0
|
1 /* Header file for the buffer manipulation primitives.
|
|
2 Copyright (C) 1985, 1986, 1992, 1993, 1994, 1995
|
|
3 Free Software Foundation, Inc.
|
|
4 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: FSF 19.30. */
|
|
24
|
|
25 /* Authorship:
|
|
26
|
|
27 FSF: long ago.
|
|
28 JWZ: separated out bufslots.h, early in Lemacs.
|
|
29 Ben Wing: almost completely rewritten for Mule, 19.12.
|
|
30 */
|
|
31
|
412
|
32 #ifndef _XEMACS_BUFFER_H_
|
|
33 #define _XEMACS_BUFFER_H_
|
0
|
34
|
70
|
35 #ifdef MULE
|
|
36 #include "mule-charset.h"
|
|
37 #endif
|
16
|
38
|
0
|
39 /************************************************************************/
|
|
40 /* */
|
|
41 /* definition of Lisp buffer object */
|
|
42 /* */
|
|
43 /************************************************************************/
|
|
44
|
|
45 /* Note: we keep both Bytind and Bufpos versions of some of the
|
|
46 important buffer positions because they are accessed so much.
|
|
47 If we didn't do this, we would constantly be invalidating the
|
|
48 bufpos<->bytind cache under Mule.
|
|
49
|
|
50 Note that under non-Mule, both versions will always be the
|
|
51 same so we don't really need to keep track of them. But it
|
|
52 simplifies the logic to go ahead and do so all the time and
|
|
53 the memory loss is insignificant. */
|
|
54
|
|
55 /* Formerly, it didn't much matter what went inside the struct buffer_text
|
|
56 and what went outside it. Now it does, with the advent of "indirect
|
|
57 buffers" that share text with another buffer. An indirect buffer
|
|
58 shares the same *text* as another buffer, but has its own buffer-local
|
|
59 variables, its own accessible region, and its own markers and extents.
|
|
60 (Due to the nature of markers, it doesn't actually matter much whether
|
|
61 we stick them inside or out of the struct buffer_text -- the user won't
|
|
62 notice any difference -- but we go ahead and put them outside for
|
|
63 consistency and overall saneness of algorithm.)
|
|
64
|
|
65 FSFmacs gets away with not maintaining any "children" pointers from
|
|
66 a buffer to the indirect buffers that refer to it by putting the
|
|
67 markers inside of the struct buffer_text, using markers to keep track
|
|
68 of BEGV and ZV in indirect buffers, and relying on the fact that
|
|
69 all intervals (text properties and overlays) use markers for their
|
|
70 start and end points. We don't do this for extents (markers are
|
|
71 inefficient anyway and take up space), so we have to maintain
|
|
72 children pointers. This is not terribly hard, though, and the
|
|
73 code to maintain this is just like the code already present in
|
|
74 extent-parent and extent-children.
|
|
75 */
|
|
76
|
|
77 struct buffer_text
|
167
|
78 {
|
185
|
79 Bufbyte *beg; /* Actual address of buffer contents. */
|
167
|
80 Bytind gpt; /* Index of gap in buffer. */
|
|
81 Bytind z; /* Index of end of buffer. */
|
|
82 Bufpos bufz; /* Equivalent as a Bufpos. */
|
|
83 int gap_size; /* Size of buffer's gap */
|
|
84 int end_gap_size; /* Size of buffer's end gap */
|
|
85 long modiff; /* This counts buffer-modification events
|
|
86 for this buffer. It is incremented for
|
|
87 each such event, and never otherwise
|
|
88 changed. */
|
|
89 long save_modiff; /* Previous value of modiff, as of last
|
|
90 time buffer visited or saved a file. */
|
0
|
91
|
70
|
92 #ifdef MULE
|
167
|
93 /* We keep track of a "known" region for very fast access.
|
|
94 This information is text-only so it goes here. */
|
|
95 Bufpos mule_bufmin, mule_bufmax;
|
|
96 Bytind mule_bytmin, mule_bytmax;
|
|
97 int mule_shifter, mule_three_p;
|
70
|
98
|
167
|
99 /* And we also cache 16 positions for fairly fast access near those
|
|
100 positions. */
|
|
101 Bufpos mule_bufpos_cache[16];
|
|
102 Bytind mule_bytind_cache[16];
|
70
|
103 #endif
|
0
|
104
|
373
|
105 /* Similar to the above, we keep track of positions for which line
|
|
106 number has last been calculated. See line-number.c. */
|
|
107 Lisp_Object line_number_cache;
|
|
108
|
167
|
109 /* Change data that goes with the text. */
|
|
110 struct buffer_text_change_data *changes;
|
0
|
111
|
167
|
112 };
|
0
|
113
|
|
114 struct buffer
|
167
|
115 {
|
|
116 struct lcrecord_header header;
|
0
|
117
|
167
|
118 /* This structure holds the coordinates of the buffer contents
|
|
119 in ordinary buffers. In indirect buffers, this is not used. */
|
|
120 struct buffer_text own_text;
|
0
|
121
|
167
|
122 /* This points to the `struct buffer_text' that is used for this buffer.
|
|
123 In an ordinary buffer, this is the own_text field above.
|
|
124 In an indirect buffer, this is the own_text field of another buffer. */
|
|
125 struct buffer_text *text;
|
0
|
126
|
167
|
127 Bytind pt; /* Position of point in buffer. */
|
|
128 Bufpos bufpt; /* Equivalent as a Bufpos. */
|
|
129 Bytind begv; /* Index of beginning of accessible range. */
|
|
130 Bufpos bufbegv; /* Equivalent as a Bufpos. */
|
|
131 Bytind zv; /* Index of end of accessible range. */
|
|
132 Bufpos bufzv; /* Equivalent as a Bufpos. */
|
0
|
133
|
167
|
134 int face_change; /* This is set when a change in how the text should
|
|
135 be displayed (e.g., font, color) is made. */
|
0
|
136
|
167
|
137 /* change data indicating what portion of the text has changed
|
|
138 since the last time this was reset. Used by redisplay.
|
|
139 Logically we should keep this with the text structure, but
|
|
140 redisplay resets it for each buffer individually and we don't
|
|
141 want interference between an indirect buffer and its base
|
|
142 buffer. */
|
|
143 struct each_buffer_change_data *changes;
|
0
|
144
|
|
145 #ifdef REGION_CACHE_NEEDS_WORK
|
167
|
146 /* If the long line scan cache is enabled (i.e. the buffer-local
|
|
147 variable cache-long-line-scans is non-nil), newline_cache
|
|
148 points to the newline cache, and width_run_cache points to the
|
|
149 width run cache.
|
0
|
150
|
167
|
151 The newline cache records which stretches of the buffer are
|
|
152 known *not* to contain newlines, so that they can be skipped
|
|
153 quickly when we search for newlines.
|
0
|
154
|
167
|
155 The width run cache records which stretches of the buffer are
|
|
156 known to contain characters whose widths are all the same. If
|
|
157 the width run cache maps a character to a value > 0, that value
|
|
158 is the character's width; if it maps a character to zero, we
|
|
159 don't know what its width is. This allows compute_motion to
|
|
160 process such regions very quickly, using algebra instead of
|
|
161 inspecting each character. See also width_table, below. */
|
|
162 struct region_cache *newline_cache;
|
|
163 struct region_cache *width_run_cache;
|
|
164 #endif /* REGION_CACHE_NEEDS_WORK */
|
0
|
165
|
167
|
166 /* The markers that refer to this buffer. This is actually a single
|
|
167 marker -- successive elements in its marker `chain' are the other
|
|
168 markers referring to this buffer */
|
412
|
169 struct Lisp_Marker *markers;
|
0
|
170
|
167
|
171 /* The buffer's extent info. This is its own type, an extent-info
|
|
172 object (done this way for ease in marking / finalizing). */
|
|
173 Lisp_Object extent_info;
|
0
|
174
|
167
|
175 /* ----------------------------------------------------------------- */
|
|
176 /* All the stuff above this line is the responsibility of insdel.c,
|
|
177 with some help from marker.c and extents.c.
|
|
178 All the stuff below this line is the responsibility of buffer.c. */
|
0
|
179
|
167
|
180 /* In an indirect buffer, this points to the base buffer.
|
|
181 In an ordinary buffer, it is 0.
|
|
182 We DO mark through this slot. */
|
|
183 struct buffer *base_buffer;
|
0
|
184
|
167
|
185 /* List of indirect buffers whose base is this buffer.
|
|
186 If we are an indirect buffer, this will be nil.
|
|
187 Do NOT mark through this. */
|
|
188 Lisp_Object indirect_children;
|
0
|
189
|
167
|
190 /* Flags saying which DEFVAR_PER_BUFFER variables
|
|
191 are local to this buffer. */
|
|
192 int local_var_flags;
|
0
|
193
|
167
|
194 /* Set to the modtime of the visited file when read or written.
|
|
195 -1 means visited file was nonexistent.
|
|
196 0 means visited file modtime unknown; in no case complain
|
|
197 about any mismatch on next save attempt. */
|
|
198 int modtime;
|
0
|
199
|
167
|
200 /* the value of text->modiff at the last auto-save. */
|
412
|
201 int auto_save_modified;
|
0
|
202
|
167
|
203 /* The time at which we detected a failure to auto-save,
|
|
204 Or -1 if we didn't have a failure. */
|
|
205 int auto_save_failure_time;
|
0
|
206
|
167
|
207 /* Position in buffer at which display started
|
|
208 the last time this buffer was displayed. */
|
|
209 int last_window_start;
|
0
|
210
|
167
|
211 /* Everything from here down must be a Lisp_Object */
|
0
|
212
|
|
213 #define MARKED_SLOT(x) Lisp_Object x
|
|
214 #include "bufslots.h"
|
|
215 #undef MARKED_SLOT
|
167
|
216 };
|
0
|
217
|
|
218 DECLARE_LRECORD (buffer, struct buffer);
|
|
219 #define XBUFFER(x) XRECORD (x, buffer, struct buffer)
|
|
220 #define XSETBUFFER(x, p) XSETRECORD (x, p, buffer)
|
|
221 #define BUFFERP(x) RECORDP (x, buffer)
|
412
|
222 #define GC_BUFFERP(x) GC_RECORDP (x, buffer)
|
0
|
223 #define CHECK_BUFFER(x) CHECK_RECORD (x, buffer)
|
|
224 #define CONCHECK_BUFFER(x) CONCHECK_RECORD (x, buffer)
|
|
225
|
|
226 #define BUFFER_LIVE_P(b) (!NILP ((b)->name))
|
|
227
|
272
|
228 #define CHECK_LIVE_BUFFER(x) do { \
|
|
229 CHECK_BUFFER (x); \
|
|
230 if (!BUFFER_LIVE_P (XBUFFER (x))) \
|
|
231 dead_wrong_type_argument (Qbuffer_live_p, (x)); \
|
|
232 } while (0)
|
0
|
233
|
272
|
234 #define CONCHECK_LIVE_BUFFER(x) do { \
|
|
235 CONCHECK_BUFFER (x); \
|
|
236 if (!BUFFER_LIVE_P (XBUFFER (x))) \
|
|
237 x = wrong_type_argument (Qbuffer_live_p, (x)); \
|
|
238 } while (0)
|
0
|
239
|
380
|
240
|
373
|
241 #define BUFFER_BASE_BUFFER(b) ((b)->base_buffer ? (b)->base_buffer : (b))
|
|
242
|
|
243 /* Map over buffers sharing the same text as MPS_BUF. MPS_BUFVAR is a
|
|
244 variable that gets the buffer values (beginning with the base
|
|
245 buffer, then the children), and MPS_BUFCONS should be a temporary
|
|
246 Lisp_Object variable. */
|
|
247 #define MAP_INDIRECT_BUFFERS(mps_buf, mps_bufvar, mps_bufcons) \
|
|
248 for (mps_bufcons = Qunbound, \
|
|
249 mps_bufvar = BUFFER_BASE_BUFFER (mps_buf); \
|
|
250 UNBOUNDP (mps_bufcons) ? \
|
|
251 (mps_bufcons = mps_bufvar->indirect_children, \
|
|
252 1) \
|
|
253 : (!NILP (mps_bufcons) \
|
|
254 && (mps_bufvar = XBUFFER (XCAR (mps_bufcons)), 1) \
|
|
255 && (mps_bufcons = XCDR (mps_bufcons), 1)); \
|
|
256 )
|
|
257
|
0
|
258
|
380
|
259
|
|
260 /************************************************************************/
|
|
261 /* */
|
|
262 /* working with raw internal-format data */
|
|
263 /* */
|
|
264 /************************************************************************/
|
|
265
|
0
|
266 /* NOTE: In all the following macros, we follow these rules concerning
|
|
267 multiple evaluation of the arguments:
|
|
268
|
|
269 1) Anything that's an lvalue can be evaluated more than once.
|
|
270 2) Anything that's a Lisp Object can be evaluated more than once.
|
|
271 This should probably be changed, but this follows the way
|
|
272 that all the macros in lisp.h do things.
|
|
273 3) 'struct buffer *' arguments can be evaluated more than once.
|
272
|
274 4) Nothing else can be evaluated more than once. Use inline
|
|
275 functions, if necessary, to prevent multiple evaluation.
|
0
|
276 5) An exception to (4) is that there are some macros below that
|
|
277 may evaluate their arguments more than once. They are all
|
|
278 denoted with the word "unsafe" in their name and are generally
|
|
279 meant to be called only by other macros that have already
|
|
280 stored the calling values in temporary variables.
|
380
|
281
|
0
|
282
|
380
|
283 Use the following functions/macros on contiguous strings of data.
|
|
284 If the text you're operating on is known to come from a buffer, use
|
|
285 the buffer-level functions below -- they know about the gap and may
|
|
286 be more efficient.
|
0
|
287
|
|
288
|
380
|
289 (A) For working with charptr's (pointers to internally-formatted text):
|
|
290 -----------------------------------------------------------------------
|
0
|
291
|
380
|
292 VALID_CHARPTR_P (ptr):
|
0
|
293 Given a charptr, does it point to the beginning of a character?
|
|
294
|
380
|
295 ASSERT_VALID_CHARPTR (ptr):
|
0
|
296 If error-checking is enabled, assert that the given charptr
|
380
|
297 points to the beginning of a character. Otherwise, do nothing.
|
0
|
298
|
380
|
299 INC_CHARPTR (ptr):
|
0
|
300 Given a charptr (assumed to point at the beginning of a character),
|
|
301 modify that pointer so it points to the beginning of the next
|
|
302 character.
|
|
303
|
380
|
304 DEC_CHARPTR (ptr):
|
0
|
305 Given a charptr (assumed to point at the beginning of a
|
|
306 character or at the very end of the text), modify that pointer
|
|
307 so it points to the beginning of the previous character.
|
|
308
|
380
|
309 VALIDATE_CHARPTR_BACKWARD (ptr):
|
0
|
310 Make sure that PTR is pointing to the beginning of a character.
|
380
|
311 If not, back up until this is the case. Note that there are not
|
0
|
312 too many places where it is legitimate to do this sort of thing.
|
|
313 It's an error if you're passed an "invalid" char * pointer.
|
|
314 NOTE: PTR *must* be pointing to a valid part of the string (i.e.
|
|
315 not the very end, unless the string is zero-terminated or
|
|
316 something) in order for this function to not cause crashes.
|
|
317
|
380
|
318 VALIDATE_CHARPTR_FORWARD (ptr):
|
0
|
319 Make sure that PTR is pointing to the beginning of a character.
|
|
320 If not, move forward until this is the case. Note that there
|
|
321 are not too many places where it is legitimate to do this sort
|
|
322 of thing. It's an error if you're passed an "invalid" char *
|
|
323 pointer.
|
|
324
|
|
325
|
|
326 (B) For working with the length (in bytes and characters) of a
|
|
327 section of internally-formatted text:
|
|
328 --------------------------------------------------------------
|
|
329
|
380
|
330 bytecount_to_charcount (ptr, nbi):
|
0
|
331 Given a pointer to a text string and a length in bytes,
|
|
332 return the equivalent length in characters.
|
|
333
|
380
|
334 charcount_to_bytecount (ptr, nch):
|
0
|
335 Given a pointer to a text string and a length in characters,
|
|
336 return the equivalent length in bytes.
|
|
337
|
380
|
338 charptr_n_addr (ptr, n):
|
0
|
339 Return a pointer to the beginning of the character offset N
|
|
340 (in characters) from PTR.
|
|
341
|
|
342
|
|
343 (C) For retrieving or changing the character pointed to by a charptr:
|
|
344 ---------------------------------------------------------------------
|
|
345
|
380
|
346 charptr_emchar (ptr):
|
0
|
347 Retrieve the character pointed to by PTR as an Emchar.
|
|
348
|
380
|
349 charptr_emchar_n (ptr, n):
|
0
|
350 Retrieve the character at offset N (in characters) from PTR,
|
|
351 as an Emchar.
|
|
352
|
380
|
353 set_charptr_emchar (ptr, ch):
|
0
|
354 Store the character CH (an Emchar) as internally-formatted
|
|
355 text starting at PTR. Return the number of bytes stored.
|
|
356
|
380
|
357 charptr_copy_char (ptr, ptr2):
|
0
|
358 Retrieve the character pointed to by PTR and store it as
|
|
359 internally-formatted text in PTR2.
|
|
360
|
|
361
|
|
362 (D) For working with Emchars:
|
|
363 -----------------------------
|
|
364
|
70
|
365 [Note that there are other functions/macros for working with Emchars
|
|
366 in mule-charset.h, for retrieving the charset of an Emchar
|
|
367 and such. These are only valid when MULE is defined.]
|
|
368
|
380
|
369 valid_char_p (ch):
|
0
|
370 Return whether the given Emchar is valid.
|
|
371
|
380
|
372 CHARP (ch):
|
|
373 Return whether the given Lisp_Object is a character.
|
0
|
374
|
380
|
375 CHECK_CHAR_COERCE_INT (ch):
|
|
376 Signal an error if CH is not a valid character or integer Lisp_Object.
|
|
377 If CH is an integer Lisp_Object, convert it to a character Lisp_Object,
|
|
378 but merely by repackaging, without performing tests for char validity.
|
0
|
379
|
|
380 MAX_EMCHAR_LEN:
|
|
381 Maximum number of buffer bytes per Emacs character.
|
|
382
|
|
383 */
|
|
384
|
|
385
|
|
386 /* ---------------------------------------------------------------------- */
|
|
387 /* (A) For working with charptr's (pointers to internally-formatted text) */
|
|
388 /* ---------------------------------------------------------------------- */
|
|
389
|
70
|
390 #ifdef MULE
|
|
391 # define VALID_CHARPTR_P(ptr) BUFBYTE_FIRST_BYTE_P (* (unsigned char *) ptr)
|
|
392 #else
|
16
|
393 # define VALID_CHARPTR_P(ptr) 1
|
70
|
394 #endif
|
0
|
395
|
|
396 #ifdef ERROR_CHECK_BUFPOS
|
|
397 # define ASSERT_VALID_CHARPTR(ptr) assert (VALID_CHARPTR_P (ptr))
|
|
398 #else
|
|
399 # define ASSERT_VALID_CHARPTR(ptr)
|
|
400 #endif
|
|
401
|
|
402 /* Note that INC_CHARPTR() and DEC_CHARPTR() have to be written in
|
|
403 completely separate ways. INC_CHARPTR() cannot use the DEC_CHARPTR()
|
|
404 trick of looking for a valid first byte because it might run off
|
|
405 the end of the string. DEC_CHARPTR() can't use the INC_CHARPTR()
|
|
406 method because it doesn't have easy access to the first byte of
|
|
407 the character it's moving over. */
|
|
408
|
380
|
409 #define REAL_INC_CHARPTR(ptr) \
|
|
410 ((void) ((ptr) += REP_BYTES_BY_FIRST_BYTE (* (unsigned char *) (ptr))))
|
0
|
411
|
422
|
412 #define REAL_INC_CHARBYTIND(ptr,pos) \
|
|
413 (pos += REP_BYTES_BY_FIRST_BYTE (* (unsigned char *) (ptr)))
|
|
414
|
272
|
415 #define REAL_DEC_CHARPTR(ptr) do { \
|
|
416 (ptr)--; \
|
0
|
417 } while (!VALID_CHARPTR_P (ptr))
|
|
418
|
|
419 #ifdef ERROR_CHECK_BUFPOS
|
380
|
420 #define INC_CHARPTR(ptr) do { \
|
|
421 ASSERT_VALID_CHARPTR (ptr); \
|
|
422 REAL_INC_CHARPTR (ptr); \
|
0
|
423 } while (0)
|
380
|
424
|
422
|
425 #define INC_CHARBYTIND(ptr,pos) do { \
|
|
426 ASSERT_VALID_CHARPTR (ptr); \
|
|
427 REAL_INC_CHARBYTIND (ptr,pos); \
|
|
428 } while (0)
|
|
429
|
380
|
430 #define DEC_CHARPTR(ptr) do { \
|
412
|
431 CONST Bufbyte *dc_ptr1 = (ptr); \
|
|
432 CONST Bufbyte *dc_ptr2 = dc_ptr1; \
|
380
|
433 REAL_DEC_CHARPTR (dc_ptr2); \
|
|
434 assert (dc_ptr1 - dc_ptr2 == \
|
|
435 REP_BYTES_BY_FIRST_BYTE (*dc_ptr2)); \
|
|
436 (ptr) = dc_ptr2; \
|
|
437 } while (0)
|
|
438
|
|
439 #else /* ! ERROR_CHECK_BUFPOS */
|
422
|
440 #define INC_CHARBYTIND(ptr,pos) REAL_INC_CHARBYTIND (ptr,pos)
|
380
|
441 #define INC_CHARPTR(ptr) REAL_INC_CHARPTR (ptr)
|
0
|
442 #define DEC_CHARPTR(ptr) REAL_DEC_CHARPTR (ptr)
|
380
|
443 #endif /* ! ERROR_CHECK_BUFPOS */
|
0
|
444
|
70
|
445 #ifdef MULE
|
|
446
|
272
|
447 #define VALIDATE_CHARPTR_BACKWARD(ptr) do { \
|
70
|
448 while (!VALID_CHARPTR_P (ptr)) ptr--; \
|
|
449 } while (0)
|
|
450
|
|
451 /* This needs to be trickier to avoid the possibility of running off
|
|
452 the end of the string. */
|
|
453
|
272
|
454 #define VALIDATE_CHARPTR_FORWARD(ptr) do { \
|
380
|
455 Bufbyte *vcf_ptr = (ptr); \
|
|
456 VALIDATE_CHARPTR_BACKWARD (vcf_ptr); \
|
|
457 if (vcf_ptr != (ptr)) \
|
70
|
458 { \
|
380
|
459 (ptr) = vcf_ptr; \
|
70
|
460 INC_CHARPTR (ptr); \
|
|
461 } \
|
|
462 } while (0)
|
|
463
|
|
464 #else /* not MULE */
|
0
|
465 #define VALIDATE_CHARPTR_BACKWARD(ptr)
|
|
466 #define VALIDATE_CHARPTR_FORWARD(ptr)
|
70
|
467 #endif /* not MULE */
|
0
|
468
|
|
469 /* -------------------------------------------------------------- */
|
|
470 /* (B) For working with the length (in bytes and characters) of a */
|
|
471 /* section of internally-formatted text */
|
|
472 /* -------------------------------------------------------------- */
|
|
473
|
412
|
474 INLINE CONST Bufbyte *charptr_n_addr (CONST Bufbyte *ptr, Charcount offset);
|
|
475 INLINE CONST Bufbyte *
|
|
476 charptr_n_addr (CONST Bufbyte *ptr, Charcount offset)
|
0
|
477 {
|
|
478 return ptr + charcount_to_bytecount (ptr, offset);
|
|
479 }
|
|
480
|
|
481 /* -------------------------------------------------------------------- */
|
|
482 /* (C) For retrieving or changing the character pointed to by a charptr */
|
|
483 /* -------------------------------------------------------------------- */
|
|
484
|
|
485 #define simple_charptr_emchar(ptr) ((Emchar) (ptr)[0])
|
|
486 #define simple_set_charptr_emchar(ptr, x) ((ptr)[0] = (Bufbyte) (x), 1)
|
|
487 #define simple_charptr_copy_char(ptr, ptr2) ((ptr2)[0] = *(ptr), 1)
|
|
488
|
70
|
489 #ifdef MULE
|
|
490
|
412
|
491 Emchar non_ascii_charptr_emchar (CONST Bufbyte *ptr);
|
70
|
492 Bytecount non_ascii_set_charptr_emchar (Bufbyte *ptr, Emchar c);
|
412
|
493 Bytecount non_ascii_charptr_copy_char (CONST Bufbyte *ptr, Bufbyte *ptr2);
|
70
|
494
|
412
|
495 INLINE Emchar charptr_emchar (CONST Bufbyte *ptr);
|
|
496 INLINE Emchar
|
|
497 charptr_emchar (CONST Bufbyte *ptr)
|
70
|
498 {
|
183
|
499 return BYTE_ASCII_P (*ptr) ?
|
|
500 simple_charptr_emchar (ptr) :
|
|
501 non_ascii_charptr_emchar (ptr);
|
70
|
502 }
|
|
503
|
412
|
504 INLINE Bytecount set_charptr_emchar (Bufbyte *ptr, Emchar x);
|
|
505 INLINE Bytecount
|
70
|
506 set_charptr_emchar (Bufbyte *ptr, Emchar x)
|
|
507 {
|
183
|
508 return !CHAR_MULTIBYTE_P (x) ?
|
|
509 simple_set_charptr_emchar (ptr, x) :
|
|
510 non_ascii_set_charptr_emchar (ptr, x);
|
70
|
511 }
|
|
512
|
412
|
513 INLINE Bytecount charptr_copy_char (CONST Bufbyte *ptr, Bufbyte *ptr2);
|
|
514 INLINE Bytecount
|
|
515 charptr_copy_char (CONST Bufbyte *ptr, Bufbyte *ptr2)
|
70
|
516 {
|
183
|
517 return BYTE_ASCII_P (*ptr) ?
|
|
518 simple_charptr_copy_char (ptr, ptr2) :
|
|
519 non_ascii_charptr_copy_char (ptr, ptr2);
|
70
|
520 }
|
|
521
|
|
522 #else /* not MULE */
|
|
523
|
0
|
524 # define charptr_emchar(ptr) simple_charptr_emchar (ptr)
|
|
525 # define set_charptr_emchar(ptr, x) simple_set_charptr_emchar (ptr, x)
|
|
526 # define charptr_copy_char(ptr, ptr2) simple_charptr_copy_char (ptr, ptr2)
|
|
527
|
70
|
528 #endif /* not MULE */
|
|
529
|
0
|
530 #define charptr_emchar_n(ptr, offset) \
|
|
531 charptr_emchar (charptr_n_addr (ptr, offset))
|
|
532
|
|
533
|
|
534 /* ---------------------------- */
|
|
535 /* (D) For working with Emchars */
|
|
536 /* ---------------------------- */
|
|
537
|
70
|
538 #ifdef MULE
|
|
539
|
|
540 int non_ascii_valid_char_p (Emchar ch);
|
|
541
|
412
|
542 INLINE int valid_char_p (Emchar ch);
|
|
543 INLINE int
|
70
|
544 valid_char_p (Emchar ch)
|
|
545 {
|
380
|
546 return ((unsigned int) (ch) <= 0xff) || non_ascii_valid_char_p (ch);
|
70
|
547 }
|
|
548
|
|
549 #else /* not MULE */
|
|
550
|
380
|
551 #define valid_char_p(ch) ((unsigned int) (ch) <= 0xff)
|
0
|
552
|
70
|
553 #endif /* not MULE */
|
|
554
|
0
|
555 #define CHAR_INTP(x) (INTP (x) && valid_char_p (XINT (x)))
|
|
556
|
|
557 #define CHAR_OR_CHAR_INTP(x) (CHARP (x) || CHAR_INTP (x))
|
|
558
|
|
559 #ifdef ERROR_CHECK_TYPECHECK
|
|
560
|
412
|
561 INLINE Emchar XCHAR_OR_CHAR_INT (Lisp_Object obj);
|
|
562 INLINE Emchar
|
0
|
563 XCHAR_OR_CHAR_INT (Lisp_Object obj)
|
|
564 {
|
|
565 assert (CHAR_OR_CHAR_INTP (obj));
|
209
|
566 return CHARP (obj) ? XCHAR (obj) : XINT (obj);
|
0
|
567 }
|
|
568
|
|
569 #else
|
|
570
|
412
|
571 #define XCHAR_OR_CHAR_INT(obj) (CHARP ((obj)) ? XCHAR ((obj)) : XINT ((obj)))
|
0
|
572
|
|
573 #endif
|
|
574
|
183
|
575 #define CHECK_CHAR_COERCE_INT(x) do { \
|
|
576 if (CHARP (x)) \
|
|
577 ; \
|
|
578 else if (CHAR_INTP (x)) \
|
|
579 x = make_char (XINT (x)); \
|
|
580 else \
|
|
581 x = wrong_type_argument (Qcharacterp, x); \
|
272
|
582 } while (0)
|
0
|
583
|
70
|
584 #ifdef MULE
|
|
585 # define MAX_EMCHAR_LEN 4
|
|
586 #else
|
16
|
587 # define MAX_EMCHAR_LEN 1
|
70
|
588 #endif
|
0
|
589
|
|
590
|
|
591 /*----------------------------------------------------------------------*/
|
272
|
592 /* Accessor macros for important positions in a buffer */
|
0
|
593 /*----------------------------------------------------------------------*/
|
|
594
|
|
595 /* We put them here because some stuff below wants them before the
|
|
596 place where we would normally put them. */
|
|
597
|
|
598 /* None of these are lvalues. Use the settor macros below to change
|
|
599 the positions. */
|
|
600
|
185
|
601 /* Beginning of buffer. */
|
0
|
602 #define BI_BUF_BEG(buf) ((Bytind) 1)
|
|
603 #define BUF_BEG(buf) ((Bufpos) 1)
|
|
604
|
185
|
605 /* Beginning of accessible range of buffer. */
|
0
|
606 #define BI_BUF_BEGV(buf) ((buf)->begv + 0)
|
|
607 #define BUF_BEGV(buf) ((buf)->bufbegv + 0)
|
|
608
|
185
|
609 /* End of accessible range of buffer. */
|
0
|
610 #define BI_BUF_ZV(buf) ((buf)->zv + 0)
|
|
611 #define BUF_ZV(buf) ((buf)->bufzv + 0)
|
|
612
|
185
|
613 /* End of buffer. */
|
0
|
614 #define BI_BUF_Z(buf) ((buf)->text->z + 0)
|
|
615 #define BUF_Z(buf) ((buf)->text->bufz + 0)
|
|
616
|
|
617 /* Point. */
|
|
618 #define BI_BUF_PT(buf) ((buf)->pt + 0)
|
|
619 #define BUF_PT(buf) ((buf)->bufpt + 0)
|
|
620
|
|
621 /*----------------------------------------------------------------------*/
|
272
|
622 /* Converting between positions and addresses */
|
0
|
623 /*----------------------------------------------------------------------*/
|
|
624
|
|
625 /* Convert the address of a byte in the buffer into a position. */
|
412
|
626 INLINE Bytind BI_BUF_PTR_BYTE_POS (struct buffer *buf, Bufbyte *ptr);
|
|
627 INLINE Bytind
|
0
|
628 BI_BUF_PTR_BYTE_POS (struct buffer *buf, Bufbyte *ptr)
|
|
629 {
|
412
|
630 return ((ptr) - (buf)->text->beg + 1
|
|
631 - ((ptr - (buf)->text->beg + 1) > (buf)->text->gpt
|
|
632 ? (buf)->text->gap_size : 0));
|
0
|
633 }
|
|
634
|
|
635 #define BUF_PTR_BYTE_POS(buf, ptr) \
|
|
636 bytind_to_bufpos (buf, BI_BUF_PTR_BYTE_POS (buf, ptr))
|
|
637
|
|
638 /* Address of byte at position POS in buffer. */
|
412
|
639 INLINE Bufbyte * BI_BUF_BYTE_ADDRESS (struct buffer *buf, Bytind pos);
|
|
640 INLINE Bufbyte *
|
0
|
641 BI_BUF_BYTE_ADDRESS (struct buffer *buf, Bytind pos)
|
|
642 {
|
412
|
643 return ((buf)->text->beg +
|
|
644 ((pos >= (buf)->text->gpt ? (pos + (buf)->text->gap_size) : pos)
|
0
|
645 - 1));
|
|
646 }
|
|
647
|
|
648 #define BUF_BYTE_ADDRESS(buf, pos) \
|
|
649 BI_BUF_BYTE_ADDRESS (buf, bufpos_to_bytind (buf, pos))
|
|
650
|
|
651 /* Address of byte before position POS in buffer. */
|
412
|
652 INLINE Bufbyte * BI_BUF_BYTE_ADDRESS_BEFORE (struct buffer *buf, Bytind pos);
|
|
653 INLINE Bufbyte *
|
0
|
654 BI_BUF_BYTE_ADDRESS_BEFORE (struct buffer *buf, Bytind pos)
|
|
655 {
|
412
|
656 return ((buf)->text->beg +
|
|
657 ((pos > (buf)->text->gpt ? (pos + (buf)->text->gap_size) : pos)
|
0
|
658 - 2));
|
|
659 }
|
|
660
|
|
661 #define BUF_BYTE_ADDRESS_BEFORE(buf, pos) \
|
|
662 BI_BUF_BYTE_ADDRESS_BEFORE (buf, bufpos_to_bytind (buf, pos))
|
|
663
|
|
664 /*----------------------------------------------------------------------*/
|
272
|
665 /* Converting between byte indices and memory indices */
|
0
|
666 /*----------------------------------------------------------------------*/
|
|
667
|
412
|
668 INLINE int valid_memind_p (struct buffer *buf, Memind x);
|
|
669 INLINE int
|
0
|
670 valid_memind_p (struct buffer *buf, Memind x)
|
|
671 {
|
412
|
672 return ((x >= 1 && x <= (Memind) (buf)->text->gpt) ||
|
|
673 (x > (Memind) ((buf)->text->gpt + (buf)->text->gap_size) &&
|
|
674 x <= (Memind) ((buf)->text->z + (buf)->text->gap_size)));
|
0
|
675 }
|
|
676
|
412
|
677 INLINE Memind bytind_to_memind (struct buffer *buf, Bytind x);
|
|
678 INLINE Memind
|
0
|
679 bytind_to_memind (struct buffer *buf, Bytind x)
|
|
680 {
|
412
|
681 return (Memind) ((x > (buf)->text->gpt) ? (x + (buf)->text->gap_size) : x);
|
0
|
682 }
|
|
683
|
|
684
|
412
|
685 INLINE Bytind memind_to_bytind (struct buffer *buf, Memind x);
|
|
686 INLINE Bytind
|
0
|
687 memind_to_bytind (struct buffer *buf, Memind x)
|
|
688 {
|
272
|
689 #ifdef ERROR_CHECK_BUFPOS
|
0
|
690 assert (valid_memind_p (buf, x));
|
272
|
691 #endif
|
412
|
692 return (Bytind) ((x > (Memind) (buf)->text->gpt) ?
|
|
693 x - (buf)->text->gap_size :
|
183
|
694 x);
|
0
|
695 }
|
|
696
|
272
|
697 #define memind_to_bufpos(buf, x) \
|
0
|
698 bytind_to_bufpos (buf, memind_to_bytind (buf, x))
|
272
|
699 #define bufpos_to_memind(buf, x) \
|
0
|
700 bytind_to_memind (buf, bufpos_to_bytind (buf, x))
|
|
701
|
|
702 /* These macros generalize many standard buffer-position functions to
|
|
703 either a buffer or a string. */
|
|
704
|
|
705 /* Converting between Meminds and Bytinds, for a buffer-or-string.
|
|
706 For strings, this is a no-op. For buffers, this resolves
|
|
707 to the standard memind<->bytind converters. */
|
|
708
|
|
709 #define buffer_or_string_bytind_to_memind(obj, ind) \
|
|
710 (BUFFERP (obj) ? bytind_to_memind (XBUFFER (obj), ind) : (Memind) ind)
|
|
711
|
|
712 #define buffer_or_string_memind_to_bytind(obj, ind) \
|
|
713 (BUFFERP (obj) ? memind_to_bytind (XBUFFER (obj), ind) : (Bytind) ind)
|
|
714
|
|
715 /* Converting between Bufpos's and Bytinds, for a buffer-or-string.
|
|
716 For strings, this maps to the bytecount<->charcount converters. */
|
|
717
|
272
|
718 #define buffer_or_string_bufpos_to_bytind(obj, pos) \
|
|
719 (BUFFERP (obj) ? bufpos_to_bytind (XBUFFER (obj), pos) : \
|
14
|
720 (Bytind) charcount_to_bytecount (XSTRING_DATA (obj), pos))
|
0
|
721
|
272
|
722 #define buffer_or_string_bytind_to_bufpos(obj, ind) \
|
|
723 (BUFFERP (obj) ? bytind_to_bufpos (XBUFFER (obj), ind) : \
|
14
|
724 (Bufpos) bytecount_to_charcount (XSTRING_DATA (obj), ind))
|
0
|
725
|
|
726 /* Similar for Bufpos's and Meminds. */
|
|
727
|
272
|
728 #define buffer_or_string_bufpos_to_memind(obj, pos) \
|
|
729 (BUFFERP (obj) ? bufpos_to_memind (XBUFFER (obj), pos) : \
|
14
|
730 (Memind) charcount_to_bytecount (XSTRING_DATA (obj), pos))
|
0
|
731
|
272
|
732 #define buffer_or_string_memind_to_bufpos(obj, ind) \
|
|
733 (BUFFERP (obj) ? memind_to_bufpos (XBUFFER (obj), ind) : \
|
14
|
734 (Bufpos) bytecount_to_charcount (XSTRING_DATA (obj), ind))
|
0
|
735
|
|
736 /************************************************************************/
|
|
737 /* */
|
|
738 /* working with buffer-level data */
|
|
739 /* */
|
|
740 /************************************************************************/
|
|
741
|
|
742 /*
|
|
743
|
|
744 (A) Working with byte indices:
|
|
745 ------------------------------
|
|
746
|
|
747 VALID_BYTIND_P(buf, bi):
|
|
748 Given a byte index, does it point to the beginning of a character?
|
|
749
|
|
750 ASSERT_VALID_BYTIND_UNSAFE(buf, bi):
|
|
751 If error-checking is enabled, assert that the given byte index
|
|
752 is within range and points to the beginning of a character
|
|
753 or to the end of the buffer. Otherwise, do nothing.
|
|
754
|
|
755 ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, bi):
|
|
756 If error-checking is enabled, assert that the given byte index
|
|
757 is within range and satisfies ASSERT_VALID_BYTIND() and also
|
|
758 does not refer to the beginning of the buffer. (i.e. movement
|
|
759 backwards is OK.) Otherwise, do nothing.
|
|
760
|
|
761 ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, bi):
|
|
762 If error-checking is enabled, assert that the given byte index
|
|
763 is within range and satisfies ASSERT_VALID_BYTIND() and also
|
|
764 does not refer to the end of the buffer. (i.e. movement
|
|
765 forwards is OK.) Otherwise, do nothing.
|
|
766
|
|
767 VALIDATE_BYTIND_BACKWARD(buf, bi):
|
|
768 Make sure that the given byte index is pointing to the beginning
|
|
769 of a character. If not, back up until this is the case. Note
|
|
770 that there are not too many places where it is legitimate to do
|
|
771 this sort of thing. It's an error if you're passed an "invalid"
|
|
772 byte index.
|
|
773
|
|
774 VALIDATE_BYTIND_FORWARD(buf, bi):
|
|
775 Make sure that the given byte index is pointing to the beginning
|
|
776 of a character. If not, move forward until this is the case.
|
|
777 Note that there are not too many places where it is legitimate
|
|
778 to do this sort of thing. It's an error if you're passed an
|
|
779 "invalid" byte index.
|
|
780
|
|
781 INC_BYTIND(buf, bi):
|
|
782 Given a byte index (assumed to point at the beginning of a
|
|
783 character), modify that value so it points to the beginning
|
|
784 of the next character.
|
|
785
|
|
786 DEC_BYTIND(buf, bi):
|
|
787 Given a byte index (assumed to point at the beginning of a
|
|
788 character), modify that value so it points to the beginning
|
|
789 of the previous character. Unlike for DEC_CHARPTR(), we can
|
|
790 do all the assert()s because there are sentinels at the
|
|
791 beginning of the gap and the end of the buffer.
|
|
792
|
|
793 BYTIND_INVALID:
|
|
794 A constant representing an invalid Bytind. Valid Bytinds
|
|
795 can never have this value.
|
|
796
|
|
797
|
|
798 (B) Converting between Bufpos's and Bytinds:
|
|
799 --------------------------------------------
|
|
800
|
|
801 bufpos_to_bytind(buf, bu):
|
|
802 Given a Bufpos, return the equivalent Bytind.
|
|
803
|
|
804 bytind_to_bufpos(buf, bi):
|
|
805 Given a Bytind, return the equivalent Bufpos.
|
|
806
|
|
807 make_bufpos(buf, bi):
|
|
808 Given a Bytind, return the equivalent Bufpos as a Lisp Object.
|
|
809 */
|
|
810
|
|
811
|
|
812 /*----------------------------------------------------------------------*/
|
272
|
813 /* working with byte indices */
|
0
|
814 /*----------------------------------------------------------------------*/
|
|
815
|
70
|
816 #ifdef MULE
|
|
817 # define VALID_BYTIND_P(buf, x) \
|
|
818 BUFBYTE_FIRST_BYTE_P (*BI_BUF_BYTE_ADDRESS (buf, x))
|
|
819 #else
|
16
|
820 # define VALID_BYTIND_P(buf, x) 1
|
70
|
821 #endif
|
0
|
822
|
|
823 #ifdef ERROR_CHECK_BUFPOS
|
|
824
|
272
|
825 # define ASSERT_VALID_BYTIND_UNSAFE(buf, x) do { \
|
0
|
826 assert (BUFFER_LIVE_P (buf)); \
|
|
827 assert ((x) >= BI_BUF_BEG (buf) && x <= BI_BUF_Z (buf)); \
|
|
828 assert (VALID_BYTIND_P (buf, x)); \
|
|
829 } while (0)
|
272
|
830 # define ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, x) do { \
|
0
|
831 assert (BUFFER_LIVE_P (buf)); \
|
|
832 assert ((x) > BI_BUF_BEG (buf) && x <= BI_BUF_Z (buf)); \
|
|
833 assert (VALID_BYTIND_P (buf, x)); \
|
|
834 } while (0)
|
272
|
835 # define ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, x) do { \
|
0
|
836 assert (BUFFER_LIVE_P (buf)); \
|
|
837 assert ((x) >= BI_BUF_BEG (buf) && x < BI_BUF_Z (buf)); \
|
|
838 assert (VALID_BYTIND_P (buf, x)); \
|
|
839 } while (0)
|
|
840
|
|
841 #else /* not ERROR_CHECK_BUFPOS */
|
|
842 # define ASSERT_VALID_BYTIND_UNSAFE(buf, x)
|
|
843 # define ASSERT_VALID_BYTIND_BACKWARD_UNSAFE(buf, x)
|
|
844 # define ASSERT_VALID_BYTIND_FORWARD_UNSAFE(buf, x)
|
|
845
|
|
846 #endif /* not ERROR_CHECK_BUFPOS */
|
|
847
|
70
|
848 /* Note that, although the Mule version will work fine for non-Mule
|
|
849 as well (it should reduce down to nothing), we provide a separate
|
|
850 version to avoid compilation warnings and possible non-optimal
|
|
851 results with stupid compilers. */
|
|
852
|
|
853 #ifdef MULE
|
380
|
854 # define VALIDATE_BYTIND_BACKWARD(buf, x) do { \
|
|
855 Bufbyte *VBB_ptr = BI_BUF_BYTE_ADDRESS (buf, x); \
|
|
856 while (!BUFBYTE_FIRST_BYTE_P (*VBB_ptr)) \
|
|
857 VBB_ptr--, (x)--; \
|
70
|
858 } while (0)
|
|
859 #else
|
16
|
860 # define VALIDATE_BYTIND_BACKWARD(buf, x)
|
70
|
861 #endif
|
0
|
862
|
70
|
863 /* Note that, although the Mule version will work fine for non-Mule
|
|
864 as well (it should reduce down to nothing), we provide a separate
|
|
865 version to avoid compilation warnings and possible non-optimal
|
|
866 results with stupid compilers. */
|
|
867
|
|
868 #ifdef MULE
|
380
|
869 # define VALIDATE_BYTIND_FORWARD(buf, x) do { \
|
|
870 Bufbyte *VBF_ptr = BI_BUF_BYTE_ADDRESS (buf, x); \
|
|
871 while (!BUFBYTE_FIRST_BYTE_P (*VBF_ptr)) \
|
|
872 VBF_ptr++, (x)++; \
|
70
|
873 } while (0)
|
|
874 #else
|
16
|
875 # define VALIDATE_BYTIND_FORWARD(buf, x)
|
70
|
876 #endif
|
0
|
877
|
|
878 /* Note that in the simplest case (no MULE, no ERROR_CHECK_BUFPOS),
|
|
879 this crap reduces down to simply (x)++. */
|
|
880
|
|
881 #define INC_BYTIND(buf, x) do \
|
|
882 { \
|
|
883 ASSERT_VALID_BYTIND_FORWARD_UNSAFE (buf, x); \
|
|
884 /* Note that we do the increment first to \
|
|
885 make sure that the pointer in \
|
|
886 VALIDATE_BYTIND_FORWARD() ends up on \
|
|
887 the correct side of the gap */ \
|
|
888 (x)++; \
|
|
889 VALIDATE_BYTIND_FORWARD (buf, x); \
|
|
890 } while (0)
|
|
891
|
|
892 /* Note that in the simplest case (no MULE, no ERROR_CHECK_BUFPOS),
|
|
893 this crap reduces down to simply (x)--. */
|
|
894
|
|
895 #define DEC_BYTIND(buf, x) do \
|
|
896 { \
|
|
897 ASSERT_VALID_BYTIND_BACKWARD_UNSAFE (buf, x); \
|
|
898 /* Note that we do the decrement first to \
|
|
899 make sure that the pointer in \
|
|
900 VALIDATE_BYTIND_BACKWARD() ends up on \
|
|
901 the correct side of the gap */ \
|
|
902 (x)--; \
|
|
903 VALIDATE_BYTIND_BACKWARD (buf, x); \
|
|
904 } while (0)
|
|
905
|
412
|
906 INLINE Bytind prev_bytind (struct buffer *buf, Bytind x);
|
|
907 INLINE Bytind
|
0
|
908 prev_bytind (struct buffer *buf, Bytind x)
|
|
909 {
|
|
910 DEC_BYTIND (buf, x);
|
|
911 return x;
|
|
912 }
|
|
913
|
412
|
914 INLINE Bytind next_bytind (struct buffer *buf, Bytind x);
|
|
915 INLINE Bytind
|
0
|
916 next_bytind (struct buffer *buf, Bytind x)
|
|
917 {
|
|
918 INC_BYTIND (buf, x);
|
|
919 return x;
|
|
920 }
|
|
921
|
|
922 #define BYTIND_INVALID ((Bytind) -1)
|
|
923
|
|
924 /*----------------------------------------------------------------------*/
|
272
|
925 /* Converting between buffer positions and byte indices */
|
0
|
926 /*----------------------------------------------------------------------*/
|
|
927
|
70
|
928 #ifdef MULE
|
|
929
|
|
930 Bytind bufpos_to_bytind_func (struct buffer *buf, Bufpos x);
|
|
931 Bufpos bytind_to_bufpos_func (struct buffer *buf, Bytind x);
|
|
932
|
|
933 /* The basic algorithm we use is to keep track of a known region of
|
|
934 characters in each buffer, all of which are of the same width. We
|
|
935 keep track of the boundaries of the region in both Bufpos and
|
|
936 Bytind coordinates and also keep track of the char width, which
|
|
937 is 1 - 4 bytes. If the position we're translating is not in
|
|
938 the known region, then we invoke a function to update the known
|
|
939 region to surround the position in question. This assumes
|
|
940 locality of reference, which is usually the case.
|
|
941
|
|
942 Note that the function to update the known region can be simple
|
|
943 or complicated depending on how much information we cache.
|
|
944 For the moment, we don't cache any information, and just move
|
|
945 linearly forward or back from the known region, with a few
|
|
946 shortcuts to catch all-ASCII buffers. (Note that this will
|
|
947 thrash with bad locality of reference.) A smarter method would
|
|
948 be to keep some sort of pseudo-extent layer over the buffer;
|
|
949 maybe keep track of the bufpos/bytind correspondence at the
|
|
950 beginning of each line, which would allow us to do a binary
|
|
951 search over the pseudo-extents to narrow things down to the
|
|
952 correct line, at which point you could use a linear movement
|
|
953 method. This would also mesh well with efficiently
|
|
954 implementing a line-numbering scheme.
|
|
955
|
|
956 Note also that we have to multiply or divide by the char width
|
|
957 in order to convert the positions. We do some tricks to avoid
|
|
958 ever actually having to do a multiply or divide, because that
|
|
959 is typically an expensive operation (esp. divide). Multiplying
|
|
960 or dividing by 1, 2, or 4 can be implemented simply as a
|
|
961 shift left or shift right, and we keep track of a shifter value
|
|
962 (0, 1, or 2) indicating how much to shift. Multiplying by 3
|
|
963 can be implemented by doubling and then adding the original
|
|
964 value. Dividing by 3, alas, cannot be implemented in any
|
|
965 simple shift/subtract method, as far as I know; so we just
|
|
966 do a table lookup. For simplicity, we use a table of size
|
|
967 128K, which indexes the "divide-by-3" values for the first
|
|
968 64K non-negative numbers. (Note that we can increase the
|
|
969 size up to 384K, i.e. indexing the first 192K non-negative
|
|
970 numbers, while still using shorts in the array.) This also
|
|
971 means that the size of the known region can be at most
|
|
972 64K for width-three characters.
|
|
973 */
|
185
|
974
|
70
|
975 extern short three_to_one_table[];
|
|
976
|
412
|
977 INLINE int real_bufpos_to_bytind (struct buffer *buf, Bufpos x);
|
|
978 INLINE int
|
70
|
979 real_bufpos_to_bytind (struct buffer *buf, Bufpos x)
|
|
980 {
|
|
981 if (x >= buf->text->mule_bufmin && x <= buf->text->mule_bufmax)
|
|
982 return (buf->text->mule_bytmin +
|
|
983 ((x - buf->text->mule_bufmin) << buf->text->mule_shifter) +
|
|
984 (buf->text->mule_three_p ? (x - buf->text->mule_bufmin) : 0));
|
|
985 else
|
|
986 return bufpos_to_bytind_func (buf, x);
|
|
987 }
|
|
988
|
412
|
989 INLINE int real_bytind_to_bufpos (struct buffer *buf, Bytind x);
|
|
990 INLINE int
|
70
|
991 real_bytind_to_bufpos (struct buffer *buf, Bytind x)
|
|
992 {
|
|
993 if (x >= buf->text->mule_bytmin && x <= buf->text->mule_bytmax)
|
|
994 return (buf->text->mule_bufmin +
|
|
995 ((buf->text->mule_three_p
|
|
996 ? three_to_one_table[x - buf->text->mule_bytmin]
|
|
997 : (x - buf->text->mule_bytmin) >> buf->text->mule_shifter)));
|
|
998 else
|
|
999 return bytind_to_bufpos_func (buf, x);
|
|
1000 }
|
|
1001
|
|
1002 #else /* not MULE */
|
|
1003
|
16
|
1004 # define real_bufpos_to_bytind(buf, x) ((Bytind) x)
|
|
1005 # define real_bytind_to_bufpos(buf, x) ((Bufpos) x)
|
0
|
1006
|
70
|
1007 #endif /* not MULE */
|
|
1008
|
0
|
1009 #ifdef ERROR_CHECK_BUFPOS
|
|
1010
|
|
1011 Bytind bufpos_to_bytind (struct buffer *buf, Bufpos x);
|
|
1012 Bufpos bytind_to_bufpos (struct buffer *buf, Bytind x);
|
|
1013
|
|
1014 #else /* not ERROR_CHECK_BUFPOS */
|
|
1015
|
|
1016 #define bufpos_to_bytind real_bufpos_to_bytind
|
|
1017 #define bytind_to_bufpos real_bytind_to_bufpos
|
|
1018
|
|
1019 #endif /* not ERROR_CHECK_BUFPOS */
|
|
1020
|
|
1021 #define make_bufpos(buf, ind) make_int (bytind_to_bufpos (buf, ind))
|
|
1022
|
|
1023 /*----------------------------------------------------------------------*/
|
|
1024 /* Converting between buffer bytes and Emacs characters */
|
|
1025 /*----------------------------------------------------------------------*/
|
|
1026
|
|
1027 /* The character at position POS in buffer. */
|
|
1028 #define BI_BUF_FETCH_CHAR(buf, pos) \
|
|
1029 charptr_emchar (BI_BUF_BYTE_ADDRESS (buf, pos))
|
|
1030 #define BUF_FETCH_CHAR(buf, pos) \
|
|
1031 BI_BUF_FETCH_CHAR (buf, bufpos_to_bytind (buf, pos))
|
|
1032
|
|
1033 /* The character at position POS in buffer, as a string. This is
|
|
1034 equivalent to set_charptr_emchar (str, BUF_FETCH_CHAR (buf, pos))
|
|
1035 but is faster for Mule. */
|
|
1036
|
|
1037 # define BI_BUF_CHARPTR_COPY_CHAR(buf, pos, str) \
|
|
1038 charptr_copy_char (BI_BUF_BYTE_ADDRESS (buf, pos), str)
|
|
1039 #define BUF_CHARPTR_COPY_CHAR(buf, pos, str) \
|
|
1040 BI_BUF_CHARPTR_COPY_CHAR (buf, bufpos_to_bytind (buf, pos), str)
|
|
1041
|
412
|
1042
|
|
1043
|
0
|
1044
|
|
1045 /************************************************************************/
|
412
|
1046 /* */
|
|
1047 /* working with externally-formatted data */
|
|
1048 /* */
|
0
|
1049 /************************************************************************/
|
185
|
1050
|
412
|
1051 /* Sometimes strings need to be converted into one or another
|
|
1052 external format, for passing to a library function. (Note
|
|
1053 that we encapsulate and automatically convert the arguments
|
|
1054 of some functions, but not others.) At times this conversion
|
|
1055 also has to go the other way -- i.e. when we get external-
|
|
1056 format strings back from a library function.
|
|
1057 */
|
0
|
1058
|
398
|
1059 #ifdef FILE_CODING
|
70
|
1060
|
398
|
1061 /* WARNING: These use a static buffer. This can lead to disaster if
|
412
|
1062 these functions are not used *very* carefully. Under normal
|
|
1063 circumstances, do not call these functions; call the front ends
|
|
1064 below. */
|
|
1065
|
|
1066 Extbyte *convert_to_external_format (CONST Bufbyte *ptr,
|
|
1067 Bytecount len,
|
|
1068 Extcount *len_out,
|
|
1069 enum external_data_format fmt);
|
|
1070 Bufbyte *convert_from_external_format (CONST Extbyte *ptr,
|
|
1071 Extcount len,
|
|
1072 Bytecount *len_out,
|
|
1073 enum external_data_format fmt);
|
|
1074
|
|
1075 #else /* ! MULE */
|
|
1076
|
|
1077 #define convert_to_external_format(ptr, len, len_out, fmt) \
|
|
1078 (*(len_out) = (int) (len), (Extbyte *) (ptr))
|
|
1079 #define convert_from_external_format(ptr, len, len_out, fmt) \
|
|
1080 (*(len_out) = (Bytecount) (len), (Bufbyte *) (ptr))
|
|
1081
|
|
1082 #endif /* ! MULE */
|
|
1083
|
|
1084 /* In all of the following macros we use the following general principles:
|
|
1085
|
|
1086 -- Functions that work with charptr's accept two sorts of charptr's:
|
|
1087
|
|
1088 a) Pointers to memory with a length specified. The pointer will be
|
|
1089 fundamentally of type `unsigned char *' (although labelled
|
|
1090 as `Bufbyte *' for internal-format data and `Extbyte *' for
|
|
1091 external-format data) and the length will be fundamentally of
|
|
1092 type `int' (although labelled as `Bytecount' for internal-format
|
|
1093 data and `Extcount' for external-format data). The length is
|
|
1094 always a count in bytes.
|
|
1095 b) Zero-terminated pointers; no length specified. The pointer
|
|
1096 is of type `char *', whether the data pointed to is internal-format
|
|
1097 or external-format. These sorts of pointers are available for
|
|
1098 convenience in working with C library functions and literal
|
|
1099 strings. In general you should use these sorts of pointers only
|
|
1100 to interface to library routines and not for general manipulation,
|
|
1101 as you are liable to lose embedded nulls and such. This could
|
|
1102 be a big problem for routines that want Unicode-formatted data,
|
|
1103 which is likely to have lots of embedded nulls in it.
|
|
1104 (In the real world, though, external Unicode data will be UTF-8,
|
|
1105 which will not have embedded nulls and is ASCII-compatible - martin)
|
|
1106
|
|
1107 -- Functions that work with Lisp strings accept strings as Lisp Objects
|
|
1108 (as opposed to the `struct Lisp_String *' for some of the other
|
|
1109 string accessors). This is for convenience in working with the
|
|
1110 functions, as otherwise you will almost always have to call
|
|
1111 XSTRING() on the object.
|
|
1112
|
|
1113 -- Functions that work with charptr's are not guaranteed to copy
|
|
1114 their data into alloca()ed space. Functions that work with
|
|
1115 Lisp strings are, however. The reason is that Lisp strings can
|
|
1116 be relocated any time a GC happens, and it could happen at some
|
|
1117 rather unexpected times. The internal-external conversion is
|
|
1118 rarely done in time-critical functions, and so the slight
|
|
1119 extra time required for alloca() and copy is well-worth the
|
|
1120 safety of knowing your string data won't be relocated out from
|
|
1121 under you.
|
|
1122 */
|
|
1123
|
398
|
1124
|
412
|
1125 /* Maybe convert charptr's data into ext-format and store the result in
|
|
1126 alloca()'ed space.
|
|
1127
|
|
1128 You may wonder why this is written in this fashion and not as a
|
|
1129 function call. With a little trickery it could certainly be
|
|
1130 written this way, but it won't work because of those DAMN GCC WANKERS
|
|
1131 who couldn't be bothered to handle alloca() properly on the x86
|
|
1132 architecture. (If you put a call to alloca() in the argument to
|
|
1133 a function call, the stack space gets allocated right in the
|
|
1134 middle of the arguments to the function call and you are unbelievably
|
|
1135 hosed.) */
|
|
1136
|
|
1137 #ifdef MULE
|
|
1138
|
|
1139 #define GET_CHARPTR_EXT_DATA_ALLOCA(ptr, len, fmt, ptr_out, len_out) do \
|
|
1140 { \
|
|
1141 Bytecount gceda_len_in = (Bytecount) (len); \
|
|
1142 Extcount gceda_len_out; \
|
|
1143 CONST Bufbyte *gceda_ptr_in = (ptr); \
|
|
1144 Extbyte *gceda_ptr_out = \
|
|
1145 convert_to_external_format (gceda_ptr_in, gceda_len_in, \
|
|
1146 &gceda_len_out, fmt); \
|
|
1147 /* If the new string is identical to the old (will be the case most \
|
|
1148 of the time), just return the same string back. This saves \
|
|
1149 on alloca()ing, which can be useful on C alloca() machines and \
|
|
1150 on stack-space-challenged environments. */ \
|
|
1151 \
|
|
1152 if (gceda_len_in == gceda_len_out && \
|
|
1153 !memcmp (gceda_ptr_in, gceda_ptr_out, gceda_len_out)) \
|
|
1154 { \
|
|
1155 (ptr_out) = (Extbyte *) gceda_ptr_in; \
|
|
1156 } \
|
|
1157 else \
|
|
1158 { \
|
|
1159 (ptr_out) = (Extbyte *) alloca (1 + gceda_len_out); \
|
|
1160 memcpy ((void *) ptr_out, gceda_ptr_out, 1 + gceda_len_out); \
|
|
1161 } \
|
|
1162 (len_out) = gceda_len_out; \
|
398
|
1163 } while (0)
|
412
|
1164
|
|
1165 #else /* ! MULE */
|
|
1166
|
|
1167 #define GET_CHARPTR_EXT_DATA_ALLOCA(ptr, len, fmt, ptr_out, len_out) do \
|
|
1168 { \
|
|
1169 (ptr_out) = (Extbyte *) (ptr); \
|
|
1170 (len_out) = (Extcount) (len); \
|
398
|
1171 } while (0)
|
412
|
1172
|
|
1173 #endif /* ! MULE */
|
|
1174
|
|
1175 #define GET_C_CHARPTR_EXT_DATA_ALLOCA(ptr, fmt, ptr_out) do \
|
|
1176 { \
|
|
1177 Extcount gcceda_ignored_len; \
|
|
1178 CONST Bufbyte *gcceda_ptr_in = (CONST Bufbyte *) (ptr); \
|
|
1179 Extbyte *gcceda_ptr_out; \
|
|
1180 \
|
|
1181 GET_CHARPTR_EXT_DATA_ALLOCA (gcceda_ptr_in, \
|
|
1182 strlen ((char *) gcceda_ptr_in), \
|
|
1183 fmt, \
|
|
1184 gcceda_ptr_out, \
|
|
1185 gcceda_ignored_len); \
|
|
1186 (ptr_out) = (char *) gcceda_ptr_out; \
|
70
|
1187 } while (0)
|
|
1188
|
412
|
1189 #define GET_C_CHARPTR_EXT_BINARY_DATA_ALLOCA(ptr, ptr_out) \
|
|
1190 GET_C_CHARPTR_EXT_DATA_ALLOCA (ptr, FORMAT_BINARY, ptr_out)
|
|
1191 #define GET_CHARPTR_EXT_BINARY_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
|
|
1192 GET_CHARPTR_EXT_DATA_ALLOCA (ptr, len, FORMAT_BINARY, ptr_out, len_out)
|
|
1193
|
|
1194 #define GET_C_CHARPTR_EXT_FILENAME_DATA_ALLOCA(ptr, ptr_out) \
|
|
1195 GET_C_CHARPTR_EXT_DATA_ALLOCA (ptr, FORMAT_FILENAME, ptr_out)
|
|
1196 #define GET_CHARPTR_EXT_FILENAME_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
|
|
1197 GET_CHARPTR_EXT_DATA_ALLOCA (ptr, len, FORMAT_FILENAME, ptr_out, len_out)
|
|
1198
|
|
1199 #define GET_C_CHARPTR_EXT_CTEXT_DATA_ALLOCA(ptr, ptr_out) \
|
|
1200 GET_C_CHARPTR_EXT_DATA_ALLOCA (ptr, FORMAT_CTEXT, ptr_out)
|
|
1201 #define GET_CHARPTR_EXT_CTEXT_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
|
|
1202 GET_CHARPTR_EXT_DATA_ALLOCA (ptr, len, FORMAT_CTEXT, ptr_out, len_out)
|
|
1203
|
|
1204 /* Maybe convert external charptr's data into internal format and store
|
|
1205 the result in alloca()'ed space.
|
|
1206
|
|
1207 You may wonder why this is written in this fashion and not as a
|
|
1208 function call. With a little trickery it could certainly be
|
|
1209 written this way, but it won't work because of those DAMN GCC WANKERS
|
|
1210 who couldn't be bothered to handle alloca() properly on the x86
|
|
1211 architecture. (If you put a call to alloca() in the argument to
|
|
1212 a function call, the stack space gets allocated right in the
|
|
1213 middle of the arguments to the function call and you are unbelievably
|
|
1214 hosed.) */
|
|
1215
|
|
1216 #ifdef MULE
|
|
1217
|
|
1218 #define GET_CHARPTR_INT_DATA_ALLOCA(ptr, len, fmt, ptr_out, len_out) do \
|
|
1219 { \
|
|
1220 Extcount gcida_len_in = (Extcount) (len); \
|
|
1221 Bytecount gcida_len_out; \
|
|
1222 CONST Extbyte *gcida_ptr_in = (ptr); \
|
|
1223 Bufbyte *gcida_ptr_out = \
|
|
1224 convert_from_external_format (gcida_ptr_in, gcida_len_in, \
|
|
1225 &gcida_len_out, fmt); \
|
|
1226 /* If the new string is identical to the old (will be the case most \
|
|
1227 of the time), just return the same string back. This saves \
|
|
1228 on alloca()ing, which can be useful on C alloca() machines and \
|
|
1229 on stack-space-challenged environments. */ \
|
|
1230 \
|
|
1231 if (gcida_len_in == gcida_len_out && \
|
|
1232 !memcmp (gcida_ptr_in, gcida_ptr_out, gcida_len_out)) \
|
|
1233 { \
|
|
1234 (ptr_out) = (Bufbyte *) gcida_ptr_in; \
|
|
1235 } \
|
|
1236 else \
|
|
1237 { \
|
|
1238 (ptr_out) = (Extbyte *) alloca (1 + gcida_len_out); \
|
|
1239 memcpy ((void *) ptr_out, gcida_ptr_out, 1 + gcida_len_out); \
|
|
1240 } \
|
|
1241 (len_out) = gcida_len_out; \
|
398
|
1242 } while (0)
|
412
|
1243
|
|
1244 #else /* ! MULE */
|
|
1245
|
|
1246 #define GET_CHARPTR_INT_DATA_ALLOCA(ptr, len, fmt, ptr_out, len_out) do \
|
|
1247 { \
|
|
1248 (ptr_out) = (Bufbyte *) (ptr); \
|
|
1249 (len_out) = (Bytecount) (len); \
|
0
|
1250 } while (0)
|
|
1251
|
412
|
1252 #endif /* ! MULE */
|
|
1253
|
|
1254 #define GET_C_CHARPTR_INT_DATA_ALLOCA(ptr, fmt, ptr_out) do \
|
|
1255 { \
|
|
1256 Bytecount gccida_ignored_len; \
|
|
1257 CONST Extbyte *gccida_ptr_in = (CONST Extbyte *) (ptr); \
|
|
1258 Bufbyte *gccida_ptr_out; \
|
|
1259 \
|
|
1260 GET_CHARPTR_INT_DATA_ALLOCA (gccida_ptr_in, \
|
|
1261 strlen ((char *) gccida_ptr_in), \
|
|
1262 fmt, \
|
|
1263 gccida_ptr_out, \
|
|
1264 gccida_ignored_len); \
|
|
1265 (ptr_out) = gccida_ptr_out; \
|
398
|
1266 } while (0)
|
412
|
1267
|
|
1268 #define GET_C_CHARPTR_INT_BINARY_DATA_ALLOCA(ptr, ptr_out) \
|
|
1269 GET_C_CHARPTR_INT_DATA_ALLOCA (ptr, FORMAT_BINARY, ptr_out)
|
|
1270 #define GET_CHARPTR_INT_BINARY_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
|
|
1271 GET_CHARPTR_INT_DATA_ALLOCA (ptr, len, FORMAT_BINARY, ptr_out, len_out)
|
|
1272
|
|
1273 #define GET_C_CHARPTR_INT_FILENAME_DATA_ALLOCA(ptr, ptr_out) \
|
|
1274 GET_C_CHARPTR_INT_DATA_ALLOCA (ptr, FORMAT_FILENAME, ptr_out)
|
|
1275 #define GET_CHARPTR_INT_FILENAME_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
|
|
1276 GET_CHARPTR_INT_DATA_ALLOCA (ptr, len, FORMAT_FILENAME, ptr_out, len_out)
|
|
1277
|
|
1278 #define GET_C_CHARPTR_INT_CTEXT_DATA_ALLOCA(ptr, ptr_out) \
|
|
1279 GET_C_CHARPTR_INT_DATA_ALLOCA (ptr, FORMAT_CTEXT, ptr_out)
|
|
1280 #define GET_CHARPTR_INT_CTEXT_DATA_ALLOCA(ptr, len, ptr_out, len_out) \
|
|
1281 GET_CHARPTR_INT_DATA_ALLOCA (ptr, len, FORMAT_CTEXT, ptr_out, len_out)
|
|
1282
|
|
1283
|
|
1284 /* Maybe convert Lisp string's data into ext-format and store the result in
|
|
1285 alloca()'ed space.
|
|
1286
|
|
1287 You may wonder why this is written in this fashion and not as a
|
|
1288 function call. With a little trickery it could certainly be
|
|
1289 written this way, but it won't work because of those DAMN GCC WANKERS
|
|
1290 who couldn't be bothered to handle alloca() properly on the x86
|
|
1291 architecture. (If you put a call to alloca() in the argument to
|
|
1292 a function call, the stack space gets allocated right in the
|
|
1293 middle of the arguments to the function call and you are unbelievably
|
|
1294 hosed.) */
|
|
1295
|
|
1296 #define GET_STRING_EXT_DATA_ALLOCA(s, fmt, ptr_out, len_out) do \
|
|
1297 { \
|
|
1298 Extcount gseda_len_out; \
|
|
1299 struct Lisp_String *gseda_s = XSTRING (s); \
|
|
1300 Extbyte * gseda_ptr_out = \
|
|
1301 convert_to_external_format (string_data (gseda_s), \
|
|
1302 string_length (gseda_s), \
|
|
1303 &gseda_len_out, fmt); \
|
|
1304 (ptr_out) = (Extbyte *) alloca (1 + gseda_len_out); \
|
|
1305 memcpy ((void *) ptr_out, gseda_ptr_out, 1 + gseda_len_out); \
|
|
1306 (len_out) = gseda_len_out; \
|
398
|
1307 } while (0)
|
412
|
1308
|
|
1309
|
|
1310 #define GET_C_STRING_EXT_DATA_ALLOCA(s, fmt, ptr_out) do \
|
|
1311 { \
|
|
1312 Extcount gcseda_ignored_len; \
|
|
1313 Extbyte *gcseda_ptr_out; \
|
|
1314 \
|
|
1315 GET_STRING_EXT_DATA_ALLOCA (s, fmt, gcseda_ptr_out, \
|
|
1316 gcseda_ignored_len); \
|
|
1317 (ptr_out) = (char *) gcseda_ptr_out; \
|
|
1318 } while (0)
|
|
1319
|
|
1320 #define GET_STRING_BINARY_DATA_ALLOCA(s, ptr_out, len_out) \
|
|
1321 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_BINARY, ptr_out, len_out)
|
|
1322 #define GET_C_STRING_BINARY_DATA_ALLOCA(s, ptr_out) \
|
|
1323 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_BINARY, ptr_out)
|
0
|
1324
|
412
|
1325 #define GET_STRING_FILENAME_DATA_ALLOCA(s, ptr_out, len_out) \
|
|
1326 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_FILENAME, ptr_out, len_out)
|
|
1327 #define GET_C_STRING_FILENAME_DATA_ALLOCA(s, ptr_out) \
|
|
1328 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_FILENAME, ptr_out)
|
0
|
1329
|
412
|
1330 #define GET_STRING_OS_DATA_ALLOCA(s, ptr_out, len_out) \
|
|
1331 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_OS, ptr_out, len_out)
|
|
1332 #define GET_C_STRING_OS_DATA_ALLOCA(s, ptr_out) \
|
|
1333 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_OS, ptr_out)
|
|
1334
|
|
1335 #define GET_STRING_CTEXT_DATA_ALLOCA(s, ptr_out, len_out) \
|
|
1336 GET_STRING_EXT_DATA_ALLOCA (s, FORMAT_CTEXT, ptr_out, len_out)
|
|
1337 #define GET_C_STRING_CTEXT_DATA_ALLOCA(s, ptr_out) \
|
|
1338 GET_C_STRING_EXT_DATA_ALLOCA (s, FORMAT_CTEXT, ptr_out)
|
|
1339
|
|
1340
|
0
|
1341
|
|
1342 /************************************************************************/
|
|
1343 /* */
|
|
1344 /* fake charset functions */
|
|
1345 /* */
|
|
1346 /************************************************************************/
|
|
1347
|
70
|
1348 /* used when MULE is not defined, so that Charset-type stuff can still
|
|
1349 be done */
|
|
1350
|
|
1351 #ifndef MULE
|
|
1352
|
0
|
1353 #define Vcharset_ascii Qnil
|
|
1354
|
|
1355 #define CHAR_CHARSET(ch) Vcharset_ascii
|
|
1356 #define CHAR_LEADING_BYTE(ch) LEADING_BYTE_ASCII
|
|
1357 #define LEADING_BYTE_ASCII 0x80
|
|
1358 #define NUM_LEADING_BYTES 1
|
|
1359 #define MIN_LEADING_BYTE 0x80
|
|
1360 #define CHARSETP(cs) 1
|
181
|
1361 #define CHARSET_BY_LEADING_BYTE(lb) Vcharset_ascii
|
0
|
1362 #define XCHARSET_LEADING_BYTE(cs) LEADING_BYTE_ASCII
|
|
1363 #define XCHARSET_GRAPHIC(cs) -1
|
|
1364 #define XCHARSET_COLUMNS(cs) 1
|
|
1365 #define XCHARSET_DIMENSION(cs) 1
|
|
1366 #define REP_BYTES_BY_FIRST_BYTE(fb) 1
|
272
|
1367 #define BREAKUP_CHAR(ch, charset, byte1, byte2) do { \
|
|
1368 (charset) = Vcharset_ascii; \
|
|
1369 (byte1) = (ch); \
|
|
1370 (byte2) = 0; \
|
0
|
1371 } while (0)
|
14
|
1372 #define BYTE_ASCII_P(byte) 1
|
0
|
1373
|
70
|
1374 #endif /* ! MULE */
|
0
|
1375
|
|
1376 /************************************************************************/
|
|
1377 /* */
|
|
1378 /* higher-level buffer-position functions */
|
|
1379 /* */
|
|
1380 /************************************************************************/
|
|
1381
|
|
1382 /*----------------------------------------------------------------------*/
|
|
1383 /* Settor macros for important positions in a buffer */
|
|
1384 /*----------------------------------------------------------------------*/
|
|
1385
|
185
|
1386 /* Set beginning of accessible range of buffer. */
|
0
|
1387 #define SET_BOTH_BUF_BEGV(buf, val, bival) \
|
|
1388 do \
|
|
1389 { \
|
|
1390 (buf)->begv = (bival); \
|
|
1391 (buf)->bufbegv = (val); \
|
|
1392 } while (0)
|
|
1393
|
185
|
1394 /* Set end of accessible range of buffer. */
|
0
|
1395 #define SET_BOTH_BUF_ZV(buf, val, bival) \
|
|
1396 do \
|
|
1397 { \
|
|
1398 (buf)->zv = (bival); \
|
|
1399 (buf)->bufzv = (val); \
|
|
1400 } while (0)
|
|
1401
|
|
1402 /* Set point. */
|
|
1403 /* Since BEGV and ZV are almost never set, it's reasonable to enforce
|
|
1404 the restriction that the Bufpos and Bytind values must both be
|
|
1405 specified. However, point is set in lots and lots of places. So
|
|
1406 we provide the ability to specify both (for efficiency) or just
|
|
1407 one. */
|
|
1408 #define BOTH_BUF_SET_PT(buf, val, bival) set_buffer_point (buf, val, bival)
|
|
1409 #define BI_BUF_SET_PT(buf, bival) \
|
|
1410 BOTH_BUF_SET_PT (buf, bytind_to_bufpos (buf, bival), bival)
|
|
1411 #define BUF_SET_PT(buf, value) \
|
|
1412 BOTH_BUF_SET_PT (buf, value, bufpos_to_bytind (buf, value))
|
|
1413
|
|
1414
|
|
1415 #if 0 /* FSFmacs */
|
|
1416 /* These macros exist in FSFmacs because SET_PT() in FSFmacs incorrectly
|
|
1417 does too much stuff, such as moving out of invisible extents. */
|
|
1418 #define TEMP_SET_PT(position) (temp_set_point ((position), current_buffer))
|
|
1419 #define SET_BUF_PT(buf, value) ((buf)->pt = (value))
|
183
|
1420 #endif /* FSFmacs */
|
0
|
1421
|
|
1422 /*----------------------------------------------------------------------*/
|
|
1423 /* Miscellaneous buffer values */
|
|
1424 /*----------------------------------------------------------------------*/
|
|
1425
|
|
1426 /* Number of characters in buffer */
|
|
1427 #define BUF_SIZE(buf) (BUF_Z (buf) - BUF_BEG (buf))
|
|
1428
|
|
1429 /* Is this buffer narrowed? */
|
183
|
1430 #define BUF_NARROWED(buf) \
|
|
1431 ((BI_BUF_BEGV (buf) != BI_BUF_BEG (buf)) || \
|
|
1432 (BI_BUF_ZV (buf) != BI_BUF_Z (buf)))
|
0
|
1433
|
|
1434 /* Modification count. */
|
|
1435 #define BUF_MODIFF(buf) ((buf)->text->modiff)
|
|
1436
|
|
1437 /* Saved modification count. */
|
|
1438 #define BUF_SAVE_MODIFF(buf) ((buf)->text->save_modiff)
|
|
1439
|
|
1440 /* Face changed. */
|
|
1441 #define BUF_FACECHANGE(buf) ((buf)->face_change)
|
|
1442
|
|
1443 #define POINT_MARKER_P(marker) \
|
|
1444 (XMARKER (marker)->buffer != 0 && \
|
412
|
1445 EQ ((marker), XMARKER (marker)->buffer->point_marker))
|
0
|
1446
|
|
1447 #define BUF_MARKERS(buf) ((buf)->markers)
|
|
1448
|
|
1449 /* WARNING:
|
|
1450
|
|
1451 The new definitions of CEILING_OF() and FLOOR_OF() differ semantically
|
|
1452 from the old ones (in FSF Emacs and XEmacs 19.11 and before).
|
|
1453 Conversion is as follows:
|
|
1454
|
|
1455 OLD_BI_CEILING_OF(n) = NEW_BI_CEILING_OF(n) - 1
|
|
1456 OLD_BI_FLOOR_OF(n) = NEW_BI_FLOOR_OF(n + 1)
|
|
1457
|
|
1458 The definitions were changed because the new definitions are more
|
|
1459 consistent with the way everything else works in Emacs.
|
|
1460 */
|
|
1461
|
|
1462 /* Properties of CEILING_OF and FLOOR_OF (also apply to BI_ variants):
|
|
1463
|
|
1464 1) FLOOR_OF (CEILING_OF (n)) = n
|
|
1465 CEILING_OF (FLOOR_OF (n)) = n
|
|
1466
|
|
1467 2) CEILING_OF (n) = n if and only if n = ZV
|
|
1468 FLOOR_OF (n) = n if and only if n = BEGV
|
|
1469
|
|
1470 3) CEILING_OF (CEILING_OF (n)) = ZV
|
|
1471 FLOOR_OF (FLOOR_OF (n)) = BEGV
|
|
1472
|
|
1473 4) The bytes in the regions
|
|
1474
|
|
1475 [BYTE_ADDRESS (n), BYTE_ADDRESS_BEFORE (CEILING_OF (n))]
|
|
1476
|
|
1477 and
|
|
1478
|
|
1479 [BYTE_ADDRESS (FLOOR_OF (n)), BYTE_ADDRESS_BEFORE (n)]
|
|
1480
|
|
1481 are contiguous.
|
|
1482 */
|
|
1483
|
|
1484
|
|
1485 /* Return the maximum index in the buffer it is safe to scan forwards
|
|
1486 past N to. This is used to prevent buffer scans from running into
|
|
1487 the gap (e.g. search.c). All characters between N and CEILING_OF(N)
|
|
1488 are located contiguous in memory. Note that the character *at*
|
|
1489 CEILING_OF(N) is not contiguous in memory. */
|
|
1490 #define BI_BUF_CEILING_OF(b, n) \
|
|
1491 ((n) < (b)->text->gpt && (b)->text->gpt < BI_BUF_ZV (b) ? \
|
|
1492 (b)->text->gpt : BI_BUF_ZV (b))
|
|
1493 #define BUF_CEILING_OF(b, n) \
|
|
1494 bytind_to_bufpos (b, BI_BUF_CEILING_OF (b, bufpos_to_bytind (b, n)))
|
|
1495
|
|
1496 /* Return the minimum index in the buffer it is safe to scan backwards
|
|
1497 past N to. All characters between FLOOR_OF(N) and N are located
|
|
1498 contiguous in memory. Note that the character *at* N may not be
|
|
1499 contiguous in memory. */
|
|
1500 #define BI_BUF_FLOOR_OF(b, n) \
|
|
1501 (BI_BUF_BEGV (b) < (b)->text->gpt && (b)->text->gpt < (n) ? \
|
|
1502 (b)->text->gpt : BI_BUF_BEGV (b))
|
|
1503 #define BUF_FLOOR_OF(b, n) \
|
|
1504 bytind_to_bufpos (b, BI_BUF_FLOOR_OF (b, bufpos_to_bytind (b, n)))
|
|
1505
|
|
1506 #define BI_BUF_CEILING_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1507 ((n) < (b)->text->gpt && (b)->text->gpt < BI_BUF_Z (b) ? \
|
|
1508 (b)->text->gpt : BI_BUF_Z (b))
|
|
1509 #define BUF_CEILING_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1510 bytind_to_bufpos \
|
|
1511 (b, BI_BUF_CEILING_OF_IGNORE_ACCESSIBLE (b, bufpos_to_bytind (b, n)))
|
|
1512
|
|
1513 #define BI_BUF_FLOOR_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1514 (BI_BUF_BEG (b) < (b)->text->gpt && (b)->text->gpt < (n) ? \
|
|
1515 (b)->text->gpt : BI_BUF_BEG (b))
|
|
1516 #define BUF_FLOOR_OF_IGNORE_ACCESSIBLE(b, n) \
|
|
1517 bytind_to_bufpos \
|
|
1518 (b, BI_BUF_FLOOR_OF_IGNORE_ACCESSIBLE (b, bufpos_to_bytind (b, n)))
|
|
1519
|
|
1520
|
|
1521 extern struct buffer *current_buffer;
|
|
1522
|
288
|
1523 /* This is the initial (startup) directory, as used for the *scratch* buffer.
|
|
1524 We're making this a global to make others aware of the startup directory.
|
386
|
1525 `initial_directory' is stored in external format.
|
288
|
1526 */
|
|
1527 extern char initial_directory[];
|
|
1528 extern void init_initial_directory (void); /* initialize initial_directory */
|
|
1529
|
272
|
1530 EXFUN (Fbuffer_disable_undo, 1);
|
|
1531 EXFUN (Fbuffer_modified_p, 1);
|
|
1532 EXFUN (Fbuffer_name, 1);
|
|
1533 EXFUN (Fcurrent_buffer, 0);
|
|
1534 EXFUN (Ferase_buffer, 1);
|
|
1535 EXFUN (Fget_buffer, 1);
|
|
1536 EXFUN (Fget_buffer_create, 1);
|
|
1537 EXFUN (Fget_file_buffer, 1);
|
|
1538 EXFUN (Fkill_buffer, 1);
|
|
1539 EXFUN (Fother_buffer, 3);
|
|
1540 EXFUN (Frecord_buffer, 1);
|
|
1541 EXFUN (Fset_buffer, 1);
|
|
1542 EXFUN (Fset_buffer_modified_p, 2);
|
0
|
1543
|
272
|
1544 extern Lisp_Object QSscratch, Qafter_change_function, Qafter_change_functions;
|
|
1545 extern Lisp_Object Qbefore_change_function, Qbefore_change_functions;
|
|
1546 extern Lisp_Object Qbuffer_or_string_p, Qdefault_directory, Qfirst_change_hook;
|
|
1547 extern Lisp_Object Qpermanent_local, Vafter_change_function;
|
|
1548 extern Lisp_Object Vafter_change_functions, Vbefore_change_function;
|
|
1549 extern Lisp_Object Vbefore_change_functions, Vbuffer_alist, Vbuffer_defaults;
|
|
1550 extern Lisp_Object Vinhibit_read_only, Vtransient_mark_mode;
|
0
|
1551
|
|
1552 /* This structure marks which slots in a buffer have corresponding
|
272
|
1553 default values in Vbuffer_defaults.
|
0
|
1554 Each such slot has a nonzero value in this structure.
|
|
1555 The value has only one nonzero bit.
|
|
1556
|
|
1557 When a buffer has its own local value for a slot,
|
|
1558 the bit for that slot (found in the same slot in this structure)
|
|
1559 is turned on in the buffer's local_var_flags slot.
|
|
1560
|
|
1561 If a slot in this structure is zero, then even though there may
|
|
1562 be a DEFVAR_BUFFER_LOCAL for the slot, there is no default value for it;
|
272
|
1563 and the corresponding slot in Vbuffer_defaults is not used. */
|
0
|
1564
|
|
1565 extern struct buffer buffer_local_flags;
|
|
1566
|
|
1567
|
|
1568 /* Allocation of buffer data. */
|
|
1569
|
|
1570 #ifdef REL_ALLOC
|
|
1571
|
412
|
1572 char *r_alloc (unsigned char **, unsigned long);
|
|
1573 char *r_re_alloc (unsigned char **, unsigned long);
|
185
|
1574 void r_alloc_free (unsigned char **);
|
0
|
1575
|
185
|
1576 #define BUFFER_ALLOC(data, size) \
|
|
1577 ((Bufbyte *) r_alloc ((unsigned char **) &data, (size) * sizeof(Bufbyte)))
|
|
1578 #define BUFFER_REALLOC(data, size) \
|
|
1579 ((Bufbyte *) r_re_alloc ((unsigned char **) &data, (size) * sizeof(Bufbyte)))
|
|
1580 #define BUFFER_FREE(data) r_alloc_free ((unsigned char **) &(data))
|
0
|
1581 #define R_ALLOC_DECLARE(var,data) r_alloc_declare (&(var), data)
|
|
1582
|
|
1583 #else /* !REL_ALLOC */
|
|
1584
|
|
1585 #define BUFFER_ALLOC(data,size)\
|
380
|
1586 (data = xnew_array (Bufbyte, size))
|
0
|
1587 #define BUFFER_REALLOC(data,size)\
|
|
1588 ((Bufbyte *) xrealloc (data, (size) * sizeof(Bufbyte)))
|
|
1589 /* Avoid excess parentheses, or syntax errors may rear their heads. */
|
|
1590 #define BUFFER_FREE(data) xfree (data)
|
|
1591 #define R_ALLOC_DECLARE(var,data)
|
|
1592
|
|
1593 #endif /* !REL_ALLOC */
|
|
1594
|
|
1595 extern Lisp_Object Vbuffer_alist;
|
|
1596 void set_buffer_internal (struct buffer *b);
|
|
1597 struct buffer *decode_buffer (Lisp_Object buffer, int allow_string);
|
|
1598
|
|
1599 /* from editfns.c */
|
|
1600 void widen_buffer (struct buffer *b, int no_clip);
|
|
1601 int beginning_of_line_p (struct buffer *b, Bufpos pt);
|
|
1602
|
|
1603 /* from insdel.c */
|
|
1604 void set_buffer_point (struct buffer *buf, Bufpos pos, Bytind bipos);
|
|
1605 void find_charsets_in_bufbyte_string (unsigned char *charsets,
|
412
|
1606 CONST Bufbyte *str,
|
0
|
1607 Bytecount len);
|
|
1608 void find_charsets_in_emchar_string (unsigned char *charsets,
|
412
|
1609 CONST Emchar *str,
|
0
|
1610 Charcount len);
|
412
|
1611 int bufbyte_string_displayed_columns (CONST Bufbyte *str, Bytecount len);
|
|
1612 int emchar_string_displayed_columns (CONST Emchar *str, Charcount len);
|
|
1613 void convert_bufbyte_string_into_emchar_dynarr (CONST Bufbyte *str,
|
0
|
1614 Bytecount len,
|
185
|
1615 Emchar_dynarr *dyn);
|
412
|
1616 Charcount convert_bufbyte_string_into_emchar_string (CONST Bufbyte *str,
|
380
|
1617 Bytecount len,
|
|
1618 Emchar *arr);
|
0
|
1619 void convert_emchar_string_into_bufbyte_dynarr (Emchar *arr, int nels,
|
185
|
1620 Bufbyte_dynarr *dyn);
|
0
|
1621 Bufbyte *convert_emchar_string_into_malloced_string (Emchar *arr, int nels,
|
|
1622 Bytecount *len_out);
|
272
|
1623 /* from marker.c */
|
|
1624 void init_buffer_markers (struct buffer *b);
|
|
1625 void uninit_buffer_markers (struct buffer *b);
|
0
|
1626
|
|
1627 /* flags for get_buffer_pos_char(), get_buffer_range_char(), etc. */
|
|
1628 /* At most one of GB_COERCE_RANGE and GB_NO_ERROR_IF_BAD should be
|
|
1629 specified. At most one of GB_NEGATIVE_FROM_END and GB_NO_ERROR_IF_BAD
|
|
1630 should be specified. */
|
|
1631
|
|
1632 #define GB_ALLOW_PAST_ACCESSIBLE (1 << 0)
|
|
1633 #define GB_ALLOW_NIL (1 << 1)
|
|
1634 #define GB_CHECK_ORDER (1 << 2)
|
|
1635 #define GB_COERCE_RANGE (1 << 3)
|
|
1636 #define GB_NO_ERROR_IF_BAD (1 << 4)
|
|
1637 #define GB_NEGATIVE_FROM_END (1 << 5)
|
|
1638 #define GB_HISTORICAL_STRING_BEHAVIOR (GB_NEGATIVE_FROM_END | GB_ALLOW_NIL)
|
|
1639
|
|
1640 Bufpos get_buffer_pos_char (struct buffer *b, Lisp_Object pos,
|
|
1641 unsigned int flags);
|
|
1642 Bytind get_buffer_pos_byte (struct buffer *b, Lisp_Object pos,
|
|
1643 unsigned int flags);
|
|
1644 void get_buffer_range_char (struct buffer *b, Lisp_Object from, Lisp_Object to,
|
|
1645 Bufpos *from_out, Bufpos *to_out,
|
|
1646 unsigned int flags);
|
|
1647 void get_buffer_range_byte (struct buffer *b, Lisp_Object from, Lisp_Object to,
|
|
1648 Bytind *from_out, Bytind *to_out,
|
|
1649 unsigned int flags);
|
|
1650 Charcount get_string_pos_char (Lisp_Object string, Lisp_Object pos,
|
|
1651 unsigned int flags);
|
|
1652 Bytecount get_string_pos_byte (Lisp_Object string, Lisp_Object pos,
|
|
1653 unsigned int flags);
|
|
1654 void get_string_range_char (Lisp_Object string, Lisp_Object from,
|
|
1655 Lisp_Object to, Charcount *from_out,
|
|
1656 Charcount *to_out, unsigned int flags);
|
|
1657 void get_string_range_byte (Lisp_Object string, Lisp_Object from,
|
|
1658 Lisp_Object to, Bytecount *from_out,
|
|
1659 Bytecount *to_out, unsigned int flags);
|
|
1660 Bufpos get_buffer_or_string_pos_char (Lisp_Object object, Lisp_Object pos,
|
|
1661 unsigned int flags);
|
|
1662 Bytind get_buffer_or_string_pos_byte (Lisp_Object object, Lisp_Object pos,
|
|
1663 unsigned int flags);
|
|
1664 void get_buffer_or_string_range_char (Lisp_Object object, Lisp_Object from,
|
|
1665 Lisp_Object to, Bufpos *from_out,
|
|
1666 Bufpos *to_out, unsigned int flags);
|
|
1667 void get_buffer_or_string_range_byte (Lisp_Object object, Lisp_Object from,
|
|
1668 Lisp_Object to, Bytind *from_out,
|
|
1669 Bytind *to_out, unsigned int flags);
|
|
1670 Bufpos buffer_or_string_accessible_begin_char (Lisp_Object object);
|
|
1671 Bufpos buffer_or_string_accessible_end_char (Lisp_Object object);
|
|
1672 Bytind buffer_or_string_accessible_begin_byte (Lisp_Object object);
|
|
1673 Bytind buffer_or_string_accessible_end_byte (Lisp_Object object);
|
|
1674 Bufpos buffer_or_string_absolute_begin_char (Lisp_Object object);
|
|
1675 Bufpos buffer_or_string_absolute_end_char (Lisp_Object object);
|
|
1676 Bytind buffer_or_string_absolute_begin_byte (Lisp_Object object);
|
|
1677 Bytind buffer_or_string_absolute_end_byte (Lisp_Object object);
|
|
1678 void record_buffer (Lisp_Object buf);
|
|
1679 Lisp_Object get_buffer (Lisp_Object name,
|
|
1680 int error_if_deleted_or_does_not_exist);
|
|
1681 int map_over_sharing_buffers (struct buffer *buf,
|
|
1682 int (*mapfun) (struct buffer *buf,
|
|
1683 void *closure),
|
|
1684 void *closure);
|
|
1685
|
|
1686
|
|
1687 /************************************************************************/
|
|
1688 /* Case conversion */
|
|
1689 /************************************************************************/
|
|
1690
|
|
1691 /* A "trt" table is a mapping from characters to other characters,
|
|
1692 typically used to convert between uppercase and lowercase. For
|
|
1693 compatibility reasons, trt tables are currently in the form of
|
|
1694 a Lisp string of 256 characters, specifying the conversion for each
|
380
|
1695 of the first 256 Emacs characters (i.e. the 256 Latin-1 characters).
|
|
1696 This should be generalized at some point to support conversions for
|
|
1697 all of the allowable Mule characters.
|
0
|
1698 */
|
|
1699
|
|
1700 /* The _1 macros are named as such because they assume that you have
|
|
1701 already guaranteed that the character values are all in the range
|
|
1702 0 - 255. Bad lossage will happen otherwise. */
|
|
1703
|
|
1704 # define MAKE_TRT_TABLE() Fmake_string (make_int (256), make_char (0))
|
16
|
1705 # define TRT_TABLE_AS_STRING(table) XSTRING_DATA (table)
|
0
|
1706 # define TRT_TABLE_CHAR_1(table, ch) \
|
|
1707 string_char (XSTRING (table), (Charcount) ch)
|
|
1708 # define SET_TRT_TABLE_CHAR_1(table, ch1, ch2) \
|
|
1709 set_string_char (XSTRING (table), (Charcount) ch1, ch2)
|
|
1710
|
70
|
1711 #ifdef MULE
|
412
|
1712 # define MAKE_MIRROR_TRT_TABLE() make_opaque (256, 0)
|
70
|
1713 # define MIRROR_TRT_TABLE_AS_STRING(table) ((Bufbyte *) XOPAQUE_DATA (table))
|
|
1714 # define MIRROR_TRT_TABLE_CHAR_1(table, ch) \
|
|
1715 ((Emchar) (MIRROR_TRT_TABLE_AS_STRING (table)[ch]))
|
|
1716 # define SET_MIRROR_TRT_TABLE_CHAR_1(table, ch1, ch2) \
|
|
1717 (MIRROR_TRT_TABLE_AS_STRING (table)[ch1] = (Bufbyte) (ch2))
|
|
1718 #endif
|
|
1719
|
272
|
1720 # define IN_TRT_TABLE_DOMAIN(c) (((EMACS_UINT) (c)) <= 255)
|
0
|
1721
|
70
|
1722 #ifdef MULE
|
|
1723 #define MIRROR_DOWNCASE_TABLE_AS_STRING(buf) \
|
|
1724 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_downcase_table)
|
|
1725 #define MIRROR_UPCASE_TABLE_AS_STRING(buf) \
|
|
1726 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_upcase_table)
|
|
1727 #define MIRROR_CANON_TABLE_AS_STRING(buf) \
|
|
1728 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_case_canon_table)
|
|
1729 #define MIRROR_EQV_TABLE_AS_STRING(buf) \
|
|
1730 MIRROR_TRT_TABLE_AS_STRING (buf->mirror_case_eqv_table)
|
|
1731 #else
|
0
|
1732 #define MIRROR_DOWNCASE_TABLE_AS_STRING(buf) \
|
|
1733 TRT_TABLE_AS_STRING (buf->downcase_table)
|
|
1734 #define MIRROR_UPCASE_TABLE_AS_STRING(buf) \
|
|
1735 TRT_TABLE_AS_STRING (buf->upcase_table)
|
|
1736 #define MIRROR_CANON_TABLE_AS_STRING(buf) \
|
|
1737 TRT_TABLE_AS_STRING (buf->case_canon_table)
|
|
1738 #define MIRROR_EQV_TABLE_AS_STRING(buf) \
|
|
1739 TRT_TABLE_AS_STRING (buf->case_eqv_table)
|
70
|
1740 #endif
|
0
|
1741
|
412
|
1742 INLINE Emchar TRT_TABLE_OF (Lisp_Object trt, Emchar c);
|
|
1743 INLINE Emchar
|
0
|
1744 TRT_TABLE_OF (Lisp_Object trt, Emchar c)
|
|
1745 {
|
183
|
1746 return IN_TRT_TABLE_DOMAIN (c) ? TRT_TABLE_CHAR_1 (trt, c) : c;
|
0
|
1747 }
|
|
1748
|
|
1749 /* Macros used below. */
|
|
1750 #define DOWNCASE_TABLE_OF(buf, c) TRT_TABLE_OF (buf->downcase_table, c)
|
|
1751 #define UPCASE_TABLE_OF(buf, c) TRT_TABLE_OF (buf->upcase_table, c)
|
|
1752
|
|
1753 /* 1 if CH is upper case. */
|
|
1754
|
412
|
1755 INLINE int UPPERCASEP (struct buffer *buf, Emchar ch);
|
|
1756 INLINE int
|
0
|
1757 UPPERCASEP (struct buffer *buf, Emchar ch)
|
|
1758 {
|
183
|
1759 return DOWNCASE_TABLE_OF (buf, ch) != ch;
|
0
|
1760 }
|
|
1761
|
|
1762 /* 1 if CH is lower case. */
|
|
1763
|
412
|
1764 INLINE int LOWERCASEP (struct buffer *buf, Emchar ch);
|
|
1765 INLINE int
|
0
|
1766 LOWERCASEP (struct buffer *buf, Emchar ch)
|
|
1767 {
|
183
|
1768 return (UPCASE_TABLE_OF (buf, ch) != ch &&
|
0
|
1769 DOWNCASE_TABLE_OF (buf, ch) == ch);
|
|
1770 }
|
|
1771
|
|
1772 /* 1 if CH is neither upper nor lower case. */
|
|
1773
|
412
|
1774 INLINE int NOCASEP (struct buffer *buf, Emchar ch);
|
|
1775 INLINE int
|
0
|
1776 NOCASEP (struct buffer *buf, Emchar ch)
|
|
1777 {
|
183
|
1778 return UPCASE_TABLE_OF (buf, ch) == ch;
|
0
|
1779 }
|
|
1780
|
|
1781 /* Upcase a character, or make no change if that cannot be done. */
|
|
1782
|
412
|
1783 INLINE Emchar UPCASE (struct buffer *buf, Emchar ch);
|
|
1784 INLINE Emchar
|
0
|
1785 UPCASE (struct buffer *buf, Emchar ch)
|
|
1786 {
|
183
|
1787 return (DOWNCASE_TABLE_OF (buf, ch) == ch) ? UPCASE_TABLE_OF (buf, ch) : ch;
|
0
|
1788 }
|
|
1789
|
380
|
1790 /* Upcase a character known to be not upper case. Unused. */
|
0
|
1791
|
|
1792 #define UPCASE1(buf, ch) UPCASE_TABLE_OF (buf, ch)
|
|
1793
|
|
1794 /* Downcase a character, or make no change if that cannot be done. */
|
|
1795
|
|
1796 #define DOWNCASE(buf, ch) DOWNCASE_TABLE_OF (buf, ch)
|
|
1797
|
412
|
1798 #endif /* _XEMACS_BUFFER_H_ */
|