428
|
1 /* CCL (Code Conversion Language) interpreter.
|
|
2 Copyright (C) 1995, 1997, 1998, 1999 Electrotechnical Laboratory, JAPAN.
|
|
3 Licensed to the Free Software Foundation.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 GNU Emacs is free software; you can redistribute it and/or modify
|
|
8 it under the terms of the GNU General Public License as published by
|
|
9 the Free Software Foundation; either version 2, or (at your option)
|
|
10 any later version.
|
|
11
|
|
12 GNU Emacs is distributed in the hope that it will be useful,
|
|
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
15 GNU General Public License for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with GNU Emacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with : FSF Emacs 20.3.10 without ExCCL
|
|
23 * (including {Read|Write}MultibyteChar) */
|
|
24
|
|
25 #ifdef emacs
|
|
26
|
|
27 #include <config.h>
|
|
28
|
|
29 #if 0
|
|
30 #ifdef STDC_HEADERS
|
|
31 #include <stdlib.h>
|
|
32 #endif
|
|
33 #endif
|
|
34
|
|
35 #include "lisp.h"
|
|
36 #include "buffer.h"
|
|
37 #include "mule-charset.h"
|
|
38 #include "mule-ccl.h"
|
|
39 #include "file-coding.h"
|
|
40
|
|
41 #else /* not emacs */
|
|
42
|
|
43 #include <stdio.h>
|
|
44 #include "mulelib.h"
|
|
45
|
|
46 #endif /* not emacs */
|
|
47
|
|
48 /* This contains all code conversion map available to CCL. */
|
|
49 /*
|
|
50 Lisp_Object Vcode_conversion_map_vector;
|
|
51 */
|
|
52
|
|
53 /* Alist of fontname patterns vs corresponding CCL program. */
|
|
54 Lisp_Object Vfont_ccl_encoder_alist;
|
|
55
|
|
56 /* This symbol is a property which assocates with ccl program vector.
|
|
57 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
|
|
58 Lisp_Object Qccl_program;
|
|
59
|
|
60 /* These symbols are properties which associate with code conversion
|
|
61 map and their ID respectively. */
|
|
62 /*
|
|
63 Lisp_Object Qcode_conversion_map;
|
|
64 Lisp_Object Qcode_conversion_map_id;
|
|
65 */
|
|
66
|
|
67 /* Symbols of ccl program have this property, a value of the property
|
|
68 is an index for Vccl_protram_table. */
|
|
69 Lisp_Object Qccl_program_idx;
|
|
70
|
|
71 /* Vector of CCL program names vs corresponding program data. */
|
|
72 Lisp_Object Vccl_program_table;
|
|
73
|
|
74 /* CCL (Code Conversion Language) is a simple language which has
|
|
75 operations on one input buffer, one output buffer, and 7 registers.
|
|
76 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
|
|
77 `ccl-compile' compiles a CCL program and produces a CCL code which
|
|
78 is a vector of integers. The structure of this vector is as
|
|
79 follows: The 1st element: buffer-magnification, a factor for the
|
|
80 size of output buffer compared with the size of input buffer. The
|
|
81 2nd element: address of CCL code to be executed when encountered
|
|
82 with end of input stream. The 3rd and the remaining elements: CCL
|
|
83 codes. */
|
|
84
|
|
85 /* Header of CCL compiled code */
|
|
86 #define CCL_HEADER_BUF_MAG 0
|
|
87 #define CCL_HEADER_EOF 1
|
|
88 #define CCL_HEADER_MAIN 2
|
|
89
|
|
90 /* CCL code is a sequence of 28-bit non-negative integers (i.e. the
|
|
91 MSB is always 0), each contains CCL command and/or arguments in the
|
|
92 following format:
|
|
93
|
|
94 |----------------- integer (28-bit) ------------------|
|
|
95 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
|
|
96 |--constant argument--|-register-|-register-|-command-|
|
|
97 ccccccccccccccccc RRR rrr XXXXX
|
|
98 or
|
|
99 |------- relative address -------|-register-|-command-|
|
|
100 cccccccccccccccccccc rrr XXXXX
|
|
101 or
|
|
102 |------------- constant or other args ----------------|
|
|
103 cccccccccccccccccccccccccccc
|
|
104
|
|
105 where, `cc...c' is a non-negative integer indicating constant value
|
|
106 (the left most `c' is always 0) or an absolute jump address, `RRR'
|
|
107 and `rrr' are CCL register number, `XXXXX' is one of the following
|
|
108 CCL commands. */
|
|
109
|
|
110 /* CCL commands
|
|
111
|
|
112 Each comment fields shows one or more lines for command syntax and
|
|
113 the following lines for semantics of the command. In semantics, IC
|
|
114 stands for Instruction Counter. */
|
|
115
|
|
116 #define CCL_SetRegister 0x00 /* Set register a register value:
|
|
117 1:00000000000000000RRRrrrXXXXX
|
|
118 ------------------------------
|
|
119 reg[rrr] = reg[RRR];
|
|
120 */
|
|
121
|
|
122 #define CCL_SetShortConst 0x01 /* Set register a short constant value:
|
|
123 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
124 ------------------------------
|
|
125 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
|
|
126 */
|
|
127
|
|
128 #define CCL_SetConst 0x02 /* Set register a constant value:
|
|
129 1:00000000000000000000rrrXXXXX
|
|
130 2:CONSTANT
|
|
131 ------------------------------
|
|
132 reg[rrr] = CONSTANT;
|
|
133 IC++;
|
|
134 */
|
|
135
|
|
136 #define CCL_SetArray 0x03 /* Set register an element of array:
|
|
137 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
|
|
138 2:ELEMENT[0]
|
|
139 3:ELEMENT[1]
|
|
140 ...
|
|
141 ------------------------------
|
|
142 if (0 <= reg[RRR] < CC..C)
|
|
143 reg[rrr] = ELEMENT[reg[RRR]];
|
|
144 IC += CC..C;
|
|
145 */
|
|
146
|
|
147 #define CCL_Jump 0x04 /* Jump:
|
|
148 1:A--D--D--R--E--S--S-000XXXXX
|
|
149 ------------------------------
|
|
150 IC += ADDRESS;
|
|
151 */
|
|
152
|
|
153 /* Note: If CC..C is greater than 0, the second code is omitted. */
|
|
154
|
|
155 #define CCL_JumpCond 0x05 /* Jump conditional:
|
|
156 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
157 ------------------------------
|
|
158 if (!reg[rrr])
|
|
159 IC += ADDRESS;
|
|
160 */
|
|
161
|
|
162
|
|
163 #define CCL_WriteRegisterJump 0x06 /* Write register and jump:
|
|
164 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
165 ------------------------------
|
|
166 write (reg[rrr]);
|
|
167 IC += ADDRESS;
|
|
168 */
|
|
169
|
|
170 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
|
|
171 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
172 2:A--D--D--R--E--S--S-rrrYYYYY
|
|
173 -----------------------------
|
|
174 write (reg[rrr]);
|
|
175 IC++;
|
|
176 read (reg[rrr]);
|
|
177 IC += ADDRESS;
|
|
178 */
|
|
179 /* Note: If read is suspended, the resumed execution starts from the
|
|
180 second code (YYYYY == CCL_ReadJump). */
|
|
181
|
|
182 #define CCL_WriteConstJump 0x08 /* Write constant and jump:
|
|
183 1:A--D--D--R--E--S--S-000XXXXX
|
|
184 2:CONST
|
|
185 ------------------------------
|
|
186 write (CONST);
|
|
187 IC += ADDRESS;
|
|
188 */
|
|
189
|
|
190 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
|
|
191 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
192 2:CONST
|
|
193 3:A--D--D--R--E--S--S-rrrYYYYY
|
|
194 -----------------------------
|
|
195 write (CONST);
|
|
196 IC += 2;
|
|
197 read (reg[rrr]);
|
|
198 IC += ADDRESS;
|
|
199 */
|
|
200 /* Note: If read is suspended, the resumed execution starts from the
|
|
201 second code (YYYYY == CCL_ReadJump). */
|
|
202
|
|
203 #define CCL_WriteStringJump 0x0A /* Write string and jump:
|
|
204 1:A--D--D--R--E--S--S-000XXXXX
|
|
205 2:LENGTH
|
|
206 3:0000STRIN[0]STRIN[1]STRIN[2]
|
|
207 ...
|
|
208 ------------------------------
|
|
209 write_string (STRING, LENGTH);
|
|
210 IC += ADDRESS;
|
|
211 */
|
|
212
|
|
213 #define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
|
|
214 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
215 2:LENGTH
|
|
216 3:ELEMENET[0]
|
|
217 4:ELEMENET[1]
|
|
218 ...
|
|
219 N:A--D--D--R--E--S--S-rrrYYYYY
|
|
220 ------------------------------
|
|
221 if (0 <= reg[rrr] < LENGTH)
|
|
222 write (ELEMENT[reg[rrr]]);
|
|
223 IC += LENGTH + 2; (... pointing at N+1)
|
|
224 read (reg[rrr]);
|
|
225 IC += ADDRESS;
|
|
226 */
|
|
227 /* Note: If read is suspended, the resumed execution starts from the
|
|
228 Nth code (YYYYY == CCL_ReadJump). */
|
|
229
|
|
230 #define CCL_ReadJump 0x0C /* Read and jump:
|
|
231 1:A--D--D--R--E--S--S-rrrYYYYY
|
|
232 -----------------------------
|
|
233 read (reg[rrr]);
|
|
234 IC += ADDRESS;
|
|
235 */
|
|
236
|
|
237 #define CCL_Branch 0x0D /* Jump by branch table:
|
|
238 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
239 2:A--D--D--R--E-S-S[0]000XXXXX
|
|
240 3:A--D--D--R--E-S-S[1]000XXXXX
|
|
241 ...
|
|
242 ------------------------------
|
|
243 if (0 <= reg[rrr] < CC..C)
|
|
244 IC += ADDRESS[reg[rrr]];
|
|
245 else
|
|
246 IC += ADDRESS[CC..C];
|
|
247 */
|
|
248
|
|
249 #define CCL_ReadRegister 0x0E /* Read bytes into registers:
|
|
250 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
251 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
252 ...
|
|
253 ------------------------------
|
|
254 while (CCC--)
|
|
255 read (reg[rrr]);
|
|
256 */
|
|
257
|
|
258 #define CCL_WriteExprConst 0x0F /* write result of expression:
|
|
259 1:00000OPERATION000RRR000XXXXX
|
|
260 2:CONSTANT
|
|
261 ------------------------------
|
|
262 write (reg[RRR] OPERATION CONSTANT);
|
|
263 IC++;
|
|
264 */
|
|
265
|
|
266 /* Note: If the Nth read is suspended, the resumed execution starts
|
|
267 from the Nth code. */
|
|
268
|
|
269 #define CCL_ReadBranch 0x10 /* Read one byte into a register,
|
|
270 and jump by branch table:
|
|
271 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
272 2:A--D--D--R--E-S-S[0]000XXXXX
|
|
273 3:A--D--D--R--E-S-S[1]000XXXXX
|
|
274 ...
|
|
275 ------------------------------
|
|
276 read (read[rrr]);
|
|
277 if (0 <= reg[rrr] < CC..C)
|
|
278 IC += ADDRESS[reg[rrr]];
|
|
279 else
|
|
280 IC += ADDRESS[CC..C];
|
|
281 */
|
|
282
|
|
283 #define CCL_WriteRegister 0x11 /* Write registers:
|
|
284 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
285 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
286 ...
|
|
287 ------------------------------
|
|
288 while (CCC--)
|
|
289 write (reg[rrr]);
|
|
290 ...
|
|
291 */
|
|
292
|
|
293 /* Note: If the Nth write is suspended, the resumed execution
|
|
294 starts from the Nth code. */
|
|
295
|
|
296 #define CCL_WriteExprRegister 0x12 /* Write result of expression
|
|
297 1:00000OPERATIONRrrRRR000XXXXX
|
|
298 ------------------------------
|
|
299 write (reg[RRR] OPERATION reg[Rrr]);
|
|
300 */
|
|
301
|
|
302 #define CCL_Call 0x13 /* Call the CCL program whose ID is
|
|
303 (CC..C).
|
|
304 1:CCCCCCCCCCCCCCCCCCCC000XXXXX
|
|
305 ------------------------------
|
|
306 call (CC..C)
|
|
307 */
|
|
308
|
|
309 #define CCL_WriteConstString 0x14 /* Write a constant or a string:
|
|
310 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
311 [2:0000STRIN[0]STRIN[1]STRIN[2]]
|
|
312 [...]
|
|
313 -----------------------------
|
|
314 if (!rrr)
|
|
315 write (CC..C)
|
|
316 else
|
|
317 write_string (STRING, CC..C);
|
|
318 IC += (CC..C + 2) / 3;
|
|
319 */
|
|
320
|
|
321 #define CCL_WriteArray 0x15 /* Write an element of array:
|
|
322 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
323 2:ELEMENT[0]
|
|
324 3:ELEMENT[1]
|
|
325 ...
|
|
326 ------------------------------
|
|
327 if (0 <= reg[rrr] < CC..C)
|
|
328 write (ELEMENT[reg[rrr]]);
|
|
329 IC += CC..C;
|
|
330 */
|
|
331
|
|
332 #define CCL_End 0x16 /* Terminate:
|
|
333 1:00000000000000000000000XXXXX
|
|
334 ------------------------------
|
|
335 terminate ();
|
|
336 */
|
|
337
|
|
338 /* The following two codes execute an assignment arithmetic/logical
|
|
339 operation. The form of the operation is like REG OP= OPERAND. */
|
|
340
|
|
341 #define CCL_ExprSelfConst 0x17 /* REG OP= constant:
|
|
342 1:00000OPERATION000000rrrXXXXX
|
|
343 2:CONSTANT
|
|
344 ------------------------------
|
|
345 reg[rrr] OPERATION= CONSTANT;
|
|
346 */
|
|
347
|
|
348 #define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
|
|
349 1:00000OPERATION000RRRrrrXXXXX
|
|
350 ------------------------------
|
|
351 reg[rrr] OPERATION= reg[RRR];
|
|
352 */
|
|
353
|
|
354 /* The following codes execute an arithmetic/logical operation. The
|
|
355 form of the operation is like REG_X = REG_Y OP OPERAND2. */
|
|
356
|
|
357 #define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
|
|
358 1:00000OPERATION000RRRrrrXXXXX
|
|
359 2:CONSTANT
|
|
360 ------------------------------
|
|
361 reg[rrr] = reg[RRR] OPERATION CONSTANT;
|
|
362 IC++;
|
|
363 */
|
|
364
|
|
365 #define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
|
|
366 1:00000OPERATIONRrrRRRrrrXXXXX
|
|
367 ------------------------------
|
|
368 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
|
|
369 */
|
|
370
|
|
371 #define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
|
|
372 an operation on constant:
|
|
373 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
374 2:OPERATION
|
|
375 3:CONSTANT
|
|
376 -----------------------------
|
|
377 reg[7] = reg[rrr] OPERATION CONSTANT;
|
|
378 if (!(reg[7]))
|
|
379 IC += ADDRESS;
|
|
380 else
|
|
381 IC += 2
|
|
382 */
|
|
383
|
|
384 #define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
|
|
385 an operation on register:
|
|
386 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
387 2:OPERATION
|
|
388 3:RRR
|
|
389 -----------------------------
|
|
390 reg[7] = reg[rrr] OPERATION reg[RRR];
|
|
391 if (!reg[7])
|
|
392 IC += ADDRESS;
|
|
393 else
|
|
394 IC += 2;
|
|
395 */
|
|
396
|
|
397 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
|
|
398 to an operation on constant:
|
|
399 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
400 2:OPERATION
|
|
401 3:CONSTANT
|
|
402 -----------------------------
|
|
403 read (reg[rrr]);
|
|
404 reg[7] = reg[rrr] OPERATION CONSTANT;
|
|
405 if (!reg[7])
|
|
406 IC += ADDRESS;
|
|
407 else
|
|
408 IC += 2;
|
|
409 */
|
|
410
|
|
411 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
|
|
412 to an operation on register:
|
|
413 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
414 2:OPERATION
|
|
415 3:RRR
|
|
416 -----------------------------
|
|
417 read (reg[rrr]);
|
|
418 reg[7] = reg[rrr] OPERATION reg[RRR];
|
|
419 if (!reg[7])
|
|
420 IC += ADDRESS;
|
|
421 else
|
|
422 IC += 2;
|
|
423 */
|
|
424
|
|
425 #define CCL_Extention 0x1F /* Extended CCL code
|
|
426 1:ExtendedCOMMNDRrrRRRrrrXXXXX
|
|
427 2:ARGUEMENT
|
|
428 3:...
|
|
429 ------------------------------
|
|
430 extended_command (rrr,RRR,Rrr,ARGS)
|
|
431 */
|
|
432
|
|
433 /*
|
|
434 Here after, Extended CCL Instructions.
|
|
435 Bit length of extended command is 14.
|
|
436 Therefore, the instruction code range is 0..16384(0x3fff).
|
|
437 */
|
|
438
|
|
439 /* Read a multibyte characeter.
|
|
440 A code point is stored into reg[rrr]. A charset ID is stored into
|
|
441 reg[RRR]. */
|
|
442
|
|
443 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
|
|
444 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
|
|
445
|
|
446 /* Write a multibyte character.
|
|
447 Write a character whose code point is reg[rrr] and the charset ID
|
|
448 is reg[RRR]. */
|
|
449
|
|
450 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
|
|
451 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
|
|
452
|
|
453 #if 0
|
|
454 /* Translate a character whose code point is reg[rrr] and the charset
|
|
455 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
|
|
456
|
|
457 A translated character is set in reg[rrr] (code point) and reg[RRR]
|
|
458 (charset ID). */
|
|
459
|
|
460 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
|
|
461 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
|
|
462
|
|
463 /* Translate a character whose code point is reg[rrr] and the charset
|
|
464 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
|
|
465
|
|
466 A translated character is set in reg[rrr] (code point) and reg[RRR]
|
|
467 (charset ID). */
|
|
468
|
|
469 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
|
|
470 1:ExtendedCOMMNDRrrRRRrrrXXXXX
|
|
471 2:ARGUMENT(Translation Table ID)
|
|
472 */
|
|
473
|
|
474 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
|
|
475 reg[RRR]) MAP until some value is found.
|
|
476
|
|
477 Each MAP is a Lisp vector whose element is number, nil, t, or
|
|
478 lambda.
|
|
479 If the element is nil, ignore the map and proceed to the next map.
|
|
480 If the element is t or lambda, finish without changing reg[rrr].
|
|
481 If the element is a number, set reg[rrr] to the number and finish.
|
|
482
|
|
483 Detail of the map structure is descibed in the comment for
|
|
484 CCL_MapMultiple below. */
|
|
485
|
|
486 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
|
|
487 1:ExtendedCOMMNDXXXRRRrrrXXXXX
|
|
488 2:NUMBER of MAPs
|
|
489 3:MAP-ID1
|
|
490 4:MAP-ID2
|
|
491 ...
|
|
492 */
|
|
493
|
|
494 /* Map the code in reg[rrr] by MAPs starting from the Nth (N =
|
|
495 reg[RRR]) map.
|
|
496
|
|
497 MAPs are supplied in the succeeding CCL codes as follows:
|
|
498
|
|
499 When CCL program gives this nested structure of map to this command:
|
|
500 ((MAP-ID11
|
|
501 MAP-ID12
|
|
502 (MAP-ID121 MAP-ID122 MAP-ID123)
|
|
503 MAP-ID13)
|
|
504 (MAP-ID21
|
|
505 (MAP-ID211 (MAP-ID2111) MAP-ID212)
|
|
506 MAP-ID22)),
|
|
507 the compiled CCL codes has this sequence:
|
|
508 CCL_MapMultiple (CCL code of this command)
|
|
509 16 (total number of MAPs and SEPARATORs)
|
|
510 -7 (1st SEPARATOR)
|
|
511 MAP-ID11
|
|
512 MAP-ID12
|
|
513 -3 (2nd SEPARATOR)
|
|
514 MAP-ID121
|
|
515 MAP-ID122
|
|
516 MAP-ID123
|
|
517 MAP-ID13
|
|
518 -7 (3rd SEPARATOR)
|
|
519 MAP-ID21
|
|
520 -4 (4th SEPARATOR)
|
|
521 MAP-ID211
|
|
522 -1 (5th SEPARATOR)
|
|
523 MAP_ID2111
|
|
524 MAP-ID212
|
|
525 MAP-ID22
|
|
526
|
|
527 A value of each SEPARATOR follows this rule:
|
|
528 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
|
|
529 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
|
|
530
|
|
531 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
|
|
532
|
|
533 When some map fails to map (i.e. it doesn't have a value for
|
|
534 reg[rrr]), the mapping is treated as identity.
|
|
535
|
|
536 The mapping is iterated for all maps in each map set (set of maps
|
|
537 separated by SEPARATOR) except in the case that lambda is
|
|
538 encountered. More precisely, the mapping proceeds as below:
|
|
539
|
|
540 At first, VAL0 is set to reg[rrr], and it is translated by the
|
|
541 first map to VAL1. Then, VAL1 is translated by the next map to
|
|
542 VAL2. This mapping is iterated until the last map is used. The
|
|
543 result of the mapping is the last value of VAL?.
|
|
544
|
|
545 But, when VALm is mapped to VALn and VALn is not a number, the
|
|
546 mapping proceed as below:
|
|
547
|
|
548 If VALn is nil, the lastest map is ignored and the mapping of VALm
|
|
549 proceed to the next map.
|
|
550
|
|
551 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
|
|
552 proceed to the next map.
|
|
553
|
|
554 If VALn is lambda, the whole mapping process terminates, and VALm
|
|
555 is the result of this mapping.
|
|
556
|
|
557 Each map is a Lisp vector of the following format (a) or (b):
|
|
558 (a)......[STARTPOINT VAL1 VAL2 ...]
|
|
559 (b)......[t VAL STARTPOINT ENDPOINT],
|
|
560 where
|
|
561 STARTPOINT is an offset to be used for indexing a map,
|
|
562 ENDPOINT is a maximum index number of a map,
|
|
563 VAL and VALn is a number, nil, t, or lambda.
|
|
564
|
|
565 Valid index range of a map of type (a) is:
|
|
566 STARTPOINT <= index < STARTPOINT + map_size - 1
|
|
567 Valid index range of a map of type (b) is:
|
|
568 STARTPOINT <= index < ENDPOINT */
|
|
569
|
|
570 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
|
|
571 1:ExtendedCOMMNDXXXRRRrrrXXXXX
|
|
572 2:N-2
|
|
573 3:SEPARATOR_1 (< 0)
|
|
574 4:MAP-ID_1
|
|
575 5:MAP-ID_2
|
|
576 ...
|
|
577 M:SEPARATOR_x (< 0)
|
|
578 M+1:MAP-ID_y
|
|
579 ...
|
|
580 N:SEPARATOR_z (< 0)
|
|
581 */
|
|
582
|
|
583 #define MAX_MAP_SET_LEVEL 20
|
|
584
|
|
585 typedef struct
|
|
586 {
|
|
587 int rest_length;
|
|
588 int orig_val;
|
|
589 } tr_stack;
|
|
590
|
|
591 static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
|
|
592 static tr_stack *mapping_stack_pointer;
|
|
593 #endif
|
|
594
|
|
595 #define PUSH_MAPPING_STACK(restlen, orig) \
|
|
596 { \
|
|
597 mapping_stack_pointer->rest_length = (restlen); \
|
|
598 mapping_stack_pointer->orig_val = (orig); \
|
|
599 mapping_stack_pointer++; \
|
|
600 }
|
|
601
|
|
602 #define POP_MAPPING_STACK(restlen, orig) \
|
|
603 { \
|
|
604 mapping_stack_pointer--; \
|
|
605 (restlen) = mapping_stack_pointer->rest_length; \
|
|
606 (orig) = mapping_stack_pointer->orig_val; \
|
|
607 } \
|
|
608
|
|
609 #define CCL_MapSingle 0x12 /* Map by single code conversion map
|
|
610 1:ExtendedCOMMNDXXXRRRrrrXXXXX
|
|
611 2:MAP-ID
|
|
612 ------------------------------
|
|
613 Map reg[rrr] by MAP-ID.
|
|
614 If some valid mapping is found,
|
|
615 set reg[rrr] to the result,
|
|
616 else
|
|
617 set reg[RRR] to -1.
|
|
618 */
|
|
619
|
|
620 /* CCL arithmetic/logical operators. */
|
|
621 #define CCL_PLUS 0x00 /* X = Y + Z */
|
|
622 #define CCL_MINUS 0x01 /* X = Y - Z */
|
|
623 #define CCL_MUL 0x02 /* X = Y * Z */
|
|
624 #define CCL_DIV 0x03 /* X = Y / Z */
|
|
625 #define CCL_MOD 0x04 /* X = Y % Z */
|
|
626 #define CCL_AND 0x05 /* X = Y & Z */
|
|
627 #define CCL_OR 0x06 /* X = Y | Z */
|
|
628 #define CCL_XOR 0x07 /* X = Y ^ Z */
|
|
629 #define CCL_LSH 0x08 /* X = Y << Z */
|
|
630 #define CCL_RSH 0x09 /* X = Y >> Z */
|
|
631 #define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
|
|
632 #define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
|
|
633 #define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
|
|
634 #define CCL_LS 0x10 /* X = (X < Y) */
|
|
635 #define CCL_GT 0x11 /* X = (X > Y) */
|
|
636 #define CCL_EQ 0x12 /* X = (X == Y) */
|
|
637 #define CCL_LE 0x13 /* X = (X <= Y) */
|
|
638 #define CCL_GE 0x14 /* X = (X >= Y) */
|
|
639 #define CCL_NE 0x15 /* X = (X != Y) */
|
|
640
|
|
641 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
|
|
642 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
|
|
643 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
|
|
644 r[7] = LOWER_BYTE (SJIS (Y, Z) */
|
|
645
|
|
646 /* Suspend CCL program because of reading from empty input buffer or
|
|
647 writing to full output buffer. When this program is resumed, the
|
438
|
648 same I/O command is executed. The `if (1)' is for warning suppression. */
|
428
|
649 #define CCL_SUSPEND(stat) \
|
|
650 do { \
|
|
651 ic--; \
|
|
652 ccl->status = stat; \
|
438
|
653 if (1) goto ccl_finish; \
|
428
|
654 } while (0)
|
|
655
|
|
656 /* Terminate CCL program because of invalid command. Should not occur
|
438
|
657 in the normal case. The `if (1)' is for warning suppression. */
|
428
|
658 #define CCL_INVALID_CMD \
|
|
659 do { \
|
|
660 ccl->status = CCL_STAT_INVALID_CMD; \
|
438
|
661 if (1) goto ccl_error_handler; \
|
428
|
662 } while (0)
|
|
663
|
|
664 /* Encode one character CH to multibyte form and write to the current
|
|
665 output buffer. If CH is less than 256, CH is written as is. */
|
|
666 #define CCL_WRITE_CHAR(ch) do { \
|
|
667 if (!destination) \
|
|
668 { \
|
|
669 ccl->status = CCL_STAT_INVALID_CMD; \
|
|
670 goto ccl_error_handler; \
|
|
671 } \
|
|
672 else \
|
|
673 { \
|
|
674 Bufbyte work[MAX_EMCHAR_LEN]; \
|
|
675 int len = ( ch < ( conversion_mode == CCL_MODE_ENCODING ? \
|
|
676 256 : 128 ) ) ? \
|
|
677 simple_set_charptr_emchar (work, ch) : \
|
|
678 non_ascii_set_charptr_emchar (work, ch); \
|
|
679 Dynarr_add_many (destination, work, len); \
|
|
680 } \
|
|
681 } while (0)
|
|
682
|
|
683 /* Write a string at ccl_prog[IC] of length LEN to the current output
|
|
684 buffer. */
|
|
685 #define CCL_WRITE_STRING(len) do { \
|
|
686 if (!destination) \
|
|
687 { \
|
|
688 ccl->status = CCL_STAT_INVALID_CMD; \
|
|
689 goto ccl_error_handler; \
|
|
690 } \
|
|
691 else \
|
|
692 { \
|
|
693 Bufbyte work[MAX_EMCHAR_LEN]; \
|
|
694 for (i = 0; i < len; i++) \
|
|
695 { \
|
|
696 int ch = (XINT (ccl_prog[ic + (i / 3)]) \
|
|
697 >> ((2 - (i % 3)) * 8)) & 0xFF; \
|
|
698 int bytes = \
|
|
699 ( ch < ( conversion_mode == CCL_MODE_ENCODING ? \
|
|
700 256 : 128 ) ) ? \
|
|
701 simple_set_charptr_emchar (work, ch) : \
|
|
702 non_ascii_set_charptr_emchar (work, ch); \
|
|
703 Dynarr_add_many (destination, work, bytes); \
|
|
704 } \
|
|
705 } \
|
|
706 } while (0)
|
|
707
|
|
708 /* Read one byte from the current input buffer into Rth register. */
|
|
709 #define CCL_READ_CHAR(r) do { \
|
|
710 if (!src && !ccl->last_block) \
|
|
711 { \
|
|
712 ccl->status = CCL_STAT_INVALID_CMD; \
|
|
713 goto ccl_error_handler; \
|
|
714 } \
|
|
715 else if (src < src_end) \
|
|
716 r = *src++; \
|
|
717 else if (ccl->last_block) \
|
|
718 { \
|
|
719 ic = ccl->eof_ic; \
|
|
720 goto ccl_repeat; \
|
|
721 } \
|
|
722 else \
|
|
723 /* Suspend CCL program because of \
|
|
724 reading from empty input buffer or \
|
|
725 writing to full output buffer. \
|
|
726 When this program is resumed, the \
|
|
727 same I/O command is executed. */ \
|
|
728 { \
|
|
729 ic--; \
|
|
730 ccl->status = CCL_STAT_SUSPEND_BY_SRC; \
|
|
731 goto ccl_finish; \
|
|
732 } \
|
|
733 } while (0)
|
|
734
|
|
735
|
|
736 /* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting
|
|
737 text goes to a place pointed by DESTINATION. The bytes actually
|
|
738 processed is returned as *CONSUMED. The return value is the length
|
|
739 of the resulting text. As a side effect, the contents of CCL registers
|
|
740 are updated. If SOURCE or DESTINATION is NULL, only operations on
|
|
741 registers are permitted. */
|
|
742
|
|
743 #ifdef CCL_DEBUG
|
|
744 #define CCL_DEBUG_BACKTRACE_LEN 256
|
|
745 int ccl_backtrace_table[CCL_BACKTRACE_TABLE];
|
|
746 int ccl_backtrace_idx;
|
|
747 #endif
|
|
748
|
|
749 struct ccl_prog_stack
|
|
750 {
|
|
751 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
|
|
752 int ic; /* Instruction Counter. */
|
|
753 };
|
|
754
|
|
755 /* For the moment, we only support depth 256 of stack. */
|
|
756 static struct ccl_prog_stack ccl_prog_stack_struct[256];
|
|
757
|
|
758 int
|
|
759 ccl_driver (struct ccl_program *ccl, CONST unsigned char *source,
|
|
760 unsigned_char_dynarr *destination, int src_bytes,
|
|
761 int *consumed, int conversion_mode)
|
|
762 {
|
|
763 int *reg = ccl->reg;
|
|
764 int ic = ccl->ic;
|
|
765 int code = -1; /* init to illegal value, */
|
|
766 int field1, field2;
|
|
767 Lisp_Object *ccl_prog = ccl->prog;
|
|
768 CONST unsigned char *src = source, *src_end = src + src_bytes;
|
|
769 int jump_address = 0; /* shut up the compiler */
|
|
770 int i, j, op;
|
|
771 int stack_idx = ccl->stack_idx;
|
|
772 /* Instruction counter of the current CCL code. */
|
|
773 int this_ic = 0;
|
|
774
|
|
775 if (ic >= ccl->eof_ic)
|
|
776 ic = CCL_HEADER_MAIN;
|
|
777
|
|
778 #if 0 /* not for XEmacs ? */
|
|
779 if (ccl->buf_magnification ==0) /* We can't produce any bytes. */
|
|
780 dst = NULL;
|
|
781 #endif
|
|
782
|
|
783 #ifdef CCL_DEBUG
|
|
784 ccl_backtrace_idx = 0;
|
|
785 #endif
|
|
786
|
|
787 for (;;)
|
|
788 {
|
|
789 ccl_repeat:
|
|
790 #ifdef CCL_DEBUG
|
|
791 ccl_backtrace_table[ccl_backtrace_idx++] = ic;
|
|
792 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
|
|
793 ccl_backtrace_idx = 0;
|
|
794 ccl_backtrace_table[ccl_backtrace_idx] = 0;
|
|
795 #endif
|
|
796
|
|
797 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
|
|
798 {
|
|
799 /* We can't just signal Qquit, instead break the loop as if
|
|
800 the whole data is processed. Don't reset Vquit_flag, it
|
|
801 must be handled later at a safer place. */
|
|
802 if (consumed)
|
|
803 src = source + src_bytes;
|
|
804 ccl->status = CCL_STAT_QUIT;
|
|
805 break;
|
|
806 }
|
|
807
|
|
808 this_ic = ic;
|
|
809 code = XINT (ccl_prog[ic]); ic++;
|
|
810 field1 = code >> 8;
|
|
811 field2 = (code & 0xFF) >> 5;
|
|
812
|
|
813 #define rrr field2
|
|
814 #define RRR (field1 & 7)
|
|
815 #define Rrr ((field1 >> 3) & 7)
|
|
816 #define ADDR field1
|
|
817 #define EXCMD (field1 >> 6)
|
|
818
|
|
819 switch (code & 0x1F)
|
|
820 {
|
|
821 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
|
|
822 reg[rrr] = reg[RRR];
|
|
823 break;
|
|
824
|
|
825 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
826 reg[rrr] = field1;
|
|
827 break;
|
|
828
|
|
829 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
|
|
830 reg[rrr] = XINT (ccl_prog[ic]);
|
|
831 ic++;
|
|
832 break;
|
|
833
|
|
834 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
|
|
835 i = reg[RRR];
|
|
836 j = field1 >> 3;
|
|
837 if ((unsigned int) i < j)
|
|
838 reg[rrr] = XINT (ccl_prog[ic + i]);
|
|
839 ic += j;
|
|
840 break;
|
|
841
|
|
842 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
|
|
843 ic += ADDR;
|
|
844 break;
|
|
845
|
|
846 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
847 if (!reg[rrr])
|
|
848 ic += ADDR;
|
|
849 break;
|
|
850
|
|
851 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
852 i = reg[rrr];
|
|
853 CCL_WRITE_CHAR (i);
|
|
854 ic += ADDR;
|
|
855 break;
|
|
856
|
|
857 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
858 i = reg[rrr];
|
|
859 CCL_WRITE_CHAR (i);
|
|
860 ic++;
|
|
861 CCL_READ_CHAR (reg[rrr]);
|
|
862 ic += ADDR - 1;
|
|
863 break;
|
|
864
|
|
865 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
|
|
866 i = XINT (ccl_prog[ic]);
|
|
867 CCL_WRITE_CHAR (i);
|
|
868 ic += ADDR;
|
|
869 break;
|
|
870
|
|
871 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
872 i = XINT (ccl_prog[ic]);
|
|
873 CCL_WRITE_CHAR (i);
|
|
874 ic++;
|
|
875 CCL_READ_CHAR (reg[rrr]);
|
|
876 ic += ADDR - 1;
|
|
877 break;
|
|
878
|
|
879 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
|
|
880 j = XINT (ccl_prog[ic]);
|
|
881 ic++;
|
|
882 CCL_WRITE_STRING (j);
|
|
883 ic += ADDR - 1;
|
|
884 break;
|
|
885
|
|
886 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
887 i = reg[rrr];
|
|
888 j = XINT (ccl_prog[ic]);
|
|
889 if ((unsigned int) i < j)
|
|
890 {
|
|
891 i = XINT (ccl_prog[ic + 1 + i]);
|
|
892 CCL_WRITE_CHAR (i);
|
|
893 }
|
|
894 ic += j + 2;
|
|
895 CCL_READ_CHAR (reg[rrr]);
|
|
896 ic += ADDR - (j + 2);
|
|
897 break;
|
|
898
|
|
899 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
|
|
900 CCL_READ_CHAR (reg[rrr]);
|
|
901 ic += ADDR;
|
|
902 break;
|
|
903
|
|
904 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
905 CCL_READ_CHAR (reg[rrr]);
|
|
906 /* fall through ... */
|
|
907 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
908 if ((unsigned int) reg[rrr] < field1)
|
|
909 ic += XINT (ccl_prog[ic + reg[rrr]]);
|
|
910 else
|
|
911 ic += XINT (ccl_prog[ic + field1]);
|
|
912 break;
|
|
913
|
|
914 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
|
|
915 while (1)
|
|
916 {
|
|
917 CCL_READ_CHAR (reg[rrr]);
|
|
918 if (!field1) break;
|
|
919 code = XINT (ccl_prog[ic]); ic++;
|
|
920 field1 = code >> 8;
|
|
921 field2 = (code & 0xFF) >> 5;
|
|
922 }
|
|
923 break;
|
|
924
|
|
925 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
|
|
926 rrr = 7;
|
|
927 i = reg[RRR];
|
|
928 j = XINT (ccl_prog[ic]);
|
|
929 op = field1 >> 6;
|
|
930 ic++;
|
|
931 goto ccl_set_expr;
|
|
932
|
|
933 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
934 while (1)
|
|
935 {
|
|
936 i = reg[rrr];
|
|
937 CCL_WRITE_CHAR (i);
|
|
938 if (!field1) break;
|
|
939 code = XINT (ccl_prog[ic]); ic++;
|
|
940 field1 = code >> 8;
|
|
941 field2 = (code & 0xFF) >> 5;
|
|
942 }
|
|
943 break;
|
|
944
|
|
945 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
|
|
946 rrr = 7;
|
|
947 i = reg[RRR];
|
|
948 j = reg[Rrr];
|
|
949 op = field1 >> 6;
|
|
950 goto ccl_set_expr;
|
|
951
|
|
952 case CCL_Call: /* CCCCCCCCCCCCCCCCCCCC000XXXXX */
|
|
953 {
|
|
954 Lisp_Object slot;
|
|
955
|
|
956 if (stack_idx >= 256
|
|
957 || field1 < 0
|
|
958 || field1 >= XVECTOR_LENGTH (Vccl_program_table)
|
|
959 || (slot = XVECTOR_DATA (Vccl_program_table)[field1],
|
|
960 !CONSP (slot))
|
|
961 || !VECTORP (XCDR (slot)))
|
|
962 {
|
|
963 if (stack_idx > 0)
|
|
964 {
|
|
965 ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
|
|
966 ic = ccl_prog_stack_struct[0].ic;
|
|
967 }
|
|
968 ccl->status = CCL_STAT_INVALID_CMD;
|
|
969 goto ccl_error_handler;
|
|
970 }
|
|
971
|
|
972 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
|
|
973 ccl_prog_stack_struct[stack_idx].ic = ic;
|
|
974 stack_idx++;
|
|
975 ccl_prog = XVECTOR_DATA (XCDR (slot));
|
|
976 ic = CCL_HEADER_MAIN;
|
|
977 }
|
|
978 break;
|
|
979
|
|
980 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
981 if (!rrr)
|
|
982 CCL_WRITE_CHAR (field1);
|
|
983 else
|
|
984 {
|
|
985 CCL_WRITE_STRING (field1);
|
|
986 ic += (field1 + 2) / 3;
|
|
987 }
|
|
988 break;
|
|
989
|
|
990 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
991 i = reg[rrr];
|
|
992 if ((unsigned int) i < field1)
|
|
993 {
|
|
994 j = XINT (ccl_prog[ic + i]);
|
|
995 CCL_WRITE_CHAR (j);
|
|
996 }
|
|
997 ic += field1;
|
|
998 break;
|
|
999
|
|
1000 case CCL_End: /* 0000000000000000000000XXXXX */
|
|
1001 if (stack_idx-- > 0)
|
|
1002 {
|
|
1003 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
|
|
1004 ic = ccl_prog_stack_struct[stack_idx].ic;
|
|
1005 break;
|
|
1006 }
|
|
1007 if (src)
|
|
1008 src = src_end;
|
|
1009 /* ccl->ic should points to this command code again to
|
|
1010 suppress further processing. */
|
|
1011 ic--;
|
|
1012 /* Terminate CCL program successfully. */
|
|
1013 ccl->status = CCL_STAT_SUCCESS;
|
|
1014 goto ccl_finish;
|
|
1015
|
|
1016 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
|
|
1017 i = XINT (ccl_prog[ic]);
|
|
1018 ic++;
|
|
1019 op = field1 >> 6;
|
|
1020 goto ccl_expr_self;
|
|
1021
|
|
1022 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
|
|
1023 i = reg[RRR];
|
|
1024 op = field1 >> 6;
|
|
1025
|
|
1026 ccl_expr_self:
|
|
1027 switch (op)
|
|
1028 {
|
|
1029 case CCL_PLUS: reg[rrr] += i; break;
|
|
1030 case CCL_MINUS: reg[rrr] -= i; break;
|
|
1031 case CCL_MUL: reg[rrr] *= i; break;
|
|
1032 case CCL_DIV: reg[rrr] /= i; break;
|
|
1033 case CCL_MOD: reg[rrr] %= i; break;
|
|
1034 case CCL_AND: reg[rrr] &= i; break;
|
|
1035 case CCL_OR: reg[rrr] |= i; break;
|
|
1036 case CCL_XOR: reg[rrr] ^= i; break;
|
|
1037 case CCL_LSH: reg[rrr] <<= i; break;
|
|
1038 case CCL_RSH: reg[rrr] >>= i; break;
|
|
1039 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
|
|
1040 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
|
|
1041 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
|
|
1042 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
|
|
1043 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
|
|
1044 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
|
|
1045 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
|
|
1046 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
|
|
1047 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
|
|
1048 default:
|
|
1049 ccl->status = CCL_STAT_INVALID_CMD;
|
|
1050 goto ccl_error_handler;
|
|
1051 }
|
|
1052 break;
|
|
1053
|
|
1054 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
|
|
1055 i = reg[RRR];
|
|
1056 j = XINT (ccl_prog[ic]);
|
|
1057 op = field1 >> 6;
|
|
1058 jump_address = ++ic;
|
|
1059 goto ccl_set_expr;
|
|
1060
|
|
1061 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
|
|
1062 i = reg[RRR];
|
|
1063 j = reg[Rrr];
|
|
1064 op = field1 >> 6;
|
|
1065 jump_address = ic;
|
|
1066 goto ccl_set_expr;
|
|
1067
|
|
1068 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
1069 CCL_READ_CHAR (reg[rrr]);
|
|
1070 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
1071 i = reg[rrr];
|
|
1072 op = XINT (ccl_prog[ic]);
|
|
1073 jump_address = ic++ + ADDR;
|
|
1074 j = XINT (ccl_prog[ic]);
|
|
1075 ic++;
|
|
1076 rrr = 7;
|
|
1077 goto ccl_set_expr;
|
|
1078
|
|
1079 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
1080 CCL_READ_CHAR (reg[rrr]);
|
|
1081 case CCL_JumpCondExprReg:
|
|
1082 i = reg[rrr];
|
|
1083 op = XINT (ccl_prog[ic]);
|
|
1084 jump_address = ic++ + ADDR;
|
|
1085 j = reg[XINT (ccl_prog[ic])];
|
|
1086 ic++;
|
|
1087 rrr = 7;
|
|
1088
|
|
1089 ccl_set_expr:
|
|
1090 switch (op)
|
|
1091 {
|
|
1092 case CCL_PLUS: reg[rrr] = i + j; break;
|
|
1093 case CCL_MINUS: reg[rrr] = i - j; break;
|
|
1094 case CCL_MUL: reg[rrr] = i * j; break;
|
|
1095 case CCL_DIV: reg[rrr] = i / j; break;
|
|
1096 case CCL_MOD: reg[rrr] = i % j; break;
|
|
1097 case CCL_AND: reg[rrr] = i & j; break;
|
|
1098 case CCL_OR: reg[rrr] = i | j; break;
|
|
1099 case CCL_XOR: reg[rrr] = i ^ j; break;
|
|
1100 case CCL_LSH: reg[rrr] = i << j; break;
|
|
1101 case CCL_RSH: reg[rrr] = i >> j; break;
|
|
1102 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
|
|
1103 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
|
|
1104 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
|
|
1105 case CCL_LS: reg[rrr] = i < j; break;
|
|
1106 case CCL_GT: reg[rrr] = i > j; break;
|
|
1107 case CCL_EQ: reg[rrr] = i == j; break;
|
|
1108 case CCL_LE: reg[rrr] = i <= j; break;
|
|
1109 case CCL_GE: reg[rrr] = i >= j; break;
|
|
1110 case CCL_NE: reg[rrr] = i != j; break;
|
|
1111 case CCL_DECODE_SJIS: DECODE_SJIS (i, j, reg[rrr], reg[7]); break;
|
|
1112 case CCL_ENCODE_SJIS: ENCODE_SJIS (i, j, reg[rrr], reg[7]); break;
|
|
1113 default:
|
|
1114 ccl->status = CCL_STAT_INVALID_CMD;
|
|
1115 goto ccl_error_handler;
|
|
1116 }
|
|
1117 code &= 0x1F;
|
|
1118 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
|
|
1119 {
|
|
1120 i = reg[rrr];
|
|
1121 CCL_WRITE_CHAR (i);
|
|
1122 }
|
|
1123 else if (!reg[rrr])
|
|
1124 ic = jump_address;
|
|
1125 break;
|
|
1126
|
|
1127 case CCL_Extention:
|
|
1128 switch (EXCMD)
|
|
1129 {
|
|
1130 case CCL_ReadMultibyteChar2:
|
|
1131 if (!src)
|
|
1132 CCL_INVALID_CMD;
|
|
1133
|
|
1134 do {
|
|
1135 if (src >= src_end)
|
|
1136 {
|
|
1137 src++;
|
|
1138 goto ccl_read_multibyte_character_suspend;
|
|
1139 }
|
|
1140
|
|
1141 i = *src++;
|
|
1142 #if 0
|
|
1143 if (i == LEADING_CODE_COMPOSITION)
|
|
1144 {
|
|
1145 if (src >= src_end)
|
|
1146 goto ccl_read_multibyte_character_suspend;
|
|
1147 if (*src == 0xFF)
|
|
1148 {
|
|
1149 ccl->private_state = COMPOSING_WITH_RULE_HEAD;
|
|
1150 src++;
|
|
1151 }
|
|
1152 else
|
|
1153 ccl->private_state = COMPOSING_NO_RULE_HEAD;
|
|
1154
|
|
1155 continue;
|
|
1156 }
|
|
1157 if (ccl->private_state != COMPOSING_NO)
|
|
1158 {
|
|
1159 /* composite character */
|
|
1160 if (i < 0xA0)
|
|
1161 ccl->private_state = COMPOSING_NO;
|
|
1162 else
|
|
1163 {
|
|
1164 if (COMPOSING_WITH_RULE_RULE == ccl->private_state)
|
|
1165 {
|
|
1166 ccl->private_state = COMPOSING_WITH_RULE_HEAD;
|
|
1167 continue;
|
|
1168 }
|
|
1169 else if (COMPOSING_WITH_RULE_HEAD == ccl->private_state)
|
|
1170 ccl->private_state = COMPOSING_WITH_RULE_RULE;
|
|
1171
|
|
1172 if (i == 0xA0)
|
|
1173 {
|
|
1174 if (src >= src_end)
|
|
1175 goto ccl_read_multibyte_character_suspend;
|
|
1176 i = *src++ & 0x7F;
|
|
1177 }
|
|
1178 else
|
|
1179 i -= 0x20;
|
|
1180 }
|
|
1181 }
|
|
1182 #endif
|
|
1183
|
|
1184 if (i < 0x80)
|
|
1185 {
|
|
1186 /* ASCII */
|
|
1187 reg[rrr] = i;
|
|
1188 reg[RRR] = LEADING_BYTE_ASCII;
|
|
1189 }
|
|
1190 else if (i <= MAX_LEADING_BYTE_OFFICIAL_1)
|
|
1191 {
|
|
1192 if (src >= src_end)
|
|
1193 goto ccl_read_multibyte_character_suspend;
|
|
1194 reg[RRR] = i;
|
|
1195 reg[rrr] = (*src++ & 0x7F);
|
|
1196 }
|
|
1197 else if (i <= MAX_LEADING_BYTE_OFFICIAL_2)
|
|
1198 {
|
|
1199 if ((src + 1) >= src_end)
|
|
1200 goto ccl_read_multibyte_character_suspend;
|
|
1201 reg[RRR] = i;
|
|
1202 i = (*src++ & 0x7F);
|
|
1203 reg[rrr] = ((i << 7) | (*src & 0x7F));
|
|
1204 src++;
|
|
1205 }
|
|
1206 else if (i == PRE_LEADING_BYTE_PRIVATE_1)
|
|
1207 {
|
|
1208 if ((src + 1) >= src_end)
|
|
1209 goto ccl_read_multibyte_character_suspend;
|
|
1210 reg[RRR] = *src++;
|
|
1211 reg[rrr] = (*src++ & 0x7F);
|
|
1212 }
|
|
1213 else if (i == PRE_LEADING_BYTE_PRIVATE_2)
|
|
1214 {
|
|
1215 if ((src + 2) >= src_end)
|
|
1216 goto ccl_read_multibyte_character_suspend;
|
|
1217 reg[RRR] = *src++;
|
|
1218 i = (*src++ & 0x7F);
|
|
1219 reg[rrr] = ((i << 7) | (*src & 0x7F));
|
|
1220 src++;
|
|
1221 }
|
|
1222 else
|
|
1223 {
|
|
1224 /* INVALID CODE. Return a single byte character. */
|
|
1225 reg[RRR] = LEADING_BYTE_ASCII;
|
|
1226 reg[rrr] = i;
|
|
1227 }
|
|
1228 break;
|
|
1229 } while (1);
|
|
1230 break;
|
|
1231
|
|
1232 ccl_read_multibyte_character_suspend:
|
|
1233 src--;
|
|
1234 if (ccl->last_block)
|
|
1235 {
|
|
1236 ic = ccl->eof_ic;
|
|
1237 goto ccl_repeat;
|
|
1238 }
|
|
1239 else
|
|
1240 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);
|
|
1241
|
|
1242 break;
|
|
1243
|
|
1244 case CCL_WriteMultibyteChar2:
|
|
1245 i = reg[RRR]; /* charset */
|
|
1246 if (i == LEADING_BYTE_ASCII)
|
|
1247 i = reg[rrr] & 0xFF;
|
|
1248 #if 0
|
|
1249 else if (i == CHARSET_COMPOSITION)
|
|
1250 i = MAKE_COMPOSITE_CHAR (reg[rrr]);
|
|
1251 #endif
|
|
1252 else if (XCHARSET_DIMENSION (CHARSET_BY_LEADING_BYTE (i)) == 1)
|
|
1253 i = ((i - FIELD2_TO_OFFICIAL_LEADING_BYTE) << 7)
|
|
1254 | (reg[rrr] & 0x7F);
|
|
1255 else if (i < MIN_LEADING_BYTE_OFFICIAL_2)
|
|
1256 i = ((i - FIELD1_TO_OFFICIAL_LEADING_BYTE) << 14) | reg[rrr];
|
|
1257 else
|
|
1258 i = ((i - FIELD1_TO_PRIVATE_LEADING_BYTE) << 14) | reg[rrr];
|
|
1259
|
|
1260 CCL_WRITE_CHAR (i);
|
|
1261
|
|
1262 break;
|
|
1263
|
|
1264 #if 0
|
|
1265 case CCL_TranslateCharacter:
|
|
1266 i = reg[RRR]; /* charset */
|
|
1267 if (i == LEADING_BYTE_ASCII)
|
|
1268 i = reg[rrr];
|
|
1269 else if (i == CHARSET_COMPOSITION)
|
|
1270 {
|
|
1271 reg[RRR] = -1;
|
|
1272 break;
|
|
1273 }
|
|
1274 else if (CHARSET_DIMENSION (i) == 1)
|
|
1275 i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
|
|
1276 else if (i < MIN_LEADING_BYTE_OFFICIAL_2)
|
|
1277 i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF);
|
|
1278 else
|
|
1279 i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF);
|
|
1280
|
|
1281 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]),
|
|
1282 i, -1, 0, 0);
|
|
1283 SPLIT_CHAR (op, reg[RRR], i, j);
|
|
1284 if (j != -1)
|
|
1285 i = (i << 7) | j;
|
|
1286
|
|
1287 reg[rrr] = i;
|
|
1288 break;
|
|
1289
|
|
1290 case CCL_TranslateCharacterConstTbl:
|
|
1291 op = XINT (ccl_prog[ic]); /* table */
|
|
1292 ic++;
|
|
1293 i = reg[RRR]; /* charset */
|
|
1294 if (i == LEADING_BYTE_ASCII)
|
|
1295 i = reg[rrr];
|
|
1296 else if (i == CHARSET_COMPOSITION)
|
|
1297 {
|
|
1298 reg[RRR] = -1;
|
|
1299 break;
|
|
1300 }
|
|
1301 else if (CHARSET_DIMENSION (i) == 1)
|
|
1302 i = ((i - 0x70) << 7) | (reg[rrr] & 0x7F);
|
|
1303 else if (i < MIN_LEADING_BYTE_OFFICIAL_2)
|
|
1304 i = ((i - 0x8F) << 14) | (reg[rrr] & 0x3FFF);
|
|
1305 else
|
|
1306 i = ((i - 0xE0) << 14) | (reg[rrr] & 0x3FFF);
|
|
1307
|
|
1308 op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0);
|
|
1309 SPLIT_CHAR (op, reg[RRR], i, j);
|
|
1310 if (j != -1)
|
|
1311 i = (i << 7) | j;
|
|
1312
|
|
1313 reg[rrr] = i;
|
|
1314 break;
|
|
1315
|
|
1316 case CCL_IterateMultipleMap:
|
|
1317 {
|
|
1318 Lisp_Object map, content, attrib, value;
|
|
1319 int point, size, fin_ic;
|
|
1320
|
|
1321 j = XINT (ccl_prog[ic++]); /* number of maps. */
|
|
1322 fin_ic = ic + j;
|
|
1323 op = reg[rrr];
|
|
1324 if ((j > reg[RRR]) && (j >= 0))
|
|
1325 {
|
|
1326 ic += reg[RRR];
|
|
1327 i = reg[RRR];
|
|
1328 }
|
|
1329 else
|
|
1330 {
|
|
1331 reg[RRR] = -1;
|
|
1332 ic = fin_ic;
|
|
1333 break;
|
|
1334 }
|
|
1335
|
|
1336 for (;i < j;i++)
|
|
1337 {
|
|
1338
|
|
1339 size = XVECTOR (Vcode_conversion_map_vector)->size;
|
|
1340 point = XINT (ccl_prog[ic++]);
|
|
1341 if (point >= size) continue;
|
|
1342 map =
|
|
1343 XVECTOR (Vcode_conversion_map_vector)->contents[point];
|
|
1344
|
|
1345 /* Check map varidity. */
|
|
1346 if (!CONSP (map)) continue;
|
|
1347 map = XCONS(map)->cdr;
|
|
1348 if (!VECTORP (map)) continue;
|
|
1349 size = XVECTOR (map)->size;
|
|
1350 if (size <= 1) continue;
|
|
1351
|
|
1352 content = XVECTOR (map)->contents[0];
|
|
1353
|
|
1354 /* check map type,
|
|
1355 [STARTPOINT VAL1 VAL2 ...] or
|
|
1356 [t ELELMENT STARTPOINT ENDPOINT] */
|
|
1357 if (NUMBERP (content))
|
|
1358 {
|
|
1359 point = XUINT (content);
|
|
1360 point = op - point + 1;
|
|
1361 if (!((point >= 1) && (point < size))) continue;
|
|
1362 content = XVECTOR (map)->contents[point];
|
|
1363 }
|
|
1364 else if (EQ (content, Qt))
|
|
1365 {
|
|
1366 if (size != 4) continue;
|
|
1367 if ((op >= XUINT (XVECTOR (map)->contents[2]))
|
|
1368 && (op < XUINT (XVECTOR (map)->contents[3])))
|
|
1369 content = XVECTOR (map)->contents[1];
|
|
1370 else
|
|
1371 continue;
|
|
1372 }
|
|
1373 else
|
|
1374 continue;
|
|
1375
|
|
1376 if (NILP (content))
|
|
1377 continue;
|
|
1378 else if (NUMBERP (content))
|
|
1379 {
|
|
1380 reg[RRR] = i;
|
|
1381 reg[rrr] = XINT(content);
|
|
1382 break;
|
|
1383 }
|
|
1384 else if (EQ (content, Qt) || EQ (content, Qlambda))
|
|
1385 {
|
|
1386 reg[RRR] = i;
|
|
1387 break;
|
|
1388 }
|
|
1389 else if (CONSP (content))
|
|
1390 {
|
|
1391 attrib = XCONS (content)->car;
|
|
1392 value = XCONS (content)->cdr;
|
|
1393 if (!NUMBERP (attrib) || !NUMBERP (value))
|
|
1394 continue;
|
|
1395 reg[RRR] = i;
|
|
1396 reg[rrr] = XUINT (value);
|
|
1397 break;
|
|
1398 }
|
|
1399 }
|
|
1400 if (i == j)
|
|
1401 reg[RRR] = -1;
|
|
1402 ic = fin_ic;
|
|
1403 }
|
|
1404 break;
|
|
1405
|
|
1406 case CCL_MapMultiple:
|
|
1407 {
|
|
1408 Lisp_Object map, content, attrib, value;
|
|
1409 int point, size, map_vector_size;
|
|
1410 int map_set_rest_length, fin_ic;
|
|
1411
|
|
1412 map_set_rest_length =
|
|
1413 XINT (ccl_prog[ic++]); /* number of maps and separators. */
|
|
1414 fin_ic = ic + map_set_rest_length;
|
|
1415 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
|
|
1416 {
|
|
1417 ic += reg[RRR];
|
|
1418 i = reg[RRR];
|
|
1419 map_set_rest_length -= i;
|
|
1420 }
|
|
1421 else
|
|
1422 {
|
|
1423 ic = fin_ic;
|
|
1424 reg[RRR] = -1;
|
|
1425 break;
|
|
1426 }
|
|
1427 mapping_stack_pointer = mapping_stack;
|
|
1428 op = reg[rrr];
|
|
1429 PUSH_MAPPING_STACK (0, op);
|
|
1430 reg[RRR] = -1;
|
|
1431 map_vector_size = XVECTOR (Vcode_conversion_map_vector)->size;
|
|
1432 for (;map_set_rest_length > 0;i++, map_set_rest_length--)
|
|
1433 {
|
|
1434 point = XINT(ccl_prog[ic++]);
|
|
1435 if (point < 0)
|
|
1436 {
|
|
1437 point = -point;
|
|
1438 if (mapping_stack_pointer
|
|
1439 >= &mapping_stack[MAX_MAP_SET_LEVEL])
|
|
1440 {
|
|
1441 CCL_INVALID_CMD;
|
|
1442 }
|
|
1443 PUSH_MAPPING_STACK (map_set_rest_length - point,
|
|
1444 reg[rrr]);
|
|
1445 map_set_rest_length = point + 1;
|
|
1446 reg[rrr] = op;
|
|
1447 continue;
|
|
1448 }
|
|
1449
|
|
1450 if (point >= map_vector_size) continue;
|
|
1451 map = (XVECTOR (Vcode_conversion_map_vector)
|
|
1452 ->contents[point]);
|
|
1453
|
|
1454 /* Check map varidity. */
|
|
1455 if (!CONSP (map)) continue;
|
|
1456 map = XCONS (map)->cdr;
|
|
1457 if (!VECTORP (map)) continue;
|
|
1458 size = XVECTOR (map)->size;
|
|
1459 if (size <= 1) continue;
|
|
1460
|
|
1461 content = XVECTOR (map)->contents[0];
|
|
1462
|
|
1463 /* check map type,
|
|
1464 [STARTPOINT VAL1 VAL2 ...] or
|
|
1465 [t ELEMENT STARTPOINT ENDPOINT] */
|
|
1466 if (NUMBERP (content))
|
|
1467 {
|
|
1468 point = XUINT (content);
|
|
1469 point = op - point + 1;
|
|
1470 if (!((point >= 1) && (point < size))) continue;
|
|
1471 content = XVECTOR (map)->contents[point];
|
|
1472 }
|
|
1473 else if (EQ (content, Qt))
|
|
1474 {
|
|
1475 if (size != 4) continue;
|
|
1476 if ((op >= XUINT (XVECTOR (map)->contents[2])) &&
|
|
1477 (op < XUINT (XVECTOR (map)->contents[3])))
|
|
1478 content = XVECTOR (map)->contents[1];
|
|
1479 else
|
|
1480 continue;
|
|
1481 }
|
|
1482 else
|
|
1483 continue;
|
|
1484
|
|
1485 if (NILP (content))
|
|
1486 continue;
|
|
1487 else if (NUMBERP (content))
|
|
1488 {
|
|
1489 op = XINT (content);
|
|
1490 reg[RRR] = i;
|
|
1491 i += map_set_rest_length;
|
|
1492 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
1493 }
|
|
1494 else if (CONSP (content))
|
|
1495 {
|
|
1496 attrib = XCONS (content)->car;
|
|
1497 value = XCONS (content)->cdr;
|
|
1498 if (!NUMBERP (attrib) || !NUMBERP (value))
|
|
1499 continue;
|
|
1500 reg[RRR] = i;
|
|
1501 op = XUINT (value);
|
|
1502 i += map_set_rest_length;
|
|
1503 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
1504 }
|
|
1505 else if (EQ (content, Qt))
|
|
1506 {
|
|
1507 reg[RRR] = i;
|
|
1508 op = reg[rrr];
|
|
1509 i += map_set_rest_length;
|
|
1510 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
1511 }
|
|
1512 else if (EQ (content, Qlambda))
|
|
1513 {
|
|
1514 break;
|
|
1515 }
|
|
1516 else
|
|
1517 CCL_INVALID_CMD;
|
|
1518 }
|
|
1519 ic = fin_ic;
|
|
1520 }
|
|
1521 reg[rrr] = op;
|
|
1522 break;
|
|
1523
|
|
1524 case CCL_MapSingle:
|
|
1525 {
|
|
1526 Lisp_Object map, attrib, value, content;
|
|
1527 int size, point;
|
|
1528 j = XINT (ccl_prog[ic++]); /* map_id */
|
|
1529 op = reg[rrr];
|
|
1530 if (j >= XVECTOR (Vcode_conversion_map_vector)->size)
|
|
1531 {
|
|
1532 reg[RRR] = -1;
|
|
1533 break;
|
|
1534 }
|
|
1535 map = XVECTOR (Vcode_conversion_map_vector)->contents[j];
|
|
1536 if (!CONSP (map))
|
|
1537 {
|
|
1538 reg[RRR] = -1;
|
|
1539 break;
|
|
1540 }
|
|
1541 map = XCONS(map)->cdr;
|
|
1542 if (!VECTORP (map))
|
|
1543 {
|
|
1544 reg[RRR] = -1;
|
|
1545 break;
|
|
1546 }
|
|
1547 size = XVECTOR (map)->size;
|
|
1548 point = XUINT (XVECTOR (map)->contents[0]);
|
|
1549 point = op - point + 1;
|
|
1550 reg[RRR] = 0;
|
|
1551 if ((size <= 1) ||
|
|
1552 (!((point >= 1) && (point < size))))
|
|
1553 reg[RRR] = -1;
|
|
1554 else
|
|
1555 {
|
|
1556 content = XVECTOR (map)->contents[point];
|
|
1557 if (NILP (content))
|
|
1558 reg[RRR] = -1;
|
|
1559 else if (NUMBERP (content))
|
|
1560 reg[rrr] = XINT (content);
|
|
1561 else if (EQ (content, Qt))
|
|
1562 reg[RRR] = i;
|
|
1563 else if (CONSP (content))
|
|
1564 {
|
|
1565 attrib = XCONS (content)->car;
|
|
1566 value = XCONS (content)->cdr;
|
|
1567 if (!NUMBERP (attrib) || !NUMBERP (value))
|
|
1568 continue;
|
|
1569 reg[rrr] = XUINT(value);
|
|
1570 break;
|
|
1571 }
|
|
1572 else
|
|
1573 reg[RRR] = -1;
|
|
1574 }
|
|
1575 }
|
|
1576 break;
|
|
1577 #endif
|
|
1578
|
|
1579 default:
|
|
1580 CCL_INVALID_CMD;
|
|
1581 }
|
|
1582 break;
|
|
1583
|
|
1584 default:
|
|
1585 ccl->status = CCL_STAT_INVALID_CMD;
|
|
1586 goto ccl_error_handler;
|
|
1587 }
|
|
1588 }
|
|
1589
|
|
1590 ccl_error_handler:
|
|
1591 if (destination)
|
|
1592 {
|
|
1593 /* We can insert an error message only if DESTINATION is
|
|
1594 specified and we still have a room to store the message
|
|
1595 there. */
|
|
1596 char msg[256];
|
|
1597
|
|
1598 #if 0 /* not for XEmacs ? */
|
|
1599 if (!dst)
|
|
1600 dst = destination;
|
|
1601 #endif
|
|
1602
|
|
1603 switch (ccl->status)
|
|
1604 {
|
|
1605 /* Terminate CCL program because of invalid command.
|
|
1606 Should not occur in the normal case. */
|
|
1607 case CCL_STAT_INVALID_CMD:
|
|
1608 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
|
|
1609 code & 0x1F, code, this_ic);
|
|
1610 #ifdef CCL_DEBUG
|
|
1611 {
|
|
1612 int i = ccl_backtrace_idx - 1;
|
|
1613 int j;
|
|
1614
|
|
1615 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg));
|
|
1616
|
|
1617 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
|
|
1618 {
|
|
1619 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
|
|
1620 if (ccl_backtrace_table[i] == 0)
|
|
1621 break;
|
|
1622 sprintf(msg, " %d", ccl_backtrace_table[i]);
|
|
1623 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg));
|
|
1624 }
|
|
1625 goto ccl_finish;
|
|
1626 }
|
|
1627 #endif
|
|
1628 break;
|
|
1629
|
|
1630 case CCL_STAT_QUIT:
|
|
1631 sprintf(msg, "\nCCL: Quited.");
|
|
1632 break;
|
|
1633
|
|
1634 default:
|
|
1635 sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status);
|
|
1636 }
|
|
1637
|
|
1638 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg));
|
|
1639 }
|
|
1640
|
|
1641 ccl_finish:
|
|
1642 ccl->ic = ic;
|
|
1643 ccl->stack_idx = stack_idx;
|
|
1644 ccl->prog = ccl_prog;
|
|
1645 if (consumed) *consumed = src - source;
|
|
1646 if (destination)
|
|
1647 return Dynarr_length (destination);
|
|
1648 else
|
|
1649 return 0;
|
|
1650 }
|
|
1651
|
|
1652 /* Setup fields of the structure pointed by CCL appropriately for the
|
|
1653 execution of compiled CCL code in VEC (vector of integer).
|
|
1654 If VEC is nil, we skip setting ups based on VEC. */
|
|
1655 void
|
|
1656 setup_ccl_program (struct ccl_program *ccl, Lisp_Object vec)
|
|
1657 {
|
|
1658 int i;
|
|
1659
|
|
1660 if (VECTORP (vec))
|
|
1661 {
|
|
1662 ccl->size = XVECTOR_LENGTH (vec);
|
|
1663 ccl->prog = XVECTOR_DATA (vec);
|
|
1664 ccl->eof_ic = XINT (XVECTOR_DATA (vec)[CCL_HEADER_EOF]);
|
|
1665 ccl->buf_magnification = XINT (XVECTOR_DATA (vec)[CCL_HEADER_BUF_MAG]);
|
|
1666 }
|
|
1667 ccl->ic = CCL_HEADER_MAIN;
|
|
1668 for (i = 0; i < 8; i++)
|
|
1669 ccl->reg[i] = 0;
|
|
1670 ccl->last_block = 0;
|
|
1671 ccl->private_state = 0;
|
|
1672 ccl->status = 0;
|
|
1673 ccl->stack_idx = 0;
|
|
1674 }
|
|
1675
|
|
1676 /* Resolve symbols in the specified CCL code (Lisp vector). This
|
|
1677 function converts symbols of code conversion maps and character
|
|
1678 translation tables embeded in the CCL code into their ID numbers. */
|
|
1679
|
|
1680 static Lisp_Object
|
|
1681 resolve_symbol_ccl_program (Lisp_Object ccl)
|
|
1682 {
|
|
1683 int i, veclen;
|
|
1684 Lisp_Object result, contents /*, prop */;
|
|
1685
|
|
1686 result = ccl;
|
|
1687 veclen = XVECTOR_LENGTH (result);
|
|
1688
|
|
1689 /* Set CCL program's table ID */
|
|
1690 for (i = 0; i < veclen; i++)
|
|
1691 {
|
|
1692 contents = XVECTOR_DATA (result)[i];
|
|
1693 if (SYMBOLP (contents))
|
|
1694 {
|
|
1695 if (EQ(result, ccl))
|
|
1696 result = Fcopy_sequence (ccl);
|
|
1697
|
|
1698 #if 0
|
|
1699 prop = Fget (contents, Qtranslation_table_id);
|
|
1700 if (NUMBERP (prop))
|
|
1701 {
|
|
1702 XVECTOR_DATA (result)[i] = prop;
|
|
1703 continue;
|
|
1704 }
|
|
1705 prop = Fget (contents, Qcode_conversion_map_id);
|
|
1706 if (NUMBERP (prop))
|
|
1707 {
|
|
1708 XVECTOR_DATA (result)[i] = prop;
|
|
1709 continue;
|
|
1710 }
|
|
1711 prop = Fget (contents, Qccl_program_idx);
|
|
1712 if (NUMBERP (prop))
|
|
1713 {
|
|
1714 XVECTOR_DATA (result)[i] = prop;
|
|
1715 continue;
|
|
1716 }
|
|
1717 #endif
|
|
1718 }
|
|
1719 }
|
|
1720
|
|
1721 return result;
|
|
1722 }
|
|
1723
|
|
1724
|
|
1725 #ifdef emacs
|
|
1726
|
|
1727 DEFUN ("ccl-execute", Fccl_execute, 2, 2, 0, /*
|
|
1728 Execute CCL-PROGRAM with registers initialized by REGISTERS.
|
|
1729
|
|
1730 CCL-PROGRAM is a symbol registered by register-ccl-program,
|
|
1731 or a compiled code generated by `ccl-compile' (for backward compatibility,
|
|
1732 in this case, the execution is slower).
|
|
1733 No I/O commands should appear in CCL-PROGRAM.
|
|
1734
|
|
1735 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
|
|
1736 of Nth register.
|
|
1737
|
|
1738 As side effect, each element of REGISTER holds the value of
|
|
1739 corresponding register after the execution.
|
|
1740 */
|
|
1741 (ccl_prog, reg))
|
|
1742 {
|
|
1743 struct ccl_program ccl;
|
|
1744 int i;
|
|
1745 Lisp_Object ccl_id;
|
|
1746
|
|
1747 if (SYMBOLP (ccl_prog) &&
|
|
1748 !NILP (ccl_id = Fget (ccl_prog, Qccl_program_idx, Qnil)))
|
|
1749 {
|
|
1750 ccl_prog = XVECTOR_DATA (Vccl_program_table)[XUINT (ccl_id)];
|
|
1751 CHECK_LIST (ccl_prog);
|
|
1752 ccl_prog = XCDR (ccl_prog);
|
|
1753 CHECK_VECTOR (ccl_prog);
|
|
1754 }
|
|
1755 else
|
|
1756 {
|
|
1757 CHECK_VECTOR (ccl_prog);
|
|
1758 ccl_prog = resolve_symbol_ccl_program (ccl_prog);
|
|
1759 }
|
|
1760
|
|
1761 CHECK_VECTOR (reg);
|
|
1762 if (XVECTOR_LENGTH (reg) != 8)
|
|
1763 error ("Invalid length of vector REGISTERS");
|
|
1764
|
|
1765 setup_ccl_program (&ccl, ccl_prog);
|
|
1766 for (i = 0; i < 8; i++)
|
|
1767 ccl.reg[i] = (INTP (XVECTOR_DATA (reg)[i])
|
|
1768 ? XINT (XVECTOR_DATA (reg)[i])
|
|
1769 : 0);
|
|
1770
|
|
1771 ccl_driver (&ccl, (CONST unsigned char *)0, (unsigned_char_dynarr *)0,
|
|
1772 0, (int *)0, CCL_MODE_ENCODING);
|
|
1773 QUIT;
|
|
1774 if (ccl.status != CCL_STAT_SUCCESS)
|
|
1775 error ("Error in CCL program at %dth code", ccl.ic);
|
|
1776
|
|
1777 for (i = 0; i < 8; i++)
|
|
1778 XSETINT (XVECTOR_DATA (reg)[i], ccl.reg[i]);
|
|
1779 return Qnil;
|
|
1780 }
|
|
1781
|
|
1782 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, 3, 4, 0, /*
|
|
1783 Execute CCL-PROGRAM with initial STATUS on STRING.
|
|
1784
|
|
1785 CCL-PROGRAM is a symbol registered by register-ccl-program,
|
|
1786 or a compiled code generated by `ccl-compile' (for backward compatibility,
|
|
1787 in this case, the execution is slower).
|
|
1788
|
|
1789 Read buffer is set to STRING, and write buffer is allocated automatically.
|
|
1790
|
|
1791 If IC is nil, it is initialized to head of the CCL program.\n\
|
|
1792 STATUS is a vector of [R0 R1 ... R7 IC], where
|
|
1793 R0..R7 are initial values of corresponding registers,
|
|
1794 IC is the instruction counter specifying from where to start the program.
|
|
1795 If R0..R7 are nil, they are initialized to 0.
|
|
1796 If IC is nil, it is initialized to head of the CCL program.
|
|
1797
|
|
1798 If optional 4th arg CONTINUE is non-nil, keep IC on read operation
|
|
1799 when read buffer is exausted, else, IC is always set to the end of
|
|
1800 CCL-PROGRAM on exit.
|
|
1801
|
|
1802 It returns the contents of write buffer as a string,
|
|
1803 and as side effect, STATUS is updated.
|
|
1804 */
|
|
1805 (ccl_prog, status, str, contin))
|
|
1806 {
|
|
1807 Lisp_Object val;
|
|
1808 struct ccl_program ccl;
|
|
1809 int i, produced;
|
|
1810 unsigned_char_dynarr *outbuf;
|
|
1811 struct gcpro gcpro1, gcpro2, gcpro3;
|
|
1812 Lisp_Object ccl_id;
|
|
1813
|
|
1814 if (SYMBOLP (ccl_prog) &&
|
|
1815 !NILP (ccl_id = Fget (ccl_prog, Qccl_program_idx, Qnil)))
|
|
1816 {
|
|
1817 ccl_prog = XVECTOR (Vccl_program_table)->contents[XUINT (ccl_id)];
|
|
1818 CHECK_LIST (ccl_prog);
|
|
1819 ccl_prog = XCDR (ccl_prog);
|
|
1820 CHECK_VECTOR (ccl_prog);
|
|
1821 }
|
|
1822 else
|
|
1823 {
|
|
1824 CHECK_VECTOR (ccl_prog);
|
|
1825 ccl_prog = resolve_symbol_ccl_program (ccl_prog);
|
|
1826 }
|
|
1827
|
|
1828 CHECK_VECTOR (status);
|
|
1829 if (XVECTOR_LENGTH (status) != 9)
|
|
1830 signal_simple_error ("Vector should be of length 9", status);
|
|
1831 CHECK_STRING (str);
|
|
1832 GCPRO3 (ccl_prog, status, str);
|
|
1833
|
|
1834 setup_ccl_program (&ccl, ccl_prog);
|
|
1835 for (i = 0; i < 8; i++)
|
|
1836 {
|
|
1837 if (NILP (XVECTOR_DATA (status)[i]))
|
|
1838 XSETINT (XVECTOR_DATA (status)[i], 0);
|
|
1839 if (INTP (XVECTOR_DATA (status)[i]))
|
|
1840 ccl.reg[i] = XINT (XVECTOR_DATA (status)[i]);
|
|
1841 }
|
|
1842 if (INTP (XVECTOR_DATA (status)[8]))
|
|
1843 {
|
|
1844 i = XINT (XVECTOR_DATA (status)[8]);
|
|
1845 if (ccl.ic < i && i < ccl.size)
|
|
1846 ccl.ic = i;
|
|
1847 }
|
|
1848 outbuf = Dynarr_new (unsigned_char);
|
|
1849 ccl.last_block = NILP (contin);
|
|
1850 produced = ccl_driver (&ccl, XSTRING_DATA (str), outbuf,
|
|
1851 XSTRING_LENGTH (str), (int *)0, CCL_MODE_DECODING);
|
|
1852 for (i = 0; i < 8; i++)
|
|
1853 XVECTOR_DATA (status)[i] = make_int(ccl.reg[i]);
|
|
1854 XSETINT (XVECTOR_DATA (status)[8], ccl.ic);
|
|
1855 UNGCPRO;
|
|
1856
|
|
1857 val = make_string (Dynarr_atp (outbuf, 0), produced);
|
|
1858 Dynarr_free (outbuf);
|
|
1859 QUIT;
|
|
1860 if (ccl.status != CCL_STAT_SUCCESS
|
|
1861 && ccl.status != CCL_STAT_SUSPEND_BY_SRC
|
|
1862 && ccl.status != CCL_STAT_SUSPEND_BY_DST)
|
|
1863 error ("Error in CCL program at %dth code", ccl.ic);
|
|
1864
|
|
1865 return val;
|
|
1866 }
|
|
1867
|
|
1868 DEFUN ("register-ccl-program", Fregister_ccl_program, 2, 2, 0, /*
|
|
1869 Register CCL program PROGRAM of NAME in `ccl-program-table'.
|
|
1870 PROGRAM should be a compiled code of CCL program, or nil.
|
|
1871 Return index number of the registered CCL program.
|
|
1872 */
|
|
1873 (name, ccl_prog))
|
|
1874 {
|
|
1875 int len = XVECTOR_LENGTH (Vccl_program_table);
|
|
1876 int i;
|
|
1877
|
|
1878 CHECK_SYMBOL (name);
|
|
1879 if (!NILP (ccl_prog))
|
|
1880 {
|
|
1881 CHECK_VECTOR (ccl_prog);
|
|
1882 ccl_prog = resolve_symbol_ccl_program (ccl_prog);
|
|
1883 }
|
|
1884
|
|
1885 for (i = 0; i < len; i++)
|
|
1886 {
|
|
1887 Lisp_Object slot = XVECTOR_DATA (Vccl_program_table)[i];
|
|
1888
|
|
1889 if (!CONSP (slot))
|
|
1890 break;
|
|
1891
|
|
1892 if (EQ (name, XCAR (slot)))
|
|
1893 {
|
|
1894 XCDR (slot) = ccl_prog;
|
|
1895 return make_int (i);
|
|
1896 }
|
|
1897 }
|
|
1898
|
|
1899 if (i == len)
|
|
1900 {
|
|
1901 Lisp_Object new_table = Fmake_vector (make_int (len * 2), Qnil);
|
|
1902 int j;
|
|
1903
|
|
1904 for (j = 0; j < len; j++)
|
|
1905 XVECTOR_DATA (new_table)[j]
|
|
1906 = XVECTOR_DATA (Vccl_program_table)[j];
|
|
1907 Vccl_program_table = new_table;
|
|
1908 }
|
|
1909
|
|
1910 XVECTOR_DATA (Vccl_program_table)[i] = Fcons (name, ccl_prog);
|
|
1911 Fput (name, Qccl_program_idx, make_int (i));
|
|
1912 return make_int (i);
|
|
1913 }
|
|
1914
|
|
1915 #if 0
|
|
1916 /* Register code conversion map.
|
|
1917 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
|
|
1918 The first element is start code point.
|
|
1919 The rest elements are mapped numbers.
|
|
1920 Symbol t means to map to an original number before mapping.
|
|
1921 Symbol nil means that the corresponding element is empty.
|
|
1922 Symbol lambda menas to terminate mapping here.
|
|
1923 */
|
|
1924
|
|
1925 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
|
|
1926 Sregister_code_conversion_map,
|
|
1927 2, 2, 0,
|
|
1928 "Register SYMBOL as code conversion map MAP.\n\
|
|
1929 Return index number of the registered map.")
|
|
1930 (symbol, map)
|
|
1931 Lisp_Object symbol, map;
|
|
1932 {
|
|
1933 int len = XVECTOR (Vcode_conversion_map_vector)->size;
|
|
1934 int i;
|
|
1935 Lisp_Object index;
|
|
1936
|
|
1937 CHECK_SYMBOL (symbol, 0);
|
|
1938 CHECK_VECTOR (map, 1);
|
|
1939
|
|
1940 for (i = 0; i < len; i++)
|
|
1941 {
|
|
1942 Lisp_Object slot = XVECTOR (Vcode_conversion_map_vector)->contents[i];
|
|
1943
|
|
1944 if (!CONSP (slot))
|
|
1945 break;
|
|
1946
|
|
1947 if (EQ (symbol, XCONS (slot)->car))
|
|
1948 {
|
|
1949 index = make_int (i);
|
|
1950 XCONS (slot)->cdr = map;
|
|
1951 Fput (symbol, Qcode_conversion_map, map);
|
|
1952 Fput (symbol, Qcode_conversion_map_id, index);
|
|
1953 return index;
|
|
1954 }
|
|
1955 }
|
|
1956
|
|
1957 if (i == len)
|
|
1958 {
|
|
1959 Lisp_Object new_vector = Fmake_vector (make_int (len * 2), Qnil);
|
|
1960 int j;
|
|
1961
|
|
1962 for (j = 0; j < len; j++)
|
|
1963 XVECTOR (new_vector)->contents[j]
|
|
1964 = XVECTOR (Vcode_conversion_map_vector)->contents[j];
|
|
1965 Vcode_conversion_map_vector = new_vector;
|
|
1966 }
|
|
1967
|
|
1968 index = make_int (i);
|
|
1969 Fput (symbol, Qcode_conversion_map, map);
|
|
1970 Fput (symbol, Qcode_conversion_map_id, index);
|
|
1971 XVECTOR (Vcode_conversion_map_vector)->contents[i] = Fcons (symbol, map);
|
|
1972 return index;
|
|
1973 }
|
|
1974 #endif
|
|
1975
|
|
1976
|
|
1977 void
|
|
1978 syms_of_mule_ccl (void)
|
|
1979 {
|
|
1980 DEFSUBR (Fccl_execute);
|
|
1981 DEFSUBR (Fccl_execute_on_string);
|
|
1982 DEFSUBR (Fregister_ccl_program);
|
|
1983 #if 0
|
|
1984 DEFSUBR (&Fregister_code_conversion_map);
|
|
1985 #endif
|
|
1986 }
|
|
1987
|
|
1988 void
|
|
1989 vars_of_mule_ccl (void)
|
|
1990 {
|
|
1991 staticpro (&Vccl_program_table);
|
|
1992 Vccl_program_table = Fmake_vector (make_int (32), Qnil);
|
|
1993
|
|
1994 Qccl_program = intern ("ccl-program");
|
|
1995 staticpro (&Qccl_program);
|
|
1996
|
|
1997 Qccl_program_idx = intern ("ccl-program-idx");
|
|
1998 staticpro (&Qccl_program_idx);
|
|
1999
|
|
2000 #if 0
|
|
2001 Qcode_conversion_map = intern ("code-conversion-map");
|
|
2002 staticpro (&Qcode_conversion_map);
|
|
2003
|
|
2004 Qcode_conversion_map_id = intern ("code-conversion-map-id");
|
|
2005 staticpro (&Qcode_conversion_map_id);
|
|
2006
|
|
2007 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector /*
|
|
2008 Vector of code conversion maps.*/ );
|
|
2009 Vcode_conversion_map_vector = Fmake_vector (make_int (16), Qnil);
|
|
2010 #endif
|
|
2011
|
|
2012 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist /*
|
|
2013 Alist of fontname patterns vs corresponding CCL program.
|
|
2014 Each element looks like (REGEXP . CCL-CODE),
|
|
2015 where CCL-CODE is a compiled CCL program.
|
|
2016 When a font whose name matches REGEXP is used for displaying a character,
|
|
2017 CCL-CODE is executed to calculate the code point in the font
|
|
2018 from the charset number and position code(s) of the character which are set
|
|
2019 in CCL registers R0, R1, and R2 before the execution.
|
|
2020 The code point in the font is set in CCL registers R1 and R2
|
|
2021 when the execution terminated.
|
|
2022 If the font is single-byte font, the register R2 is not used.
|
|
2023 */ );
|
|
2024 Vfont_ccl_encoder_alist = Qnil;
|
|
2025 }
|
|
2026
|
|
2027 #endif /* emacs */
|