; | |
2415 | |
2416 if (!laxp ? EQ (XCAR (*tortsave), property) | |
2417 : internal_equal (XCAR (*tortsave), property, 0)) | |
2418 { | |
2419 /* Now you see why it's so convenient to have that level | |
2420 of indirection. */ | |
2421 *tortsave = XCDR (XCDR (*tortsave)); | |
2422 return 1; | |
2423 } | |
2424 } | |
2425 | |
2426 return 0; | |
2427 } | |
2428 | |
2429 DEFUN ("plist-get", Fplist_get, 2, 3, 0, /* | |
2430 Extract a value from a property list. | |
2431 PLIST is a property list, which is a list of the form | |
444 | 2432 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...). |
2433 PROPERTY is usually a symbol. | |
2434 This function returns the value corresponding to the PROPERTY, | |
2435 or DEFAULT if PROPERTY is not one of the properties on the list. | |
428 | 2436 */ |
444 | 2437 (plist, property, default_)) |
428 | 2438 { |
444 | 2439 Lisp_Object value = external_plist_get (&plist, property, 0, ERROR_ME); |
2440 return UNBOUNDP (value) ? default_ : value; | |
428 | 2441 } |
2442 | |
2443 DEFUN ("plist-put", Fplist_put, 3, 3, 0, /* | |
444 | 2444 Change value in PLIST of PROPERTY to VALUE. |
2445 PLIST is a property list, which is a list of the form | |
2446 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2 ...). | |
2447 PROPERTY is usually a symbol and VALUE is any object. | |
2448 If PROPERTY is already a property on the list, its value is set to VALUE, | |
2449 otherwise the new PROPERTY VALUE pair is added. | |
2450 The new plist is returned; use `(setq x (plist-put x property value))' | |
2451 to be sure to use the new value. PLIST is modified by side effect. | |
428 | 2452 */ |
444 | 2453 (plist, property, value)) |
428 | 2454 { |
444 | 2455 external_plist_put (&plist, property, value, 0, ERROR_ME); |
428 | 2456 return plist; |
2457 } | |
2458 | |
2459 DEFUN ("plist-remprop", Fplist_remprop, 2, 2, 0, /* | |
444 | 2460 Remove from PLIST the property PROPERTY and its value. |
2461 PLIST is a property list, which is a list of the form | |
2462 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2 ...). | |
2463 PROPERTY is usually a symbol. | |
2464 The new plist is returned; use `(setq x (plist-remprop x property))' | |
2465 to be sure to use the new value. PLIST is modified by side effect. | |
428 | 2466 */ |
444 | 2467 (plist, property)) |
428 | 2468 { |
444 | 2469 external_remprop (&plist, property, 0, ERROR_ME); |
428 | 2470 return plist; |
2471 } | |
2472 | |
2473 DEFUN ("plist-member", Fplist_member, 2, 2, 0, /* | |
444 | 2474 Return t if PROPERTY has a value specified in PLIST. |
428 | 2475 */ |
444 | 2476 (plist, property)) |
428 | 2477 { |
444 | 2478 Lisp_Object value = Fplist_get (plist, property, Qunbound); |
2479 return UNBOUNDP (value) ? Qnil : Qt; | |
428 | 2480 } |
2481 | |
2482 DEFUN ("check-valid-plist", Fcheck_valid_plist, 1, 1, 0, /* | |
2483 Given a plist, signal an error if there is anything wrong with it. | |
2484 This means that it's a malformed or circular plist. | |
2485 */ | |
2486 (plist)) | |
2487 { | |
2488 Lisp_Object *tortoise; | |
2489 Lisp_Object *hare; | |
2490 | |
2491 start_over: | |
2492 tortoise = &plist; | |
2493 hare = &plist; | |
2494 while (!NILP (*tortoise)) | |
2495 { | |
2496 Lisp_Object retval; | |
2497 | |
2498 /* See above */ | |
2499 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME, | |
2500 &retval)) | |
2501 goto start_over; | |
2502 } | |
2503 | |
2504 return Qnil; | |
2505 } | |
2506 | |
2507 DEFUN ("valid-plist-p", Fvalid_plist_p, 1, 1, 0, /* | |
2508 Given a plist, return non-nil if its format is correct. | |
2509 If it returns nil, `check-valid-plist' will signal an error when given | |
442 | 2510 the plist; that means it's a malformed or circular plist. |
428 | 2511 */ |
2512 (plist)) | |
2513 { | |
2514 Lisp_Object *tortoise; | |
2515 Lisp_Object *hare; | |
2516 | |
2517 tortoise = &plist; | |
2518 hare = &plist; | |
2519 while (!NILP (*tortoise)) | |
2520 { | |
2521 Lisp_Object retval; | |
2522 | |
2523 /* See above */ | |
2524 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME_NOT, | |
2525 &retval)) | |
2526 return Qnil; | |
2527 } | |
2528 | |
2529 return Qt; | |
2530 } | |
2531 | |
2532 DEFUN ("canonicalize-plist", Fcanonicalize_plist, 1, 2, 0, /* | |
2533 Destructively remove any duplicate entries from a plist. | |
2534 In such cases, the first entry applies. | |
2535 | |
2536 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2537 a nil value is removed. This feature is a virus that has infected | |
2538 old Lisp implementations, but should not be used except for backward | |
2539 compatibility. | |
2540 | |
2541 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the | |
2542 return value may not be EQ to the passed-in value, so make sure to | |
2543 `setq' the value back into where it came from. | |
2544 */ | |
2545 (plist, nil_means_not_present)) | |
2546 { | |
2547 Lisp_Object head = plist; | |
2548 | |
2549 Fcheck_valid_plist (plist); | |
2550 | |
2551 while (!NILP (plist)) | |
2552 { | |
2553 Lisp_Object prop = Fcar (plist); | |
2554 Lisp_Object next = Fcdr (plist); | |
2555 | |
2556 CHECK_CONS (next); /* just make doubly sure we catch any errors */ | |
2557 if (!NILP (nil_means_not_present) && NILP (Fcar (next))) | |
2558 { | |
2559 if (EQ (head, plist)) | |
2560 head = Fcdr (next); | |
2561 plist = Fcdr (next); | |
2562 continue; | |
2563 } | |
2564 /* external_remprop returns 1 if it removed any property. | |
2565 We have to loop till it didn't remove anything, in case | |
2566 the property occurs many times. */ | |
2567 while (external_remprop (&XCDR (next), prop, 0, ERROR_ME)) | |
2568 DO_NOTHING; | |
2569 plist = Fcdr (next); | |
2570 } | |
2571 | |
2572 return head; | |
2573 } | |
2574 | |
2575 DEFUN ("lax-plist-get", Flax_plist_get, 2, 3, 0, /* | |
2576 Extract a value from a lax property list. | |
444 | 2577 LAX-PLIST is a lax property list, which is a list of the form |
2578 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between | |
2579 properties is done using `equal' instead of `eq'. | |
2580 PROPERTY is usually a symbol. | |
2581 This function returns the value corresponding to PROPERTY, | |
2582 or DEFAULT if PROPERTY is not one of the properties on the list. | |
428 | 2583 */ |
444 | 2584 (lax_plist, property, default_)) |
428 | 2585 { |
444 | 2586 Lisp_Object value = external_plist_get (&lax_plist, property, 1, ERROR_ME); |
2587 return UNBOUNDP (value) ? default_ : value; | |
428 | 2588 } |
2589 | |
2590 DEFUN ("lax-plist-put", Flax_plist_put, 3, 3, 0, /* | |
444 | 2591 Change value in LAX-PLIST of PROPERTY to VALUE. |
2592 LAX-PLIST is a lax property list, which is a list of the form | |
2593 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between | |
2594 properties is done using `equal' instead of `eq'. | |
2595 PROPERTY is usually a symbol and VALUE is any object. | |
2596 If PROPERTY is already a property on the list, its value is set to | |
2597 VALUE, otherwise the new PROPERTY VALUE pair is added. | |
2598 The new plist is returned; use `(setq x (lax-plist-put x property value))' | |
2599 to be sure to use the new value. LAX-PLIST is modified by side effect. | |
428 | 2600 */ |
444 | 2601 (lax_plist, property, value)) |
428 | 2602 { |
444 | 2603 external_plist_put (&lax_plist, property, value, 1, ERROR_ME); |
428 | 2604 return lax_plist; |
2605 } | |
2606 | |
2607 DEFUN ("lax-plist-remprop", Flax_plist_remprop, 2, 2, 0, /* | |
444 | 2608 Remove from LAX-PLIST the property PROPERTY and its value. |
2609 LAX-PLIST is a lax property list, which is a list of the form | |
2610 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between | |
2611 properties is done using `equal' instead of `eq'. | |
2612 PROPERTY is usually a symbol. | |
2613 The new plist is returned; use `(setq x (lax-plist-remprop x property))' | |
2614 to be sure to use the new value. LAX-PLIST is modified by side effect. | |
428 | 2615 */ |
444 | 2616 (lax_plist, property)) |
428 | 2617 { |
444 | 2618 external_remprop (&lax_plist, property, 1, ERROR_ME); |
428 | 2619 return lax_plist; |
2620 } | |
2621 | |
2622 DEFUN ("lax-plist-member", Flax_plist_member, 2, 2, 0, /* | |
444 | 2623 Return t if PROPERTY has a value specified in LAX-PLIST. |
2624 LAX-PLIST is a lax property list, which is a list of the form | |
2625 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between | |
2626 properties is done using `equal' instead of `eq'. | |
428 | 2627 */ |
444 | 2628 (lax_plist, property)) |
428 | 2629 { |
444 | 2630 return UNBOUNDP (Flax_plist_get (lax_plist, property, Qunbound)) ? Qnil : Qt; |
428 | 2631 } |
2632 | |
2633 DEFUN ("canonicalize-lax-plist", Fcanonicalize_lax_plist, 1, 2, 0, /* | |
2634 Destructively remove any duplicate entries from a lax plist. | |
2635 In such cases, the first entry applies. | |
2636 | |
2637 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with | |
2638 a nil value is removed. This feature is a virus that has infected | |
2639 old Lisp implementations, but should not be used except for backward | |
2640 compatibility. | |
2641 | |
2642 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the | |
2643 return value may not be EQ to the passed-in value, so make sure to | |
2644 `setq' the value back into where it came from. | |
2645 */ | |
2646 (lax_plist, nil_means_not_present)) | |
2647 { | |
2648 Lisp_Object head = lax_plist; | |
2649 | |
2650 Fcheck_valid_plist (lax_plist); | |
2651 | |
2652 while (!NILP (lax_plist)) | |
2653 { | |
2654 Lisp_Object prop = Fcar (lax_plist); | |
2655 Lisp_Object next = Fcdr (lax_plist); | |
2656 | |
2657 CHECK_CONS (next); /* just make doubly sure we catch any errors */ | |
2658 if (!NILP (nil_means_not_present) && NILP (Fcar (next))) | |
2659 { | |
2660 if (EQ (head, lax_plist)) | |
2661 head = Fcdr (next); | |
2662 lax_plist = Fcdr (next); | |
2663 continue; | |
2664 } | |
2665 /* external_remprop returns 1 if it removed any property. | |
2666 We have to loop till it didn't remove anything, in case | |
2667 the property occurs many times. */ | |
2668 while (external_remprop (&XCDR (next), prop, 1, ERROR_ME)) | |
2669 DO_NOTHING; | |
2670 lax_plist = Fcdr (next); | |
2671 } | |
2672 | |
2673 return head; | |
2674 } | |
2675 | |
2676 /* In C because the frame props stuff uses it */ | |
2677 | |
2678 DEFUN ("destructive-alist-to-plist", Fdestructive_alist_to_plist, 1, 1, 0, /* | |
2679 Convert association list ALIST into the equivalent property-list form. | |
2680 The plist is returned. This converts from | |
2681 | |
2682 \((a . 1) (b . 2) (c . 3)) | |
2683 | |
2684 into | |
2685 | |
2686 \(a 1 b 2 c 3) | |
2687 | |
2688 The original alist is destroyed in the process of constructing the plist. | |
2689 See also `alist-to-plist'. | |
2690 */ | |
2691 (alist)) | |
2692 { | |
2693 Lisp_Object head = alist; | |
2694 while (!NILP (alist)) | |
2695 { | |
2696 /* remember the alist element. */ | |
2697 Lisp_Object el = Fcar (alist); | |
2698 | |
2699 Fsetcar (alist, Fcar (el)); | |
2700 Fsetcar (el, Fcdr (el)); | |
2701 Fsetcdr (el, Fcdr (alist)); | |
2702 Fsetcdr (alist, el); | |
2703 alist = Fcdr (Fcdr (alist)); | |
2704 } | |
2705 | |
2706 return head; | |
2707 } | |
2708 | |
2709 DEFUN ("get", Fget, 2, 3, 0, /* | |
442 | 2710 Return the value of OBJECT's PROPERTY property. |
2711 This is the last VALUE stored with `(put OBJECT PROPERTY VALUE)'. | |
428 | 2712 If there is no such property, return optional third arg DEFAULT |
442 | 2713 \(which defaults to `nil'). OBJECT can be a symbol, string, extent, |
2714 face, or glyph. See also `put', `remprop', and `object-plist'. | |
428 | 2715 */ |
442 | 2716 (object, property, default_)) |
428 | 2717 { |
2718 /* Various places in emacs call Fget() and expect it not to quit, | |
2719 so don't quit. */ | |
442 | 2720 Lisp_Object val; |
2721 | |
2722 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->getprop) | |
2723 val = XRECORD_LHEADER_IMPLEMENTATION (object)->getprop (object, property); | |
428 | 2724 else |
563 | 2725 invalid_operation ("Object type has no properties", object); |
442 | 2726 |
2727 return UNBOUNDP (val) ? default_ : val; | |
428 | 2728 } |
2729 | |
2730 DEFUN ("put", Fput, 3, 3, 0, /* | |
442 | 2731 Set OBJECT's PROPERTY to VALUE. |
2732 It can be subsequently retrieved with `(get OBJECT PROPERTY)'. | |
2733 OBJECT can be a symbol, face, extent, or string. | |
428 | 2734 For a string, no properties currently have predefined meanings. |
2735 For the predefined properties for extents, see `set-extent-property'. | |
2736 For the predefined properties for faces, see `set-face-property'. | |
2737 See also `get', `remprop', and `object-plist'. | |
2738 */ | |
442 | 2739 (object, property, value)) |
428 | 2740 { |
1920 | 2741 /* This function cannot GC */ |
428 | 2742 CHECK_LISP_WRITEABLE (object); |
2743 | |
442 | 2744 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->putprop) |
428 | 2745 { |
442 | 2746 if (! XRECORD_LHEADER_IMPLEMENTATION (object)->putprop |
2747 (object, property, value)) | |
563 | 2748 invalid_change ("Can't set property on object", property); |
428 | 2749 } |
2750 else | |
563 | 2751 invalid_change ("Object type has no settable properties", object); |
428 | 2752 |
2753 return value; | |
2754 } | |
2755 | |
2756 DEFUN ("remprop", Fremprop, 2, 2, 0, /* | |
442 | 2757 Remove, from OBJECT's property list, PROPERTY and its corresponding value. |
2758 OBJECT can be a symbol, string, extent, face, or glyph. Return non-nil | |
2759 if the property list was actually modified (i.e. if PROPERTY was present | |
2760 in the property list). See also `get', `put', and `object-plist'. | |
428 | 2761 */ |
442 | 2762 (object, property)) |
428 | 2763 { |
442 | 2764 int ret = 0; |
2765 | |
428 | 2766 CHECK_LISP_WRITEABLE (object); |
2767 | |
442 | 2768 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->remprop) |
428 | 2769 { |
442 | 2770 ret = XRECORD_LHEADER_IMPLEMENTATION (object)->remprop (object, property); |
2771 if (ret == -1) | |
563 | 2772 invalid_change ("Can't remove property from object", property); |
428 | 2773 } |
2774 else | |
563 | 2775 invalid_change ("Object type has no removable properties", object); |
442 | 2776 |
2777 return ret ? Qt : Qnil; | |
428 | 2778 } |
2779 | |
2780 DEFUN ("object-plist", Fobject_plist, 1, 1, 0, /* | |
442 | 2781 Return a property list of OBJECT's properties. |
2782 For a symbol, this is equivalent to `symbol-plist'. | |
2783 OBJECT can be a symbol, string, extent, face, or glyph. | |
2784 Do not modify the returned property list directly; | |
2785 this may or may not have the desired effects. Use `put' instead. | |
428 | 2786 */ |
2787 (object)) | |
2788 { | |
442 | 2789 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->plist) |
2790 return XRECORD_LHEADER_IMPLEMENTATION (object)->plist (object); | |
428 | 2791 else |
563 | 2792 invalid_operation ("Object type has no properties", object); |
428 | 2793 |
2794 return Qnil; | |
2795 } | |
2796 | |
2797 | |
853 | 2798 static Lisp_Object |
2799 tweaked_internal_equal (Lisp_Object obj1, Lisp_Object obj2, | |
2800 Lisp_Object depth) | |
2801 { | |
2802 return make_int (internal_equal (obj1, obj2, XINT (depth))); | |
2803 } | |
2804 | |
2805 int | |
2806 internal_equal_trapping_problems (Lisp_Object warning_class, | |
2807 const char *warning_string, | |
2808 int flags, | |
2809 struct call_trapping_problems_result *p, | |
2810 int retval, | |
2811 Lisp_Object obj1, Lisp_Object obj2, | |
2812 int depth) | |
2813 { | |
2814 Lisp_Object glorp = | |
2815 va_call_trapping_problems (warning_class, warning_string, | |
2816 flags, p, | |
2817 (lisp_fn_t) tweaked_internal_equal, | |
2818 3, obj1, obj2, make_int (depth)); | |
2819 if (UNBOUNDP (glorp)) | |
2820 return retval; | |
2821 else | |
2822 return XINT (glorp); | |
2823 } | |
2824 | |
428 | 2825 int |
2826 internal_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
2827 { | |
2828 if (depth > 200) | |
563 | 2829 stack_overflow ("Stack overflow in equal", Qunbound); |
428 | 2830 QUIT; |
2831 if (EQ_WITH_EBOLA_NOTICE (obj1, obj2)) | |
2832 return 1; | |
2833 /* Note that (equal 20 20.0) should be nil */ | |
2834 if (XTYPE (obj1) != XTYPE (obj2)) | |
2835 return 0; | |
2836 if (LRECORDP (obj1)) | |
2837 { | |
442 | 2838 const struct lrecord_implementation |
428 | 2839 *imp1 = XRECORD_LHEADER_IMPLEMENTATION (obj1), |
2840 *imp2 = XRECORD_LHEADER_IMPLEMENTATION (obj2); | |
2841 | |
2842 return (imp1 == imp2) && | |
2843 /* EQ-ness of the objects was noticed above */ | |
2844 (imp1->equal && (imp1->equal) (obj1, obj2, depth)); | |
2845 } | |
2846 | |
2847 return 0; | |
2848 } | |
2849 | |
801 | 2850 int |
2851 internal_equalp (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
2852 { | |
2853 if (depth > 200) | |
2854 stack_overflow ("Stack overflow in equalp", Qunbound); | |
2855 QUIT; | |
2856 if (EQ_WITH_EBOLA_NOTICE (obj1, obj2)) | |
2857 return 1; | |
1983 | 2858 #ifdef WITH_NUMBER_TYPES |
2859 if (NUMBERP (obj1) && NUMBERP (obj2)) | |
2860 { | |
2861 switch (promote_args (&obj1, &obj2)) | |
2862 { | |
2863 case FIXNUM_T: | |
2864 return XREALINT (obj1) == XREALINT (obj2); | |
2865 #ifdef HAVE_BIGNUM | |
2866 case BIGNUM_T: | |
2867 return bignum_eql (XBIGNUM_DATA (obj1), XBIGNUM_DATA (obj2)); | |
2868 #endif | |
2869 #ifdef HAVE_RATIO | |
2870 case RATIO_T: | |
2871 return ratio_eql (XRATIO_DATA (obj1), XRATIO_DATA (obj2)); | |
2872 #endif | |
2873 case FLOAT_T: | |
2874 return XFLOAT_DATA (obj1) == XFLOAT_DATA (obj2); | |
2875 #ifdef HAVE_BIGFLOAT | |
2876 case BIGFLOAT_T: | |
2877 return bigfloat_eql (XBIGFLOAT_DATA (obj1), XBIGFLOAT_DATA (obj2)); | |
2878 #endif | |
2879 } | |
2880 } | |
2881 #else | |
801 | 2882 if ((INTP (obj1) && FLOATP (obj2)) || (FLOATP (obj1) && INTP (obj2))) |
2883 return extract_float (obj1) == extract_float (obj2); | |
1983 | 2884 #endif |
801 | 2885 if (CHARP (obj1) && CHARP (obj2)) |
2886 return DOWNCASE (0, XCHAR (obj1)) == DOWNCASE (0, XCHAR (obj2)); | |
2887 if (XTYPE (obj1) != XTYPE (obj2)) | |
2888 return 0; | |
2889 if (LRECORDP (obj1)) | |
2890 { | |
2891 const struct lrecord_implementation | |
2892 *imp1 = XRECORD_LHEADER_IMPLEMENTATION (obj1), | |
2893 *imp2 = XRECORD_LHEADER_IMPLEMENTATION (obj2); | |
2894 | |
2895 /* #### not yet implemented properly, needs another flag to specify | |
2896 equalp-ness */ | |
2897 return (imp1 == imp2) && | |
2898 /* EQ-ness of the objects was noticed above */ | |
2899 (imp1->equal && (imp1->equal) (obj1, obj2, depth)); | |
2900 } | |
2901 | |
2902 return 0; | |
2903 } | |
2904 | |
428 | 2905 /* Note that we may be calling sub-objects that will use |
2906 internal_equal() (instead of internal_old_equal()). Oh well. | |
2907 We will get an Ebola note if there's any possibility of confusion, | |
2908 but that seems unlikely. */ | |
2909 | |
2910 static int | |
2911 internal_old_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
2912 { | |
2913 if (depth > 200) | |
563 | 2914 stack_overflow ("Stack overflow in equal", Qunbound); |
428 | 2915 QUIT; |
2916 if (HACKEQ_UNSAFE (obj1, obj2)) | |
2917 return 1; | |
2918 /* Note that (equal 20 20.0) should be nil */ | |
2919 if (XTYPE (obj1) != XTYPE (obj2)) | |
2920 return 0; | |
2921 | |
2922 return internal_equal (obj1, obj2, depth); | |
2923 } | |
2924 | |
2925 DEFUN ("equal", Fequal, 2, 2, 0, /* | |
2926 Return t if two Lisp objects have similar structure and contents. | |
2927 They must have the same data type. | |
2928 Conses are compared by comparing the cars and the cdrs. | |
2929 Vectors and strings are compared element by element. | |
2930 Numbers are compared by value. Symbols must match exactly. | |
2931 */ | |
444 | 2932 (object1, object2)) |
428 | 2933 { |
444 | 2934 return internal_equal (object1, object2, 0) ? Qt : Qnil; |
428 | 2935 } |
2936 | |
2937 DEFUN ("old-equal", Fold_equal, 2, 2, 0, /* | |
2938 Return t if two Lisp objects have similar structure and contents. | |
2939 They must have the same data type. | |
2940 \(Note, however, that an exception is made for characters and integers; | |
2941 this is known as the "char-int confoundance disease." See `eq' and | |
2942 `old-eq'.) | |
2943 This function is provided only for byte-code compatibility with v19. | |
2944 Do not use it. | |
2945 */ | |
444 | 2946 (object1, object2)) |
428 | 2947 { |
444 | 2948 return internal_old_equal (object1, object2, 0) ? Qt : Qnil; |
428 | 2949 } |
2950 | |
2951 | |
2952 DEFUN ("fillarray", Ffillarray, 2, 2, 0, /* | |
434 | 2953 Destructively modify ARRAY by replacing each element with ITEM. |
428 | 2954 ARRAY is a vector, bit vector, or string. |
2955 */ | |
2956 (array, item)) | |
2957 { | |
2958 retry: | |
2959 if (STRINGP (array)) | |
2960 { | |
793 | 2961 Bytecount old_bytecount = XSTRING_LENGTH (array); |
434 | 2962 Bytecount new_bytecount; |
2963 Bytecount item_bytecount; | |
867 | 2964 Ibyte item_buf[MAX_ICHAR_LEN]; |
2965 Ibyte *p; | |
2966 Ibyte *end; | |
434 | 2967 |
428 | 2968 CHECK_CHAR_COERCE_INT (item); |
2720 | 2969 |
428 | 2970 CHECK_LISP_WRITEABLE (array); |
771 | 2971 sledgehammer_check_ascii_begin (array); |
867 | 2972 item_bytecount = set_itext_ichar (item_buf, XCHAR (item)); |
826 | 2973 new_bytecount = item_bytecount * (Bytecount) string_char_length (array); |
793 | 2974 |
2975 resize_string (array, -1, new_bytecount - old_bytecount); | |
2976 | |
2977 for (p = XSTRING_DATA (array), end = p + new_bytecount; | |
434 | 2978 p < end; |
2979 p += item_bytecount) | |
2980 memcpy (p, item_buf, item_bytecount); | |
2981 *p = '\0'; | |
2982 | |
793 | 2983 XSET_STRING_ASCII_BEGIN (array, |
2984 item_bytecount == 1 ? | |
2985 min (new_bytecount, MAX_STRING_ASCII_BEGIN) : | |
2986 0); | |
428 | 2987 bump_string_modiff (array); |
771 | 2988 sledgehammer_check_ascii_begin (array); |
428 | 2989 } |
2990 else if (VECTORP (array)) | |
2991 { | |
2992 Lisp_Object *p = XVECTOR_DATA (array); | |
665 | 2993 Elemcount len = XVECTOR_LENGTH (array); |
428 | 2994 CHECK_LISP_WRITEABLE (array); |
2995 while (len--) | |
2996 *p++ = item; | |
2997 } | |
2998 else if (BIT_VECTORP (array)) | |
2999 { | |
440 | 3000 Lisp_Bit_Vector *v = XBIT_VECTOR (array); |
665 | 3001 Elemcount len = bit_vector_length (v); |
428 | 3002 int bit; |
3003 CHECK_BIT (item); | |
444 | 3004 bit = XINT (item); |
428 | 3005 CHECK_LISP_WRITEABLE (array); |
3006 while (len--) | |
3007 set_bit_vector_bit (v, len, bit); | |
3008 } | |
3009 else | |
3010 { | |
3011 array = wrong_type_argument (Qarrayp, array); | |
3012 goto retry; | |
3013 } | |
3014 return array; | |
3015 } | |
3016 | |
3017 Lisp_Object | |
3018 nconc2 (Lisp_Object arg1, Lisp_Object arg2) | |
3019 { | |
3020 Lisp_Object args[2]; | |
3021 struct gcpro gcpro1; | |
3022 args[0] = arg1; | |
3023 args[1] = arg2; | |
3024 | |
3025 GCPRO1 (args[0]); | |
3026 gcpro1.nvars = 2; | |
3027 | |
3028 RETURN_UNGCPRO (bytecode_nconc2 (args)); | |
3029 } | |
3030 | |
3031 Lisp_Object | |
3032 bytecode_nconc2 (Lisp_Object *args) | |
3033 { | |
3034 retry: | |
3035 | |
3036 if (CONSP (args[0])) | |
3037 { | |
3038 /* (setcdr (last args[0]) args[1]) */ | |
3039 Lisp_Object tortoise, hare; | |
665 | 3040 Elemcount count; |
428 | 3041 |
3042 for (hare = tortoise = args[0], count = 0; | |
3043 CONSP (XCDR (hare)); | |
3044 hare = XCDR (hare), count++) | |
3045 { | |
3046 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue; | |
3047 | |
3048 if (count & 1) | |
3049 tortoise = XCDR (tortoise); | |
3050 if (EQ (hare, tortoise)) | |
3051 signal_circular_list_error (args[0]); | |
3052 } | |
3053 XCDR (hare) = args[1]; | |
3054 return args[0]; | |
3055 } | |
3056 else if (NILP (args[0])) | |
3057 { | |
3058 return args[1]; | |
3059 } | |
3060 else | |
3061 { | |
3062 args[0] = wrong_type_argument (args[0], Qlistp); | |
3063 goto retry; | |
3064 } | |
3065 } | |
3066 | |
3067 DEFUN ("nconc", Fnconc, 0, MANY, 0, /* | |
3068 Concatenate any number of lists by altering them. | |
3069 Only the last argument is not altered, and need not be a list. | |
3070 Also see: `append'. | |
3071 If the first argument is nil, there is no way to modify it by side | |
3072 effect; therefore, write `(setq foo (nconc foo list))' to be sure of | |
3073 changing the value of `foo'. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
3074 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3842
diff
changeset
|
3075 arguments: (&rest ARGS) |
428 | 3076 */ |
3077 (int nargs, Lisp_Object *args)) | |
3078 { | |
3079 int argnum = 0; | |
3080 struct gcpro gcpro1; | |
3081 | |
3082 /* The modus operandi in Emacs is "caller gc-protects args". | |
3083 However, nconc (particularly nconc2 ()) is called many times | |
3084 in Emacs on freshly created stuff (e.g. you see the idiom | |
3085 nconc2 (Fcopy_sequence (foo), bar) a lot). So we help those | |
3086 callers out by protecting the args ourselves to save them | |
3087 a lot of temporary-variable grief. */ | |
3088 | |
3089 GCPRO1 (args[0]); | |
3090 gcpro1.nvars = nargs; | |
3091 | |
3092 while (argnum < nargs) | |
3093 { | |
3094 Lisp_Object val; | |
3095 retry: | |
3096 val = args[argnum]; | |
3097 if (CONSP (val)) | |
3098 { | |
3099 /* `val' is the first cons, which will be our return value. */ | |
3100 /* `last_cons' will be the cons cell to mutate. */ | |
3101 Lisp_Object last_cons = val; | |
3102 Lisp_Object tortoise = val; | |
3103 | |
3104 for (argnum++; argnum < nargs; argnum++) | |
3105 { | |
3106 Lisp_Object next = args[argnum]; | |
3107 retry_next: | |
3108 if (CONSP (next) || argnum == nargs -1) | |
3109 { | |
3110 /* (setcdr (last val) next) */ | |
665 | 3111 Elemcount count; |
428 | 3112 |
3113 for (count = 0; | |
3114 CONSP (XCDR (last_cons)); | |
3115 last_cons = XCDR (last_cons), count++) | |
3116 { | |
3117 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue; | |
3118 | |
3119 if (count & 1) | |
3120 tortoise = XCDR (tortoise); | |
3121 if (EQ (last_cons, tortoise)) | |
3122 signal_circular_list_error (args[argnum-1]); | |
3123 } | |
3124 XCDR (last_cons) = next; | |
3125 } | |
3126 else if (NILP (next)) | |
3127 { | |
3128 continue; | |
3129 } | |
3130 else | |
3131 { | |
3132 next = wrong_type_argument (Qlistp, next); | |
3133 goto retry_next; | |
3134 } | |
3135 } | |
3136 RETURN_UNGCPRO (val); | |
3137 } | |
3138 else if (NILP (val)) | |
3139 argnum++; | |
3140 else if (argnum == nargs - 1) /* last arg? */ | |
3141 RETURN_UNGCPRO (val); | |
3142 else | |
3143 { | |
3144 args[argnum] = wrong_type_argument (Qlistp, val); | |
3145 goto retry; | |
3146 } | |
3147 } | |
3148 RETURN_UNGCPRO (Qnil); /* No non-nil args provided. */ | |
3149 } | |
3150 | |
3151 | |
434 | 3152 /* This is the guts of several mapping functions. |
3153 Apply FUNCTION to each element of SEQUENCE, one by one, | |
3154 storing the results into elements of VALS, a C vector of Lisp_Objects. | |
3155 LENI is the length of VALS, which should also be the length of SEQUENCE. | |
428 | 3156 |
3157 If VALS is a null pointer, do not accumulate the results. */ | |
3158 | |
3159 static void | |
665 | 3160 mapcar1 (Elemcount leni, Lisp_Object *vals, |
434 | 3161 Lisp_Object function, Lisp_Object sequence) |
428 | 3162 { |
3163 Lisp_Object result; | |
3164 Lisp_Object args[2]; | |
3165 struct gcpro gcpro1; | |
3166 | |
3167 if (vals) | |
3168 { | |
3169 GCPRO1 (vals[0]); | |
3170 gcpro1.nvars = 0; | |
3171 } | |
3172 | |
434 | 3173 args[0] = function; |
3174 | |
3175 if (LISTP (sequence)) | |
428 | 3176 { |
434 | 3177 /* A devious `function' could either: |
3178 - insert garbage into the list in front of us, causing XCDR to crash | |
3179 - amputate the list behind us using (setcdr), causing the remaining | |
3180 elts to lose their GCPRO status. | |
3181 | |
3182 if (vals != 0) we avoid this by copying the elts into the | |
3183 `vals' array. By a stroke of luck, `vals' is exactly large | |
3184 enough to hold the elts left to be traversed as well as the | |
3185 results computed so far. | |
3186 | |
3187 if (vals == 0) we don't have any free space available and | |
851 | 3188 don't want to eat up any more stack with ALLOCA (). |
442 | 3189 So we use EXTERNAL_LIST_LOOP_3_NO_DECLARE and GCPRO the tail. */ |
434 | 3190 |
3191 if (vals) | |
428 | 3192 { |
434 | 3193 Lisp_Object *val = vals; |
665 | 3194 Elemcount i; |
434 | 3195 |
3196 LIST_LOOP_2 (elt, sequence) | |
3197 *val++ = elt; | |
3198 | |
3199 gcpro1.nvars = leni; | |
3200 | |
3201 for (i = 0; i < leni; i++) | |
3202 { | |
3203 args[1] = vals[i]; | |
3204 vals[i] = Ffuncall (2, args); | |
3205 } | |
3206 } | |
3207 else | |
3208 { | |
3209 Lisp_Object elt, tail; | |
442 | 3210 EMACS_INT len_unused; |
434 | 3211 struct gcpro ngcpro1; |
3212 | |
3213 NGCPRO1 (tail); | |
3214 | |
3215 { | |
442 | 3216 EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, sequence, tail, len_unused) |
434 | 3217 { |
3218 args[1] = elt; | |
3219 Ffuncall (2, args); | |
3220 } | |
3221 } | |
3222 | |
3223 NUNGCPRO; | |
428 | 3224 } |
3225 } | |
434 | 3226 else if (VECTORP (sequence)) |
428 | 3227 { |
434 | 3228 Lisp_Object *objs = XVECTOR_DATA (sequence); |
665 | 3229 Elemcount i; |
428 | 3230 for (i = 0; i < leni; i++) |
3231 { | |
3232 args[1] = *objs++; | |
3233 result = Ffuncall (2, args); | |
3234 if (vals) vals[gcpro1.nvars++] = result; | |
3235 } | |
3236 } | |
434 | 3237 else if (STRINGP (sequence)) |
428 | 3238 { |
434 | 3239 /* The string data of `sequence' might be relocated during GC. */ |
3240 Bytecount slen = XSTRING_LENGTH (sequence); | |
2367 | 3241 Ibyte *p = alloca_ibytes (slen); |
867 | 3242 Ibyte *end = p + slen; |
434 | 3243 |
3244 memcpy (p, XSTRING_DATA (sequence), slen); | |
3245 | |
3246 while (p < end) | |
428 | 3247 { |
867 | 3248 args[1] = make_char (itext_ichar (p)); |
3249 INC_IBYTEPTR (p); | |
428 | 3250 result = Ffuncall (2, args); |
3251 if (vals) vals[gcpro1.nvars++] = result; | |
3252 } | |
3253 } | |
434 | 3254 else if (BIT_VECTORP (sequence)) |
428 | 3255 { |
440 | 3256 Lisp_Bit_Vector *v = XBIT_VECTOR (sequence); |
665 | 3257 Elemcount i; |
428 | 3258 for (i = 0; i < leni; i++) |
3259 { | |
3260 args[1] = make_int (bit_vector_bit (v, i)); | |
3261 result = Ffuncall (2, args); | |
3262 if (vals) vals[gcpro1.nvars++] = result; | |
3263 } | |
3264 } | |
3265 else | |
2500 | 3266 ABORT (); /* unreachable, since Flength (sequence) did not get an error */ |
428 | 3267 |
3268 if (vals) | |
3269 UNGCPRO; | |
3270 } | |
3271 | |
3272 DEFUN ("mapconcat", Fmapconcat, 3, 3, 0, /* | |
751 | 3273 Apply FUNCTION to each element of SEQUENCE, and concat the results to a string. |
3274 Between each pair of results, insert SEPARATOR. | |
3275 | |
3276 Each result, and SEPARATOR, should be strings. Thus, using " " as SEPARATOR | |
3277 results in spaces between the values returned by FUNCTION. SEQUENCE itself | |
3278 may be a list, a vector, a bit vector, or a string. | |
428 | 3279 */ |
434 | 3280 (function, sequence, separator)) |
428 | 3281 { |
444 | 3282 EMACS_INT len = XINT (Flength (sequence)); |
428 | 3283 Lisp_Object *args; |
444 | 3284 EMACS_INT i; |
3285 EMACS_INT nargs = len + len - 1; | |
428 | 3286 |
442 | 3287 if (len == 0) return build_string (""); |
428 | 3288 |
3289 args = alloca_array (Lisp_Object, nargs); | |
3290 | |
434 | 3291 mapcar1 (len, args, function, sequence); |
428 | 3292 |
3293 for (i = len - 1; i >= 0; i--) | |
3294 args[i + i] = args[i]; | |
3295 | |
3296 for (i = 1; i < nargs; i += 2) | |
434 | 3297 args[i] = separator; |
428 | 3298 |
3299 return Fconcat (nargs, args); | |
3300 } | |
3301 | |
3302 DEFUN ("mapcar", Fmapcar, 2, 2, 0, /* | |
434 | 3303 Apply FUNCTION to each element of SEQUENCE; return a list of the results. |
3304 The result is a list of the same length as SEQUENCE. | |
428 | 3305 SEQUENCE may be a list, a vector, a bit vector, or a string. |
3306 */ | |
434 | 3307 (function, sequence)) |
428 | 3308 { |
665 | 3309 Elemcount len = XINT (Flength (sequence)); |
428 | 3310 Lisp_Object *args = alloca_array (Lisp_Object, len); |
3311 | |
434 | 3312 mapcar1 (len, args, function, sequence); |
428 | 3313 |
647 | 3314 return Flist ((int) len, args); |
428 | 3315 } |
3316 | |
3317 DEFUN ("mapvector", Fmapvector, 2, 2, 0, /* | |
434 | 3318 Apply FUNCTION to each element of SEQUENCE; return a vector of the results. |
428 | 3319 The result is a vector of the same length as SEQUENCE. |
434 | 3320 SEQUENCE may be a list, a vector, a bit vector, or a string. |
428 | 3321 */ |
434 | 3322 (function, sequence)) |
428 | 3323 { |
665 | 3324 Elemcount len = XINT (Flength (sequence)); |
428 | 3325 Lisp_Object result = make_vector (len, Qnil); |
3326 struct gcpro gcpro1; | |
3327 | |
3328 GCPRO1 (result); | |
434 | 3329 mapcar1 (len, XVECTOR_DATA (result), function, sequence); |
428 | 3330 UNGCPRO; |
3331 | |
3332 return result; | |
3333 } | |
3334 | |
3335 DEFUN ("mapc-internal", Fmapc_internal, 2, 2, 0, /* | |
3336 Apply FUNCTION to each element of SEQUENCE. | |
3337 SEQUENCE may be a list, a vector, a bit vector, or a string. | |
3338 This function is like `mapcar' but does not accumulate the results, | |
3339 which is more efficient if you do not use the results. | |
3340 | |
3341 The difference between this and `mapc' is that `mapc' supports all | |
3342 the spiffy Common Lisp arguments. You should normally use `mapc'. | |
3343 */ | |
434 | 3344 (function, sequence)) |
428 | 3345 { |
434 | 3346 mapcar1 (XINT (Flength (sequence)), 0, function, sequence); |
3347 | |
3348 return sequence; | |
428 | 3349 } |
3350 | |
3351 | |
771 | 3352 /* Extra random functions */ |
442 | 3353 |
3354 DEFUN ("replace-list", Freplace_list, 2, 2, 0, /* | |
3355 Destructively replace the list OLD with NEW. | |
3356 This is like (copy-sequence NEW) except that it reuses the | |
3357 conses in OLD as much as possible. If OLD and NEW are the same | |
3358 length, no consing will take place. | |
3359 */ | |
3025 | 3360 (old, new_)) |
442 | 3361 { |
2367 | 3362 Lisp_Object oldtail = old, prevoldtail = Qnil; |
3363 | |
3025 | 3364 EXTERNAL_LIST_LOOP_2 (elt, new_) |
442 | 3365 { |
3366 if (!NILP (oldtail)) | |
3367 { | |
3368 CHECK_CONS (oldtail); | |
2367 | 3369 XCAR (oldtail) = elt; |
442 | 3370 } |
3371 else if (!NILP (prevoldtail)) | |
3372 { | |
2367 | 3373 XCDR (prevoldtail) = Fcons (elt, Qnil); |
442 | 3374 prevoldtail = XCDR (prevoldtail); |
3375 } | |
3376 else | |
2367 | 3377 old = oldtail = Fcons (elt, Qnil); |
442 | 3378 |
3379 if (!NILP (oldtail)) | |
3380 { | |
3381 prevoldtail = oldtail; | |
3382 oldtail = XCDR (oldtail); | |
3383 } | |
3384 } | |
3385 | |
3386 if (!NILP (prevoldtail)) | |
3387 XCDR (prevoldtail) = Qnil; | |
3388 else | |
3389 old = Qnil; | |
3390 | |
3391 return old; | |
3392 } | |
3393 | |
771 | 3394 Lisp_Object |
2367 | 3395 add_suffix_to_symbol (Lisp_Object symbol, const Ascbyte *ascii_string) |
771 | 3396 { |
3397 return Fintern (concat2 (Fsymbol_name (symbol), | |
3398 build_string (ascii_string)), | |
3399 Qnil); | |
3400 } | |
3401 | |
3402 Lisp_Object | |
2367 | 3403 add_prefix_to_symbol (const Ascbyte *ascii_string, Lisp_Object symbol) |
771 | 3404 { |
3405 return Fintern (concat2 (build_string (ascii_string), | |
3406 Fsymbol_name (symbol)), | |
3407 Qnil); | |
3408 } | |
3409 | |
442 | 3410 |
428 | 3411 /* #### this function doesn't belong in this file! */ |
3412 | |
442 | 3413 #ifdef HAVE_GETLOADAVG |
3414 #ifdef HAVE_SYS_LOADAVG_H | |
3415 #include <sys/loadavg.h> | |
3416 #endif | |
3417 #else | |
3418 int getloadavg (double loadavg[], int nelem); /* Defined in getloadavg.c */ | |
3419 #endif | |
3420 | |
428 | 3421 DEFUN ("load-average", Fload_average, 0, 1, 0, /* |
3422 Return list of 1 minute, 5 minute and 15 minute load averages. | |
3423 Each of the three load averages is multiplied by 100, | |
3424 then converted to integer. | |
3425 | |
3426 When USE-FLOATS is non-nil, floats will be used instead of integers. | |
3427 These floats are not multiplied by 100. | |
3428 | |
3429 If the 5-minute or 15-minute load averages are not available, return a | |
3430 shortened list, containing only those averages which are available. | |
3431 | |
3432 On some systems, this won't work due to permissions on /dev/kmem, | |
3433 in which case you can't use this. | |
3434 */ | |
3435 (use_floats)) | |
3436 { | |
3437 double load_ave[3]; | |
3438 int loads = getloadavg (load_ave, countof (load_ave)); | |
3439 Lisp_Object ret = Qnil; | |
3440 | |
3441 if (loads == -2) | |
563 | 3442 signal_error (Qunimplemented, |
3443 "load-average not implemented for this operating system", | |
3444 Qunbound); | |
428 | 3445 else if (loads < 0) |
563 | 3446 invalid_operation ("Could not get load-average", lisp_strerror (errno)); |
428 | 3447 |
3448 while (loads-- > 0) | |
3449 { | |
3450 Lisp_Object load = (NILP (use_floats) ? | |
3451 make_int ((int) (100.0 * load_ave[loads])) | |
3452 : make_float (load_ave[loads])); | |
3453 ret = Fcons (load, ret); | |
3454 } | |
3455 return ret; | |
3456 } | |
3457 | |
3458 | |
3459 Lisp_Object Vfeatures; | |
3460 | |
3461 DEFUN ("featurep", Ffeaturep, 1, 1, 0, /* | |
3462 Return non-nil if feature FEXP is present in this Emacs. | |
3463 Use this to conditionalize execution of lisp code based on the | |
3464 presence or absence of emacs or environment extensions. | |
3465 FEXP can be a symbol, a number, or a list. | |
3466 If it is a symbol, that symbol is looked up in the `features' variable, | |
3467 and non-nil will be returned if found. | |
3468 If it is a number, the function will return non-nil if this Emacs | |
3469 has an equal or greater version number than FEXP. | |
3470 If it is a list whose car is the symbol `and', it will return | |
3471 non-nil if all the features in its cdr are non-nil. | |
3472 If it is a list whose car is the symbol `or', it will return non-nil | |
3473 if any of the features in its cdr are non-nil. | |
3474 If it is a list whose car is the symbol `not', it will return | |
3475 non-nil if the feature is not present. | |
3476 | |
3477 Examples: | |
3478 | |
3479 (featurep 'xemacs) | |
3480 => ; Non-nil on XEmacs. | |
3481 | |
3482 (featurep '(and xemacs gnus)) | |
3483 => ; Non-nil on XEmacs with Gnus loaded. | |
3484 | |
3485 (featurep '(or tty-frames (and emacs 19.30))) | |
3486 => ; Non-nil if this Emacs supports TTY frames. | |
3487 | |
3488 (featurep '(or (and xemacs 19.15) (and emacs 19.34))) | |
3489 => ; Non-nil on XEmacs 19.15 and later, or FSF Emacs 19.34 and later. | |
3490 | |
442 | 3491 (featurep '(and xemacs 21.02)) |
3492 => ; Non-nil on XEmacs 21.2 and later. | |
3493 | |
428 | 3494 NOTE: The advanced arguments of this function (anything other than a |
3495 symbol) are not yet supported by FSF Emacs. If you feel they are useful | |
3496 for supporting multiple Emacs variants, lobby Richard Stallman at | |
442 | 3497 <bug-gnu-emacs@gnu.org>. |
428 | 3498 */ |
3499 (fexp)) | |
3500 { | |
3501 #ifndef FEATUREP_SYNTAX | |
3502 CHECK_SYMBOL (fexp); | |
3503 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt; | |
3504 #else /* FEATUREP_SYNTAX */ | |
3505 static double featurep_emacs_version; | |
3506 | |
3507 /* Brute force translation from Erik Naggum's lisp function. */ | |
3508 if (SYMBOLP (fexp)) | |
3509 { | |
3510 /* Original definition */ | |
3511 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt; | |
3512 } | |
3513 else if (INTP (fexp) || FLOATP (fexp)) | |
3514 { | |
3515 double d = extract_float (fexp); | |
3516 | |
3517 if (featurep_emacs_version == 0.0) | |
3518 { | |
3519 featurep_emacs_version = XINT (Vemacs_major_version) + | |
3520 (XINT (Vemacs_minor_version) / 100.0); | |
3521 } | |
3522 return featurep_emacs_version >= d ? Qt : Qnil; | |
3523 } | |
3524 else if (CONSP (fexp)) | |
3525 { | |
3526 Lisp_Object tem = XCAR (fexp); | |
3527 if (EQ (tem, Qnot)) | |
3528 { | |
3529 Lisp_Object negate; | |
3530 | |
3531 tem = XCDR (fexp); | |
3532 negate = Fcar (tem); | |
3533 if (!NILP (tem)) | |
3534 return NILP (call1 (Qfeaturep, negate)) ? Qt : Qnil; | |
3535 else | |
3536 return Fsignal (Qinvalid_read_syntax, list1 (tem)); | |
3537 } | |
3538 else if (EQ (tem, Qand)) | |
3539 { | |
3540 tem = XCDR (fexp); | |
3541 /* Use Fcar/Fcdr for error-checking. */ | |
3542 while (!NILP (tem) && !NILP (call1 (Qfeaturep, Fcar (tem)))) | |
3543 { | |
3544 tem = Fcdr (tem); | |
3545 } | |
3546 return NILP (tem) ? Qt : Qnil; | |
3547 } | |
3548 else if (EQ (tem, Qor)) | |
3549 { | |
3550 tem = XCDR (fexp); | |
3551 /* Use Fcar/Fcdr for error-checking. */ | |
3552 while (!NILP (tem) && NILP (call1 (Qfeaturep, Fcar (tem)))) | |
3553 { | |
3554 tem = Fcdr (tem); | |
3555 } | |
3556 return NILP (tem) ? Qnil : Qt; | |
3557 } | |
3558 else | |
3559 { | |
3560 return Fsignal (Qinvalid_read_syntax, list1 (XCDR (fexp))); | |
3561 } | |
3562 } | |
3563 else | |
3564 { | |
3565 return Fsignal (Qinvalid_read_syntax, list1 (fexp)); | |
3566 } | |
3567 } | |
3568 #endif /* FEATUREP_SYNTAX */ | |
3569 | |
3570 DEFUN ("provide", Fprovide, 1, 1, 0, /* | |
3571 Announce that FEATURE is a feature of the current Emacs. | |
3572 This function updates the value of the variable `features'. | |
3573 */ | |
3574 (feature)) | |
3575 { | |
3576 Lisp_Object tem; | |
3577 CHECK_SYMBOL (feature); | |
3578 if (!NILP (Vautoload_queue)) | |
3579 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue); | |
3580 tem = Fmemq (feature, Vfeatures); | |
3581 if (NILP (tem)) | |
3582 Vfeatures = Fcons (feature, Vfeatures); | |
3583 LOADHIST_ATTACH (Fcons (Qprovide, feature)); | |
3584 return feature; | |
3585 } | |
3586 | |
1067 | 3587 DEFUN ("require", Frequire, 1, 3, 0, /* |
3842 | 3588 Ensure that FEATURE is present in the Lisp environment. |
3589 FEATURE is a symbol naming a collection of resources (functions, etc). | |
3590 Optional FILENAME is a library from which to load resources; it defaults to | |
3591 the print name of FEATURE. | |
3592 Optional NOERROR, if non-nil, causes require to return nil rather than signal | |
3593 `file-error' if loading the library fails. | |
3594 | |
3595 If feature FEATURE is present in `features', update `load-history' to reflect | |
3596 the require and return FEATURE. Otherwise, try to load it from a library. | |
3597 The normal messages at start and end of loading are suppressed. | |
3598 If the library is successfully loaded and it calls `(provide FEATURE)', add | |
3599 FEATURE to `features', update `load-history' and return FEATURE. | |
3600 If the load succeeds but FEATURE is not provided by the library, signal | |
3601 `invalid-state'. | |
3602 | |
3603 The byte-compiler treats top-level calls to `require' specially, by evaluating | |
3604 them at compile time (and then compiling them normally). Thus a library may | |
3605 request that definitions that should be inlined such as macros and defsubsts | |
3606 be loaded into its compilation environment. Achieving this in other contexts | |
3607 requires an explicit \(eval-and-compile ...\) block. | |
428 | 3608 */ |
1067 | 3609 (feature, filename, noerror)) |
428 | 3610 { |
3611 Lisp_Object tem; | |
3612 CHECK_SYMBOL (feature); | |
3613 tem = Fmemq (feature, Vfeatures); | |
3614 LOADHIST_ATTACH (Fcons (Qrequire, feature)); | |
3615 if (!NILP (tem)) | |
3616 return feature; | |
3617 else | |
3618 { | |
3619 int speccount = specpdl_depth (); | |
3620 | |
3621 /* Value saved here is to be restored into Vautoload_queue */ | |
3622 record_unwind_protect (un_autoload, Vautoload_queue); | |
3623 Vautoload_queue = Qt; | |
3624 | |
1067 | 3625 tem = call4 (Qload, NILP (filename) ? Fsymbol_name (feature) : filename, |
1261 | 3626 noerror, Qrequire, Qnil); |
1067 | 3627 /* If load failed entirely, return nil. */ |
3628 if (NILP (tem)) | |
3629 return unbind_to_1 (speccount, Qnil); | |
428 | 3630 |
3631 tem = Fmemq (feature, Vfeatures); | |
3632 if (NILP (tem)) | |
563 | 3633 invalid_state ("Required feature was not provided", feature); |
428 | 3634 |
3635 /* Once loading finishes, don't undo it. */ | |
3636 Vautoload_queue = Qt; | |
771 | 3637 return unbind_to_1 (speccount, feature); |
428 | 3638 } |
3639 } | |
3640 | |
3641 /* base64 encode/decode functions. | |
3642 | |
3643 Originally based on code from GNU recode. Ported to FSF Emacs by | |
3644 Lars Magne Ingebrigtsen and Karl Heuer. Ported to XEmacs and | |
3645 subsequently heavily hacked by Hrvoje Niksic. */ | |
3646 | |
3647 #define MIME_LINE_LENGTH 72 | |
3648 | |
3649 #define IS_ASCII(Character) \ | |
3650 ((Character) < 128) | |
3651 #define IS_BASE64(Character) \ | |
3652 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0) | |
3653 | |
3654 /* Table of characters coding the 64 values. */ | |
3655 static char base64_value_to_char[64] = | |
3656 { | |
3657 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */ | |
3658 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */ | |
3659 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */ | |
3660 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */ | |
3661 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */ | |
3662 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */ | |
3663 '8', '9', '+', '/' /* 60-63 */ | |
3664 }; | |
3665 | |
3666 /* Table of base64 values for first 128 characters. */ | |
3667 static short base64_char_to_value[128] = | |
3668 { | |
3669 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */ | |
3670 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */ | |
3671 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */ | |
3672 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */ | |
3673 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */ | |
3674 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */ | |
3675 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */ | |
3676 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */ | |
3677 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */ | |
3678 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */ | |
3679 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */ | |
3680 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */ | |
3681 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */ | |
3682 }; | |
3683 | |
3684 /* The following diagram shows the logical steps by which three octets | |
3685 get transformed into four base64 characters. | |
3686 | |
3687 .--------. .--------. .--------. | |
3688 |aaaaaabb| |bbbbcccc| |ccdddddd| | |
3689 `--------' `--------' `--------' | |
3690 6 2 4 4 2 6 | |
3691 .--------+--------+--------+--------. | |
3692 |00aaaaaa|00bbbbbb|00cccccc|00dddddd| | |
3693 `--------+--------+--------+--------' | |
3694 | |
3695 .--------+--------+--------+--------. | |
3696 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD| | |
3697 `--------+--------+--------+--------' | |
3698 | |
3699 The octets are divided into 6 bit chunks, which are then encoded into | |
3700 base64 characters. */ | |
3701 | |
2268 | 3702 static DECLARE_DOESNT_RETURN (base64_conversion_error (const char *, |
3703 Lisp_Object)); | |
3704 | |
575 | 3705 static DOESNT_RETURN |
563 | 3706 base64_conversion_error (const char *reason, Lisp_Object frob) |
3707 { | |
3708 signal_error (Qbase64_conversion_error, reason, frob); | |
3709 } | |
3710 | |
3711 #define ADVANCE_INPUT(c, stream) \ | |
867 | 3712 ((ec = Lstream_get_ichar (stream)) == -1 ? 0 : \ |
563 | 3713 ((ec > 255) ? \ |
3714 (base64_conversion_error ("Non-ascii character in base64 input", \ | |
3715 make_char (ec)), 0) \ | |
867 | 3716 : (c = (Ibyte)ec), 1)) |
665 | 3717 |
3718 static Bytebpos | |
867 | 3719 base64_encode_1 (Lstream *istream, Ibyte *to, int line_break) |
428 | 3720 { |
3721 EMACS_INT counter = 0; | |
867 | 3722 Ibyte *e = to; |
3723 Ichar ec; | |
428 | 3724 unsigned int value; |
3725 | |
3726 while (1) | |
3727 { | |
1204 | 3728 Ibyte c = 0; |
428 | 3729 if (!ADVANCE_INPUT (c, istream)) |
3730 break; | |
3731 | |
3732 /* Wrap line every 76 characters. */ | |
3733 if (line_break) | |
3734 { | |
3735 if (counter < MIME_LINE_LENGTH / 4) | |
3736 counter++; | |
3737 else | |
3738 { | |
3739 *e++ = '\n'; | |
3740 counter = 1; | |
3741 } | |
3742 } | |
3743 | |
3744 /* Process first byte of a triplet. */ | |
3745 *e++ = base64_value_to_char[0x3f & c >> 2]; | |
3746 value = (0x03 & c) << 4; | |
3747 | |
3748 /* Process second byte of a triplet. */ | |
3749 if (!ADVANCE_INPUT (c, istream)) | |
3750 { | |
3751 *e++ = base64_value_to_char[value]; | |
3752 *e++ = '='; | |
3753 *e++ = '='; | |
3754 break; | |
3755 } | |
3756 | |
3757 *e++ = base64_value_to_char[value | (0x0f & c >> 4)]; | |
3758 value = (0x0f & c) << 2; | |
3759 | |
3760 /* Process third byte of a triplet. */ | |
3761 if (!ADVANCE_INPUT (c, istream)) | |
3762 { | |
3763 *e++ = base64_value_to_char[value]; | |
3764 *e++ = '='; | |
3765 break; | |
3766 } | |
3767 | |
3768 *e++ = base64_value_to_char[value | (0x03 & c >> 6)]; | |
3769 *e++ = base64_value_to_char[0x3f & c]; | |
3770 } | |
3771 | |
3772 return e - to; | |
3773 } | |
3774 #undef ADVANCE_INPUT | |
3775 | |
3776 /* Get next character from the stream, except that non-base64 | |
3777 characters are ignored. This is in accordance with rfc2045. EC | |
867 | 3778 should be an Ichar, so that it can hold -1 as the value for EOF. */ |
428 | 3779 #define ADVANCE_INPUT_IGNORE_NONBASE64(ec, stream, streampos) do { \ |
867 | 3780 ec = Lstream_get_ichar (stream); \ |
428 | 3781 ++streampos; \ |
3782 /* IS_BASE64 may not be called with negative arguments so check for \ | |
3783 EOF first. */ \ | |
3784 if (ec < 0 || IS_BASE64 (ec) || ec == '=') \ | |
3785 break; \ | |
3786 } while (1) | |
3787 | |
3788 #define STORE_BYTE(pos, val, ccnt) do { \ | |
867 | 3789 pos += set_itext_ichar (pos, (Ichar)((unsigned char)(val))); \ |
428 | 3790 ++ccnt; \ |
3791 } while (0) | |
3792 | |
665 | 3793 static Bytebpos |
867 | 3794 base64_decode_1 (Lstream *istream, Ibyte *to, Charcount *ccptr) |
428 | 3795 { |
3796 Charcount ccnt = 0; | |
867 | 3797 Ibyte *e = to; |
428 | 3798 EMACS_INT streampos = 0; |
3799 | |
3800 while (1) | |
3801 { | |
867 | 3802 Ichar ec; |
428 | 3803 unsigned long value; |
3804 | |
3805 /* Process first byte of a quadruplet. */ | |
3806 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3807 if (ec < 0) | |
3808 break; | |
3809 if (ec == '=') | |
563 | 3810 base64_conversion_error ("Illegal `=' character while decoding base64", |
3811 make_int (streampos)); | |
428 | 3812 value = base64_char_to_value[ec] << 18; |
3813 | |
3814 /* Process second byte of a quadruplet. */ | |
3815 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3816 if (ec < 0) | |
563 | 3817 base64_conversion_error ("Premature EOF while decoding base64", |
3818 Qunbound); | |
428 | 3819 if (ec == '=') |
563 | 3820 base64_conversion_error ("Illegal `=' character while decoding base64", |
3821 make_int (streampos)); | |
428 | 3822 value |= base64_char_to_value[ec] << 12; |
3823 STORE_BYTE (e, value >> 16, ccnt); | |
3824 | |
3825 /* Process third byte of a quadruplet. */ | |
3826 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3827 if (ec < 0) | |
563 | 3828 base64_conversion_error ("Premature EOF while decoding base64", |
3829 Qunbound); | |
428 | 3830 |
3831 if (ec == '=') | |
3832 { | |
3833 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3834 if (ec < 0) | |
563 | 3835 base64_conversion_error ("Premature EOF while decoding base64", |
3836 Qunbound); | |
428 | 3837 if (ec != '=') |
563 | 3838 base64_conversion_error |
3839 ("Padding `=' expected but not found while decoding base64", | |
3840 make_int (streampos)); | |
428 | 3841 continue; |
3842 } | |
3843 | |
3844 value |= base64_char_to_value[ec] << 6; | |
3845 STORE_BYTE (e, 0xff & value >> 8, ccnt); | |
3846 | |
3847 /* Process fourth byte of a quadruplet. */ | |
3848 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos); | |
3849 if (ec < 0) | |
563 | 3850 base64_conversion_error ("Premature EOF while decoding base64", |
3851 Qunbound); | |
428 | 3852 if (ec == '=') |
3853 continue; | |
3854 | |
3855 value |= base64_char_to_value[ec]; | |
3856 STORE_BYTE (e, 0xff & value, ccnt); | |
3857 } | |
3858 | |
3859 *ccptr = ccnt; | |
3860 return e - to; | |
3861 } | |
3862 #undef ADVANCE_INPUT | |
3863 #undef ADVANCE_INPUT_IGNORE_NONBASE64 | |
3864 #undef STORE_BYTE | |
3865 | |
3866 DEFUN ("base64-encode-region", Fbase64_encode_region, 2, 3, "r", /* | |
444 | 3867 Base64-encode the region between START and END. |
428 | 3868 Return the length of the encoded text. |
3869 Optional third argument NO-LINE-BREAK means do not break long lines | |
3870 into shorter lines. | |
3871 */ | |
444 | 3872 (start, end, no_line_break)) |
428 | 3873 { |
867 | 3874 Ibyte *encoded; |
665 | 3875 Bytebpos encoded_length; |
428 | 3876 Charcount allength, length; |
3877 struct buffer *buf = current_buffer; | |
665 | 3878 Charbpos begv, zv, old_pt = BUF_PT (buf); |
428 | 3879 Lisp_Object input; |
851 | 3880 int speccount = specpdl_depth (); |
428 | 3881 |
444 | 3882 get_buffer_range_char (buf, start, end, &begv, &zv, 0); |
428 | 3883 barf_if_buffer_read_only (buf, begv, zv); |
3884 | |
3885 /* We need to allocate enough room for encoding the text. | |
3886 We need 33 1/3% more space, plus a newline every 76 | |
3887 characters, and then we round up. */ | |
3888 length = zv - begv; | |
3889 allength = length + length/3 + 1; | |
3890 allength += allength / MIME_LINE_LENGTH + 1 + 6; | |
3891 | |
3892 input = make_lisp_buffer_input_stream (buf, begv, zv, 0); | |
867 | 3893 /* We needn't multiply allength with MAX_ICHAR_LEN because all the |
428 | 3894 base64 characters will be single-byte. */ |
867 | 3895 encoded = (Ibyte *) MALLOC_OR_ALLOCA (allength); |
428 | 3896 encoded_length = base64_encode_1 (XLSTREAM (input), encoded, |
3897 NILP (no_line_break)); | |
3898 if (encoded_length > allength) | |
2500 | 3899 ABORT (); |
428 | 3900 Lstream_delete (XLSTREAM (input)); |
3901 | |
3902 /* Now we have encoded the region, so we insert the new contents | |
3903 and delete the old. (Insert first in order to preserve markers.) */ | |
3904 buffer_insert_raw_string_1 (buf, begv, encoded, encoded_length, 0); | |
851 | 3905 unbind_to (speccount); |
428 | 3906 buffer_delete_range (buf, begv + encoded_length, zv + encoded_length, 0); |
3907 | |
3908 /* Simulate FSF Emacs implementation of this function: if point was | |
3909 in the region, place it at the beginning. */ | |
3910 if (old_pt >= begv && old_pt < zv) | |
3911 BUF_SET_PT (buf, begv); | |
3912 | |
3913 /* We return the length of the encoded text. */ | |
3914 return make_int (encoded_length); | |
3915 } | |
3916 | |
3917 DEFUN ("base64-encode-string", Fbase64_encode_string, 1, 2, 0, /* | |
3918 Base64 encode STRING and return the result. | |
444 | 3919 Optional argument NO-LINE-BREAK means do not break long lines |
3920 into shorter lines. | |
428 | 3921 */ |
3922 (string, no_line_break)) | |
3923 { | |
3924 Charcount allength, length; | |
665 | 3925 Bytebpos encoded_length; |
867 | 3926 Ibyte *encoded; |
428 | 3927 Lisp_Object input, result; |
3928 int speccount = specpdl_depth(); | |
3929 | |
3930 CHECK_STRING (string); | |
3931 | |
826 | 3932 length = string_char_length (string); |
428 | 3933 allength = length + length/3 + 1; |
3934 allength += allength / MIME_LINE_LENGTH + 1 + 6; | |
3935 | |
3936 input = make_lisp_string_input_stream (string, 0, -1); | |
867 | 3937 encoded = (Ibyte *) MALLOC_OR_ALLOCA (allength); |
428 | 3938 encoded_length = base64_encode_1 (XLSTREAM (input), encoded, |
3939 NILP (no_line_break)); | |
3940 if (encoded_length > allength) | |
2500 | 3941 ABORT (); |
428 | 3942 Lstream_delete (XLSTREAM (input)); |
3943 result = make_string (encoded, encoded_length); | |
851 | 3944 unbind_to (speccount); |
428 | 3945 return result; |
3946 } | |
3947 | |
3948 DEFUN ("base64-decode-region", Fbase64_decode_region, 2, 2, "r", /* | |
444 | 3949 Base64-decode the region between START and END. |
428 | 3950 Return the length of the decoded text. |
3951 If the region can't be decoded, return nil and don't modify the buffer. | |
3952 Characters out of the base64 alphabet are ignored. | |
3953 */ | |
444 | 3954 (start, end)) |
428 | 3955 { |
3956 struct buffer *buf = current_buffer; | |
665 | 3957 Charbpos begv, zv, old_pt = BUF_PT (buf); |
867 | 3958 Ibyte *decoded; |
665 | 3959 Bytebpos decoded_length; |
428 | 3960 Charcount length, cc_decoded_length; |
3961 Lisp_Object input; | |
3962 int speccount = specpdl_depth(); | |
3963 | |
444 | 3964 get_buffer_range_char (buf, start, end, &begv, &zv, 0); |
428 | 3965 barf_if_buffer_read_only (buf, begv, zv); |
3966 | |
3967 length = zv - begv; | |
3968 | |
3969 input = make_lisp_buffer_input_stream (buf, begv, zv, 0); | |
3970 /* We need to allocate enough room for decoding the text. */ | |
867 | 3971 decoded = (Ibyte *) MALLOC_OR_ALLOCA (length * MAX_ICHAR_LEN); |
428 | 3972 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, &cc_decoded_length); |
867 | 3973 if (decoded_length > length * MAX_ICHAR_LEN) |
2500 | 3974 ABORT (); |
428 | 3975 Lstream_delete (XLSTREAM (input)); |
3976 | |
3977 /* Now we have decoded the region, so we insert the new contents | |
3978 and delete the old. (Insert first in order to preserve markers.) */ | |
3979 BUF_SET_PT (buf, begv); | |
3980 buffer_insert_raw_string_1 (buf, begv, decoded, decoded_length, 0); | |
851 | 3981 unbind_to (speccount); |
428 | 3982 buffer_delete_range (buf, begv + cc_decoded_length, |
3983 zv + cc_decoded_length, 0); | |
3984 | |
3985 /* Simulate FSF Emacs implementation of this function: if point was | |
3986 in the region, place it at the beginning. */ | |
3987 if (old_pt >= begv && old_pt < zv) | |
3988 BUF_SET_PT (buf, begv); | |
3989 | |
3990 return make_int (cc_decoded_length); | |
3991 } | |
3992 | |
3993 DEFUN ("base64-decode-string", Fbase64_decode_string, 1, 1, 0, /* | |
3994 Base64-decode STRING and return the result. | |
3995 Characters out of the base64 alphabet are ignored. | |
3996 */ | |
3997 (string)) | |
3998 { | |
867 | 3999 Ibyte *decoded; |
665 | 4000 Bytebpos decoded_length; |
428 | 4001 Charcount length, cc_decoded_length; |
4002 Lisp_Object input, result; | |
4003 int speccount = specpdl_depth(); | |
4004 | |
4005 CHECK_STRING (string); | |
4006 | |
826 | 4007 length = string_char_length (string); |
428 | 4008 /* We need to allocate enough room for decoding the text. */ |
867 | 4009 decoded = (Ibyte *) MALLOC_OR_ALLOCA (length * MAX_ICHAR_LEN); |
428 | 4010 |
4011 input = make_lisp_string_input_stream (string, 0, -1); | |
4012 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, | |
4013 &cc_decoded_length); | |
867 | 4014 if (decoded_length > length * MAX_ICHAR_LEN) |
2500 | 4015 ABORT (); |
428 | 4016 Lstream_delete (XLSTREAM (input)); |
4017 | |
4018 result = make_string (decoded, decoded_length); | |
851 | 4019 unbind_to (speccount); |
428 | 4020 return result; |
4021 } | |
4022 | |
4023 Lisp_Object Qyes_or_no_p; | |
4024 | |
4025 void | |
4026 syms_of_fns (void) | |
4027 { | |
5117
3742ea8250b5
Checking in final CVS version of workspace 'ben-lisp-object'
Ben Wing <ben@xemacs.org>
parents:
3025
diff
changeset
|
4028 INIT_LISP_OBJECT (bit_vector); |
442 | 4029 |
563 | 4030 DEFSYMBOL (Qstring_lessp); |
4031 DEFSYMBOL (Qidentity); | |
4032 DEFSYMBOL (Qyes_or_no_p); | |
4033 | |
4034 DEFERROR_STANDARD (Qbase64_conversion_error, Qconversion_error); | |
428 | 4035 |
4036 DEFSUBR (Fidentity); | |
4037 DEFSUBR (Frandom); | |
4038 DEFSUBR (Flength); | |
4039 DEFSUBR (Fsafe_length); | |
4040 DEFSUBR (Fstring_equal); | |
801 | 4041 DEFSUBR (Fcompare_strings); |
428 | 4042 DEFSUBR (Fstring_lessp); |
4043 DEFSUBR (Fstring_modified_tick); | |
4044 DEFSUBR (Fappend); | |
4045 DEFSUBR (Fconcat); | |
4046 DEFSUBR (Fvconcat); | |
4047 DEFSUBR (Fbvconcat); | |
4048 DEFSUBR (Fcopy_list); | |
4049 DEFSUBR (Fcopy_sequence); | |
4050 DEFSUBR (Fcopy_alist); | |
4051 DEFSUBR (Fcopy_tree); | |
4052 DEFSUBR (Fsubstring); | |
4053 DEFSUBR (Fsubseq); | |
4054 DEFSUBR (Fnthcdr); | |
4055 DEFSUBR (Fnth); | |
4056 DEFSUBR (Felt); | |
4057 DEFSUBR (Flast); | |
4058 DEFSUBR (Fbutlast); | |
4059 DEFSUBR (Fnbutlast); | |
4060 DEFSUBR (Fmember); | |
4061 DEFSUBR (Fold_member); | |
4062 DEFSUBR (Fmemq); | |
4063 DEFSUBR (Fold_memq); | |
4064 DEFSUBR (Fassoc); | |
4065 DEFSUBR (Fold_assoc); | |
4066 DEFSUBR (Fassq); | |
4067 DEFSUBR (Fold_assq); | |
4068 DEFSUBR (Frassoc); | |
4069 DEFSUBR (Fold_rassoc); | |
4070 DEFSUBR (Frassq); | |
4071 DEFSUBR (Fold_rassq); | |
4072 DEFSUBR (Fdelete); | |
4073 DEFSUBR (Fold_delete); | |
4074 DEFSUBR (Fdelq); | |
4075 DEFSUBR (Fold_delq); | |
4076 DEFSUBR (Fremassoc); | |
4077 DEFSUBR (Fremassq); | |
4078 DEFSUBR (Fremrassoc); | |
4079 DEFSUBR (Fremrassq); | |
4080 DEFSUBR (Fnreverse); | |
4081 DEFSUBR (Freverse); | |
4082 DEFSUBR (Fsort); | |
4083 DEFSUBR (Fplists_eq); | |
4084 DEFSUBR (Fplists_equal); | |
4085 DEFSUBR (Flax_plists_eq); | |
4086 DEFSUBR (Flax_plists_equal); | |
4087 DEFSUBR (Fplist_get); | |
4088 DEFSUBR (Fplist_put); | |
4089 DEFSUBR (Fplist_remprop); | |
4090 DEFSUBR (Fplist_member); | |
4091 DEFSUBR (Fcheck_valid_plist); | |
4092 DEFSUBR (Fvalid_plist_p); | |
4093 DEFSUBR (Fcanonicalize_plist); | |
4094 DEFSUBR (Flax_plist_get); | |
4095 DEFSUBR (Flax_plist_put); | |
4096 DEFSUBR (Flax_plist_remprop); | |
4097 DEFSUBR (Flax_plist_member); | |
4098 DEFSUBR (Fcanonicalize_lax_plist); | |
4099 DEFSUBR (Fdestructive_alist_to_plist); | |
4100 DEFSUBR (Fget); | |
4101 DEFSUBR (Fput); | |
4102 DEFSUBR (Fremprop); | |
4103 DEFSUBR (Fobject_plist); | |
4104 DEFSUBR (Fequal); | |
4105 DEFSUBR (Fold_equal); | |
4106 DEFSUBR (Ffillarray); | |
4107 DEFSUBR (Fnconc); | |
4108 DEFSUBR (Fmapcar); | |
4109 DEFSUBR (Fmapvector); | |
4110 DEFSUBR (Fmapc_internal); | |
4111 DEFSUBR (Fmapconcat); | |
442 | 4112 DEFSUBR (Freplace_list); |
428 | 4113 DEFSUBR (Fload_average); |
4114 DEFSUBR (Ffeaturep); | |
4115 DEFSUBR (Frequire); | |
4116 DEFSUBR (Fprovide); | |
4117 DEFSUBR (Fbase64_encode_region); | |
4118 DEFSUBR (Fbase64_encode_string); | |
4119 DEFSUBR (Fbase64_decode_region); | |
4120 DEFSUBR (Fbase64_decode_string); | |
771 | 4121 |
4122 DEFSUBR (Fsplit_string_by_char); | |
4123 DEFSUBR (Fsplit_path); /* #### */ | |
4124 } | |
4125 | |
4126 void | |
4127 vars_of_fns (void) | |
4128 { | |
4129 DEFVAR_LISP ("path-separator", &Vpath_separator /* | |
4130 The directory separator in search paths, as a string. | |
4131 */ ); | |
4132 { | |
4133 char c = SEPCHAR; | |
867 | 4134 Vpath_separator = make_string ((Ibyte *) &c, 1); |
771 | 4135 } |
428 | 4136 } |
4137 | |
4138 void | |
4139 init_provide_once (void) | |
4140 { | |
4141 DEFVAR_LISP ("features", &Vfeatures /* | |
4142 A list of symbols which are the features of the executing emacs. | |
4143 Used by `featurep' and `require', and altered by `provide'. | |
4144 */ ); | |
4145 Vfeatures = Qnil; | |
4146 | |
4147 Fprovide (intern ("base64")); | |
4148 } |