428
|
1 /* Random utility Lisp functions.
|
|
2 Copyright (C) 1985, 86, 87, 93, 94, 95 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995, 1996 Ben Wing.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: Mule 2.0, FSF 19.30. */
|
|
23
|
|
24 /* This file has been Mule-ized. */
|
|
25
|
|
26 /* Note: FSF 19.30 has bool vectors. We have bit vectors. */
|
|
27
|
|
28 /* Hacked on for Mule by Ben Wing, December 1994, January 1995. */
|
|
29
|
|
30 #include <config.h>
|
|
31
|
|
32 /* Note on some machines this defines `vector' as a typedef,
|
|
33 so make sure we don't use that name in this file. */
|
|
34 #undef vector
|
|
35 #define vector *****
|
|
36
|
|
37 #include "lisp.h"
|
|
38
|
442
|
39 #include "sysfile.h"
|
428
|
40
|
|
41 #include "buffer.h"
|
|
42 #include "bytecode.h"
|
|
43 #include "device.h"
|
|
44 #include "events.h"
|
|
45 #include "extents.h"
|
|
46 #include "frame.h"
|
|
47 #include "systime.h"
|
|
48 #include "insdel.h"
|
|
49 #include "lstream.h"
|
|
50 #include "opaque.h"
|
|
51
|
|
52 /* NOTE: This symbol is also used in lread.c */
|
|
53 #define FEATUREP_SYNTAX
|
|
54
|
|
55 Lisp_Object Qstring_lessp;
|
|
56 Lisp_Object Qidentity;
|
|
57
|
|
58 static int internal_old_equal (Lisp_Object, Lisp_Object, int);
|
454
|
59 Lisp_Object safe_copy_tree (Lisp_Object arg, Lisp_Object vecp, int depth);
|
428
|
60
|
|
61 static Lisp_Object
|
|
62 mark_bit_vector (Lisp_Object obj)
|
|
63 {
|
|
64 return Qnil;
|
|
65 }
|
|
66
|
|
67 static void
|
|
68 print_bit_vector (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
|
|
69 {
|
|
70 size_t i;
|
440
|
71 Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
|
428
|
72 size_t len = bit_vector_length (v);
|
|
73 size_t last = len;
|
|
74
|
|
75 if (INTP (Vprint_length))
|
|
76 last = min (len, XINT (Vprint_length));
|
|
77 write_c_string ("#*", printcharfun);
|
|
78 for (i = 0; i < last; i++)
|
|
79 {
|
|
80 if (bit_vector_bit (v, i))
|
|
81 write_c_string ("1", printcharfun);
|
|
82 else
|
|
83 write_c_string ("0", printcharfun);
|
|
84 }
|
|
85
|
|
86 if (last != len)
|
|
87 write_c_string ("...", printcharfun);
|
|
88 }
|
|
89
|
|
90 static int
|
|
91 bit_vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
92 {
|
440
|
93 Lisp_Bit_Vector *v1 = XBIT_VECTOR (obj1);
|
|
94 Lisp_Bit_Vector *v2 = XBIT_VECTOR (obj2);
|
428
|
95
|
|
96 return ((bit_vector_length (v1) == bit_vector_length (v2)) &&
|
|
97 !memcmp (v1->bits, v2->bits,
|
|
98 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v1)) *
|
|
99 sizeof (long)));
|
|
100 }
|
|
101
|
|
102 static unsigned long
|
|
103 bit_vector_hash (Lisp_Object obj, int depth)
|
|
104 {
|
440
|
105 Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
|
428
|
106 return HASH2 (bit_vector_length (v),
|
|
107 memory_hash (v->bits,
|
|
108 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)) *
|
|
109 sizeof (long)));
|
|
110 }
|
|
111
|
442
|
112 static size_t
|
|
113 size_bit_vector (const void *lheader)
|
|
114 {
|
|
115 Lisp_Bit_Vector *v = (Lisp_Bit_Vector *) lheader;
|
|
116 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, bits,
|
|
117 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)));
|
|
118 }
|
|
119
|
428
|
120 static const struct lrecord_description bit_vector_description[] = {
|
440
|
121 { XD_LISP_OBJECT, offsetof (Lisp_Bit_Vector, next) },
|
428
|
122 { XD_END }
|
|
123 };
|
|
124
|
|
125
|
442
|
126 DEFINE_BASIC_LRECORD_SEQUENCE_IMPLEMENTATION ("bit-vector", bit_vector,
|
|
127 mark_bit_vector, print_bit_vector, 0,
|
|
128 bit_vector_equal, bit_vector_hash,
|
|
129 bit_vector_description, size_bit_vector,
|
|
130 Lisp_Bit_Vector);
|
428
|
131
|
|
132 DEFUN ("identity", Fidentity, 1, 1, 0, /*
|
|
133 Return the argument unchanged.
|
|
134 */
|
|
135 (arg))
|
|
136 {
|
|
137 return arg;
|
|
138 }
|
|
139
|
|
140 extern long get_random (void);
|
|
141 extern void seed_random (long arg);
|
|
142
|
|
143 DEFUN ("random", Frandom, 0, 1, 0, /*
|
|
144 Return a pseudo-random number.
|
|
145 All integers representable in Lisp are equally likely.
|
|
146 On most systems, this is 28 bits' worth.
|
|
147 With positive integer argument N, return random number in interval [0,N).
|
|
148 With argument t, set the random number seed from the current time and pid.
|
|
149 */
|
|
150 (limit))
|
|
151 {
|
|
152 EMACS_INT val;
|
|
153 unsigned long denominator;
|
|
154
|
|
155 if (EQ (limit, Qt))
|
|
156 seed_random (getpid () + time (NULL));
|
|
157 if (NATNUMP (limit) && !ZEROP (limit))
|
|
158 {
|
|
159 /* Try to take our random number from the higher bits of VAL,
|
|
160 not the lower, since (says Gentzel) the low bits of `random'
|
|
161 are less random than the higher ones. We do this by using the
|
|
162 quotient rather than the remainder. At the high end of the RNG
|
|
163 it's possible to get a quotient larger than limit; discarding
|
|
164 these values eliminates the bias that would otherwise appear
|
|
165 when using a large limit. */
|
|
166 denominator = ((unsigned long)1 << VALBITS) / XINT (limit);
|
|
167 do
|
|
168 val = get_random () / denominator;
|
|
169 while (val >= XINT (limit));
|
|
170 }
|
|
171 else
|
|
172 val = get_random ();
|
|
173
|
|
174 return make_int (val);
|
|
175 }
|
|
176
|
|
177 /* Random data-structure functions */
|
|
178
|
|
179 #ifdef LOSING_BYTECODE
|
|
180
|
|
181 /* #### Delete this shit */
|
|
182
|
|
183 /* Charcount is a misnomer here as we might be dealing with the
|
|
184 length of a vector or list, but emphasizes that we're not dealing
|
|
185 with Bytecounts in strings */
|
|
186 static Charcount
|
|
187 length_with_bytecode_hack (Lisp_Object seq)
|
|
188 {
|
|
189 if (!COMPILED_FUNCTIONP (seq))
|
|
190 return XINT (Flength (seq));
|
|
191 else
|
|
192 {
|
440
|
193 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (seq);
|
428
|
194
|
|
195 return (f->flags.interactivep ? COMPILED_INTERACTIVE :
|
|
196 f->flags.domainp ? COMPILED_DOMAIN :
|
|
197 COMPILED_DOC_STRING)
|
|
198 + 1;
|
|
199 }
|
|
200 }
|
|
201
|
|
202 #endif /* LOSING_BYTECODE */
|
|
203
|
|
204 void
|
442
|
205 check_losing_bytecode (const char *function, Lisp_Object seq)
|
428
|
206 {
|
|
207 if (COMPILED_FUNCTIONP (seq))
|
|
208 error_with_frob
|
|
209 (seq,
|
|
210 "As of 20.3, `%s' no longer works with compiled-function objects",
|
|
211 function);
|
|
212 }
|
|
213
|
|
214 DEFUN ("length", Flength, 1, 1, 0, /*
|
|
215 Return the length of vector, bit vector, list or string SEQUENCE.
|
|
216 */
|
|
217 (sequence))
|
|
218 {
|
|
219 retry:
|
|
220 if (STRINGP (sequence))
|
|
221 return make_int (XSTRING_CHAR_LENGTH (sequence));
|
|
222 else if (CONSP (sequence))
|
|
223 {
|
|
224 size_t len;
|
|
225 GET_EXTERNAL_LIST_LENGTH (sequence, len);
|
|
226 return make_int (len);
|
|
227 }
|
|
228 else if (VECTORP (sequence))
|
|
229 return make_int (XVECTOR_LENGTH (sequence));
|
|
230 else if (NILP (sequence))
|
|
231 return Qzero;
|
|
232 else if (BIT_VECTORP (sequence))
|
|
233 return make_int (bit_vector_length (XBIT_VECTOR (sequence)));
|
|
234 else
|
|
235 {
|
|
236 check_losing_bytecode ("length", sequence);
|
|
237 sequence = wrong_type_argument (Qsequencep, sequence);
|
|
238 goto retry;
|
|
239 }
|
|
240 }
|
|
241
|
|
242 DEFUN ("safe-length", Fsafe_length, 1, 1, 0, /*
|
|
243 Return the length of a list, but avoid error or infinite loop.
|
|
244 This function never gets an error. If LIST is not really a list,
|
|
245 it returns 0. If LIST is circular, it returns a finite value
|
|
246 which is at least the number of distinct elements.
|
|
247 */
|
|
248 (list))
|
|
249 {
|
|
250 Lisp_Object hare, tortoise;
|
|
251 size_t len;
|
|
252
|
|
253 for (hare = tortoise = list, len = 0;
|
|
254 CONSP (hare) && (! EQ (hare, tortoise) || len == 0);
|
|
255 hare = XCDR (hare), len++)
|
|
256 {
|
|
257 if (len & 1)
|
|
258 tortoise = XCDR (tortoise);
|
|
259 }
|
|
260
|
|
261 return make_int (len);
|
|
262 }
|
|
263
|
|
264 /*** string functions. ***/
|
|
265
|
|
266 DEFUN ("string-equal", Fstring_equal, 2, 2, 0, /*
|
|
267 Return t if two strings have identical contents.
|
|
268 Case is significant. Text properties are ignored.
|
|
269 \(Under XEmacs, `equal' also ignores text properties and extents in
|
|
270 strings, but this is not the case under FSF Emacs 19. In FSF Emacs 20
|
|
271 `equal' is the same as in XEmacs, in that respect.)
|
|
272 Symbols are also allowed; their print names are used instead.
|
|
273 */
|
444
|
274 (string1, string2))
|
428
|
275 {
|
|
276 Bytecount len;
|
440
|
277 Lisp_String *p1, *p2;
|
428
|
278
|
444
|
279 if (SYMBOLP (string1))
|
|
280 p1 = XSYMBOL (string1)->name;
|
428
|
281 else
|
|
282 {
|
444
|
283 CHECK_STRING (string1);
|
|
284 p1 = XSTRING (string1);
|
428
|
285 }
|
|
286
|
444
|
287 if (SYMBOLP (string2))
|
|
288 p2 = XSYMBOL (string2)->name;
|
428
|
289 else
|
|
290 {
|
444
|
291 CHECK_STRING (string2);
|
|
292 p2 = XSTRING (string2);
|
428
|
293 }
|
|
294
|
|
295 return (((len = string_length (p1)) == string_length (p2)) &&
|
|
296 !memcmp (string_data (p1), string_data (p2), len)) ? Qt : Qnil;
|
|
297 }
|
|
298
|
|
299
|
|
300 DEFUN ("string-lessp", Fstring_lessp, 2, 2, 0, /*
|
|
301 Return t if first arg string is less than second in lexicographic order.
|
|
302 If I18N2 support (but not Mule support) was compiled in, ordering is
|
|
303 determined by the locale. (Case is significant for the default C locale.)
|
|
304 In all other cases, comparison is simply done on a character-by-
|
|
305 character basis using the numeric value of a character. (Note that
|
|
306 this may not produce particularly meaningful results under Mule if
|
|
307 characters from different charsets are being compared.)
|
|
308
|
|
309 Symbols are also allowed; their print names are used instead.
|
|
310
|
|
311 The reason that the I18N2 locale-specific collation is not used under
|
|
312 Mule is that the locale model of internationalization does not handle
|
|
313 multiple charsets and thus has no hope of working properly under Mule.
|
|
314 What we really should do is create a collation table over all built-in
|
|
315 charsets. This is extremely difficult to do from scratch, however.
|
|
316
|
|
317 Unicode is a good first step towards solving this problem. In fact,
|
|
318 it is quite likely that a collation table exists (or will exist) for
|
|
319 Unicode. When Unicode support is added to XEmacs/Mule, this problem
|
|
320 may be solved.
|
|
321 */
|
444
|
322 (string1, string2))
|
428
|
323 {
|
440
|
324 Lisp_String *p1, *p2;
|
428
|
325 Charcount end, len2;
|
|
326 int i;
|
|
327
|
444
|
328 if (SYMBOLP (string1))
|
|
329 p1 = XSYMBOL (string1)->name;
|
428
|
330 else
|
|
331 {
|
444
|
332 CHECK_STRING (string1);
|
|
333 p1 = XSTRING (string1);
|
428
|
334 }
|
|
335
|
444
|
336 if (SYMBOLP (string2))
|
|
337 p2 = XSYMBOL (string2)->name;
|
428
|
338 else
|
|
339 {
|
444
|
340 CHECK_STRING (string2);
|
|
341 p2 = XSTRING (string2);
|
428
|
342 }
|
|
343
|
|
344 end = string_char_length (p1);
|
|
345 len2 = string_char_length (p2);
|
|
346 if (end > len2)
|
|
347 end = len2;
|
|
348
|
|
349 #if defined (I18N2) && !defined (MULE)
|
|
350 /* There is no hope of this working under Mule. Even if we converted
|
|
351 the data into an external format so that strcoll() processed it
|
|
352 properly, it would still not work because strcoll() does not
|
|
353 handle multiple locales. This is the fundamental flaw in the
|
|
354 locale model. */
|
|
355 {
|
|
356 Bytecount bcend = charcount_to_bytecount (string_data (p1), end);
|
|
357 /* Compare strings using collation order of locale. */
|
|
358 /* Need to be tricky to handle embedded nulls. */
|
|
359
|
|
360 for (i = 0; i < bcend; i += strlen((char *) string_data (p1) + i) + 1)
|
|
361 {
|
|
362 int val = strcoll ((char *) string_data (p1) + i,
|
|
363 (char *) string_data (p2) + i);
|
|
364 if (val < 0)
|
|
365 return Qt;
|
|
366 if (val > 0)
|
|
367 return Qnil;
|
|
368 }
|
|
369 }
|
|
370 #else /* not I18N2, or MULE */
|
|
371 {
|
|
372 Bufbyte *ptr1 = string_data (p1);
|
|
373 Bufbyte *ptr2 = string_data (p2);
|
|
374
|
|
375 /* #### It is not really necessary to do this: We could compare
|
|
376 byte-by-byte and still get a reasonable comparison, since this
|
|
377 would compare characters with a charset in the same way. With
|
|
378 a little rearrangement of the leading bytes, we could make most
|
|
379 inter-charset comparisons work out the same, too; even if some
|
|
380 don't, this is not a big deal because inter-charset comparisons
|
|
381 aren't really well-defined anyway. */
|
|
382 for (i = 0; i < end; i++)
|
|
383 {
|
|
384 if (charptr_emchar (ptr1) != charptr_emchar (ptr2))
|
|
385 return charptr_emchar (ptr1) < charptr_emchar (ptr2) ? Qt : Qnil;
|
|
386 INC_CHARPTR (ptr1);
|
|
387 INC_CHARPTR (ptr2);
|
|
388 }
|
|
389 }
|
|
390 #endif /* not I18N2, or MULE */
|
|
391 /* Can't do i < len2 because then comparison between "foo" and "foo^@"
|
|
392 won't work right in I18N2 case */
|
|
393 return end < len2 ? Qt : Qnil;
|
|
394 }
|
|
395
|
|
396 DEFUN ("string-modified-tick", Fstring_modified_tick, 1, 1, 0, /*
|
|
397 Return STRING's tick counter, incremented for each change to the string.
|
|
398 Each string has a tick counter which is incremented each time the contents
|
|
399 of the string are changed (e.g. with `aset'). It wraps around occasionally.
|
|
400 */
|
|
401 (string))
|
|
402 {
|
440
|
403 Lisp_String *s;
|
428
|
404
|
|
405 CHECK_STRING (string);
|
|
406 s = XSTRING (string);
|
|
407 if (CONSP (s->plist) && INTP (XCAR (s->plist)))
|
|
408 return XCAR (s->plist);
|
|
409 else
|
|
410 return Qzero;
|
|
411 }
|
|
412
|
|
413 void
|
|
414 bump_string_modiff (Lisp_Object str)
|
|
415 {
|
440
|
416 Lisp_String *s = XSTRING (str);
|
428
|
417 Lisp_Object *ptr = &s->plist;
|
|
418
|
|
419 #ifdef I18N3
|
|
420 /* #### remove the `string-translatable' property from the string,
|
|
421 if there is one. */
|
|
422 #endif
|
|
423 /* skip over extent info if it's there */
|
|
424 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
|
|
425 ptr = &XCDR (*ptr);
|
|
426 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
|
|
427 XSETINT (XCAR (*ptr), 1+XINT (XCAR (*ptr)));
|
|
428 else
|
|
429 *ptr = Fcons (make_int (1), *ptr);
|
|
430 }
|
|
431
|
|
432
|
|
433 enum concat_target_type { c_cons, c_string, c_vector, c_bit_vector };
|
|
434 static Lisp_Object concat (int nargs, Lisp_Object *args,
|
|
435 enum concat_target_type target_type,
|
|
436 int last_special);
|
|
437
|
|
438 Lisp_Object
|
444
|
439 concat2 (Lisp_Object string1, Lisp_Object string2)
|
428
|
440 {
|
|
441 Lisp_Object args[2];
|
444
|
442 args[0] = string1;
|
|
443 args[1] = string2;
|
428
|
444 return concat (2, args, c_string, 0);
|
|
445 }
|
|
446
|
|
447 Lisp_Object
|
444
|
448 concat3 (Lisp_Object string1, Lisp_Object string2, Lisp_Object string3)
|
428
|
449 {
|
|
450 Lisp_Object args[3];
|
444
|
451 args[0] = string1;
|
|
452 args[1] = string2;
|
|
453 args[2] = string3;
|
428
|
454 return concat (3, args, c_string, 0);
|
|
455 }
|
|
456
|
|
457 Lisp_Object
|
444
|
458 vconcat2 (Lisp_Object vec1, Lisp_Object vec2)
|
428
|
459 {
|
|
460 Lisp_Object args[2];
|
444
|
461 args[0] = vec1;
|
|
462 args[1] = vec2;
|
428
|
463 return concat (2, args, c_vector, 0);
|
|
464 }
|
|
465
|
|
466 Lisp_Object
|
444
|
467 vconcat3 (Lisp_Object vec1, Lisp_Object vec2, Lisp_Object vec3)
|
428
|
468 {
|
|
469 Lisp_Object args[3];
|
444
|
470 args[0] = vec1;
|
|
471 args[1] = vec2;
|
|
472 args[2] = vec3;
|
428
|
473 return concat (3, args, c_vector, 0);
|
|
474 }
|
|
475
|
|
476 DEFUN ("append", Fappend, 0, MANY, 0, /*
|
|
477 Concatenate all the arguments and make the result a list.
|
|
478 The result is a list whose elements are the elements of all the arguments.
|
|
479 Each argument may be a list, vector, bit vector, or string.
|
|
480 The last argument is not copied, just used as the tail of the new list.
|
|
481 Also see: `nconc'.
|
|
482 */
|
|
483 (int nargs, Lisp_Object *args))
|
|
484 {
|
|
485 return concat (nargs, args, c_cons, 1);
|
|
486 }
|
|
487
|
|
488 DEFUN ("concat", Fconcat, 0, MANY, 0, /*
|
|
489 Concatenate all the arguments and make the result a string.
|
|
490 The result is a string whose elements are the elements of all the arguments.
|
|
491 Each argument may be a string or a list or vector of characters.
|
|
492
|
|
493 As of XEmacs 21.0, this function does NOT accept individual integers
|
|
494 as arguments. Old code that relies on, for example, (concat "foo" 50)
|
|
495 returning "foo50" will fail. To fix such code, either apply
|
|
496 `int-to-string' to the integer argument, or use `format'.
|
|
497 */
|
|
498 (int nargs, Lisp_Object *args))
|
|
499 {
|
|
500 return concat (nargs, args, c_string, 0);
|
|
501 }
|
|
502
|
|
503 DEFUN ("vconcat", Fvconcat, 0, MANY, 0, /*
|
|
504 Concatenate all the arguments and make the result a vector.
|
|
505 The result is a vector whose elements are the elements of all the arguments.
|
|
506 Each argument may be a list, vector, bit vector, or string.
|
|
507 */
|
|
508 (int nargs, Lisp_Object *args))
|
|
509 {
|
|
510 return concat (nargs, args, c_vector, 0);
|
|
511 }
|
|
512
|
|
513 DEFUN ("bvconcat", Fbvconcat, 0, MANY, 0, /*
|
|
514 Concatenate all the arguments and make the result a bit vector.
|
|
515 The result is a bit vector whose elements are the elements of all the
|
|
516 arguments. Each argument may be a list, vector, bit vector, or string.
|
|
517 */
|
|
518 (int nargs, Lisp_Object *args))
|
|
519 {
|
|
520 return concat (nargs, args, c_bit_vector, 0);
|
|
521 }
|
|
522
|
|
523 /* Copy a (possibly dotted) list. LIST must be a cons.
|
|
524 Can't use concat (1, &alist, c_cons, 0) - doesn't handle dotted lists. */
|
|
525 static Lisp_Object
|
|
526 copy_list (Lisp_Object list)
|
|
527 {
|
|
528 Lisp_Object list_copy = Fcons (XCAR (list), XCDR (list));
|
|
529 Lisp_Object last = list_copy;
|
|
530 Lisp_Object hare, tortoise;
|
|
531 size_t len;
|
|
532
|
|
533 for (tortoise = hare = XCDR (list), len = 1;
|
|
534 CONSP (hare);
|
|
535 hare = XCDR (hare), len++)
|
|
536 {
|
|
537 XCDR (last) = Fcons (XCAR (hare), XCDR (hare));
|
|
538 last = XCDR (last);
|
|
539
|
|
540 if (len < CIRCULAR_LIST_SUSPICION_LENGTH)
|
|
541 continue;
|
|
542 if (len & 1)
|
|
543 tortoise = XCDR (tortoise);
|
|
544 if (EQ (tortoise, hare))
|
|
545 signal_circular_list_error (list);
|
|
546 }
|
|
547
|
|
548 return list_copy;
|
|
549 }
|
|
550
|
|
551 DEFUN ("copy-list", Fcopy_list, 1, 1, 0, /*
|
|
552 Return a copy of list LIST, which may be a dotted list.
|
|
553 The elements of LIST are not copied; they are shared
|
|
554 with the original.
|
|
555 */
|
|
556 (list))
|
|
557 {
|
|
558 again:
|
|
559 if (NILP (list)) return list;
|
|
560 if (CONSP (list)) return copy_list (list);
|
|
561
|
|
562 list = wrong_type_argument (Qlistp, list);
|
|
563 goto again;
|
|
564 }
|
|
565
|
|
566 DEFUN ("copy-sequence", Fcopy_sequence, 1, 1, 0, /*
|
|
567 Return a copy of list, vector, bit vector or string SEQUENCE.
|
|
568 The elements of a list or vector are not copied; they are shared
|
|
569 with the original. SEQUENCE may be a dotted list.
|
|
570 */
|
|
571 (sequence))
|
|
572 {
|
|
573 again:
|
|
574 if (NILP (sequence)) return sequence;
|
|
575 if (CONSP (sequence)) return copy_list (sequence);
|
|
576 if (STRINGP (sequence)) return concat (1, &sequence, c_string, 0);
|
|
577 if (VECTORP (sequence)) return concat (1, &sequence, c_vector, 0);
|
|
578 if (BIT_VECTORP (sequence)) return concat (1, &sequence, c_bit_vector, 0);
|
|
579
|
|
580 check_losing_bytecode ("copy-sequence", sequence);
|
|
581 sequence = wrong_type_argument (Qsequencep, sequence);
|
|
582 goto again;
|
|
583 }
|
|
584
|
|
585 struct merge_string_extents_struct
|
|
586 {
|
|
587 Lisp_Object string;
|
|
588 Bytecount entry_offset;
|
|
589 Bytecount entry_length;
|
|
590 };
|
|
591
|
|
592 static Lisp_Object
|
|
593 concat (int nargs, Lisp_Object *args,
|
|
594 enum concat_target_type target_type,
|
|
595 int last_special)
|
|
596 {
|
|
597 Lisp_Object val;
|
|
598 Lisp_Object tail = Qnil;
|
|
599 int toindex;
|
|
600 int argnum;
|
|
601 Lisp_Object last_tail;
|
|
602 Lisp_Object prev;
|
|
603 struct merge_string_extents_struct *args_mse = 0;
|
|
604 Bufbyte *string_result = 0;
|
|
605 Bufbyte *string_result_ptr = 0;
|
|
606 struct gcpro gcpro1;
|
|
607
|
|
608 /* The modus operandi in Emacs is "caller gc-protects args".
|
|
609 However, concat is called many times in Emacs on freshly
|
|
610 created stuff. So we help those callers out by protecting
|
|
611 the args ourselves to save them a lot of temporary-variable
|
|
612 grief. */
|
|
613
|
|
614 GCPRO1 (args[0]);
|
|
615 gcpro1.nvars = nargs;
|
|
616
|
|
617 #ifdef I18N3
|
|
618 /* #### if the result is a string and any of the strings have a string
|
|
619 for the `string-translatable' property, then concat should also
|
|
620 concat the args but use the `string-translatable' strings, and store
|
|
621 the result in the returned string's `string-translatable' property. */
|
|
622 #endif
|
|
623 if (target_type == c_string)
|
|
624 args_mse = alloca_array (struct merge_string_extents_struct, nargs);
|
|
625
|
|
626 /* In append, the last arg isn't treated like the others */
|
|
627 if (last_special && nargs > 0)
|
|
628 {
|
|
629 nargs--;
|
|
630 last_tail = args[nargs];
|
|
631 }
|
|
632 else
|
|
633 last_tail = Qnil;
|
|
634
|
|
635 /* Check and coerce the arguments. */
|
|
636 for (argnum = 0; argnum < nargs; argnum++)
|
|
637 {
|
|
638 Lisp_Object seq = args[argnum];
|
|
639 if (LISTP (seq))
|
|
640 ;
|
|
641 else if (VECTORP (seq) || STRINGP (seq) || BIT_VECTORP (seq))
|
|
642 ;
|
|
643 #ifdef LOSING_BYTECODE
|
|
644 else if (COMPILED_FUNCTIONP (seq))
|
|
645 /* Urk! We allow this, for "compatibility"... */
|
|
646 ;
|
|
647 #endif
|
|
648 #if 0 /* removed for XEmacs 21 */
|
|
649 else if (INTP (seq))
|
|
650 /* This is too revolting to think about but maintains
|
|
651 compatibility with FSF (and lots and lots of old code). */
|
|
652 args[argnum] = Fnumber_to_string (seq);
|
|
653 #endif
|
|
654 else
|
|
655 {
|
|
656 check_losing_bytecode ("concat", seq);
|
|
657 args[argnum] = wrong_type_argument (Qsequencep, seq);
|
|
658 }
|
|
659
|
|
660 if (args_mse)
|
|
661 {
|
|
662 if (STRINGP (seq))
|
|
663 args_mse[argnum].string = seq;
|
|
664 else
|
|
665 args_mse[argnum].string = Qnil;
|
|
666 }
|
|
667 }
|
|
668
|
|
669 {
|
|
670 /* Charcount is a misnomer here as we might be dealing with the
|
|
671 length of a vector or list, but emphasizes that we're not dealing
|
|
672 with Bytecounts in strings */
|
|
673 Charcount total_length;
|
|
674
|
|
675 for (argnum = 0, total_length = 0; argnum < nargs; argnum++)
|
|
676 {
|
|
677 #ifdef LOSING_BYTECODE
|
|
678 Charcount thislen = length_with_bytecode_hack (args[argnum]);
|
|
679 #else
|
|
680 Charcount thislen = XINT (Flength (args[argnum]));
|
|
681 #endif
|
|
682 total_length += thislen;
|
|
683 }
|
|
684
|
|
685 switch (target_type)
|
|
686 {
|
|
687 case c_cons:
|
|
688 if (total_length == 0)
|
|
689 /* In append, if all but last arg are nil, return last arg */
|
|
690 RETURN_UNGCPRO (last_tail);
|
|
691 val = Fmake_list (make_int (total_length), Qnil);
|
|
692 break;
|
|
693 case c_vector:
|
|
694 val = make_vector (total_length, Qnil);
|
|
695 break;
|
|
696 case c_bit_vector:
|
|
697 val = make_bit_vector (total_length, Qzero);
|
|
698 break;
|
|
699 case c_string:
|
|
700 /* We don't make the string yet because we don't know the
|
|
701 actual number of bytes. This loop was formerly written
|
|
702 to call Fmake_string() here and then call set_string_char()
|
|
703 for each char. This seems logical enough but is waaaaaaaay
|
|
704 slow -- set_string_char() has to scan the whole string up
|
|
705 to the place where the substitution is called for in order
|
|
706 to find the place to change, and may have to do some
|
|
707 realloc()ing in order to make the char fit properly.
|
|
708 O(N^2) yuckage. */
|
|
709 val = Qnil;
|
|
710 string_result = (Bufbyte *) alloca (total_length * MAX_EMCHAR_LEN);
|
|
711 string_result_ptr = string_result;
|
|
712 break;
|
|
713 default:
|
442
|
714 val = Qnil;
|
428
|
715 abort ();
|
|
716 }
|
|
717 }
|
|
718
|
|
719
|
|
720 if (CONSP (val))
|
|
721 tail = val, toindex = -1; /* -1 in toindex is flag we are
|
|
722 making a list */
|
|
723 else
|
|
724 toindex = 0;
|
|
725
|
|
726 prev = Qnil;
|
|
727
|
|
728 for (argnum = 0; argnum < nargs; argnum++)
|
|
729 {
|
|
730 Charcount thisleni = 0;
|
|
731 Charcount thisindex = 0;
|
|
732 Lisp_Object seq = args[argnum];
|
|
733 Bufbyte *string_source_ptr = 0;
|
|
734 Bufbyte *string_prev_result_ptr = string_result_ptr;
|
|
735
|
|
736 if (!CONSP (seq))
|
|
737 {
|
|
738 #ifdef LOSING_BYTECODE
|
|
739 thisleni = length_with_bytecode_hack (seq);
|
|
740 #else
|
|
741 thisleni = XINT (Flength (seq));
|
|
742 #endif
|
|
743 }
|
|
744 if (STRINGP (seq))
|
|
745 string_source_ptr = XSTRING_DATA (seq);
|
|
746
|
|
747 while (1)
|
|
748 {
|
|
749 Lisp_Object elt;
|
|
750
|
|
751 /* We've come to the end of this arg, so exit. */
|
|
752 if (NILP (seq))
|
|
753 break;
|
|
754
|
|
755 /* Fetch next element of `seq' arg into `elt' */
|
|
756 if (CONSP (seq))
|
|
757 {
|
|
758 elt = XCAR (seq);
|
|
759 seq = XCDR (seq);
|
|
760 }
|
|
761 else
|
|
762 {
|
|
763 if (thisindex >= thisleni)
|
|
764 break;
|
|
765
|
|
766 if (STRINGP (seq))
|
|
767 {
|
|
768 elt = make_char (charptr_emchar (string_source_ptr));
|
|
769 INC_CHARPTR (string_source_ptr);
|
|
770 }
|
|
771 else if (VECTORP (seq))
|
|
772 elt = XVECTOR_DATA (seq)[thisindex];
|
|
773 else if (BIT_VECTORP (seq))
|
|
774 elt = make_int (bit_vector_bit (XBIT_VECTOR (seq),
|
|
775 thisindex));
|
|
776 else
|
|
777 elt = Felt (seq, make_int (thisindex));
|
|
778 thisindex++;
|
|
779 }
|
|
780
|
|
781 /* Store into result */
|
|
782 if (toindex < 0)
|
|
783 {
|
|
784 /* toindex negative means we are making a list */
|
|
785 XCAR (tail) = elt;
|
|
786 prev = tail;
|
|
787 tail = XCDR (tail);
|
|
788 }
|
|
789 else if (VECTORP (val))
|
|
790 XVECTOR_DATA (val)[toindex++] = elt;
|
|
791 else if (BIT_VECTORP (val))
|
|
792 {
|
|
793 CHECK_BIT (elt);
|
|
794 set_bit_vector_bit (XBIT_VECTOR (val), toindex++, XINT (elt));
|
|
795 }
|
|
796 else
|
|
797 {
|
|
798 CHECK_CHAR_COERCE_INT (elt);
|
|
799 string_result_ptr += set_charptr_emchar (string_result_ptr,
|
|
800 XCHAR (elt));
|
|
801 }
|
|
802 }
|
|
803 if (args_mse)
|
|
804 {
|
|
805 args_mse[argnum].entry_offset =
|
|
806 string_prev_result_ptr - string_result;
|
|
807 args_mse[argnum].entry_length =
|
|
808 string_result_ptr - string_prev_result_ptr;
|
|
809 }
|
|
810 }
|
|
811
|
|
812 /* Now we finally make the string. */
|
|
813 if (target_type == c_string)
|
|
814 {
|
|
815 val = make_string (string_result, string_result_ptr - string_result);
|
|
816 for (argnum = 0; argnum < nargs; argnum++)
|
|
817 {
|
|
818 if (STRINGP (args_mse[argnum].string))
|
|
819 copy_string_extents (val, args_mse[argnum].string,
|
|
820 args_mse[argnum].entry_offset, 0,
|
|
821 args_mse[argnum].entry_length);
|
|
822 }
|
|
823 }
|
|
824
|
|
825 if (!NILP (prev))
|
|
826 XCDR (prev) = last_tail;
|
|
827
|
|
828 RETURN_UNGCPRO (val);
|
|
829 }
|
|
830
|
|
831 DEFUN ("copy-alist", Fcopy_alist, 1, 1, 0, /*
|
|
832 Return a copy of ALIST.
|
|
833 This is an alist which represents the same mapping from objects to objects,
|
|
834 but does not share the alist structure with ALIST.
|
|
835 The objects mapped (cars and cdrs of elements of the alist)
|
|
836 are shared, however.
|
|
837 Elements of ALIST that are not conses are also shared.
|
|
838 */
|
|
839 (alist))
|
|
840 {
|
|
841 Lisp_Object tail;
|
|
842
|
|
843 if (NILP (alist))
|
|
844 return alist;
|
|
845 CHECK_CONS (alist);
|
|
846
|
|
847 alist = concat (1, &alist, c_cons, 0);
|
|
848 for (tail = alist; CONSP (tail); tail = XCDR (tail))
|
|
849 {
|
|
850 Lisp_Object car = XCAR (tail);
|
|
851
|
|
852 if (CONSP (car))
|
|
853 XCAR (tail) = Fcons (XCAR (car), XCDR (car));
|
|
854 }
|
|
855 return alist;
|
|
856 }
|
|
857
|
|
858 DEFUN ("copy-tree", Fcopy_tree, 1, 2, 0, /*
|
|
859 Return a copy of a list and substructures.
|
|
860 The argument is copied, and any lists contained within it are copied
|
|
861 recursively. Circularities and shared substructures are not preserved.
|
|
862 Second arg VECP causes vectors to be copied, too. Strings and bit vectors
|
|
863 are not copied.
|
|
864 */
|
|
865 (arg, vecp))
|
|
866 {
|
454
|
867 return safe_copy_tree (arg, vecp, 0);
|
|
868 }
|
|
869
|
|
870 Lisp_Object
|
|
871 safe_copy_tree (Lisp_Object arg, Lisp_Object vecp, int depth)
|
|
872 {
|
|
873 if (depth > 200)
|
|
874 signal_simple_error ("Stack overflow in copy-tree", arg);
|
|
875
|
428
|
876 if (CONSP (arg))
|
|
877 {
|
|
878 Lisp_Object rest;
|
|
879 rest = arg = Fcopy_sequence (arg);
|
|
880 while (CONSP (rest))
|
|
881 {
|
|
882 Lisp_Object elt = XCAR (rest);
|
|
883 QUIT;
|
|
884 if (CONSP (elt) || VECTORP (elt))
|
454
|
885 XCAR (rest) = safe_copy_tree (elt, vecp, depth + 1);
|
428
|
886 if (VECTORP (XCDR (rest))) /* hack for (a b . [c d]) */
|
454
|
887 XCDR (rest) = safe_copy_tree (XCDR (rest), vecp, depth +1);
|
428
|
888 rest = XCDR (rest);
|
|
889 }
|
|
890 }
|
|
891 else if (VECTORP (arg) && ! NILP (vecp))
|
|
892 {
|
|
893 int i = XVECTOR_LENGTH (arg);
|
|
894 int j;
|
|
895 arg = Fcopy_sequence (arg);
|
|
896 for (j = 0; j < i; j++)
|
|
897 {
|
|
898 Lisp_Object elt = XVECTOR_DATA (arg) [j];
|
|
899 QUIT;
|
|
900 if (CONSP (elt) || VECTORP (elt))
|
454
|
901 XVECTOR_DATA (arg) [j] = safe_copy_tree (elt, vecp, depth + 1);
|
428
|
902 }
|
|
903 }
|
|
904 return arg;
|
|
905 }
|
|
906
|
|
907 DEFUN ("substring", Fsubstring, 2, 3, 0, /*
|
444
|
908 Return the substring of STRING starting at START and ending before END.
|
|
909 END may be nil or omitted; then the substring runs to the end of STRING.
|
|
910 If START or END is negative, it counts from the end.
|
|
911 Relevant parts of the string-extent-data are copied to the new string.
|
428
|
912 */
|
444
|
913 (string, start, end))
|
428
|
914 {
|
444
|
915 Charcount ccstart, ccend;
|
|
916 Bytecount bstart, blen;
|
428
|
917 Lisp_Object val;
|
|
918
|
|
919 CHECK_STRING (string);
|
444
|
920 CHECK_INT (start);
|
|
921 get_string_range_char (string, start, end, &ccstart, &ccend,
|
428
|
922 GB_HISTORICAL_STRING_BEHAVIOR);
|
444
|
923 bstart = charcount_to_bytecount (XSTRING_DATA (string), ccstart);
|
|
924 blen = charcount_to_bytecount (XSTRING_DATA (string) + bstart, ccend - ccstart);
|
|
925 val = make_string (XSTRING_DATA (string) + bstart, blen);
|
|
926 /* Copy any applicable extent information into the new string. */
|
|
927 copy_string_extents (val, string, 0, bstart, blen);
|
428
|
928 return val;
|
|
929 }
|
|
930
|
|
931 DEFUN ("subseq", Fsubseq, 2, 3, 0, /*
|
442
|
932 Return the subsequence of SEQUENCE starting at START and ending before END.
|
|
933 END may be omitted; then the subsequence runs to the end of SEQUENCE.
|
|
934 If START or END is negative, it counts from the end.
|
|
935 The returned subsequence is always of the same type as SEQUENCE.
|
|
936 If SEQUENCE is a string, relevant parts of the string-extent-data
|
|
937 are copied to the new string.
|
428
|
938 */
|
442
|
939 (sequence, start, end))
|
428
|
940 {
|
442
|
941 EMACS_INT len, s, e;
|
|
942
|
|
943 if (STRINGP (sequence))
|
|
944 return Fsubstring (sequence, start, end);
|
|
945
|
|
946 len = XINT (Flength (sequence));
|
|
947
|
|
948 CHECK_INT (start);
|
|
949 s = XINT (start);
|
|
950 if (s < 0)
|
|
951 s = len + s;
|
|
952
|
|
953 if (NILP (end))
|
|
954 e = len;
|
428
|
955 else
|
|
956 {
|
442
|
957 CHECK_INT (end);
|
|
958 e = XINT (end);
|
|
959 if (e < 0)
|
|
960 e = len + e;
|
428
|
961 }
|
|
962
|
442
|
963 if (!(0 <= s && s <= e && e <= len))
|
|
964 args_out_of_range_3 (sequence, make_int (s), make_int (e));
|
|
965
|
|
966 if (VECTORP (sequence))
|
428
|
967 {
|
442
|
968 Lisp_Object result = make_vector (e - s, Qnil);
|
428
|
969 EMACS_INT i;
|
442
|
970 Lisp_Object *in_elts = XVECTOR_DATA (sequence);
|
428
|
971 Lisp_Object *out_elts = XVECTOR_DATA (result);
|
|
972
|
442
|
973 for (i = s; i < e; i++)
|
|
974 out_elts[i - s] = in_elts[i];
|
428
|
975 return result;
|
|
976 }
|
442
|
977 else if (LISTP (sequence))
|
428
|
978 {
|
|
979 Lisp_Object result = Qnil;
|
|
980 EMACS_INT i;
|
|
981
|
442
|
982 sequence = Fnthcdr (make_int (s), sequence);
|
|
983
|
|
984 for (i = s; i < e; i++)
|
428
|
985 {
|
442
|
986 result = Fcons (Fcar (sequence), result);
|
|
987 sequence = Fcdr (sequence);
|
428
|
988 }
|
|
989
|
|
990 return Fnreverse (result);
|
|
991 }
|
442
|
992 else if (BIT_VECTORP (sequence))
|
|
993 {
|
|
994 Lisp_Object result = make_bit_vector (e - s, Qzero);
|
|
995 EMACS_INT i;
|
|
996
|
|
997 for (i = s; i < e; i++)
|
|
998 set_bit_vector_bit (XBIT_VECTOR (result), i - s,
|
|
999 bit_vector_bit (XBIT_VECTOR (sequence), i));
|
|
1000 return result;
|
|
1001 }
|
|
1002 else
|
|
1003 {
|
|
1004 abort (); /* unreachable, since Flength (sequence) did not get
|
|
1005 an error */
|
|
1006 return Qnil;
|
|
1007 }
|
428
|
1008 }
|
|
1009
|
|
1010
|
|
1011 DEFUN ("nthcdr", Fnthcdr, 2, 2, 0, /*
|
|
1012 Take cdr N times on LIST, and return the result.
|
|
1013 */
|
|
1014 (n, list))
|
|
1015 {
|
|
1016 REGISTER size_t i;
|
|
1017 REGISTER Lisp_Object tail = list;
|
|
1018 CHECK_NATNUM (n);
|
|
1019 for (i = XINT (n); i; i--)
|
|
1020 {
|
|
1021 if (CONSP (tail))
|
|
1022 tail = XCDR (tail);
|
|
1023 else if (NILP (tail))
|
|
1024 return Qnil;
|
|
1025 else
|
|
1026 {
|
|
1027 tail = wrong_type_argument (Qlistp, tail);
|
|
1028 i++;
|
|
1029 }
|
|
1030 }
|
|
1031 return tail;
|
|
1032 }
|
|
1033
|
|
1034 DEFUN ("nth", Fnth, 2, 2, 0, /*
|
|
1035 Return the Nth element of LIST.
|
|
1036 N counts from zero. If LIST is not that long, nil is returned.
|
|
1037 */
|
|
1038 (n, list))
|
|
1039 {
|
|
1040 return Fcar (Fnthcdr (n, list));
|
|
1041 }
|
|
1042
|
|
1043 DEFUN ("elt", Felt, 2, 2, 0, /*
|
|
1044 Return element of SEQUENCE at index N.
|
|
1045 */
|
|
1046 (sequence, n))
|
|
1047 {
|
|
1048 retry:
|
|
1049 CHECK_INT_COERCE_CHAR (n); /* yuck! */
|
|
1050 if (LISTP (sequence))
|
|
1051 {
|
|
1052 Lisp_Object tem = Fnthcdr (n, sequence);
|
|
1053 /* #### Utterly, completely, fucking disgusting.
|
|
1054 * #### The whole point of "elt" is that it operates on
|
|
1055 * #### sequences, and does error- (bounds-) checking.
|
|
1056 */
|
|
1057 if (CONSP (tem))
|
|
1058 return XCAR (tem);
|
|
1059 else
|
|
1060 #if 1
|
|
1061 /* This is The Way It Has Always Been. */
|
|
1062 return Qnil;
|
|
1063 #else
|
|
1064 /* This is The Way Mly and Cltl2 say It Should Be. */
|
|
1065 args_out_of_range (sequence, n);
|
|
1066 #endif
|
|
1067 }
|
|
1068 else if (STRINGP (sequence) ||
|
|
1069 VECTORP (sequence) ||
|
|
1070 BIT_VECTORP (sequence))
|
|
1071 return Faref (sequence, n);
|
|
1072 #ifdef LOSING_BYTECODE
|
|
1073 else if (COMPILED_FUNCTIONP (sequence))
|
|
1074 {
|
|
1075 EMACS_INT idx = XINT (n);
|
|
1076 if (idx < 0)
|
|
1077 {
|
|
1078 lose:
|
|
1079 args_out_of_range (sequence, n);
|
|
1080 }
|
|
1081 /* Utter perversity */
|
|
1082 {
|
|
1083 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (sequence);
|
|
1084 switch (idx)
|
|
1085 {
|
|
1086 case COMPILED_ARGLIST:
|
|
1087 return compiled_function_arglist (f);
|
|
1088 case COMPILED_INSTRUCTIONS:
|
|
1089 return compiled_function_instructions (f);
|
|
1090 case COMPILED_CONSTANTS:
|
|
1091 return compiled_function_constants (f);
|
|
1092 case COMPILED_STACK_DEPTH:
|
|
1093 return compiled_function_stack_depth (f);
|
|
1094 case COMPILED_DOC_STRING:
|
|
1095 return compiled_function_documentation (f);
|
|
1096 case COMPILED_DOMAIN:
|
|
1097 return compiled_function_domain (f);
|
|
1098 case COMPILED_INTERACTIVE:
|
|
1099 if (f->flags.interactivep)
|
|
1100 return compiled_function_interactive (f);
|
|
1101 /* if we return nil, can't tell interactive with no args
|
|
1102 from noninteractive. */
|
|
1103 goto lose;
|
|
1104 default:
|
|
1105 goto lose;
|
|
1106 }
|
|
1107 }
|
|
1108 }
|
|
1109 #endif /* LOSING_BYTECODE */
|
|
1110 else
|
|
1111 {
|
|
1112 check_losing_bytecode ("elt", sequence);
|
|
1113 sequence = wrong_type_argument (Qsequencep, sequence);
|
|
1114 goto retry;
|
|
1115 }
|
|
1116 }
|
|
1117
|
|
1118 DEFUN ("last", Flast, 1, 2, 0, /*
|
|
1119 Return the tail of list LIST, of length N (default 1).
|
|
1120 LIST may be a dotted list, but not a circular list.
|
|
1121 Optional argument N must be a non-negative integer.
|
|
1122 If N is zero, then the atom that terminates the list is returned.
|
|
1123 If N is greater than the length of LIST, then LIST itself is returned.
|
|
1124 */
|
|
1125 (list, n))
|
|
1126 {
|
|
1127 EMACS_INT int_n, count;
|
|
1128 Lisp_Object retval, tortoise, hare;
|
|
1129
|
|
1130 CHECK_LIST (list);
|
|
1131
|
|
1132 if (NILP (n))
|
|
1133 int_n = 1;
|
|
1134 else
|
|
1135 {
|
|
1136 CHECK_NATNUM (n);
|
|
1137 int_n = XINT (n);
|
|
1138 }
|
|
1139
|
|
1140 for (retval = tortoise = hare = list, count = 0;
|
|
1141 CONSP (hare);
|
|
1142 hare = XCDR (hare),
|
|
1143 (int_n-- <= 0 ? ((void) (retval = XCDR (retval))) : (void)0),
|
|
1144 count++)
|
|
1145 {
|
|
1146 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue;
|
|
1147
|
|
1148 if (count & 1)
|
|
1149 tortoise = XCDR (tortoise);
|
|
1150 if (EQ (hare, tortoise))
|
|
1151 signal_circular_list_error (list);
|
|
1152 }
|
|
1153
|
|
1154 return retval;
|
|
1155 }
|
|
1156
|
|
1157 DEFUN ("nbutlast", Fnbutlast, 1, 2, 0, /*
|
|
1158 Modify LIST to remove the last N (default 1) elements.
|
|
1159 If LIST has N or fewer elements, nil is returned and LIST is unmodified.
|
|
1160 */
|
|
1161 (list, n))
|
|
1162 {
|
|
1163 EMACS_INT int_n;
|
|
1164
|
|
1165 CHECK_LIST (list);
|
|
1166
|
|
1167 if (NILP (n))
|
|
1168 int_n = 1;
|
|
1169 else
|
|
1170 {
|
|
1171 CHECK_NATNUM (n);
|
|
1172 int_n = XINT (n);
|
|
1173 }
|
|
1174
|
|
1175 {
|
|
1176 Lisp_Object last_cons = list;
|
|
1177
|
|
1178 EXTERNAL_LIST_LOOP_1 (list)
|
|
1179 {
|
|
1180 if (int_n-- < 0)
|
|
1181 last_cons = XCDR (last_cons);
|
|
1182 }
|
|
1183
|
|
1184 if (int_n >= 0)
|
|
1185 return Qnil;
|
|
1186
|
|
1187 XCDR (last_cons) = Qnil;
|
|
1188 return list;
|
|
1189 }
|
|
1190 }
|
|
1191
|
|
1192 DEFUN ("butlast", Fbutlast, 1, 2, 0, /*
|
|
1193 Return a copy of LIST with the last N (default 1) elements removed.
|
|
1194 If LIST has N or fewer elements, nil is returned.
|
|
1195 */
|
|
1196 (list, n))
|
|
1197 {
|
444
|
1198 EMACS_INT int_n;
|
428
|
1199
|
|
1200 CHECK_LIST (list);
|
|
1201
|
|
1202 if (NILP (n))
|
|
1203 int_n = 1;
|
|
1204 else
|
|
1205 {
|
|
1206 CHECK_NATNUM (n);
|
|
1207 int_n = XINT (n);
|
|
1208 }
|
|
1209
|
|
1210 {
|
|
1211 Lisp_Object retval = Qnil;
|
|
1212 Lisp_Object tail = list;
|
|
1213
|
|
1214 EXTERNAL_LIST_LOOP_1 (list)
|
|
1215 {
|
|
1216 if (--int_n < 0)
|
|
1217 {
|
|
1218 retval = Fcons (XCAR (tail), retval);
|
|
1219 tail = XCDR (tail);
|
|
1220 }
|
|
1221 }
|
|
1222
|
|
1223 return Fnreverse (retval);
|
|
1224 }
|
|
1225 }
|
|
1226
|
|
1227 DEFUN ("member", Fmember, 2, 2, 0, /*
|
|
1228 Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
|
|
1229 The value is actually the tail of LIST whose car is ELT.
|
|
1230 */
|
|
1231 (elt, list))
|
|
1232 {
|
|
1233 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
|
1234 {
|
|
1235 if (internal_equal (elt, list_elt, 0))
|
|
1236 return tail;
|
|
1237 }
|
|
1238 return Qnil;
|
|
1239 }
|
|
1240
|
|
1241 DEFUN ("old-member", Fold_member, 2, 2, 0, /*
|
|
1242 Return non-nil if ELT is an element of LIST. Comparison done with `old-equal'.
|
|
1243 The value is actually the tail of LIST whose car is ELT.
|
|
1244 This function is provided only for byte-code compatibility with v19.
|
|
1245 Do not use it.
|
|
1246 */
|
|
1247 (elt, list))
|
|
1248 {
|
|
1249 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
|
1250 {
|
|
1251 if (internal_old_equal (elt, list_elt, 0))
|
|
1252 return tail;
|
|
1253 }
|
|
1254 return Qnil;
|
|
1255 }
|
|
1256
|
|
1257 DEFUN ("memq", Fmemq, 2, 2, 0, /*
|
|
1258 Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
|
|
1259 The value is actually the tail of LIST whose car is ELT.
|
|
1260 */
|
|
1261 (elt, list))
|
|
1262 {
|
|
1263 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
|
1264 {
|
|
1265 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt))
|
|
1266 return tail;
|
|
1267 }
|
|
1268 return Qnil;
|
|
1269 }
|
|
1270
|
|
1271 DEFUN ("old-memq", Fold_memq, 2, 2, 0, /*
|
|
1272 Return non-nil if ELT is an element of LIST. Comparison done with `old-eq'.
|
|
1273 The value is actually the tail of LIST whose car is ELT.
|
|
1274 This function is provided only for byte-code compatibility with v19.
|
|
1275 Do not use it.
|
|
1276 */
|
|
1277 (elt, list))
|
|
1278 {
|
|
1279 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
|
|
1280 {
|
|
1281 if (HACKEQ_UNSAFE (elt, list_elt))
|
|
1282 return tail;
|
|
1283 }
|
|
1284 return Qnil;
|
|
1285 }
|
|
1286
|
|
1287 Lisp_Object
|
|
1288 memq_no_quit (Lisp_Object elt, Lisp_Object list)
|
|
1289 {
|
|
1290 LIST_LOOP_3 (list_elt, list, tail)
|
|
1291 {
|
|
1292 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt))
|
|
1293 return tail;
|
|
1294 }
|
|
1295 return Qnil;
|
|
1296 }
|
|
1297
|
|
1298 DEFUN ("assoc", Fassoc, 2, 2, 0, /*
|
444
|
1299 Return non-nil if KEY is `equal' to the car of an element of ALIST.
|
|
1300 The value is actually the element of ALIST whose car equals KEY.
|
428
|
1301 */
|
444
|
1302 (key, alist))
|
428
|
1303 {
|
|
1304 /* This function can GC. */
|
444
|
1305 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
|
428
|
1306 {
|
|
1307 if (internal_equal (key, elt_car, 0))
|
|
1308 return elt;
|
|
1309 }
|
|
1310 return Qnil;
|
|
1311 }
|
|
1312
|
|
1313 DEFUN ("old-assoc", Fold_assoc, 2, 2, 0, /*
|
444
|
1314 Return non-nil if KEY is `old-equal' to the car of an element of ALIST.
|
|
1315 The value is actually the element of ALIST whose car equals KEY.
|
428
|
1316 */
|
444
|
1317 (key, alist))
|
428
|
1318 {
|
|
1319 /* This function can GC. */
|
444
|
1320 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
|
428
|
1321 {
|
|
1322 if (internal_old_equal (key, elt_car, 0))
|
|
1323 return elt;
|
|
1324 }
|
|
1325 return Qnil;
|
|
1326 }
|
|
1327
|
|
1328 Lisp_Object
|
444
|
1329 assoc_no_quit (Lisp_Object key, Lisp_Object alist)
|
428
|
1330 {
|
|
1331 int speccount = specpdl_depth ();
|
|
1332 specbind (Qinhibit_quit, Qt);
|
444
|
1333 return unbind_to (speccount, Fassoc (key, alist));
|
428
|
1334 }
|
|
1335
|
|
1336 DEFUN ("assq", Fassq, 2, 2, 0, /*
|
444
|
1337 Return non-nil if KEY is `eq' to the car of an element of ALIST.
|
|
1338 The value is actually the element of ALIST whose car is KEY.
|
|
1339 Elements of ALIST that are not conses are ignored.
|
428
|
1340 */
|
444
|
1341 (key, alist))
|
428
|
1342 {
|
444
|
1343 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
|
428
|
1344 {
|
|
1345 if (EQ_WITH_EBOLA_NOTICE (key, elt_car))
|
|
1346 return elt;
|
|
1347 }
|
|
1348 return Qnil;
|
|
1349 }
|
|
1350
|
|
1351 DEFUN ("old-assq", Fold_assq, 2, 2, 0, /*
|
444
|
1352 Return non-nil if KEY is `old-eq' to the car of an element of ALIST.
|
|
1353 The value is actually the element of ALIST whose car is KEY.
|
|
1354 Elements of ALIST that are not conses are ignored.
|
428
|
1355 This function is provided only for byte-code compatibility with v19.
|
|
1356 Do not use it.
|
|
1357 */
|
444
|
1358 (key, alist))
|
428
|
1359 {
|
444
|
1360 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
|
428
|
1361 {
|
|
1362 if (HACKEQ_UNSAFE (key, elt_car))
|
|
1363 return elt;
|
|
1364 }
|
|
1365 return Qnil;
|
|
1366 }
|
|
1367
|
|
1368 /* Like Fassq but never report an error and do not allow quits.
|
|
1369 Use only on lists known never to be circular. */
|
|
1370
|
|
1371 Lisp_Object
|
444
|
1372 assq_no_quit (Lisp_Object key, Lisp_Object alist)
|
428
|
1373 {
|
|
1374 /* This cannot GC. */
|
444
|
1375 LIST_LOOP_2 (elt, alist)
|
428
|
1376 {
|
|
1377 Lisp_Object elt_car = XCAR (elt);
|
|
1378 if (EQ_WITH_EBOLA_NOTICE (key, elt_car))
|
|
1379 return elt;
|
|
1380 }
|
|
1381 return Qnil;
|
|
1382 }
|
|
1383
|
|
1384 DEFUN ("rassoc", Frassoc, 2, 2, 0, /*
|
444
|
1385 Return non-nil if VALUE is `equal' to the cdr of an element of ALIST.
|
|
1386 The value is actually the element of ALIST whose cdr equals VALUE.
|
428
|
1387 */
|
444
|
1388 (value, alist))
|
428
|
1389 {
|
444
|
1390 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
|
428
|
1391 {
|
444
|
1392 if (internal_equal (value, elt_cdr, 0))
|
428
|
1393 return elt;
|
|
1394 }
|
|
1395 return Qnil;
|
|
1396 }
|
|
1397
|
|
1398 DEFUN ("old-rassoc", Fold_rassoc, 2, 2, 0, /*
|
444
|
1399 Return non-nil if VALUE is `old-equal' to the cdr of an element of ALIST.
|
|
1400 The value is actually the element of ALIST whose cdr equals VALUE.
|
428
|
1401 */
|
444
|
1402 (value, alist))
|
428
|
1403 {
|
444
|
1404 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
|
428
|
1405 {
|
444
|
1406 if (internal_old_equal (value, elt_cdr, 0))
|
428
|
1407 return elt;
|
|
1408 }
|
|
1409 return Qnil;
|
|
1410 }
|
|
1411
|
|
1412 DEFUN ("rassq", Frassq, 2, 2, 0, /*
|
444
|
1413 Return non-nil if VALUE is `eq' to the cdr of an element of ALIST.
|
|
1414 The value is actually the element of ALIST whose cdr is VALUE.
|
428
|
1415 */
|
444
|
1416 (value, alist))
|
428
|
1417 {
|
444
|
1418 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
|
428
|
1419 {
|
444
|
1420 if (EQ_WITH_EBOLA_NOTICE (value, elt_cdr))
|
428
|
1421 return elt;
|
|
1422 }
|
|
1423 return Qnil;
|
|
1424 }
|
|
1425
|
|
1426 DEFUN ("old-rassq", Fold_rassq, 2, 2, 0, /*
|
444
|
1427 Return non-nil if VALUE is `old-eq' to the cdr of an element of ALIST.
|
|
1428 The value is actually the element of ALIST whose cdr is VALUE.
|
428
|
1429 */
|
444
|
1430 (value, alist))
|
428
|
1431 {
|
444
|
1432 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
|
428
|
1433 {
|
444
|
1434 if (HACKEQ_UNSAFE (value, elt_cdr))
|
428
|
1435 return elt;
|
|
1436 }
|
|
1437 return Qnil;
|
|
1438 }
|
|
1439
|
444
|
1440 /* Like Frassq, but caller must ensure that ALIST is properly
|
428
|
1441 nil-terminated and ebola-free. */
|
|
1442 Lisp_Object
|
444
|
1443 rassq_no_quit (Lisp_Object value, Lisp_Object alist)
|
428
|
1444 {
|
444
|
1445 LIST_LOOP_2 (elt, alist)
|
428
|
1446 {
|
|
1447 Lisp_Object elt_cdr = XCDR (elt);
|
444
|
1448 if (EQ_WITH_EBOLA_NOTICE (value, elt_cdr))
|
428
|
1449 return elt;
|
|
1450 }
|
|
1451 return Qnil;
|
|
1452 }
|
|
1453
|
|
1454
|
|
1455 DEFUN ("delete", Fdelete, 2, 2, 0, /*
|
|
1456 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1457 The modified LIST is returned. Comparison is done with `equal'.
|
|
1458 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1459 effect; therefore, write `(setq foo (delete element foo))' to be sure
|
|
1460 of changing the value of `foo'.
|
|
1461 Also see: `remove'.
|
|
1462 */
|
|
1463 (elt, list))
|
|
1464 {
|
|
1465 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1466 (internal_equal (elt, list_elt, 0)));
|
|
1467 return list;
|
|
1468 }
|
|
1469
|
|
1470 DEFUN ("old-delete", Fold_delete, 2, 2, 0, /*
|
|
1471 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1472 The modified LIST is returned. Comparison is done with `old-equal'.
|
|
1473 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1474 effect; therefore, write `(setq foo (old-delete element foo))' to be sure
|
|
1475 of changing the value of `foo'.
|
|
1476 */
|
|
1477 (elt, list))
|
|
1478 {
|
|
1479 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1480 (internal_old_equal (elt, list_elt, 0)));
|
|
1481 return list;
|
|
1482 }
|
|
1483
|
|
1484 DEFUN ("delq", Fdelq, 2, 2, 0, /*
|
|
1485 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1486 The modified LIST is returned. Comparison is done with `eq'.
|
|
1487 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1488 effect; therefore, write `(setq foo (delq element foo))' to be sure of
|
|
1489 changing the value of `foo'.
|
|
1490 */
|
|
1491 (elt, list))
|
|
1492 {
|
|
1493 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1494 (EQ_WITH_EBOLA_NOTICE (elt, list_elt)));
|
|
1495 return list;
|
|
1496 }
|
|
1497
|
|
1498 DEFUN ("old-delq", Fold_delq, 2, 2, 0, /*
|
|
1499 Delete by side effect any occurrences of ELT as a member of LIST.
|
|
1500 The modified LIST is returned. Comparison is done with `old-eq'.
|
|
1501 If the first member of LIST is ELT, there is no way to remove it by side
|
|
1502 effect; therefore, write `(setq foo (old-delq element foo))' to be sure of
|
|
1503 changing the value of `foo'.
|
|
1504 */
|
|
1505 (elt, list))
|
|
1506 {
|
|
1507 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1508 (HACKEQ_UNSAFE (elt, list_elt)));
|
|
1509 return list;
|
|
1510 }
|
|
1511
|
|
1512 /* Like Fdelq, but caller must ensure that LIST is properly
|
|
1513 nil-terminated and ebola-free. */
|
|
1514
|
|
1515 Lisp_Object
|
|
1516 delq_no_quit (Lisp_Object elt, Lisp_Object list)
|
|
1517 {
|
|
1518 LIST_LOOP_DELETE_IF (list_elt, list,
|
|
1519 (EQ_WITH_EBOLA_NOTICE (elt, list_elt)));
|
|
1520 return list;
|
|
1521 }
|
|
1522
|
|
1523 /* Be VERY careful with this. This is like delq_no_quit() but
|
|
1524 also calls free_cons() on the removed conses. You must be SURE
|
|
1525 that no pointers to the freed conses remain around (e.g.
|
|
1526 someone else is pointing to part of the list). This function
|
|
1527 is useful on internal lists that are used frequently and where
|
|
1528 the actual list doesn't escape beyond known code bounds. */
|
|
1529
|
|
1530 Lisp_Object
|
|
1531 delq_no_quit_and_free_cons (Lisp_Object elt, Lisp_Object list)
|
|
1532 {
|
|
1533 REGISTER Lisp_Object tail = list;
|
|
1534 REGISTER Lisp_Object prev = Qnil;
|
|
1535
|
|
1536 while (!NILP (tail))
|
|
1537 {
|
|
1538 REGISTER Lisp_Object tem = XCAR (tail);
|
|
1539 if (EQ (elt, tem))
|
|
1540 {
|
|
1541 Lisp_Object cons_to_free = tail;
|
|
1542 if (NILP (prev))
|
|
1543 list = XCDR (tail);
|
|
1544 else
|
|
1545 XCDR (prev) = XCDR (tail);
|
|
1546 tail = XCDR (tail);
|
|
1547 free_cons (XCONS (cons_to_free));
|
|
1548 }
|
|
1549 else
|
|
1550 {
|
|
1551 prev = tail;
|
|
1552 tail = XCDR (tail);
|
|
1553 }
|
|
1554 }
|
|
1555 return list;
|
|
1556 }
|
|
1557
|
|
1558 DEFUN ("remassoc", Fremassoc, 2, 2, 0, /*
|
444
|
1559 Delete by side effect any elements of ALIST whose car is `equal' to KEY.
|
|
1560 The modified ALIST is returned. If the first member of ALIST has a car
|
428
|
1561 that is `equal' to KEY, there is no way to remove it by side effect;
|
|
1562 therefore, write `(setq foo (remassoc key foo))' to be sure of changing
|
|
1563 the value of `foo'.
|
|
1564 */
|
444
|
1565 (key, alist))
|
428
|
1566 {
|
444
|
1567 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist,
|
428
|
1568 (CONSP (elt) &&
|
|
1569 internal_equal (key, XCAR (elt), 0)));
|
444
|
1570 return alist;
|
428
|
1571 }
|
|
1572
|
|
1573 Lisp_Object
|
444
|
1574 remassoc_no_quit (Lisp_Object key, Lisp_Object alist)
|
428
|
1575 {
|
|
1576 int speccount = specpdl_depth ();
|
|
1577 specbind (Qinhibit_quit, Qt);
|
444
|
1578 return unbind_to (speccount, Fremassoc (key, alist));
|
428
|
1579 }
|
|
1580
|
|
1581 DEFUN ("remassq", Fremassq, 2, 2, 0, /*
|
444
|
1582 Delete by side effect any elements of ALIST whose car is `eq' to KEY.
|
|
1583 The modified ALIST is returned. If the first member of ALIST has a car
|
428
|
1584 that is `eq' to KEY, there is no way to remove it by side effect;
|
|
1585 therefore, write `(setq foo (remassq key foo))' to be sure of changing
|
|
1586 the value of `foo'.
|
|
1587 */
|
444
|
1588 (key, alist))
|
428
|
1589 {
|
444
|
1590 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist,
|
428
|
1591 (CONSP (elt) &&
|
|
1592 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt))));
|
444
|
1593 return alist;
|
428
|
1594 }
|
|
1595
|
|
1596 /* no quit, no errors; be careful */
|
|
1597
|
|
1598 Lisp_Object
|
444
|
1599 remassq_no_quit (Lisp_Object key, Lisp_Object alist)
|
428
|
1600 {
|
444
|
1601 LIST_LOOP_DELETE_IF (elt, alist,
|
428
|
1602 (CONSP (elt) &&
|
|
1603 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt))));
|
444
|
1604 return alist;
|
428
|
1605 }
|
|
1606
|
|
1607 DEFUN ("remrassoc", Fremrassoc, 2, 2, 0, /*
|
444
|
1608 Delete by side effect any elements of ALIST whose cdr is `equal' to VALUE.
|
|
1609 The modified ALIST is returned. If the first member of ALIST has a car
|
428
|
1610 that is `equal' to VALUE, there is no way to remove it by side effect;
|
|
1611 therefore, write `(setq foo (remrassoc value foo))' to be sure of changing
|
|
1612 the value of `foo'.
|
|
1613 */
|
444
|
1614 (value, alist))
|
428
|
1615 {
|
444
|
1616 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist,
|
428
|
1617 (CONSP (elt) &&
|
|
1618 internal_equal (value, XCDR (elt), 0)));
|
444
|
1619 return alist;
|
428
|
1620 }
|
|
1621
|
|
1622 DEFUN ("remrassq", Fremrassq, 2, 2, 0, /*
|
444
|
1623 Delete by side effect any elements of ALIST whose cdr is `eq' to VALUE.
|
|
1624 The modified ALIST is returned. If the first member of ALIST has a car
|
428
|
1625 that is `eq' to VALUE, there is no way to remove it by side effect;
|
|
1626 therefore, write `(setq foo (remrassq value foo))' to be sure of changing
|
|
1627 the value of `foo'.
|
|
1628 */
|
444
|
1629 (value, alist))
|
428
|
1630 {
|
444
|
1631 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist,
|
428
|
1632 (CONSP (elt) &&
|
|
1633 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt))));
|
444
|
1634 return alist;
|
428
|
1635 }
|
|
1636
|
|
1637 /* Like Fremrassq, fast and unsafe; be careful */
|
|
1638 Lisp_Object
|
444
|
1639 remrassq_no_quit (Lisp_Object value, Lisp_Object alist)
|
428
|
1640 {
|
444
|
1641 LIST_LOOP_DELETE_IF (elt, alist,
|
428
|
1642 (CONSP (elt) &&
|
|
1643 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt))));
|
444
|
1644 return alist;
|
428
|
1645 }
|
|
1646
|
|
1647 DEFUN ("nreverse", Fnreverse, 1, 1, 0, /*
|
|
1648 Reverse LIST by destructively modifying cdr pointers.
|
|
1649 Return the beginning of the reversed list.
|
|
1650 Also see: `reverse'.
|
|
1651 */
|
|
1652 (list))
|
|
1653 {
|
|
1654 struct gcpro gcpro1, gcpro2;
|
|
1655 REGISTER Lisp_Object prev = Qnil;
|
|
1656 REGISTER Lisp_Object tail = list;
|
|
1657
|
|
1658 /* We gcpro our args; see `nconc' */
|
|
1659 GCPRO2 (prev, tail);
|
|
1660 while (!NILP (tail))
|
|
1661 {
|
|
1662 REGISTER Lisp_Object next;
|
|
1663 CONCHECK_CONS (tail);
|
|
1664 next = XCDR (tail);
|
|
1665 XCDR (tail) = prev;
|
|
1666 prev = tail;
|
|
1667 tail = next;
|
|
1668 }
|
|
1669 UNGCPRO;
|
|
1670 return prev;
|
|
1671 }
|
|
1672
|
|
1673 DEFUN ("reverse", Freverse, 1, 1, 0, /*
|
|
1674 Reverse LIST, copying. Return the beginning of the reversed list.
|
|
1675 See also the function `nreverse', which is used more often.
|
|
1676 */
|
|
1677 (list))
|
|
1678 {
|
|
1679 Lisp_Object reversed_list = Qnil;
|
|
1680 EXTERNAL_LIST_LOOP_2 (elt, list)
|
|
1681 {
|
|
1682 reversed_list = Fcons (elt, reversed_list);
|
|
1683 }
|
|
1684 return reversed_list;
|
|
1685 }
|
|
1686
|
|
1687 static Lisp_Object list_merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
|
1688 Lisp_Object lisp_arg,
|
|
1689 int (*pred_fn) (Lisp_Object, Lisp_Object,
|
|
1690 Lisp_Object lisp_arg));
|
|
1691
|
|
1692 Lisp_Object
|
|
1693 list_sort (Lisp_Object list,
|
|
1694 Lisp_Object lisp_arg,
|
|
1695 int (*pred_fn) (Lisp_Object, Lisp_Object,
|
|
1696 Lisp_Object lisp_arg))
|
|
1697 {
|
|
1698 struct gcpro gcpro1, gcpro2, gcpro3;
|
|
1699 Lisp_Object back, tem;
|
|
1700 Lisp_Object front = list;
|
|
1701 Lisp_Object len = Flength (list);
|
444
|
1702
|
|
1703 if (XINT (len) < 2)
|
428
|
1704 return list;
|
|
1705
|
444
|
1706 len = make_int (XINT (len) / 2 - 1);
|
428
|
1707 tem = Fnthcdr (len, list);
|
|
1708 back = Fcdr (tem);
|
|
1709 Fsetcdr (tem, Qnil);
|
|
1710
|
|
1711 GCPRO3 (front, back, lisp_arg);
|
|
1712 front = list_sort (front, lisp_arg, pred_fn);
|
|
1713 back = list_sort (back, lisp_arg, pred_fn);
|
|
1714 UNGCPRO;
|
|
1715 return list_merge (front, back, lisp_arg, pred_fn);
|
|
1716 }
|
|
1717
|
|
1718
|
|
1719 static int
|
|
1720 merge_pred_function (Lisp_Object obj1, Lisp_Object obj2,
|
|
1721 Lisp_Object pred)
|
|
1722 {
|
|
1723 Lisp_Object tmp;
|
|
1724
|
|
1725 /* prevents the GC from happening in call2 */
|
|
1726 int speccount = specpdl_depth ();
|
|
1727 /* Emacs' GC doesn't actually relocate pointers, so this probably
|
|
1728 isn't strictly necessary */
|
|
1729 record_unwind_protect (restore_gc_inhibit,
|
|
1730 make_int (gc_currently_forbidden));
|
|
1731 gc_currently_forbidden = 1;
|
|
1732 tmp = call2 (pred, obj1, obj2);
|
|
1733 unbind_to (speccount, Qnil);
|
|
1734
|
|
1735 if (NILP (tmp))
|
|
1736 return -1;
|
|
1737 else
|
|
1738 return 1;
|
|
1739 }
|
|
1740
|
|
1741 DEFUN ("sort", Fsort, 2, 2, 0, /*
|
|
1742 Sort LIST, stably, comparing elements using PREDICATE.
|
|
1743 Returns the sorted list. LIST is modified by side effects.
|
|
1744 PREDICATE is called with two elements of LIST, and should return T
|
|
1745 if the first element is "less" than the second.
|
|
1746 */
|
444
|
1747 (list, predicate))
|
428
|
1748 {
|
444
|
1749 return list_sort (list, predicate, merge_pred_function);
|
428
|
1750 }
|
|
1751
|
|
1752 Lisp_Object
|
|
1753 merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
|
1754 Lisp_Object pred)
|
|
1755 {
|
|
1756 return list_merge (org_l1, org_l2, pred, merge_pred_function);
|
|
1757 }
|
|
1758
|
|
1759
|
|
1760 static Lisp_Object
|
|
1761 list_merge (Lisp_Object org_l1, Lisp_Object org_l2,
|
|
1762 Lisp_Object lisp_arg,
|
|
1763 int (*pred_fn) (Lisp_Object, Lisp_Object, Lisp_Object lisp_arg))
|
|
1764 {
|
|
1765 Lisp_Object value;
|
|
1766 Lisp_Object tail;
|
|
1767 Lisp_Object tem;
|
|
1768 Lisp_Object l1, l2;
|
|
1769 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
|
1770
|
|
1771 l1 = org_l1;
|
|
1772 l2 = org_l2;
|
|
1773 tail = Qnil;
|
|
1774 value = Qnil;
|
|
1775
|
|
1776 /* It is sufficient to protect org_l1 and org_l2.
|
|
1777 When l1 and l2 are updated, we copy the new values
|
|
1778 back into the org_ vars. */
|
|
1779
|
|
1780 GCPRO4 (org_l1, org_l2, lisp_arg, value);
|
|
1781
|
|
1782 while (1)
|
|
1783 {
|
|
1784 if (NILP (l1))
|
|
1785 {
|
|
1786 UNGCPRO;
|
|
1787 if (NILP (tail))
|
|
1788 return l2;
|
|
1789 Fsetcdr (tail, l2);
|
|
1790 return value;
|
|
1791 }
|
|
1792 if (NILP (l2))
|
|
1793 {
|
|
1794 UNGCPRO;
|
|
1795 if (NILP (tail))
|
|
1796 return l1;
|
|
1797 Fsetcdr (tail, l1);
|
|
1798 return value;
|
|
1799 }
|
|
1800
|
|
1801 if (((*pred_fn) (Fcar (l2), Fcar (l1), lisp_arg)) < 0)
|
|
1802 {
|
|
1803 tem = l1;
|
|
1804 l1 = Fcdr (l1);
|
|
1805 org_l1 = l1;
|
|
1806 }
|
|
1807 else
|
|
1808 {
|
|
1809 tem = l2;
|
|
1810 l2 = Fcdr (l2);
|
|
1811 org_l2 = l2;
|
|
1812 }
|
|
1813 if (NILP (tail))
|
|
1814 value = tem;
|
|
1815 else
|
|
1816 Fsetcdr (tail, tem);
|
|
1817 tail = tem;
|
|
1818 }
|
|
1819 }
|
|
1820
|
|
1821
|
|
1822 /************************************************************************/
|
|
1823 /* property-list functions */
|
|
1824 /************************************************************************/
|
|
1825
|
|
1826 /* For properties of text, we need to do order-insensitive comparison of
|
|
1827 plists. That is, we need to compare two plists such that they are the
|
|
1828 same if they have the same set of keys, and equivalent values.
|
|
1829 So (a 1 b 2) would be equal to (b 2 a 1).
|
|
1830
|
|
1831 NIL_MEANS_NOT_PRESENT is as in `plists-eq' etc.
|
|
1832 LAXP means use `equal' for comparisons.
|
|
1833 */
|
|
1834 int
|
|
1835 plists_differ (Lisp_Object a, Lisp_Object b, int nil_means_not_present,
|
|
1836 int laxp, int depth)
|
|
1837 {
|
438
|
1838 int eqp = (depth == -1); /* -1 as depth means use eq, not equal. */
|
428
|
1839 int la, lb, m, i, fill;
|
|
1840 Lisp_Object *keys, *vals;
|
|
1841 char *flags;
|
|
1842 Lisp_Object rest;
|
|
1843
|
|
1844 if (NILP (a) && NILP (b))
|
|
1845 return 0;
|
|
1846
|
|
1847 Fcheck_valid_plist (a);
|
|
1848 Fcheck_valid_plist (b);
|
|
1849
|
|
1850 la = XINT (Flength (a));
|
|
1851 lb = XINT (Flength (b));
|
|
1852 m = (la > lb ? la : lb);
|
|
1853 fill = 0;
|
|
1854 keys = alloca_array (Lisp_Object, m);
|
|
1855 vals = alloca_array (Lisp_Object, m);
|
|
1856 flags = alloca_array (char, m);
|
|
1857
|
|
1858 /* First extract the pairs from A. */
|
|
1859 for (rest = a; !NILP (rest); rest = XCDR (XCDR (rest)))
|
|
1860 {
|
|
1861 Lisp_Object k = XCAR (rest);
|
|
1862 Lisp_Object v = XCAR (XCDR (rest));
|
|
1863 /* Maybe be Ebolified. */
|
|
1864 if (nil_means_not_present && NILP (v)) continue;
|
|
1865 keys [fill] = k;
|
|
1866 vals [fill] = v;
|
|
1867 flags[fill] = 0;
|
|
1868 fill++;
|
|
1869 }
|
|
1870 /* Now iterate over B, and stop if we find something that's not in A,
|
|
1871 or that doesn't match. As we match, mark them. */
|
|
1872 for (rest = b; !NILP (rest); rest = XCDR (XCDR (rest)))
|
|
1873 {
|
|
1874 Lisp_Object k = XCAR (rest);
|
|
1875 Lisp_Object v = XCAR (XCDR (rest));
|
|
1876 /* Maybe be Ebolified. */
|
|
1877 if (nil_means_not_present && NILP (v)) continue;
|
|
1878 for (i = 0; i < fill; i++)
|
|
1879 {
|
|
1880 if (!laxp ? EQ (k, keys [i]) : internal_equal (k, keys [i], depth))
|
|
1881 {
|
434
|
1882 if (eqp
|
|
1883 /* We narrowly escaped being Ebolified here. */
|
|
1884 ? !EQ_WITH_EBOLA_NOTICE (v, vals [i])
|
|
1885 : !internal_equal (v, vals [i], depth))
|
428
|
1886 /* a property in B has a different value than in A */
|
|
1887 goto MISMATCH;
|
|
1888 flags [i] = 1;
|
|
1889 break;
|
|
1890 }
|
|
1891 }
|
|
1892 if (i == fill)
|
|
1893 /* there are some properties in B that are not in A */
|
|
1894 goto MISMATCH;
|
|
1895 }
|
|
1896 /* Now check to see that all the properties in A were also in B */
|
|
1897 for (i = 0; i < fill; i++)
|
|
1898 if (flags [i] == 0)
|
|
1899 goto MISMATCH;
|
|
1900
|
|
1901 /* Ok. */
|
|
1902 return 0;
|
|
1903
|
|
1904 MISMATCH:
|
|
1905 return 1;
|
|
1906 }
|
|
1907
|
|
1908 DEFUN ("plists-eq", Fplists_eq, 2, 3, 0, /*
|
|
1909 Return non-nil if property lists A and B are `eq'.
|
|
1910 A property list is an alternating list of keywords and values.
|
|
1911 This function does order-insensitive comparisons of the property lists:
|
|
1912 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1913 Comparison between values is done using `eq'. See also `plists-equal'.
|
|
1914 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1915 a nil value is ignored. This feature is a virus that has infected
|
|
1916 old Lisp implementations, but should not be used except for backward
|
|
1917 compatibility.
|
|
1918 */
|
|
1919 (a, b, nil_means_not_present))
|
|
1920 {
|
|
1921 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, -1)
|
|
1922 ? Qnil : Qt);
|
|
1923 }
|
|
1924
|
|
1925 DEFUN ("plists-equal", Fplists_equal, 2, 3, 0, /*
|
|
1926 Return non-nil if property lists A and B are `equal'.
|
|
1927 A property list is an alternating list of keywords and values. This
|
|
1928 function does order-insensitive comparisons of the property lists: For
|
|
1929 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1930 Comparison between values is done using `equal'. See also `plists-eq'.
|
|
1931 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1932 a nil value is ignored. This feature is a virus that has infected
|
|
1933 old Lisp implementations, but should not be used except for backward
|
|
1934 compatibility.
|
|
1935 */
|
|
1936 (a, b, nil_means_not_present))
|
|
1937 {
|
|
1938 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, 1)
|
|
1939 ? Qnil : Qt);
|
|
1940 }
|
|
1941
|
|
1942
|
|
1943 DEFUN ("lax-plists-eq", Flax_plists_eq, 2, 3, 0, /*
|
|
1944 Return non-nil if lax property lists A and B are `eq'.
|
|
1945 A property list is an alternating list of keywords and values.
|
|
1946 This function does order-insensitive comparisons of the property lists:
|
|
1947 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1948 Comparison between values is done using `eq'. See also `plists-equal'.
|
|
1949 A lax property list is like a regular one except that comparisons between
|
|
1950 keywords is done using `equal' instead of `eq'.
|
|
1951 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1952 a nil value is ignored. This feature is a virus that has infected
|
|
1953 old Lisp implementations, but should not be used except for backward
|
|
1954 compatibility.
|
|
1955 */
|
|
1956 (a, b, nil_means_not_present))
|
|
1957 {
|
|
1958 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, -1)
|
|
1959 ? Qnil : Qt);
|
|
1960 }
|
|
1961
|
|
1962 DEFUN ("lax-plists-equal", Flax_plists_equal, 2, 3, 0, /*
|
|
1963 Return non-nil if lax property lists A and B are `equal'.
|
|
1964 A property list is an alternating list of keywords and values. This
|
|
1965 function does order-insensitive comparisons of the property lists: For
|
|
1966 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
|
|
1967 Comparison between values is done using `equal'. See also `plists-eq'.
|
|
1968 A lax property list is like a regular one except that comparisons between
|
|
1969 keywords is done using `equal' instead of `eq'.
|
|
1970 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
1971 a nil value is ignored. This feature is a virus that has infected
|
|
1972 old Lisp implementations, but should not be used except for backward
|
|
1973 compatibility.
|
|
1974 */
|
|
1975 (a, b, nil_means_not_present))
|
|
1976 {
|
|
1977 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, 1)
|
|
1978 ? Qnil : Qt);
|
|
1979 }
|
|
1980
|
|
1981 /* Return the value associated with key PROPERTY in property list PLIST.
|
|
1982 Return nil if key not found. This function is used for internal
|
|
1983 property lists that cannot be directly manipulated by the user.
|
|
1984 */
|
|
1985
|
|
1986 Lisp_Object
|
|
1987 internal_plist_get (Lisp_Object plist, Lisp_Object property)
|
|
1988 {
|
|
1989 Lisp_Object tail;
|
|
1990
|
|
1991 for (tail = plist; !NILP (tail); tail = XCDR (XCDR (tail)))
|
|
1992 {
|
|
1993 if (EQ (XCAR (tail), property))
|
|
1994 return XCAR (XCDR (tail));
|
|
1995 }
|
|
1996
|
|
1997 return Qunbound;
|
|
1998 }
|
|
1999
|
|
2000 /* Set PLIST's value for PROPERTY to VALUE. Analogous to
|
|
2001 internal_plist_get(). */
|
|
2002
|
|
2003 void
|
|
2004 internal_plist_put (Lisp_Object *plist, Lisp_Object property,
|
|
2005 Lisp_Object value)
|
|
2006 {
|
|
2007 Lisp_Object tail;
|
|
2008
|
|
2009 for (tail = *plist; !NILP (tail); tail = XCDR (XCDR (tail)))
|
|
2010 {
|
|
2011 if (EQ (XCAR (tail), property))
|
|
2012 {
|
|
2013 XCAR (XCDR (tail)) = value;
|
|
2014 return;
|
|
2015 }
|
|
2016 }
|
|
2017
|
|
2018 *plist = Fcons (property, Fcons (value, *plist));
|
|
2019 }
|
|
2020
|
|
2021 int
|
|
2022 internal_remprop (Lisp_Object *plist, Lisp_Object property)
|
|
2023 {
|
|
2024 Lisp_Object tail, prev;
|
|
2025
|
|
2026 for (tail = *plist, prev = Qnil;
|
|
2027 !NILP (tail);
|
|
2028 tail = XCDR (XCDR (tail)))
|
|
2029 {
|
|
2030 if (EQ (XCAR (tail), property))
|
|
2031 {
|
|
2032 if (NILP (prev))
|
|
2033 *plist = XCDR (XCDR (tail));
|
|
2034 else
|
|
2035 XCDR (XCDR (prev)) = XCDR (XCDR (tail));
|
|
2036 return 1;
|
|
2037 }
|
|
2038 else
|
|
2039 prev = tail;
|
|
2040 }
|
|
2041
|
|
2042 return 0;
|
|
2043 }
|
|
2044
|
|
2045 /* Called on a malformed property list. BADPLACE should be some
|
|
2046 place where truncating will form a good list -- i.e. we shouldn't
|
|
2047 result in a list with an odd length. */
|
|
2048
|
|
2049 static Lisp_Object
|
|
2050 bad_bad_bunny (Lisp_Object *plist, Lisp_Object *badplace, Error_behavior errb)
|
|
2051 {
|
|
2052 if (ERRB_EQ (errb, ERROR_ME))
|
|
2053 return Fsignal (Qmalformed_property_list, list2 (*plist, *badplace));
|
|
2054 else
|
|
2055 {
|
|
2056 if (ERRB_EQ (errb, ERROR_ME_WARN))
|
|
2057 {
|
|
2058 warn_when_safe_lispobj
|
|
2059 (Qlist, Qwarning,
|
|
2060 list2 (build_string
|
|
2061 ("Malformed property list -- list has been truncated"),
|
|
2062 *plist));
|
|
2063 *badplace = Qnil;
|
|
2064 }
|
|
2065 return Qunbound;
|
|
2066 }
|
|
2067 }
|
|
2068
|
|
2069 /* Called on a circular property list. BADPLACE should be some place
|
|
2070 where truncating will result in an even-length list, as above.
|
|
2071 If doesn't particularly matter where we truncate -- anywhere we
|
|
2072 truncate along the entire list will break the circularity, because
|
|
2073 it will create a terminus and the list currently doesn't have one.
|
|
2074 */
|
|
2075
|
|
2076 static Lisp_Object
|
|
2077 bad_bad_turtle (Lisp_Object *plist, Lisp_Object *badplace, Error_behavior errb)
|
|
2078 {
|
|
2079 if (ERRB_EQ (errb, ERROR_ME))
|
|
2080 return Fsignal (Qcircular_property_list, list1 (*plist));
|
|
2081 else
|
|
2082 {
|
|
2083 if (ERRB_EQ (errb, ERROR_ME_WARN))
|
|
2084 {
|
|
2085 warn_when_safe_lispobj
|
|
2086 (Qlist, Qwarning,
|
|
2087 list2 (build_string
|
|
2088 ("Circular property list -- list has been truncated"),
|
|
2089 *plist));
|
|
2090 *badplace = Qnil;
|
|
2091 }
|
|
2092 return Qunbound;
|
|
2093 }
|
|
2094 }
|
|
2095
|
|
2096 /* Advance the tortoise pointer by two (one iteration of a property-list
|
|
2097 loop) and the hare pointer by four and verify that no malformations
|
|
2098 or circularities exist. If so, return zero and store a value into
|
|
2099 RETVAL that should be returned by the calling function. Otherwise,
|
|
2100 return 1. See external_plist_get().
|
|
2101 */
|
|
2102
|
|
2103 static int
|
|
2104 advance_plist_pointers (Lisp_Object *plist,
|
|
2105 Lisp_Object **tortoise, Lisp_Object **hare,
|
|
2106 Error_behavior errb, Lisp_Object *retval)
|
|
2107 {
|
|
2108 int i;
|
|
2109 Lisp_Object *tortsave = *tortoise;
|
|
2110
|
|
2111 /* Note that our "fixing" may be more brutal than necessary,
|
|
2112 but it's the user's own problem, not ours, if they went in and
|
|
2113 manually fucked up a plist. */
|
|
2114
|
|
2115 for (i = 0; i < 2; i++)
|
|
2116 {
|
|
2117 /* This is a standard iteration of a defensive-loop-checking
|
|
2118 loop. We just do it twice because we want to advance past
|
|
2119 both the property and its value.
|
|
2120
|
|
2121 If the pointer indirection is confusing you, remember that
|
|
2122 one level of indirection on the hare and tortoise pointers
|
|
2123 is only due to pass-by-reference for this function. The other
|
|
2124 level is so that the plist can be fixed in place. */
|
|
2125
|
|
2126 /* When we reach the end of a well-formed plist, **HARE is
|
|
2127 nil. In that case, we don't do anything at all except
|
|
2128 advance TORTOISE by one. Otherwise, we advance HARE
|
|
2129 by two (making sure it's OK to do so), then advance
|
|
2130 TORTOISE by one (it will always be OK to do so because
|
|
2131 the HARE is always ahead of the TORTOISE and will have
|
|
2132 already verified the path), then make sure TORTOISE and
|
|
2133 HARE don't contain the same non-nil object -- if the
|
|
2134 TORTOISE and the HARE ever meet, then obviously we're
|
|
2135 in a circularity, and if we're in a circularity, then
|
|
2136 the TORTOISE and the HARE can't cross paths without
|
|
2137 meeting, since the HARE only gains one step over the
|
|
2138 TORTOISE per iteration. */
|
|
2139
|
|
2140 if (!NILP (**hare))
|
|
2141 {
|
|
2142 Lisp_Object *haresave = *hare;
|
|
2143 if (!CONSP (**hare))
|
|
2144 {
|
|
2145 *retval = bad_bad_bunny (plist, haresave, errb);
|
|
2146 return 0;
|
|
2147 }
|
|
2148 *hare = &XCDR (**hare);
|
|
2149 /* In a non-plist, we'd check here for a nil value for
|
|
2150 **HARE, which is OK (it just means the list has an
|
|
2151 odd number of elements). In a plist, it's not OK
|
|
2152 for the list to have an odd number of elements. */
|
|
2153 if (!CONSP (**hare))
|
|
2154 {
|
|
2155 *retval = bad_bad_bunny (plist, haresave, errb);
|
|
2156 return 0;
|
|
2157 }
|
|
2158 *hare = &XCDR (**hare);
|
|
2159 }
|
|
2160
|
|
2161 *tortoise = &XCDR (**tortoise);
|
|
2162 if (!NILP (**hare) && EQ (**tortoise, **hare))
|
|
2163 {
|
|
2164 *retval = bad_bad_turtle (plist, tortsave, errb);
|
|
2165 return 0;
|
|
2166 }
|
|
2167 }
|
|
2168
|
|
2169 return 1;
|
|
2170 }
|
|
2171
|
|
2172 /* Return the value of PROPERTY from PLIST, or Qunbound if
|
|
2173 property is not on the list.
|
|
2174
|
|
2175 PLIST is a Lisp-accessible property list, meaning that it
|
|
2176 has to be checked for malformations and circularities.
|
|
2177
|
|
2178 If ERRB is ERROR_ME, an error will be signalled. Otherwise, the
|
|
2179 function will never signal an error; and if ERRB is ERROR_ME_WARN,
|
|
2180 on finding a malformation or a circularity, it issues a warning and
|
|
2181 attempts to silently fix the problem.
|
|
2182
|
|
2183 A pointer to PLIST is passed in so that PLIST can be successfully
|
|
2184 "fixed" even if the error is at the beginning of the plist. */
|
|
2185
|
|
2186 Lisp_Object
|
|
2187 external_plist_get (Lisp_Object *plist, Lisp_Object property,
|
|
2188 int laxp, Error_behavior errb)
|
|
2189 {
|
|
2190 Lisp_Object *tortoise = plist;
|
|
2191 Lisp_Object *hare = plist;
|
|
2192
|
|
2193 while (!NILP (*tortoise))
|
|
2194 {
|
|
2195 Lisp_Object *tortsave = tortoise;
|
|
2196 Lisp_Object retval;
|
|
2197
|
|
2198 /* We do the standard tortoise/hare march. We isolate the
|
|
2199 grungy stuff to do this in advance_plist_pointers(), though.
|
|
2200 To us, all this function does is advance the tortoise
|
|
2201 pointer by two and the hare pointer by four and make sure
|
|
2202 everything's OK. We first advance the pointers and then
|
|
2203 check if a property matched; this ensures that our
|
|
2204 check for a matching property is safe. */
|
|
2205
|
|
2206 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2207 return retval;
|
|
2208
|
|
2209 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2210 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2211 return XCAR (XCDR (*tortsave));
|
|
2212 }
|
|
2213
|
|
2214 return Qunbound;
|
|
2215 }
|
|
2216
|
|
2217 /* Set PLIST's value for PROPERTY to VALUE, given a possibly
|
|
2218 malformed or circular plist. Analogous to external_plist_get(). */
|
|
2219
|
|
2220 void
|
|
2221 external_plist_put (Lisp_Object *plist, Lisp_Object property,
|
|
2222 Lisp_Object value, int laxp, Error_behavior errb)
|
|
2223 {
|
|
2224 Lisp_Object *tortoise = plist;
|
|
2225 Lisp_Object *hare = plist;
|
|
2226
|
|
2227 while (!NILP (*tortoise))
|
|
2228 {
|
|
2229 Lisp_Object *tortsave = tortoise;
|
|
2230 Lisp_Object retval;
|
|
2231
|
|
2232 /* See above */
|
|
2233 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2234 return;
|
|
2235
|
|
2236 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2237 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2238 {
|
|
2239 XCAR (XCDR (*tortsave)) = value;
|
|
2240 return;
|
|
2241 }
|
|
2242 }
|
|
2243
|
|
2244 *plist = Fcons (property, Fcons (value, *plist));
|
|
2245 }
|
|
2246
|
|
2247 int
|
|
2248 external_remprop (Lisp_Object *plist, Lisp_Object property,
|
|
2249 int laxp, Error_behavior errb)
|
|
2250 {
|
|
2251 Lisp_Object *tortoise = plist;
|
|
2252 Lisp_Object *hare = plist;
|
|
2253
|
|
2254 while (!NILP (*tortoise))
|
|
2255 {
|
|
2256 Lisp_Object *tortsave = tortoise;
|
|
2257 Lisp_Object retval;
|
|
2258
|
|
2259 /* See above */
|
|
2260 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
|
|
2261 return 0;
|
|
2262
|
|
2263 if (!laxp ? EQ (XCAR (*tortsave), property)
|
|
2264 : internal_equal (XCAR (*tortsave), property, 0))
|
|
2265 {
|
|
2266 /* Now you see why it's so convenient to have that level
|
|
2267 of indirection. */
|
|
2268 *tortsave = XCDR (XCDR (*tortsave));
|
|
2269 return 1;
|
|
2270 }
|
|
2271 }
|
|
2272
|
|
2273 return 0;
|
|
2274 }
|
|
2275
|
|
2276 DEFUN ("plist-get", Fplist_get, 2, 3, 0, /*
|
|
2277 Extract a value from a property list.
|
|
2278 PLIST is a property list, which is a list of the form
|
444
|
2279 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...).
|
|
2280 PROPERTY is usually a symbol.
|
|
2281 This function returns the value corresponding to the PROPERTY,
|
|
2282 or DEFAULT if PROPERTY is not one of the properties on the list.
|
428
|
2283 */
|
444
|
2284 (plist, property, default_))
|
428
|
2285 {
|
444
|
2286 Lisp_Object value = external_plist_get (&plist, property, 0, ERROR_ME);
|
|
2287 return UNBOUNDP (value) ? default_ : value;
|
428
|
2288 }
|
|
2289
|
|
2290 DEFUN ("plist-put", Fplist_put, 3, 3, 0, /*
|
444
|
2291 Change value in PLIST of PROPERTY to VALUE.
|
|
2292 PLIST is a property list, which is a list of the form
|
|
2293 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2 ...).
|
|
2294 PROPERTY is usually a symbol and VALUE is any object.
|
|
2295 If PROPERTY is already a property on the list, its value is set to VALUE,
|
|
2296 otherwise the new PROPERTY VALUE pair is added.
|
|
2297 The new plist is returned; use `(setq x (plist-put x property value))'
|
|
2298 to be sure to use the new value. PLIST is modified by side effect.
|
428
|
2299 */
|
444
|
2300 (plist, property, value))
|
428
|
2301 {
|
444
|
2302 external_plist_put (&plist, property, value, 0, ERROR_ME);
|
428
|
2303 return plist;
|
|
2304 }
|
|
2305
|
|
2306 DEFUN ("plist-remprop", Fplist_remprop, 2, 2, 0, /*
|
444
|
2307 Remove from PLIST the property PROPERTY and its value.
|
|
2308 PLIST is a property list, which is a list of the form
|
|
2309 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2 ...).
|
|
2310 PROPERTY is usually a symbol.
|
|
2311 The new plist is returned; use `(setq x (plist-remprop x property))'
|
|
2312 to be sure to use the new value. PLIST is modified by side effect.
|
428
|
2313 */
|
444
|
2314 (plist, property))
|
428
|
2315 {
|
444
|
2316 external_remprop (&plist, property, 0, ERROR_ME);
|
428
|
2317 return plist;
|
|
2318 }
|
|
2319
|
|
2320 DEFUN ("plist-member", Fplist_member, 2, 2, 0, /*
|
444
|
2321 Return t if PROPERTY has a value specified in PLIST.
|
428
|
2322 */
|
444
|
2323 (plist, property))
|
428
|
2324 {
|
444
|
2325 Lisp_Object value = Fplist_get (plist, property, Qunbound);
|
|
2326 return UNBOUNDP (value) ? Qnil : Qt;
|
428
|
2327 }
|
|
2328
|
|
2329 DEFUN ("check-valid-plist", Fcheck_valid_plist, 1, 1, 0, /*
|
|
2330 Given a plist, signal an error if there is anything wrong with it.
|
|
2331 This means that it's a malformed or circular plist.
|
|
2332 */
|
|
2333 (plist))
|
|
2334 {
|
|
2335 Lisp_Object *tortoise;
|
|
2336 Lisp_Object *hare;
|
|
2337
|
|
2338 start_over:
|
|
2339 tortoise = &plist;
|
|
2340 hare = &plist;
|
|
2341 while (!NILP (*tortoise))
|
|
2342 {
|
|
2343 Lisp_Object retval;
|
|
2344
|
|
2345 /* See above */
|
|
2346 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME,
|
|
2347 &retval))
|
|
2348 goto start_over;
|
|
2349 }
|
|
2350
|
|
2351 return Qnil;
|
|
2352 }
|
|
2353
|
|
2354 DEFUN ("valid-plist-p", Fvalid_plist_p, 1, 1, 0, /*
|
|
2355 Given a plist, return non-nil if its format is correct.
|
|
2356 If it returns nil, `check-valid-plist' will signal an error when given
|
442
|
2357 the plist; that means it's a malformed or circular plist.
|
428
|
2358 */
|
|
2359 (plist))
|
|
2360 {
|
|
2361 Lisp_Object *tortoise;
|
|
2362 Lisp_Object *hare;
|
|
2363
|
|
2364 tortoise = &plist;
|
|
2365 hare = &plist;
|
|
2366 while (!NILP (*tortoise))
|
|
2367 {
|
|
2368 Lisp_Object retval;
|
|
2369
|
|
2370 /* See above */
|
|
2371 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME_NOT,
|
|
2372 &retval))
|
|
2373 return Qnil;
|
|
2374 }
|
|
2375
|
|
2376 return Qt;
|
|
2377 }
|
|
2378
|
|
2379 DEFUN ("canonicalize-plist", Fcanonicalize_plist, 1, 2, 0, /*
|
|
2380 Destructively remove any duplicate entries from a plist.
|
|
2381 In such cases, the first entry applies.
|
|
2382
|
|
2383 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2384 a nil value is removed. This feature is a virus that has infected
|
|
2385 old Lisp implementations, but should not be used except for backward
|
|
2386 compatibility.
|
|
2387
|
|
2388 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the
|
|
2389 return value may not be EQ to the passed-in value, so make sure to
|
|
2390 `setq' the value back into where it came from.
|
|
2391 */
|
|
2392 (plist, nil_means_not_present))
|
|
2393 {
|
|
2394 Lisp_Object head = plist;
|
|
2395
|
|
2396 Fcheck_valid_plist (plist);
|
|
2397
|
|
2398 while (!NILP (plist))
|
|
2399 {
|
|
2400 Lisp_Object prop = Fcar (plist);
|
|
2401 Lisp_Object next = Fcdr (plist);
|
|
2402
|
|
2403 CHECK_CONS (next); /* just make doubly sure we catch any errors */
|
|
2404 if (!NILP (nil_means_not_present) && NILP (Fcar (next)))
|
|
2405 {
|
|
2406 if (EQ (head, plist))
|
|
2407 head = Fcdr (next);
|
|
2408 plist = Fcdr (next);
|
|
2409 continue;
|
|
2410 }
|
|
2411 /* external_remprop returns 1 if it removed any property.
|
|
2412 We have to loop till it didn't remove anything, in case
|
|
2413 the property occurs many times. */
|
|
2414 while (external_remprop (&XCDR (next), prop, 0, ERROR_ME))
|
|
2415 DO_NOTHING;
|
|
2416 plist = Fcdr (next);
|
|
2417 }
|
|
2418
|
|
2419 return head;
|
|
2420 }
|
|
2421
|
|
2422 DEFUN ("lax-plist-get", Flax_plist_get, 2, 3, 0, /*
|
|
2423 Extract a value from a lax property list.
|
444
|
2424 LAX-PLIST is a lax property list, which is a list of the form
|
|
2425 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between
|
|
2426 properties is done using `equal' instead of `eq'.
|
|
2427 PROPERTY is usually a symbol.
|
|
2428 This function returns the value corresponding to PROPERTY,
|
|
2429 or DEFAULT if PROPERTY is not one of the properties on the list.
|
428
|
2430 */
|
444
|
2431 (lax_plist, property, default_))
|
428
|
2432 {
|
444
|
2433 Lisp_Object value = external_plist_get (&lax_plist, property, 1, ERROR_ME);
|
|
2434 return UNBOUNDP (value) ? default_ : value;
|
428
|
2435 }
|
|
2436
|
|
2437 DEFUN ("lax-plist-put", Flax_plist_put, 3, 3, 0, /*
|
444
|
2438 Change value in LAX-PLIST of PROPERTY to VALUE.
|
|
2439 LAX-PLIST is a lax property list, which is a list of the form
|
|
2440 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between
|
|
2441 properties is done using `equal' instead of `eq'.
|
|
2442 PROPERTY is usually a symbol and VALUE is any object.
|
|
2443 If PROPERTY is already a property on the list, its value is set to
|
|
2444 VALUE, otherwise the new PROPERTY VALUE pair is added.
|
|
2445 The new plist is returned; use `(setq x (lax-plist-put x property value))'
|
|
2446 to be sure to use the new value. LAX-PLIST is modified by side effect.
|
428
|
2447 */
|
444
|
2448 (lax_plist, property, value))
|
428
|
2449 {
|
444
|
2450 external_plist_put (&lax_plist, property, value, 1, ERROR_ME);
|
428
|
2451 return lax_plist;
|
|
2452 }
|
|
2453
|
|
2454 DEFUN ("lax-plist-remprop", Flax_plist_remprop, 2, 2, 0, /*
|
444
|
2455 Remove from LAX-PLIST the property PROPERTY and its value.
|
|
2456 LAX-PLIST is a lax property list, which is a list of the form
|
|
2457 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between
|
|
2458 properties is done using `equal' instead of `eq'.
|
|
2459 PROPERTY is usually a symbol.
|
|
2460 The new plist is returned; use `(setq x (lax-plist-remprop x property))'
|
|
2461 to be sure to use the new value. LAX-PLIST is modified by side effect.
|
428
|
2462 */
|
444
|
2463 (lax_plist, property))
|
428
|
2464 {
|
444
|
2465 external_remprop (&lax_plist, property, 1, ERROR_ME);
|
428
|
2466 return lax_plist;
|
|
2467 }
|
|
2468
|
|
2469 DEFUN ("lax-plist-member", Flax_plist_member, 2, 2, 0, /*
|
444
|
2470 Return t if PROPERTY has a value specified in LAX-PLIST.
|
|
2471 LAX-PLIST is a lax property list, which is a list of the form
|
|
2472 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between
|
|
2473 properties is done using `equal' instead of `eq'.
|
428
|
2474 */
|
444
|
2475 (lax_plist, property))
|
428
|
2476 {
|
444
|
2477 return UNBOUNDP (Flax_plist_get (lax_plist, property, Qunbound)) ? Qnil : Qt;
|
428
|
2478 }
|
|
2479
|
|
2480 DEFUN ("canonicalize-lax-plist", Fcanonicalize_lax_plist, 1, 2, 0, /*
|
|
2481 Destructively remove any duplicate entries from a lax plist.
|
|
2482 In such cases, the first entry applies.
|
|
2483
|
|
2484 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
|
|
2485 a nil value is removed. This feature is a virus that has infected
|
|
2486 old Lisp implementations, but should not be used except for backward
|
|
2487 compatibility.
|
|
2488
|
|
2489 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the
|
|
2490 return value may not be EQ to the passed-in value, so make sure to
|
|
2491 `setq' the value back into where it came from.
|
|
2492 */
|
|
2493 (lax_plist, nil_means_not_present))
|
|
2494 {
|
|
2495 Lisp_Object head = lax_plist;
|
|
2496
|
|
2497 Fcheck_valid_plist (lax_plist);
|
|
2498
|
|
2499 while (!NILP (lax_plist))
|
|
2500 {
|
|
2501 Lisp_Object prop = Fcar (lax_plist);
|
|
2502 Lisp_Object next = Fcdr (lax_plist);
|
|
2503
|
|
2504 CHECK_CONS (next); /* just make doubly sure we catch any errors */
|
|
2505 if (!NILP (nil_means_not_present) && NILP (Fcar (next)))
|
|
2506 {
|
|
2507 if (EQ (head, lax_plist))
|
|
2508 head = Fcdr (next);
|
|
2509 lax_plist = Fcdr (next);
|
|
2510 continue;
|
|
2511 }
|
|
2512 /* external_remprop returns 1 if it removed any property.
|
|
2513 We have to loop till it didn't remove anything, in case
|
|
2514 the property occurs many times. */
|
|
2515 while (external_remprop (&XCDR (next), prop, 1, ERROR_ME))
|
|
2516 DO_NOTHING;
|
|
2517 lax_plist = Fcdr (next);
|
|
2518 }
|
|
2519
|
|
2520 return head;
|
|
2521 }
|
|
2522
|
|
2523 /* In C because the frame props stuff uses it */
|
|
2524
|
|
2525 DEFUN ("destructive-alist-to-plist", Fdestructive_alist_to_plist, 1, 1, 0, /*
|
|
2526 Convert association list ALIST into the equivalent property-list form.
|
|
2527 The plist is returned. This converts from
|
|
2528
|
|
2529 \((a . 1) (b . 2) (c . 3))
|
|
2530
|
|
2531 into
|
|
2532
|
|
2533 \(a 1 b 2 c 3)
|
|
2534
|
|
2535 The original alist is destroyed in the process of constructing the plist.
|
|
2536 See also `alist-to-plist'.
|
|
2537 */
|
|
2538 (alist))
|
|
2539 {
|
|
2540 Lisp_Object head = alist;
|
|
2541 while (!NILP (alist))
|
|
2542 {
|
|
2543 /* remember the alist element. */
|
|
2544 Lisp_Object el = Fcar (alist);
|
|
2545
|
|
2546 Fsetcar (alist, Fcar (el));
|
|
2547 Fsetcar (el, Fcdr (el));
|
|
2548 Fsetcdr (el, Fcdr (alist));
|
|
2549 Fsetcdr (alist, el);
|
|
2550 alist = Fcdr (Fcdr (alist));
|
|
2551 }
|
|
2552
|
|
2553 return head;
|
|
2554 }
|
|
2555
|
|
2556 DEFUN ("get", Fget, 2, 3, 0, /*
|
442
|
2557 Return the value of OBJECT's PROPERTY property.
|
|
2558 This is the last VALUE stored with `(put OBJECT PROPERTY VALUE)'.
|
428
|
2559 If there is no such property, return optional third arg DEFAULT
|
442
|
2560 \(which defaults to `nil'). OBJECT can be a symbol, string, extent,
|
|
2561 face, or glyph. See also `put', `remprop', and `object-plist'.
|
428
|
2562 */
|
442
|
2563 (object, property, default_))
|
428
|
2564 {
|
|
2565 /* Various places in emacs call Fget() and expect it not to quit,
|
|
2566 so don't quit. */
|
442
|
2567 Lisp_Object val;
|
|
2568
|
|
2569 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->getprop)
|
|
2570 val = XRECORD_LHEADER_IMPLEMENTATION (object)->getprop (object, property);
|
428
|
2571 else
|
442
|
2572 signal_simple_error ("Object type has no properties", object);
|
|
2573
|
|
2574 return UNBOUNDP (val) ? default_ : val;
|
428
|
2575 }
|
|
2576
|
|
2577 DEFUN ("put", Fput, 3, 3, 0, /*
|
442
|
2578 Set OBJECT's PROPERTY to VALUE.
|
|
2579 It can be subsequently retrieved with `(get OBJECT PROPERTY)'.
|
|
2580 OBJECT can be a symbol, face, extent, or string.
|
428
|
2581 For a string, no properties currently have predefined meanings.
|
|
2582 For the predefined properties for extents, see `set-extent-property'.
|
|
2583 For the predefined properties for faces, see `set-face-property'.
|
|
2584 See also `get', `remprop', and `object-plist'.
|
|
2585 */
|
442
|
2586 (object, property, value))
|
428
|
2587 {
|
|
2588 CHECK_LISP_WRITEABLE (object);
|
|
2589
|
442
|
2590 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->putprop)
|
428
|
2591 {
|
442
|
2592 if (! XRECORD_LHEADER_IMPLEMENTATION (object)->putprop
|
|
2593 (object, property, value))
|
|
2594 signal_simple_error ("Can't set property on object", property);
|
428
|
2595 }
|
|
2596 else
|
442
|
2597 signal_simple_error ("Object type has no settable properties", object);
|
428
|
2598
|
|
2599 return value;
|
|
2600 }
|
|
2601
|
|
2602 DEFUN ("remprop", Fremprop, 2, 2, 0, /*
|
442
|
2603 Remove, from OBJECT's property list, PROPERTY and its corresponding value.
|
|
2604 OBJECT can be a symbol, string, extent, face, or glyph. Return non-nil
|
|
2605 if the property list was actually modified (i.e. if PROPERTY was present
|
|
2606 in the property list). See also `get', `put', and `object-plist'.
|
428
|
2607 */
|
442
|
2608 (object, property))
|
428
|
2609 {
|
442
|
2610 int ret = 0;
|
|
2611
|
428
|
2612 CHECK_LISP_WRITEABLE (object);
|
|
2613
|
442
|
2614 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->remprop)
|
428
|
2615 {
|
442
|
2616 ret = XRECORD_LHEADER_IMPLEMENTATION (object)->remprop (object, property);
|
|
2617 if (ret == -1)
|
|
2618 signal_simple_error ("Can't remove property from object", property);
|
428
|
2619 }
|
|
2620 else
|
442
|
2621 signal_simple_error ("Object type has no removable properties", object);
|
|
2622
|
|
2623 return ret ? Qt : Qnil;
|
428
|
2624 }
|
|
2625
|
|
2626 DEFUN ("object-plist", Fobject_plist, 1, 1, 0, /*
|
442
|
2627 Return a property list of OBJECT's properties.
|
|
2628 For a symbol, this is equivalent to `symbol-plist'.
|
|
2629 OBJECT can be a symbol, string, extent, face, or glyph.
|
|
2630 Do not modify the returned property list directly;
|
|
2631 this may or may not have the desired effects. Use `put' instead.
|
428
|
2632 */
|
|
2633 (object))
|
|
2634 {
|
442
|
2635 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->plist)
|
|
2636 return XRECORD_LHEADER_IMPLEMENTATION (object)->plist (object);
|
428
|
2637 else
|
|
2638 signal_simple_error ("Object type has no properties", object);
|
|
2639
|
|
2640 return Qnil;
|
|
2641 }
|
|
2642
|
|
2643
|
|
2644 int
|
|
2645 internal_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
2646 {
|
|
2647 if (depth > 200)
|
|
2648 error ("Stack overflow in equal");
|
|
2649 QUIT;
|
|
2650 if (EQ_WITH_EBOLA_NOTICE (obj1, obj2))
|
|
2651 return 1;
|
|
2652 /* Note that (equal 20 20.0) should be nil */
|
|
2653 if (XTYPE (obj1) != XTYPE (obj2))
|
|
2654 return 0;
|
|
2655 if (LRECORDP (obj1))
|
|
2656 {
|
442
|
2657 const struct lrecord_implementation
|
428
|
2658 *imp1 = XRECORD_LHEADER_IMPLEMENTATION (obj1),
|
|
2659 *imp2 = XRECORD_LHEADER_IMPLEMENTATION (obj2);
|
|
2660
|
|
2661 return (imp1 == imp2) &&
|
|
2662 /* EQ-ness of the objects was noticed above */
|
|
2663 (imp1->equal && (imp1->equal) (obj1, obj2, depth));
|
|
2664 }
|
|
2665
|
|
2666 return 0;
|
|
2667 }
|
|
2668
|
|
2669 /* Note that we may be calling sub-objects that will use
|
|
2670 internal_equal() (instead of internal_old_equal()). Oh well.
|
|
2671 We will get an Ebola note if there's any possibility of confusion,
|
|
2672 but that seems unlikely. */
|
|
2673
|
|
2674 static int
|
|
2675 internal_old_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
|
2676 {
|
|
2677 if (depth > 200)
|
|
2678 error ("Stack overflow in equal");
|
|
2679 QUIT;
|
|
2680 if (HACKEQ_UNSAFE (obj1, obj2))
|
|
2681 return 1;
|
|
2682 /* Note that (equal 20 20.0) should be nil */
|
|
2683 if (XTYPE (obj1) != XTYPE (obj2))
|
|
2684 return 0;
|
|
2685
|
|
2686 return internal_equal (obj1, obj2, depth);
|
|
2687 }
|
|
2688
|
|
2689 DEFUN ("equal", Fequal, 2, 2, 0, /*
|
|
2690 Return t if two Lisp objects have similar structure and contents.
|
|
2691 They must have the same data type.
|
|
2692 Conses are compared by comparing the cars and the cdrs.
|
|
2693 Vectors and strings are compared element by element.
|
|
2694 Numbers are compared by value. Symbols must match exactly.
|
|
2695 */
|
444
|
2696 (object1, object2))
|
428
|
2697 {
|
444
|
2698 return internal_equal (object1, object2, 0) ? Qt : Qnil;
|
428
|
2699 }
|
|
2700
|
|
2701 DEFUN ("old-equal", Fold_equal, 2, 2, 0, /*
|
|
2702 Return t if two Lisp objects have similar structure and contents.
|
|
2703 They must have the same data type.
|
|
2704 \(Note, however, that an exception is made for characters and integers;
|
|
2705 this is known as the "char-int confoundance disease." See `eq' and
|
|
2706 `old-eq'.)
|
|
2707 This function is provided only for byte-code compatibility with v19.
|
|
2708 Do not use it.
|
|
2709 */
|
444
|
2710 (object1, object2))
|
428
|
2711 {
|
444
|
2712 return internal_old_equal (object1, object2, 0) ? Qt : Qnil;
|
428
|
2713 }
|
|
2714
|
|
2715
|
|
2716 DEFUN ("fillarray", Ffillarray, 2, 2, 0, /*
|
434
|
2717 Destructively modify ARRAY by replacing each element with ITEM.
|
428
|
2718 ARRAY is a vector, bit vector, or string.
|
|
2719 */
|
|
2720 (array, item))
|
|
2721 {
|
|
2722 retry:
|
|
2723 if (STRINGP (array))
|
|
2724 {
|
440
|
2725 Lisp_String *s = XSTRING (array);
|
434
|
2726 Bytecount old_bytecount = string_length (s);
|
|
2727 Bytecount new_bytecount;
|
|
2728 Bytecount item_bytecount;
|
|
2729 Bufbyte item_buf[MAX_EMCHAR_LEN];
|
|
2730 Bufbyte *p;
|
|
2731 Bufbyte *end;
|
|
2732
|
428
|
2733 CHECK_CHAR_COERCE_INT (item);
|
|
2734 CHECK_LISP_WRITEABLE (array);
|
434
|
2735
|
|
2736 item_bytecount = set_charptr_emchar (item_buf, XCHAR (item));
|
|
2737 new_bytecount = item_bytecount * string_char_length (s);
|
|
2738
|
|
2739 resize_string (s, -1, new_bytecount - old_bytecount);
|
|
2740
|
|
2741 for (p = string_data (s), end = p + new_bytecount;
|
|
2742 p < end;
|
|
2743 p += item_bytecount)
|
|
2744 memcpy (p, item_buf, item_bytecount);
|
|
2745 *p = '\0';
|
|
2746
|
428
|
2747 bump_string_modiff (array);
|
|
2748 }
|
|
2749 else if (VECTORP (array))
|
|
2750 {
|
|
2751 Lisp_Object *p = XVECTOR_DATA (array);
|
444
|
2752 size_t len = XVECTOR_LENGTH (array);
|
428
|
2753 CHECK_LISP_WRITEABLE (array);
|
|
2754 while (len--)
|
|
2755 *p++ = item;
|
|
2756 }
|
|
2757 else if (BIT_VECTORP (array))
|
|
2758 {
|
440
|
2759 Lisp_Bit_Vector *v = XBIT_VECTOR (array);
|
444
|
2760 size_t len = bit_vector_length (v);
|
428
|
2761 int bit;
|
|
2762 CHECK_BIT (item);
|
444
|
2763 bit = XINT (item);
|
428
|
2764 CHECK_LISP_WRITEABLE (array);
|
|
2765 while (len--)
|
|
2766 set_bit_vector_bit (v, len, bit);
|
|
2767 }
|
|
2768 else
|
|
2769 {
|
|
2770 array = wrong_type_argument (Qarrayp, array);
|
|
2771 goto retry;
|
|
2772 }
|
|
2773 return array;
|
|
2774 }
|
|
2775
|
|
2776 Lisp_Object
|
|
2777 nconc2 (Lisp_Object arg1, Lisp_Object arg2)
|
|
2778 {
|
|
2779 Lisp_Object args[2];
|
|
2780 struct gcpro gcpro1;
|
|
2781 args[0] = arg1;
|
|
2782 args[1] = arg2;
|
|
2783
|
|
2784 GCPRO1 (args[0]);
|
|
2785 gcpro1.nvars = 2;
|
|
2786
|
|
2787 RETURN_UNGCPRO (bytecode_nconc2 (args));
|
|
2788 }
|
|
2789
|
|
2790 Lisp_Object
|
|
2791 bytecode_nconc2 (Lisp_Object *args)
|
|
2792 {
|
|
2793 retry:
|
|
2794
|
|
2795 if (CONSP (args[0]))
|
|
2796 {
|
|
2797 /* (setcdr (last args[0]) args[1]) */
|
|
2798 Lisp_Object tortoise, hare;
|
444
|
2799 size_t count;
|
428
|
2800
|
|
2801 for (hare = tortoise = args[0], count = 0;
|
|
2802 CONSP (XCDR (hare));
|
|
2803 hare = XCDR (hare), count++)
|
|
2804 {
|
|
2805 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue;
|
|
2806
|
|
2807 if (count & 1)
|
|
2808 tortoise = XCDR (tortoise);
|
|
2809 if (EQ (hare, tortoise))
|
|
2810 signal_circular_list_error (args[0]);
|
|
2811 }
|
|
2812 XCDR (hare) = args[1];
|
|
2813 return args[0];
|
|
2814 }
|
|
2815 else if (NILP (args[0]))
|
|
2816 {
|
|
2817 return args[1];
|
|
2818 }
|
|
2819 else
|
|
2820 {
|
|
2821 args[0] = wrong_type_argument (args[0], Qlistp);
|
|
2822 goto retry;
|
|
2823 }
|
|
2824 }
|
|
2825
|
|
2826 DEFUN ("nconc", Fnconc, 0, MANY, 0, /*
|
|
2827 Concatenate any number of lists by altering them.
|
|
2828 Only the last argument is not altered, and need not be a list.
|
|
2829 Also see: `append'.
|
|
2830 If the first argument is nil, there is no way to modify it by side
|
|
2831 effect; therefore, write `(setq foo (nconc foo list))' to be sure of
|
|
2832 changing the value of `foo'.
|
|
2833 */
|
|
2834 (int nargs, Lisp_Object *args))
|
|
2835 {
|
|
2836 int argnum = 0;
|
|
2837 struct gcpro gcpro1;
|
|
2838
|
|
2839 /* The modus operandi in Emacs is "caller gc-protects args".
|
|
2840 However, nconc (particularly nconc2 ()) is called many times
|
|
2841 in Emacs on freshly created stuff (e.g. you see the idiom
|
|
2842 nconc2 (Fcopy_sequence (foo), bar) a lot). So we help those
|
|
2843 callers out by protecting the args ourselves to save them
|
|
2844 a lot of temporary-variable grief. */
|
|
2845
|
|
2846 GCPRO1 (args[0]);
|
|
2847 gcpro1.nvars = nargs;
|
|
2848
|
|
2849 while (argnum < nargs)
|
|
2850 {
|
|
2851 Lisp_Object val;
|
|
2852 retry:
|
|
2853 val = args[argnum];
|
|
2854 if (CONSP (val))
|
|
2855 {
|
|
2856 /* `val' is the first cons, which will be our return value. */
|
|
2857 /* `last_cons' will be the cons cell to mutate. */
|
|
2858 Lisp_Object last_cons = val;
|
|
2859 Lisp_Object tortoise = val;
|
|
2860
|
|
2861 for (argnum++; argnum < nargs; argnum++)
|
|
2862 {
|
|
2863 Lisp_Object next = args[argnum];
|
|
2864 retry_next:
|
|
2865 if (CONSP (next) || argnum == nargs -1)
|
|
2866 {
|
|
2867 /* (setcdr (last val) next) */
|
444
|
2868 size_t count;
|
428
|
2869
|
|
2870 for (count = 0;
|
|
2871 CONSP (XCDR (last_cons));
|
|
2872 last_cons = XCDR (last_cons), count++)
|
|
2873 {
|
|
2874 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue;
|
|
2875
|
|
2876 if (count & 1)
|
|
2877 tortoise = XCDR (tortoise);
|
|
2878 if (EQ (last_cons, tortoise))
|
|
2879 signal_circular_list_error (args[argnum-1]);
|
|
2880 }
|
|
2881 XCDR (last_cons) = next;
|
|
2882 }
|
|
2883 else if (NILP (next))
|
|
2884 {
|
|
2885 continue;
|
|
2886 }
|
|
2887 else
|
|
2888 {
|
|
2889 next = wrong_type_argument (Qlistp, next);
|
|
2890 goto retry_next;
|
|
2891 }
|
|
2892 }
|
|
2893 RETURN_UNGCPRO (val);
|
|
2894 }
|
|
2895 else if (NILP (val))
|
|
2896 argnum++;
|
|
2897 else if (argnum == nargs - 1) /* last arg? */
|
|
2898 RETURN_UNGCPRO (val);
|
|
2899 else
|
|
2900 {
|
|
2901 args[argnum] = wrong_type_argument (Qlistp, val);
|
|
2902 goto retry;
|
|
2903 }
|
|
2904 }
|
|
2905 RETURN_UNGCPRO (Qnil); /* No non-nil args provided. */
|
|
2906 }
|
|
2907
|
|
2908
|
434
|
2909 /* This is the guts of several mapping functions.
|
|
2910 Apply FUNCTION to each element of SEQUENCE, one by one,
|
|
2911 storing the results into elements of VALS, a C vector of Lisp_Objects.
|
|
2912 LENI is the length of VALS, which should also be the length of SEQUENCE.
|
428
|
2913
|
|
2914 If VALS is a null pointer, do not accumulate the results. */
|
|
2915
|
|
2916 static void
|
434
|
2917 mapcar1 (size_t leni, Lisp_Object *vals,
|
|
2918 Lisp_Object function, Lisp_Object sequence)
|
428
|
2919 {
|
|
2920 Lisp_Object result;
|
|
2921 Lisp_Object args[2];
|
|
2922 struct gcpro gcpro1;
|
|
2923
|
|
2924 if (vals)
|
|
2925 {
|
|
2926 GCPRO1 (vals[0]);
|
|
2927 gcpro1.nvars = 0;
|
|
2928 }
|
|
2929
|
434
|
2930 args[0] = function;
|
|
2931
|
|
2932 if (LISTP (sequence))
|
428
|
2933 {
|
434
|
2934 /* A devious `function' could either:
|
|
2935 - insert garbage into the list in front of us, causing XCDR to crash
|
|
2936 - amputate the list behind us using (setcdr), causing the remaining
|
|
2937 elts to lose their GCPRO status.
|
|
2938
|
|
2939 if (vals != 0) we avoid this by copying the elts into the
|
|
2940 `vals' array. By a stroke of luck, `vals' is exactly large
|
|
2941 enough to hold the elts left to be traversed as well as the
|
|
2942 results computed so far.
|
|
2943
|
|
2944 if (vals == 0) we don't have any free space available and
|
|
2945 don't want to eat up any more stack with alloca().
|
442
|
2946 So we use EXTERNAL_LIST_LOOP_3_NO_DECLARE and GCPRO the tail. */
|
434
|
2947
|
|
2948 if (vals)
|
428
|
2949 {
|
434
|
2950 Lisp_Object *val = vals;
|
444
|
2951 size_t i;
|
434
|
2952
|
|
2953 LIST_LOOP_2 (elt, sequence)
|
|
2954 *val++ = elt;
|
|
2955
|
|
2956 gcpro1.nvars = leni;
|
|
2957
|
|
2958 for (i = 0; i < leni; i++)
|
|
2959 {
|
|
2960 args[1] = vals[i];
|
|
2961 vals[i] = Ffuncall (2, args);
|
|
2962 }
|
|
2963 }
|
|
2964 else
|
|
2965 {
|
|
2966 Lisp_Object elt, tail;
|
442
|
2967 EMACS_INT len_unused;
|
434
|
2968 struct gcpro ngcpro1;
|
|
2969
|
|
2970 NGCPRO1 (tail);
|
|
2971
|
|
2972 {
|
442
|
2973 EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, sequence, tail, len_unused)
|
434
|
2974 {
|
|
2975 args[1] = elt;
|
|
2976 Ffuncall (2, args);
|
|
2977 }
|
|
2978 }
|
|
2979
|
|
2980 NUNGCPRO;
|
428
|
2981 }
|
|
2982 }
|
434
|
2983 else if (VECTORP (sequence))
|
428
|
2984 {
|
434
|
2985 Lisp_Object *objs = XVECTOR_DATA (sequence);
|
444
|
2986 size_t i;
|
428
|
2987 for (i = 0; i < leni; i++)
|
|
2988 {
|
|
2989 args[1] = *objs++;
|
|
2990 result = Ffuncall (2, args);
|
|
2991 if (vals) vals[gcpro1.nvars++] = result;
|
|
2992 }
|
|
2993 }
|
434
|
2994 else if (STRINGP (sequence))
|
428
|
2995 {
|
434
|
2996 /* The string data of `sequence' might be relocated during GC. */
|
|
2997 Bytecount slen = XSTRING_LENGTH (sequence);
|
|
2998 Bufbyte *p = alloca_array (Bufbyte, slen);
|
|
2999 Bufbyte *end = p + slen;
|
|
3000
|
|
3001 memcpy (p, XSTRING_DATA (sequence), slen);
|
|
3002
|
|
3003 while (p < end)
|
428
|
3004 {
|
|
3005 args[1] = make_char (charptr_emchar (p));
|
|
3006 INC_CHARPTR (p);
|
|
3007 result = Ffuncall (2, args);
|
|
3008 if (vals) vals[gcpro1.nvars++] = result;
|
|
3009 }
|
|
3010 }
|
434
|
3011 else if (BIT_VECTORP (sequence))
|
428
|
3012 {
|
440
|
3013 Lisp_Bit_Vector *v = XBIT_VECTOR (sequence);
|
444
|
3014 size_t i;
|
428
|
3015 for (i = 0; i < leni; i++)
|
|
3016 {
|
|
3017 args[1] = make_int (bit_vector_bit (v, i));
|
|
3018 result = Ffuncall (2, args);
|
|
3019 if (vals) vals[gcpro1.nvars++] = result;
|
|
3020 }
|
|
3021 }
|
|
3022 else
|
442
|
3023 abort (); /* unreachable, since Flength (sequence) did not get an error */
|
428
|
3024
|
|
3025 if (vals)
|
|
3026 UNGCPRO;
|
|
3027 }
|
|
3028
|
|
3029 DEFUN ("mapconcat", Fmapconcat, 3, 3, 0, /*
|
434
|
3030 Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
|
|
3031 In between each pair of results, insert SEPARATOR. Thus, using " " as
|
|
3032 SEPARATOR results in spaces between the values returned by FUNCTION.
|
|
3033 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
428
|
3034 */
|
434
|
3035 (function, sequence, separator))
|
428
|
3036 {
|
444
|
3037 EMACS_INT len = XINT (Flength (sequence));
|
428
|
3038 Lisp_Object *args;
|
444
|
3039 EMACS_INT i;
|
|
3040 EMACS_INT nargs = len + len - 1;
|
428
|
3041
|
442
|
3042 if (len == 0) return build_string ("");
|
428
|
3043
|
|
3044 args = alloca_array (Lisp_Object, nargs);
|
|
3045
|
434
|
3046 mapcar1 (len, args, function, sequence);
|
428
|
3047
|
|
3048 for (i = len - 1; i >= 0; i--)
|
|
3049 args[i + i] = args[i];
|
|
3050
|
|
3051 for (i = 1; i < nargs; i += 2)
|
434
|
3052 args[i] = separator;
|
428
|
3053
|
|
3054 return Fconcat (nargs, args);
|
|
3055 }
|
|
3056
|
|
3057 DEFUN ("mapcar", Fmapcar, 2, 2, 0, /*
|
434
|
3058 Apply FUNCTION to each element of SEQUENCE; return a list of the results.
|
|
3059 The result is a list of the same length as SEQUENCE.
|
428
|
3060 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
|
3061 */
|
434
|
3062 (function, sequence))
|
428
|
3063 {
|
434
|
3064 size_t len = XINT (Flength (sequence));
|
428
|
3065 Lisp_Object *args = alloca_array (Lisp_Object, len);
|
|
3066
|
434
|
3067 mapcar1 (len, args, function, sequence);
|
428
|
3068
|
|
3069 return Flist (len, args);
|
|
3070 }
|
|
3071
|
|
3072 DEFUN ("mapvector", Fmapvector, 2, 2, 0, /*
|
434
|
3073 Apply FUNCTION to each element of SEQUENCE; return a vector of the results.
|
428
|
3074 The result is a vector of the same length as SEQUENCE.
|
434
|
3075 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
428
|
3076 */
|
434
|
3077 (function, sequence))
|
428
|
3078 {
|
434
|
3079 size_t len = XINT (Flength (sequence));
|
428
|
3080 Lisp_Object result = make_vector (len, Qnil);
|
|
3081 struct gcpro gcpro1;
|
|
3082
|
|
3083 GCPRO1 (result);
|
434
|
3084 mapcar1 (len, XVECTOR_DATA (result), function, sequence);
|
428
|
3085 UNGCPRO;
|
|
3086
|
|
3087 return result;
|
|
3088 }
|
|
3089
|
|
3090 DEFUN ("mapc-internal", Fmapc_internal, 2, 2, 0, /*
|
|
3091 Apply FUNCTION to each element of SEQUENCE.
|
|
3092 SEQUENCE may be a list, a vector, a bit vector, or a string.
|
|
3093 This function is like `mapcar' but does not accumulate the results,
|
|
3094 which is more efficient if you do not use the results.
|
|
3095
|
|
3096 The difference between this and `mapc' is that `mapc' supports all
|
|
3097 the spiffy Common Lisp arguments. You should normally use `mapc'.
|
|
3098 */
|
434
|
3099 (function, sequence))
|
428
|
3100 {
|
434
|
3101 mapcar1 (XINT (Flength (sequence)), 0, function, sequence);
|
|
3102
|
|
3103 return sequence;
|
428
|
3104 }
|
|
3105
|
|
3106
|
442
|
3107
|
|
3108
|
|
3109 DEFUN ("replace-list", Freplace_list, 2, 2, 0, /*
|
|
3110 Destructively replace the list OLD with NEW.
|
|
3111 This is like (copy-sequence NEW) except that it reuses the
|
|
3112 conses in OLD as much as possible. If OLD and NEW are the same
|
|
3113 length, no consing will take place.
|
|
3114 */
|
|
3115 (old, new))
|
|
3116 {
|
|
3117 Lisp_Object tail, oldtail = old, prevoldtail = Qnil;
|
|
3118
|
|
3119 EXTERNAL_LIST_LOOP (tail, new)
|
|
3120 {
|
|
3121 if (!NILP (oldtail))
|
|
3122 {
|
|
3123 CHECK_CONS (oldtail);
|
|
3124 XCAR (oldtail) = XCAR (tail);
|
|
3125 }
|
|
3126 else if (!NILP (prevoldtail))
|
|
3127 {
|
|
3128 XCDR (prevoldtail) = Fcons (XCAR (tail), Qnil);
|
|
3129 prevoldtail = XCDR (prevoldtail);
|
|
3130 }
|
|
3131 else
|
|
3132 old = oldtail = Fcons (XCAR (tail), Qnil);
|
|
3133
|
|
3134 if (!NILP (oldtail))
|
|
3135 {
|
|
3136 prevoldtail = oldtail;
|
|
3137 oldtail = XCDR (oldtail);
|
|
3138 }
|
|
3139 }
|
|
3140
|
|
3141 if (!NILP (prevoldtail))
|
|
3142 XCDR (prevoldtail) = Qnil;
|
|
3143 else
|
|
3144 old = Qnil;
|
|
3145
|
|
3146 return old;
|
|
3147 }
|
|
3148
|
|
3149
|
428
|
3150 /* #### this function doesn't belong in this file! */
|
|
3151
|
442
|
3152 #ifdef HAVE_GETLOADAVG
|
|
3153 #ifdef HAVE_SYS_LOADAVG_H
|
|
3154 #include <sys/loadavg.h>
|
|
3155 #endif
|
|
3156 #else
|
|
3157 int getloadavg (double loadavg[], int nelem); /* Defined in getloadavg.c */
|
|
3158 #endif
|
|
3159
|
428
|
3160 DEFUN ("load-average", Fload_average, 0, 1, 0, /*
|
|
3161 Return list of 1 minute, 5 minute and 15 minute load averages.
|
|
3162 Each of the three load averages is multiplied by 100,
|
|
3163 then converted to integer.
|
|
3164
|
|
3165 When USE-FLOATS is non-nil, floats will be used instead of integers.
|
|
3166 These floats are not multiplied by 100.
|
|
3167
|
|
3168 If the 5-minute or 15-minute load averages are not available, return a
|
|
3169 shortened list, containing only those averages which are available.
|
|
3170
|
|
3171 On some systems, this won't work due to permissions on /dev/kmem,
|
|
3172 in which case you can't use this.
|
|
3173 */
|
|
3174 (use_floats))
|
|
3175 {
|
|
3176 double load_ave[3];
|
|
3177 int loads = getloadavg (load_ave, countof (load_ave));
|
|
3178 Lisp_Object ret = Qnil;
|
|
3179
|
|
3180 if (loads == -2)
|
|
3181 error ("load-average not implemented for this operating system");
|
|
3182 else if (loads < 0)
|
|
3183 signal_simple_error ("Could not get load-average",
|
|
3184 lisp_strerror (errno));
|
|
3185
|
|
3186 while (loads-- > 0)
|
|
3187 {
|
|
3188 Lisp_Object load = (NILP (use_floats) ?
|
|
3189 make_int ((int) (100.0 * load_ave[loads]))
|
|
3190 : make_float (load_ave[loads]));
|
|
3191 ret = Fcons (load, ret);
|
|
3192 }
|
|
3193 return ret;
|
|
3194 }
|
|
3195
|
|
3196
|
|
3197 Lisp_Object Vfeatures;
|
|
3198
|
|
3199 DEFUN ("featurep", Ffeaturep, 1, 1, 0, /*
|
|
3200 Return non-nil if feature FEXP is present in this Emacs.
|
|
3201 Use this to conditionalize execution of lisp code based on the
|
|
3202 presence or absence of emacs or environment extensions.
|
|
3203 FEXP can be a symbol, a number, or a list.
|
|
3204 If it is a symbol, that symbol is looked up in the `features' variable,
|
|
3205 and non-nil will be returned if found.
|
|
3206 If it is a number, the function will return non-nil if this Emacs
|
|
3207 has an equal or greater version number than FEXP.
|
|
3208 If it is a list whose car is the symbol `and', it will return
|
|
3209 non-nil if all the features in its cdr are non-nil.
|
|
3210 If it is a list whose car is the symbol `or', it will return non-nil
|
|
3211 if any of the features in its cdr are non-nil.
|
|
3212 If it is a list whose car is the symbol `not', it will return
|
|
3213 non-nil if the feature is not present.
|
|
3214
|
|
3215 Examples:
|
|
3216
|
|
3217 (featurep 'xemacs)
|
|
3218 => ; Non-nil on XEmacs.
|
|
3219
|
|
3220 (featurep '(and xemacs gnus))
|
|
3221 => ; Non-nil on XEmacs with Gnus loaded.
|
|
3222
|
|
3223 (featurep '(or tty-frames (and emacs 19.30)))
|
|
3224 => ; Non-nil if this Emacs supports TTY frames.
|
|
3225
|
|
3226 (featurep '(or (and xemacs 19.15) (and emacs 19.34)))
|
|
3227 => ; Non-nil on XEmacs 19.15 and later, or FSF Emacs 19.34 and later.
|
|
3228
|
442
|
3229 (featurep '(and xemacs 21.02))
|
|
3230 => ; Non-nil on XEmacs 21.2 and later.
|
|
3231
|
428
|
3232 NOTE: The advanced arguments of this function (anything other than a
|
|
3233 symbol) are not yet supported by FSF Emacs. If you feel they are useful
|
|
3234 for supporting multiple Emacs variants, lobby Richard Stallman at
|
442
|
3235 <bug-gnu-emacs@gnu.org>.
|
428
|
3236 */
|
|
3237 (fexp))
|
|
3238 {
|
|
3239 #ifndef FEATUREP_SYNTAX
|
|
3240 CHECK_SYMBOL (fexp);
|
|
3241 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt;
|
|
3242 #else /* FEATUREP_SYNTAX */
|
|
3243 static double featurep_emacs_version;
|
|
3244
|
|
3245 /* Brute force translation from Erik Naggum's lisp function. */
|
|
3246 if (SYMBOLP (fexp))
|
|
3247 {
|
|
3248 /* Original definition */
|
|
3249 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt;
|
|
3250 }
|
|
3251 else if (INTP (fexp) || FLOATP (fexp))
|
|
3252 {
|
|
3253 double d = extract_float (fexp);
|
|
3254
|
|
3255 if (featurep_emacs_version == 0.0)
|
|
3256 {
|
|
3257 featurep_emacs_version = XINT (Vemacs_major_version) +
|
|
3258 (XINT (Vemacs_minor_version) / 100.0);
|
|
3259 }
|
|
3260 return featurep_emacs_version >= d ? Qt : Qnil;
|
|
3261 }
|
|
3262 else if (CONSP (fexp))
|
|
3263 {
|
|
3264 Lisp_Object tem = XCAR (fexp);
|
|
3265 if (EQ (tem, Qnot))
|
|
3266 {
|
|
3267 Lisp_Object negate;
|
|
3268
|
|
3269 tem = XCDR (fexp);
|
|
3270 negate = Fcar (tem);
|
|
3271 if (!NILP (tem))
|
|
3272 return NILP (call1 (Qfeaturep, negate)) ? Qt : Qnil;
|
|
3273 else
|
|
3274 return Fsignal (Qinvalid_read_syntax, list1 (tem));
|
|
3275 }
|
|
3276 else if (EQ (tem, Qand))
|
|
3277 {
|
|
3278 tem = XCDR (fexp);
|
|
3279 /* Use Fcar/Fcdr for error-checking. */
|
|
3280 while (!NILP (tem) && !NILP (call1 (Qfeaturep, Fcar (tem))))
|
|
3281 {
|
|
3282 tem = Fcdr (tem);
|
|
3283 }
|
|
3284 return NILP (tem) ? Qt : Qnil;
|
|
3285 }
|
|
3286 else if (EQ (tem, Qor))
|
|
3287 {
|
|
3288 tem = XCDR (fexp);
|
|
3289 /* Use Fcar/Fcdr for error-checking. */
|
|
3290 while (!NILP (tem) && NILP (call1 (Qfeaturep, Fcar (tem))))
|
|
3291 {
|
|
3292 tem = Fcdr (tem);
|
|
3293 }
|
|
3294 return NILP (tem) ? Qnil : Qt;
|
|
3295 }
|
|
3296 else
|
|
3297 {
|
|
3298 return Fsignal (Qinvalid_read_syntax, list1 (XCDR (fexp)));
|
|
3299 }
|
|
3300 }
|
|
3301 else
|
|
3302 {
|
|
3303 return Fsignal (Qinvalid_read_syntax, list1 (fexp));
|
|
3304 }
|
|
3305 }
|
|
3306 #endif /* FEATUREP_SYNTAX */
|
|
3307
|
|
3308 DEFUN ("provide", Fprovide, 1, 1, 0, /*
|
|
3309 Announce that FEATURE is a feature of the current Emacs.
|
|
3310 This function updates the value of the variable `features'.
|
|
3311 */
|
|
3312 (feature))
|
|
3313 {
|
|
3314 Lisp_Object tem;
|
|
3315 CHECK_SYMBOL (feature);
|
|
3316 if (!NILP (Vautoload_queue))
|
|
3317 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
|
|
3318 tem = Fmemq (feature, Vfeatures);
|
|
3319 if (NILP (tem))
|
|
3320 Vfeatures = Fcons (feature, Vfeatures);
|
|
3321 LOADHIST_ATTACH (Fcons (Qprovide, feature));
|
|
3322 return feature;
|
|
3323 }
|
|
3324
|
|
3325 DEFUN ("require", Frequire, 1, 2, 0, /*
|
|
3326 If feature FEATURE is not loaded, load it from FILENAME.
|
|
3327 If FEATURE is not a member of the list `features', then the feature
|
|
3328 is not loaded; so load the file FILENAME.
|
|
3329 If FILENAME is omitted, the printname of FEATURE is used as the file name.
|
|
3330 */
|
444
|
3331 (feature, filename))
|
428
|
3332 {
|
|
3333 Lisp_Object tem;
|
|
3334 CHECK_SYMBOL (feature);
|
|
3335 tem = Fmemq (feature, Vfeatures);
|
|
3336 LOADHIST_ATTACH (Fcons (Qrequire, feature));
|
|
3337 if (!NILP (tem))
|
|
3338 return feature;
|
|
3339 else
|
|
3340 {
|
|
3341 int speccount = specpdl_depth ();
|
|
3342
|
|
3343 /* Value saved here is to be restored into Vautoload_queue */
|
|
3344 record_unwind_protect (un_autoload, Vautoload_queue);
|
|
3345 Vautoload_queue = Qt;
|
|
3346
|
444
|
3347 call4 (Qload, NILP (filename) ? Fsymbol_name (feature) : filename,
|
428
|
3348 Qnil, Qt, Qnil);
|
|
3349
|
|
3350 tem = Fmemq (feature, Vfeatures);
|
|
3351 if (NILP (tem))
|
|
3352 error ("Required feature %s was not provided",
|
|
3353 string_data (XSYMBOL (feature)->name));
|
|
3354
|
|
3355 /* Once loading finishes, don't undo it. */
|
|
3356 Vautoload_queue = Qt;
|
|
3357 return unbind_to (speccount, feature);
|
|
3358 }
|
|
3359 }
|
|
3360
|
|
3361 /* base64 encode/decode functions.
|
|
3362
|
|
3363 Originally based on code from GNU recode. Ported to FSF Emacs by
|
|
3364 Lars Magne Ingebrigtsen and Karl Heuer. Ported to XEmacs and
|
|
3365 subsequently heavily hacked by Hrvoje Niksic. */
|
|
3366
|
|
3367 #define MIME_LINE_LENGTH 72
|
|
3368
|
|
3369 #define IS_ASCII(Character) \
|
|
3370 ((Character) < 128)
|
|
3371 #define IS_BASE64(Character) \
|
|
3372 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
|
|
3373
|
|
3374 /* Table of characters coding the 64 values. */
|
|
3375 static char base64_value_to_char[64] =
|
|
3376 {
|
|
3377 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
|
|
3378 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
|
|
3379 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
|
|
3380 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
|
|
3381 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
|
|
3382 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
|
|
3383 '8', '9', '+', '/' /* 60-63 */
|
|
3384 };
|
|
3385
|
|
3386 /* Table of base64 values for first 128 characters. */
|
|
3387 static short base64_char_to_value[128] =
|
|
3388 {
|
|
3389 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
|
|
3390 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
|
|
3391 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
|
|
3392 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
|
|
3393 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
|
|
3394 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
|
|
3395 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
|
|
3396 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
|
|
3397 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
|
|
3398 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
|
|
3399 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
|
|
3400 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
|
|
3401 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
|
|
3402 };
|
|
3403
|
|
3404 /* The following diagram shows the logical steps by which three octets
|
|
3405 get transformed into four base64 characters.
|
|
3406
|
|
3407 .--------. .--------. .--------.
|
|
3408 |aaaaaabb| |bbbbcccc| |ccdddddd|
|
|
3409 `--------' `--------' `--------'
|
|
3410 6 2 4 4 2 6
|
|
3411 .--------+--------+--------+--------.
|
|
3412 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
|
|
3413 `--------+--------+--------+--------'
|
|
3414
|
|
3415 .--------+--------+--------+--------.
|
|
3416 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
|
|
3417 `--------+--------+--------+--------'
|
|
3418
|
|
3419 The octets are divided into 6 bit chunks, which are then encoded into
|
|
3420 base64 characters. */
|
|
3421
|
|
3422 #define ADVANCE_INPUT(c, stream) \
|
|
3423 ((ec = Lstream_get_emchar (stream)) == -1 ? 0 : \
|
|
3424 ((ec > 255) ? \
|
|
3425 (signal_simple_error ("Non-ascii character in base64 input", \
|
|
3426 make_char (ec)), 0) \
|
|
3427 : (c = (Bufbyte)ec), 1))
|
|
3428
|
|
3429 static Bytind
|
|
3430 base64_encode_1 (Lstream *istream, Bufbyte *to, int line_break)
|
|
3431 {
|
|
3432 EMACS_INT counter = 0;
|
|
3433 Bufbyte *e = to;
|
|
3434 Emchar ec;
|
|
3435 unsigned int value;
|
|
3436
|
|
3437 while (1)
|
|
3438 {
|
|
3439 Bufbyte c;
|
|
3440 if (!ADVANCE_INPUT (c, istream))
|
|
3441 break;
|
|
3442
|
|
3443 /* Wrap line every 76 characters. */
|
|
3444 if (line_break)
|
|
3445 {
|
|
3446 if (counter < MIME_LINE_LENGTH / 4)
|
|
3447 counter++;
|
|
3448 else
|
|
3449 {
|
|
3450 *e++ = '\n';
|
|
3451 counter = 1;
|
|
3452 }
|
|
3453 }
|
|
3454
|
|
3455 /* Process first byte of a triplet. */
|
|
3456 *e++ = base64_value_to_char[0x3f & c >> 2];
|
|
3457 value = (0x03 & c) << 4;
|
|
3458
|
|
3459 /* Process second byte of a triplet. */
|
|
3460 if (!ADVANCE_INPUT (c, istream))
|
|
3461 {
|
|
3462 *e++ = base64_value_to_char[value];
|
|
3463 *e++ = '=';
|
|
3464 *e++ = '=';
|
|
3465 break;
|
|
3466 }
|
|
3467
|
|
3468 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
|
|
3469 value = (0x0f & c) << 2;
|
|
3470
|
|
3471 /* Process third byte of a triplet. */
|
|
3472 if (!ADVANCE_INPUT (c, istream))
|
|
3473 {
|
|
3474 *e++ = base64_value_to_char[value];
|
|
3475 *e++ = '=';
|
|
3476 break;
|
|
3477 }
|
|
3478
|
|
3479 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
|
|
3480 *e++ = base64_value_to_char[0x3f & c];
|
|
3481 }
|
|
3482
|
|
3483 return e - to;
|
|
3484 }
|
|
3485 #undef ADVANCE_INPUT
|
|
3486
|
|
3487 /* Get next character from the stream, except that non-base64
|
|
3488 characters are ignored. This is in accordance with rfc2045. EC
|
|
3489 should be an Emchar, so that it can hold -1 as the value for EOF. */
|
|
3490 #define ADVANCE_INPUT_IGNORE_NONBASE64(ec, stream, streampos) do { \
|
|
3491 ec = Lstream_get_emchar (stream); \
|
|
3492 ++streampos; \
|
|
3493 /* IS_BASE64 may not be called with negative arguments so check for \
|
|
3494 EOF first. */ \
|
|
3495 if (ec < 0 || IS_BASE64 (ec) || ec == '=') \
|
|
3496 break; \
|
|
3497 } while (1)
|
|
3498
|
|
3499 #define STORE_BYTE(pos, val, ccnt) do { \
|
|
3500 pos += set_charptr_emchar (pos, (Emchar)((unsigned char)(val))); \
|
|
3501 ++ccnt; \
|
|
3502 } while (0)
|
|
3503
|
|
3504 static Bytind
|
|
3505 base64_decode_1 (Lstream *istream, Bufbyte *to, Charcount *ccptr)
|
|
3506 {
|
|
3507 Charcount ccnt = 0;
|
|
3508 Bufbyte *e = to;
|
|
3509 EMACS_INT streampos = 0;
|
|
3510
|
|
3511 while (1)
|
|
3512 {
|
|
3513 Emchar ec;
|
|
3514 unsigned long value;
|
|
3515
|
|
3516 /* Process first byte of a quadruplet. */
|
|
3517 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
|
|
3518 if (ec < 0)
|
|
3519 break;
|
|
3520 if (ec == '=')
|
|
3521 signal_simple_error ("Illegal `=' character while decoding base64",
|
|
3522 make_int (streampos));
|
|
3523 value = base64_char_to_value[ec] << 18;
|
|
3524
|
|
3525 /* Process second byte of a quadruplet. */
|
|
3526 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
|
|
3527 if (ec < 0)
|
|
3528 error ("Premature EOF while decoding base64");
|
|
3529 if (ec == '=')
|
|
3530 signal_simple_error ("Illegal `=' character while decoding base64",
|
|
3531 make_int (streampos));
|
|
3532 value |= base64_char_to_value[ec] << 12;
|
|
3533 STORE_BYTE (e, value >> 16, ccnt);
|
|
3534
|
|
3535 /* Process third byte of a quadruplet. */
|
|
3536 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
|
|
3537 if (ec < 0)
|
|
3538 error ("Premature EOF while decoding base64");
|
|
3539
|
|
3540 if (ec == '=')
|
|
3541 {
|
|
3542 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
|
|
3543 if (ec < 0)
|
|
3544 error ("Premature EOF while decoding base64");
|
|
3545 if (ec != '=')
|
|
3546 signal_simple_error ("Padding `=' expected but not found while decoding base64",
|
|
3547 make_int (streampos));
|
|
3548 continue;
|
|
3549 }
|
|
3550
|
|
3551 value |= base64_char_to_value[ec] << 6;
|
|
3552 STORE_BYTE (e, 0xff & value >> 8, ccnt);
|
|
3553
|
|
3554 /* Process fourth byte of a quadruplet. */
|
|
3555 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
|
|
3556 if (ec < 0)
|
|
3557 error ("Premature EOF while decoding base64");
|
|
3558 if (ec == '=')
|
|
3559 continue;
|
|
3560
|
|
3561 value |= base64_char_to_value[ec];
|
|
3562 STORE_BYTE (e, 0xff & value, ccnt);
|
|
3563 }
|
|
3564
|
|
3565 *ccptr = ccnt;
|
|
3566 return e - to;
|
|
3567 }
|
|
3568 #undef ADVANCE_INPUT
|
|
3569 #undef ADVANCE_INPUT_IGNORE_NONBASE64
|
|
3570 #undef STORE_BYTE
|
|
3571
|
|
3572 static Lisp_Object
|
|
3573 free_malloced_ptr (Lisp_Object unwind_obj)
|
|
3574 {
|
|
3575 void *ptr = (void *)get_opaque_ptr (unwind_obj);
|
|
3576 xfree (ptr);
|
|
3577 free_opaque_ptr (unwind_obj);
|
|
3578 return Qnil;
|
|
3579 }
|
|
3580
|
|
3581 /* Don't use alloca for regions larger than this, lest we overflow
|
|
3582 the stack. */
|
|
3583 #define MAX_ALLOCA 65536
|
|
3584
|
|
3585 /* We need to setup proper unwinding, because there is a number of
|
|
3586 ways these functions can blow up, and we don't want to have memory
|
|
3587 leaks in those cases. */
|
|
3588 #define XMALLOC_OR_ALLOCA(ptr, len, type) do { \
|
|
3589 size_t XOA_len = (len); \
|
|
3590 if (XOA_len > MAX_ALLOCA) \
|
|
3591 { \
|
|
3592 ptr = xnew_array (type, XOA_len); \
|
|
3593 record_unwind_protect (free_malloced_ptr, \
|
|
3594 make_opaque_ptr ((void *)ptr)); \
|
|
3595 } \
|
|
3596 else \
|
|
3597 ptr = alloca_array (type, XOA_len); \
|
|
3598 } while (0)
|
|
3599
|
|
3600 #define XMALLOC_UNBIND(ptr, len, speccount) do { \
|
|
3601 if ((len) > MAX_ALLOCA) \
|
|
3602 unbind_to (speccount, Qnil); \
|
|
3603 } while (0)
|
|
3604
|
|
3605 DEFUN ("base64-encode-region", Fbase64_encode_region, 2, 3, "r", /*
|
444
|
3606 Base64-encode the region between START and END.
|
428
|
3607 Return the length of the encoded text.
|
|
3608 Optional third argument NO-LINE-BREAK means do not break long lines
|
|
3609 into shorter lines.
|
|
3610 */
|
444
|
3611 (start, end, no_line_break))
|
428
|
3612 {
|
|
3613 Bufbyte *encoded;
|
|
3614 Bytind encoded_length;
|
|
3615 Charcount allength, length;
|
|
3616 struct buffer *buf = current_buffer;
|
|
3617 Bufpos begv, zv, old_pt = BUF_PT (buf);
|
|
3618 Lisp_Object input;
|
|
3619 int speccount = specpdl_depth();
|
|
3620
|
444
|
3621 get_buffer_range_char (buf, start, end, &begv, &zv, 0);
|
428
|
3622 barf_if_buffer_read_only (buf, begv, zv);
|
|
3623
|
|
3624 /* We need to allocate enough room for encoding the text.
|
|
3625 We need 33 1/3% more space, plus a newline every 76
|
|
3626 characters, and then we round up. */
|
|
3627 length = zv - begv;
|
|
3628 allength = length + length/3 + 1;
|
|
3629 allength += allength / MIME_LINE_LENGTH + 1 + 6;
|
|
3630
|
|
3631 input = make_lisp_buffer_input_stream (buf, begv, zv, 0);
|
|
3632 /* We needn't multiply allength with MAX_EMCHAR_LEN because all the
|
|
3633 base64 characters will be single-byte. */
|
|
3634 XMALLOC_OR_ALLOCA (encoded, allength, Bufbyte);
|
|
3635 encoded_length = base64_encode_1 (XLSTREAM (input), encoded,
|
|
3636 NILP (no_line_break));
|
|
3637 if (encoded_length > allength)
|
|
3638 abort ();
|
|
3639 Lstream_delete (XLSTREAM (input));
|
|
3640
|
|
3641 /* Now we have encoded the region, so we insert the new contents
|
|
3642 and delete the old. (Insert first in order to preserve markers.) */
|
|
3643 buffer_insert_raw_string_1 (buf, begv, encoded, encoded_length, 0);
|
|
3644 XMALLOC_UNBIND (encoded, allength, speccount);
|
|
3645 buffer_delete_range (buf, begv + encoded_length, zv + encoded_length, 0);
|
|
3646
|
|
3647 /* Simulate FSF Emacs implementation of this function: if point was
|
|
3648 in the region, place it at the beginning. */
|
|
3649 if (old_pt >= begv && old_pt < zv)
|
|
3650 BUF_SET_PT (buf, begv);
|
|
3651
|
|
3652 /* We return the length of the encoded text. */
|
|
3653 return make_int (encoded_length);
|
|
3654 }
|
|
3655
|
|
3656 DEFUN ("base64-encode-string", Fbase64_encode_string, 1, 2, 0, /*
|
|
3657 Base64 encode STRING and return the result.
|
444
|
3658 Optional argument NO-LINE-BREAK means do not break long lines
|
|
3659 into shorter lines.
|
428
|
3660 */
|
|
3661 (string, no_line_break))
|
|
3662 {
|
|
3663 Charcount allength, length;
|
|
3664 Bytind encoded_length;
|
|
3665 Bufbyte *encoded;
|
|
3666 Lisp_Object input, result;
|
|
3667 int speccount = specpdl_depth();
|
|
3668
|
|
3669 CHECK_STRING (string);
|
|
3670
|
|
3671 length = XSTRING_CHAR_LENGTH (string);
|
|
3672 allength = length + length/3 + 1;
|
|
3673 allength += allength / MIME_LINE_LENGTH + 1 + 6;
|
|
3674
|
|
3675 input = make_lisp_string_input_stream (string, 0, -1);
|
|
3676 XMALLOC_OR_ALLOCA (encoded, allength, Bufbyte);
|
|
3677 encoded_length = base64_encode_1 (XLSTREAM (input), encoded,
|
|
3678 NILP (no_line_break));
|
|
3679 if (encoded_length > allength)
|
|
3680 abort ();
|
|
3681 Lstream_delete (XLSTREAM (input));
|
|
3682 result = make_string (encoded, encoded_length);
|
|
3683 XMALLOC_UNBIND (encoded, allength, speccount);
|
|
3684 return result;
|
|
3685 }
|
|
3686
|
|
3687 DEFUN ("base64-decode-region", Fbase64_decode_region, 2, 2, "r", /*
|
444
|
3688 Base64-decode the region between START and END.
|
428
|
3689 Return the length of the decoded text.
|
|
3690 If the region can't be decoded, return nil and don't modify the buffer.
|
|
3691 Characters out of the base64 alphabet are ignored.
|
|
3692 */
|
444
|
3693 (start, end))
|
428
|
3694 {
|
|
3695 struct buffer *buf = current_buffer;
|
|
3696 Bufpos begv, zv, old_pt = BUF_PT (buf);
|
|
3697 Bufbyte *decoded;
|
|
3698 Bytind decoded_length;
|
|
3699 Charcount length, cc_decoded_length;
|
|
3700 Lisp_Object input;
|
|
3701 int speccount = specpdl_depth();
|
|
3702
|
444
|
3703 get_buffer_range_char (buf, start, end, &begv, &zv, 0);
|
428
|
3704 barf_if_buffer_read_only (buf, begv, zv);
|
|
3705
|
|
3706 length = zv - begv;
|
|
3707
|
|
3708 input = make_lisp_buffer_input_stream (buf, begv, zv, 0);
|
|
3709 /* We need to allocate enough room for decoding the text. */
|
|
3710 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Bufbyte);
|
|
3711 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, &cc_decoded_length);
|
|
3712 if (decoded_length > length * MAX_EMCHAR_LEN)
|
|
3713 abort ();
|
|
3714 Lstream_delete (XLSTREAM (input));
|
|
3715
|
|
3716 /* Now we have decoded the region, so we insert the new contents
|
|
3717 and delete the old. (Insert first in order to preserve markers.) */
|
|
3718 BUF_SET_PT (buf, begv);
|
|
3719 buffer_insert_raw_string_1 (buf, begv, decoded, decoded_length, 0);
|
|
3720 XMALLOC_UNBIND (decoded, length * MAX_EMCHAR_LEN, speccount);
|
|
3721 buffer_delete_range (buf, begv + cc_decoded_length,
|
|
3722 zv + cc_decoded_length, 0);
|
|
3723
|
|
3724 /* Simulate FSF Emacs implementation of this function: if point was
|
|
3725 in the region, place it at the beginning. */
|
|
3726 if (old_pt >= begv && old_pt < zv)
|
|
3727 BUF_SET_PT (buf, begv);
|
|
3728
|
|
3729 return make_int (cc_decoded_length);
|
|
3730 }
|
|
3731
|
|
3732 DEFUN ("base64-decode-string", Fbase64_decode_string, 1, 1, 0, /*
|
|
3733 Base64-decode STRING and return the result.
|
|
3734 Characters out of the base64 alphabet are ignored.
|
|
3735 */
|
|
3736 (string))
|
|
3737 {
|
|
3738 Bufbyte *decoded;
|
|
3739 Bytind decoded_length;
|
|
3740 Charcount length, cc_decoded_length;
|
|
3741 Lisp_Object input, result;
|
|
3742 int speccount = specpdl_depth();
|
|
3743
|
|
3744 CHECK_STRING (string);
|
|
3745
|
|
3746 length = XSTRING_CHAR_LENGTH (string);
|
|
3747 /* We need to allocate enough room for decoding the text. */
|
|
3748 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Bufbyte);
|
|
3749
|
|
3750 input = make_lisp_string_input_stream (string, 0, -1);
|
|
3751 decoded_length = base64_decode_1 (XLSTREAM (input), decoded,
|
|
3752 &cc_decoded_length);
|
|
3753 if (decoded_length > length * MAX_EMCHAR_LEN)
|
|
3754 abort ();
|
|
3755 Lstream_delete (XLSTREAM (input));
|
|
3756
|
|
3757 result = make_string (decoded, decoded_length);
|
|
3758 XMALLOC_UNBIND (decoded, length * MAX_EMCHAR_LEN, speccount);
|
|
3759 return result;
|
|
3760 }
|
|
3761
|
|
3762 Lisp_Object Qyes_or_no_p;
|
|
3763
|
|
3764 void
|
|
3765 syms_of_fns (void)
|
|
3766 {
|
442
|
3767 INIT_LRECORD_IMPLEMENTATION (bit_vector);
|
|
3768
|
428
|
3769 defsymbol (&Qstring_lessp, "string-lessp");
|
|
3770 defsymbol (&Qidentity, "identity");
|
|
3771 defsymbol (&Qyes_or_no_p, "yes-or-no-p");
|
|
3772
|
|
3773 DEFSUBR (Fidentity);
|
|
3774 DEFSUBR (Frandom);
|
|
3775 DEFSUBR (Flength);
|
|
3776 DEFSUBR (Fsafe_length);
|
|
3777 DEFSUBR (Fstring_equal);
|
|
3778 DEFSUBR (Fstring_lessp);
|
|
3779 DEFSUBR (Fstring_modified_tick);
|
|
3780 DEFSUBR (Fappend);
|
|
3781 DEFSUBR (Fconcat);
|
|
3782 DEFSUBR (Fvconcat);
|
|
3783 DEFSUBR (Fbvconcat);
|
|
3784 DEFSUBR (Fcopy_list);
|
|
3785 DEFSUBR (Fcopy_sequence);
|
|
3786 DEFSUBR (Fcopy_alist);
|
|
3787 DEFSUBR (Fcopy_tree);
|
|
3788 DEFSUBR (Fsubstring);
|
|
3789 DEFSUBR (Fsubseq);
|
|
3790 DEFSUBR (Fnthcdr);
|
|
3791 DEFSUBR (Fnth);
|
|
3792 DEFSUBR (Felt);
|
|
3793 DEFSUBR (Flast);
|
|
3794 DEFSUBR (Fbutlast);
|
|
3795 DEFSUBR (Fnbutlast);
|
|
3796 DEFSUBR (Fmember);
|
|
3797 DEFSUBR (Fold_member);
|
|
3798 DEFSUBR (Fmemq);
|
|
3799 DEFSUBR (Fold_memq);
|
|
3800 DEFSUBR (Fassoc);
|
|
3801 DEFSUBR (Fold_assoc);
|
|
3802 DEFSUBR (Fassq);
|
|
3803 DEFSUBR (Fold_assq);
|
|
3804 DEFSUBR (Frassoc);
|
|
3805 DEFSUBR (Fold_rassoc);
|
|
3806 DEFSUBR (Frassq);
|
|
3807 DEFSUBR (Fold_rassq);
|
|
3808 DEFSUBR (Fdelete);
|
|
3809 DEFSUBR (Fold_delete);
|
|
3810 DEFSUBR (Fdelq);
|
|
3811 DEFSUBR (Fold_delq);
|
|
3812 DEFSUBR (Fremassoc);
|
|
3813 DEFSUBR (Fremassq);
|
|
3814 DEFSUBR (Fremrassoc);
|
|
3815 DEFSUBR (Fremrassq);
|
|
3816 DEFSUBR (Fnreverse);
|
|
3817 DEFSUBR (Freverse);
|
|
3818 DEFSUBR (Fsort);
|
|
3819 DEFSUBR (Fplists_eq);
|
|
3820 DEFSUBR (Fplists_equal);
|
|
3821 DEFSUBR (Flax_plists_eq);
|
|
3822 DEFSUBR (Flax_plists_equal);
|
|
3823 DEFSUBR (Fplist_get);
|
|
3824 DEFSUBR (Fplist_put);
|
|
3825 DEFSUBR (Fplist_remprop);
|
|
3826 DEFSUBR (Fplist_member);
|
|
3827 DEFSUBR (Fcheck_valid_plist);
|
|
3828 DEFSUBR (Fvalid_plist_p);
|
|
3829 DEFSUBR (Fcanonicalize_plist);
|
|
3830 DEFSUBR (Flax_plist_get);
|
|
3831 DEFSUBR (Flax_plist_put);
|
|
3832 DEFSUBR (Flax_plist_remprop);
|
|
3833 DEFSUBR (Flax_plist_member);
|
|
3834 DEFSUBR (Fcanonicalize_lax_plist);
|
|
3835 DEFSUBR (Fdestructive_alist_to_plist);
|
|
3836 DEFSUBR (Fget);
|
|
3837 DEFSUBR (Fput);
|
|
3838 DEFSUBR (Fremprop);
|
|
3839 DEFSUBR (Fobject_plist);
|
|
3840 DEFSUBR (Fequal);
|
|
3841 DEFSUBR (Fold_equal);
|
|
3842 DEFSUBR (Ffillarray);
|
|
3843 DEFSUBR (Fnconc);
|
|
3844 DEFSUBR (Fmapcar);
|
|
3845 DEFSUBR (Fmapvector);
|
|
3846 DEFSUBR (Fmapc_internal);
|
|
3847 DEFSUBR (Fmapconcat);
|
442
|
3848 DEFSUBR (Freplace_list);
|
428
|
3849 DEFSUBR (Fload_average);
|
|
3850 DEFSUBR (Ffeaturep);
|
|
3851 DEFSUBR (Frequire);
|
|
3852 DEFSUBR (Fprovide);
|
|
3853 DEFSUBR (Fbase64_encode_region);
|
|
3854 DEFSUBR (Fbase64_encode_string);
|
|
3855 DEFSUBR (Fbase64_decode_region);
|
|
3856 DEFSUBR (Fbase64_decode_string);
|
|
3857 }
|
|
3858
|
|
3859 void
|
|
3860 init_provide_once (void)
|
|
3861 {
|
|
3862 DEFVAR_LISP ("features", &Vfeatures /*
|
|
3863 A list of symbols which are the features of the executing emacs.
|
|
3864 Used by `featurep' and `require', and altered by `provide'.
|
|
3865 */ );
|
|
3866 Vfeatures = Qnil;
|
|
3867
|
|
3868 Fprovide (intern ("base64"));
|
|
3869 }
|