428
+ − 1 /* Random utility Lisp functions.
+ − 2 Copyright (C) 1985, 86, 87, 93, 94, 95 Free Software Foundation, Inc.
+ − 3 Copyright (C) 1995, 1996 Ben Wing.
+ − 4
+ − 5 This file is part of XEmacs.
+ − 6
+ − 7 XEmacs is free software; you can redistribute it and/or modify it
+ − 8 under the terms of the GNU General Public License as published by the
+ − 9 Free Software Foundation; either version 2, or (at your option) any
+ − 10 later version.
+ − 11
+ − 12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
+ − 13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ − 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ − 15 for more details.
+ − 16
+ − 17 You should have received a copy of the GNU General Public License
+ − 18 along with XEmacs; see the file COPYING. If not, write to
+ − 19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ − 20 Boston, MA 02111-1307, USA. */
+ − 21
+ − 22 /* Synched up with: Mule 2.0, FSF 19.30. */
+ − 23
+ − 24 /* This file has been Mule-ized. */
+ − 25
+ − 26 /* Note: FSF 19.30 has bool vectors. We have bit vectors. */
+ − 27
+ − 28 /* Hacked on for Mule by Ben Wing, December 1994, January 1995. */
+ − 29
+ − 30 #include <config.h>
+ − 31
+ − 32 /* Note on some machines this defines `vector' as a typedef,
+ − 33 so make sure we don't use that name in this file. */
+ − 34 #undef vector
+ − 35 #define vector *****
+ − 36
+ − 37 #include "lisp.h"
+ − 38
442
+ − 39 #include "sysfile.h"
428
+ − 40
+ − 41 #include "buffer.h"
+ − 42 #include "bytecode.h"
+ − 43 #include "device.h"
+ − 44 #include "events.h"
+ − 45 #include "extents.h"
+ − 46 #include "frame.h"
+ − 47 #include "systime.h"
+ − 48 #include "insdel.h"
+ − 49 #include "lstream.h"
+ − 50 #include "opaque.h"
+ − 51
+ − 52 /* NOTE: This symbol is also used in lread.c */
+ − 53 #define FEATUREP_SYNTAX
+ − 54
+ − 55 Lisp_Object Qstring_lessp;
+ − 56 Lisp_Object Qidentity;
+ − 57
563
+ − 58 Lisp_Object Qbase64_conversion_error;
+ − 59
428
+ − 60 static int internal_old_equal (Lisp_Object, Lisp_Object, int);
454
+ − 61 Lisp_Object safe_copy_tree (Lisp_Object arg, Lisp_Object vecp, int depth);
428
+ − 62
+ − 63 static Lisp_Object
+ − 64 mark_bit_vector (Lisp_Object obj)
+ − 65 {
+ − 66 return Qnil;
+ − 67 }
+ − 68
+ − 69 static void
+ − 70 print_bit_vector (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
+ − 71 {
665
+ − 72 Elemcount i;
440
+ − 73 Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
665
+ − 74 Elemcount len = bit_vector_length (v);
+ − 75 Elemcount last = len;
428
+ − 76
+ − 77 if (INTP (Vprint_length))
+ − 78 last = min (len, XINT (Vprint_length));
+ − 79 write_c_string ("#*", printcharfun);
+ − 80 for (i = 0; i < last; i++)
+ − 81 {
+ − 82 if (bit_vector_bit (v, i))
+ − 83 write_c_string ("1", printcharfun);
+ − 84 else
+ − 85 write_c_string ("0", printcharfun);
+ − 86 }
+ − 87
+ − 88 if (last != len)
+ − 89 write_c_string ("...", printcharfun);
+ − 90 }
+ − 91
+ − 92 static int
+ − 93 bit_vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
+ − 94 {
440
+ − 95 Lisp_Bit_Vector *v1 = XBIT_VECTOR (obj1);
+ − 96 Lisp_Bit_Vector *v2 = XBIT_VECTOR (obj2);
428
+ − 97
+ − 98 return ((bit_vector_length (v1) == bit_vector_length (v2)) &&
+ − 99 !memcmp (v1->bits, v2->bits,
+ − 100 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v1)) *
+ − 101 sizeof (long)));
+ − 102 }
+ − 103
665
+ − 104 static Hashcode
428
+ − 105 bit_vector_hash (Lisp_Object obj, int depth)
+ − 106 {
440
+ − 107 Lisp_Bit_Vector *v = XBIT_VECTOR (obj);
428
+ − 108 return HASH2 (bit_vector_length (v),
+ − 109 memory_hash (v->bits,
+ − 110 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)) *
+ − 111 sizeof (long)));
+ − 112 }
+ − 113
665
+ − 114 static Bytecount
442
+ − 115 size_bit_vector (const void *lheader)
+ − 116 {
+ − 117 Lisp_Bit_Vector *v = (Lisp_Bit_Vector *) lheader;
456
+ − 118 return FLEXIBLE_ARRAY_STRUCT_SIZEOF (Lisp_Bit_Vector, unsigned long, bits,
442
+ − 119 BIT_VECTOR_LONG_STORAGE (bit_vector_length (v)));
+ − 120 }
+ − 121
428
+ − 122 static const struct lrecord_description bit_vector_description[] = {
440
+ − 123 { XD_LISP_OBJECT, offsetof (Lisp_Bit_Vector, next) },
428
+ − 124 { XD_END }
+ − 125 };
+ − 126
+ − 127
442
+ − 128 DEFINE_BASIC_LRECORD_SEQUENCE_IMPLEMENTATION ("bit-vector", bit_vector,
+ − 129 mark_bit_vector, print_bit_vector, 0,
+ − 130 bit_vector_equal, bit_vector_hash,
+ − 131 bit_vector_description, size_bit_vector,
+ − 132 Lisp_Bit_Vector);
428
+ − 133
+ − 134 DEFUN ("identity", Fidentity, 1, 1, 0, /*
+ − 135 Return the argument unchanged.
+ − 136 */
+ − 137 (arg))
+ − 138 {
+ − 139 return arg;
+ − 140 }
+ − 141
+ − 142 extern long get_random (void);
+ − 143 extern void seed_random (long arg);
+ − 144
+ − 145 DEFUN ("random", Frandom, 0, 1, 0, /*
+ − 146 Return a pseudo-random number.
+ − 147 All integers representable in Lisp are equally likely.
+ − 148 On most systems, this is 28 bits' worth.
+ − 149 With positive integer argument N, return random number in interval [0,N).
+ − 150 With argument t, set the random number seed from the current time and pid.
+ − 151 */
+ − 152 (limit))
+ − 153 {
+ − 154 EMACS_INT val;
+ − 155 unsigned long denominator;
+ − 156
+ − 157 if (EQ (limit, Qt))
+ − 158 seed_random (getpid () + time (NULL));
+ − 159 if (NATNUMP (limit) && !ZEROP (limit))
+ − 160 {
+ − 161 /* Try to take our random number from the higher bits of VAL,
+ − 162 not the lower, since (says Gentzel) the low bits of `random'
+ − 163 are less random than the higher ones. We do this by using the
+ − 164 quotient rather than the remainder. At the high end of the RNG
+ − 165 it's possible to get a quotient larger than limit; discarding
+ − 166 these values eliminates the bias that would otherwise appear
+ − 167 when using a large limit. */
+ − 168 denominator = ((unsigned long)1 << VALBITS) / XINT (limit);
+ − 169 do
+ − 170 val = get_random () / denominator;
+ − 171 while (val >= XINT (limit));
+ − 172 }
+ − 173 else
+ − 174 val = get_random ();
+ − 175
+ − 176 return make_int (val);
+ − 177 }
+ − 178
+ − 179 /* Random data-structure functions */
+ − 180
+ − 181 #ifdef LOSING_BYTECODE
+ − 182
+ − 183 /* #### Delete this shit */
+ − 184
+ − 185 /* Charcount is a misnomer here as we might be dealing with the
+ − 186 length of a vector or list, but emphasizes that we're not dealing
+ − 187 with Bytecounts in strings */
+ − 188 static Charcount
+ − 189 length_with_bytecode_hack (Lisp_Object seq)
+ − 190 {
+ − 191 if (!COMPILED_FUNCTIONP (seq))
+ − 192 return XINT (Flength (seq));
+ − 193 else
+ − 194 {
440
+ − 195 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (seq);
428
+ − 196
+ − 197 return (f->flags.interactivep ? COMPILED_INTERACTIVE :
+ − 198 f->flags.domainp ? COMPILED_DOMAIN :
+ − 199 COMPILED_DOC_STRING)
+ − 200 + 1;
+ − 201 }
+ − 202 }
+ − 203
+ − 204 #endif /* LOSING_BYTECODE */
+ − 205
+ − 206 void
442
+ − 207 check_losing_bytecode (const char *function, Lisp_Object seq)
428
+ − 208 {
+ − 209 if (COMPILED_FUNCTIONP (seq))
563
+ − 210 signal_ferror_with_frob
+ − 211 (Qinvalid_argument, seq,
428
+ − 212 "As of 20.3, `%s' no longer works with compiled-function objects",
+ − 213 function);
+ − 214 }
+ − 215
+ − 216 DEFUN ("length", Flength, 1, 1, 0, /*
+ − 217 Return the length of vector, bit vector, list or string SEQUENCE.
+ − 218 */
+ − 219 (sequence))
+ − 220 {
+ − 221 retry:
+ − 222 if (STRINGP (sequence))
+ − 223 return make_int (XSTRING_CHAR_LENGTH (sequence));
+ − 224 else if (CONSP (sequence))
+ − 225 {
665
+ − 226 Elemcount len;
428
+ − 227 GET_EXTERNAL_LIST_LENGTH (sequence, len);
+ − 228 return make_int (len);
+ − 229 }
+ − 230 else if (VECTORP (sequence))
+ − 231 return make_int (XVECTOR_LENGTH (sequence));
+ − 232 else if (NILP (sequence))
+ − 233 return Qzero;
+ − 234 else if (BIT_VECTORP (sequence))
+ − 235 return make_int (bit_vector_length (XBIT_VECTOR (sequence)));
+ − 236 else
+ − 237 {
+ − 238 check_losing_bytecode ("length", sequence);
+ − 239 sequence = wrong_type_argument (Qsequencep, sequence);
+ − 240 goto retry;
+ − 241 }
+ − 242 }
+ − 243
+ − 244 DEFUN ("safe-length", Fsafe_length, 1, 1, 0, /*
+ − 245 Return the length of a list, but avoid error or infinite loop.
+ − 246 This function never gets an error. If LIST is not really a list,
+ − 247 it returns 0. If LIST is circular, it returns a finite value
+ − 248 which is at least the number of distinct elements.
+ − 249 */
+ − 250 (list))
+ − 251 {
+ − 252 Lisp_Object hare, tortoise;
665
+ − 253 Elemcount len;
428
+ − 254
+ − 255 for (hare = tortoise = list, len = 0;
+ − 256 CONSP (hare) && (! EQ (hare, tortoise) || len == 0);
+ − 257 hare = XCDR (hare), len++)
+ − 258 {
+ − 259 if (len & 1)
+ − 260 tortoise = XCDR (tortoise);
+ − 261 }
+ − 262
+ − 263 return make_int (len);
+ − 264 }
+ − 265
+ − 266 /*** string functions. ***/
+ − 267
+ − 268 DEFUN ("string-equal", Fstring_equal, 2, 2, 0, /*
+ − 269 Return t if two strings have identical contents.
+ − 270 Case is significant. Text properties are ignored.
+ − 271 \(Under XEmacs, `equal' also ignores text properties and extents in
+ − 272 strings, but this is not the case under FSF Emacs 19. In FSF Emacs 20
+ − 273 `equal' is the same as in XEmacs, in that respect.)
+ − 274 Symbols are also allowed; their print names are used instead.
+ − 275 */
444
+ − 276 (string1, string2))
428
+ − 277 {
+ − 278 Bytecount len;
440
+ − 279 Lisp_String *p1, *p2;
428
+ − 280
444
+ − 281 if (SYMBOLP (string1))
+ − 282 p1 = XSYMBOL (string1)->name;
428
+ − 283 else
+ − 284 {
444
+ − 285 CHECK_STRING (string1);
+ − 286 p1 = XSTRING (string1);
428
+ − 287 }
+ − 288
444
+ − 289 if (SYMBOLP (string2))
+ − 290 p2 = XSYMBOL (string2)->name;
428
+ − 291 else
+ − 292 {
444
+ − 293 CHECK_STRING (string2);
+ − 294 p2 = XSTRING (string2);
428
+ − 295 }
+ − 296
+ − 297 return (((len = string_length (p1)) == string_length (p2)) &&
+ − 298 !memcmp (string_data (p1), string_data (p2), len)) ? Qt : Qnil;
+ − 299 }
+ − 300
+ − 301
+ − 302 DEFUN ("string-lessp", Fstring_lessp, 2, 2, 0, /*
+ − 303 Return t if first arg string is less than second in lexicographic order.
+ − 304 If I18N2 support (but not Mule support) was compiled in, ordering is
+ − 305 determined by the locale. (Case is significant for the default C locale.)
+ − 306 In all other cases, comparison is simply done on a character-by-
+ − 307 character basis using the numeric value of a character. (Note that
+ − 308 this may not produce particularly meaningful results under Mule if
+ − 309 characters from different charsets are being compared.)
+ − 310
+ − 311 Symbols are also allowed; their print names are used instead.
+ − 312
+ − 313 The reason that the I18N2 locale-specific collation is not used under
+ − 314 Mule is that the locale model of internationalization does not handle
+ − 315 multiple charsets and thus has no hope of working properly under Mule.
+ − 316 What we really should do is create a collation table over all built-in
+ − 317 charsets. This is extremely difficult to do from scratch, however.
+ − 318
+ − 319 Unicode is a good first step towards solving this problem. In fact,
+ − 320 it is quite likely that a collation table exists (or will exist) for
+ − 321 Unicode. When Unicode support is added to XEmacs/Mule, this problem
+ − 322 may be solved.
+ − 323 */
444
+ − 324 (string1, string2))
428
+ − 325 {
440
+ − 326 Lisp_String *p1, *p2;
428
+ − 327 Charcount end, len2;
+ − 328 int i;
+ − 329
444
+ − 330 if (SYMBOLP (string1))
+ − 331 p1 = XSYMBOL (string1)->name;
428
+ − 332 else
+ − 333 {
444
+ − 334 CHECK_STRING (string1);
+ − 335 p1 = XSTRING (string1);
428
+ − 336 }
+ − 337
444
+ − 338 if (SYMBOLP (string2))
+ − 339 p2 = XSYMBOL (string2)->name;
428
+ − 340 else
+ − 341 {
444
+ − 342 CHECK_STRING (string2);
+ − 343 p2 = XSTRING (string2);
428
+ − 344 }
+ − 345
+ − 346 end = string_char_length (p1);
+ − 347 len2 = string_char_length (p2);
+ − 348 if (end > len2)
+ − 349 end = len2;
+ − 350
+ − 351 #if defined (I18N2) && !defined (MULE)
+ − 352 /* There is no hope of this working under Mule. Even if we converted
+ − 353 the data into an external format so that strcoll() processed it
+ − 354 properly, it would still not work because strcoll() does not
+ − 355 handle multiple locales. This is the fundamental flaw in the
+ − 356 locale model. */
+ − 357 {
+ − 358 Bytecount bcend = charcount_to_bytecount (string_data (p1), end);
+ − 359 /* Compare strings using collation order of locale. */
+ − 360 /* Need to be tricky to handle embedded nulls. */
+ − 361
+ − 362 for (i = 0; i < bcend; i += strlen((char *) string_data (p1) + i) + 1)
+ − 363 {
+ − 364 int val = strcoll ((char *) string_data (p1) + i,
+ − 365 (char *) string_data (p2) + i);
+ − 366 if (val < 0)
+ − 367 return Qt;
+ − 368 if (val > 0)
+ − 369 return Qnil;
+ − 370 }
+ − 371 }
+ − 372 #else /* not I18N2, or MULE */
+ − 373 {
665
+ − 374 Intbyte *ptr1 = string_data (p1);
+ − 375 Intbyte *ptr2 = string_data (p2);
428
+ − 376
+ − 377 /* #### It is not really necessary to do this: We could compare
+ − 378 byte-by-byte and still get a reasonable comparison, since this
+ − 379 would compare characters with a charset in the same way. With
+ − 380 a little rearrangement of the leading bytes, we could make most
+ − 381 inter-charset comparisons work out the same, too; even if some
+ − 382 don't, this is not a big deal because inter-charset comparisons
+ − 383 aren't really well-defined anyway. */
+ − 384 for (i = 0; i < end; i++)
+ − 385 {
+ − 386 if (charptr_emchar (ptr1) != charptr_emchar (ptr2))
+ − 387 return charptr_emchar (ptr1) < charptr_emchar (ptr2) ? Qt : Qnil;
+ − 388 INC_CHARPTR (ptr1);
+ − 389 INC_CHARPTR (ptr2);
+ − 390 }
+ − 391 }
+ − 392 #endif /* not I18N2, or MULE */
+ − 393 /* Can't do i < len2 because then comparison between "foo" and "foo^@"
+ − 394 won't work right in I18N2 case */
+ − 395 return end < len2 ? Qt : Qnil;
+ − 396 }
+ − 397
+ − 398 DEFUN ("string-modified-tick", Fstring_modified_tick, 1, 1, 0, /*
+ − 399 Return STRING's tick counter, incremented for each change to the string.
+ − 400 Each string has a tick counter which is incremented each time the contents
+ − 401 of the string are changed (e.g. with `aset'). It wraps around occasionally.
+ − 402 */
+ − 403 (string))
+ − 404 {
440
+ − 405 Lisp_String *s;
428
+ − 406
+ − 407 CHECK_STRING (string);
+ − 408 s = XSTRING (string);
+ − 409 if (CONSP (s->plist) && INTP (XCAR (s->plist)))
+ − 410 return XCAR (s->plist);
+ − 411 else
+ − 412 return Qzero;
+ − 413 }
+ − 414
+ − 415 void
+ − 416 bump_string_modiff (Lisp_Object str)
+ − 417 {
440
+ − 418 Lisp_String *s = XSTRING (str);
428
+ − 419 Lisp_Object *ptr = &s->plist;
+ − 420
+ − 421 #ifdef I18N3
+ − 422 /* #### remove the `string-translatable' property from the string,
+ − 423 if there is one. */
+ − 424 #endif
+ − 425 /* skip over extent info if it's there */
+ − 426 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
+ − 427 ptr = &XCDR (*ptr);
+ − 428 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
+ − 429 XSETINT (XCAR (*ptr), 1+XINT (XCAR (*ptr)));
+ − 430 else
+ − 431 *ptr = Fcons (make_int (1), *ptr);
+ − 432 }
+ − 433
+ − 434
+ − 435 enum concat_target_type { c_cons, c_string, c_vector, c_bit_vector };
+ − 436 static Lisp_Object concat (int nargs, Lisp_Object *args,
+ − 437 enum concat_target_type target_type,
+ − 438 int last_special);
+ − 439
+ − 440 Lisp_Object
444
+ − 441 concat2 (Lisp_Object string1, Lisp_Object string2)
428
+ − 442 {
+ − 443 Lisp_Object args[2];
444
+ − 444 args[0] = string1;
+ − 445 args[1] = string2;
428
+ − 446 return concat (2, args, c_string, 0);
+ − 447 }
+ − 448
+ − 449 Lisp_Object
444
+ − 450 concat3 (Lisp_Object string1, Lisp_Object string2, Lisp_Object string3)
428
+ − 451 {
+ − 452 Lisp_Object args[3];
444
+ − 453 args[0] = string1;
+ − 454 args[1] = string2;
+ − 455 args[2] = string3;
428
+ − 456 return concat (3, args, c_string, 0);
+ − 457 }
+ − 458
+ − 459 Lisp_Object
444
+ − 460 vconcat2 (Lisp_Object vec1, Lisp_Object vec2)
428
+ − 461 {
+ − 462 Lisp_Object args[2];
444
+ − 463 args[0] = vec1;
+ − 464 args[1] = vec2;
428
+ − 465 return concat (2, args, c_vector, 0);
+ − 466 }
+ − 467
+ − 468 Lisp_Object
444
+ − 469 vconcat3 (Lisp_Object vec1, Lisp_Object vec2, Lisp_Object vec3)
428
+ − 470 {
+ − 471 Lisp_Object args[3];
444
+ − 472 args[0] = vec1;
+ − 473 args[1] = vec2;
+ − 474 args[2] = vec3;
428
+ − 475 return concat (3, args, c_vector, 0);
+ − 476 }
+ − 477
+ − 478 DEFUN ("append", Fappend, 0, MANY, 0, /*
+ − 479 Concatenate all the arguments and make the result a list.
+ − 480 The result is a list whose elements are the elements of all the arguments.
+ − 481 Each argument may be a list, vector, bit vector, or string.
+ − 482 The last argument is not copied, just used as the tail of the new list.
+ − 483 Also see: `nconc'.
+ − 484 */
+ − 485 (int nargs, Lisp_Object *args))
+ − 486 {
+ − 487 return concat (nargs, args, c_cons, 1);
+ − 488 }
+ − 489
+ − 490 DEFUN ("concat", Fconcat, 0, MANY, 0, /*
+ − 491 Concatenate all the arguments and make the result a string.
+ − 492 The result is a string whose elements are the elements of all the arguments.
+ − 493 Each argument may be a string or a list or vector of characters.
+ − 494
+ − 495 As of XEmacs 21.0, this function does NOT accept individual integers
+ − 496 as arguments. Old code that relies on, for example, (concat "foo" 50)
+ − 497 returning "foo50" will fail. To fix such code, either apply
+ − 498 `int-to-string' to the integer argument, or use `format'.
+ − 499 */
+ − 500 (int nargs, Lisp_Object *args))
+ − 501 {
+ − 502 return concat (nargs, args, c_string, 0);
+ − 503 }
+ − 504
+ − 505 DEFUN ("vconcat", Fvconcat, 0, MANY, 0, /*
+ − 506 Concatenate all the arguments and make the result a vector.
+ − 507 The result is a vector whose elements are the elements of all the arguments.
+ − 508 Each argument may be a list, vector, bit vector, or string.
+ − 509 */
+ − 510 (int nargs, Lisp_Object *args))
+ − 511 {
+ − 512 return concat (nargs, args, c_vector, 0);
+ − 513 }
+ − 514
+ − 515 DEFUN ("bvconcat", Fbvconcat, 0, MANY, 0, /*
+ − 516 Concatenate all the arguments and make the result a bit vector.
+ − 517 The result is a bit vector whose elements are the elements of all the
+ − 518 arguments. Each argument may be a list, vector, bit vector, or string.
+ − 519 */
+ − 520 (int nargs, Lisp_Object *args))
+ − 521 {
+ − 522 return concat (nargs, args, c_bit_vector, 0);
+ − 523 }
+ − 524
+ − 525 /* Copy a (possibly dotted) list. LIST must be a cons.
+ − 526 Can't use concat (1, &alist, c_cons, 0) - doesn't handle dotted lists. */
+ − 527 static Lisp_Object
+ − 528 copy_list (Lisp_Object list)
+ − 529 {
+ − 530 Lisp_Object list_copy = Fcons (XCAR (list), XCDR (list));
+ − 531 Lisp_Object last = list_copy;
+ − 532 Lisp_Object hare, tortoise;
665
+ − 533 Elemcount len;
428
+ − 534
+ − 535 for (tortoise = hare = XCDR (list), len = 1;
+ − 536 CONSP (hare);
+ − 537 hare = XCDR (hare), len++)
+ − 538 {
+ − 539 XCDR (last) = Fcons (XCAR (hare), XCDR (hare));
+ − 540 last = XCDR (last);
+ − 541
+ − 542 if (len < CIRCULAR_LIST_SUSPICION_LENGTH)
+ − 543 continue;
+ − 544 if (len & 1)
+ − 545 tortoise = XCDR (tortoise);
+ − 546 if (EQ (tortoise, hare))
+ − 547 signal_circular_list_error (list);
+ − 548 }
+ − 549
+ − 550 return list_copy;
+ − 551 }
+ − 552
+ − 553 DEFUN ("copy-list", Fcopy_list, 1, 1, 0, /*
+ − 554 Return a copy of list LIST, which may be a dotted list.
+ − 555 The elements of LIST are not copied; they are shared
+ − 556 with the original.
+ − 557 */
+ − 558 (list))
+ − 559 {
+ − 560 again:
+ − 561 if (NILP (list)) return list;
+ − 562 if (CONSP (list)) return copy_list (list);
+ − 563
+ − 564 list = wrong_type_argument (Qlistp, list);
+ − 565 goto again;
+ − 566 }
+ − 567
+ − 568 DEFUN ("copy-sequence", Fcopy_sequence, 1, 1, 0, /*
+ − 569 Return a copy of list, vector, bit vector or string SEQUENCE.
+ − 570 The elements of a list or vector are not copied; they are shared
+ − 571 with the original. SEQUENCE may be a dotted list.
+ − 572 */
+ − 573 (sequence))
+ − 574 {
+ − 575 again:
+ − 576 if (NILP (sequence)) return sequence;
+ − 577 if (CONSP (sequence)) return copy_list (sequence);
+ − 578 if (STRINGP (sequence)) return concat (1, &sequence, c_string, 0);
+ − 579 if (VECTORP (sequence)) return concat (1, &sequence, c_vector, 0);
+ − 580 if (BIT_VECTORP (sequence)) return concat (1, &sequence, c_bit_vector, 0);
+ − 581
+ − 582 check_losing_bytecode ("copy-sequence", sequence);
+ − 583 sequence = wrong_type_argument (Qsequencep, sequence);
+ − 584 goto again;
+ − 585 }
+ − 586
+ − 587 struct merge_string_extents_struct
+ − 588 {
+ − 589 Lisp_Object string;
+ − 590 Bytecount entry_offset;
+ − 591 Bytecount entry_length;
+ − 592 };
+ − 593
+ − 594 static Lisp_Object
+ − 595 concat (int nargs, Lisp_Object *args,
+ − 596 enum concat_target_type target_type,
+ − 597 int last_special)
+ − 598 {
+ − 599 Lisp_Object val;
+ − 600 Lisp_Object tail = Qnil;
+ − 601 int toindex;
+ − 602 int argnum;
+ − 603 Lisp_Object last_tail;
+ − 604 Lisp_Object prev;
+ − 605 struct merge_string_extents_struct *args_mse = 0;
665
+ − 606 Intbyte *string_result = 0;
+ − 607 Intbyte *string_result_ptr = 0;
428
+ − 608 struct gcpro gcpro1;
+ − 609
+ − 610 /* The modus operandi in Emacs is "caller gc-protects args".
+ − 611 However, concat is called many times in Emacs on freshly
+ − 612 created stuff. So we help those callers out by protecting
+ − 613 the args ourselves to save them a lot of temporary-variable
+ − 614 grief. */
+ − 615
+ − 616 GCPRO1 (args[0]);
+ − 617 gcpro1.nvars = nargs;
+ − 618
+ − 619 #ifdef I18N3
+ − 620 /* #### if the result is a string and any of the strings have a string
+ − 621 for the `string-translatable' property, then concat should also
+ − 622 concat the args but use the `string-translatable' strings, and store
+ − 623 the result in the returned string's `string-translatable' property. */
+ − 624 #endif
+ − 625 if (target_type == c_string)
+ − 626 args_mse = alloca_array (struct merge_string_extents_struct, nargs);
+ − 627
+ − 628 /* In append, the last arg isn't treated like the others */
+ − 629 if (last_special && nargs > 0)
+ − 630 {
+ − 631 nargs--;
+ − 632 last_tail = args[nargs];
+ − 633 }
+ − 634 else
+ − 635 last_tail = Qnil;
+ − 636
+ − 637 /* Check and coerce the arguments. */
+ − 638 for (argnum = 0; argnum < nargs; argnum++)
+ − 639 {
+ − 640 Lisp_Object seq = args[argnum];
+ − 641 if (LISTP (seq))
+ − 642 ;
+ − 643 else if (VECTORP (seq) || STRINGP (seq) || BIT_VECTORP (seq))
+ − 644 ;
+ − 645 #ifdef LOSING_BYTECODE
+ − 646 else if (COMPILED_FUNCTIONP (seq))
+ − 647 /* Urk! We allow this, for "compatibility"... */
+ − 648 ;
+ − 649 #endif
+ − 650 #if 0 /* removed for XEmacs 21 */
+ − 651 else if (INTP (seq))
+ − 652 /* This is too revolting to think about but maintains
+ − 653 compatibility with FSF (and lots and lots of old code). */
+ − 654 args[argnum] = Fnumber_to_string (seq);
+ − 655 #endif
+ − 656 else
+ − 657 {
+ − 658 check_losing_bytecode ("concat", seq);
+ − 659 args[argnum] = wrong_type_argument (Qsequencep, seq);
+ − 660 }
+ − 661
+ − 662 if (args_mse)
+ − 663 {
+ − 664 if (STRINGP (seq))
+ − 665 args_mse[argnum].string = seq;
+ − 666 else
+ − 667 args_mse[argnum].string = Qnil;
+ − 668 }
+ − 669 }
+ − 670
+ − 671 {
+ − 672 /* Charcount is a misnomer here as we might be dealing with the
+ − 673 length of a vector or list, but emphasizes that we're not dealing
+ − 674 with Bytecounts in strings */
+ − 675 Charcount total_length;
+ − 676
+ − 677 for (argnum = 0, total_length = 0; argnum < nargs; argnum++)
+ − 678 {
+ − 679 #ifdef LOSING_BYTECODE
+ − 680 Charcount thislen = length_with_bytecode_hack (args[argnum]);
+ − 681 #else
+ − 682 Charcount thislen = XINT (Flength (args[argnum]));
+ − 683 #endif
+ − 684 total_length += thislen;
+ − 685 }
+ − 686
+ − 687 switch (target_type)
+ − 688 {
+ − 689 case c_cons:
+ − 690 if (total_length == 0)
+ − 691 /* In append, if all but last arg are nil, return last arg */
+ − 692 RETURN_UNGCPRO (last_tail);
+ − 693 val = Fmake_list (make_int (total_length), Qnil);
+ − 694 break;
+ − 695 case c_vector:
+ − 696 val = make_vector (total_length, Qnil);
+ − 697 break;
+ − 698 case c_bit_vector:
+ − 699 val = make_bit_vector (total_length, Qzero);
+ − 700 break;
+ − 701 case c_string:
+ − 702 /* We don't make the string yet because we don't know the
+ − 703 actual number of bytes. This loop was formerly written
+ − 704 to call Fmake_string() here and then call set_string_char()
+ − 705 for each char. This seems logical enough but is waaaaaaaay
+ − 706 slow -- set_string_char() has to scan the whole string up
+ − 707 to the place where the substitution is called for in order
+ − 708 to find the place to change, and may have to do some
+ − 709 realloc()ing in order to make the char fit properly.
+ − 710 O(N^2) yuckage. */
+ − 711 val = Qnil;
665
+ − 712 string_result = (Intbyte *) alloca (total_length * MAX_EMCHAR_LEN);
428
+ − 713 string_result_ptr = string_result;
+ − 714 break;
+ − 715 default:
442
+ − 716 val = Qnil;
428
+ − 717 abort ();
+ − 718 }
+ − 719 }
+ − 720
+ − 721
+ − 722 if (CONSP (val))
+ − 723 tail = val, toindex = -1; /* -1 in toindex is flag we are
+ − 724 making a list */
+ − 725 else
+ − 726 toindex = 0;
+ − 727
+ − 728 prev = Qnil;
+ − 729
+ − 730 for (argnum = 0; argnum < nargs; argnum++)
+ − 731 {
+ − 732 Charcount thisleni = 0;
+ − 733 Charcount thisindex = 0;
+ − 734 Lisp_Object seq = args[argnum];
665
+ − 735 Intbyte *string_source_ptr = 0;
+ − 736 Intbyte *string_prev_result_ptr = string_result_ptr;
428
+ − 737
+ − 738 if (!CONSP (seq))
+ − 739 {
+ − 740 #ifdef LOSING_BYTECODE
+ − 741 thisleni = length_with_bytecode_hack (seq);
+ − 742 #else
+ − 743 thisleni = XINT (Flength (seq));
+ − 744 #endif
+ − 745 }
+ − 746 if (STRINGP (seq))
+ − 747 string_source_ptr = XSTRING_DATA (seq);
+ − 748
+ − 749 while (1)
+ − 750 {
+ − 751 Lisp_Object elt;
+ − 752
+ − 753 /* We've come to the end of this arg, so exit. */
+ − 754 if (NILP (seq))
+ − 755 break;
+ − 756
+ − 757 /* Fetch next element of `seq' arg into `elt' */
+ − 758 if (CONSP (seq))
+ − 759 {
+ − 760 elt = XCAR (seq);
+ − 761 seq = XCDR (seq);
+ − 762 }
+ − 763 else
+ − 764 {
+ − 765 if (thisindex >= thisleni)
+ − 766 break;
+ − 767
+ − 768 if (STRINGP (seq))
+ − 769 {
+ − 770 elt = make_char (charptr_emchar (string_source_ptr));
+ − 771 INC_CHARPTR (string_source_ptr);
+ − 772 }
+ − 773 else if (VECTORP (seq))
+ − 774 elt = XVECTOR_DATA (seq)[thisindex];
+ − 775 else if (BIT_VECTORP (seq))
+ − 776 elt = make_int (bit_vector_bit (XBIT_VECTOR (seq),
+ − 777 thisindex));
+ − 778 else
+ − 779 elt = Felt (seq, make_int (thisindex));
+ − 780 thisindex++;
+ − 781 }
+ − 782
+ − 783 /* Store into result */
+ − 784 if (toindex < 0)
+ − 785 {
+ − 786 /* toindex negative means we are making a list */
+ − 787 XCAR (tail) = elt;
+ − 788 prev = tail;
+ − 789 tail = XCDR (tail);
+ − 790 }
+ − 791 else if (VECTORP (val))
+ − 792 XVECTOR_DATA (val)[toindex++] = elt;
+ − 793 else if (BIT_VECTORP (val))
+ − 794 {
+ − 795 CHECK_BIT (elt);
+ − 796 set_bit_vector_bit (XBIT_VECTOR (val), toindex++, XINT (elt));
+ − 797 }
+ − 798 else
+ − 799 {
+ − 800 CHECK_CHAR_COERCE_INT (elt);
+ − 801 string_result_ptr += set_charptr_emchar (string_result_ptr,
+ − 802 XCHAR (elt));
+ − 803 }
+ − 804 }
+ − 805 if (args_mse)
+ − 806 {
+ − 807 args_mse[argnum].entry_offset =
+ − 808 string_prev_result_ptr - string_result;
+ − 809 args_mse[argnum].entry_length =
+ − 810 string_result_ptr - string_prev_result_ptr;
+ − 811 }
+ − 812 }
+ − 813
+ − 814 /* Now we finally make the string. */
+ − 815 if (target_type == c_string)
+ − 816 {
+ − 817 val = make_string (string_result, string_result_ptr - string_result);
+ − 818 for (argnum = 0; argnum < nargs; argnum++)
+ − 819 {
+ − 820 if (STRINGP (args_mse[argnum].string))
+ − 821 copy_string_extents (val, args_mse[argnum].string,
+ − 822 args_mse[argnum].entry_offset, 0,
+ − 823 args_mse[argnum].entry_length);
+ − 824 }
+ − 825 }
+ − 826
+ − 827 if (!NILP (prev))
+ − 828 XCDR (prev) = last_tail;
+ − 829
+ − 830 RETURN_UNGCPRO (val);
+ − 831 }
+ − 832
+ − 833 DEFUN ("copy-alist", Fcopy_alist, 1, 1, 0, /*
+ − 834 Return a copy of ALIST.
+ − 835 This is an alist which represents the same mapping from objects to objects,
+ − 836 but does not share the alist structure with ALIST.
+ − 837 The objects mapped (cars and cdrs of elements of the alist)
+ − 838 are shared, however.
+ − 839 Elements of ALIST that are not conses are also shared.
+ − 840 */
+ − 841 (alist))
+ − 842 {
+ − 843 Lisp_Object tail;
+ − 844
+ − 845 if (NILP (alist))
+ − 846 return alist;
+ − 847 CHECK_CONS (alist);
+ − 848
+ − 849 alist = concat (1, &alist, c_cons, 0);
+ − 850 for (tail = alist; CONSP (tail); tail = XCDR (tail))
+ − 851 {
+ − 852 Lisp_Object car = XCAR (tail);
+ − 853
+ − 854 if (CONSP (car))
+ − 855 XCAR (tail) = Fcons (XCAR (car), XCDR (car));
+ − 856 }
+ − 857 return alist;
+ − 858 }
+ − 859
+ − 860 DEFUN ("copy-tree", Fcopy_tree, 1, 2, 0, /*
+ − 861 Return a copy of a list and substructures.
+ − 862 The argument is copied, and any lists contained within it are copied
+ − 863 recursively. Circularities and shared substructures are not preserved.
+ − 864 Second arg VECP causes vectors to be copied, too. Strings and bit vectors
+ − 865 are not copied.
+ − 866 */
+ − 867 (arg, vecp))
+ − 868 {
454
+ − 869 return safe_copy_tree (arg, vecp, 0);
+ − 870 }
+ − 871
+ − 872 Lisp_Object
+ − 873 safe_copy_tree (Lisp_Object arg, Lisp_Object vecp, int depth)
+ − 874 {
+ − 875 if (depth > 200)
563
+ − 876 stack_overflow ("Stack overflow in copy-tree", arg);
454
+ − 877
428
+ − 878 if (CONSP (arg))
+ − 879 {
+ − 880 Lisp_Object rest;
+ − 881 rest = arg = Fcopy_sequence (arg);
+ − 882 while (CONSP (rest))
+ − 883 {
+ − 884 Lisp_Object elt = XCAR (rest);
+ − 885 QUIT;
+ − 886 if (CONSP (elt) || VECTORP (elt))
454
+ − 887 XCAR (rest) = safe_copy_tree (elt, vecp, depth + 1);
428
+ − 888 if (VECTORP (XCDR (rest))) /* hack for (a b . [c d]) */
454
+ − 889 XCDR (rest) = safe_copy_tree (XCDR (rest), vecp, depth +1);
428
+ − 890 rest = XCDR (rest);
+ − 891 }
+ − 892 }
+ − 893 else if (VECTORP (arg) && ! NILP (vecp))
+ − 894 {
+ − 895 int i = XVECTOR_LENGTH (arg);
+ − 896 int j;
+ − 897 arg = Fcopy_sequence (arg);
+ − 898 for (j = 0; j < i; j++)
+ − 899 {
+ − 900 Lisp_Object elt = XVECTOR_DATA (arg) [j];
+ − 901 QUIT;
+ − 902 if (CONSP (elt) || VECTORP (elt))
454
+ − 903 XVECTOR_DATA (arg) [j] = safe_copy_tree (elt, vecp, depth + 1);
428
+ − 904 }
+ − 905 }
+ − 906 return arg;
+ − 907 }
+ − 908
+ − 909 DEFUN ("substring", Fsubstring, 2, 3, 0, /*
444
+ − 910 Return the substring of STRING starting at START and ending before END.
+ − 911 END may be nil or omitted; then the substring runs to the end of STRING.
+ − 912 If START or END is negative, it counts from the end.
+ − 913 Relevant parts of the string-extent-data are copied to the new string.
428
+ − 914 */
444
+ − 915 (string, start, end))
428
+ − 916 {
444
+ − 917 Charcount ccstart, ccend;
+ − 918 Bytecount bstart, blen;
428
+ − 919 Lisp_Object val;
+ − 920
+ − 921 CHECK_STRING (string);
444
+ − 922 CHECK_INT (start);
+ − 923 get_string_range_char (string, start, end, &ccstart, &ccend,
428
+ − 924 GB_HISTORICAL_STRING_BEHAVIOR);
444
+ − 925 bstart = charcount_to_bytecount (XSTRING_DATA (string), ccstart);
+ − 926 blen = charcount_to_bytecount (XSTRING_DATA (string) + bstart, ccend - ccstart);
+ − 927 val = make_string (XSTRING_DATA (string) + bstart, blen);
+ − 928 /* Copy any applicable extent information into the new string. */
+ − 929 copy_string_extents (val, string, 0, bstart, blen);
428
+ − 930 return val;
+ − 931 }
+ − 932
+ − 933 DEFUN ("subseq", Fsubseq, 2, 3, 0, /*
442
+ − 934 Return the subsequence of SEQUENCE starting at START and ending before END.
+ − 935 END may be omitted; then the subsequence runs to the end of SEQUENCE.
+ − 936 If START or END is negative, it counts from the end.
+ − 937 The returned subsequence is always of the same type as SEQUENCE.
+ − 938 If SEQUENCE is a string, relevant parts of the string-extent-data
+ − 939 are copied to the new string.
428
+ − 940 */
442
+ − 941 (sequence, start, end))
428
+ − 942 {
442
+ − 943 EMACS_INT len, s, e;
+ − 944
+ − 945 if (STRINGP (sequence))
+ − 946 return Fsubstring (sequence, start, end);
+ − 947
+ − 948 len = XINT (Flength (sequence));
+ − 949
+ − 950 CHECK_INT (start);
+ − 951 s = XINT (start);
+ − 952 if (s < 0)
+ − 953 s = len + s;
+ − 954
+ − 955 if (NILP (end))
+ − 956 e = len;
428
+ − 957 else
+ − 958 {
442
+ − 959 CHECK_INT (end);
+ − 960 e = XINT (end);
+ − 961 if (e < 0)
+ − 962 e = len + e;
428
+ − 963 }
+ − 964
442
+ − 965 if (!(0 <= s && s <= e && e <= len))
+ − 966 args_out_of_range_3 (sequence, make_int (s), make_int (e));
+ − 967
+ − 968 if (VECTORP (sequence))
428
+ − 969 {
442
+ − 970 Lisp_Object result = make_vector (e - s, Qnil);
428
+ − 971 EMACS_INT i;
442
+ − 972 Lisp_Object *in_elts = XVECTOR_DATA (sequence);
428
+ − 973 Lisp_Object *out_elts = XVECTOR_DATA (result);
+ − 974
442
+ − 975 for (i = s; i < e; i++)
+ − 976 out_elts[i - s] = in_elts[i];
428
+ − 977 return result;
+ − 978 }
442
+ − 979 else if (LISTP (sequence))
428
+ − 980 {
+ − 981 Lisp_Object result = Qnil;
+ − 982 EMACS_INT i;
+ − 983
442
+ − 984 sequence = Fnthcdr (make_int (s), sequence);
+ − 985
+ − 986 for (i = s; i < e; i++)
428
+ − 987 {
442
+ − 988 result = Fcons (Fcar (sequence), result);
+ − 989 sequence = Fcdr (sequence);
428
+ − 990 }
+ − 991
+ − 992 return Fnreverse (result);
+ − 993 }
442
+ − 994 else if (BIT_VECTORP (sequence))
+ − 995 {
+ − 996 Lisp_Object result = make_bit_vector (e - s, Qzero);
+ − 997 EMACS_INT i;
+ − 998
+ − 999 for (i = s; i < e; i++)
+ − 1000 set_bit_vector_bit (XBIT_VECTOR (result), i - s,
+ − 1001 bit_vector_bit (XBIT_VECTOR (sequence), i));
+ − 1002 return result;
+ − 1003 }
+ − 1004 else
+ − 1005 {
+ − 1006 abort (); /* unreachable, since Flength (sequence) did not get
+ − 1007 an error */
+ − 1008 return Qnil;
+ − 1009 }
428
+ − 1010 }
+ − 1011
+ − 1012
+ − 1013 DEFUN ("nthcdr", Fnthcdr, 2, 2, 0, /*
+ − 1014 Take cdr N times on LIST, and return the result.
+ − 1015 */
+ − 1016 (n, list))
+ − 1017 {
647
+ − 1018 REGISTER EMACS_INT i;
428
+ − 1019 REGISTER Lisp_Object tail = list;
+ − 1020 CHECK_NATNUM (n);
+ − 1021 for (i = XINT (n); i; i--)
+ − 1022 {
+ − 1023 if (CONSP (tail))
+ − 1024 tail = XCDR (tail);
+ − 1025 else if (NILP (tail))
+ − 1026 return Qnil;
+ − 1027 else
+ − 1028 {
+ − 1029 tail = wrong_type_argument (Qlistp, tail);
+ − 1030 i++;
+ − 1031 }
+ − 1032 }
+ − 1033 return tail;
+ − 1034 }
+ − 1035
+ − 1036 DEFUN ("nth", Fnth, 2, 2, 0, /*
+ − 1037 Return the Nth element of LIST.
+ − 1038 N counts from zero. If LIST is not that long, nil is returned.
+ − 1039 */
+ − 1040 (n, list))
+ − 1041 {
+ − 1042 return Fcar (Fnthcdr (n, list));
+ − 1043 }
+ − 1044
+ − 1045 DEFUN ("elt", Felt, 2, 2, 0, /*
+ − 1046 Return element of SEQUENCE at index N.
+ − 1047 */
+ − 1048 (sequence, n))
+ − 1049 {
+ − 1050 retry:
+ − 1051 CHECK_INT_COERCE_CHAR (n); /* yuck! */
+ − 1052 if (LISTP (sequence))
+ − 1053 {
+ − 1054 Lisp_Object tem = Fnthcdr (n, sequence);
+ − 1055 /* #### Utterly, completely, fucking disgusting.
+ − 1056 * #### The whole point of "elt" is that it operates on
+ − 1057 * #### sequences, and does error- (bounds-) checking.
+ − 1058 */
+ − 1059 if (CONSP (tem))
+ − 1060 return XCAR (tem);
+ − 1061 else
+ − 1062 #if 1
+ − 1063 /* This is The Way It Has Always Been. */
+ − 1064 return Qnil;
+ − 1065 #else
+ − 1066 /* This is The Way Mly and Cltl2 say It Should Be. */
+ − 1067 args_out_of_range (sequence, n);
+ − 1068 #endif
+ − 1069 }
+ − 1070 else if (STRINGP (sequence) ||
+ − 1071 VECTORP (sequence) ||
+ − 1072 BIT_VECTORP (sequence))
+ − 1073 return Faref (sequence, n);
+ − 1074 #ifdef LOSING_BYTECODE
+ − 1075 else if (COMPILED_FUNCTIONP (sequence))
+ − 1076 {
+ − 1077 EMACS_INT idx = XINT (n);
+ − 1078 if (idx < 0)
+ − 1079 {
+ − 1080 lose:
+ − 1081 args_out_of_range (sequence, n);
+ − 1082 }
+ − 1083 /* Utter perversity */
+ − 1084 {
+ − 1085 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (sequence);
+ − 1086 switch (idx)
+ − 1087 {
+ − 1088 case COMPILED_ARGLIST:
+ − 1089 return compiled_function_arglist (f);
+ − 1090 case COMPILED_INSTRUCTIONS:
+ − 1091 return compiled_function_instructions (f);
+ − 1092 case COMPILED_CONSTANTS:
+ − 1093 return compiled_function_constants (f);
+ − 1094 case COMPILED_STACK_DEPTH:
+ − 1095 return compiled_function_stack_depth (f);
+ − 1096 case COMPILED_DOC_STRING:
+ − 1097 return compiled_function_documentation (f);
+ − 1098 case COMPILED_DOMAIN:
+ − 1099 return compiled_function_domain (f);
+ − 1100 case COMPILED_INTERACTIVE:
+ − 1101 if (f->flags.interactivep)
+ − 1102 return compiled_function_interactive (f);
+ − 1103 /* if we return nil, can't tell interactive with no args
+ − 1104 from noninteractive. */
+ − 1105 goto lose;
+ − 1106 default:
+ − 1107 goto lose;
+ − 1108 }
+ − 1109 }
+ − 1110 }
+ − 1111 #endif /* LOSING_BYTECODE */
+ − 1112 else
+ − 1113 {
+ − 1114 check_losing_bytecode ("elt", sequence);
+ − 1115 sequence = wrong_type_argument (Qsequencep, sequence);
+ − 1116 goto retry;
+ − 1117 }
+ − 1118 }
+ − 1119
+ − 1120 DEFUN ("last", Flast, 1, 2, 0, /*
+ − 1121 Return the tail of list LIST, of length N (default 1).
+ − 1122 LIST may be a dotted list, but not a circular list.
+ − 1123 Optional argument N must be a non-negative integer.
+ − 1124 If N is zero, then the atom that terminates the list is returned.
+ − 1125 If N is greater than the length of LIST, then LIST itself is returned.
+ − 1126 */
+ − 1127 (list, n))
+ − 1128 {
+ − 1129 EMACS_INT int_n, count;
+ − 1130 Lisp_Object retval, tortoise, hare;
+ − 1131
+ − 1132 CHECK_LIST (list);
+ − 1133
+ − 1134 if (NILP (n))
+ − 1135 int_n = 1;
+ − 1136 else
+ − 1137 {
+ − 1138 CHECK_NATNUM (n);
+ − 1139 int_n = XINT (n);
+ − 1140 }
+ − 1141
+ − 1142 for (retval = tortoise = hare = list, count = 0;
+ − 1143 CONSP (hare);
+ − 1144 hare = XCDR (hare),
+ − 1145 (int_n-- <= 0 ? ((void) (retval = XCDR (retval))) : (void)0),
+ − 1146 count++)
+ − 1147 {
+ − 1148 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue;
+ − 1149
+ − 1150 if (count & 1)
+ − 1151 tortoise = XCDR (tortoise);
+ − 1152 if (EQ (hare, tortoise))
+ − 1153 signal_circular_list_error (list);
+ − 1154 }
+ − 1155
+ − 1156 return retval;
+ − 1157 }
+ − 1158
+ − 1159 DEFUN ("nbutlast", Fnbutlast, 1, 2, 0, /*
+ − 1160 Modify LIST to remove the last N (default 1) elements.
+ − 1161 If LIST has N or fewer elements, nil is returned and LIST is unmodified.
+ − 1162 */
+ − 1163 (list, n))
+ − 1164 {
+ − 1165 EMACS_INT int_n;
+ − 1166
+ − 1167 CHECK_LIST (list);
+ − 1168
+ − 1169 if (NILP (n))
+ − 1170 int_n = 1;
+ − 1171 else
+ − 1172 {
+ − 1173 CHECK_NATNUM (n);
+ − 1174 int_n = XINT (n);
+ − 1175 }
+ − 1176
+ − 1177 {
+ − 1178 Lisp_Object last_cons = list;
+ − 1179
+ − 1180 EXTERNAL_LIST_LOOP_1 (list)
+ − 1181 {
+ − 1182 if (int_n-- < 0)
+ − 1183 last_cons = XCDR (last_cons);
+ − 1184 }
+ − 1185
+ − 1186 if (int_n >= 0)
+ − 1187 return Qnil;
+ − 1188
+ − 1189 XCDR (last_cons) = Qnil;
+ − 1190 return list;
+ − 1191 }
+ − 1192 }
+ − 1193
+ − 1194 DEFUN ("butlast", Fbutlast, 1, 2, 0, /*
+ − 1195 Return a copy of LIST with the last N (default 1) elements removed.
+ − 1196 If LIST has N or fewer elements, nil is returned.
+ − 1197 */
+ − 1198 (list, n))
+ − 1199 {
444
+ − 1200 EMACS_INT int_n;
428
+ − 1201
+ − 1202 CHECK_LIST (list);
+ − 1203
+ − 1204 if (NILP (n))
+ − 1205 int_n = 1;
+ − 1206 else
+ − 1207 {
+ − 1208 CHECK_NATNUM (n);
+ − 1209 int_n = XINT (n);
+ − 1210 }
+ − 1211
+ − 1212 {
+ − 1213 Lisp_Object retval = Qnil;
+ − 1214 Lisp_Object tail = list;
+ − 1215
+ − 1216 EXTERNAL_LIST_LOOP_1 (list)
+ − 1217 {
+ − 1218 if (--int_n < 0)
+ − 1219 {
+ − 1220 retval = Fcons (XCAR (tail), retval);
+ − 1221 tail = XCDR (tail);
+ − 1222 }
+ − 1223 }
+ − 1224
+ − 1225 return Fnreverse (retval);
+ − 1226 }
+ − 1227 }
+ − 1228
+ − 1229 DEFUN ("member", Fmember, 2, 2, 0, /*
+ − 1230 Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
+ − 1231 The value is actually the tail of LIST whose car is ELT.
+ − 1232 */
+ − 1233 (elt, list))
+ − 1234 {
+ − 1235 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
+ − 1236 {
+ − 1237 if (internal_equal (elt, list_elt, 0))
+ − 1238 return tail;
+ − 1239 }
+ − 1240 return Qnil;
+ − 1241 }
+ − 1242
+ − 1243 DEFUN ("old-member", Fold_member, 2, 2, 0, /*
+ − 1244 Return non-nil if ELT is an element of LIST. Comparison done with `old-equal'.
+ − 1245 The value is actually the tail of LIST whose car is ELT.
+ − 1246 This function is provided only for byte-code compatibility with v19.
+ − 1247 Do not use it.
+ − 1248 */
+ − 1249 (elt, list))
+ − 1250 {
+ − 1251 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
+ − 1252 {
+ − 1253 if (internal_old_equal (elt, list_elt, 0))
+ − 1254 return tail;
+ − 1255 }
+ − 1256 return Qnil;
+ − 1257 }
+ − 1258
+ − 1259 DEFUN ("memq", Fmemq, 2, 2, 0, /*
+ − 1260 Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
+ − 1261 The value is actually the tail of LIST whose car is ELT.
+ − 1262 */
+ − 1263 (elt, list))
+ − 1264 {
+ − 1265 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
+ − 1266 {
+ − 1267 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt))
+ − 1268 return tail;
+ − 1269 }
+ − 1270 return Qnil;
+ − 1271 }
+ − 1272
+ − 1273 DEFUN ("old-memq", Fold_memq, 2, 2, 0, /*
+ − 1274 Return non-nil if ELT is an element of LIST. Comparison done with `old-eq'.
+ − 1275 The value is actually the tail of LIST whose car is ELT.
+ − 1276 This function is provided only for byte-code compatibility with v19.
+ − 1277 Do not use it.
+ − 1278 */
+ − 1279 (elt, list))
+ − 1280 {
+ − 1281 EXTERNAL_LIST_LOOP_3 (list_elt, list, tail)
+ − 1282 {
+ − 1283 if (HACKEQ_UNSAFE (elt, list_elt))
+ − 1284 return tail;
+ − 1285 }
+ − 1286 return Qnil;
+ − 1287 }
+ − 1288
+ − 1289 Lisp_Object
+ − 1290 memq_no_quit (Lisp_Object elt, Lisp_Object list)
+ − 1291 {
+ − 1292 LIST_LOOP_3 (list_elt, list, tail)
+ − 1293 {
+ − 1294 if (EQ_WITH_EBOLA_NOTICE (elt, list_elt))
+ − 1295 return tail;
+ − 1296 }
+ − 1297 return Qnil;
+ − 1298 }
+ − 1299
+ − 1300 DEFUN ("assoc", Fassoc, 2, 2, 0, /*
444
+ − 1301 Return non-nil if KEY is `equal' to the car of an element of ALIST.
+ − 1302 The value is actually the element of ALIST whose car equals KEY.
428
+ − 1303 */
444
+ − 1304 (key, alist))
428
+ − 1305 {
+ − 1306 /* This function can GC. */
444
+ − 1307 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
428
+ − 1308 {
+ − 1309 if (internal_equal (key, elt_car, 0))
+ − 1310 return elt;
+ − 1311 }
+ − 1312 return Qnil;
+ − 1313 }
+ − 1314
+ − 1315 DEFUN ("old-assoc", Fold_assoc, 2, 2, 0, /*
444
+ − 1316 Return non-nil if KEY is `old-equal' to the car of an element of ALIST.
+ − 1317 The value is actually the element of ALIST whose car equals KEY.
428
+ − 1318 */
444
+ − 1319 (key, alist))
428
+ − 1320 {
+ − 1321 /* This function can GC. */
444
+ − 1322 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
428
+ − 1323 {
+ − 1324 if (internal_old_equal (key, elt_car, 0))
+ − 1325 return elt;
+ − 1326 }
+ − 1327 return Qnil;
+ − 1328 }
+ − 1329
+ − 1330 Lisp_Object
444
+ − 1331 assoc_no_quit (Lisp_Object key, Lisp_Object alist)
428
+ − 1332 {
+ − 1333 int speccount = specpdl_depth ();
+ − 1334 specbind (Qinhibit_quit, Qt);
444
+ − 1335 return unbind_to (speccount, Fassoc (key, alist));
428
+ − 1336 }
+ − 1337
+ − 1338 DEFUN ("assq", Fassq, 2, 2, 0, /*
444
+ − 1339 Return non-nil if KEY is `eq' to the car of an element of ALIST.
+ − 1340 The value is actually the element of ALIST whose car is KEY.
+ − 1341 Elements of ALIST that are not conses are ignored.
428
+ − 1342 */
444
+ − 1343 (key, alist))
428
+ − 1344 {
444
+ − 1345 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
428
+ − 1346 {
+ − 1347 if (EQ_WITH_EBOLA_NOTICE (key, elt_car))
+ − 1348 return elt;
+ − 1349 }
+ − 1350 return Qnil;
+ − 1351 }
+ − 1352
+ − 1353 DEFUN ("old-assq", Fold_assq, 2, 2, 0, /*
444
+ − 1354 Return non-nil if KEY is `old-eq' to the car of an element of ALIST.
+ − 1355 The value is actually the element of ALIST whose car is KEY.
+ − 1356 Elements of ALIST that are not conses are ignored.
428
+ − 1357 This function is provided only for byte-code compatibility with v19.
+ − 1358 Do not use it.
+ − 1359 */
444
+ − 1360 (key, alist))
428
+ − 1361 {
444
+ − 1362 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
428
+ − 1363 {
+ − 1364 if (HACKEQ_UNSAFE (key, elt_car))
+ − 1365 return elt;
+ − 1366 }
+ − 1367 return Qnil;
+ − 1368 }
+ − 1369
+ − 1370 /* Like Fassq but never report an error and do not allow quits.
+ − 1371 Use only on lists known never to be circular. */
+ − 1372
+ − 1373 Lisp_Object
444
+ − 1374 assq_no_quit (Lisp_Object key, Lisp_Object alist)
428
+ − 1375 {
+ − 1376 /* This cannot GC. */
444
+ − 1377 LIST_LOOP_2 (elt, alist)
428
+ − 1378 {
+ − 1379 Lisp_Object elt_car = XCAR (elt);
+ − 1380 if (EQ_WITH_EBOLA_NOTICE (key, elt_car))
+ − 1381 return elt;
+ − 1382 }
+ − 1383 return Qnil;
+ − 1384 }
+ − 1385
+ − 1386 DEFUN ("rassoc", Frassoc, 2, 2, 0, /*
444
+ − 1387 Return non-nil if VALUE is `equal' to the cdr of an element of ALIST.
+ − 1388 The value is actually the element of ALIST whose cdr equals VALUE.
428
+ − 1389 */
444
+ − 1390 (value, alist))
428
+ − 1391 {
444
+ − 1392 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
428
+ − 1393 {
444
+ − 1394 if (internal_equal (value, elt_cdr, 0))
428
+ − 1395 return elt;
+ − 1396 }
+ − 1397 return Qnil;
+ − 1398 }
+ − 1399
+ − 1400 DEFUN ("old-rassoc", Fold_rassoc, 2, 2, 0, /*
444
+ − 1401 Return non-nil if VALUE is `old-equal' to the cdr of an element of ALIST.
+ − 1402 The value is actually the element of ALIST whose cdr equals VALUE.
428
+ − 1403 */
444
+ − 1404 (value, alist))
428
+ − 1405 {
444
+ − 1406 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
428
+ − 1407 {
444
+ − 1408 if (internal_old_equal (value, elt_cdr, 0))
428
+ − 1409 return elt;
+ − 1410 }
+ − 1411 return Qnil;
+ − 1412 }
+ − 1413
+ − 1414 DEFUN ("rassq", Frassq, 2, 2, 0, /*
444
+ − 1415 Return non-nil if VALUE is `eq' to the cdr of an element of ALIST.
+ − 1416 The value is actually the element of ALIST whose cdr is VALUE.
428
+ − 1417 */
444
+ − 1418 (value, alist))
428
+ − 1419 {
444
+ − 1420 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
428
+ − 1421 {
444
+ − 1422 if (EQ_WITH_EBOLA_NOTICE (value, elt_cdr))
428
+ − 1423 return elt;
+ − 1424 }
+ − 1425 return Qnil;
+ − 1426 }
+ − 1427
+ − 1428 DEFUN ("old-rassq", Fold_rassq, 2, 2, 0, /*
444
+ − 1429 Return non-nil if VALUE is `old-eq' to the cdr of an element of ALIST.
+ − 1430 The value is actually the element of ALIST whose cdr is VALUE.
428
+ − 1431 */
444
+ − 1432 (value, alist))
428
+ − 1433 {
444
+ − 1434 EXTERNAL_ALIST_LOOP_4 (elt, elt_car, elt_cdr, alist)
428
+ − 1435 {
444
+ − 1436 if (HACKEQ_UNSAFE (value, elt_cdr))
428
+ − 1437 return elt;
+ − 1438 }
+ − 1439 return Qnil;
+ − 1440 }
+ − 1441
444
+ − 1442 /* Like Frassq, but caller must ensure that ALIST is properly
428
+ − 1443 nil-terminated and ebola-free. */
+ − 1444 Lisp_Object
444
+ − 1445 rassq_no_quit (Lisp_Object value, Lisp_Object alist)
428
+ − 1446 {
444
+ − 1447 LIST_LOOP_2 (elt, alist)
428
+ − 1448 {
+ − 1449 Lisp_Object elt_cdr = XCDR (elt);
444
+ − 1450 if (EQ_WITH_EBOLA_NOTICE (value, elt_cdr))
428
+ − 1451 return elt;
+ − 1452 }
+ − 1453 return Qnil;
+ − 1454 }
+ − 1455
+ − 1456
+ − 1457 DEFUN ("delete", Fdelete, 2, 2, 0, /*
+ − 1458 Delete by side effect any occurrences of ELT as a member of LIST.
+ − 1459 The modified LIST is returned. Comparison is done with `equal'.
+ − 1460 If the first member of LIST is ELT, there is no way to remove it by side
+ − 1461 effect; therefore, write `(setq foo (delete element foo))' to be sure
+ − 1462 of changing the value of `foo'.
+ − 1463 Also see: `remove'.
+ − 1464 */
+ − 1465 (elt, list))
+ − 1466 {
+ − 1467 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
+ − 1468 (internal_equal (elt, list_elt, 0)));
+ − 1469 return list;
+ − 1470 }
+ − 1471
+ − 1472 DEFUN ("old-delete", Fold_delete, 2, 2, 0, /*
+ − 1473 Delete by side effect any occurrences of ELT as a member of LIST.
+ − 1474 The modified LIST is returned. Comparison is done with `old-equal'.
+ − 1475 If the first member of LIST is ELT, there is no way to remove it by side
+ − 1476 effect; therefore, write `(setq foo (old-delete element foo))' to be sure
+ − 1477 of changing the value of `foo'.
+ − 1478 */
+ − 1479 (elt, list))
+ − 1480 {
+ − 1481 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
+ − 1482 (internal_old_equal (elt, list_elt, 0)));
+ − 1483 return list;
+ − 1484 }
+ − 1485
+ − 1486 DEFUN ("delq", Fdelq, 2, 2, 0, /*
+ − 1487 Delete by side effect any occurrences of ELT as a member of LIST.
+ − 1488 The modified LIST is returned. Comparison is done with `eq'.
+ − 1489 If the first member of LIST is ELT, there is no way to remove it by side
+ − 1490 effect; therefore, write `(setq foo (delq element foo))' to be sure of
+ − 1491 changing the value of `foo'.
+ − 1492 */
+ − 1493 (elt, list))
+ − 1494 {
+ − 1495 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
+ − 1496 (EQ_WITH_EBOLA_NOTICE (elt, list_elt)));
+ − 1497 return list;
+ − 1498 }
+ − 1499
+ − 1500 DEFUN ("old-delq", Fold_delq, 2, 2, 0, /*
+ − 1501 Delete by side effect any occurrences of ELT as a member of LIST.
+ − 1502 The modified LIST is returned. Comparison is done with `old-eq'.
+ − 1503 If the first member of LIST is ELT, there is no way to remove it by side
+ − 1504 effect; therefore, write `(setq foo (old-delq element foo))' to be sure of
+ − 1505 changing the value of `foo'.
+ − 1506 */
+ − 1507 (elt, list))
+ − 1508 {
+ − 1509 EXTERNAL_LIST_LOOP_DELETE_IF (list_elt, list,
+ − 1510 (HACKEQ_UNSAFE (elt, list_elt)));
+ − 1511 return list;
+ − 1512 }
+ − 1513
+ − 1514 /* Like Fdelq, but caller must ensure that LIST is properly
+ − 1515 nil-terminated and ebola-free. */
+ − 1516
+ − 1517 Lisp_Object
+ − 1518 delq_no_quit (Lisp_Object elt, Lisp_Object list)
+ − 1519 {
+ − 1520 LIST_LOOP_DELETE_IF (list_elt, list,
+ − 1521 (EQ_WITH_EBOLA_NOTICE (elt, list_elt)));
+ − 1522 return list;
+ − 1523 }
+ − 1524
+ − 1525 /* Be VERY careful with this. This is like delq_no_quit() but
+ − 1526 also calls free_cons() on the removed conses. You must be SURE
+ − 1527 that no pointers to the freed conses remain around (e.g.
+ − 1528 someone else is pointing to part of the list). This function
+ − 1529 is useful on internal lists that are used frequently and where
+ − 1530 the actual list doesn't escape beyond known code bounds. */
+ − 1531
+ − 1532 Lisp_Object
+ − 1533 delq_no_quit_and_free_cons (Lisp_Object elt, Lisp_Object list)
+ − 1534 {
+ − 1535 REGISTER Lisp_Object tail = list;
+ − 1536 REGISTER Lisp_Object prev = Qnil;
+ − 1537
+ − 1538 while (!NILP (tail))
+ − 1539 {
+ − 1540 REGISTER Lisp_Object tem = XCAR (tail);
+ − 1541 if (EQ (elt, tem))
+ − 1542 {
+ − 1543 Lisp_Object cons_to_free = tail;
+ − 1544 if (NILP (prev))
+ − 1545 list = XCDR (tail);
+ − 1546 else
+ − 1547 XCDR (prev) = XCDR (tail);
+ − 1548 tail = XCDR (tail);
+ − 1549 free_cons (XCONS (cons_to_free));
+ − 1550 }
+ − 1551 else
+ − 1552 {
+ − 1553 prev = tail;
+ − 1554 tail = XCDR (tail);
+ − 1555 }
+ − 1556 }
+ − 1557 return list;
+ − 1558 }
+ − 1559
+ − 1560 DEFUN ("remassoc", Fremassoc, 2, 2, 0, /*
444
+ − 1561 Delete by side effect any elements of ALIST whose car is `equal' to KEY.
+ − 1562 The modified ALIST is returned. If the first member of ALIST has a car
428
+ − 1563 that is `equal' to KEY, there is no way to remove it by side effect;
+ − 1564 therefore, write `(setq foo (remassoc key foo))' to be sure of changing
+ − 1565 the value of `foo'.
+ − 1566 */
444
+ − 1567 (key, alist))
428
+ − 1568 {
444
+ − 1569 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist,
428
+ − 1570 (CONSP (elt) &&
+ − 1571 internal_equal (key, XCAR (elt), 0)));
444
+ − 1572 return alist;
428
+ − 1573 }
+ − 1574
+ − 1575 Lisp_Object
444
+ − 1576 remassoc_no_quit (Lisp_Object key, Lisp_Object alist)
428
+ − 1577 {
+ − 1578 int speccount = specpdl_depth ();
+ − 1579 specbind (Qinhibit_quit, Qt);
444
+ − 1580 return unbind_to (speccount, Fremassoc (key, alist));
428
+ − 1581 }
+ − 1582
+ − 1583 DEFUN ("remassq", Fremassq, 2, 2, 0, /*
444
+ − 1584 Delete by side effect any elements of ALIST whose car is `eq' to KEY.
+ − 1585 The modified ALIST is returned. If the first member of ALIST has a car
428
+ − 1586 that is `eq' to KEY, there is no way to remove it by side effect;
+ − 1587 therefore, write `(setq foo (remassq key foo))' to be sure of changing
+ − 1588 the value of `foo'.
+ − 1589 */
444
+ − 1590 (key, alist))
428
+ − 1591 {
444
+ − 1592 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist,
428
+ − 1593 (CONSP (elt) &&
+ − 1594 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt))));
444
+ − 1595 return alist;
428
+ − 1596 }
+ − 1597
+ − 1598 /* no quit, no errors; be careful */
+ − 1599
+ − 1600 Lisp_Object
444
+ − 1601 remassq_no_quit (Lisp_Object key, Lisp_Object alist)
428
+ − 1602 {
444
+ − 1603 LIST_LOOP_DELETE_IF (elt, alist,
428
+ − 1604 (CONSP (elt) &&
+ − 1605 EQ_WITH_EBOLA_NOTICE (key, XCAR (elt))));
444
+ − 1606 return alist;
428
+ − 1607 }
+ − 1608
+ − 1609 DEFUN ("remrassoc", Fremrassoc, 2, 2, 0, /*
444
+ − 1610 Delete by side effect any elements of ALIST whose cdr is `equal' to VALUE.
+ − 1611 The modified ALIST is returned. If the first member of ALIST has a car
428
+ − 1612 that is `equal' to VALUE, there is no way to remove it by side effect;
+ − 1613 therefore, write `(setq foo (remrassoc value foo))' to be sure of changing
+ − 1614 the value of `foo'.
+ − 1615 */
444
+ − 1616 (value, alist))
428
+ − 1617 {
444
+ − 1618 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist,
428
+ − 1619 (CONSP (elt) &&
+ − 1620 internal_equal (value, XCDR (elt), 0)));
444
+ − 1621 return alist;
428
+ − 1622 }
+ − 1623
+ − 1624 DEFUN ("remrassq", Fremrassq, 2, 2, 0, /*
444
+ − 1625 Delete by side effect any elements of ALIST whose cdr is `eq' to VALUE.
+ − 1626 The modified ALIST is returned. If the first member of ALIST has a car
428
+ − 1627 that is `eq' to VALUE, there is no way to remove it by side effect;
+ − 1628 therefore, write `(setq foo (remrassq value foo))' to be sure of changing
+ − 1629 the value of `foo'.
+ − 1630 */
444
+ − 1631 (value, alist))
428
+ − 1632 {
444
+ − 1633 EXTERNAL_LIST_LOOP_DELETE_IF (elt, alist,
428
+ − 1634 (CONSP (elt) &&
+ − 1635 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt))));
444
+ − 1636 return alist;
428
+ − 1637 }
+ − 1638
+ − 1639 /* Like Fremrassq, fast and unsafe; be careful */
+ − 1640 Lisp_Object
444
+ − 1641 remrassq_no_quit (Lisp_Object value, Lisp_Object alist)
428
+ − 1642 {
444
+ − 1643 LIST_LOOP_DELETE_IF (elt, alist,
428
+ − 1644 (CONSP (elt) &&
+ − 1645 EQ_WITH_EBOLA_NOTICE (value, XCDR (elt))));
444
+ − 1646 return alist;
428
+ − 1647 }
+ − 1648
+ − 1649 DEFUN ("nreverse", Fnreverse, 1, 1, 0, /*
+ − 1650 Reverse LIST by destructively modifying cdr pointers.
+ − 1651 Return the beginning of the reversed list.
+ − 1652 Also see: `reverse'.
+ − 1653 */
+ − 1654 (list))
+ − 1655 {
+ − 1656 struct gcpro gcpro1, gcpro2;
+ − 1657 REGISTER Lisp_Object prev = Qnil;
+ − 1658 REGISTER Lisp_Object tail = list;
+ − 1659
+ − 1660 /* We gcpro our args; see `nconc' */
+ − 1661 GCPRO2 (prev, tail);
+ − 1662 while (!NILP (tail))
+ − 1663 {
+ − 1664 REGISTER Lisp_Object next;
+ − 1665 CONCHECK_CONS (tail);
+ − 1666 next = XCDR (tail);
+ − 1667 XCDR (tail) = prev;
+ − 1668 prev = tail;
+ − 1669 tail = next;
+ − 1670 }
+ − 1671 UNGCPRO;
+ − 1672 return prev;
+ − 1673 }
+ − 1674
+ − 1675 DEFUN ("reverse", Freverse, 1, 1, 0, /*
+ − 1676 Reverse LIST, copying. Return the beginning of the reversed list.
+ − 1677 See also the function `nreverse', which is used more often.
+ − 1678 */
+ − 1679 (list))
+ − 1680 {
+ − 1681 Lisp_Object reversed_list = Qnil;
+ − 1682 EXTERNAL_LIST_LOOP_2 (elt, list)
+ − 1683 {
+ − 1684 reversed_list = Fcons (elt, reversed_list);
+ − 1685 }
+ − 1686 return reversed_list;
+ − 1687 }
+ − 1688
+ − 1689 static Lisp_Object list_merge (Lisp_Object org_l1, Lisp_Object org_l2,
+ − 1690 Lisp_Object lisp_arg,
+ − 1691 int (*pred_fn) (Lisp_Object, Lisp_Object,
+ − 1692 Lisp_Object lisp_arg));
+ − 1693
+ − 1694 Lisp_Object
+ − 1695 list_sort (Lisp_Object list,
+ − 1696 Lisp_Object lisp_arg,
+ − 1697 int (*pred_fn) (Lisp_Object, Lisp_Object,
+ − 1698 Lisp_Object lisp_arg))
+ − 1699 {
+ − 1700 struct gcpro gcpro1, gcpro2, gcpro3;
+ − 1701 Lisp_Object back, tem;
+ − 1702 Lisp_Object front = list;
+ − 1703 Lisp_Object len = Flength (list);
444
+ − 1704
+ − 1705 if (XINT (len) < 2)
428
+ − 1706 return list;
+ − 1707
444
+ − 1708 len = make_int (XINT (len) / 2 - 1);
428
+ − 1709 tem = Fnthcdr (len, list);
+ − 1710 back = Fcdr (tem);
+ − 1711 Fsetcdr (tem, Qnil);
+ − 1712
+ − 1713 GCPRO3 (front, back, lisp_arg);
+ − 1714 front = list_sort (front, lisp_arg, pred_fn);
+ − 1715 back = list_sort (back, lisp_arg, pred_fn);
+ − 1716 UNGCPRO;
+ − 1717 return list_merge (front, back, lisp_arg, pred_fn);
+ − 1718 }
+ − 1719
+ − 1720
+ − 1721 static int
+ − 1722 merge_pred_function (Lisp_Object obj1, Lisp_Object obj2,
+ − 1723 Lisp_Object pred)
+ − 1724 {
+ − 1725 Lisp_Object tmp;
+ − 1726
+ − 1727 /* prevents the GC from happening in call2 */
+ − 1728 int speccount = specpdl_depth ();
+ − 1729 /* Emacs' GC doesn't actually relocate pointers, so this probably
+ − 1730 isn't strictly necessary */
+ − 1731 record_unwind_protect (restore_gc_inhibit,
+ − 1732 make_int (gc_currently_forbidden));
+ − 1733 gc_currently_forbidden = 1;
+ − 1734 tmp = call2 (pred, obj1, obj2);
+ − 1735 unbind_to (speccount, Qnil);
+ − 1736
+ − 1737 if (NILP (tmp))
+ − 1738 return -1;
+ − 1739 else
+ − 1740 return 1;
+ − 1741 }
+ − 1742
+ − 1743 DEFUN ("sort", Fsort, 2, 2, 0, /*
+ − 1744 Sort LIST, stably, comparing elements using PREDICATE.
+ − 1745 Returns the sorted list. LIST is modified by side effects.
+ − 1746 PREDICATE is called with two elements of LIST, and should return T
+ − 1747 if the first element is "less" than the second.
+ − 1748 */
444
+ − 1749 (list, predicate))
428
+ − 1750 {
444
+ − 1751 return list_sort (list, predicate, merge_pred_function);
428
+ − 1752 }
+ − 1753
+ − 1754 Lisp_Object
+ − 1755 merge (Lisp_Object org_l1, Lisp_Object org_l2,
+ − 1756 Lisp_Object pred)
+ − 1757 {
+ − 1758 return list_merge (org_l1, org_l2, pred, merge_pred_function);
+ − 1759 }
+ − 1760
+ − 1761
+ − 1762 static Lisp_Object
+ − 1763 list_merge (Lisp_Object org_l1, Lisp_Object org_l2,
+ − 1764 Lisp_Object lisp_arg,
+ − 1765 int (*pred_fn) (Lisp_Object, Lisp_Object, Lisp_Object lisp_arg))
+ − 1766 {
+ − 1767 Lisp_Object value;
+ − 1768 Lisp_Object tail;
+ − 1769 Lisp_Object tem;
+ − 1770 Lisp_Object l1, l2;
+ − 1771 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
+ − 1772
+ − 1773 l1 = org_l1;
+ − 1774 l2 = org_l2;
+ − 1775 tail = Qnil;
+ − 1776 value = Qnil;
+ − 1777
+ − 1778 /* It is sufficient to protect org_l1 and org_l2.
+ − 1779 When l1 and l2 are updated, we copy the new values
+ − 1780 back into the org_ vars. */
+ − 1781
+ − 1782 GCPRO4 (org_l1, org_l2, lisp_arg, value);
+ − 1783
+ − 1784 while (1)
+ − 1785 {
+ − 1786 if (NILP (l1))
+ − 1787 {
+ − 1788 UNGCPRO;
+ − 1789 if (NILP (tail))
+ − 1790 return l2;
+ − 1791 Fsetcdr (tail, l2);
+ − 1792 return value;
+ − 1793 }
+ − 1794 if (NILP (l2))
+ − 1795 {
+ − 1796 UNGCPRO;
+ − 1797 if (NILP (tail))
+ − 1798 return l1;
+ − 1799 Fsetcdr (tail, l1);
+ − 1800 return value;
+ − 1801 }
+ − 1802
+ − 1803 if (((*pred_fn) (Fcar (l2), Fcar (l1), lisp_arg)) < 0)
+ − 1804 {
+ − 1805 tem = l1;
+ − 1806 l1 = Fcdr (l1);
+ − 1807 org_l1 = l1;
+ − 1808 }
+ − 1809 else
+ − 1810 {
+ − 1811 tem = l2;
+ − 1812 l2 = Fcdr (l2);
+ − 1813 org_l2 = l2;
+ − 1814 }
+ − 1815 if (NILP (tail))
+ − 1816 value = tem;
+ − 1817 else
+ − 1818 Fsetcdr (tail, tem);
+ − 1819 tail = tem;
+ − 1820 }
+ − 1821 }
+ − 1822
+ − 1823
+ − 1824 /************************************************************************/
+ − 1825 /* property-list functions */
+ − 1826 /************************************************************************/
+ − 1827
+ − 1828 /* For properties of text, we need to do order-insensitive comparison of
+ − 1829 plists. That is, we need to compare two plists such that they are the
+ − 1830 same if they have the same set of keys, and equivalent values.
+ − 1831 So (a 1 b 2) would be equal to (b 2 a 1).
+ − 1832
+ − 1833 NIL_MEANS_NOT_PRESENT is as in `plists-eq' etc.
+ − 1834 LAXP means use `equal' for comparisons.
+ − 1835 */
+ − 1836 int
+ − 1837 plists_differ (Lisp_Object a, Lisp_Object b, int nil_means_not_present,
+ − 1838 int laxp, int depth)
+ − 1839 {
438
+ − 1840 int eqp = (depth == -1); /* -1 as depth means use eq, not equal. */
428
+ − 1841 int la, lb, m, i, fill;
+ − 1842 Lisp_Object *keys, *vals;
+ − 1843 char *flags;
+ − 1844 Lisp_Object rest;
+ − 1845
+ − 1846 if (NILP (a) && NILP (b))
+ − 1847 return 0;
+ − 1848
+ − 1849 Fcheck_valid_plist (a);
+ − 1850 Fcheck_valid_plist (b);
+ − 1851
+ − 1852 la = XINT (Flength (a));
+ − 1853 lb = XINT (Flength (b));
+ − 1854 m = (la > lb ? la : lb);
+ − 1855 fill = 0;
+ − 1856 keys = alloca_array (Lisp_Object, m);
+ − 1857 vals = alloca_array (Lisp_Object, m);
+ − 1858 flags = alloca_array (char, m);
+ − 1859
+ − 1860 /* First extract the pairs from A. */
+ − 1861 for (rest = a; !NILP (rest); rest = XCDR (XCDR (rest)))
+ − 1862 {
+ − 1863 Lisp_Object k = XCAR (rest);
+ − 1864 Lisp_Object v = XCAR (XCDR (rest));
+ − 1865 /* Maybe be Ebolified. */
+ − 1866 if (nil_means_not_present && NILP (v)) continue;
+ − 1867 keys [fill] = k;
+ − 1868 vals [fill] = v;
+ − 1869 flags[fill] = 0;
+ − 1870 fill++;
+ − 1871 }
+ − 1872 /* Now iterate over B, and stop if we find something that's not in A,
+ − 1873 or that doesn't match. As we match, mark them. */
+ − 1874 for (rest = b; !NILP (rest); rest = XCDR (XCDR (rest)))
+ − 1875 {
+ − 1876 Lisp_Object k = XCAR (rest);
+ − 1877 Lisp_Object v = XCAR (XCDR (rest));
+ − 1878 /* Maybe be Ebolified. */
+ − 1879 if (nil_means_not_present && NILP (v)) continue;
+ − 1880 for (i = 0; i < fill; i++)
+ − 1881 {
+ − 1882 if (!laxp ? EQ (k, keys [i]) : internal_equal (k, keys [i], depth))
+ − 1883 {
434
+ − 1884 if (eqp
+ − 1885 /* We narrowly escaped being Ebolified here. */
+ − 1886 ? !EQ_WITH_EBOLA_NOTICE (v, vals [i])
+ − 1887 : !internal_equal (v, vals [i], depth))
428
+ − 1888 /* a property in B has a different value than in A */
+ − 1889 goto MISMATCH;
+ − 1890 flags [i] = 1;
+ − 1891 break;
+ − 1892 }
+ − 1893 }
+ − 1894 if (i == fill)
+ − 1895 /* there are some properties in B that are not in A */
+ − 1896 goto MISMATCH;
+ − 1897 }
+ − 1898 /* Now check to see that all the properties in A were also in B */
+ − 1899 for (i = 0; i < fill; i++)
+ − 1900 if (flags [i] == 0)
+ − 1901 goto MISMATCH;
+ − 1902
+ − 1903 /* Ok. */
+ − 1904 return 0;
+ − 1905
+ − 1906 MISMATCH:
+ − 1907 return 1;
+ − 1908 }
+ − 1909
+ − 1910 DEFUN ("plists-eq", Fplists_eq, 2, 3, 0, /*
+ − 1911 Return non-nil if property lists A and B are `eq'.
+ − 1912 A property list is an alternating list of keywords and values.
+ − 1913 This function does order-insensitive comparisons of the property lists:
+ − 1914 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
+ − 1915 Comparison between values is done using `eq'. See also `plists-equal'.
+ − 1916 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
+ − 1917 a nil value is ignored. This feature is a virus that has infected
+ − 1918 old Lisp implementations, but should not be used except for backward
+ − 1919 compatibility.
+ − 1920 */
+ − 1921 (a, b, nil_means_not_present))
+ − 1922 {
+ − 1923 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, -1)
+ − 1924 ? Qnil : Qt);
+ − 1925 }
+ − 1926
+ − 1927 DEFUN ("plists-equal", Fplists_equal, 2, 3, 0, /*
+ − 1928 Return non-nil if property lists A and B are `equal'.
+ − 1929 A property list is an alternating list of keywords and values. This
+ − 1930 function does order-insensitive comparisons of the property lists: For
+ − 1931 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
+ − 1932 Comparison between values is done using `equal'. See also `plists-eq'.
+ − 1933 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
+ − 1934 a nil value is ignored. This feature is a virus that has infected
+ − 1935 old Lisp implementations, but should not be used except for backward
+ − 1936 compatibility.
+ − 1937 */
+ − 1938 (a, b, nil_means_not_present))
+ − 1939 {
+ − 1940 return (plists_differ (a, b, !NILP (nil_means_not_present), 0, 1)
+ − 1941 ? Qnil : Qt);
+ − 1942 }
+ − 1943
+ − 1944
+ − 1945 DEFUN ("lax-plists-eq", Flax_plists_eq, 2, 3, 0, /*
+ − 1946 Return non-nil if lax property lists A and B are `eq'.
+ − 1947 A property list is an alternating list of keywords and values.
+ − 1948 This function does order-insensitive comparisons of the property lists:
+ − 1949 For example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
+ − 1950 Comparison between values is done using `eq'. See also `plists-equal'.
+ − 1951 A lax property list is like a regular one except that comparisons between
+ − 1952 keywords is done using `equal' instead of `eq'.
+ − 1953 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
+ − 1954 a nil value is ignored. This feature is a virus that has infected
+ − 1955 old Lisp implementations, but should not be used except for backward
+ − 1956 compatibility.
+ − 1957 */
+ − 1958 (a, b, nil_means_not_present))
+ − 1959 {
+ − 1960 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, -1)
+ − 1961 ? Qnil : Qt);
+ − 1962 }
+ − 1963
+ − 1964 DEFUN ("lax-plists-equal", Flax_plists_equal, 2, 3, 0, /*
+ − 1965 Return non-nil if lax property lists A and B are `equal'.
+ − 1966 A property list is an alternating list of keywords and values. This
+ − 1967 function does order-insensitive comparisons of the property lists: For
+ − 1968 example, the property lists '(a 1 b 2) and '(b 2 a 1) are equal.
+ − 1969 Comparison between values is done using `equal'. See also `plists-eq'.
+ − 1970 A lax property list is like a regular one except that comparisons between
+ − 1971 keywords is done using `equal' instead of `eq'.
+ − 1972 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
+ − 1973 a nil value is ignored. This feature is a virus that has infected
+ − 1974 old Lisp implementations, but should not be used except for backward
+ − 1975 compatibility.
+ − 1976 */
+ − 1977 (a, b, nil_means_not_present))
+ − 1978 {
+ − 1979 return (plists_differ (a, b, !NILP (nil_means_not_present), 1, 1)
+ − 1980 ? Qnil : Qt);
+ − 1981 }
+ − 1982
+ − 1983 /* Return the value associated with key PROPERTY in property list PLIST.
+ − 1984 Return nil if key not found. This function is used for internal
+ − 1985 property lists that cannot be directly manipulated by the user.
+ − 1986 */
+ − 1987
+ − 1988 Lisp_Object
+ − 1989 internal_plist_get (Lisp_Object plist, Lisp_Object property)
+ − 1990 {
+ − 1991 Lisp_Object tail;
+ − 1992
+ − 1993 for (tail = plist; !NILP (tail); tail = XCDR (XCDR (tail)))
+ − 1994 {
+ − 1995 if (EQ (XCAR (tail), property))
+ − 1996 return XCAR (XCDR (tail));
+ − 1997 }
+ − 1998
+ − 1999 return Qunbound;
+ − 2000 }
+ − 2001
+ − 2002 /* Set PLIST's value for PROPERTY to VALUE. Analogous to
+ − 2003 internal_plist_get(). */
+ − 2004
+ − 2005 void
+ − 2006 internal_plist_put (Lisp_Object *plist, Lisp_Object property,
+ − 2007 Lisp_Object value)
+ − 2008 {
+ − 2009 Lisp_Object tail;
+ − 2010
+ − 2011 for (tail = *plist; !NILP (tail); tail = XCDR (XCDR (tail)))
+ − 2012 {
+ − 2013 if (EQ (XCAR (tail), property))
+ − 2014 {
+ − 2015 XCAR (XCDR (tail)) = value;
+ − 2016 return;
+ − 2017 }
+ − 2018 }
+ − 2019
+ − 2020 *plist = Fcons (property, Fcons (value, *plist));
+ − 2021 }
+ − 2022
+ − 2023 int
+ − 2024 internal_remprop (Lisp_Object *plist, Lisp_Object property)
+ − 2025 {
+ − 2026 Lisp_Object tail, prev;
+ − 2027
+ − 2028 for (tail = *plist, prev = Qnil;
+ − 2029 !NILP (tail);
+ − 2030 tail = XCDR (XCDR (tail)))
+ − 2031 {
+ − 2032 if (EQ (XCAR (tail), property))
+ − 2033 {
+ − 2034 if (NILP (prev))
+ − 2035 *plist = XCDR (XCDR (tail));
+ − 2036 else
+ − 2037 XCDR (XCDR (prev)) = XCDR (XCDR (tail));
+ − 2038 return 1;
+ − 2039 }
+ − 2040 else
+ − 2041 prev = tail;
+ − 2042 }
+ − 2043
+ − 2044 return 0;
+ − 2045 }
+ − 2046
+ − 2047 /* Called on a malformed property list. BADPLACE should be some
+ − 2048 place where truncating will form a good list -- i.e. we shouldn't
+ − 2049 result in a list with an odd length. */
+ − 2050
+ − 2051 static Lisp_Object
578
+ − 2052 bad_bad_bunny (Lisp_Object *plist, Lisp_Object *badplace, Error_Behavior errb)
428
+ − 2053 {
+ − 2054 if (ERRB_EQ (errb, ERROR_ME))
+ − 2055 return Fsignal (Qmalformed_property_list, list2 (*plist, *badplace));
+ − 2056 else
+ − 2057 {
+ − 2058 if (ERRB_EQ (errb, ERROR_ME_WARN))
+ − 2059 {
+ − 2060 warn_when_safe_lispobj
+ − 2061 (Qlist, Qwarning,
+ − 2062 list2 (build_string
+ − 2063 ("Malformed property list -- list has been truncated"),
+ − 2064 *plist));
+ − 2065 *badplace = Qnil;
+ − 2066 }
+ − 2067 return Qunbound;
+ − 2068 }
+ − 2069 }
+ − 2070
+ − 2071 /* Called on a circular property list. BADPLACE should be some place
+ − 2072 where truncating will result in an even-length list, as above.
+ − 2073 If doesn't particularly matter where we truncate -- anywhere we
+ − 2074 truncate along the entire list will break the circularity, because
+ − 2075 it will create a terminus and the list currently doesn't have one.
+ − 2076 */
+ − 2077
+ − 2078 static Lisp_Object
578
+ − 2079 bad_bad_turtle (Lisp_Object *plist, Lisp_Object *badplace, Error_Behavior errb)
428
+ − 2080 {
+ − 2081 if (ERRB_EQ (errb, ERROR_ME))
+ − 2082 return Fsignal (Qcircular_property_list, list1 (*plist));
+ − 2083 else
+ − 2084 {
+ − 2085 if (ERRB_EQ (errb, ERROR_ME_WARN))
+ − 2086 {
+ − 2087 warn_when_safe_lispobj
+ − 2088 (Qlist, Qwarning,
+ − 2089 list2 (build_string
+ − 2090 ("Circular property list -- list has been truncated"),
+ − 2091 *plist));
+ − 2092 *badplace = Qnil;
+ − 2093 }
+ − 2094 return Qunbound;
+ − 2095 }
+ − 2096 }
+ − 2097
+ − 2098 /* Advance the tortoise pointer by two (one iteration of a property-list
+ − 2099 loop) and the hare pointer by four and verify that no malformations
+ − 2100 or circularities exist. If so, return zero and store a value into
+ − 2101 RETVAL that should be returned by the calling function. Otherwise,
+ − 2102 return 1. See external_plist_get().
+ − 2103 */
+ − 2104
+ − 2105 static int
+ − 2106 advance_plist_pointers (Lisp_Object *plist,
+ − 2107 Lisp_Object **tortoise, Lisp_Object **hare,
578
+ − 2108 Error_Behavior errb, Lisp_Object *retval)
428
+ − 2109 {
+ − 2110 int i;
+ − 2111 Lisp_Object *tortsave = *tortoise;
+ − 2112
+ − 2113 /* Note that our "fixing" may be more brutal than necessary,
+ − 2114 but it's the user's own problem, not ours, if they went in and
+ − 2115 manually fucked up a plist. */
+ − 2116
+ − 2117 for (i = 0; i < 2; i++)
+ − 2118 {
+ − 2119 /* This is a standard iteration of a defensive-loop-checking
+ − 2120 loop. We just do it twice because we want to advance past
+ − 2121 both the property and its value.
+ − 2122
+ − 2123 If the pointer indirection is confusing you, remember that
+ − 2124 one level of indirection on the hare and tortoise pointers
+ − 2125 is only due to pass-by-reference for this function. The other
+ − 2126 level is so that the plist can be fixed in place. */
+ − 2127
+ − 2128 /* When we reach the end of a well-formed plist, **HARE is
+ − 2129 nil. In that case, we don't do anything at all except
+ − 2130 advance TORTOISE by one. Otherwise, we advance HARE
+ − 2131 by two (making sure it's OK to do so), then advance
+ − 2132 TORTOISE by one (it will always be OK to do so because
+ − 2133 the HARE is always ahead of the TORTOISE and will have
+ − 2134 already verified the path), then make sure TORTOISE and
+ − 2135 HARE don't contain the same non-nil object -- if the
+ − 2136 TORTOISE and the HARE ever meet, then obviously we're
+ − 2137 in a circularity, and if we're in a circularity, then
+ − 2138 the TORTOISE and the HARE can't cross paths without
+ − 2139 meeting, since the HARE only gains one step over the
+ − 2140 TORTOISE per iteration. */
+ − 2141
+ − 2142 if (!NILP (**hare))
+ − 2143 {
+ − 2144 Lisp_Object *haresave = *hare;
+ − 2145 if (!CONSP (**hare))
+ − 2146 {
+ − 2147 *retval = bad_bad_bunny (plist, haresave, errb);
+ − 2148 return 0;
+ − 2149 }
+ − 2150 *hare = &XCDR (**hare);
+ − 2151 /* In a non-plist, we'd check here for a nil value for
+ − 2152 **HARE, which is OK (it just means the list has an
+ − 2153 odd number of elements). In a plist, it's not OK
+ − 2154 for the list to have an odd number of elements. */
+ − 2155 if (!CONSP (**hare))
+ − 2156 {
+ − 2157 *retval = bad_bad_bunny (plist, haresave, errb);
+ − 2158 return 0;
+ − 2159 }
+ − 2160 *hare = &XCDR (**hare);
+ − 2161 }
+ − 2162
+ − 2163 *tortoise = &XCDR (**tortoise);
+ − 2164 if (!NILP (**hare) && EQ (**tortoise, **hare))
+ − 2165 {
+ − 2166 *retval = bad_bad_turtle (plist, tortsave, errb);
+ − 2167 return 0;
+ − 2168 }
+ − 2169 }
+ − 2170
+ − 2171 return 1;
+ − 2172 }
+ − 2173
+ − 2174 /* Return the value of PROPERTY from PLIST, or Qunbound if
+ − 2175 property is not on the list.
+ − 2176
+ − 2177 PLIST is a Lisp-accessible property list, meaning that it
+ − 2178 has to be checked for malformations and circularities.
+ − 2179
+ − 2180 If ERRB is ERROR_ME, an error will be signalled. Otherwise, the
+ − 2181 function will never signal an error; and if ERRB is ERROR_ME_WARN,
+ − 2182 on finding a malformation or a circularity, it issues a warning and
+ − 2183 attempts to silently fix the problem.
+ − 2184
+ − 2185 A pointer to PLIST is passed in so that PLIST can be successfully
+ − 2186 "fixed" even if the error is at the beginning of the plist. */
+ − 2187
+ − 2188 Lisp_Object
+ − 2189 external_plist_get (Lisp_Object *plist, Lisp_Object property,
578
+ − 2190 int laxp, Error_Behavior errb)
428
+ − 2191 {
+ − 2192 Lisp_Object *tortoise = plist;
+ − 2193 Lisp_Object *hare = plist;
+ − 2194
+ − 2195 while (!NILP (*tortoise))
+ − 2196 {
+ − 2197 Lisp_Object *tortsave = tortoise;
+ − 2198 Lisp_Object retval;
+ − 2199
+ − 2200 /* We do the standard tortoise/hare march. We isolate the
+ − 2201 grungy stuff to do this in advance_plist_pointers(), though.
+ − 2202 To us, all this function does is advance the tortoise
+ − 2203 pointer by two and the hare pointer by four and make sure
+ − 2204 everything's OK. We first advance the pointers and then
+ − 2205 check if a property matched; this ensures that our
+ − 2206 check for a matching property is safe. */
+ − 2207
+ − 2208 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
+ − 2209 return retval;
+ − 2210
+ − 2211 if (!laxp ? EQ (XCAR (*tortsave), property)
+ − 2212 : internal_equal (XCAR (*tortsave), property, 0))
+ − 2213 return XCAR (XCDR (*tortsave));
+ − 2214 }
+ − 2215
+ − 2216 return Qunbound;
+ − 2217 }
+ − 2218
+ − 2219 /* Set PLIST's value for PROPERTY to VALUE, given a possibly
+ − 2220 malformed or circular plist. Analogous to external_plist_get(). */
+ − 2221
+ − 2222 void
+ − 2223 external_plist_put (Lisp_Object *plist, Lisp_Object property,
578
+ − 2224 Lisp_Object value, int laxp, Error_Behavior errb)
428
+ − 2225 {
+ − 2226 Lisp_Object *tortoise = plist;
+ − 2227 Lisp_Object *hare = plist;
+ − 2228
+ − 2229 while (!NILP (*tortoise))
+ − 2230 {
+ − 2231 Lisp_Object *tortsave = tortoise;
+ − 2232 Lisp_Object retval;
+ − 2233
+ − 2234 /* See above */
+ − 2235 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
+ − 2236 return;
+ − 2237
+ − 2238 if (!laxp ? EQ (XCAR (*tortsave), property)
+ − 2239 : internal_equal (XCAR (*tortsave), property, 0))
+ − 2240 {
+ − 2241 XCAR (XCDR (*tortsave)) = value;
+ − 2242 return;
+ − 2243 }
+ − 2244 }
+ − 2245
+ − 2246 *plist = Fcons (property, Fcons (value, *plist));
+ − 2247 }
+ − 2248
+ − 2249 int
+ − 2250 external_remprop (Lisp_Object *plist, Lisp_Object property,
578
+ − 2251 int laxp, Error_Behavior errb)
428
+ − 2252 {
+ − 2253 Lisp_Object *tortoise = plist;
+ − 2254 Lisp_Object *hare = plist;
+ − 2255
+ − 2256 while (!NILP (*tortoise))
+ − 2257 {
+ − 2258 Lisp_Object *tortsave = tortoise;
+ − 2259 Lisp_Object retval;
+ − 2260
+ − 2261 /* See above */
+ − 2262 if (!advance_plist_pointers (plist, &tortoise, &hare, errb, &retval))
+ − 2263 return 0;
+ − 2264
+ − 2265 if (!laxp ? EQ (XCAR (*tortsave), property)
+ − 2266 : internal_equal (XCAR (*tortsave), property, 0))
+ − 2267 {
+ − 2268 /* Now you see why it's so convenient to have that level
+ − 2269 of indirection. */
+ − 2270 *tortsave = XCDR (XCDR (*tortsave));
+ − 2271 return 1;
+ − 2272 }
+ − 2273 }
+ − 2274
+ − 2275 return 0;
+ − 2276 }
+ − 2277
+ − 2278 DEFUN ("plist-get", Fplist_get, 2, 3, 0, /*
+ − 2279 Extract a value from a property list.
+ − 2280 PLIST is a property list, which is a list of the form
444
+ − 2281 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...).
+ − 2282 PROPERTY is usually a symbol.
+ − 2283 This function returns the value corresponding to the PROPERTY,
+ − 2284 or DEFAULT if PROPERTY is not one of the properties on the list.
428
+ − 2285 */
444
+ − 2286 (plist, property, default_))
428
+ − 2287 {
444
+ − 2288 Lisp_Object value = external_plist_get (&plist, property, 0, ERROR_ME);
+ − 2289 return UNBOUNDP (value) ? default_ : value;
428
+ − 2290 }
+ − 2291
+ − 2292 DEFUN ("plist-put", Fplist_put, 3, 3, 0, /*
444
+ − 2293 Change value in PLIST of PROPERTY to VALUE.
+ − 2294 PLIST is a property list, which is a list of the form
+ − 2295 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2 ...).
+ − 2296 PROPERTY is usually a symbol and VALUE is any object.
+ − 2297 If PROPERTY is already a property on the list, its value is set to VALUE,
+ − 2298 otherwise the new PROPERTY VALUE pair is added.
+ − 2299 The new plist is returned; use `(setq x (plist-put x property value))'
+ − 2300 to be sure to use the new value. PLIST is modified by side effect.
428
+ − 2301 */
444
+ − 2302 (plist, property, value))
428
+ − 2303 {
444
+ − 2304 external_plist_put (&plist, property, value, 0, ERROR_ME);
428
+ − 2305 return plist;
+ − 2306 }
+ − 2307
+ − 2308 DEFUN ("plist-remprop", Fplist_remprop, 2, 2, 0, /*
444
+ − 2309 Remove from PLIST the property PROPERTY and its value.
+ − 2310 PLIST is a property list, which is a list of the form
+ − 2311 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2 ...).
+ − 2312 PROPERTY is usually a symbol.
+ − 2313 The new plist is returned; use `(setq x (plist-remprop x property))'
+ − 2314 to be sure to use the new value. PLIST is modified by side effect.
428
+ − 2315 */
444
+ − 2316 (plist, property))
428
+ − 2317 {
444
+ − 2318 external_remprop (&plist, property, 0, ERROR_ME);
428
+ − 2319 return plist;
+ − 2320 }
+ − 2321
+ − 2322 DEFUN ("plist-member", Fplist_member, 2, 2, 0, /*
444
+ − 2323 Return t if PROPERTY has a value specified in PLIST.
428
+ − 2324 */
444
+ − 2325 (plist, property))
428
+ − 2326 {
444
+ − 2327 Lisp_Object value = Fplist_get (plist, property, Qunbound);
+ − 2328 return UNBOUNDP (value) ? Qnil : Qt;
428
+ − 2329 }
+ − 2330
+ − 2331 DEFUN ("check-valid-plist", Fcheck_valid_plist, 1, 1, 0, /*
+ − 2332 Given a plist, signal an error if there is anything wrong with it.
+ − 2333 This means that it's a malformed or circular plist.
+ − 2334 */
+ − 2335 (plist))
+ − 2336 {
+ − 2337 Lisp_Object *tortoise;
+ − 2338 Lisp_Object *hare;
+ − 2339
+ − 2340 start_over:
+ − 2341 tortoise = &plist;
+ − 2342 hare = &plist;
+ − 2343 while (!NILP (*tortoise))
+ − 2344 {
+ − 2345 Lisp_Object retval;
+ − 2346
+ − 2347 /* See above */
+ − 2348 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME,
+ − 2349 &retval))
+ − 2350 goto start_over;
+ − 2351 }
+ − 2352
+ − 2353 return Qnil;
+ − 2354 }
+ − 2355
+ − 2356 DEFUN ("valid-plist-p", Fvalid_plist_p, 1, 1, 0, /*
+ − 2357 Given a plist, return non-nil if its format is correct.
+ − 2358 If it returns nil, `check-valid-plist' will signal an error when given
442
+ − 2359 the plist; that means it's a malformed or circular plist.
428
+ − 2360 */
+ − 2361 (plist))
+ − 2362 {
+ − 2363 Lisp_Object *tortoise;
+ − 2364 Lisp_Object *hare;
+ − 2365
+ − 2366 tortoise = &plist;
+ − 2367 hare = &plist;
+ − 2368 while (!NILP (*tortoise))
+ − 2369 {
+ − 2370 Lisp_Object retval;
+ − 2371
+ − 2372 /* See above */
+ − 2373 if (!advance_plist_pointers (&plist, &tortoise, &hare, ERROR_ME_NOT,
+ − 2374 &retval))
+ − 2375 return Qnil;
+ − 2376 }
+ − 2377
+ − 2378 return Qt;
+ − 2379 }
+ − 2380
+ − 2381 DEFUN ("canonicalize-plist", Fcanonicalize_plist, 1, 2, 0, /*
+ − 2382 Destructively remove any duplicate entries from a plist.
+ − 2383 In such cases, the first entry applies.
+ − 2384
+ − 2385 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
+ − 2386 a nil value is removed. This feature is a virus that has infected
+ − 2387 old Lisp implementations, but should not be used except for backward
+ − 2388 compatibility.
+ − 2389
+ − 2390 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the
+ − 2391 return value may not be EQ to the passed-in value, so make sure to
+ − 2392 `setq' the value back into where it came from.
+ − 2393 */
+ − 2394 (plist, nil_means_not_present))
+ − 2395 {
+ − 2396 Lisp_Object head = plist;
+ − 2397
+ − 2398 Fcheck_valid_plist (plist);
+ − 2399
+ − 2400 while (!NILP (plist))
+ − 2401 {
+ − 2402 Lisp_Object prop = Fcar (plist);
+ − 2403 Lisp_Object next = Fcdr (plist);
+ − 2404
+ − 2405 CHECK_CONS (next); /* just make doubly sure we catch any errors */
+ − 2406 if (!NILP (nil_means_not_present) && NILP (Fcar (next)))
+ − 2407 {
+ − 2408 if (EQ (head, plist))
+ − 2409 head = Fcdr (next);
+ − 2410 plist = Fcdr (next);
+ − 2411 continue;
+ − 2412 }
+ − 2413 /* external_remprop returns 1 if it removed any property.
+ − 2414 We have to loop till it didn't remove anything, in case
+ − 2415 the property occurs many times. */
+ − 2416 while (external_remprop (&XCDR (next), prop, 0, ERROR_ME))
+ − 2417 DO_NOTHING;
+ − 2418 plist = Fcdr (next);
+ − 2419 }
+ − 2420
+ − 2421 return head;
+ − 2422 }
+ − 2423
+ − 2424 DEFUN ("lax-plist-get", Flax_plist_get, 2, 3, 0, /*
+ − 2425 Extract a value from a lax property list.
444
+ − 2426 LAX-PLIST is a lax property list, which is a list of the form
+ − 2427 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between
+ − 2428 properties is done using `equal' instead of `eq'.
+ − 2429 PROPERTY is usually a symbol.
+ − 2430 This function returns the value corresponding to PROPERTY,
+ − 2431 or DEFAULT if PROPERTY is not one of the properties on the list.
428
+ − 2432 */
444
+ − 2433 (lax_plist, property, default_))
428
+ − 2434 {
444
+ − 2435 Lisp_Object value = external_plist_get (&lax_plist, property, 1, ERROR_ME);
+ − 2436 return UNBOUNDP (value) ? default_ : value;
428
+ − 2437 }
+ − 2438
+ − 2439 DEFUN ("lax-plist-put", Flax_plist_put, 3, 3, 0, /*
444
+ − 2440 Change value in LAX-PLIST of PROPERTY to VALUE.
+ − 2441 LAX-PLIST is a lax property list, which is a list of the form
+ − 2442 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between
+ − 2443 properties is done using `equal' instead of `eq'.
+ − 2444 PROPERTY is usually a symbol and VALUE is any object.
+ − 2445 If PROPERTY is already a property on the list, its value is set to
+ − 2446 VALUE, otherwise the new PROPERTY VALUE pair is added.
+ − 2447 The new plist is returned; use `(setq x (lax-plist-put x property value))'
+ − 2448 to be sure to use the new value. LAX-PLIST is modified by side effect.
428
+ − 2449 */
444
+ − 2450 (lax_plist, property, value))
428
+ − 2451 {
444
+ − 2452 external_plist_put (&lax_plist, property, value, 1, ERROR_ME);
428
+ − 2453 return lax_plist;
+ − 2454 }
+ − 2455
+ − 2456 DEFUN ("lax-plist-remprop", Flax_plist_remprop, 2, 2, 0, /*
444
+ − 2457 Remove from LAX-PLIST the property PROPERTY and its value.
+ − 2458 LAX-PLIST is a lax property list, which is a list of the form
+ − 2459 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between
+ − 2460 properties is done using `equal' instead of `eq'.
+ − 2461 PROPERTY is usually a symbol.
+ − 2462 The new plist is returned; use `(setq x (lax-plist-remprop x property))'
+ − 2463 to be sure to use the new value. LAX-PLIST is modified by side effect.
428
+ − 2464 */
444
+ − 2465 (lax_plist, property))
428
+ − 2466 {
444
+ − 2467 external_remprop (&lax_plist, property, 1, ERROR_ME);
428
+ − 2468 return lax_plist;
+ − 2469 }
+ − 2470
+ − 2471 DEFUN ("lax-plist-member", Flax_plist_member, 2, 2, 0, /*
444
+ − 2472 Return t if PROPERTY has a value specified in LAX-PLIST.
+ − 2473 LAX-PLIST is a lax property list, which is a list of the form
+ − 2474 \(PROPERTY1 VALUE1 PROPERTY2 VALUE2...), where comparisons between
+ − 2475 properties is done using `equal' instead of `eq'.
428
+ − 2476 */
444
+ − 2477 (lax_plist, property))
428
+ − 2478 {
444
+ − 2479 return UNBOUNDP (Flax_plist_get (lax_plist, property, Qunbound)) ? Qnil : Qt;
428
+ − 2480 }
+ − 2481
+ − 2482 DEFUN ("canonicalize-lax-plist", Fcanonicalize_lax_plist, 1, 2, 0, /*
+ − 2483 Destructively remove any duplicate entries from a lax plist.
+ − 2484 In such cases, the first entry applies.
+ − 2485
+ − 2486 If optional arg NIL-MEANS-NOT-PRESENT is non-nil, then a property with
+ − 2487 a nil value is removed. This feature is a virus that has infected
+ − 2488 old Lisp implementations, but should not be used except for backward
+ − 2489 compatibility.
+ − 2490
+ − 2491 The new plist is returned. If NIL-MEANS-NOT-PRESENT is given, the
+ − 2492 return value may not be EQ to the passed-in value, so make sure to
+ − 2493 `setq' the value back into where it came from.
+ − 2494 */
+ − 2495 (lax_plist, nil_means_not_present))
+ − 2496 {
+ − 2497 Lisp_Object head = lax_plist;
+ − 2498
+ − 2499 Fcheck_valid_plist (lax_plist);
+ − 2500
+ − 2501 while (!NILP (lax_plist))
+ − 2502 {
+ − 2503 Lisp_Object prop = Fcar (lax_plist);
+ − 2504 Lisp_Object next = Fcdr (lax_plist);
+ − 2505
+ − 2506 CHECK_CONS (next); /* just make doubly sure we catch any errors */
+ − 2507 if (!NILP (nil_means_not_present) && NILP (Fcar (next)))
+ − 2508 {
+ − 2509 if (EQ (head, lax_plist))
+ − 2510 head = Fcdr (next);
+ − 2511 lax_plist = Fcdr (next);
+ − 2512 continue;
+ − 2513 }
+ − 2514 /* external_remprop returns 1 if it removed any property.
+ − 2515 We have to loop till it didn't remove anything, in case
+ − 2516 the property occurs many times. */
+ − 2517 while (external_remprop (&XCDR (next), prop, 1, ERROR_ME))
+ − 2518 DO_NOTHING;
+ − 2519 lax_plist = Fcdr (next);
+ − 2520 }
+ − 2521
+ − 2522 return head;
+ − 2523 }
+ − 2524
+ − 2525 /* In C because the frame props stuff uses it */
+ − 2526
+ − 2527 DEFUN ("destructive-alist-to-plist", Fdestructive_alist_to_plist, 1, 1, 0, /*
+ − 2528 Convert association list ALIST into the equivalent property-list form.
+ − 2529 The plist is returned. This converts from
+ − 2530
+ − 2531 \((a . 1) (b . 2) (c . 3))
+ − 2532
+ − 2533 into
+ − 2534
+ − 2535 \(a 1 b 2 c 3)
+ − 2536
+ − 2537 The original alist is destroyed in the process of constructing the plist.
+ − 2538 See also `alist-to-plist'.
+ − 2539 */
+ − 2540 (alist))
+ − 2541 {
+ − 2542 Lisp_Object head = alist;
+ − 2543 while (!NILP (alist))
+ − 2544 {
+ − 2545 /* remember the alist element. */
+ − 2546 Lisp_Object el = Fcar (alist);
+ − 2547
+ − 2548 Fsetcar (alist, Fcar (el));
+ − 2549 Fsetcar (el, Fcdr (el));
+ − 2550 Fsetcdr (el, Fcdr (alist));
+ − 2551 Fsetcdr (alist, el);
+ − 2552 alist = Fcdr (Fcdr (alist));
+ − 2553 }
+ − 2554
+ − 2555 return head;
+ − 2556 }
+ − 2557
+ − 2558 DEFUN ("get", Fget, 2, 3, 0, /*
442
+ − 2559 Return the value of OBJECT's PROPERTY property.
+ − 2560 This is the last VALUE stored with `(put OBJECT PROPERTY VALUE)'.
428
+ − 2561 If there is no such property, return optional third arg DEFAULT
442
+ − 2562 \(which defaults to `nil'). OBJECT can be a symbol, string, extent,
+ − 2563 face, or glyph. See also `put', `remprop', and `object-plist'.
428
+ − 2564 */
442
+ − 2565 (object, property, default_))
428
+ − 2566 {
+ − 2567 /* Various places in emacs call Fget() and expect it not to quit,
+ − 2568 so don't quit. */
442
+ − 2569 Lisp_Object val;
+ − 2570
+ − 2571 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->getprop)
+ − 2572 val = XRECORD_LHEADER_IMPLEMENTATION (object)->getprop (object, property);
428
+ − 2573 else
563
+ − 2574 invalid_operation ("Object type has no properties", object);
442
+ − 2575
+ − 2576 return UNBOUNDP (val) ? default_ : val;
428
+ − 2577 }
+ − 2578
+ − 2579 DEFUN ("put", Fput, 3, 3, 0, /*
442
+ − 2580 Set OBJECT's PROPERTY to VALUE.
+ − 2581 It can be subsequently retrieved with `(get OBJECT PROPERTY)'.
+ − 2582 OBJECT can be a symbol, face, extent, or string.
428
+ − 2583 For a string, no properties currently have predefined meanings.
+ − 2584 For the predefined properties for extents, see `set-extent-property'.
+ − 2585 For the predefined properties for faces, see `set-face-property'.
+ − 2586 See also `get', `remprop', and `object-plist'.
+ − 2587 */
442
+ − 2588 (object, property, value))
428
+ − 2589 {
+ − 2590 CHECK_LISP_WRITEABLE (object);
+ − 2591
442
+ − 2592 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->putprop)
428
+ − 2593 {
442
+ − 2594 if (! XRECORD_LHEADER_IMPLEMENTATION (object)->putprop
+ − 2595 (object, property, value))
563
+ − 2596 invalid_change ("Can't set property on object", property);
428
+ − 2597 }
+ − 2598 else
563
+ − 2599 invalid_change ("Object type has no settable properties", object);
428
+ − 2600
+ − 2601 return value;
+ − 2602 }
+ − 2603
+ − 2604 DEFUN ("remprop", Fremprop, 2, 2, 0, /*
442
+ − 2605 Remove, from OBJECT's property list, PROPERTY and its corresponding value.
+ − 2606 OBJECT can be a symbol, string, extent, face, or glyph. Return non-nil
+ − 2607 if the property list was actually modified (i.e. if PROPERTY was present
+ − 2608 in the property list). See also `get', `put', and `object-plist'.
428
+ − 2609 */
442
+ − 2610 (object, property))
428
+ − 2611 {
442
+ − 2612 int ret = 0;
+ − 2613
428
+ − 2614 CHECK_LISP_WRITEABLE (object);
+ − 2615
442
+ − 2616 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->remprop)
428
+ − 2617 {
442
+ − 2618 ret = XRECORD_LHEADER_IMPLEMENTATION (object)->remprop (object, property);
+ − 2619 if (ret == -1)
563
+ − 2620 invalid_change ("Can't remove property from object", property);
428
+ − 2621 }
+ − 2622 else
563
+ − 2623 invalid_change ("Object type has no removable properties", object);
442
+ − 2624
+ − 2625 return ret ? Qt : Qnil;
428
+ − 2626 }
+ − 2627
+ − 2628 DEFUN ("object-plist", Fobject_plist, 1, 1, 0, /*
442
+ − 2629 Return a property list of OBJECT's properties.
+ − 2630 For a symbol, this is equivalent to `symbol-plist'.
+ − 2631 OBJECT can be a symbol, string, extent, face, or glyph.
+ − 2632 Do not modify the returned property list directly;
+ − 2633 this may or may not have the desired effects. Use `put' instead.
428
+ − 2634 */
+ − 2635 (object))
+ − 2636 {
442
+ − 2637 if (LRECORDP (object) && XRECORD_LHEADER_IMPLEMENTATION (object)->plist)
+ − 2638 return XRECORD_LHEADER_IMPLEMENTATION (object)->plist (object);
428
+ − 2639 else
563
+ − 2640 invalid_operation ("Object type has no properties", object);
428
+ − 2641
+ − 2642 return Qnil;
+ − 2643 }
+ − 2644
+ − 2645
+ − 2646 int
+ − 2647 internal_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
+ − 2648 {
+ − 2649 if (depth > 200)
563
+ − 2650 stack_overflow ("Stack overflow in equal", Qunbound);
428
+ − 2651 QUIT;
+ − 2652 if (EQ_WITH_EBOLA_NOTICE (obj1, obj2))
+ − 2653 return 1;
+ − 2654 /* Note that (equal 20 20.0) should be nil */
+ − 2655 if (XTYPE (obj1) != XTYPE (obj2))
+ − 2656 return 0;
+ − 2657 if (LRECORDP (obj1))
+ − 2658 {
442
+ − 2659 const struct lrecord_implementation
428
+ − 2660 *imp1 = XRECORD_LHEADER_IMPLEMENTATION (obj1),
+ − 2661 *imp2 = XRECORD_LHEADER_IMPLEMENTATION (obj2);
+ − 2662
+ − 2663 return (imp1 == imp2) &&
+ − 2664 /* EQ-ness of the objects was noticed above */
+ − 2665 (imp1->equal && (imp1->equal) (obj1, obj2, depth));
+ − 2666 }
+ − 2667
+ − 2668 return 0;
+ − 2669 }
+ − 2670
+ − 2671 /* Note that we may be calling sub-objects that will use
+ − 2672 internal_equal() (instead of internal_old_equal()). Oh well.
+ − 2673 We will get an Ebola note if there's any possibility of confusion,
+ − 2674 but that seems unlikely. */
+ − 2675
+ − 2676 static int
+ − 2677 internal_old_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
+ − 2678 {
+ − 2679 if (depth > 200)
563
+ − 2680 stack_overflow ("Stack overflow in equal", Qunbound);
428
+ − 2681 QUIT;
+ − 2682 if (HACKEQ_UNSAFE (obj1, obj2))
+ − 2683 return 1;
+ − 2684 /* Note that (equal 20 20.0) should be nil */
+ − 2685 if (XTYPE (obj1) != XTYPE (obj2))
+ − 2686 return 0;
+ − 2687
+ − 2688 return internal_equal (obj1, obj2, depth);
+ − 2689 }
+ − 2690
+ − 2691 DEFUN ("equal", Fequal, 2, 2, 0, /*
+ − 2692 Return t if two Lisp objects have similar structure and contents.
+ − 2693 They must have the same data type.
+ − 2694 Conses are compared by comparing the cars and the cdrs.
+ − 2695 Vectors and strings are compared element by element.
+ − 2696 Numbers are compared by value. Symbols must match exactly.
+ − 2697 */
444
+ − 2698 (object1, object2))
428
+ − 2699 {
444
+ − 2700 return internal_equal (object1, object2, 0) ? Qt : Qnil;
428
+ − 2701 }
+ − 2702
+ − 2703 DEFUN ("old-equal", Fold_equal, 2, 2, 0, /*
+ − 2704 Return t if two Lisp objects have similar structure and contents.
+ − 2705 They must have the same data type.
+ − 2706 \(Note, however, that an exception is made for characters and integers;
+ − 2707 this is known as the "char-int confoundance disease." See `eq' and
+ − 2708 `old-eq'.)
+ − 2709 This function is provided only for byte-code compatibility with v19.
+ − 2710 Do not use it.
+ − 2711 */
444
+ − 2712 (object1, object2))
428
+ − 2713 {
444
+ − 2714 return internal_old_equal (object1, object2, 0) ? Qt : Qnil;
428
+ − 2715 }
+ − 2716
+ − 2717
+ − 2718 DEFUN ("fillarray", Ffillarray, 2, 2, 0, /*
434
+ − 2719 Destructively modify ARRAY by replacing each element with ITEM.
428
+ − 2720 ARRAY is a vector, bit vector, or string.
+ − 2721 */
+ − 2722 (array, item))
+ − 2723 {
+ − 2724 retry:
+ − 2725 if (STRINGP (array))
+ − 2726 {
440
+ − 2727 Lisp_String *s = XSTRING (array);
434
+ − 2728 Bytecount old_bytecount = string_length (s);
+ − 2729 Bytecount new_bytecount;
+ − 2730 Bytecount item_bytecount;
665
+ − 2731 Intbyte item_buf[MAX_EMCHAR_LEN];
+ − 2732 Intbyte *p;
+ − 2733 Intbyte *end;
434
+ − 2734
428
+ − 2735 CHECK_CHAR_COERCE_INT (item);
+ − 2736 CHECK_LISP_WRITEABLE (array);
434
+ − 2737
+ − 2738 item_bytecount = set_charptr_emchar (item_buf, XCHAR (item));
+ − 2739 new_bytecount = item_bytecount * string_char_length (s);
+ − 2740
+ − 2741 resize_string (s, -1, new_bytecount - old_bytecount);
+ − 2742
+ − 2743 for (p = string_data (s), end = p + new_bytecount;
+ − 2744 p < end;
+ − 2745 p += item_bytecount)
+ − 2746 memcpy (p, item_buf, item_bytecount);
+ − 2747 *p = '\0';
+ − 2748
428
+ − 2749 bump_string_modiff (array);
+ − 2750 }
+ − 2751 else if (VECTORP (array))
+ − 2752 {
+ − 2753 Lisp_Object *p = XVECTOR_DATA (array);
665
+ − 2754 Elemcount len = XVECTOR_LENGTH (array);
428
+ − 2755 CHECK_LISP_WRITEABLE (array);
+ − 2756 while (len--)
+ − 2757 *p++ = item;
+ − 2758 }
+ − 2759 else if (BIT_VECTORP (array))
+ − 2760 {
440
+ − 2761 Lisp_Bit_Vector *v = XBIT_VECTOR (array);
665
+ − 2762 Elemcount len = bit_vector_length (v);
428
+ − 2763 int bit;
+ − 2764 CHECK_BIT (item);
444
+ − 2765 bit = XINT (item);
428
+ − 2766 CHECK_LISP_WRITEABLE (array);
+ − 2767 while (len--)
+ − 2768 set_bit_vector_bit (v, len, bit);
+ − 2769 }
+ − 2770 else
+ − 2771 {
+ − 2772 array = wrong_type_argument (Qarrayp, array);
+ − 2773 goto retry;
+ − 2774 }
+ − 2775 return array;
+ − 2776 }
+ − 2777
+ − 2778 Lisp_Object
+ − 2779 nconc2 (Lisp_Object arg1, Lisp_Object arg2)
+ − 2780 {
+ − 2781 Lisp_Object args[2];
+ − 2782 struct gcpro gcpro1;
+ − 2783 args[0] = arg1;
+ − 2784 args[1] = arg2;
+ − 2785
+ − 2786 GCPRO1 (args[0]);
+ − 2787 gcpro1.nvars = 2;
+ − 2788
+ − 2789 RETURN_UNGCPRO (bytecode_nconc2 (args));
+ − 2790 }
+ − 2791
+ − 2792 Lisp_Object
+ − 2793 bytecode_nconc2 (Lisp_Object *args)
+ − 2794 {
+ − 2795 retry:
+ − 2796
+ − 2797 if (CONSP (args[0]))
+ − 2798 {
+ − 2799 /* (setcdr (last args[0]) args[1]) */
+ − 2800 Lisp_Object tortoise, hare;
665
+ − 2801 Elemcount count;
428
+ − 2802
+ − 2803 for (hare = tortoise = args[0], count = 0;
+ − 2804 CONSP (XCDR (hare));
+ − 2805 hare = XCDR (hare), count++)
+ − 2806 {
+ − 2807 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue;
+ − 2808
+ − 2809 if (count & 1)
+ − 2810 tortoise = XCDR (tortoise);
+ − 2811 if (EQ (hare, tortoise))
+ − 2812 signal_circular_list_error (args[0]);
+ − 2813 }
+ − 2814 XCDR (hare) = args[1];
+ − 2815 return args[0];
+ − 2816 }
+ − 2817 else if (NILP (args[0]))
+ − 2818 {
+ − 2819 return args[1];
+ − 2820 }
+ − 2821 else
+ − 2822 {
+ − 2823 args[0] = wrong_type_argument (args[0], Qlistp);
+ − 2824 goto retry;
+ − 2825 }
+ − 2826 }
+ − 2827
+ − 2828 DEFUN ("nconc", Fnconc, 0, MANY, 0, /*
+ − 2829 Concatenate any number of lists by altering them.
+ − 2830 Only the last argument is not altered, and need not be a list.
+ − 2831 Also see: `append'.
+ − 2832 If the first argument is nil, there is no way to modify it by side
+ − 2833 effect; therefore, write `(setq foo (nconc foo list))' to be sure of
+ − 2834 changing the value of `foo'.
+ − 2835 */
+ − 2836 (int nargs, Lisp_Object *args))
+ − 2837 {
+ − 2838 int argnum = 0;
+ − 2839 struct gcpro gcpro1;
+ − 2840
+ − 2841 /* The modus operandi in Emacs is "caller gc-protects args".
+ − 2842 However, nconc (particularly nconc2 ()) is called many times
+ − 2843 in Emacs on freshly created stuff (e.g. you see the idiom
+ − 2844 nconc2 (Fcopy_sequence (foo), bar) a lot). So we help those
+ − 2845 callers out by protecting the args ourselves to save them
+ − 2846 a lot of temporary-variable grief. */
+ − 2847
+ − 2848 GCPRO1 (args[0]);
+ − 2849 gcpro1.nvars = nargs;
+ − 2850
+ − 2851 while (argnum < nargs)
+ − 2852 {
+ − 2853 Lisp_Object val;
+ − 2854 retry:
+ − 2855 val = args[argnum];
+ − 2856 if (CONSP (val))
+ − 2857 {
+ − 2858 /* `val' is the first cons, which will be our return value. */
+ − 2859 /* `last_cons' will be the cons cell to mutate. */
+ − 2860 Lisp_Object last_cons = val;
+ − 2861 Lisp_Object tortoise = val;
+ − 2862
+ − 2863 for (argnum++; argnum < nargs; argnum++)
+ − 2864 {
+ − 2865 Lisp_Object next = args[argnum];
+ − 2866 retry_next:
+ − 2867 if (CONSP (next) || argnum == nargs -1)
+ − 2868 {
+ − 2869 /* (setcdr (last val) next) */
665
+ − 2870 Elemcount count;
428
+ − 2871
+ − 2872 for (count = 0;
+ − 2873 CONSP (XCDR (last_cons));
+ − 2874 last_cons = XCDR (last_cons), count++)
+ − 2875 {
+ − 2876 if (count < CIRCULAR_LIST_SUSPICION_LENGTH) continue;
+ − 2877
+ − 2878 if (count & 1)
+ − 2879 tortoise = XCDR (tortoise);
+ − 2880 if (EQ (last_cons, tortoise))
+ − 2881 signal_circular_list_error (args[argnum-1]);
+ − 2882 }
+ − 2883 XCDR (last_cons) = next;
+ − 2884 }
+ − 2885 else if (NILP (next))
+ − 2886 {
+ − 2887 continue;
+ − 2888 }
+ − 2889 else
+ − 2890 {
+ − 2891 next = wrong_type_argument (Qlistp, next);
+ − 2892 goto retry_next;
+ − 2893 }
+ − 2894 }
+ − 2895 RETURN_UNGCPRO (val);
+ − 2896 }
+ − 2897 else if (NILP (val))
+ − 2898 argnum++;
+ − 2899 else if (argnum == nargs - 1) /* last arg? */
+ − 2900 RETURN_UNGCPRO (val);
+ − 2901 else
+ − 2902 {
+ − 2903 args[argnum] = wrong_type_argument (Qlistp, val);
+ − 2904 goto retry;
+ − 2905 }
+ − 2906 }
+ − 2907 RETURN_UNGCPRO (Qnil); /* No non-nil args provided. */
+ − 2908 }
+ − 2909
+ − 2910
434
+ − 2911 /* This is the guts of several mapping functions.
+ − 2912 Apply FUNCTION to each element of SEQUENCE, one by one,
+ − 2913 storing the results into elements of VALS, a C vector of Lisp_Objects.
+ − 2914 LENI is the length of VALS, which should also be the length of SEQUENCE.
428
+ − 2915
+ − 2916 If VALS is a null pointer, do not accumulate the results. */
+ − 2917
+ − 2918 static void
665
+ − 2919 mapcar1 (Elemcount leni, Lisp_Object *vals,
434
+ − 2920 Lisp_Object function, Lisp_Object sequence)
428
+ − 2921 {
+ − 2922 Lisp_Object result;
+ − 2923 Lisp_Object args[2];
+ − 2924 struct gcpro gcpro1;
+ − 2925
+ − 2926 if (vals)
+ − 2927 {
+ − 2928 GCPRO1 (vals[0]);
+ − 2929 gcpro1.nvars = 0;
+ − 2930 }
+ − 2931
434
+ − 2932 args[0] = function;
+ − 2933
+ − 2934 if (LISTP (sequence))
428
+ − 2935 {
434
+ − 2936 /* A devious `function' could either:
+ − 2937 - insert garbage into the list in front of us, causing XCDR to crash
+ − 2938 - amputate the list behind us using (setcdr), causing the remaining
+ − 2939 elts to lose their GCPRO status.
+ − 2940
+ − 2941 if (vals != 0) we avoid this by copying the elts into the
+ − 2942 `vals' array. By a stroke of luck, `vals' is exactly large
+ − 2943 enough to hold the elts left to be traversed as well as the
+ − 2944 results computed so far.
+ − 2945
+ − 2946 if (vals == 0) we don't have any free space available and
+ − 2947 don't want to eat up any more stack with alloca().
442
+ − 2948 So we use EXTERNAL_LIST_LOOP_3_NO_DECLARE and GCPRO the tail. */
434
+ − 2949
+ − 2950 if (vals)
428
+ − 2951 {
434
+ − 2952 Lisp_Object *val = vals;
665
+ − 2953 Elemcount i;
434
+ − 2954
+ − 2955 LIST_LOOP_2 (elt, sequence)
+ − 2956 *val++ = elt;
+ − 2957
+ − 2958 gcpro1.nvars = leni;
+ − 2959
+ − 2960 for (i = 0; i < leni; i++)
+ − 2961 {
+ − 2962 args[1] = vals[i];
+ − 2963 vals[i] = Ffuncall (2, args);
+ − 2964 }
+ − 2965 }
+ − 2966 else
+ − 2967 {
+ − 2968 Lisp_Object elt, tail;
442
+ − 2969 EMACS_INT len_unused;
434
+ − 2970 struct gcpro ngcpro1;
+ − 2971
+ − 2972 NGCPRO1 (tail);
+ − 2973
+ − 2974 {
442
+ − 2975 EXTERNAL_LIST_LOOP_4_NO_DECLARE (elt, sequence, tail, len_unused)
434
+ − 2976 {
+ − 2977 args[1] = elt;
+ − 2978 Ffuncall (2, args);
+ − 2979 }
+ − 2980 }
+ − 2981
+ − 2982 NUNGCPRO;
428
+ − 2983 }
+ − 2984 }
434
+ − 2985 else if (VECTORP (sequence))
428
+ − 2986 {
434
+ − 2987 Lisp_Object *objs = XVECTOR_DATA (sequence);
665
+ − 2988 Elemcount i;
428
+ − 2989 for (i = 0; i < leni; i++)
+ − 2990 {
+ − 2991 args[1] = *objs++;
+ − 2992 result = Ffuncall (2, args);
+ − 2993 if (vals) vals[gcpro1.nvars++] = result;
+ − 2994 }
+ − 2995 }
434
+ − 2996 else if (STRINGP (sequence))
428
+ − 2997 {
434
+ − 2998 /* The string data of `sequence' might be relocated during GC. */
+ − 2999 Bytecount slen = XSTRING_LENGTH (sequence);
665
+ − 3000 Intbyte *p = alloca_array (Intbyte, slen);
+ − 3001 Intbyte *end = p + slen;
434
+ − 3002
+ − 3003 memcpy (p, XSTRING_DATA (sequence), slen);
+ − 3004
+ − 3005 while (p < end)
428
+ − 3006 {
+ − 3007 args[1] = make_char (charptr_emchar (p));
+ − 3008 INC_CHARPTR (p);
+ − 3009 result = Ffuncall (2, args);
+ − 3010 if (vals) vals[gcpro1.nvars++] = result;
+ − 3011 }
+ − 3012 }
434
+ − 3013 else if (BIT_VECTORP (sequence))
428
+ − 3014 {
440
+ − 3015 Lisp_Bit_Vector *v = XBIT_VECTOR (sequence);
665
+ − 3016 Elemcount i;
428
+ − 3017 for (i = 0; i < leni; i++)
+ − 3018 {
+ − 3019 args[1] = make_int (bit_vector_bit (v, i));
+ − 3020 result = Ffuncall (2, args);
+ − 3021 if (vals) vals[gcpro1.nvars++] = result;
+ − 3022 }
+ − 3023 }
+ − 3024 else
442
+ − 3025 abort (); /* unreachable, since Flength (sequence) did not get an error */
428
+ − 3026
+ − 3027 if (vals)
+ − 3028 UNGCPRO;
+ − 3029 }
+ − 3030
+ − 3031 DEFUN ("mapconcat", Fmapconcat, 3, 3, 0, /*
434
+ − 3032 Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
+ − 3033 In between each pair of results, insert SEPARATOR. Thus, using " " as
+ − 3034 SEPARATOR results in spaces between the values returned by FUNCTION.
+ − 3035 SEQUENCE may be a list, a vector, a bit vector, or a string.
428
+ − 3036 */
434
+ − 3037 (function, sequence, separator))
428
+ − 3038 {
444
+ − 3039 EMACS_INT len = XINT (Flength (sequence));
428
+ − 3040 Lisp_Object *args;
444
+ − 3041 EMACS_INT i;
+ − 3042 EMACS_INT nargs = len + len - 1;
428
+ − 3043
442
+ − 3044 if (len == 0) return build_string ("");
428
+ − 3045
+ − 3046 args = alloca_array (Lisp_Object, nargs);
+ − 3047
434
+ − 3048 mapcar1 (len, args, function, sequence);
428
+ − 3049
+ − 3050 for (i = len - 1; i >= 0; i--)
+ − 3051 args[i + i] = args[i];
+ − 3052
+ − 3053 for (i = 1; i < nargs; i += 2)
434
+ − 3054 args[i] = separator;
428
+ − 3055
+ − 3056 return Fconcat (nargs, args);
+ − 3057 }
+ − 3058
+ − 3059 DEFUN ("mapcar", Fmapcar, 2, 2, 0, /*
434
+ − 3060 Apply FUNCTION to each element of SEQUENCE; return a list of the results.
+ − 3061 The result is a list of the same length as SEQUENCE.
428
+ − 3062 SEQUENCE may be a list, a vector, a bit vector, or a string.
+ − 3063 */
434
+ − 3064 (function, sequence))
428
+ − 3065 {
665
+ − 3066 Elemcount len = XINT (Flength (sequence));
428
+ − 3067 Lisp_Object *args = alloca_array (Lisp_Object, len);
+ − 3068
434
+ − 3069 mapcar1 (len, args, function, sequence);
428
+ − 3070
647
+ − 3071 return Flist ((int) len, args);
428
+ − 3072 }
+ − 3073
+ − 3074 DEFUN ("mapvector", Fmapvector, 2, 2, 0, /*
434
+ − 3075 Apply FUNCTION to each element of SEQUENCE; return a vector of the results.
428
+ − 3076 The result is a vector of the same length as SEQUENCE.
434
+ − 3077 SEQUENCE may be a list, a vector, a bit vector, or a string.
428
+ − 3078 */
434
+ − 3079 (function, sequence))
428
+ − 3080 {
665
+ − 3081 Elemcount len = XINT (Flength (sequence));
428
+ − 3082 Lisp_Object result = make_vector (len, Qnil);
+ − 3083 struct gcpro gcpro1;
+ − 3084
+ − 3085 GCPRO1 (result);
434
+ − 3086 mapcar1 (len, XVECTOR_DATA (result), function, sequence);
428
+ − 3087 UNGCPRO;
+ − 3088
+ − 3089 return result;
+ − 3090 }
+ − 3091
+ − 3092 DEFUN ("mapc-internal", Fmapc_internal, 2, 2, 0, /*
+ − 3093 Apply FUNCTION to each element of SEQUENCE.
+ − 3094 SEQUENCE may be a list, a vector, a bit vector, or a string.
+ − 3095 This function is like `mapcar' but does not accumulate the results,
+ − 3096 which is more efficient if you do not use the results.
+ − 3097
+ − 3098 The difference between this and `mapc' is that `mapc' supports all
+ − 3099 the spiffy Common Lisp arguments. You should normally use `mapc'.
+ − 3100 */
434
+ − 3101 (function, sequence))
428
+ − 3102 {
434
+ − 3103 mapcar1 (XINT (Flength (sequence)), 0, function, sequence);
+ − 3104
+ − 3105 return sequence;
428
+ − 3106 }
+ − 3107
+ − 3108
442
+ − 3109
+ − 3110
+ − 3111 DEFUN ("replace-list", Freplace_list, 2, 2, 0, /*
+ − 3112 Destructively replace the list OLD with NEW.
+ − 3113 This is like (copy-sequence NEW) except that it reuses the
+ − 3114 conses in OLD as much as possible. If OLD and NEW are the same
+ − 3115 length, no consing will take place.
+ − 3116 */
+ − 3117 (old, new))
+ − 3118 {
+ − 3119 Lisp_Object tail, oldtail = old, prevoldtail = Qnil;
+ − 3120
+ − 3121 EXTERNAL_LIST_LOOP (tail, new)
+ − 3122 {
+ − 3123 if (!NILP (oldtail))
+ − 3124 {
+ − 3125 CHECK_CONS (oldtail);
+ − 3126 XCAR (oldtail) = XCAR (tail);
+ − 3127 }
+ − 3128 else if (!NILP (prevoldtail))
+ − 3129 {
+ − 3130 XCDR (prevoldtail) = Fcons (XCAR (tail), Qnil);
+ − 3131 prevoldtail = XCDR (prevoldtail);
+ − 3132 }
+ − 3133 else
+ − 3134 old = oldtail = Fcons (XCAR (tail), Qnil);
+ − 3135
+ − 3136 if (!NILP (oldtail))
+ − 3137 {
+ − 3138 prevoldtail = oldtail;
+ − 3139 oldtail = XCDR (oldtail);
+ − 3140 }
+ − 3141 }
+ − 3142
+ − 3143 if (!NILP (prevoldtail))
+ − 3144 XCDR (prevoldtail) = Qnil;
+ − 3145 else
+ − 3146 old = Qnil;
+ − 3147
+ − 3148 return old;
+ − 3149 }
+ − 3150
+ − 3151
428
+ − 3152 /* #### this function doesn't belong in this file! */
+ − 3153
442
+ − 3154 #ifdef HAVE_GETLOADAVG
+ − 3155 #ifdef HAVE_SYS_LOADAVG_H
+ − 3156 #include <sys/loadavg.h>
+ − 3157 #endif
+ − 3158 #else
+ − 3159 int getloadavg (double loadavg[], int nelem); /* Defined in getloadavg.c */
+ − 3160 #endif
+ − 3161
428
+ − 3162 DEFUN ("load-average", Fload_average, 0, 1, 0, /*
+ − 3163 Return list of 1 minute, 5 minute and 15 minute load averages.
+ − 3164 Each of the three load averages is multiplied by 100,
+ − 3165 then converted to integer.
+ − 3166
+ − 3167 When USE-FLOATS is non-nil, floats will be used instead of integers.
+ − 3168 These floats are not multiplied by 100.
+ − 3169
+ − 3170 If the 5-minute or 15-minute load averages are not available, return a
+ − 3171 shortened list, containing only those averages which are available.
+ − 3172
+ − 3173 On some systems, this won't work due to permissions on /dev/kmem,
+ − 3174 in which case you can't use this.
+ − 3175 */
+ − 3176 (use_floats))
+ − 3177 {
+ − 3178 double load_ave[3];
+ − 3179 int loads = getloadavg (load_ave, countof (load_ave));
+ − 3180 Lisp_Object ret = Qnil;
+ − 3181
+ − 3182 if (loads == -2)
563
+ − 3183 signal_error (Qunimplemented,
+ − 3184 "load-average not implemented for this operating system",
+ − 3185 Qunbound);
428
+ − 3186 else if (loads < 0)
563
+ − 3187 invalid_operation ("Could not get load-average", lisp_strerror (errno));
428
+ − 3188
+ − 3189 while (loads-- > 0)
+ − 3190 {
+ − 3191 Lisp_Object load = (NILP (use_floats) ?
+ − 3192 make_int ((int) (100.0 * load_ave[loads]))
+ − 3193 : make_float (load_ave[loads]));
+ − 3194 ret = Fcons (load, ret);
+ − 3195 }
+ − 3196 return ret;
+ − 3197 }
+ − 3198
+ − 3199
+ − 3200 Lisp_Object Vfeatures;
+ − 3201
+ − 3202 DEFUN ("featurep", Ffeaturep, 1, 1, 0, /*
+ − 3203 Return non-nil if feature FEXP is present in this Emacs.
+ − 3204 Use this to conditionalize execution of lisp code based on the
+ − 3205 presence or absence of emacs or environment extensions.
+ − 3206 FEXP can be a symbol, a number, or a list.
+ − 3207 If it is a symbol, that symbol is looked up in the `features' variable,
+ − 3208 and non-nil will be returned if found.
+ − 3209 If it is a number, the function will return non-nil if this Emacs
+ − 3210 has an equal or greater version number than FEXP.
+ − 3211 If it is a list whose car is the symbol `and', it will return
+ − 3212 non-nil if all the features in its cdr are non-nil.
+ − 3213 If it is a list whose car is the symbol `or', it will return non-nil
+ − 3214 if any of the features in its cdr are non-nil.
+ − 3215 If it is a list whose car is the symbol `not', it will return
+ − 3216 non-nil if the feature is not present.
+ − 3217
+ − 3218 Examples:
+ − 3219
+ − 3220 (featurep 'xemacs)
+ − 3221 => ; Non-nil on XEmacs.
+ − 3222
+ − 3223 (featurep '(and xemacs gnus))
+ − 3224 => ; Non-nil on XEmacs with Gnus loaded.
+ − 3225
+ − 3226 (featurep '(or tty-frames (and emacs 19.30)))
+ − 3227 => ; Non-nil if this Emacs supports TTY frames.
+ − 3228
+ − 3229 (featurep '(or (and xemacs 19.15) (and emacs 19.34)))
+ − 3230 => ; Non-nil on XEmacs 19.15 and later, or FSF Emacs 19.34 and later.
+ − 3231
442
+ − 3232 (featurep '(and xemacs 21.02))
+ − 3233 => ; Non-nil on XEmacs 21.2 and later.
+ − 3234
428
+ − 3235 NOTE: The advanced arguments of this function (anything other than a
+ − 3236 symbol) are not yet supported by FSF Emacs. If you feel they are useful
+ − 3237 for supporting multiple Emacs variants, lobby Richard Stallman at
442
+ − 3238 <bug-gnu-emacs@gnu.org>.
428
+ − 3239 */
+ − 3240 (fexp))
+ − 3241 {
+ − 3242 #ifndef FEATUREP_SYNTAX
+ − 3243 CHECK_SYMBOL (fexp);
+ − 3244 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt;
+ − 3245 #else /* FEATUREP_SYNTAX */
+ − 3246 static double featurep_emacs_version;
+ − 3247
+ − 3248 /* Brute force translation from Erik Naggum's lisp function. */
+ − 3249 if (SYMBOLP (fexp))
+ − 3250 {
+ − 3251 /* Original definition */
+ − 3252 return NILP (Fmemq (fexp, Vfeatures)) ? Qnil : Qt;
+ − 3253 }
+ − 3254 else if (INTP (fexp) || FLOATP (fexp))
+ − 3255 {
+ − 3256 double d = extract_float (fexp);
+ − 3257
+ − 3258 if (featurep_emacs_version == 0.0)
+ − 3259 {
+ − 3260 featurep_emacs_version = XINT (Vemacs_major_version) +
+ − 3261 (XINT (Vemacs_minor_version) / 100.0);
+ − 3262 }
+ − 3263 return featurep_emacs_version >= d ? Qt : Qnil;
+ − 3264 }
+ − 3265 else if (CONSP (fexp))
+ − 3266 {
+ − 3267 Lisp_Object tem = XCAR (fexp);
+ − 3268 if (EQ (tem, Qnot))
+ − 3269 {
+ − 3270 Lisp_Object negate;
+ − 3271
+ − 3272 tem = XCDR (fexp);
+ − 3273 negate = Fcar (tem);
+ − 3274 if (!NILP (tem))
+ − 3275 return NILP (call1 (Qfeaturep, negate)) ? Qt : Qnil;
+ − 3276 else
+ − 3277 return Fsignal (Qinvalid_read_syntax, list1 (tem));
+ − 3278 }
+ − 3279 else if (EQ (tem, Qand))
+ − 3280 {
+ − 3281 tem = XCDR (fexp);
+ − 3282 /* Use Fcar/Fcdr for error-checking. */
+ − 3283 while (!NILP (tem) && !NILP (call1 (Qfeaturep, Fcar (tem))))
+ − 3284 {
+ − 3285 tem = Fcdr (tem);
+ − 3286 }
+ − 3287 return NILP (tem) ? Qt : Qnil;
+ − 3288 }
+ − 3289 else if (EQ (tem, Qor))
+ − 3290 {
+ − 3291 tem = XCDR (fexp);
+ − 3292 /* Use Fcar/Fcdr for error-checking. */
+ − 3293 while (!NILP (tem) && NILP (call1 (Qfeaturep, Fcar (tem))))
+ − 3294 {
+ − 3295 tem = Fcdr (tem);
+ − 3296 }
+ − 3297 return NILP (tem) ? Qnil : Qt;
+ − 3298 }
+ − 3299 else
+ − 3300 {
+ − 3301 return Fsignal (Qinvalid_read_syntax, list1 (XCDR (fexp)));
+ − 3302 }
+ − 3303 }
+ − 3304 else
+ − 3305 {
+ − 3306 return Fsignal (Qinvalid_read_syntax, list1 (fexp));
+ − 3307 }
+ − 3308 }
+ − 3309 #endif /* FEATUREP_SYNTAX */
+ − 3310
+ − 3311 DEFUN ("provide", Fprovide, 1, 1, 0, /*
+ − 3312 Announce that FEATURE is a feature of the current Emacs.
+ − 3313 This function updates the value of the variable `features'.
+ − 3314 */
+ − 3315 (feature))
+ − 3316 {
+ − 3317 Lisp_Object tem;
+ − 3318 CHECK_SYMBOL (feature);
+ − 3319 if (!NILP (Vautoload_queue))
+ − 3320 Vautoload_queue = Fcons (Fcons (Vfeatures, Qnil), Vautoload_queue);
+ − 3321 tem = Fmemq (feature, Vfeatures);
+ − 3322 if (NILP (tem))
+ − 3323 Vfeatures = Fcons (feature, Vfeatures);
+ − 3324 LOADHIST_ATTACH (Fcons (Qprovide, feature));
+ − 3325 return feature;
+ − 3326 }
+ − 3327
+ − 3328 DEFUN ("require", Frequire, 1, 2, 0, /*
+ − 3329 If feature FEATURE is not loaded, load it from FILENAME.
+ − 3330 If FEATURE is not a member of the list `features', then the feature
+ − 3331 is not loaded; so load the file FILENAME.
+ − 3332 If FILENAME is omitted, the printname of FEATURE is used as the file name.
+ − 3333 */
444
+ − 3334 (feature, filename))
428
+ − 3335 {
+ − 3336 Lisp_Object tem;
+ − 3337 CHECK_SYMBOL (feature);
+ − 3338 tem = Fmemq (feature, Vfeatures);
+ − 3339 LOADHIST_ATTACH (Fcons (Qrequire, feature));
+ − 3340 if (!NILP (tem))
+ − 3341 return feature;
+ − 3342 else
+ − 3343 {
+ − 3344 int speccount = specpdl_depth ();
+ − 3345
+ − 3346 /* Value saved here is to be restored into Vautoload_queue */
+ − 3347 record_unwind_protect (un_autoload, Vautoload_queue);
+ − 3348 Vautoload_queue = Qt;
+ − 3349
444
+ − 3350 call4 (Qload, NILP (filename) ? Fsymbol_name (feature) : filename,
428
+ − 3351 Qnil, Qt, Qnil);
+ − 3352
+ − 3353 tem = Fmemq (feature, Vfeatures);
+ − 3354 if (NILP (tem))
563
+ − 3355 invalid_state ("Required feature was not provided", feature);
428
+ − 3356
+ − 3357 /* Once loading finishes, don't undo it. */
+ − 3358 Vautoload_queue = Qt;
+ − 3359 return unbind_to (speccount, feature);
+ − 3360 }
+ − 3361 }
+ − 3362
+ − 3363 /* base64 encode/decode functions.
+ − 3364
+ − 3365 Originally based on code from GNU recode. Ported to FSF Emacs by
+ − 3366 Lars Magne Ingebrigtsen and Karl Heuer. Ported to XEmacs and
+ − 3367 subsequently heavily hacked by Hrvoje Niksic. */
+ − 3368
+ − 3369 #define MIME_LINE_LENGTH 72
+ − 3370
+ − 3371 #define IS_ASCII(Character) \
+ − 3372 ((Character) < 128)
+ − 3373 #define IS_BASE64(Character) \
+ − 3374 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
+ − 3375
+ − 3376 /* Table of characters coding the 64 values. */
+ − 3377 static char base64_value_to_char[64] =
+ − 3378 {
+ − 3379 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
+ − 3380 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
+ − 3381 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
+ − 3382 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
+ − 3383 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
+ − 3384 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
+ − 3385 '8', '9', '+', '/' /* 60-63 */
+ − 3386 };
+ − 3387
+ − 3388 /* Table of base64 values for first 128 characters. */
+ − 3389 static short base64_char_to_value[128] =
+ − 3390 {
+ − 3391 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
+ − 3392 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
+ − 3393 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
+ − 3394 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
+ − 3395 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
+ − 3396 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
+ − 3397 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
+ − 3398 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
+ − 3399 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
+ − 3400 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
+ − 3401 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
+ − 3402 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
+ − 3403 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
+ − 3404 };
+ − 3405
+ − 3406 /* The following diagram shows the logical steps by which three octets
+ − 3407 get transformed into four base64 characters.
+ − 3408
+ − 3409 .--------. .--------. .--------.
+ − 3410 |aaaaaabb| |bbbbcccc| |ccdddddd|
+ − 3411 `--------' `--------' `--------'
+ − 3412 6 2 4 4 2 6
+ − 3413 .--------+--------+--------+--------.
+ − 3414 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
+ − 3415 `--------+--------+--------+--------'
+ − 3416
+ − 3417 .--------+--------+--------+--------.
+ − 3418 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
+ − 3419 `--------+--------+--------+--------'
+ − 3420
+ − 3421 The octets are divided into 6 bit chunks, which are then encoded into
+ − 3422 base64 characters. */
+ − 3423
575
+ − 3424 static DOESNT_RETURN
563
+ − 3425 base64_conversion_error (const char *reason, Lisp_Object frob)
+ − 3426 {
+ − 3427 signal_error (Qbase64_conversion_error, reason, frob);
+ − 3428 }
+ − 3429
+ − 3430 #define ADVANCE_INPUT(c, stream) \
+ − 3431 ((ec = Lstream_get_emchar (stream)) == -1 ? 0 : \
+ − 3432 ((ec > 255) ? \
+ − 3433 (base64_conversion_error ("Non-ascii character in base64 input", \
+ − 3434 make_char (ec)), 0) \
665
+ − 3435 : (c = (Intbyte)ec), 1))
+ − 3436
+ − 3437 static Bytebpos
+ − 3438 base64_encode_1 (Lstream *istream, Intbyte *to, int line_break)
428
+ − 3439 {
+ − 3440 EMACS_INT counter = 0;
665
+ − 3441 Intbyte *e = to;
428
+ − 3442 Emchar ec;
+ − 3443 unsigned int value;
+ − 3444
+ − 3445 while (1)
+ − 3446 {
665
+ − 3447 Intbyte c;
428
+ − 3448 if (!ADVANCE_INPUT (c, istream))
+ − 3449 break;
+ − 3450
+ − 3451 /* Wrap line every 76 characters. */
+ − 3452 if (line_break)
+ − 3453 {
+ − 3454 if (counter < MIME_LINE_LENGTH / 4)
+ − 3455 counter++;
+ − 3456 else
+ − 3457 {
+ − 3458 *e++ = '\n';
+ − 3459 counter = 1;
+ − 3460 }
+ − 3461 }
+ − 3462
+ − 3463 /* Process first byte of a triplet. */
+ − 3464 *e++ = base64_value_to_char[0x3f & c >> 2];
+ − 3465 value = (0x03 & c) << 4;
+ − 3466
+ − 3467 /* Process second byte of a triplet. */
+ − 3468 if (!ADVANCE_INPUT (c, istream))
+ − 3469 {
+ − 3470 *e++ = base64_value_to_char[value];
+ − 3471 *e++ = '=';
+ − 3472 *e++ = '=';
+ − 3473 break;
+ − 3474 }
+ − 3475
+ − 3476 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
+ − 3477 value = (0x0f & c) << 2;
+ − 3478
+ − 3479 /* Process third byte of a triplet. */
+ − 3480 if (!ADVANCE_INPUT (c, istream))
+ − 3481 {
+ − 3482 *e++ = base64_value_to_char[value];
+ − 3483 *e++ = '=';
+ − 3484 break;
+ − 3485 }
+ − 3486
+ − 3487 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
+ − 3488 *e++ = base64_value_to_char[0x3f & c];
+ − 3489 }
+ − 3490
+ − 3491 return e - to;
+ − 3492 }
+ − 3493 #undef ADVANCE_INPUT
+ − 3494
+ − 3495 /* Get next character from the stream, except that non-base64
+ − 3496 characters are ignored. This is in accordance with rfc2045. EC
+ − 3497 should be an Emchar, so that it can hold -1 as the value for EOF. */
+ − 3498 #define ADVANCE_INPUT_IGNORE_NONBASE64(ec, stream, streampos) do { \
+ − 3499 ec = Lstream_get_emchar (stream); \
+ − 3500 ++streampos; \
+ − 3501 /* IS_BASE64 may not be called with negative arguments so check for \
+ − 3502 EOF first. */ \
+ − 3503 if (ec < 0 || IS_BASE64 (ec) || ec == '=') \
+ − 3504 break; \
+ − 3505 } while (1)
+ − 3506
+ − 3507 #define STORE_BYTE(pos, val, ccnt) do { \
+ − 3508 pos += set_charptr_emchar (pos, (Emchar)((unsigned char)(val))); \
+ − 3509 ++ccnt; \
+ − 3510 } while (0)
+ − 3511
665
+ − 3512 static Bytebpos
+ − 3513 base64_decode_1 (Lstream *istream, Intbyte *to, Charcount *ccptr)
428
+ − 3514 {
+ − 3515 Charcount ccnt = 0;
665
+ − 3516 Intbyte *e = to;
428
+ − 3517 EMACS_INT streampos = 0;
+ − 3518
+ − 3519 while (1)
+ − 3520 {
+ − 3521 Emchar ec;
+ − 3522 unsigned long value;
+ − 3523
+ − 3524 /* Process first byte of a quadruplet. */
+ − 3525 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
+ − 3526 if (ec < 0)
+ − 3527 break;
+ − 3528 if (ec == '=')
563
+ − 3529 base64_conversion_error ("Illegal `=' character while decoding base64",
+ − 3530 make_int (streampos));
428
+ − 3531 value = base64_char_to_value[ec] << 18;
+ − 3532
+ − 3533 /* Process second byte of a quadruplet. */
+ − 3534 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
+ − 3535 if (ec < 0)
563
+ − 3536 base64_conversion_error ("Premature EOF while decoding base64",
+ − 3537 Qunbound);
428
+ − 3538 if (ec == '=')
563
+ − 3539 base64_conversion_error ("Illegal `=' character while decoding base64",
+ − 3540 make_int (streampos));
428
+ − 3541 value |= base64_char_to_value[ec] << 12;
+ − 3542 STORE_BYTE (e, value >> 16, ccnt);
+ − 3543
+ − 3544 /* Process third byte of a quadruplet. */
+ − 3545 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
+ − 3546 if (ec < 0)
563
+ − 3547 base64_conversion_error ("Premature EOF while decoding base64",
+ − 3548 Qunbound);
428
+ − 3549
+ − 3550 if (ec == '=')
+ − 3551 {
+ − 3552 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
+ − 3553 if (ec < 0)
563
+ − 3554 base64_conversion_error ("Premature EOF while decoding base64",
+ − 3555 Qunbound);
428
+ − 3556 if (ec != '=')
563
+ − 3557 base64_conversion_error
+ − 3558 ("Padding `=' expected but not found while decoding base64",
+ − 3559 make_int (streampos));
428
+ − 3560 continue;
+ − 3561 }
+ − 3562
+ − 3563 value |= base64_char_to_value[ec] << 6;
+ − 3564 STORE_BYTE (e, 0xff & value >> 8, ccnt);
+ − 3565
+ − 3566 /* Process fourth byte of a quadruplet. */
+ − 3567 ADVANCE_INPUT_IGNORE_NONBASE64 (ec, istream, streampos);
+ − 3568 if (ec < 0)
563
+ − 3569 base64_conversion_error ("Premature EOF while decoding base64",
+ − 3570 Qunbound);
428
+ − 3571 if (ec == '=')
+ − 3572 continue;
+ − 3573
+ − 3574 value |= base64_char_to_value[ec];
+ − 3575 STORE_BYTE (e, 0xff & value, ccnt);
+ − 3576 }
+ − 3577
+ − 3578 *ccptr = ccnt;
+ − 3579 return e - to;
+ − 3580 }
+ − 3581 #undef ADVANCE_INPUT
+ − 3582 #undef ADVANCE_INPUT_IGNORE_NONBASE64
+ − 3583 #undef STORE_BYTE
+ − 3584
+ − 3585 static Lisp_Object
+ − 3586 free_malloced_ptr (Lisp_Object unwind_obj)
+ − 3587 {
+ − 3588 void *ptr = (void *)get_opaque_ptr (unwind_obj);
+ − 3589 xfree (ptr);
+ − 3590 free_opaque_ptr (unwind_obj);
+ − 3591 return Qnil;
+ − 3592 }
+ − 3593
+ − 3594 /* Don't use alloca for regions larger than this, lest we overflow
+ − 3595 the stack. */
+ − 3596 #define MAX_ALLOCA 65536
+ − 3597
+ − 3598 /* We need to setup proper unwinding, because there is a number of
+ − 3599 ways these functions can blow up, and we don't want to have memory
+ − 3600 leaks in those cases. */
+ − 3601 #define XMALLOC_OR_ALLOCA(ptr, len, type) do { \
665
+ − 3602 Elemcount XOA_len = (len); \
428
+ − 3603 if (XOA_len > MAX_ALLOCA) \
+ − 3604 { \
+ − 3605 ptr = xnew_array (type, XOA_len); \
+ − 3606 record_unwind_protect (free_malloced_ptr, \
+ − 3607 make_opaque_ptr ((void *)ptr)); \
+ − 3608 } \
+ − 3609 else \
+ − 3610 ptr = alloca_array (type, XOA_len); \
+ − 3611 } while (0)
+ − 3612
+ − 3613 #define XMALLOC_UNBIND(ptr, len, speccount) do { \
+ − 3614 if ((len) > MAX_ALLOCA) \
+ − 3615 unbind_to (speccount, Qnil); \
+ − 3616 } while (0)
+ − 3617
+ − 3618 DEFUN ("base64-encode-region", Fbase64_encode_region, 2, 3, "r", /*
444
+ − 3619 Base64-encode the region between START and END.
428
+ − 3620 Return the length of the encoded text.
+ − 3621 Optional third argument NO-LINE-BREAK means do not break long lines
+ − 3622 into shorter lines.
+ − 3623 */
444
+ − 3624 (start, end, no_line_break))
428
+ − 3625 {
665
+ − 3626 Intbyte *encoded;
+ − 3627 Bytebpos encoded_length;
428
+ − 3628 Charcount allength, length;
+ − 3629 struct buffer *buf = current_buffer;
665
+ − 3630 Charbpos begv, zv, old_pt = BUF_PT (buf);
428
+ − 3631 Lisp_Object input;
+ − 3632 int speccount = specpdl_depth();
+ − 3633
444
+ − 3634 get_buffer_range_char (buf, start, end, &begv, &zv, 0);
428
+ − 3635 barf_if_buffer_read_only (buf, begv, zv);
+ − 3636
+ − 3637 /* We need to allocate enough room for encoding the text.
+ − 3638 We need 33 1/3% more space, plus a newline every 76
+ − 3639 characters, and then we round up. */
+ − 3640 length = zv - begv;
+ − 3641 allength = length + length/3 + 1;
+ − 3642 allength += allength / MIME_LINE_LENGTH + 1 + 6;
+ − 3643
+ − 3644 input = make_lisp_buffer_input_stream (buf, begv, zv, 0);
+ − 3645 /* We needn't multiply allength with MAX_EMCHAR_LEN because all the
+ − 3646 base64 characters will be single-byte. */
665
+ − 3647 XMALLOC_OR_ALLOCA (encoded, allength, Intbyte);
428
+ − 3648 encoded_length = base64_encode_1 (XLSTREAM (input), encoded,
+ − 3649 NILP (no_line_break));
+ − 3650 if (encoded_length > allength)
+ − 3651 abort ();
+ − 3652 Lstream_delete (XLSTREAM (input));
+ − 3653
+ − 3654 /* Now we have encoded the region, so we insert the new contents
+ − 3655 and delete the old. (Insert first in order to preserve markers.) */
+ − 3656 buffer_insert_raw_string_1 (buf, begv, encoded, encoded_length, 0);
+ − 3657 XMALLOC_UNBIND (encoded, allength, speccount);
+ − 3658 buffer_delete_range (buf, begv + encoded_length, zv + encoded_length, 0);
+ − 3659
+ − 3660 /* Simulate FSF Emacs implementation of this function: if point was
+ − 3661 in the region, place it at the beginning. */
+ − 3662 if (old_pt >= begv && old_pt < zv)
+ − 3663 BUF_SET_PT (buf, begv);
+ − 3664
+ − 3665 /* We return the length of the encoded text. */
+ − 3666 return make_int (encoded_length);
+ − 3667 }
+ − 3668
+ − 3669 DEFUN ("base64-encode-string", Fbase64_encode_string, 1, 2, 0, /*
+ − 3670 Base64 encode STRING and return the result.
444
+ − 3671 Optional argument NO-LINE-BREAK means do not break long lines
+ − 3672 into shorter lines.
428
+ − 3673 */
+ − 3674 (string, no_line_break))
+ − 3675 {
+ − 3676 Charcount allength, length;
665
+ − 3677 Bytebpos encoded_length;
+ − 3678 Intbyte *encoded;
428
+ − 3679 Lisp_Object input, result;
+ − 3680 int speccount = specpdl_depth();
+ − 3681
+ − 3682 CHECK_STRING (string);
+ − 3683
+ − 3684 length = XSTRING_CHAR_LENGTH (string);
+ − 3685 allength = length + length/3 + 1;
+ − 3686 allength += allength / MIME_LINE_LENGTH + 1 + 6;
+ − 3687
+ − 3688 input = make_lisp_string_input_stream (string, 0, -1);
665
+ − 3689 XMALLOC_OR_ALLOCA (encoded, allength, Intbyte);
428
+ − 3690 encoded_length = base64_encode_1 (XLSTREAM (input), encoded,
+ − 3691 NILP (no_line_break));
+ − 3692 if (encoded_length > allength)
+ − 3693 abort ();
+ − 3694 Lstream_delete (XLSTREAM (input));
+ − 3695 result = make_string (encoded, encoded_length);
+ − 3696 XMALLOC_UNBIND (encoded, allength, speccount);
+ − 3697 return result;
+ − 3698 }
+ − 3699
+ − 3700 DEFUN ("base64-decode-region", Fbase64_decode_region, 2, 2, "r", /*
444
+ − 3701 Base64-decode the region between START and END.
428
+ − 3702 Return the length of the decoded text.
+ − 3703 If the region can't be decoded, return nil and don't modify the buffer.
+ − 3704 Characters out of the base64 alphabet are ignored.
+ − 3705 */
444
+ − 3706 (start, end))
428
+ − 3707 {
+ − 3708 struct buffer *buf = current_buffer;
665
+ − 3709 Charbpos begv, zv, old_pt = BUF_PT (buf);
+ − 3710 Intbyte *decoded;
+ − 3711 Bytebpos decoded_length;
428
+ − 3712 Charcount length, cc_decoded_length;
+ − 3713 Lisp_Object input;
+ − 3714 int speccount = specpdl_depth();
+ − 3715
444
+ − 3716 get_buffer_range_char (buf, start, end, &begv, &zv, 0);
428
+ − 3717 barf_if_buffer_read_only (buf, begv, zv);
+ − 3718
+ − 3719 length = zv - begv;
+ − 3720
+ − 3721 input = make_lisp_buffer_input_stream (buf, begv, zv, 0);
+ − 3722 /* We need to allocate enough room for decoding the text. */
665
+ − 3723 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Intbyte);
428
+ − 3724 decoded_length = base64_decode_1 (XLSTREAM (input), decoded, &cc_decoded_length);
+ − 3725 if (decoded_length > length * MAX_EMCHAR_LEN)
+ − 3726 abort ();
+ − 3727 Lstream_delete (XLSTREAM (input));
+ − 3728
+ − 3729 /* Now we have decoded the region, so we insert the new contents
+ − 3730 and delete the old. (Insert first in order to preserve markers.) */
+ − 3731 BUF_SET_PT (buf, begv);
+ − 3732 buffer_insert_raw_string_1 (buf, begv, decoded, decoded_length, 0);
+ − 3733 XMALLOC_UNBIND (decoded, length * MAX_EMCHAR_LEN, speccount);
+ − 3734 buffer_delete_range (buf, begv + cc_decoded_length,
+ − 3735 zv + cc_decoded_length, 0);
+ − 3736
+ − 3737 /* Simulate FSF Emacs implementation of this function: if point was
+ − 3738 in the region, place it at the beginning. */
+ − 3739 if (old_pt >= begv && old_pt < zv)
+ − 3740 BUF_SET_PT (buf, begv);
+ − 3741
+ − 3742 return make_int (cc_decoded_length);
+ − 3743 }
+ − 3744
+ − 3745 DEFUN ("base64-decode-string", Fbase64_decode_string, 1, 1, 0, /*
+ − 3746 Base64-decode STRING and return the result.
+ − 3747 Characters out of the base64 alphabet are ignored.
+ − 3748 */
+ − 3749 (string))
+ − 3750 {
665
+ − 3751 Intbyte *decoded;
+ − 3752 Bytebpos decoded_length;
428
+ − 3753 Charcount length, cc_decoded_length;
+ − 3754 Lisp_Object input, result;
+ − 3755 int speccount = specpdl_depth();
+ − 3756
+ − 3757 CHECK_STRING (string);
+ − 3758
+ − 3759 length = XSTRING_CHAR_LENGTH (string);
+ − 3760 /* We need to allocate enough room for decoding the text. */
665
+ − 3761 XMALLOC_OR_ALLOCA (decoded, length * MAX_EMCHAR_LEN, Intbyte);
428
+ − 3762
+ − 3763 input = make_lisp_string_input_stream (string, 0, -1);
+ − 3764 decoded_length = base64_decode_1 (XLSTREAM (input), decoded,
+ − 3765 &cc_decoded_length);
+ − 3766 if (decoded_length > length * MAX_EMCHAR_LEN)
+ − 3767 abort ();
+ − 3768 Lstream_delete (XLSTREAM (input));
+ − 3769
+ − 3770 result = make_string (decoded, decoded_length);
+ − 3771 XMALLOC_UNBIND (decoded, length * MAX_EMCHAR_LEN, speccount);
+ − 3772 return result;
+ − 3773 }
+ − 3774
+ − 3775 Lisp_Object Qyes_or_no_p;
+ − 3776
+ − 3777 void
+ − 3778 syms_of_fns (void)
+ − 3779 {
442
+ − 3780 INIT_LRECORD_IMPLEMENTATION (bit_vector);
+ − 3781
563
+ − 3782 DEFSYMBOL (Qstring_lessp);
+ − 3783 DEFSYMBOL (Qidentity);
+ − 3784 DEFSYMBOL (Qyes_or_no_p);
+ − 3785
+ − 3786 DEFERROR_STANDARD (Qbase64_conversion_error, Qconversion_error);
428
+ − 3787
+ − 3788 DEFSUBR (Fidentity);
+ − 3789 DEFSUBR (Frandom);
+ − 3790 DEFSUBR (Flength);
+ − 3791 DEFSUBR (Fsafe_length);
+ − 3792 DEFSUBR (Fstring_equal);
+ − 3793 DEFSUBR (Fstring_lessp);
+ − 3794 DEFSUBR (Fstring_modified_tick);
+ − 3795 DEFSUBR (Fappend);
+ − 3796 DEFSUBR (Fconcat);
+ − 3797 DEFSUBR (Fvconcat);
+ − 3798 DEFSUBR (Fbvconcat);
+ − 3799 DEFSUBR (Fcopy_list);
+ − 3800 DEFSUBR (Fcopy_sequence);
+ − 3801 DEFSUBR (Fcopy_alist);
+ − 3802 DEFSUBR (Fcopy_tree);
+ − 3803 DEFSUBR (Fsubstring);
+ − 3804 DEFSUBR (Fsubseq);
+ − 3805 DEFSUBR (Fnthcdr);
+ − 3806 DEFSUBR (Fnth);
+ − 3807 DEFSUBR (Felt);
+ − 3808 DEFSUBR (Flast);
+ − 3809 DEFSUBR (Fbutlast);
+ − 3810 DEFSUBR (Fnbutlast);
+ − 3811 DEFSUBR (Fmember);
+ − 3812 DEFSUBR (Fold_member);
+ − 3813 DEFSUBR (Fmemq);
+ − 3814 DEFSUBR (Fold_memq);
+ − 3815 DEFSUBR (Fassoc);
+ − 3816 DEFSUBR (Fold_assoc);
+ − 3817 DEFSUBR (Fassq);
+ − 3818 DEFSUBR (Fold_assq);
+ − 3819 DEFSUBR (Frassoc);
+ − 3820 DEFSUBR (Fold_rassoc);
+ − 3821 DEFSUBR (Frassq);
+ − 3822 DEFSUBR (Fold_rassq);
+ − 3823 DEFSUBR (Fdelete);
+ − 3824 DEFSUBR (Fold_delete);
+ − 3825 DEFSUBR (Fdelq);
+ − 3826 DEFSUBR (Fold_delq);
+ − 3827 DEFSUBR (Fremassoc);
+ − 3828 DEFSUBR (Fremassq);
+ − 3829 DEFSUBR (Fremrassoc);
+ − 3830 DEFSUBR (Fremrassq);
+ − 3831 DEFSUBR (Fnreverse);
+ − 3832 DEFSUBR (Freverse);
+ − 3833 DEFSUBR (Fsort);
+ − 3834 DEFSUBR (Fplists_eq);
+ − 3835 DEFSUBR (Fplists_equal);
+ − 3836 DEFSUBR (Flax_plists_eq);
+ − 3837 DEFSUBR (Flax_plists_equal);
+ − 3838 DEFSUBR (Fplist_get);
+ − 3839 DEFSUBR (Fplist_put);
+ − 3840 DEFSUBR (Fplist_remprop);
+ − 3841 DEFSUBR (Fplist_member);
+ − 3842 DEFSUBR (Fcheck_valid_plist);
+ − 3843 DEFSUBR (Fvalid_plist_p);
+ − 3844 DEFSUBR (Fcanonicalize_plist);
+ − 3845 DEFSUBR (Flax_plist_get);
+ − 3846 DEFSUBR (Flax_plist_put);
+ − 3847 DEFSUBR (Flax_plist_remprop);
+ − 3848 DEFSUBR (Flax_plist_member);
+ − 3849 DEFSUBR (Fcanonicalize_lax_plist);
+ − 3850 DEFSUBR (Fdestructive_alist_to_plist);
+ − 3851 DEFSUBR (Fget);
+ − 3852 DEFSUBR (Fput);
+ − 3853 DEFSUBR (Fremprop);
+ − 3854 DEFSUBR (Fobject_plist);
+ − 3855 DEFSUBR (Fequal);
+ − 3856 DEFSUBR (Fold_equal);
+ − 3857 DEFSUBR (Ffillarray);
+ − 3858 DEFSUBR (Fnconc);
+ − 3859 DEFSUBR (Fmapcar);
+ − 3860 DEFSUBR (Fmapvector);
+ − 3861 DEFSUBR (Fmapc_internal);
+ − 3862 DEFSUBR (Fmapconcat);
442
+ − 3863 DEFSUBR (Freplace_list);
428
+ − 3864 DEFSUBR (Fload_average);
+ − 3865 DEFSUBR (Ffeaturep);
+ − 3866 DEFSUBR (Frequire);
+ − 3867 DEFSUBR (Fprovide);
+ − 3868 DEFSUBR (Fbase64_encode_region);
+ − 3869 DEFSUBR (Fbase64_encode_string);
+ − 3870 DEFSUBR (Fbase64_decode_region);
+ − 3871 DEFSUBR (Fbase64_decode_string);
+ − 3872 }
+ − 3873
+ − 3874 void
+ − 3875 init_provide_once (void)
+ − 3876 {
+ − 3877 DEFVAR_LISP ("features", &Vfeatures /*
+ − 3878 A list of symbols which are the features of the executing emacs.
+ − 3879 Used by `featurep' and `require', and altered by `provide'.
+ − 3880 */ );
+ − 3881 Vfeatures = Qnil;
+ − 3882
+ − 3883 Fprovide (intern ("base64"));
+ − 3884 }