428
|
1 /* String search routines for XEmacs.
|
|
2 Copyright (C) 1985, 1986, 1987, 1992-1995 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: FSF 19.29, except for region-cache stuff. */
|
|
23
|
|
24 /* Hacked on for Mule by Ben Wing, December 1994 and August 1995. */
|
|
25
|
|
26 /* This file has been Mule-ized except for the TRT stuff. */
|
|
27
|
|
28 #include <config.h>
|
|
29 #include "lisp.h"
|
|
30
|
|
31 #include "buffer.h"
|
|
32 #include "insdel.h"
|
|
33 #include "opaque.h"
|
|
34 #ifdef REGION_CACHE_NEEDS_WORK
|
|
35 #include "region-cache.h"
|
|
36 #endif
|
|
37 #include "syntax.h"
|
|
38
|
|
39 #include <sys/types.h>
|
|
40 #include "regex.h"
|
|
41
|
|
42
|
|
43 #define REGEXP_CACHE_SIZE 20
|
|
44
|
|
45 /* If the regexp is non-nil, then the buffer contains the compiled form
|
|
46 of that regexp, suitable for searching. */
|
|
47 struct regexp_cache {
|
|
48 struct regexp_cache *next;
|
|
49 Lisp_Object regexp;
|
|
50 struct re_pattern_buffer buf;
|
|
51 char fastmap[0400];
|
|
52 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
|
|
53 char posix;
|
|
54 };
|
|
55
|
|
56 /* The instances of that struct. */
|
|
57 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
|
|
58
|
|
59 /* The head of the linked list; points to the most recently used buffer. */
|
|
60 static struct regexp_cache *searchbuf_head;
|
|
61
|
|
62
|
|
63 /* Every call to re_match, etc., must pass &search_regs as the regs
|
|
64 argument unless you can show it is unnecessary (i.e., if re_match
|
|
65 is certainly going to be called again before region-around-match
|
|
66 can be called).
|
|
67
|
|
68 Since the registers are now dynamically allocated, we need to make
|
|
69 sure not to refer to the Nth register before checking that it has
|
|
70 been allocated by checking search_regs.num_regs.
|
|
71
|
|
72 The regex code keeps track of whether it has allocated the search
|
|
73 buffer using bits in the re_pattern_buffer. This means that whenever
|
|
74 you compile a new pattern, it completely forgets whether it has
|
|
75 allocated any registers, and will allocate new registers the next
|
|
76 time you call a searching or matching function. Therefore, we need
|
|
77 to call re_set_registers after compiling a new pattern or after
|
|
78 setting the match registers, so that the regex functions will be
|
|
79 able to free or re-allocate it properly. */
|
|
80
|
|
81 /* Note: things get trickier under Mule because the values returned from
|
|
82 the regexp routines are in Bytinds but we need them to be in Bufpos's.
|
|
83 We take the easy way out for the moment and just convert them immediately.
|
|
84 We could be more clever by not converting them until necessary, but
|
|
85 that gets real ugly real fast since the buffer might have changed and
|
|
86 the positions might be out of sync or out of range.
|
|
87 */
|
|
88 static struct re_registers search_regs;
|
|
89
|
|
90 /* The buffer in which the last search was performed, or
|
|
91 Qt if the last search was done in a string;
|
|
92 Qnil if no searching has been done yet. */
|
|
93 static Lisp_Object last_thing_searched;
|
|
94
|
|
95 /* error condition signalled when regexp compile_pattern fails */
|
|
96
|
|
97 Lisp_Object Qinvalid_regexp;
|
|
98
|
|
99 /* Regular expressions used in forward/backward-word */
|
|
100 Lisp_Object Vforward_word_regexp, Vbackward_word_regexp;
|
|
101
|
|
102 /* range table for use with skip_chars. Only needed for Mule. */
|
|
103 Lisp_Object Vskip_chars_range_table;
|
|
104
|
|
105 static void set_search_regs (struct buffer *buf, Bufpos beg, Charcount len);
|
|
106 static void save_search_regs (void);
|
|
107 static Bufpos search_buffer (struct buffer *buf, Lisp_Object str,
|
|
108 Bufpos bufpos, Bufpos buflim, EMACS_INT n, int RE,
|
|
109 unsigned char *trt, unsigned char *inverse_trt,
|
|
110 int posix);
|
|
111
|
|
112 static void
|
|
113 matcher_overflow (void)
|
|
114 {
|
|
115 error ("Stack overflow in regexp matcher");
|
|
116 }
|
|
117
|
|
118 /* Compile a regexp and signal a Lisp error if anything goes wrong.
|
|
119 PATTERN is the pattern to compile.
|
|
120 CP is the place to put the result.
|
|
121 TRANSLATE is a translation table for ignoring case, or NULL for none.
|
|
122 REGP is the structure that says where to store the "register"
|
|
123 values that will result from matching this pattern.
|
|
124 If it is 0, we should compile the pattern not to record any
|
|
125 subexpression bounds.
|
|
126 POSIX is nonzero if we want full backtracking (POSIX style)
|
|
127 for this pattern. 0 means backtrack only enough to get a valid match. */
|
|
128
|
|
129 static int
|
|
130 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern,
|
|
131 char *translate, struct re_registers *regp, int posix,
|
|
132 Error_behavior errb)
|
|
133 {
|
442
|
134 const char *val;
|
428
|
135 reg_syntax_t old;
|
|
136
|
|
137 cp->regexp = Qnil;
|
|
138 cp->buf.translate = translate;
|
|
139 cp->posix = posix;
|
|
140 old = re_set_syntax (RE_SYNTAX_EMACS
|
|
141 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
|
442
|
142 val = (const char *)
|
428
|
143 re_compile_pattern ((char *) XSTRING_DATA (pattern),
|
|
144 XSTRING_LENGTH (pattern), &cp->buf);
|
|
145 re_set_syntax (old);
|
|
146 if (val)
|
|
147 {
|
|
148 maybe_signal_error (Qinvalid_regexp, list1 (build_string (val)),
|
|
149 Qsearch, errb);
|
|
150 return 0;
|
|
151 }
|
|
152
|
|
153 cp->regexp = Fcopy_sequence (pattern);
|
|
154 return 1;
|
|
155 }
|
|
156
|
|
157 /* Compile a regexp if necessary, but first check to see if there's one in
|
|
158 the cache.
|
|
159 PATTERN is the pattern to compile.
|
|
160 TRANSLATE is a translation table for ignoring case, or NULL for none.
|
|
161 REGP is the structure that says where to store the "register"
|
|
162 values that will result from matching this pattern.
|
|
163 If it is 0, we should compile the pattern not to record any
|
|
164 subexpression bounds.
|
|
165 POSIX is nonzero if we want full backtracking (POSIX style)
|
|
166 for this pattern. 0 means backtrack only enough to get a valid match. */
|
|
167
|
|
168 struct re_pattern_buffer *
|
|
169 compile_pattern (Lisp_Object pattern, struct re_registers *regp,
|
|
170 char *translate, int posix, Error_behavior errb)
|
|
171 {
|
|
172 struct regexp_cache *cp, **cpp;
|
|
173
|
|
174 for (cpp = &searchbuf_head; ; cpp = &cp->next)
|
|
175 {
|
|
176 cp = *cpp;
|
|
177 if (!NILP (Fstring_equal (cp->regexp, pattern))
|
|
178 && cp->buf.translate == translate
|
|
179 && cp->posix == posix)
|
|
180 break;
|
|
181
|
|
182 /* If we're at the end of the cache, compile into the last cell. */
|
|
183 if (cp->next == 0)
|
|
184 {
|
|
185 if (!compile_pattern_1 (cp, pattern, translate, regp, posix,
|
|
186 errb))
|
|
187 return 0;
|
|
188 break;
|
|
189 }
|
|
190 }
|
|
191
|
|
192 /* When we get here, cp (aka *cpp) contains the compiled pattern,
|
|
193 either because we found it in the cache or because we just compiled it.
|
|
194 Move it to the front of the queue to mark it as most recently used. */
|
|
195 *cpp = cp->next;
|
|
196 cp->next = searchbuf_head;
|
|
197 searchbuf_head = cp;
|
|
198
|
|
199 /* Advise the searching functions about the space we have allocated
|
|
200 for register data. */
|
|
201 if (regp)
|
|
202 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
|
|
203
|
|
204 return &cp->buf;
|
|
205 }
|
|
206
|
|
207 /* Error condition used for failing searches */
|
|
208 Lisp_Object Qsearch_failed;
|
|
209
|
|
210 static Lisp_Object
|
|
211 signal_failure (Lisp_Object arg)
|
|
212 {
|
|
213 Fsignal (Qsearch_failed, list1 (arg));
|
|
214 return Qnil;
|
|
215 }
|
|
216
|
|
217 /* Convert the search registers from Bytinds to Bufpos's. Needs to be
|
|
218 done after each regexp match that uses the search regs.
|
|
219
|
|
220 We could get a potential speedup by not converting the search registers
|
|
221 until it's really necessary, e.g. when match-data or replace-match is
|
|
222 called. However, this complexifies the code a lot (e.g. the buffer
|
|
223 could have changed and the Bytinds stored might be invalid) and is
|
|
224 probably not a great time-saver. */
|
|
225
|
|
226 static void
|
|
227 fixup_search_regs_for_buffer (struct buffer *buf)
|
|
228 {
|
|
229 int i;
|
|
230 int num_regs = search_regs.num_regs;
|
|
231
|
|
232 for (i = 0; i < num_regs; i++)
|
|
233 {
|
|
234 if (search_regs.start[i] >= 0)
|
|
235 search_regs.start[i] = bytind_to_bufpos (buf, search_regs.start[i]);
|
|
236 if (search_regs.end[i] >= 0)
|
|
237 search_regs.end[i] = bytind_to_bufpos (buf, search_regs.end[i]);
|
|
238 }
|
|
239 }
|
|
240
|
|
241 /* Similar but for strings. */
|
|
242 static void
|
|
243 fixup_search_regs_for_string (Lisp_Object string)
|
|
244 {
|
|
245 int i;
|
|
246 int num_regs = search_regs.num_regs;
|
|
247
|
|
248 /* #### bytecount_to_charcount() is not that efficient. This function
|
|
249 could be faster if it did its own conversion (using INC_CHARPTR()
|
|
250 and such), because the register ends are likely to be somewhat ordered.
|
|
251 (Even if not, you could sort them.)
|
|
252
|
|
253 Think about this if this function is a time hog, which it's probably
|
|
254 not. */
|
|
255 for (i = 0; i < num_regs; i++)
|
|
256 {
|
|
257 if (search_regs.start[i] > 0)
|
|
258 {
|
|
259 search_regs.start[i] =
|
|
260 bytecount_to_charcount (XSTRING_DATA (string),
|
|
261 search_regs.start[i]);
|
|
262 }
|
|
263 if (search_regs.end[i] > 0)
|
|
264 {
|
|
265 search_regs.end[i] =
|
|
266 bytecount_to_charcount (XSTRING_DATA (string),
|
|
267 search_regs.end[i]);
|
|
268 }
|
|
269 }
|
|
270 }
|
|
271
|
|
272
|
|
273 static Lisp_Object
|
|
274 looking_at_1 (Lisp_Object string, struct buffer *buf, int posix)
|
|
275 {
|
|
276 /* This function has been Mule-ized, except for the trt table handling. */
|
|
277 Lisp_Object val;
|
|
278 Bytind p1, p2;
|
|
279 Bytecount s1, s2;
|
|
280 REGISTER int i;
|
|
281 struct re_pattern_buffer *bufp;
|
|
282
|
|
283 if (running_asynch_code)
|
|
284 save_search_regs ();
|
|
285
|
|
286 CHECK_STRING (string);
|
|
287 bufp = compile_pattern (string, &search_regs,
|
|
288 (!NILP (buf->case_fold_search)
|
|
289 ? (char *) MIRROR_DOWNCASE_TABLE_AS_STRING (buf)
|
|
290 : 0),
|
|
291 posix, ERROR_ME);
|
|
292
|
|
293 QUIT;
|
|
294
|
|
295 /* Get pointers and sizes of the two strings
|
|
296 that make up the visible portion of the buffer. */
|
|
297
|
|
298 p1 = BI_BUF_BEGV (buf);
|
|
299 p2 = BI_BUF_CEILING_OF (buf, p1);
|
|
300 s1 = p2 - p1;
|
|
301 s2 = BI_BUF_ZV (buf) - p2;
|
|
302
|
|
303 regex_emacs_buffer = buf;
|
442
|
304 regex_emacs_buffer_p = 1;
|
428
|
305 i = re_match_2 (bufp, (char *) BI_BUF_BYTE_ADDRESS (buf, p1),
|
|
306 s1, (char *) BI_BUF_BYTE_ADDRESS (buf, p2), s2,
|
|
307 BI_BUF_PT (buf) - BI_BUF_BEGV (buf), &search_regs,
|
|
308 BI_BUF_ZV (buf) - BI_BUF_BEGV (buf));
|
|
309
|
|
310 if (i == -2)
|
|
311 matcher_overflow ();
|
|
312
|
|
313 val = (0 <= i ? Qt : Qnil);
|
|
314 if (NILP (val))
|
|
315 return Qnil;
|
|
316 {
|
|
317 int num_regs = search_regs.num_regs;
|
|
318 for (i = 0; i < num_regs; i++)
|
|
319 if (search_regs.start[i] >= 0)
|
|
320 {
|
|
321 search_regs.start[i] += BI_BUF_BEGV (buf);
|
|
322 search_regs.end[i] += BI_BUF_BEGV (buf);
|
|
323 }
|
|
324 }
|
|
325 XSETBUFFER (last_thing_searched, buf);
|
|
326 fixup_search_regs_for_buffer (buf);
|
|
327 return val;
|
|
328 }
|
|
329
|
|
330 DEFUN ("looking-at", Flooking_at, 1, 2, 0, /*
|
|
331 Return t if text after point matches regular expression REGEXP.
|
|
332 This function modifies the match data that `match-beginning',
|
|
333 `match-end' and `match-data' access; save and restore the match
|
|
334 data if you want to preserve them.
|
|
335
|
|
336 Optional argument BUFFER defaults to the current buffer.
|
|
337 */
|
|
338 (regexp, buffer))
|
|
339 {
|
|
340 return looking_at_1 (regexp, decode_buffer (buffer, 0), 0);
|
|
341 }
|
|
342
|
|
343 DEFUN ("posix-looking-at", Fposix_looking_at, 1, 2, 0, /*
|
|
344 Return t if text after point matches regular expression REGEXP.
|
|
345 Find the longest match, in accord with Posix regular expression rules.
|
|
346 This function modifies the match data that `match-beginning',
|
|
347 `match-end' and `match-data' access; save and restore the match
|
|
348 data if you want to preserve them.
|
|
349
|
|
350 Optional argument BUFFER defaults to the current buffer.
|
|
351 */
|
|
352 (regexp, buffer))
|
|
353 {
|
|
354 return looking_at_1 (regexp, decode_buffer (buffer, 0), 1);
|
|
355 }
|
|
356
|
|
357 static Lisp_Object
|
|
358 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start,
|
|
359 struct buffer *buf, int posix)
|
|
360 {
|
|
361 /* This function has been Mule-ized, except for the trt table handling. */
|
|
362 Bytecount val;
|
|
363 Charcount s;
|
|
364 struct re_pattern_buffer *bufp;
|
|
365
|
|
366 if (running_asynch_code)
|
|
367 save_search_regs ();
|
|
368
|
|
369 CHECK_STRING (regexp);
|
|
370 CHECK_STRING (string);
|
|
371
|
|
372 if (NILP (start))
|
|
373 s = 0;
|
|
374 else
|
|
375 {
|
|
376 Charcount len = XSTRING_CHAR_LENGTH (string);
|
|
377
|
|
378 CHECK_INT (start);
|
|
379 s = XINT (start);
|
|
380 if (s < 0 && -s <= len)
|
|
381 s = len + s;
|
|
382 else if (0 > s || s > len)
|
|
383 args_out_of_range (string, start);
|
|
384 }
|
|
385
|
|
386
|
|
387 bufp = compile_pattern (regexp, &search_regs,
|
|
388 (!NILP (buf->case_fold_search)
|
|
389 ? (char *) MIRROR_DOWNCASE_TABLE_AS_STRING (buf)
|
|
390 : 0), 0, ERROR_ME);
|
|
391 QUIT;
|
|
392 {
|
|
393 Bytecount bis = charcount_to_bytecount (XSTRING_DATA (string), s);
|
|
394 regex_emacs_buffer = buf;
|
442
|
395 regex_emacs_buffer_p = 0;
|
428
|
396 val = re_search (bufp, (char *) XSTRING_DATA (string),
|
|
397 XSTRING_LENGTH (string), bis,
|
|
398 XSTRING_LENGTH (string) - bis,
|
|
399 &search_regs);
|
|
400 }
|
|
401 if (val == -2)
|
|
402 matcher_overflow ();
|
|
403 if (val < 0) return Qnil;
|
|
404 last_thing_searched = Qt;
|
|
405 fixup_search_regs_for_string (string);
|
|
406 return make_int (bytecount_to_charcount (XSTRING_DATA (string), val));
|
|
407 }
|
|
408
|
|
409 DEFUN ("string-match", Fstring_match, 2, 4, 0, /*
|
|
410 Return index of start of first match for REGEXP in STRING, or nil.
|
|
411 If third arg START is non-nil, start search at that index in STRING.
|
|
412 For index of first char beyond the match, do (match-end 0).
|
|
413 `match-end' and `match-beginning' also give indices of substrings
|
|
414 matched by parenthesis constructs in the pattern.
|
|
415
|
|
416 Optional arg BUFFER controls how case folding is done (according to
|
|
417 the value of `case-fold-search' in that buffer and that buffer's case
|
|
418 tables) and defaults to the current buffer.
|
|
419 */
|
|
420 (regexp, string, start, buffer))
|
|
421 {
|
|
422 return string_match_1 (regexp, string, start, decode_buffer (buffer, 0), 0);
|
|
423 }
|
|
424
|
|
425 DEFUN ("posix-string-match", Fposix_string_match, 2, 4, 0, /*
|
|
426 Return index of start of first match for REGEXP in STRING, or nil.
|
|
427 Find the longest match, in accord with Posix regular expression rules.
|
|
428 If third arg START is non-nil, start search at that index in STRING.
|
|
429 For index of first char beyond the match, do (match-end 0).
|
|
430 `match-end' and `match-beginning' also give indices of substrings
|
|
431 matched by parenthesis constructs in the pattern.
|
|
432
|
|
433 Optional arg BUFFER controls how case folding is done (according to
|
|
434 the value of `case-fold-search' in that buffer and that buffer's case
|
|
435 tables) and defaults to the current buffer.
|
|
436 */
|
|
437 (regexp, string, start, buffer))
|
|
438 {
|
|
439 return string_match_1 (regexp, string, start, decode_buffer (buffer, 0), 1);
|
|
440 }
|
|
441
|
|
442 /* Match REGEXP against STRING, searching all of STRING,
|
|
443 and return the index of the match, or negative on failure.
|
|
444 This does not clobber the match data. */
|
|
445
|
|
446 Bytecount
|
442
|
447 fast_string_match (Lisp_Object regexp, const Bufbyte *nonreloc,
|
428
|
448 Lisp_Object reloc, Bytecount offset,
|
|
449 Bytecount length, int case_fold_search,
|
|
450 Error_behavior errb, int no_quit)
|
|
451 {
|
|
452 /* This function has been Mule-ized, except for the trt table handling. */
|
|
453 Bytecount val;
|
|
454 Bufbyte *newnonreloc = (Bufbyte *) nonreloc;
|
|
455 struct re_pattern_buffer *bufp;
|
|
456
|
|
457 bufp = compile_pattern (regexp, 0,
|
|
458 (case_fold_search
|
|
459 ? (char *)
|
|
460 /* #### evil current-buffer dependency */
|
|
461 MIRROR_DOWNCASE_TABLE_AS_STRING (current_buffer)
|
|
462 : 0),
|
|
463 0, errb);
|
|
464 if (!bufp)
|
|
465 return -1; /* will only do this when errb != ERROR_ME */
|
|
466 if (!no_quit)
|
|
467 QUIT;
|
|
468 else
|
|
469 no_quit_in_re_search = 1;
|
|
470
|
|
471 fixup_internal_substring (nonreloc, reloc, offset, &length);
|
|
472
|
|
473 if (!NILP (reloc))
|
|
474 {
|
|
475 if (no_quit)
|
|
476 newnonreloc = XSTRING_DATA (reloc);
|
|
477 else
|
|
478 {
|
|
479 /* QUIT could relocate RELOC. Therefore we must alloca()
|
|
480 and copy. No way around this except some serious
|
|
481 rewriting of re_search(). */
|
|
482 newnonreloc = (Bufbyte *) alloca (length);
|
|
483 memcpy (newnonreloc, XSTRING_DATA (reloc), length);
|
|
484 }
|
|
485 }
|
|
486
|
|
487 /* #### evil current-buffer dependency */
|
|
488 regex_emacs_buffer = current_buffer;
|
442
|
489 regex_emacs_buffer_p = 0;
|
428
|
490 val = re_search (bufp, (char *) newnonreloc + offset, length, 0,
|
|
491 length, 0);
|
|
492
|
|
493 no_quit_in_re_search = 0;
|
|
494 return val;
|
|
495 }
|
|
496
|
|
497 Bytecount
|
|
498 fast_lisp_string_match (Lisp_Object regex, Lisp_Object string)
|
|
499 {
|
|
500 return fast_string_match (regex, 0, string, 0, -1, 0, ERROR_ME, 0);
|
|
501 }
|
|
502
|
|
503
|
|
504 #ifdef REGION_CACHE_NEEDS_WORK
|
|
505 /* The newline cache: remembering which sections of text have no newlines. */
|
|
506
|
|
507 /* If the user has requested newline caching, make sure it's on.
|
|
508 Otherwise, make sure it's off.
|
|
509 This is our cheezy way of associating an action with the change of
|
|
510 state of a buffer-local variable. */
|
|
511 static void
|
|
512 newline_cache_on_off (struct buffer *buf)
|
|
513 {
|
|
514 if (NILP (buf->cache_long_line_scans))
|
|
515 {
|
|
516 /* It should be off. */
|
|
517 if (buf->newline_cache)
|
|
518 {
|
|
519 free_region_cache (buf->newline_cache);
|
|
520 buf->newline_cache = 0;
|
|
521 }
|
|
522 }
|
|
523 else
|
|
524 {
|
|
525 /* It should be on. */
|
|
526 if (buf->newline_cache == 0)
|
|
527 buf->newline_cache = new_region_cache ();
|
|
528 }
|
|
529 }
|
|
530 #endif
|
|
531
|
|
532 /* Search in BUF for COUNT instances of the character TARGET between
|
|
533 START and END.
|
|
534
|
|
535 If COUNT is positive, search forwards; END must be >= START.
|
|
536 If COUNT is negative, search backwards for the -COUNTth instance;
|
|
537 END must be <= START.
|
|
538 If COUNT is zero, do anything you please; run rogue, for all I care.
|
|
539
|
|
540 If END is zero, use BEGV or ZV instead, as appropriate for the
|
|
541 direction indicated by COUNT.
|
|
542
|
|
543 If we find COUNT instances, set *SHORTAGE to zero, and return the
|
|
544 position after the COUNTth match. Note that for reverse motion
|
|
545 this is not the same as the usual convention for Emacs motion commands.
|
|
546
|
|
547 If we don't find COUNT instances before reaching END, set *SHORTAGE
|
|
548 to the number of TARGETs left unfound, and return END.
|
|
549
|
|
550 If ALLOW_QUIT is non-zero, call QUIT periodically. */
|
|
551
|
|
552 static Bytind
|
|
553 bi_scan_buffer (struct buffer *buf, Emchar target, Bytind st, Bytind en,
|
|
554 EMACS_INT count, EMACS_INT *shortage, int allow_quit)
|
|
555 {
|
|
556 /* This function has been Mule-ized. */
|
|
557 Bytind lim = en > 0 ? en :
|
|
558 ((count > 0) ? BI_BUF_ZV (buf) : BI_BUF_BEGV (buf));
|
|
559
|
|
560 /* #### newline cache stuff in this function not yet ported */
|
|
561
|
|
562 assert (count != 0);
|
|
563
|
|
564 if (shortage)
|
|
565 *shortage = 0;
|
|
566
|
|
567 if (count > 0)
|
|
568 {
|
|
569 #ifdef MULE
|
|
570 /* Due to the Mule representation of characters in a buffer,
|
|
571 we can simply search for characters in the range 0 - 127
|
|
572 directly. For other characters, we do it the "hard" way.
|
|
573 Note that this way works for all characters but the other
|
|
574 way is faster. */
|
|
575 if (target >= 0200)
|
|
576 {
|
|
577 while (st < lim && count > 0)
|
|
578 {
|
|
579 if (BI_BUF_FETCH_CHAR (buf, st) == target)
|
|
580 count--;
|
|
581 INC_BYTIND (buf, st);
|
|
582 }
|
|
583 }
|
|
584 else
|
|
585 #endif
|
|
586 {
|
|
587 while (st < lim && count > 0)
|
|
588 {
|
|
589 Bytind ceil;
|
|
590 Bufbyte *bufptr;
|
|
591
|
|
592 ceil = BI_BUF_CEILING_OF (buf, st);
|
|
593 ceil = min (lim, ceil);
|
|
594 bufptr = (Bufbyte *) memchr (BI_BUF_BYTE_ADDRESS (buf, st),
|
|
595 (int) target, ceil - st);
|
|
596 if (bufptr)
|
|
597 {
|
|
598 count--;
|
|
599 st = BI_BUF_PTR_BYTE_POS (buf, bufptr) + 1;
|
|
600 }
|
|
601 else
|
|
602 st = ceil;
|
|
603 }
|
|
604 }
|
|
605
|
|
606 if (shortage)
|
|
607 *shortage = count;
|
|
608 if (allow_quit)
|
|
609 QUIT;
|
|
610 return st;
|
|
611 }
|
|
612 else
|
|
613 {
|
|
614 #ifdef MULE
|
|
615 if (target >= 0200)
|
|
616 {
|
|
617 while (st > lim && count < 0)
|
|
618 {
|
|
619 DEC_BYTIND (buf, st);
|
|
620 if (BI_BUF_FETCH_CHAR (buf, st) == target)
|
|
621 count++;
|
|
622 }
|
|
623 }
|
|
624 else
|
|
625 #endif
|
|
626 {
|
|
627 while (st > lim && count < 0)
|
|
628 {
|
|
629 Bytind floor;
|
|
630 Bufbyte *bufptr;
|
|
631 Bufbyte *floorptr;
|
|
632
|
|
633 floor = BI_BUF_FLOOR_OF (buf, st);
|
|
634 floor = max (lim, floor);
|
|
635 /* No memrchr() ... */
|
|
636 bufptr = BI_BUF_BYTE_ADDRESS_BEFORE (buf, st);
|
|
637 floorptr = BI_BUF_BYTE_ADDRESS (buf, floor);
|
|
638 while (bufptr >= floorptr)
|
|
639 {
|
|
640 st--;
|
|
641 /* At this point, both ST and BUFPTR refer to the same
|
|
642 character. When the loop terminates, ST will
|
|
643 always point to the last character we tried. */
|
|
644 if (* (unsigned char *) bufptr == (unsigned char) target)
|
|
645 {
|
|
646 count++;
|
|
647 break;
|
|
648 }
|
|
649 bufptr--;
|
|
650 }
|
|
651 }
|
|
652 }
|
|
653
|
|
654 if (shortage)
|
|
655 *shortage = -count;
|
|
656 if (allow_quit)
|
|
657 QUIT;
|
|
658 if (count)
|
|
659 return st;
|
|
660 else
|
|
661 {
|
|
662 /* We found the character we were looking for; we have to return
|
|
663 the position *after* it due to the strange way that the return
|
|
664 value is defined. */
|
|
665 INC_BYTIND (buf, st);
|
|
666 return st;
|
|
667 }
|
|
668 }
|
|
669 }
|
|
670
|
|
671 Bufpos
|
|
672 scan_buffer (struct buffer *buf, Emchar target, Bufpos start, Bufpos end,
|
|
673 EMACS_INT count, EMACS_INT *shortage, int allow_quit)
|
|
674 {
|
|
675 Bytind bi_retval;
|
|
676 Bytind bi_start, bi_end;
|
|
677
|
|
678 bi_start = bufpos_to_bytind (buf, start);
|
|
679 if (end)
|
|
680 bi_end = bufpos_to_bytind (buf, end);
|
|
681 else
|
|
682 bi_end = 0;
|
|
683 bi_retval = bi_scan_buffer (buf, target, bi_start, bi_end, count,
|
|
684 shortage, allow_quit);
|
|
685 return bytind_to_bufpos (buf, bi_retval);
|
|
686 }
|
|
687
|
|
688 Bytind
|
|
689 bi_find_next_newline_no_quit (struct buffer *buf, Bytind from, int count)
|
|
690 {
|
|
691 return bi_scan_buffer (buf, '\n', from, 0, count, 0, 0);
|
|
692 }
|
|
693
|
|
694 Bufpos
|
|
695 find_next_newline_no_quit (struct buffer *buf, Bufpos from, int count)
|
|
696 {
|
|
697 return scan_buffer (buf, '\n', from, 0, count, 0, 0);
|
|
698 }
|
|
699
|
|
700 Bufpos
|
|
701 find_next_newline (struct buffer *buf, Bufpos from, int count)
|
|
702 {
|
|
703 return scan_buffer (buf, '\n', from, 0, count, 0, 1);
|
|
704 }
|
|
705
|
|
706 Bytind
|
440
|
707 bi_find_next_emchar_in_string (Lisp_String* str, Emchar target, Bytind st,
|
428
|
708 EMACS_INT count)
|
|
709 {
|
|
710 /* This function has been Mule-ized. */
|
|
711 Bytind lim = string_length (str) -1;
|
|
712 Bufbyte* s = string_data (str);
|
|
713
|
|
714 assert (count >= 0);
|
|
715
|
|
716 #ifdef MULE
|
|
717 /* Due to the Mule representation of characters in a buffer,
|
|
718 we can simply search for characters in the range 0 - 127
|
|
719 directly. For other characters, we do it the "hard" way.
|
|
720 Note that this way works for all characters but the other
|
|
721 way is faster. */
|
|
722 if (target >= 0200)
|
|
723 {
|
|
724 while (st < lim && count > 0)
|
|
725 {
|
|
726 if (string_char (str, st) == target)
|
|
727 count--;
|
|
728 INC_CHARBYTIND (s, st);
|
|
729 }
|
|
730 }
|
|
731 else
|
|
732 #endif
|
|
733 {
|
|
734 while (st < lim && count > 0)
|
|
735 {
|
|
736 Bufbyte *bufptr = (Bufbyte *) memchr (charptr_n_addr (s, st),
|
|
737 (int) target, lim - st);
|
|
738 if (bufptr)
|
|
739 {
|
|
740 count--;
|
|
741 st = (Bytind)(bufptr - s) + 1;
|
|
742 }
|
|
743 else
|
|
744 st = lim;
|
|
745 }
|
|
746 }
|
|
747 return st;
|
|
748 }
|
|
749
|
|
750 /* Like find_next_newline, but returns position before the newline,
|
|
751 not after, and only search up to TO. This isn't just
|
|
752 find_next_newline (...)-1, because you might hit TO. */
|
|
753 Bufpos
|
|
754 find_before_next_newline (struct buffer *buf, Bufpos from, Bufpos to, int count)
|
|
755 {
|
|
756 EMACS_INT shortage;
|
|
757 Bufpos pos = scan_buffer (buf, '\n', from, to, count, &shortage, 1);
|
|
758
|
|
759 if (shortage == 0)
|
|
760 pos--;
|
|
761
|
|
762 return pos;
|
|
763 }
|
|
764
|
|
765 static Lisp_Object
|
|
766 skip_chars (struct buffer *buf, int forwardp, int syntaxp,
|
|
767 Lisp_Object string, Lisp_Object lim)
|
|
768 {
|
|
769 /* This function has been Mule-ized. */
|
|
770 REGISTER Bufbyte *p, *pend;
|
|
771 REGISTER Emchar c;
|
|
772 /* We store the first 256 chars in an array here and the rest in
|
|
773 a range table. */
|
|
774 unsigned char fastmap[0400];
|
|
775 int negate = 0;
|
|
776 REGISTER int i;
|
440
|
777 Lisp_Char_Table *syntax_table = XCHAR_TABLE (buf->mirror_syntax_table);
|
428
|
778 Bufpos limit;
|
|
779
|
|
780 if (NILP (lim))
|
|
781 limit = forwardp ? BUF_ZV (buf) : BUF_BEGV (buf);
|
|
782 else
|
|
783 {
|
|
784 CHECK_INT_COERCE_MARKER (lim);
|
|
785 limit = XINT (lim);
|
|
786
|
|
787 /* In any case, don't allow scan outside bounds of buffer. */
|
|
788 if (limit > BUF_ZV (buf)) limit = BUF_ZV (buf);
|
|
789 if (limit < BUF_BEGV (buf)) limit = BUF_BEGV (buf);
|
|
790 }
|
|
791
|
|
792 CHECK_STRING (string);
|
|
793 p = XSTRING_DATA (string);
|
|
794 pend = p + XSTRING_LENGTH (string);
|
|
795 memset (fastmap, 0, sizeof (fastmap));
|
|
796
|
|
797 Fclear_range_table (Vskip_chars_range_table);
|
|
798
|
|
799 if (p != pend && *p == '^')
|
|
800 {
|
|
801 negate = 1;
|
|
802 p++;
|
|
803 }
|
|
804
|
|
805 /* Find the characters specified and set their elements of fastmap.
|
|
806 If syntaxp, each character counts as itself.
|
|
807 Otherwise, handle backslashes and ranges specially */
|
|
808
|
|
809 while (p != pend)
|
|
810 {
|
|
811 c = charptr_emchar (p);
|
|
812 INC_CHARPTR (p);
|
|
813 if (syntaxp)
|
|
814 {
|
|
815 if (c < 0400 && syntax_spec_code[c] < (unsigned char) Smax)
|
|
816 fastmap[c] = 1;
|
|
817 else
|
|
818 signal_simple_error ("Invalid syntax designator",
|
|
819 make_char (c));
|
|
820 }
|
|
821 else
|
|
822 {
|
|
823 if (c == '\\')
|
|
824 {
|
|
825 if (p == pend) break;
|
|
826 c = charptr_emchar (p);
|
|
827 INC_CHARPTR (p);
|
|
828 }
|
|
829 if (p != pend && *p == '-')
|
|
830 {
|
|
831 Emchar cend;
|
|
832
|
|
833 p++;
|
|
834 if (p == pend) break;
|
|
835 cend = charptr_emchar (p);
|
|
836 while (c <= cend && c < 0400)
|
|
837 {
|
|
838 fastmap[c] = 1;
|
|
839 c++;
|
|
840 }
|
|
841 if (c <= cend)
|
|
842 Fput_range_table (make_int (c), make_int (cend), Qt,
|
|
843 Vskip_chars_range_table);
|
|
844 INC_CHARPTR (p);
|
|
845 }
|
|
846 else
|
|
847 {
|
|
848 if (c < 0400)
|
|
849 fastmap[c] = 1;
|
|
850 else
|
|
851 Fput_range_table (make_int (c), make_int (c), Qt,
|
|
852 Vskip_chars_range_table);
|
|
853 }
|
|
854 }
|
|
855 }
|
|
856
|
|
857 if (syntaxp && fastmap['-'] != 0)
|
|
858 fastmap[' '] = 1;
|
|
859
|
|
860 /* If ^ was the first character, complement the fastmap.
|
|
861 We don't complement the range table, however; we just use negate
|
|
862 in the comparisons below. */
|
|
863
|
|
864 if (negate)
|
|
865 for (i = 0; i < (int) (sizeof fastmap); i++)
|
|
866 fastmap[i] ^= 1;
|
|
867
|
|
868 {
|
|
869 Bufpos start_point = BUF_PT (buf);
|
|
870
|
|
871 if (syntaxp)
|
|
872 {
|
|
873 /* All syntax designators are normal chars so nothing strange
|
|
874 to worry about */
|
|
875 if (forwardp)
|
|
876 {
|
|
877 while (BUF_PT (buf) < limit
|
|
878 && fastmap[(unsigned char)
|
|
879 syntax_code_spec
|
|
880 [(int) SYNTAX (syntax_table,
|
|
881 BUF_FETCH_CHAR
|
|
882 (buf, BUF_PT (buf)))]])
|
|
883 BUF_SET_PT (buf, BUF_PT (buf) + 1);
|
|
884 }
|
|
885 else
|
|
886 {
|
|
887 while (BUF_PT (buf) > limit
|
|
888 && fastmap[(unsigned char)
|
|
889 syntax_code_spec
|
|
890 [(int) SYNTAX (syntax_table,
|
|
891 BUF_FETCH_CHAR
|
|
892 (buf, BUF_PT (buf) - 1))]])
|
|
893 BUF_SET_PT (buf, BUF_PT (buf) - 1);
|
|
894 }
|
|
895 }
|
|
896 else
|
|
897 {
|
|
898 if (forwardp)
|
|
899 {
|
|
900 while (BUF_PT (buf) < limit)
|
|
901 {
|
|
902 Emchar ch = BUF_FETCH_CHAR (buf, BUF_PT (buf));
|
|
903 if ((ch < 0400) ? fastmap[ch] :
|
|
904 (NILP (Fget_range_table (make_int (ch),
|
|
905 Vskip_chars_range_table,
|
|
906 Qnil))
|
|
907 == negate))
|
|
908 BUF_SET_PT (buf, BUF_PT (buf) + 1);
|
|
909 else
|
|
910 break;
|
|
911 }
|
|
912 }
|
|
913 else
|
|
914 {
|
|
915 while (BUF_PT (buf) > limit)
|
|
916 {
|
|
917 Emchar ch = BUF_FETCH_CHAR (buf, BUF_PT (buf) - 1);
|
|
918 if ((ch < 0400) ? fastmap[ch] :
|
|
919 (NILP (Fget_range_table (make_int (ch),
|
|
920 Vskip_chars_range_table,
|
|
921 Qnil))
|
|
922 == negate))
|
|
923 BUF_SET_PT (buf, BUF_PT (buf) - 1);
|
|
924 else
|
|
925 break;
|
|
926 }
|
|
927 }
|
|
928 }
|
|
929 QUIT;
|
|
930 return make_int (BUF_PT (buf) - start_point);
|
|
931 }
|
|
932 }
|
|
933
|
|
934 DEFUN ("skip-chars-forward", Fskip_chars_forward, 1, 3, 0, /*
|
|
935 Move point forward, stopping before a char not in STRING, or at pos LIM.
|
|
936 STRING is like the inside of a `[...]' in a regular expression
|
|
937 except that `]' is never special and `\\' quotes `^', `-' or `\\'.
|
|
938 Thus, with arg "a-zA-Z", this skips letters stopping before first nonletter.
|
|
939 With arg "^a-zA-Z", skips nonletters stopping before first letter.
|
|
940 Returns the distance traveled, either zero or positive.
|
|
941
|
|
942 Optional argument BUFFER defaults to the current buffer.
|
|
943 */
|
|
944 (string, lim, buffer))
|
|
945 {
|
|
946 return skip_chars (decode_buffer (buffer, 0), 1, 0, string, lim);
|
|
947 }
|
|
948
|
|
949 DEFUN ("skip-chars-backward", Fskip_chars_backward, 1, 3, 0, /*
|
|
950 Move point backward, stopping after a char not in STRING, or at pos LIM.
|
|
951 See `skip-chars-forward' for details.
|
|
952 Returns the distance traveled, either zero or negative.
|
|
953
|
|
954 Optional argument BUFFER defaults to the current buffer.
|
|
955 */
|
|
956 (string, lim, buffer))
|
|
957 {
|
|
958 return skip_chars (decode_buffer (buffer, 0), 0, 0, string, lim);
|
|
959 }
|
|
960
|
|
961
|
|
962 DEFUN ("skip-syntax-forward", Fskip_syntax_forward, 1, 3, 0, /*
|
|
963 Move point forward across chars in specified syntax classes.
|
|
964 SYNTAX is a string of syntax code characters.
|
|
965 Stop before a char whose syntax is not in SYNTAX, or at position LIM.
|
|
966 If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.
|
|
967 This function returns the distance traveled, either zero or positive.
|
|
968
|
|
969 Optional argument BUFFER defaults to the current buffer.
|
|
970 */
|
|
971 (syntax, lim, buffer))
|
|
972 {
|
|
973 return skip_chars (decode_buffer (buffer, 0), 1, 1, syntax, lim);
|
|
974 }
|
|
975
|
|
976 DEFUN ("skip-syntax-backward", Fskip_syntax_backward, 1, 3, 0, /*
|
|
977 Move point backward across chars in specified syntax classes.
|
|
978 SYNTAX is a string of syntax code characters.
|
|
979 Stop on reaching a char whose syntax is not in SYNTAX, or at position LIM.
|
|
980 If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.
|
|
981 This function returns the distance traveled, either zero or negative.
|
|
982
|
|
983 Optional argument BUFFER defaults to the current buffer.
|
|
984 */
|
|
985 (syntax, lim, buffer))
|
|
986 {
|
|
987 return skip_chars (decode_buffer (buffer, 0), 0, 1, syntax, lim);
|
|
988 }
|
|
989
|
|
990
|
|
991 /* Subroutines of Lisp buffer search functions. */
|
|
992
|
|
993 static Lisp_Object
|
|
994 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object no_error,
|
|
995 Lisp_Object count, Lisp_Object buffer, int direction,
|
|
996 int RE, int posix)
|
|
997 {
|
|
998 /* This function has been Mule-ized, except for the trt table handling. */
|
|
999 REGISTER Bufpos np;
|
|
1000 Bufpos lim;
|
|
1001 EMACS_INT n = direction;
|
|
1002 struct buffer *buf;
|
|
1003
|
|
1004 if (!NILP (count))
|
|
1005 {
|
|
1006 CHECK_INT (count);
|
|
1007 n *= XINT (count);
|
|
1008 }
|
|
1009
|
|
1010 buf = decode_buffer (buffer, 0);
|
|
1011 CHECK_STRING (string);
|
|
1012 if (NILP (bound))
|
|
1013 lim = n > 0 ? BUF_ZV (buf) : BUF_BEGV (buf);
|
|
1014 else
|
|
1015 {
|
|
1016 CHECK_INT_COERCE_MARKER (bound);
|
|
1017 lim = XINT (bound);
|
|
1018 if (n > 0 ? lim < BUF_PT (buf) : lim > BUF_PT (buf))
|
|
1019 error ("Invalid search bound (wrong side of point)");
|
|
1020 if (lim > BUF_ZV (buf))
|
|
1021 lim = BUF_ZV (buf);
|
|
1022 if (lim < BUF_BEGV (buf))
|
|
1023 lim = BUF_BEGV (buf);
|
|
1024 }
|
|
1025
|
|
1026 np = search_buffer (buf, string, BUF_PT (buf), lim, n, RE,
|
|
1027 (!NILP (buf->case_fold_search)
|
|
1028 ? MIRROR_CANON_TABLE_AS_STRING (buf)
|
|
1029 : 0),
|
|
1030 (!NILP (buf->case_fold_search)
|
|
1031 ? MIRROR_EQV_TABLE_AS_STRING (buf)
|
|
1032 : 0), posix);
|
|
1033
|
|
1034 if (np <= 0)
|
|
1035 {
|
|
1036 if (NILP (no_error))
|
|
1037 return signal_failure (string);
|
|
1038 if (!EQ (no_error, Qt))
|
|
1039 {
|
|
1040 if (lim < BUF_BEGV (buf) || lim > BUF_ZV (buf))
|
|
1041 abort ();
|
|
1042 BUF_SET_PT (buf, lim);
|
|
1043 return Qnil;
|
|
1044 #if 0 /* This would be clean, but maybe programs depend on
|
|
1045 a value of nil here. */
|
|
1046 np = lim;
|
|
1047 #endif
|
|
1048 }
|
|
1049 else
|
|
1050 return Qnil;
|
|
1051 }
|
|
1052
|
|
1053 if (np < BUF_BEGV (buf) || np > BUF_ZV (buf))
|
|
1054 abort ();
|
|
1055
|
|
1056 BUF_SET_PT (buf, np);
|
|
1057
|
|
1058 return make_int (np);
|
|
1059 }
|
|
1060
|
|
1061 static int
|
|
1062 trivial_regexp_p (Lisp_Object regexp)
|
|
1063 {
|
|
1064 /* This function has been Mule-ized. */
|
|
1065 Bytecount len = XSTRING_LENGTH (regexp);
|
|
1066 Bufbyte *s = XSTRING_DATA (regexp);
|
|
1067 while (--len >= 0)
|
|
1068 {
|
|
1069 switch (*s++)
|
|
1070 {
|
|
1071 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
|
|
1072 return 0;
|
|
1073 case '\\':
|
|
1074 if (--len < 0)
|
|
1075 return 0;
|
|
1076 switch (*s++)
|
|
1077 {
|
|
1078 case '|': case '(': case ')': case '`': case '\'': case 'b':
|
|
1079 case 'B': case '<': case '>': case 'w': case 'W': case 's':
|
|
1080 case 'S': case '=':
|
|
1081 #ifdef MULE
|
|
1082 /* 97/2/25 jhod Added for category matches */
|
|
1083 case 'c': case 'C':
|
|
1084 #endif /* MULE */
|
|
1085 case '1': case '2': case '3': case '4': case '5':
|
|
1086 case '6': case '7': case '8': case '9':
|
|
1087 return 0;
|
|
1088 }
|
|
1089 }
|
|
1090 }
|
|
1091 return 1;
|
|
1092 }
|
|
1093
|
|
1094 /* Search for the n'th occurrence of STRING in BUF,
|
|
1095 starting at position BUFPOS and stopping at position BUFLIM,
|
|
1096 treating PAT as a literal string if RE is false or as
|
|
1097 a regular expression if RE is true.
|
|
1098
|
|
1099 If N is positive, searching is forward and BUFLIM must be greater
|
|
1100 than BUFPOS.
|
|
1101 If N is negative, searching is backward and BUFLIM must be less
|
|
1102 than BUFPOS.
|
|
1103
|
|
1104 Returns -x if only N-x occurrences found (x > 0),
|
|
1105 or else the position at the beginning of the Nth occurrence
|
|
1106 (if searching backward) or the end (if searching forward).
|
|
1107
|
|
1108 POSIX is nonzero if we want full backtracking (POSIX style)
|
|
1109 for this pattern. 0 means backtrack only enough to get a valid match. */
|
|
1110
|
|
1111 static Bufpos
|
|
1112 search_buffer (struct buffer *buf, Lisp_Object string, Bufpos bufpos,
|
|
1113 Bufpos buflim, EMACS_INT n, int RE, unsigned char *trt,
|
|
1114 unsigned char *inverse_trt, int posix)
|
|
1115 {
|
|
1116 /* This function has been Mule-ized, except for the trt table handling. */
|
|
1117 Bytecount len = XSTRING_LENGTH (string);
|
|
1118 Bufbyte *base_pat = XSTRING_DATA (string);
|
|
1119 REGISTER EMACS_INT *BM_tab;
|
|
1120 EMACS_INT *BM_tab_base;
|
|
1121 REGISTER int direction = ((n > 0) ? 1 : -1);
|
|
1122 REGISTER Bytecount dirlen;
|
|
1123 EMACS_INT infinity;
|
|
1124 Bytind limit;
|
|
1125 EMACS_INT k;
|
|
1126 Bytecount stride_for_teases = 0;
|
|
1127 REGISTER Bufbyte *pat = 0;
|
|
1128 REGISTER Bufbyte *cursor, *p_limit, *ptr2;
|
|
1129 REGISTER EMACS_INT i, j;
|
|
1130 Bytind p1, p2;
|
|
1131 Bytecount s1, s2;
|
|
1132 Bytind pos, lim;
|
|
1133
|
|
1134 if (running_asynch_code)
|
|
1135 save_search_regs ();
|
|
1136
|
|
1137 /* Null string is found at starting position. */
|
|
1138 if (len == 0)
|
|
1139 {
|
|
1140 set_search_regs (buf, bufpos, 0);
|
|
1141 return bufpos;
|
|
1142 }
|
|
1143
|
|
1144 /* Searching 0 times means don't move. */
|
|
1145 if (n == 0)
|
|
1146 return bufpos;
|
|
1147
|
|
1148 pos = bufpos_to_bytind (buf, bufpos);
|
|
1149 lim = bufpos_to_bytind (buf, buflim);
|
|
1150 if (RE && !trivial_regexp_p (string))
|
|
1151 {
|
|
1152 struct re_pattern_buffer *bufp;
|
|
1153
|
|
1154 bufp = compile_pattern (string, &search_regs, (char *) trt, posix,
|
|
1155 ERROR_ME);
|
|
1156
|
|
1157 /* Get pointers and sizes of the two strings
|
|
1158 that make up the visible portion of the buffer. */
|
|
1159
|
|
1160 p1 = BI_BUF_BEGV (buf);
|
|
1161 p2 = BI_BUF_CEILING_OF (buf, p1);
|
|
1162 s1 = p2 - p1;
|
|
1163 s2 = BI_BUF_ZV (buf) - p2;
|
|
1164
|
|
1165 while (n < 0)
|
|
1166 {
|
|
1167 Bytecount val;
|
|
1168 QUIT;
|
|
1169 regex_emacs_buffer = buf;
|
442
|
1170 regex_emacs_buffer_p = 1;
|
428
|
1171 val = re_search_2 (bufp,
|
|
1172 (char *) BI_BUF_BYTE_ADDRESS (buf, p1), s1,
|
|
1173 (char *) BI_BUF_BYTE_ADDRESS (buf, p2), s2,
|
|
1174 pos - BI_BUF_BEGV (buf), lim - pos, &search_regs,
|
|
1175 pos - BI_BUF_BEGV (buf));
|
|
1176
|
|
1177 if (val == -2)
|
|
1178 {
|
|
1179 matcher_overflow ();
|
|
1180 }
|
|
1181 if (val >= 0)
|
|
1182 {
|
|
1183 int num_regs = search_regs.num_regs;
|
|
1184 j = BI_BUF_BEGV (buf);
|
|
1185 for (i = 0; i < num_regs; i++)
|
|
1186 if (search_regs.start[i] >= 0)
|
|
1187 {
|
|
1188 search_regs.start[i] += j;
|
|
1189 search_regs.end[i] += j;
|
|
1190 }
|
|
1191 XSETBUFFER (last_thing_searched, buf);
|
|
1192 /* Set pos to the new position. */
|
|
1193 pos = search_regs.start[0];
|
|
1194 fixup_search_regs_for_buffer (buf);
|
|
1195 /* And bufpos too. */
|
|
1196 bufpos = search_regs.start[0];
|
|
1197 }
|
|
1198 else
|
|
1199 {
|
|
1200 return n;
|
|
1201 }
|
|
1202 n++;
|
|
1203 }
|
|
1204 while (n > 0)
|
|
1205 {
|
|
1206 Bytecount val;
|
|
1207 QUIT;
|
|
1208 regex_emacs_buffer = buf;
|
442
|
1209 regex_emacs_buffer_p = 1;
|
428
|
1210 val = re_search_2 (bufp,
|
|
1211 (char *) BI_BUF_BYTE_ADDRESS (buf, p1), s1,
|
|
1212 (char *) BI_BUF_BYTE_ADDRESS (buf, p2), s2,
|
|
1213 pos - BI_BUF_BEGV (buf), lim - pos, &search_regs,
|
|
1214 lim - BI_BUF_BEGV (buf));
|
|
1215 if (val == -2)
|
|
1216 {
|
|
1217 matcher_overflow ();
|
|
1218 }
|
|
1219 if (val >= 0)
|
|
1220 {
|
|
1221 int num_regs = search_regs.num_regs;
|
|
1222 j = BI_BUF_BEGV (buf);
|
|
1223 for (i = 0; i < num_regs; i++)
|
|
1224 if (search_regs.start[i] >= 0)
|
|
1225 {
|
|
1226 search_regs.start[i] += j;
|
|
1227 search_regs.end[i] += j;
|
|
1228 }
|
|
1229 XSETBUFFER (last_thing_searched, buf);
|
|
1230 /* Set pos to the new position. */
|
|
1231 pos = search_regs.end[0];
|
|
1232 fixup_search_regs_for_buffer (buf);
|
|
1233 /* And bufpos too. */
|
|
1234 bufpos = search_regs.end[0];
|
|
1235 }
|
|
1236 else
|
|
1237 {
|
|
1238 return 0 - n;
|
|
1239 }
|
|
1240 n--;
|
|
1241 }
|
|
1242 return bufpos;
|
|
1243 }
|
|
1244 else /* non-RE case */
|
|
1245 /* #### Someone really really really needs to comment the workings
|
|
1246 of this junk somewhat better.
|
|
1247
|
|
1248 BTW "BM" stands for Boyer-Moore, which is one of the standard
|
|
1249 string-searching algorithms. It's the best string-searching
|
442
|
1250 algorithm out there, provided that:
|
428
|
1251
|
|
1252 a) You're not fazed by algorithm complexity. (Rabin-Karp, which
|
|
1253 uses hashing, is much much easier to code but not as fast.)
|
|
1254 b) You can freely move backwards in the string that you're
|
|
1255 searching through.
|
|
1256
|
|
1257 As the comment below tries to explain (but garbles in typical
|
|
1258 programmer-ese), the idea is that you don't have to do a
|
|
1259 string match at every successive position in the text. For
|
|
1260 example, let's say the pattern is "a very long string". We
|
|
1261 compare the last character in the string (`g') with the
|
|
1262 corresponding character in the text. If it mismatches, and
|
|
1263 it is, say, `z', then we can skip forward by the entire
|
|
1264 length of the pattern because `z' does not occur anywhere
|
|
1265 in the pattern. If the mismatching character does occur
|
|
1266 in the pattern, we can usually still skip forward by more
|
|
1267 than one: e.g. if it is `l', then we can skip forward
|
|
1268 by the length of the substring "ong string" -- i.e. the
|
|
1269 largest end section of the pattern that does not contain
|
|
1270 the mismatched character. So what we do is compute, for
|
|
1271 each possible character, the distance we can skip forward
|
|
1272 (the "stride") and use it in the string matching. This
|
|
1273 is what the BM_tab holds. */
|
|
1274 {
|
|
1275 #ifdef C_ALLOCA
|
|
1276 EMACS_INT BM_tab_space[0400];
|
|
1277 BM_tab = &BM_tab_space[0];
|
|
1278 #else
|
|
1279 BM_tab = alloca_array (EMACS_INT, 256);
|
|
1280 #endif
|
|
1281 {
|
|
1282 Bufbyte *patbuf = alloca_array (Bufbyte, len);
|
|
1283 pat = patbuf;
|
|
1284 while (--len >= 0)
|
|
1285 {
|
|
1286 /* If we got here and the RE flag is set, it's because we're
|
|
1287 dealing with a regexp known to be trivial, so the backslash
|
|
1288 just quotes the next character. */
|
|
1289 if (RE && *base_pat == '\\')
|
|
1290 {
|
|
1291 len--;
|
|
1292 base_pat++;
|
|
1293 }
|
|
1294 *pat++ = (trt ? trt[*base_pat++] : *base_pat++);
|
|
1295 }
|
|
1296 len = pat - patbuf;
|
|
1297 pat = base_pat = patbuf;
|
|
1298 }
|
|
1299 /* The general approach is that we are going to maintain that we know */
|
|
1300 /* the first (closest to the present position, in whatever direction */
|
|
1301 /* we're searching) character that could possibly be the last */
|
|
1302 /* (furthest from present position) character of a valid match. We */
|
|
1303 /* advance the state of our knowledge by looking at that character */
|
|
1304 /* and seeing whether it indeed matches the last character of the */
|
|
1305 /* pattern. If it does, we take a closer look. If it does not, we */
|
|
1306 /* move our pointer (to putative last characters) as far as is */
|
|
1307 /* logically possible. This amount of movement, which I call a */
|
|
1308 /* stride, will be the length of the pattern if the actual character */
|
|
1309 /* appears nowhere in the pattern, otherwise it will be the distance */
|
|
1310 /* from the last occurrence of that character to the end of the */
|
|
1311 /* pattern. */
|
|
1312 /* As a coding trick, an enormous stride is coded into the table for */
|
|
1313 /* characters that match the last character. This allows use of only */
|
|
1314 /* a single test, a test for having gone past the end of the */
|
|
1315 /* permissible match region, to test for both possible matches (when */
|
|
1316 /* the stride goes past the end immediately) and failure to */
|
|
1317 /* match (where you get nudged past the end one stride at a time). */
|
|
1318
|
|
1319 /* Here we make a "mickey mouse" BM table. The stride of the search */
|
|
1320 /* is determined only by the last character of the putative match. */
|
|
1321 /* If that character does not match, we will stride the proper */
|
|
1322 /* distance to propose a match that superimposes it on the last */
|
|
1323 /* instance of a character that matches it (per trt), or misses */
|
|
1324 /* it entirely if there is none. */
|
|
1325
|
|
1326 dirlen = len * direction;
|
|
1327 infinity = dirlen - (lim + pos + len + len) * direction;
|
|
1328 if (direction < 0)
|
|
1329 pat = (base_pat += len - 1);
|
|
1330 BM_tab_base = BM_tab;
|
|
1331 BM_tab += 0400;
|
|
1332 j = dirlen; /* to get it in a register */
|
|
1333 /* A character that does not appear in the pattern induces a */
|
|
1334 /* stride equal to the pattern length. */
|
|
1335 while (BM_tab_base != BM_tab)
|
|
1336 {
|
|
1337 *--BM_tab = j;
|
|
1338 *--BM_tab = j;
|
|
1339 *--BM_tab = j;
|
|
1340 *--BM_tab = j;
|
|
1341 }
|
|
1342 i = 0;
|
|
1343 while (i != infinity)
|
|
1344 {
|
|
1345 j = pat[i]; i += direction;
|
|
1346 if (i == dirlen) i = infinity;
|
|
1347 if (trt != 0)
|
|
1348 {
|
|
1349 k = (j = trt[j]);
|
|
1350 if (i == infinity)
|
|
1351 stride_for_teases = BM_tab[j];
|
|
1352 BM_tab[j] = dirlen - i;
|
|
1353 /* A translation table is accompanied by its inverse -- see */
|
|
1354 /* comment following downcase_table for details */
|
|
1355
|
|
1356 while ((j = inverse_trt[j]) != k)
|
|
1357 BM_tab[j] = dirlen - i;
|
|
1358 }
|
|
1359 else
|
|
1360 {
|
|
1361 if (i == infinity)
|
|
1362 stride_for_teases = BM_tab[j];
|
|
1363 BM_tab[j] = dirlen - i;
|
|
1364 }
|
|
1365 /* stride_for_teases tells how much to stride if we get a */
|
|
1366 /* match on the far character but are subsequently */
|
|
1367 /* disappointed, by recording what the stride would have been */
|
|
1368 /* for that character if the last character had been */
|
|
1369 /* different. */
|
|
1370 }
|
|
1371 infinity = dirlen - infinity;
|
|
1372 pos += dirlen - ((direction > 0) ? direction : 0);
|
|
1373 /* loop invariant - pos points at where last char (first char if reverse)
|
|
1374 of pattern would align in a possible match. */
|
|
1375 while (n != 0)
|
|
1376 {
|
|
1377 /* It's been reported that some (broken) compiler thinks that
|
|
1378 Boolean expressions in an arithmetic context are unsigned.
|
|
1379 Using an explicit ?1:0 prevents this. */
|
|
1380 if ((lim - pos - ((direction > 0) ? 1 : 0)) * direction < 0)
|
|
1381 return n * (0 - direction);
|
|
1382 /* First we do the part we can by pointers (maybe nothing) */
|
|
1383 QUIT;
|
|
1384 pat = base_pat;
|
|
1385 limit = pos - dirlen + direction;
|
|
1386 /* XEmacs change: definitions of CEILING_OF and FLOOR_OF
|
|
1387 have changed. See buffer.h. */
|
|
1388 limit = ((direction > 0)
|
|
1389 ? BI_BUF_CEILING_OF (buf, limit) - 1
|
|
1390 : BI_BUF_FLOOR_OF (buf, limit + 1));
|
|
1391 /* LIMIT is now the last (not beyond-last!) value
|
|
1392 POS can take on without hitting edge of buffer or the gap. */
|
|
1393 limit = ((direction > 0)
|
|
1394 ? min (lim - 1, min (limit, pos + 20000))
|
|
1395 : max (lim, max (limit, pos - 20000)));
|
|
1396 if ((limit - pos) * direction > 20)
|
|
1397 {
|
|
1398 p_limit = BI_BUF_BYTE_ADDRESS (buf, limit);
|
|
1399 ptr2 = (cursor = BI_BUF_BYTE_ADDRESS (buf, pos));
|
|
1400 /* In this loop, pos + cursor - ptr2 is the surrogate for pos */
|
|
1401 while (1) /* use one cursor setting as long as i can */
|
|
1402 {
|
|
1403 if (direction > 0) /* worth duplicating */
|
|
1404 {
|
|
1405 /* Use signed comparison if appropriate
|
|
1406 to make cursor+infinity sure to be > p_limit.
|
|
1407 Assuming that the buffer lies in a range of addresses
|
|
1408 that are all "positive" (as ints) or all "negative",
|
|
1409 either kind of comparison will work as long
|
|
1410 as we don't step by infinity. So pick the kind
|
|
1411 that works when we do step by infinity. */
|
|
1412 if ((EMACS_INT) (p_limit + infinity) >
|
|
1413 (EMACS_INT) p_limit)
|
|
1414 while ((EMACS_INT) cursor <=
|
|
1415 (EMACS_INT) p_limit)
|
|
1416 cursor += BM_tab[*cursor];
|
|
1417 else
|
|
1418 while ((EMACS_UINT) cursor <=
|
|
1419 (EMACS_UINT) p_limit)
|
|
1420 cursor += BM_tab[*cursor];
|
|
1421 }
|
|
1422 else
|
|
1423 {
|
|
1424 if ((EMACS_INT) (p_limit + infinity) <
|
|
1425 (EMACS_INT) p_limit)
|
|
1426 while ((EMACS_INT) cursor >=
|
|
1427 (EMACS_INT) p_limit)
|
|
1428 cursor += BM_tab[*cursor];
|
|
1429 else
|
|
1430 while ((EMACS_UINT) cursor >=
|
|
1431 (EMACS_UINT) p_limit)
|
|
1432 cursor += BM_tab[*cursor];
|
|
1433 }
|
|
1434 /* If you are here, cursor is beyond the end of the searched region. */
|
|
1435 /* This can happen if you match on the far character of the pattern, */
|
|
1436 /* because the "stride" of that character is infinity, a number able */
|
|
1437 /* to throw you well beyond the end of the search. It can also */
|
|
1438 /* happen if you fail to match within the permitted region and would */
|
|
1439 /* otherwise try a character beyond that region */
|
|
1440 if ((cursor - p_limit) * direction <= len)
|
|
1441 break; /* a small overrun is genuine */
|
|
1442 cursor -= infinity; /* large overrun = hit */
|
|
1443 i = dirlen - direction;
|
|
1444 if (trt != 0)
|
|
1445 {
|
|
1446 while ((i -= direction) + direction != 0)
|
|
1447 if (pat[i] != trt[*(cursor -= direction)])
|
|
1448 break;
|
|
1449 }
|
|
1450 else
|
|
1451 {
|
|
1452 while ((i -= direction) + direction != 0)
|
|
1453 if (pat[i] != *(cursor -= direction))
|
|
1454 break;
|
|
1455 }
|
|
1456 cursor += dirlen - i - direction; /* fix cursor */
|
|
1457 if (i + direction == 0)
|
|
1458 {
|
|
1459 cursor -= direction;
|
|
1460
|
|
1461 {
|
|
1462 Bytind bytstart = (pos + cursor - ptr2 +
|
|
1463 ((direction > 0)
|
|
1464 ? 1 - len : 0));
|
|
1465 Bufpos bufstart = bytind_to_bufpos (buf, bytstart);
|
|
1466 Bufpos bufend = bytind_to_bufpos (buf, bytstart + len);
|
|
1467
|
|
1468 set_search_regs (buf, bufstart, bufend - bufstart);
|
|
1469 }
|
|
1470
|
|
1471 if ((n -= direction) != 0)
|
|
1472 cursor += dirlen; /* to resume search */
|
|
1473 else
|
|
1474 return ((direction > 0)
|
|
1475 ? search_regs.end[0] : search_regs.start[0]);
|
|
1476 }
|
|
1477 else
|
|
1478 cursor += stride_for_teases; /* <sigh> we lose - */
|
|
1479 }
|
|
1480 pos += cursor - ptr2;
|
|
1481 }
|
|
1482 else
|
|
1483 /* Now we'll pick up a clump that has to be done the hard */
|
|
1484 /* way because it covers a discontinuity */
|
|
1485 {
|
|
1486 /* XEmacs change: definitions of CEILING_OF and FLOOR_OF
|
|
1487 have changed. See buffer.h. */
|
|
1488 limit = ((direction > 0)
|
|
1489 ? BI_BUF_CEILING_OF (buf, pos - dirlen + 1) - 1
|
|
1490 : BI_BUF_FLOOR_OF (buf, pos - dirlen));
|
|
1491 limit = ((direction > 0)
|
|
1492 ? min (limit + len, lim - 1)
|
|
1493 : max (limit - len, lim));
|
|
1494 /* LIMIT is now the last value POS can have
|
|
1495 and still be valid for a possible match. */
|
|
1496 while (1)
|
|
1497 {
|
|
1498 /* This loop can be coded for space rather than */
|
|
1499 /* speed because it will usually run only once. */
|
|
1500 /* (the reach is at most len + 21, and typically */
|
|
1501 /* does not exceed len) */
|
|
1502 while ((limit - pos) * direction >= 0)
|
|
1503 /* *not* BI_BUF_FETCH_CHAR. We are working here
|
|
1504 with bytes, not characters. */
|
|
1505 pos += BM_tab[*BI_BUF_BYTE_ADDRESS (buf, pos)];
|
|
1506 /* now run the same tests to distinguish going off the */
|
|
1507 /* end, a match or a phony match. */
|
|
1508 if ((pos - limit) * direction <= len)
|
|
1509 break; /* ran off the end */
|
|
1510 /* Found what might be a match.
|
|
1511 Set POS back to last (first if reverse) char pos. */
|
|
1512 pos -= infinity;
|
|
1513 i = dirlen - direction;
|
|
1514 while ((i -= direction) + direction != 0)
|
|
1515 {
|
|
1516 pos -= direction;
|
|
1517 if (pat[i] != (((Bufbyte *) trt)
|
|
1518 /* #### Does not handle TRT right */
|
|
1519 ? trt[*BI_BUF_BYTE_ADDRESS (buf, pos)]
|
|
1520 : *BI_BUF_BYTE_ADDRESS (buf, pos)))
|
|
1521 break;
|
|
1522 }
|
|
1523 /* Above loop has moved POS part or all the way
|
|
1524 back to the first char pos (last char pos if reverse).
|
|
1525 Set it once again at the last (first if reverse) char. */
|
|
1526 pos += dirlen - i- direction;
|
|
1527 if (i + direction == 0)
|
|
1528 {
|
|
1529 pos -= direction;
|
|
1530
|
|
1531 {
|
|
1532 Bytind bytstart = (pos +
|
|
1533 ((direction > 0)
|
|
1534 ? 1 - len : 0));
|
|
1535 Bufpos bufstart = bytind_to_bufpos (buf, bytstart);
|
|
1536 Bufpos bufend = bytind_to_bufpos (buf, bytstart + len);
|
|
1537
|
|
1538 set_search_regs (buf, bufstart, bufend - bufstart);
|
|
1539 }
|
|
1540
|
|
1541 if ((n -= direction) != 0)
|
|
1542 pos += dirlen; /* to resume search */
|
|
1543 else
|
|
1544 return ((direction > 0)
|
|
1545 ? search_regs.end[0] : search_regs.start[0]);
|
|
1546 }
|
|
1547 else
|
|
1548 pos += stride_for_teases;
|
|
1549 }
|
|
1550 }
|
|
1551 /* We have done one clump. Can we continue? */
|
|
1552 if ((lim - pos) * direction < 0)
|
|
1553 return (0 - n) * direction;
|
|
1554 }
|
|
1555 return bytind_to_bufpos (buf, pos);
|
|
1556 }
|
|
1557 }
|
|
1558
|
|
1559 /* Record beginning BEG and end BEG + LEN
|
|
1560 for a match just found in the current buffer. */
|
|
1561
|
|
1562 static void
|
|
1563 set_search_regs (struct buffer *buf, Bufpos beg, Charcount len)
|
|
1564 {
|
|
1565 /* This function has been Mule-ized. */
|
|
1566 /* Make sure we have registers in which to store
|
|
1567 the match position. */
|
|
1568 if (search_regs.num_regs == 0)
|
|
1569 {
|
|
1570 search_regs.start = xnew (regoff_t);
|
|
1571 search_regs.end = xnew (regoff_t);
|
|
1572 search_regs.num_regs = 1;
|
|
1573 }
|
|
1574
|
|
1575 search_regs.start[0] = beg;
|
|
1576 search_regs.end[0] = beg + len;
|
|
1577 XSETBUFFER (last_thing_searched, buf);
|
|
1578 }
|
|
1579
|
|
1580
|
|
1581 /* Given a string of words separated by word delimiters,
|
442
|
1582 compute a regexp that matches those exact words
|
|
1583 separated by arbitrary punctuation. */
|
428
|
1584
|
|
1585 static Lisp_Object
|
|
1586 wordify (Lisp_Object buffer, Lisp_Object string)
|
|
1587 {
|
|
1588 Charcount i, len;
|
|
1589 EMACS_INT punct_count = 0, word_count = 0;
|
|
1590 struct buffer *buf = decode_buffer (buffer, 0);
|
440
|
1591 Lisp_Char_Table *syntax_table = XCHAR_TABLE (buf->mirror_syntax_table);
|
428
|
1592
|
|
1593 CHECK_STRING (string);
|
|
1594 len = XSTRING_CHAR_LENGTH (string);
|
|
1595
|
|
1596 for (i = 0; i < len; i++)
|
|
1597 if (!WORD_SYNTAX_P (syntax_table, string_char (XSTRING (string), i)))
|
|
1598 {
|
|
1599 punct_count++;
|
|
1600 if (i > 0 && WORD_SYNTAX_P (syntax_table,
|
|
1601 string_char (XSTRING (string), i - 1)))
|
|
1602 word_count++;
|
|
1603 }
|
|
1604 if (WORD_SYNTAX_P (syntax_table, string_char (XSTRING (string), len - 1)))
|
|
1605 word_count++;
|
|
1606 if (!word_count) return build_string ("");
|
|
1607
|
|
1608 {
|
|
1609 /* The following value is an upper bound on the amount of storage we
|
|
1610 need. In non-Mule, it is exact. */
|
|
1611 Bufbyte *storage =
|
|
1612 (Bufbyte *) alloca (XSTRING_LENGTH (string) - punct_count +
|
|
1613 5 * (word_count - 1) + 4);
|
|
1614 Bufbyte *o = storage;
|
|
1615
|
|
1616 *o++ = '\\';
|
|
1617 *o++ = 'b';
|
|
1618
|
|
1619 for (i = 0; i < len; i++)
|
|
1620 {
|
|
1621 Emchar ch = string_char (XSTRING (string), i);
|
|
1622
|
|
1623 if (WORD_SYNTAX_P (syntax_table, ch))
|
|
1624 o += set_charptr_emchar (o, ch);
|
|
1625 else if (i > 0
|
|
1626 && WORD_SYNTAX_P (syntax_table,
|
|
1627 string_char (XSTRING (string), i - 1))
|
|
1628 && --word_count)
|
|
1629 {
|
|
1630 *o++ = '\\';
|
|
1631 *o++ = 'W';
|
|
1632 *o++ = '\\';
|
|
1633 *o++ = 'W';
|
|
1634 *o++ = '*';
|
|
1635 }
|
|
1636 }
|
|
1637
|
|
1638 *o++ = '\\';
|
|
1639 *o++ = 'b';
|
|
1640
|
|
1641 return make_string (storage, o - storage);
|
|
1642 }
|
|
1643 }
|
|
1644
|
|
1645 DEFUN ("search-backward", Fsearch_backward, 1, 5, "sSearch backward: ", /*
|
|
1646 Search backward from point for STRING.
|
|
1647 Set point to the beginning of the occurrence found, and return point.
|
|
1648 An optional second argument bounds the search; it is a buffer position.
|
|
1649 The match found must not extend before that position.
|
|
1650 Optional third argument, if t, means if fail just return nil (no error).
|
|
1651 If not nil and not t, position at limit of search and return nil.
|
|
1652 Optional fourth argument is repeat count--search for successive occurrences.
|
|
1653 Optional fifth argument BUFFER specifies the buffer to search in and
|
|
1654 defaults to the current buffer.
|
|
1655 See also the functions `match-beginning', `match-end' and `replace-match'.
|
|
1656 */
|
|
1657 (string, bound, no_error, count, buffer))
|
|
1658 {
|
|
1659 return search_command (string, bound, no_error, count, buffer, -1, 0, 0);
|
|
1660 }
|
|
1661
|
|
1662 DEFUN ("search-forward", Fsearch_forward, 1, 5, "sSearch: ", /*
|
|
1663 Search forward from point for STRING.
|
|
1664 Set point to the end of the occurrence found, and return point.
|
|
1665 An optional second argument bounds the search; it is a buffer position.
|
|
1666 The match found must not extend after that position. nil is equivalent
|
|
1667 to (point-max).
|
|
1668 Optional third argument, if t, means if fail just return nil (no error).
|
|
1669 If not nil and not t, move to limit of search and return nil.
|
|
1670 Optional fourth argument is repeat count--search for successive occurrences.
|
|
1671 Optional fifth argument BUFFER specifies the buffer to search in and
|
|
1672 defaults to the current buffer.
|
|
1673 See also the functions `match-beginning', `match-end' and `replace-match'.
|
|
1674 */
|
|
1675 (string, bound, no_error, count, buffer))
|
|
1676 {
|
|
1677 return search_command (string, bound, no_error, count, buffer, 1, 0, 0);
|
|
1678 }
|
|
1679
|
|
1680 DEFUN ("word-search-backward", Fword_search_backward, 1, 5,
|
|
1681 "sWord search backward: ", /*
|
|
1682 Search backward from point for STRING, ignoring differences in punctuation.
|
|
1683 Set point to the beginning of the occurrence found, and return point.
|
|
1684 An optional second argument bounds the search; it is a buffer position.
|
|
1685 The match found must not extend before that position.
|
|
1686 Optional third argument, if t, means if fail just return nil (no error).
|
|
1687 If not nil and not t, move to limit of search and return nil.
|
|
1688 Optional fourth argument is repeat count--search for successive occurrences.
|
|
1689 Optional fifth argument BUFFER specifies the buffer to search in and
|
|
1690 defaults to the current buffer.
|
|
1691 */
|
|
1692 (string, bound, no_error, count, buffer))
|
|
1693 {
|
|
1694 return search_command (wordify (buffer, string), bound, no_error, count,
|
|
1695 buffer, -1, 1, 0);
|
|
1696 }
|
|
1697
|
|
1698 DEFUN ("word-search-forward", Fword_search_forward, 1, 5, "sWord search: ", /*
|
|
1699 Search forward from point for STRING, ignoring differences in punctuation.
|
|
1700 Set point to the end of the occurrence found, and return point.
|
|
1701 An optional second argument bounds the search; it is a buffer position.
|
|
1702 The match found must not extend after that position.
|
|
1703 Optional third argument, if t, means if fail just return nil (no error).
|
|
1704 If not nil and not t, move to limit of search and return nil.
|
|
1705 Optional fourth argument is repeat count--search for successive occurrences.
|
|
1706 Optional fifth argument BUFFER specifies the buffer to search in and
|
|
1707 defaults to the current buffer.
|
|
1708 */
|
|
1709 (string, bound, no_error, count, buffer))
|
|
1710 {
|
|
1711 return search_command (wordify (buffer, string), bound, no_error, count,
|
|
1712 buffer, 1, 1, 0);
|
|
1713 }
|
|
1714
|
|
1715 DEFUN ("re-search-backward", Fre_search_backward, 1, 5,
|
|
1716 "sRE search backward: ", /*
|
|
1717 Search backward from point for match for regular expression REGEXP.
|
|
1718 Set point to the beginning of the match, and return point.
|
|
1719 The match found is the one starting last in the buffer
|
|
1720 and yet ending before the origin of the search.
|
|
1721 An optional second argument bounds the search; it is a buffer position.
|
|
1722 The match found must start at or after that position.
|
|
1723 Optional third argument, if t, means if fail just return nil (no error).
|
|
1724 If not nil and not t, move to limit of search and return nil.
|
|
1725 Optional fourth argument is repeat count--search for successive occurrences.
|
|
1726 Optional fifth argument BUFFER specifies the buffer to search in and
|
|
1727 defaults to the current buffer.
|
|
1728 See also the functions `match-beginning', `match-end' and `replace-match'.
|
|
1729 */
|
|
1730 (regexp, bound, no_error, count, buffer))
|
|
1731 {
|
|
1732 return search_command (regexp, bound, no_error, count, buffer, -1, 1, 0);
|
|
1733 }
|
|
1734
|
|
1735 DEFUN ("re-search-forward", Fre_search_forward, 1, 5, "sRE search: ", /*
|
|
1736 Search forward from point for regular expression REGEXP.
|
|
1737 Set point to the end of the occurrence found, and return point.
|
|
1738 An optional second argument bounds the search; it is a buffer position.
|
|
1739 The match found must not extend after that position.
|
|
1740 Optional third argument, if t, means if fail just return nil (no error).
|
|
1741 If not nil and not t, move to limit of search and return nil.
|
|
1742 Optional fourth argument is repeat count--search for successive occurrences.
|
|
1743 Optional fifth argument BUFFER specifies the buffer to search in and
|
|
1744 defaults to the current buffer.
|
|
1745 See also the functions `match-beginning', `match-end' and `replace-match'.
|
|
1746 */
|
|
1747 (regexp, bound, no_error, count, buffer))
|
|
1748 {
|
|
1749 return search_command (regexp, bound, no_error, count, buffer, 1, 1, 0);
|
|
1750 }
|
|
1751
|
|
1752 DEFUN ("posix-search-backward", Fposix_search_backward, 1, 5,
|
|
1753 "sPosix search backward: ", /*
|
|
1754 Search backward from point for match for regular expression REGEXP.
|
|
1755 Find the longest match in accord with Posix regular expression rules.
|
|
1756 Set point to the beginning of the match, and return point.
|
|
1757 The match found is the one starting last in the buffer
|
|
1758 and yet ending before the origin of the search.
|
|
1759 An optional second argument bounds the search; it is a buffer position.
|
|
1760 The match found must start at or after that position.
|
|
1761 Optional third argument, if t, means if fail just return nil (no error).
|
|
1762 If not nil and not t, move to limit of search and return nil.
|
|
1763 Optional fourth argument is repeat count--search for successive occurrences.
|
|
1764 Optional fifth argument BUFFER specifies the buffer to search in and
|
|
1765 defaults to the current buffer.
|
|
1766 See also the functions `match-beginning', `match-end' and `replace-match'.
|
|
1767 */
|
|
1768 (regexp, bound, no_error, count, buffer))
|
|
1769 {
|
|
1770 return search_command (regexp, bound, no_error, count, buffer, -1, 1, 1);
|
|
1771 }
|
|
1772
|
|
1773 DEFUN ("posix-search-forward", Fposix_search_forward, 1, 5, "sPosix search: ", /*
|
|
1774 Search forward from point for regular expression REGEXP.
|
|
1775 Find the longest match in accord with Posix regular expression rules.
|
|
1776 Set point to the end of the occurrence found, and return point.
|
|
1777 An optional second argument bounds the search; it is a buffer position.
|
|
1778 The match found must not extend after that position.
|
|
1779 Optional third argument, if t, means if fail just return nil (no error).
|
|
1780 If not nil and not t, move to limit of search and return nil.
|
|
1781 Optional fourth argument is repeat count--search for successive occurrences.
|
|
1782 Optional fifth argument BUFFER specifies the buffer to search in and
|
|
1783 defaults to the current buffer.
|
|
1784 See also the functions `match-beginning', `match-end' and `replace-match'.
|
|
1785 */
|
|
1786 (regexp, bound, no_error, count, buffer))
|
|
1787 {
|
|
1788 return search_command (regexp, bound, no_error, count, buffer, 1, 1, 1);
|
|
1789 }
|
|
1790
|
|
1791
|
|
1792 static Lisp_Object
|
|
1793 free_created_dynarrs (Lisp_Object cons)
|
|
1794 {
|
|
1795 Dynarr_free (get_opaque_ptr (XCAR (cons)));
|
|
1796 Dynarr_free (get_opaque_ptr (XCDR (cons)));
|
|
1797 free_opaque_ptr (XCAR (cons));
|
|
1798 free_opaque_ptr (XCDR (cons));
|
|
1799 free_cons (XCONS (cons));
|
|
1800 return Qnil;
|
|
1801 }
|
|
1802
|
|
1803 DEFUN ("replace-match", Freplace_match, 1, 5, 0, /*
|
|
1804 Replace text matched by last search with NEWTEXT.
|
|
1805 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
|
|
1806 Otherwise maybe capitalize the whole text, or maybe just word initials,
|
|
1807 based on the replaced text.
|
|
1808 If the replaced text has only capital letters
|
|
1809 and has at least one multiletter word, convert NEWTEXT to all caps.
|
|
1810 If the replaced text has at least one word starting with a capital letter,
|
|
1811 then capitalize each word in NEWTEXT.
|
|
1812
|
|
1813 If third arg LITERAL is non-nil, insert NEWTEXT literally.
|
|
1814 Otherwise treat `\\' as special:
|
|
1815 `\\&' in NEWTEXT means substitute original matched text.
|
|
1816 `\\N' means substitute what matched the Nth `\\(...\\)'.
|
|
1817 If Nth parens didn't match, substitute nothing.
|
|
1818 `\\\\' means insert one `\\'.
|
|
1819 `\\u' means upcase the next character.
|
|
1820 `\\l' means downcase the next character.
|
|
1821 `\\U' means begin upcasing all following characters.
|
|
1822 `\\L' means begin downcasing all following characters.
|
|
1823 `\\E' means terminate the effect of any `\\U' or `\\L'.
|
|
1824 Case changes made with `\\u', `\\l', `\\U', and `\\L' override
|
|
1825 all other case changes that may be made in the replaced text.
|
|
1826 FIXEDCASE and LITERAL are optional arguments.
|
|
1827 Leaves point at end of replacement text.
|
|
1828
|
|
1829 The optional fourth argument STRING can be a string to modify.
|
|
1830 In that case, this function creates and returns a new string
|
|
1831 which is made by replacing the part of STRING that was matched.
|
|
1832 When fourth argument is a string, fifth argument STRBUFFER specifies
|
|
1833 the buffer to be used for syntax-table and case-table lookup and
|
|
1834 defaults to the current buffer. (When fourth argument is not a string,
|
|
1835 the buffer that the match occurred in has automatically been remembered
|
|
1836 and you do not need to specify it.)
|
|
1837 */
|
|
1838 (newtext, fixedcase, literal, string, strbuffer))
|
|
1839 {
|
|
1840 /* This function has been Mule-ized. */
|
|
1841 /* This function can GC */
|
|
1842 enum { nochange, all_caps, cap_initial } case_action;
|
|
1843 Bufpos pos, last;
|
|
1844 int some_multiletter_word;
|
|
1845 int some_lowercase;
|
|
1846 int some_uppercase;
|
|
1847 int some_nonuppercase_initial;
|
|
1848 Emchar c, prevc;
|
|
1849 Charcount inslen;
|
|
1850 struct buffer *buf;
|
440
|
1851 Lisp_Char_Table *syntax_table;
|
428
|
1852 int mc_count;
|
|
1853 Lisp_Object buffer;
|
|
1854 int_dynarr *ul_action_dynarr = 0;
|
|
1855 int_dynarr *ul_pos_dynarr = 0;
|
|
1856 int speccount;
|
|
1857
|
|
1858 CHECK_STRING (newtext);
|
|
1859
|
|
1860 if (! NILP (string))
|
|
1861 {
|
|
1862 CHECK_STRING (string);
|
|
1863 if (!EQ (last_thing_searched, Qt))
|
|
1864 error ("last thing matched was not a string");
|
|
1865 /* If the match data
|
|
1866 were abstracted into a special "match data" type instead
|
|
1867 of the typical half-assed "let the implementation be
|
|
1868 visible" form it's in, we could extend it to include
|
|
1869 the last string matched and the buffer used for that
|
|
1870 matching. But of course we can't change it as it is. */
|
|
1871 buf = decode_buffer (strbuffer, 0);
|
|
1872 XSETBUFFER (buffer, buf);
|
|
1873 }
|
|
1874 else
|
|
1875 {
|
|
1876 if (!BUFFERP (last_thing_searched))
|
|
1877 error ("last thing matched was not a buffer");
|
|
1878 buffer = last_thing_searched;
|
|
1879 buf = XBUFFER (buffer);
|
|
1880 }
|
|
1881
|
|
1882 syntax_table = XCHAR_TABLE (buf->mirror_syntax_table);
|
|
1883
|
|
1884 case_action = nochange; /* We tried an initialization */
|
|
1885 /* but some C compilers blew it */
|
|
1886
|
|
1887 if (search_regs.num_regs == 0)
|
|
1888 error ("replace-match called before any match found");
|
|
1889
|
|
1890 if (NILP (string))
|
|
1891 {
|
|
1892 if (search_regs.start[0] < BUF_BEGV (buf)
|
|
1893 || search_regs.start[0] > search_regs.end[0]
|
|
1894 || search_regs.end[0] > BUF_ZV (buf))
|
|
1895 args_out_of_range (make_int (search_regs.start[0]),
|
|
1896 make_int (search_regs.end[0]));
|
|
1897 }
|
|
1898 else
|
|
1899 {
|
|
1900 if (search_regs.start[0] < 0
|
|
1901 || search_regs.start[0] > search_regs.end[0]
|
|
1902 || search_regs.end[0] > XSTRING_CHAR_LENGTH (string))
|
|
1903 args_out_of_range (make_int (search_regs.start[0]),
|
|
1904 make_int (search_regs.end[0]));
|
|
1905 }
|
|
1906
|
|
1907 if (NILP (fixedcase))
|
|
1908 {
|
|
1909 /* Decide how to casify by examining the matched text. */
|
|
1910
|
|
1911 last = search_regs.end[0];
|
|
1912 prevc = '\n';
|
|
1913 case_action = all_caps;
|
|
1914
|
|
1915 /* some_multiletter_word is set nonzero if any original word
|
|
1916 is more than one letter long. */
|
|
1917 some_multiletter_word = 0;
|
|
1918 some_lowercase = 0;
|
|
1919 some_nonuppercase_initial = 0;
|
|
1920 some_uppercase = 0;
|
|
1921
|
|
1922 for (pos = search_regs.start[0]; pos < last; pos++)
|
|
1923 {
|
|
1924 if (NILP (string))
|
|
1925 c = BUF_FETCH_CHAR (buf, pos);
|
|
1926 else
|
|
1927 c = string_char (XSTRING (string), pos);
|
|
1928
|
|
1929 if (LOWERCASEP (buf, c))
|
|
1930 {
|
|
1931 /* Cannot be all caps if any original char is lower case */
|
|
1932
|
|
1933 some_lowercase = 1;
|
|
1934 if (!WORD_SYNTAX_P (syntax_table, prevc))
|
|
1935 some_nonuppercase_initial = 1;
|
|
1936 else
|
|
1937 some_multiletter_word = 1;
|
|
1938 }
|
|
1939 else if (!NOCASEP (buf, c))
|
|
1940 {
|
|
1941 some_uppercase = 1;
|
|
1942 if (!WORD_SYNTAX_P (syntax_table, prevc))
|
|
1943 ;
|
|
1944 else
|
|
1945 some_multiletter_word = 1;
|
|
1946 }
|
|
1947 else
|
|
1948 {
|
|
1949 /* If the initial is a caseless word constituent,
|
|
1950 treat that like a lowercase initial. */
|
|
1951 if (!WORD_SYNTAX_P (syntax_table, prevc))
|
|
1952 some_nonuppercase_initial = 1;
|
|
1953 }
|
|
1954
|
|
1955 prevc = c;
|
|
1956 }
|
|
1957
|
|
1958 /* Convert to all caps if the old text is all caps
|
|
1959 and has at least one multiletter word. */
|
|
1960 if (! some_lowercase && some_multiletter_word)
|
|
1961 case_action = all_caps;
|
|
1962 /* Capitalize each word, if the old text has all capitalized words. */
|
|
1963 else if (!some_nonuppercase_initial && some_multiletter_word)
|
|
1964 case_action = cap_initial;
|
|
1965 else if (!some_nonuppercase_initial && some_uppercase)
|
|
1966 /* Should x -> yz, operating on X, give Yz or YZ?
|
|
1967 We'll assume the latter. */
|
|
1968 case_action = all_caps;
|
|
1969 else
|
|
1970 case_action = nochange;
|
|
1971 }
|
|
1972
|
|
1973 /* Do replacement in a string. */
|
|
1974 if (!NILP (string))
|
|
1975 {
|
|
1976 Lisp_Object before, after;
|
|
1977
|
|
1978 speccount = specpdl_depth ();
|
|
1979 before = Fsubstring (string, Qzero, make_int (search_regs.start[0]));
|
|
1980 after = Fsubstring (string, make_int (search_regs.end[0]), Qnil);
|
|
1981
|
|
1982 /* Do case substitution into NEWTEXT if desired. */
|
|
1983 if (NILP (literal))
|
|
1984 {
|
|
1985 Charcount stlen = XSTRING_CHAR_LENGTH (newtext);
|
|
1986 Charcount strpos;
|
|
1987 /* XEmacs change: rewrote this loop somewhat to make it
|
|
1988 cleaner. Also added \U, \E, etc. */
|
|
1989 Charcount literal_start = 0;
|
|
1990 /* We build up the substituted string in ACCUM. */
|
|
1991 Lisp_Object accum;
|
|
1992
|
|
1993 accum = Qnil;
|
|
1994
|
|
1995 /* OK, the basic idea here is that we scan through the
|
|
1996 replacement string until we find a backslash, which
|
|
1997 represents a substring of the original string to be
|
|
1998 substituted. We then append onto ACCUM the literal
|
|
1999 text before the backslash (LASTPOS marks the
|
|
2000 beginning of this) followed by the substring of the
|
|
2001 original string that needs to be inserted. */
|
|
2002 for (strpos = 0; strpos < stlen; strpos++)
|
|
2003 {
|
|
2004 /* If LITERAL_END is set, we've encountered a backslash
|
|
2005 (the end of literal text to be inserted). */
|
|
2006 Charcount literal_end = -1;
|
|
2007 /* If SUBSTART is set, we need to also insert the
|
|
2008 text from SUBSTART to SUBEND in the original string. */
|
|
2009 Charcount substart = -1;
|
|
2010 Charcount subend = -1;
|
|
2011
|
|
2012 c = string_char (XSTRING (newtext), strpos);
|
|
2013 if (c == '\\' && strpos < stlen - 1)
|
|
2014 {
|
|
2015 c = string_char (XSTRING (newtext), ++strpos);
|
|
2016 if (c == '&')
|
|
2017 {
|
|
2018 literal_end = strpos - 1;
|
|
2019 substart = search_regs.start[0];
|
|
2020 subend = search_regs.end[0];
|
|
2021 }
|
|
2022 else if (c >= '1' && c <= '9' &&
|
|
2023 c <= search_regs.num_regs + '0')
|
|
2024 {
|
|
2025 if (search_regs.start[c - '0'] >= 0)
|
|
2026 {
|
|
2027 literal_end = strpos - 1;
|
|
2028 substart = search_regs.start[c - '0'];
|
|
2029 subend = search_regs.end[c - '0'];
|
|
2030 }
|
|
2031 }
|
|
2032 else if (c == 'U' || c == 'u' || c == 'L' || c == 'l' ||
|
|
2033 c == 'E')
|
|
2034 {
|
|
2035 /* Keep track of all case changes requested, but don't
|
|
2036 make them now. Do them later so we override
|
|
2037 everything else. */
|
|
2038 if (!ul_pos_dynarr)
|
|
2039 {
|
|
2040 ul_pos_dynarr = Dynarr_new (int);
|
|
2041 ul_action_dynarr = Dynarr_new (int);
|
|
2042 record_unwind_protect
|
|
2043 (free_created_dynarrs,
|
|
2044 noseeum_cons
|
|
2045 (make_opaque_ptr (ul_pos_dynarr),
|
|
2046 make_opaque_ptr (ul_action_dynarr)));
|
|
2047 }
|
|
2048 literal_end = strpos - 1;
|
|
2049 Dynarr_add (ul_pos_dynarr,
|
|
2050 (!NILP (accum)
|
|
2051 ? XSTRING_CHAR_LENGTH (accum)
|
|
2052 : 0) + (literal_end - literal_start));
|
|
2053 Dynarr_add (ul_action_dynarr, c);
|
|
2054 }
|
|
2055 else if (c == '\\')
|
|
2056 /* So we get just one backslash. */
|
|
2057 literal_end = strpos;
|
|
2058 }
|
|
2059 if (literal_end >= 0)
|
|
2060 {
|
|
2061 Lisp_Object literal_text = Qnil;
|
|
2062 Lisp_Object substring = Qnil;
|
|
2063 if (literal_end != literal_start)
|
|
2064 literal_text = Fsubstring (newtext,
|
|
2065 make_int (literal_start),
|
|
2066 make_int (literal_end));
|
|
2067 if (substart >= 0 && subend != substart)
|
|
2068 substring = Fsubstring (string,
|
|
2069 make_int (substart),
|
|
2070 make_int (subend));
|
|
2071 if (!NILP (literal_text) || !NILP (substring))
|
|
2072 accum = concat3 (accum, literal_text, substring);
|
|
2073 literal_start = strpos + 1;
|
|
2074 }
|
|
2075 }
|
|
2076
|
|
2077 if (strpos != literal_start)
|
|
2078 /* some literal text at end to be inserted */
|
|
2079 newtext = concat2 (accum, Fsubstring (newtext,
|
|
2080 make_int (literal_start),
|
|
2081 make_int (strpos)));
|
|
2082 else
|
|
2083 newtext = accum;
|
|
2084 }
|
|
2085
|
|
2086 if (case_action == all_caps)
|
|
2087 newtext = Fupcase (newtext, buffer);
|
|
2088 else if (case_action == cap_initial)
|
|
2089 newtext = Fupcase_initials (newtext, buffer);
|
|
2090
|
|
2091 /* Now finally, we need to process the \U's, \E's, etc. */
|
|
2092 if (ul_pos_dynarr)
|
|
2093 {
|
|
2094 int i = 0;
|
|
2095 int cur_action = 'E';
|
|
2096 Charcount stlen = XSTRING_CHAR_LENGTH (newtext);
|
|
2097 Charcount strpos;
|
|
2098
|
|
2099 for (strpos = 0; strpos < stlen; strpos++)
|
|
2100 {
|
|
2101 Emchar curchar = string_char (XSTRING (newtext), strpos);
|
|
2102 Emchar newchar = -1;
|
|
2103 if (i < Dynarr_length (ul_pos_dynarr) &&
|
|
2104 strpos == Dynarr_at (ul_pos_dynarr, i))
|
|
2105 {
|
|
2106 int new_action = Dynarr_at (ul_action_dynarr, i);
|
|
2107 i++;
|
|
2108 if (new_action == 'u')
|
|
2109 newchar = UPCASE (buf, curchar);
|
|
2110 else if (new_action == 'l')
|
|
2111 newchar = DOWNCASE (buf, curchar);
|
|
2112 else
|
|
2113 cur_action = new_action;
|
|
2114 }
|
|
2115 if (newchar == -1)
|
|
2116 {
|
|
2117 if (cur_action == 'U')
|
|
2118 newchar = UPCASE (buf, curchar);
|
|
2119 else if (cur_action == 'L')
|
|
2120 newchar = DOWNCASE (buf, curchar);
|
|
2121 else
|
|
2122 newchar = curchar;
|
|
2123 }
|
|
2124 if (newchar != curchar)
|
|
2125 set_string_char (XSTRING (newtext), strpos, newchar);
|
|
2126 }
|
|
2127 }
|
|
2128
|
|
2129 /* frees the Dynarrs if necessary. */
|
|
2130 unbind_to (speccount, Qnil);
|
|
2131 return concat3 (before, newtext, after);
|
|
2132 }
|
|
2133
|
|
2134 mc_count = begin_multiple_change (buf, search_regs.start[0],
|
|
2135 search_regs.end[0]);
|
|
2136
|
|
2137 /* begin_multiple_change() records an unwind-protect, so we need to
|
|
2138 record this value now. */
|
|
2139 speccount = specpdl_depth ();
|
|
2140
|
|
2141 /* We insert the replacement text before the old text, and then
|
|
2142 delete the original text. This means that markers at the
|
|
2143 beginning or end of the original will float to the corresponding
|
|
2144 position in the replacement. */
|
|
2145 BUF_SET_PT (buf, search_regs.start[0]);
|
|
2146 if (!NILP (literal))
|
|
2147 Finsert (1, &newtext);
|
|
2148 else
|
|
2149 {
|
|
2150 Charcount stlen = XSTRING_CHAR_LENGTH (newtext);
|
|
2151 Charcount strpos;
|
|
2152 struct gcpro gcpro1;
|
|
2153 GCPRO1 (newtext);
|
|
2154 for (strpos = 0; strpos < stlen; strpos++)
|
|
2155 {
|
|
2156 Charcount offset = BUF_PT (buf) - search_regs.start[0];
|
|
2157
|
|
2158 c = string_char (XSTRING (newtext), strpos);
|
|
2159 if (c == '\\' && strpos < stlen - 1)
|
|
2160 {
|
|
2161 c = string_char (XSTRING (newtext), ++strpos);
|
|
2162 if (c == '&')
|
|
2163 Finsert_buffer_substring
|
|
2164 (buffer,
|
|
2165 make_int (search_regs.start[0] + offset),
|
|
2166 make_int (search_regs.end[0] + offset));
|
|
2167 else if (c >= '1' && c <= '9' &&
|
|
2168 c <= search_regs.num_regs + '0')
|
|
2169 {
|
|
2170 if (search_regs.start[c - '0'] >= 1)
|
|
2171 Finsert_buffer_substring
|
|
2172 (buffer,
|
|
2173 make_int (search_regs.start[c - '0'] + offset),
|
|
2174 make_int (search_regs.end[c - '0'] + offset));
|
|
2175 }
|
|
2176 else if (c == 'U' || c == 'u' || c == 'L' || c == 'l' ||
|
|
2177 c == 'E')
|
|
2178 {
|
|
2179 /* Keep track of all case changes requested, but don't
|
|
2180 make them now. Do them later so we override
|
|
2181 everything else. */
|
|
2182 if (!ul_pos_dynarr)
|
|
2183 {
|
|
2184 ul_pos_dynarr = Dynarr_new (int);
|
|
2185 ul_action_dynarr = Dynarr_new (int);
|
|
2186 record_unwind_protect
|
|
2187 (free_created_dynarrs,
|
|
2188 Fcons (make_opaque_ptr (ul_pos_dynarr),
|
|
2189 make_opaque_ptr (ul_action_dynarr)));
|
|
2190 }
|
|
2191 Dynarr_add (ul_pos_dynarr, BUF_PT (buf));
|
|
2192 Dynarr_add (ul_action_dynarr, c);
|
|
2193 }
|
|
2194 else
|
|
2195 buffer_insert_emacs_char (buf, c);
|
|
2196 }
|
|
2197 else
|
|
2198 buffer_insert_emacs_char (buf, c);
|
|
2199 }
|
|
2200 UNGCPRO;
|
|
2201 }
|
|
2202
|
|
2203 inslen = BUF_PT (buf) - (search_regs.start[0]);
|
|
2204 buffer_delete_range (buf, search_regs.start[0] + inslen, search_regs.end[0] +
|
|
2205 inslen, 0);
|
|
2206
|
|
2207 if (case_action == all_caps)
|
|
2208 Fupcase_region (make_int (BUF_PT (buf) - inslen),
|
|
2209 make_int (BUF_PT (buf)), buffer);
|
|
2210 else if (case_action == cap_initial)
|
|
2211 Fupcase_initials_region (make_int (BUF_PT (buf) - inslen),
|
|
2212 make_int (BUF_PT (buf)), buffer);
|
|
2213
|
|
2214 /* Now go through and make all the case changes that were requested
|
|
2215 in the replacement string. */
|
|
2216 if (ul_pos_dynarr)
|
|
2217 {
|
|
2218 Bufpos eend = BUF_PT (buf);
|
|
2219 int i = 0;
|
|
2220 int cur_action = 'E';
|
|
2221
|
|
2222 for (pos = BUF_PT (buf) - inslen; pos < eend; pos++)
|
|
2223 {
|
|
2224 Emchar curchar = BUF_FETCH_CHAR (buf, pos);
|
|
2225 Emchar newchar = -1;
|
|
2226 if (i < Dynarr_length (ul_pos_dynarr) &&
|
|
2227 pos == Dynarr_at (ul_pos_dynarr, i))
|
|
2228 {
|
|
2229 int new_action = Dynarr_at (ul_action_dynarr, i);
|
|
2230 i++;
|
|
2231 if (new_action == 'u')
|
|
2232 newchar = UPCASE (buf, curchar);
|
|
2233 else if (new_action == 'l')
|
|
2234 newchar = DOWNCASE (buf, curchar);
|
|
2235 else
|
|
2236 cur_action = new_action;
|
|
2237 }
|
|
2238 if (newchar == -1)
|
|
2239 {
|
|
2240 if (cur_action == 'U')
|
|
2241 newchar = UPCASE (buf, curchar);
|
|
2242 else if (cur_action == 'L')
|
|
2243 newchar = DOWNCASE (buf, curchar);
|
|
2244 else
|
|
2245 newchar = curchar;
|
|
2246 }
|
|
2247 if (newchar != curchar)
|
|
2248 buffer_replace_char (buf, pos, newchar, 0, 0);
|
|
2249 }
|
|
2250 }
|
|
2251
|
|
2252 /* frees the Dynarrs if necessary. */
|
|
2253 unbind_to (speccount, Qnil);
|
|
2254 end_multiple_change (buf, mc_count);
|
|
2255
|
|
2256 return Qnil;
|
|
2257 }
|
|
2258
|
|
2259 static Lisp_Object
|
|
2260 match_limit (Lisp_Object num, int beginningp)
|
|
2261 {
|
|
2262 /* This function has been Mule-ized. */
|
|
2263 int n;
|
|
2264
|
|
2265 CHECK_INT (num);
|
|
2266 n = XINT (num);
|
|
2267 if (n < 0 || n >= search_regs.num_regs)
|
|
2268 args_out_of_range (num, make_int (search_regs.num_regs));
|
|
2269 if (search_regs.num_regs == 0 ||
|
|
2270 search_regs.start[n] < 0)
|
|
2271 return Qnil;
|
|
2272 return make_int (beginningp ? search_regs.start[n] : search_regs.end[n]);
|
|
2273 }
|
|
2274
|
|
2275 DEFUN ("match-beginning", Fmatch_beginning, 1, 1, 0, /*
|
|
2276 Return position of start of text matched by last regexp search.
|
|
2277 NUM, specifies which parenthesized expression in the last regexp.
|
|
2278 Value is nil if NUMth pair didn't match, or there were less than NUM pairs.
|
|
2279 Zero means the entire text matched by the whole regexp or whole string.
|
|
2280 */
|
|
2281 (num))
|
|
2282 {
|
|
2283 return match_limit (num, 1);
|
|
2284 }
|
|
2285
|
|
2286 DEFUN ("match-end", Fmatch_end, 1, 1, 0, /*
|
|
2287 Return position of end of text matched by last regexp search.
|
|
2288 NUM specifies which parenthesized expression in the last regexp.
|
|
2289 Value is nil if NUMth pair didn't match, or there were less than NUM pairs.
|
|
2290 Zero means the entire text matched by the whole regexp or whole string.
|
|
2291 */
|
|
2292 (num))
|
|
2293 {
|
|
2294 return match_limit (num, 0);
|
|
2295 }
|
|
2296
|
|
2297 DEFUN ("match-data", Fmatch_data, 0, 2, 0, /*
|
|
2298 Return a list containing all info on what the last regexp search matched.
|
|
2299 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
|
|
2300 All the elements are markers or nil (nil if the Nth pair didn't match)
|
|
2301 if the last match was on a buffer; integers or nil if a string was matched.
|
|
2302 Use `store-match-data' to reinstate the data in this list.
|
|
2303
|
|
2304 If INTEGERS (the optional first argument) is non-nil, always use integers
|
|
2305 \(rather than markers) to represent buffer positions.
|
|
2306 If REUSE is a list, reuse it as part of the value. If REUSE is long enough
|
|
2307 to hold all the values, and if INTEGERS is non-nil, no consing is done.
|
|
2308 */
|
|
2309 (integers, reuse))
|
|
2310 {
|
|
2311 /* This function has been Mule-ized. */
|
|
2312 Lisp_Object tail, prev;
|
|
2313 Lisp_Object *data;
|
|
2314 int i;
|
|
2315 Charcount len;
|
|
2316
|
|
2317 if (NILP (last_thing_searched))
|
|
2318 /*error ("match-data called before any match found");*/
|
|
2319 return Qnil;
|
|
2320
|
|
2321 data = alloca_array (Lisp_Object, 2 * search_regs.num_regs);
|
|
2322
|
|
2323 len = -1;
|
|
2324 for (i = 0; i < search_regs.num_regs; i++)
|
|
2325 {
|
|
2326 Bufpos start = search_regs.start[i];
|
|
2327 if (start >= 0)
|
|
2328 {
|
|
2329 if (EQ (last_thing_searched, Qt)
|
|
2330 || !NILP (integers))
|
|
2331 {
|
|
2332 data[2 * i] = make_int (start);
|
|
2333 data[2 * i + 1] = make_int (search_regs.end[i]);
|
|
2334 }
|
|
2335 else if (BUFFERP (last_thing_searched))
|
|
2336 {
|
|
2337 data[2 * i] = Fmake_marker ();
|
|
2338 Fset_marker (data[2 * i],
|
|
2339 make_int (start),
|
|
2340 last_thing_searched);
|
|
2341 data[2 * i + 1] = Fmake_marker ();
|
|
2342 Fset_marker (data[2 * i + 1],
|
|
2343 make_int (search_regs.end[i]),
|
|
2344 last_thing_searched);
|
|
2345 }
|
|
2346 else
|
|
2347 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
|
|
2348 abort ();
|
|
2349
|
|
2350 len = i;
|
|
2351 }
|
|
2352 else
|
|
2353 data[2 * i] = data [2 * i + 1] = Qnil;
|
|
2354 }
|
|
2355 if (!CONSP (reuse))
|
|
2356 return Flist (2 * len + 2, data);
|
|
2357
|
|
2358 /* If REUSE is a list, store as many value elements as will fit
|
|
2359 into the elements of REUSE. */
|
|
2360 for (prev = Qnil, i = 0, tail = reuse; CONSP (tail); i++, tail = XCDR (tail))
|
|
2361 {
|
|
2362 if (i < 2 * len + 2)
|
|
2363 XCAR (tail) = data[i];
|
|
2364 else
|
|
2365 XCAR (tail) = Qnil;
|
|
2366 prev = tail;
|
|
2367 }
|
|
2368
|
|
2369 /* If we couldn't fit all value elements into REUSE,
|
|
2370 cons up the rest of them and add them to the end of REUSE. */
|
|
2371 if (i < 2 * len + 2)
|
|
2372 XCDR (prev) = Flist (2 * len + 2 - i, data + i);
|
|
2373
|
|
2374 return reuse;
|
|
2375 }
|
|
2376
|
|
2377
|
|
2378 DEFUN ("store-match-data", Fstore_match_data, 1, 1, 0, /*
|
|
2379 Set internal data on last search match from elements of LIST.
|
|
2380 LIST should have been created by calling `match-data' previously.
|
|
2381 */
|
|
2382 (list))
|
|
2383 {
|
|
2384 /* This function has been Mule-ized. */
|
|
2385 REGISTER int i;
|
|
2386 REGISTER Lisp_Object marker;
|
|
2387 int num_regs;
|
|
2388 int length;
|
|
2389
|
|
2390 if (running_asynch_code)
|
|
2391 save_search_regs ();
|
|
2392
|
|
2393 CONCHECK_LIST (list);
|
|
2394
|
|
2395 /* Unless we find a marker with a buffer in LIST, assume that this
|
|
2396 match data came from a string. */
|
|
2397 last_thing_searched = Qt;
|
|
2398
|
|
2399 /* Allocate registers if they don't already exist. */
|
|
2400 length = XINT (Flength (list)) / 2;
|
|
2401 num_regs = search_regs.num_regs;
|
|
2402
|
|
2403 if (length > num_regs)
|
|
2404 {
|
|
2405 if (search_regs.num_regs == 0)
|
|
2406 {
|
|
2407 search_regs.start = xnew_array (regoff_t, length);
|
|
2408 search_regs.end = xnew_array (regoff_t, length);
|
|
2409 }
|
|
2410 else
|
|
2411 {
|
|
2412 XREALLOC_ARRAY (search_regs.start, regoff_t, length);
|
|
2413 XREALLOC_ARRAY (search_regs.end, regoff_t, length);
|
|
2414 }
|
|
2415
|
|
2416 search_regs.num_regs = length;
|
|
2417 }
|
|
2418
|
|
2419 for (i = 0; i < num_regs; i++)
|
|
2420 {
|
|
2421 marker = Fcar (list);
|
|
2422 if (NILP (marker))
|
|
2423 {
|
|
2424 search_regs.start[i] = -1;
|
|
2425 list = Fcdr (list);
|
|
2426 }
|
|
2427 else
|
|
2428 {
|
|
2429 if (MARKERP (marker))
|
|
2430 {
|
|
2431 if (XMARKER (marker)->buffer == 0)
|
|
2432 marker = Qzero;
|
|
2433 else
|
|
2434 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
|
|
2435 }
|
|
2436
|
|
2437 CHECK_INT_COERCE_MARKER (marker);
|
|
2438 search_regs.start[i] = XINT (marker);
|
|
2439 list = Fcdr (list);
|
|
2440
|
|
2441 marker = Fcar (list);
|
|
2442 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
|
|
2443 marker = Qzero;
|
|
2444
|
|
2445 CHECK_INT_COERCE_MARKER (marker);
|
|
2446 search_regs.end[i] = XINT (marker);
|
|
2447 }
|
|
2448 list = Fcdr (list);
|
|
2449 }
|
|
2450
|
|
2451 return Qnil;
|
|
2452 }
|
|
2453
|
|
2454 /* If non-zero the match data have been saved in saved_search_regs
|
|
2455 during the execution of a sentinel or filter. */
|
|
2456 static int search_regs_saved;
|
|
2457 static struct re_registers saved_search_regs;
|
|
2458
|
|
2459 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
|
|
2460 if asynchronous code (filter or sentinel) is running. */
|
|
2461 static void
|
|
2462 save_search_regs (void)
|
|
2463 {
|
|
2464 if (!search_regs_saved)
|
|
2465 {
|
|
2466 saved_search_regs.num_regs = search_regs.num_regs;
|
|
2467 saved_search_regs.start = search_regs.start;
|
|
2468 saved_search_regs.end = search_regs.end;
|
|
2469 search_regs.num_regs = 0;
|
|
2470 search_regs.start = 0;
|
|
2471 search_regs.end = 0;
|
|
2472
|
|
2473 search_regs_saved = 1;
|
|
2474 }
|
|
2475 }
|
|
2476
|
|
2477 /* Called upon exit from filters and sentinels. */
|
|
2478 void
|
|
2479 restore_match_data (void)
|
|
2480 {
|
|
2481 if (search_regs_saved)
|
|
2482 {
|
|
2483 if (search_regs.num_regs > 0)
|
|
2484 {
|
|
2485 xfree (search_regs.start);
|
|
2486 xfree (search_regs.end);
|
|
2487 }
|
|
2488 search_regs.num_regs = saved_search_regs.num_regs;
|
|
2489 search_regs.start = saved_search_regs.start;
|
|
2490 search_regs.end = saved_search_regs.end;
|
|
2491
|
|
2492 search_regs_saved = 0;
|
|
2493 }
|
|
2494 }
|
|
2495
|
|
2496 /* Quote a string to inactivate reg-expr chars */
|
|
2497
|
|
2498 DEFUN ("regexp-quote", Fregexp_quote, 1, 1, 0, /*
|
|
2499 Return a regexp string which matches exactly STRING and nothing else.
|
|
2500 */
|
|
2501 (str))
|
|
2502 {
|
|
2503 REGISTER Bufbyte *in, *out, *end;
|
|
2504 REGISTER Bufbyte *temp;
|
|
2505
|
|
2506 CHECK_STRING (str);
|
|
2507
|
|
2508 temp = (Bufbyte *) alloca (XSTRING_LENGTH (str) * 2);
|
|
2509
|
|
2510 /* Now copy the data into the new string, inserting escapes. */
|
|
2511
|
|
2512 in = XSTRING_DATA (str);
|
|
2513 end = in + XSTRING_LENGTH (str);
|
|
2514 out = temp;
|
|
2515
|
|
2516 while (in < end)
|
|
2517 {
|
|
2518 Emchar c = charptr_emchar (in);
|
|
2519
|
|
2520 if (c == '[' || c == ']'
|
|
2521 || c == '*' || c == '.' || c == '\\'
|
|
2522 || c == '?' || c == '+'
|
|
2523 || c == '^' || c == '$')
|
|
2524 *out++ = '\\';
|
|
2525 out += set_charptr_emchar (out, c);
|
|
2526 INC_CHARPTR (in);
|
|
2527 }
|
|
2528
|
|
2529 return make_string (temp, out - temp);
|
|
2530 }
|
|
2531
|
|
2532 DEFUN ("set-word-regexp", Fset_word_regexp, 1, 1, 0, /*
|
|
2533 Set the regexp to be used to match a word in regular-expression searching.
|
|
2534 #### Not yet implemented. Currently does nothing.
|
|
2535 #### Do not use this yet. Its calling interface is likely to change.
|
|
2536 */
|
|
2537 (regexp))
|
|
2538 {
|
|
2539 return Qnil;
|
|
2540 }
|
|
2541
|
|
2542
|
|
2543 /************************************************************************/
|
|
2544 /* initialization */
|
|
2545 /************************************************************************/
|
|
2546
|
|
2547 void
|
|
2548 syms_of_search (void)
|
|
2549 {
|
|
2550
|
442
|
2551 DEFERROR_STANDARD (Qsearch_failed, Qinvalid_operation);
|
|
2552 DEFERROR_STANDARD (Qinvalid_regexp, Qsyntax_error);
|
428
|
2553
|
|
2554 DEFSUBR (Flooking_at);
|
|
2555 DEFSUBR (Fposix_looking_at);
|
|
2556 DEFSUBR (Fstring_match);
|
|
2557 DEFSUBR (Fposix_string_match);
|
|
2558 DEFSUBR (Fskip_chars_forward);
|
|
2559 DEFSUBR (Fskip_chars_backward);
|
|
2560 DEFSUBR (Fskip_syntax_forward);
|
|
2561 DEFSUBR (Fskip_syntax_backward);
|
|
2562 DEFSUBR (Fsearch_forward);
|
|
2563 DEFSUBR (Fsearch_backward);
|
|
2564 DEFSUBR (Fword_search_forward);
|
|
2565 DEFSUBR (Fword_search_backward);
|
|
2566 DEFSUBR (Fre_search_forward);
|
|
2567 DEFSUBR (Fre_search_backward);
|
|
2568 DEFSUBR (Fposix_search_forward);
|
|
2569 DEFSUBR (Fposix_search_backward);
|
|
2570 DEFSUBR (Freplace_match);
|
|
2571 DEFSUBR (Fmatch_beginning);
|
|
2572 DEFSUBR (Fmatch_end);
|
|
2573 DEFSUBR (Fmatch_data);
|
|
2574 DEFSUBR (Fstore_match_data);
|
|
2575 DEFSUBR (Fregexp_quote);
|
|
2576 DEFSUBR (Fset_word_regexp);
|
|
2577 }
|
|
2578
|
|
2579 void
|
|
2580 reinit_vars_of_search (void)
|
|
2581 {
|
|
2582 int i;
|
|
2583
|
|
2584 last_thing_searched = Qnil;
|
|
2585 staticpro_nodump (&last_thing_searched);
|
|
2586
|
|
2587 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
|
|
2588 {
|
|
2589 searchbufs[i].buf.allocated = 100;
|
|
2590 searchbufs[i].buf.buffer = (unsigned char *) xmalloc (100);
|
|
2591 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
|
|
2592 searchbufs[i].regexp = Qnil;
|
|
2593 staticpro_nodump (&searchbufs[i].regexp);
|
|
2594 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
|
|
2595 }
|
|
2596 searchbuf_head = &searchbufs[0];
|
|
2597 }
|
|
2598
|
|
2599 void
|
|
2600 vars_of_search (void)
|
|
2601 {
|
|
2602 reinit_vars_of_search ();
|
|
2603
|
|
2604 DEFVAR_LISP ("forward-word-regexp", &Vforward_word_regexp /*
|
|
2605 *Regular expression to be used in `forward-word'.
|
|
2606 #### Not yet implemented.
|
|
2607 */ );
|
|
2608 Vforward_word_regexp = Qnil;
|
|
2609
|
|
2610 DEFVAR_LISP ("backward-word-regexp", &Vbackward_word_regexp /*
|
|
2611 *Regular expression to be used in `backward-word'.
|
|
2612 #### Not yet implemented.
|
|
2613 */ );
|
|
2614 Vbackward_word_regexp = Qnil;
|
|
2615 }
|
|
2616
|
|
2617 void
|
|
2618 complex_vars_of_search (void)
|
|
2619 {
|
|
2620 Vskip_chars_range_table = Fmake_range_table ();
|
|
2621 staticpro (&Vskip_chars_range_table);
|
|
2622 }
|