428
|
1 /* Implementation of the hash table lisp object type.
|
|
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995, 1996 Ben Wing.
|
|
4 Copyright (C) 1997 Free Software Foundation, Inc.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCNTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: Not in FSF. */
|
|
24
|
|
25 #include <config.h>
|
|
26 #include "lisp.h"
|
|
27 #include "bytecode.h"
|
|
28 #include "elhash.h"
|
|
29
|
|
30 Lisp_Object Qhash_tablep;
|
|
31 static Lisp_Object Qhashtable, Qhash_table;
|
|
32 static Lisp_Object Qweakness, Qvalue;
|
|
33 static Lisp_Object Vall_weak_hash_tables;
|
|
34 static Lisp_Object Qrehash_size, Qrehash_threshold;
|
|
35 static Lisp_Object Q_size, Q_test, Q_weakness, Q_rehash_size, Q_rehash_threshold;
|
|
36
|
|
37 /* obsolete as of 19990901 in xemacs-21.2 */
|
|
38 static Lisp_Object Qweak, Qkey_weak, Qvalue_weak, Qnon_weak, Q_type;
|
|
39
|
|
40 typedef struct hentry
|
|
41 {
|
|
42 Lisp_Object key;
|
|
43 Lisp_Object value;
|
|
44 } hentry;
|
|
45
|
|
46 struct Lisp_Hash_Table
|
|
47 {
|
|
48 struct lcrecord_header header;
|
|
49 size_t size;
|
|
50 size_t count;
|
|
51 size_t rehash_count;
|
|
52 double rehash_size;
|
|
53 double rehash_threshold;
|
|
54 size_t golden_ratio;
|
|
55 hash_table_hash_function_t hash_function;
|
|
56 hash_table_test_function_t test_function;
|
|
57 hentry *hentries;
|
|
58 enum hash_table_weakness weakness;
|
|
59 Lisp_Object next_weak; /* Used to chain together all of the weak
|
|
60 hash tables. Don't mark through this. */
|
|
61 };
|
|
62 typedef struct Lisp_Hash_Table Lisp_Hash_Table;
|
|
63
|
|
64 #define HENTRY_CLEAR_P(hentry) ((*(EMACS_UINT*)(&((hentry)->key))) == 0)
|
|
65 #define CLEAR_HENTRY(hentry) \
|
|
66 ((*(EMACS_UINT*)(&((hentry)->key))) = 0, \
|
|
67 (*(EMACS_UINT*)(&((hentry)->value))) = 0)
|
|
68
|
|
69 #define HASH_TABLE_DEFAULT_SIZE 16
|
|
70 #define HASH_TABLE_DEFAULT_REHASH_SIZE 1.3
|
|
71 #define HASH_TABLE_MIN_SIZE 10
|
|
72
|
434
|
73 #define HASH_CODE(key, ht) \
|
|
74 ((((ht)->hash_function ? (ht)->hash_function (key) : LISP_HASH (key)) \
|
|
75 * (ht)->golden_ratio) \
|
|
76 % (ht)->size)
|
428
|
77
|
|
78 #define KEYS_EQUAL_P(key1, key2, testfun) \
|
434
|
79 (EQ (key1, key2) || ((testfun) && (testfun) (key1, key2)))
|
428
|
80
|
|
81 #define LINEAR_PROBING_LOOP(probe, entries, size) \
|
|
82 for (; \
|
|
83 !HENTRY_CLEAR_P (probe) || \
|
|
84 (probe == entries + size ? \
|
|
85 (probe = entries, !HENTRY_CLEAR_P (probe)) : 0); \
|
|
86 probe++)
|
|
87
|
|
88 #ifndef ERROR_CHECK_HASH_TABLE
|
|
89 # ifdef ERROR_CHECK_TYPECHECK
|
|
90 # define ERROR_CHECK_HASH_TABLE 1
|
|
91 # else
|
|
92 # define ERROR_CHECK_HASH_TABLE 0
|
|
93 # endif
|
|
94 #endif
|
|
95
|
|
96 #if ERROR_CHECK_HASH_TABLE
|
|
97 static void
|
|
98 check_hash_table_invariants (Lisp_Hash_Table *ht)
|
|
99 {
|
|
100 assert (ht->count < ht->size);
|
|
101 assert (ht->count <= ht->rehash_count);
|
|
102 assert (ht->rehash_count < ht->size);
|
|
103 assert ((double) ht->count * ht->rehash_threshold - 1 <= (double) ht->rehash_count);
|
|
104 assert (HENTRY_CLEAR_P (ht->hentries + ht->size));
|
|
105 }
|
|
106 #else
|
|
107 #define check_hash_table_invariants(ht)
|
|
108 #endif
|
|
109
|
|
110 /* We use linear probing instead of double hashing, despite its lack
|
|
111 of blessing by Knuth and company, because, as a result of the
|
|
112 increasing discrepancy between CPU speeds and memory speeds, cache
|
|
113 behavior is becoming increasingly important, e.g:
|
|
114
|
|
115 For a trivial loop, the penalty for non-sequential access of an array is:
|
|
116 - a factor of 3-4 on Pentium Pro 200 Mhz
|
|
117 - a factor of 10 on Ultrasparc 300 Mhz */
|
|
118
|
|
119 /* Return a suitable size for a hash table, with at least SIZE slots. */
|
|
120 static size_t
|
|
121 hash_table_size (size_t requested_size)
|
|
122 {
|
|
123 /* Return some prime near, but greater than or equal to, SIZE.
|
|
124 Decades from the time of writing, someone will have a system large
|
|
125 enough that the list below will be too short... */
|
|
126 static CONST size_t primes [] =
|
|
127 {
|
|
128 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031,
|
|
129 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783,
|
|
130 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941,
|
|
131 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519,
|
|
132 1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301,
|
|
133 10445899, 13579681, 17653589, 22949669, 29834603, 38784989,
|
|
134 50420551, 65546729, 85210757, 110774011, 144006217, 187208107,
|
|
135 243370577, 316381771, 411296309, 534685237, 695090819, 903618083,
|
|
136 1174703521, 1527114613, 1985248999, 2580823717UL, 3355070839UL
|
|
137 };
|
|
138 /* We've heard of binary search. */
|
|
139 int low, high;
|
|
140 for (low = 0, high = countof (primes) - 1; high - low > 1;)
|
|
141 {
|
|
142 /* Loop Invariant: size < primes [high] */
|
|
143 int mid = (low + high) / 2;
|
|
144 if (primes [mid] < requested_size)
|
|
145 low = mid;
|
|
146 else
|
|
147 high = mid;
|
|
148 }
|
|
149 return primes [high];
|
|
150 }
|
|
151
|
|
152
|
|
153 #if 0 /* I don't think these are needed any more.
|
|
154 If using the general lisp_object_equal_*() functions
|
|
155 causes efficiency problems, these can be resurrected. --ben */
|
|
156 /* equality and hash functions for Lisp strings */
|
|
157 int
|
|
158 lisp_string_equal (Lisp_Object str1, Lisp_Object str2)
|
|
159 {
|
|
160 /* This is wrong anyway. You can't use strcmp() on Lisp strings,
|
|
161 because they can contain zero characters. */
|
|
162 return !strcmp ((char *) XSTRING_DATA (str1), (char *) XSTRING_DATA (str2));
|
|
163 }
|
|
164
|
|
165 static hashcode_t
|
|
166 lisp_string_hash (Lisp_Object obj)
|
|
167 {
|
|
168 return hash_string (XSTRING_DATA (str), XSTRING_LENGTH (str));
|
|
169 }
|
|
170
|
|
171 #endif /* 0 */
|
|
172
|
|
173 static int
|
|
174 lisp_object_eql_equal (Lisp_Object obj1, Lisp_Object obj2)
|
|
175 {
|
|
176 return EQ (obj1, obj2) || (FLOATP (obj1) && internal_equal (obj1, obj2, 0));
|
|
177 }
|
|
178
|
|
179 static hashcode_t
|
|
180 lisp_object_eql_hash (Lisp_Object obj)
|
|
181 {
|
|
182 return FLOATP (obj) ? internal_hash (obj, 0) : LISP_HASH (obj);
|
|
183 }
|
|
184
|
|
185 static int
|
|
186 lisp_object_equal_equal (Lisp_Object obj1, Lisp_Object obj2)
|
|
187 {
|
|
188 return internal_equal (obj1, obj2, 0);
|
|
189 }
|
|
190
|
|
191 static hashcode_t
|
|
192 lisp_object_equal_hash (Lisp_Object obj)
|
|
193 {
|
|
194 return internal_hash (obj, 0);
|
|
195 }
|
|
196
|
|
197
|
|
198 static Lisp_Object
|
|
199 mark_hash_table (Lisp_Object obj)
|
|
200 {
|
|
201 Lisp_Hash_Table *ht = XHASH_TABLE (obj);
|
|
202
|
|
203 /* If the hash table is weak, we don't want to mark the keys and
|
|
204 values (we scan over them after everything else has been marked,
|
|
205 and mark or remove them as necessary). */
|
|
206 if (ht->weakness == HASH_TABLE_NON_WEAK)
|
|
207 {
|
|
208 hentry *e, *sentinel;
|
|
209
|
|
210 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
|
211 if (!HENTRY_CLEAR_P (e))
|
|
212 {
|
|
213 mark_object (e->key);
|
|
214 mark_object (e->value);
|
|
215 }
|
|
216 }
|
|
217 return Qnil;
|
|
218 }
|
|
219
|
|
220 /* Equality of hash tables. Two hash tables are equal when they are of
|
|
221 the same weakness and test function, they have the same number of
|
|
222 elements, and for each key in the hash table, the values are `equal'.
|
|
223
|
|
224 This is similar to Common Lisp `equalp' of hash tables, with the
|
|
225 difference that CL requires the keys to be compared with the test
|
|
226 function, which we don't do. Doing that would require consing, and
|
|
227 consing is a bad idea in `equal'. Anyway, our method should provide
|
|
228 the same result -- if the keys are not equal according to the test
|
|
229 function, then Fgethash() in hash_table_equal_mapper() will fail. */
|
|
230 static int
|
|
231 hash_table_equal (Lisp_Object hash_table1, Lisp_Object hash_table2, int depth)
|
|
232 {
|
|
233 Lisp_Hash_Table *ht1 = XHASH_TABLE (hash_table1);
|
|
234 Lisp_Hash_Table *ht2 = XHASH_TABLE (hash_table2);
|
|
235 hentry *e, *sentinel;
|
|
236
|
|
237 if ((ht1->test_function != ht2->test_function) ||
|
|
238 (ht1->weakness != ht2->weakness) ||
|
|
239 (ht1->count != ht2->count))
|
|
240 return 0;
|
|
241
|
|
242 depth++;
|
|
243
|
|
244 for (e = ht1->hentries, sentinel = e + ht1->size; e < sentinel; e++)
|
|
245 if (!HENTRY_CLEAR_P (e))
|
|
246 /* Look up the key in the other hash table, and compare the values. */
|
|
247 {
|
|
248 Lisp_Object value_in_other = Fgethash (e->key, hash_table2, Qunbound);
|
|
249 if (UNBOUNDP (value_in_other) ||
|
|
250 !internal_equal (e->value, value_in_other, depth))
|
|
251 return 0; /* Give up */
|
|
252 }
|
|
253
|
|
254 return 1;
|
|
255 }
|
|
256
|
|
257 /* Printing hash tables.
|
|
258
|
|
259 This is non-trivial, because we use a readable structure-style
|
|
260 syntax for hash tables. This means that a typical hash table will be
|
|
261 readably printed in the form of:
|
|
262
|
|
263 #s(hash-table size 2 data (key1 value1 key2 value2))
|
|
264
|
|
265 The supported hash table structure keywords and their values are:
|
|
266 `test' (eql (or nil), eq or equal)
|
|
267 `size' (a natnum or nil)
|
|
268 `rehash-size' (a float)
|
|
269 `rehash-threshold' (a float)
|
|
270 `weakness' (nil, t, key or value)
|
|
271 `data' (a list)
|
|
272
|
430
|
273 If `print-readably' is nil, then a simpler syntax is used, for example
|
428
|
274
|
|
275 #<hash-table size 2/13 data (key1 value1 key2 value2) 0x874d>
|
|
276
|
|
277 The data is truncated to four pairs, and the rest is shown with
|
|
278 `...'. This printer does not cons. */
|
|
279
|
|
280
|
|
281 /* Print the data of the hash table. This maps through a Lisp
|
|
282 hash table and prints key/value pairs using PRINTCHARFUN. */
|
|
283 static void
|
|
284 print_hash_table_data (Lisp_Hash_Table *ht, Lisp_Object printcharfun)
|
|
285 {
|
|
286 int count = 0;
|
|
287 hentry *e, *sentinel;
|
|
288
|
|
289 write_c_string (" data (", printcharfun);
|
|
290
|
|
291 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
|
292 if (!HENTRY_CLEAR_P (e))
|
|
293 {
|
|
294 if (count > 0)
|
|
295 write_c_string (" ", printcharfun);
|
|
296 if (!print_readably && count > 3)
|
|
297 {
|
|
298 write_c_string ("...", printcharfun);
|
|
299 break;
|
|
300 }
|
|
301 print_internal (e->key, printcharfun, 1);
|
|
302 write_c_string (" ", printcharfun);
|
|
303 print_internal (e->value, printcharfun, 1);
|
|
304 count++;
|
|
305 }
|
|
306
|
|
307 write_c_string (")", printcharfun);
|
|
308 }
|
|
309
|
|
310 static void
|
|
311 print_hash_table (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
|
|
312 {
|
|
313 Lisp_Hash_Table *ht = XHASH_TABLE (obj);
|
|
314 char buf[128];
|
|
315
|
|
316 write_c_string (print_readably ? "#s(hash-table" : "#<hash-table",
|
|
317 printcharfun);
|
|
318
|
|
319 /* These checks have a kludgy look to them, but they are safe.
|
|
320 Due to nature of hashing, you cannot use arbitrary
|
|
321 test functions anyway. */
|
|
322 if (!ht->test_function)
|
|
323 write_c_string (" test eq", printcharfun);
|
|
324 else if (ht->test_function == lisp_object_equal_equal)
|
|
325 write_c_string (" test equal", printcharfun);
|
|
326 else if (ht->test_function == lisp_object_eql_equal)
|
|
327 DO_NOTHING;
|
|
328 else
|
|
329 abort ();
|
|
330
|
|
331 if (ht->count || !print_readably)
|
|
332 {
|
|
333 if (print_readably)
|
|
334 sprintf (buf, " size %lu", (unsigned long) ht->count);
|
|
335 else
|
|
336 sprintf (buf, " size %lu/%lu",
|
|
337 (unsigned long) ht->count,
|
|
338 (unsigned long) ht->size);
|
|
339 write_c_string (buf, printcharfun);
|
|
340 }
|
|
341
|
|
342 if (ht->weakness != HASH_TABLE_NON_WEAK)
|
|
343 {
|
|
344 sprintf (buf, " weakness %s",
|
|
345 (ht->weakness == HASH_TABLE_WEAK ? "t" :
|
|
346 ht->weakness == HASH_TABLE_KEY_WEAK ? "key" :
|
|
347 ht->weakness == HASH_TABLE_VALUE_WEAK ? "value" :
|
|
348 "you-d-better-not-see-this"));
|
|
349 write_c_string (buf, printcharfun);
|
|
350 }
|
|
351
|
|
352 if (ht->count)
|
|
353 print_hash_table_data (ht, printcharfun);
|
|
354
|
|
355 if (print_readably)
|
|
356 write_c_string (")", printcharfun);
|
|
357 else
|
|
358 {
|
|
359 sprintf (buf, " 0x%x>", ht->header.uid);
|
|
360 write_c_string (buf, printcharfun);
|
|
361 }
|
|
362 }
|
|
363
|
|
364 static void
|
|
365 finalize_hash_table (void *header, int for_disksave)
|
|
366 {
|
|
367 if (!for_disksave)
|
|
368 {
|
|
369 Lisp_Hash_Table *ht = (Lisp_Hash_Table *) header;
|
|
370
|
|
371 xfree (ht->hentries);
|
|
372 ht->hentries = 0;
|
|
373 }
|
|
374 }
|
|
375
|
|
376 static const struct lrecord_description hentry_description_1[] = {
|
|
377 { XD_LISP_OBJECT, offsetof(hentry, key), 2 },
|
|
378 { XD_END }
|
|
379 };
|
|
380
|
|
381 static const struct struct_description hentry_description = {
|
|
382 sizeof(hentry),
|
|
383 hentry_description_1
|
|
384 };
|
|
385
|
|
386 const struct lrecord_description hash_table_description[] = {
|
|
387 { XD_SIZE_T, offsetof(Lisp_Hash_Table, size) },
|
|
388 { XD_STRUCT_PTR, offsetof(Lisp_Hash_Table, hentries), XD_INDIRECT(0, 1), &hentry_description },
|
|
389 { XD_LO_LINK, offsetof(Lisp_Hash_Table, next_weak) },
|
|
390 { XD_END }
|
|
391 };
|
|
392
|
|
393 DEFINE_LRECORD_IMPLEMENTATION ("hash-table", hash_table,
|
|
394 mark_hash_table, print_hash_table,
|
|
395 finalize_hash_table,
|
|
396 /* #### Implement hash_table_hash()! */
|
|
397 hash_table_equal, 0,
|
|
398 hash_table_description,
|
|
399 Lisp_Hash_Table);
|
|
400
|
|
401 static Lisp_Hash_Table *
|
|
402 xhash_table (Lisp_Object hash_table)
|
|
403 {
|
|
404 if (!gc_in_progress)
|
|
405 CHECK_HASH_TABLE (hash_table);
|
|
406 check_hash_table_invariants (XHASH_TABLE (hash_table));
|
|
407 return XHASH_TABLE (hash_table);
|
|
408 }
|
|
409
|
|
410
|
|
411 /************************************************************************/
|
|
412 /* Creation of Hash Tables */
|
|
413 /************************************************************************/
|
|
414
|
|
415 /* Creation of hash tables, without error-checking. */
|
|
416 static void
|
|
417 compute_hash_table_derived_values (Lisp_Hash_Table *ht)
|
|
418 {
|
|
419 ht->rehash_count = (size_t)
|
438
|
420 ((double) ht->size * ht->rehash_threshold);
|
428
|
421 ht->golden_ratio = (size_t)
|
|
422 ((double) ht->size * (.6180339887 / (double) sizeof (Lisp_Object)));
|
|
423 }
|
|
424
|
|
425 Lisp_Object
|
|
426 make_general_lisp_hash_table (enum hash_table_test test,
|
|
427 size_t size,
|
|
428 double rehash_size,
|
|
429 double rehash_threshold,
|
|
430 enum hash_table_weakness weakness)
|
|
431 {
|
|
432 Lisp_Object hash_table;
|
|
433 Lisp_Hash_Table *ht = alloc_lcrecord_type (Lisp_Hash_Table, &lrecord_hash_table);
|
|
434
|
|
435 switch (test)
|
|
436 {
|
|
437 case HASH_TABLE_EQ:
|
|
438 ht->test_function = 0;
|
|
439 ht->hash_function = 0;
|
|
440 break;
|
|
441
|
|
442 case HASH_TABLE_EQL:
|
|
443 ht->test_function = lisp_object_eql_equal;
|
|
444 ht->hash_function = lisp_object_eql_hash;
|
|
445 break;
|
|
446
|
|
447 case HASH_TABLE_EQUAL:
|
|
448 ht->test_function = lisp_object_equal_equal;
|
|
449 ht->hash_function = lisp_object_equal_hash;
|
|
450 break;
|
|
451
|
|
452 default:
|
|
453 abort ();
|
|
454 }
|
|
455
|
438
|
456 ht->weakness = weakness;
|
|
457
|
|
458 ht->rehash_size =
|
|
459 rehash_size > 1.0 ? rehash_size : HASH_TABLE_DEFAULT_REHASH_SIZE;
|
|
460
|
|
461 ht->rehash_threshold =
|
|
462 rehash_threshold > 0.0 ? rehash_threshold :
|
|
463 size > 4096 && !ht->test_function ? 0.7 : 0.6;
|
|
464
|
428
|
465 if (size < HASH_TABLE_MIN_SIZE)
|
|
466 size = HASH_TABLE_MIN_SIZE;
|
438
|
467 ht->size = hash_table_size ((size_t) (((double) size / ht->rehash_threshold)
|
|
468 + 1.0));
|
428
|
469 ht->count = 0;
|
438
|
470
|
428
|
471 compute_hash_table_derived_values (ht);
|
|
472
|
|
473 /* We leave room for one never-occupied sentinel hentry at the end. */
|
|
474 ht->hentries = xnew_array (hentry, ht->size + 1);
|
|
475
|
|
476 {
|
|
477 hentry *e, *sentinel;
|
|
478 for (e = ht->hentries, sentinel = e + ht->size; e <= sentinel; e++)
|
|
479 CLEAR_HENTRY (e);
|
|
480 }
|
|
481
|
|
482 XSETHASH_TABLE (hash_table, ht);
|
|
483
|
|
484 if (weakness == HASH_TABLE_NON_WEAK)
|
|
485 ht->next_weak = Qunbound;
|
|
486 else
|
|
487 ht->next_weak = Vall_weak_hash_tables, Vall_weak_hash_tables = hash_table;
|
|
488
|
|
489 return hash_table;
|
|
490 }
|
|
491
|
|
492 Lisp_Object
|
|
493 make_lisp_hash_table (size_t size,
|
|
494 enum hash_table_weakness weakness,
|
|
495 enum hash_table_test test)
|
|
496 {
|
438
|
497 return make_general_lisp_hash_table (test, size, -1.0, -1.0, weakness);
|
428
|
498 }
|
|
499
|
|
500 /* Pretty reading of hash tables.
|
|
501
|
|
502 Here we use the existing structures mechanism (which is,
|
|
503 unfortunately, pretty cumbersome) for validating and instantiating
|
|
504 the hash tables. The idea is that the side-effect of reading a
|
|
505 #s(hash-table PLIST) object is creation of a hash table with desired
|
|
506 properties, and that the hash table is returned. */
|
|
507
|
|
508 /* Validation functions: each keyword provides its own validation
|
|
509 function. The errors should maybe be continuable, but it is
|
|
510 unclear how this would cope with ERRB. */
|
|
511 static int
|
|
512 hash_table_size_validate (Lisp_Object keyword, Lisp_Object value,
|
|
513 Error_behavior errb)
|
|
514 {
|
|
515 if (NATNUMP (value))
|
|
516 return 1;
|
|
517
|
|
518 maybe_signal_error (Qwrong_type_argument, list2 (Qnatnump, value),
|
|
519 Qhash_table, errb);
|
|
520 return 0;
|
|
521 }
|
|
522
|
|
523 static size_t
|
|
524 decode_hash_table_size (Lisp_Object obj)
|
|
525 {
|
|
526 return NILP (obj) ? HASH_TABLE_DEFAULT_SIZE : XINT (obj);
|
|
527 }
|
|
528
|
|
529 static int
|
|
530 hash_table_weakness_validate (Lisp_Object keyword, Lisp_Object value,
|
|
531 Error_behavior errb)
|
|
532 {
|
|
533 if (EQ (value, Qnil)) return 1;
|
|
534 if (EQ (value, Qt)) return 1;
|
|
535 if (EQ (value, Qkey)) return 1;
|
|
536 if (EQ (value, Qvalue)) return 1;
|
|
537
|
|
538 /* Following values are obsolete as of 19990901 in xemacs-21.2 */
|
|
539 if (EQ (value, Qnon_weak)) return 1;
|
|
540 if (EQ (value, Qweak)) return 1;
|
|
541 if (EQ (value, Qkey_weak)) return 1;
|
|
542 if (EQ (value, Qvalue_weak)) return 1;
|
|
543
|
|
544 maybe_signal_simple_error ("Invalid hash table weakness",
|
|
545 value, Qhash_table, errb);
|
|
546 return 0;
|
|
547 }
|
|
548
|
|
549 static enum hash_table_weakness
|
|
550 decode_hash_table_weakness (Lisp_Object obj)
|
|
551 {
|
|
552 if (EQ (obj, Qnil)) return HASH_TABLE_NON_WEAK;
|
|
553 if (EQ (obj, Qt)) return HASH_TABLE_WEAK;
|
|
554 if (EQ (obj, Qkey)) return HASH_TABLE_KEY_WEAK;
|
|
555 if (EQ (obj, Qvalue)) return HASH_TABLE_VALUE_WEAK;
|
|
556
|
|
557 /* Following values are obsolete as of 19990901 in xemacs-21.2 */
|
|
558 if (EQ (obj, Qnon_weak)) return HASH_TABLE_NON_WEAK;
|
|
559 if (EQ (obj, Qweak)) return HASH_TABLE_WEAK;
|
|
560 if (EQ (obj, Qkey_weak)) return HASH_TABLE_KEY_WEAK;
|
|
561 if (EQ (obj, Qvalue_weak)) return HASH_TABLE_VALUE_WEAK;
|
|
562
|
|
563 signal_simple_error ("Invalid hash table weakness", obj);
|
|
564 return HASH_TABLE_NON_WEAK; /* not reached */
|
|
565 }
|
|
566
|
|
567 static int
|
|
568 hash_table_test_validate (Lisp_Object keyword, Lisp_Object value,
|
|
569 Error_behavior errb)
|
|
570 {
|
|
571 if (EQ (value, Qnil)) return 1;
|
|
572 if (EQ (value, Qeq)) return 1;
|
|
573 if (EQ (value, Qequal)) return 1;
|
|
574 if (EQ (value, Qeql)) return 1;
|
|
575
|
|
576 maybe_signal_simple_error ("Invalid hash table test",
|
|
577 value, Qhash_table, errb);
|
|
578 return 0;
|
|
579 }
|
|
580
|
|
581 static enum hash_table_test
|
|
582 decode_hash_table_test (Lisp_Object obj)
|
|
583 {
|
|
584 if (EQ (obj, Qnil)) return HASH_TABLE_EQL;
|
|
585 if (EQ (obj, Qeq)) return HASH_TABLE_EQ;
|
|
586 if (EQ (obj, Qequal)) return HASH_TABLE_EQUAL;
|
|
587 if (EQ (obj, Qeql)) return HASH_TABLE_EQL;
|
|
588
|
|
589 signal_simple_error ("Invalid hash table test", obj);
|
|
590 return HASH_TABLE_EQ; /* not reached */
|
|
591 }
|
|
592
|
|
593 static int
|
|
594 hash_table_rehash_size_validate (Lisp_Object keyword, Lisp_Object value,
|
|
595 Error_behavior errb)
|
|
596 {
|
|
597 if (!FLOATP (value))
|
|
598 {
|
|
599 maybe_signal_error (Qwrong_type_argument, list2 (Qfloatp, value),
|
|
600 Qhash_table, errb);
|
|
601 return 0;
|
|
602 }
|
|
603
|
|
604 {
|
|
605 double rehash_size = XFLOAT_DATA (value);
|
|
606 if (rehash_size <= 1.0)
|
|
607 {
|
|
608 maybe_signal_simple_error
|
|
609 ("Hash table rehash size must be greater than 1.0",
|
|
610 value, Qhash_table, errb);
|
|
611 return 0;
|
|
612 }
|
|
613 }
|
|
614
|
|
615 return 1;
|
|
616 }
|
|
617
|
|
618 static double
|
|
619 decode_hash_table_rehash_size (Lisp_Object rehash_size)
|
|
620 {
|
|
621 return NILP (rehash_size) ? -1.0 : XFLOAT_DATA (rehash_size);
|
|
622 }
|
|
623
|
|
624 static int
|
|
625 hash_table_rehash_threshold_validate (Lisp_Object keyword, Lisp_Object value,
|
|
626 Error_behavior errb)
|
|
627 {
|
|
628 if (!FLOATP (value))
|
|
629 {
|
|
630 maybe_signal_error (Qwrong_type_argument, list2 (Qfloatp, value),
|
|
631 Qhash_table, errb);
|
|
632 return 0;
|
|
633 }
|
|
634
|
|
635 {
|
|
636 double rehash_threshold = XFLOAT_DATA (value);
|
|
637 if (rehash_threshold <= 0.0 || rehash_threshold >= 1.0)
|
|
638 {
|
|
639 maybe_signal_simple_error
|
|
640 ("Hash table rehash threshold must be between 0.0 and 1.0",
|
|
641 value, Qhash_table, errb);
|
|
642 return 0;
|
|
643 }
|
|
644 }
|
|
645
|
|
646 return 1;
|
|
647 }
|
|
648
|
|
649 static double
|
|
650 decode_hash_table_rehash_threshold (Lisp_Object rehash_threshold)
|
|
651 {
|
|
652 return NILP (rehash_threshold) ? -1.0 : XFLOAT_DATA (rehash_threshold);
|
|
653 }
|
|
654
|
|
655 static int
|
|
656 hash_table_data_validate (Lisp_Object keyword, Lisp_Object value,
|
|
657 Error_behavior errb)
|
|
658 {
|
|
659 int len;
|
|
660
|
|
661 GET_EXTERNAL_LIST_LENGTH (value, len);
|
|
662
|
|
663 if (len & 1)
|
|
664 {
|
|
665 maybe_signal_simple_error
|
|
666 ("Hash table data must have alternating key/value pairs",
|
|
667 value, Qhash_table, errb);
|
|
668 return 0;
|
|
669 }
|
|
670 return 1;
|
|
671 }
|
|
672
|
|
673 /* The actual instantiation of a hash table. This does practically no
|
|
674 error checking, because it relies on the fact that the paranoid
|
|
675 functions above have error-checked everything to the last details.
|
|
676 If this assumption is wrong, we will get a crash immediately (with
|
|
677 error-checking compiled in), and we'll know if there is a bug in
|
|
678 the structure mechanism. So there. */
|
|
679 static Lisp_Object
|
|
680 hash_table_instantiate (Lisp_Object plist)
|
|
681 {
|
|
682 Lisp_Object hash_table;
|
|
683 Lisp_Object test = Qnil;
|
|
684 Lisp_Object size = Qnil;
|
|
685 Lisp_Object rehash_size = Qnil;
|
|
686 Lisp_Object rehash_threshold = Qnil;
|
|
687 Lisp_Object weakness = Qnil;
|
|
688 Lisp_Object data = Qnil;
|
|
689
|
|
690 while (!NILP (plist))
|
|
691 {
|
|
692 Lisp_Object key, value;
|
|
693 key = XCAR (plist); plist = XCDR (plist);
|
|
694 value = XCAR (plist); plist = XCDR (plist);
|
|
695
|
|
696 if (EQ (key, Qtest)) test = value;
|
|
697 else if (EQ (key, Qsize)) size = value;
|
|
698 else if (EQ (key, Qrehash_size)) rehash_size = value;
|
|
699 else if (EQ (key, Qrehash_threshold)) rehash_threshold = value;
|
|
700 else if (EQ (key, Qweakness)) weakness = value;
|
|
701 else if (EQ (key, Qdata)) data = value;
|
|
702 else if (EQ (key, Qtype))/*obsolete*/ weakness = value;
|
|
703 else
|
|
704 abort ();
|
|
705 }
|
|
706
|
|
707 /* Create the hash table. */
|
|
708 hash_table = make_general_lisp_hash_table
|
|
709 (decode_hash_table_test (test),
|
|
710 decode_hash_table_size (size),
|
|
711 decode_hash_table_rehash_size (rehash_size),
|
|
712 decode_hash_table_rehash_threshold (rehash_threshold),
|
|
713 decode_hash_table_weakness (weakness));
|
|
714
|
|
715 /* I'm not sure whether this can GC, but better safe than sorry. */
|
|
716 {
|
|
717 struct gcpro gcpro1;
|
|
718 GCPRO1 (hash_table);
|
|
719
|
|
720 /* And fill it with data. */
|
|
721 while (!NILP (data))
|
|
722 {
|
|
723 Lisp_Object key, value;
|
|
724 key = XCAR (data); data = XCDR (data);
|
|
725 value = XCAR (data); data = XCDR (data);
|
|
726 Fputhash (key, value, hash_table);
|
|
727 }
|
|
728 UNGCPRO;
|
|
729 }
|
|
730
|
|
731 return hash_table;
|
|
732 }
|
|
733
|
|
734 static void
|
|
735 structure_type_create_hash_table_structure_name (Lisp_Object structure_name)
|
|
736 {
|
|
737 struct structure_type *st;
|
|
738
|
|
739 st = define_structure_type (structure_name, 0, hash_table_instantiate);
|
|
740 define_structure_type_keyword (st, Qtest, hash_table_test_validate);
|
|
741 define_structure_type_keyword (st, Qsize, hash_table_size_validate);
|
|
742 define_structure_type_keyword (st, Qrehash_size, hash_table_rehash_size_validate);
|
|
743 define_structure_type_keyword (st, Qrehash_threshold, hash_table_rehash_threshold_validate);
|
|
744 define_structure_type_keyword (st, Qweakness, hash_table_weakness_validate);
|
|
745 define_structure_type_keyword (st, Qdata, hash_table_data_validate);
|
|
746
|
|
747 /* obsolete as of 19990901 in xemacs-21.2 */
|
|
748 define_structure_type_keyword (st, Qtype, hash_table_weakness_validate);
|
|
749 }
|
|
750
|
|
751 /* Create a built-in Lisp structure type named `hash-table'.
|
|
752 We make #s(hashtable ...) equivalent to #s(hash-table ...),
|
|
753 for backward compatibility.
|
|
754 This is called from emacs.c. */
|
|
755 void
|
|
756 structure_type_create_hash_table (void)
|
|
757 {
|
|
758 structure_type_create_hash_table_structure_name (Qhash_table);
|
|
759 structure_type_create_hash_table_structure_name (Qhashtable); /* compat */
|
|
760 }
|
|
761
|
|
762
|
|
763 /************************************************************************/
|
|
764 /* Definition of Lisp-visible methods */
|
|
765 /************************************************************************/
|
|
766
|
|
767 DEFUN ("hash-table-p", Fhash_table_p, 1, 1, 0, /*
|
|
768 Return t if OBJECT is a hash table, else nil.
|
|
769 */
|
|
770 (object))
|
|
771 {
|
|
772 return HASH_TABLEP (object) ? Qt : Qnil;
|
|
773 }
|
|
774
|
|
775 DEFUN ("make-hash-table", Fmake_hash_table, 0, MANY, 0, /*
|
|
776 Return a new empty hash table object.
|
|
777 Use Common Lisp style keywords to specify hash table properties.
|
|
778 (make-hash-table &key test size rehash-size rehash-threshold weakness)
|
|
779
|
|
780 Keyword :test can be `eq', `eql' (default) or `equal'.
|
|
781 Comparison between keys is done using this function.
|
|
782 If speed is important, consider using `eq'.
|
|
783 When storing strings in the hash table, you will likely need to use `equal'.
|
|
784
|
|
785 Keyword :size specifies the number of keys likely to be inserted.
|
|
786 This number of entries can be inserted without enlarging the hash table.
|
|
787
|
|
788 Keyword :rehash-size must be a float greater than 1.0, and specifies
|
|
789 the factor by which to increase the size of the hash table when enlarging.
|
|
790
|
|
791 Keyword :rehash-threshold must be a float between 0.0 and 1.0,
|
|
792 and specifies the load factor of the hash table which triggers enlarging.
|
|
793
|
|
794 Non-standard keyword :weakness can be `nil' (default), `t', `key' or `value'.
|
|
795
|
|
796 A weak hash table is one whose pointers do not count as GC referents:
|
|
797 for any key-value pair in the hash table, if the only remaining pointer
|
|
798 to either the key or the value is in a weak hash table, then the pair
|
|
799 will be removed from the hash table, and the key and value collected.
|
|
800 A non-weak hash table (or any other pointer) would prevent the object
|
|
801 from being collected.
|
|
802
|
|
803 A key-weak hash table is similar to a fully-weak hash table except that
|
|
804 a key-value pair will be removed only if the key remains unmarked
|
|
805 outside of weak hash tables. The pair will remain in the hash table if
|
|
806 the key is pointed to by something other than a weak hash table, even
|
|
807 if the value is not.
|
|
808
|
|
809 A value-weak hash table is similar to a fully-weak hash table except
|
|
810 that a key-value pair will be removed only if the value remains
|
|
811 unmarked outside of weak hash tables. The pair will remain in the
|
|
812 hash table if the value is pointed to by something other than a weak
|
|
813 hash table, even if the key is not.
|
|
814 */
|
|
815 (int nargs, Lisp_Object *args))
|
|
816 {
|
|
817 int i = 0;
|
|
818 Lisp_Object test = Qnil;
|
|
819 Lisp_Object size = Qnil;
|
|
820 Lisp_Object rehash_size = Qnil;
|
|
821 Lisp_Object rehash_threshold = Qnil;
|
|
822 Lisp_Object weakness = Qnil;
|
|
823
|
|
824 while (i + 1 < nargs)
|
|
825 {
|
|
826 Lisp_Object keyword = args[i++];
|
|
827 Lisp_Object value = args[i++];
|
|
828
|
|
829 if (EQ (keyword, Q_test)) test = value;
|
|
830 else if (EQ (keyword, Q_size)) size = value;
|
|
831 else if (EQ (keyword, Q_rehash_size)) rehash_size = value;
|
|
832 else if (EQ (keyword, Q_rehash_threshold)) rehash_threshold = value;
|
|
833 else if (EQ (keyword, Q_weakness)) weakness = value;
|
|
834 else if (EQ (keyword, Q_type))/*obsolete*/ weakness = value;
|
|
835 else signal_simple_error ("Invalid hash table property keyword", keyword);
|
|
836 }
|
|
837
|
|
838 if (i < nargs)
|
|
839 signal_simple_error ("Hash table property requires a value", args[i]);
|
|
840
|
|
841 #define VALIDATE_VAR(var) \
|
|
842 if (!NILP (var)) hash_table_##var##_validate (Q##var, var, ERROR_ME);
|
|
843
|
|
844 VALIDATE_VAR (test);
|
|
845 VALIDATE_VAR (size);
|
|
846 VALIDATE_VAR (rehash_size);
|
|
847 VALIDATE_VAR (rehash_threshold);
|
|
848 VALIDATE_VAR (weakness);
|
|
849
|
|
850 return make_general_lisp_hash_table
|
|
851 (decode_hash_table_test (test),
|
|
852 decode_hash_table_size (size),
|
|
853 decode_hash_table_rehash_size (rehash_size),
|
|
854 decode_hash_table_rehash_threshold (rehash_threshold),
|
|
855 decode_hash_table_weakness (weakness));
|
|
856 }
|
|
857
|
|
858 DEFUN ("copy-hash-table", Fcopy_hash_table, 1, 1, 0, /*
|
|
859 Return a new hash table containing the same keys and values as HASH-TABLE.
|
|
860 The keys and values will not themselves be copied.
|
|
861 */
|
|
862 (hash_table))
|
|
863 {
|
|
864 CONST Lisp_Hash_Table *ht_old = xhash_table (hash_table);
|
|
865 Lisp_Hash_Table *ht = alloc_lcrecord_type (Lisp_Hash_Table, &lrecord_hash_table);
|
|
866
|
|
867 copy_lcrecord (ht, ht_old);
|
|
868
|
|
869 ht->hentries = xnew_array (hentry, ht_old->size + 1);
|
|
870 memcpy (ht->hentries, ht_old->hentries, (ht_old->size + 1) * sizeof (hentry));
|
|
871
|
|
872 XSETHASH_TABLE (hash_table, ht);
|
|
873
|
|
874 if (! EQ (ht->next_weak, Qunbound))
|
|
875 {
|
|
876 ht->next_weak = Vall_weak_hash_tables;
|
|
877 Vall_weak_hash_tables = hash_table;
|
|
878 }
|
|
879
|
|
880 return hash_table;
|
|
881 }
|
|
882
|
|
883 static void
|
|
884 resize_hash_table (Lisp_Hash_Table *ht, size_t new_size)
|
|
885 {
|
|
886 hentry *old_entries, *new_entries, *old_sentinel, *new_sentinel, *e;
|
|
887 size_t old_size;
|
|
888
|
|
889 old_size = ht->size;
|
|
890 ht->size = new_size;
|
|
891
|
|
892 old_entries = ht->hentries;
|
|
893
|
|
894 ht->hentries = xnew_array (hentry, new_size + 1);
|
|
895 new_entries = ht->hentries;
|
|
896
|
|
897 old_sentinel = old_entries + old_size;
|
|
898 new_sentinel = new_entries + new_size;
|
|
899
|
|
900 for (e = new_entries; e <= new_sentinel; e++)
|
|
901 CLEAR_HENTRY (e);
|
|
902
|
|
903 compute_hash_table_derived_values (ht);
|
|
904
|
|
905 for (e = old_entries; e < old_sentinel; e++)
|
|
906 if (!HENTRY_CLEAR_P (e))
|
|
907 {
|
|
908 hentry *probe = new_entries + HASH_CODE (e->key, ht);
|
|
909 LINEAR_PROBING_LOOP (probe, new_entries, new_size)
|
|
910 ;
|
|
911 *probe = *e;
|
|
912 }
|
|
913
|
|
914 if (!DUMPEDP (old_entries))
|
|
915 xfree (old_entries);
|
|
916 }
|
|
917
|
|
918 void
|
|
919 reorganize_hash_table (Lisp_Hash_Table *ht)
|
|
920 {
|
|
921 resize_hash_table (ht, ht->size);
|
|
922 }
|
|
923
|
|
924 static void
|
|
925 enlarge_hash_table (Lisp_Hash_Table *ht)
|
|
926 {
|
432
|
927 size_t new_size =
|
428
|
928 hash_table_size ((size_t) ((double) ht->size * ht->rehash_size));
|
|
929 resize_hash_table (ht, new_size);
|
|
930 }
|
|
931
|
|
932 static hentry *
|
|
933 find_hentry (Lisp_Object key, CONST Lisp_Hash_Table *ht)
|
|
934 {
|
|
935 hash_table_test_function_t test_function = ht->test_function;
|
|
936 hentry *entries = ht->hentries;
|
|
937 hentry *probe = entries + HASH_CODE (key, ht);
|
|
938
|
|
939 LINEAR_PROBING_LOOP (probe, entries, ht->size)
|
|
940 if (KEYS_EQUAL_P (probe->key, key, test_function))
|
|
941 break;
|
|
942
|
|
943 return probe;
|
|
944 }
|
|
945
|
|
946 DEFUN ("gethash", Fgethash, 2, 3, 0, /*
|
|
947 Find hash value for KEY in HASH-TABLE.
|
|
948 If there is no corresponding value, return DEFAULT (which defaults to nil).
|
|
949 */
|
|
950 (key, hash_table, default_))
|
|
951 {
|
|
952 CONST Lisp_Hash_Table *ht = xhash_table (hash_table);
|
|
953 hentry *e = find_hentry (key, ht);
|
|
954
|
|
955 return HENTRY_CLEAR_P (e) ? default_ : e->value;
|
|
956 }
|
|
957
|
|
958 DEFUN ("puthash", Fputhash, 3, 3, 0, /*
|
|
959 Hash KEY to VALUE in HASH-TABLE.
|
|
960 */
|
|
961 (key, value, hash_table))
|
|
962 {
|
|
963 Lisp_Hash_Table *ht = xhash_table (hash_table);
|
|
964 hentry *e = find_hentry (key, ht);
|
|
965
|
|
966 if (!HENTRY_CLEAR_P (e))
|
|
967 return e->value = value;
|
|
968
|
|
969 e->key = key;
|
|
970 e->value = value;
|
|
971
|
|
972 if (++ht->count >= ht->rehash_count)
|
|
973 enlarge_hash_table (ht);
|
|
974
|
|
975 return value;
|
|
976 }
|
|
977
|
|
978 /* Remove hentry pointed at by PROBE.
|
|
979 Subsequent entries are removed and reinserted.
|
|
980 We don't use tombstones - too wasteful. */
|
|
981 static void
|
|
982 remhash_1 (Lisp_Hash_Table *ht, hentry *entries, hentry *probe)
|
|
983 {
|
|
984 size_t size = ht->size;
|
|
985 CLEAR_HENTRY (probe);
|
|
986 probe++;
|
|
987 ht->count--;
|
|
988
|
|
989 LINEAR_PROBING_LOOP (probe, entries, size)
|
|
990 {
|
|
991 Lisp_Object key = probe->key;
|
|
992 hentry *probe2 = entries + HASH_CODE (key, ht);
|
|
993 LINEAR_PROBING_LOOP (probe2, entries, size)
|
|
994 if (EQ (probe2->key, key))
|
|
995 /* hentry at probe doesn't need to move. */
|
|
996 goto continue_outer_loop;
|
|
997 /* Move hentry from probe to new home at probe2. */
|
|
998 *probe2 = *probe;
|
|
999 CLEAR_HENTRY (probe);
|
|
1000 continue_outer_loop: continue;
|
|
1001 }
|
|
1002 }
|
|
1003
|
|
1004 DEFUN ("remhash", Fremhash, 2, 2, 0, /*
|
|
1005 Remove the entry for KEY from HASH-TABLE.
|
|
1006 Do nothing if there is no entry for KEY in HASH-TABLE.
|
|
1007 */
|
|
1008 (key, hash_table))
|
|
1009 {
|
|
1010 Lisp_Hash_Table *ht = xhash_table (hash_table);
|
|
1011 hentry *e = find_hentry (key, ht);
|
|
1012
|
|
1013 if (HENTRY_CLEAR_P (e))
|
|
1014 return Qnil;
|
|
1015
|
|
1016 remhash_1 (ht, ht->hentries, e);
|
|
1017 return Qt;
|
|
1018 }
|
|
1019
|
|
1020 DEFUN ("clrhash", Fclrhash, 1, 1, 0, /*
|
|
1021 Remove all entries from HASH-TABLE, leaving it empty.
|
|
1022 */
|
|
1023 (hash_table))
|
|
1024 {
|
|
1025 Lisp_Hash_Table *ht = xhash_table (hash_table);
|
|
1026 hentry *e, *sentinel;
|
|
1027
|
|
1028 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
|
1029 CLEAR_HENTRY (e);
|
|
1030 ht->count = 0;
|
|
1031
|
|
1032 return hash_table;
|
|
1033 }
|
|
1034
|
|
1035 /************************************************************************/
|
|
1036 /* Accessor Functions */
|
|
1037 /************************************************************************/
|
|
1038
|
|
1039 DEFUN ("hash-table-count", Fhash_table_count, 1, 1, 0, /*
|
|
1040 Return the number of entries in HASH-TABLE.
|
|
1041 */
|
|
1042 (hash_table))
|
|
1043 {
|
|
1044 return make_int (xhash_table (hash_table)->count);
|
|
1045 }
|
|
1046
|
|
1047 DEFUN ("hash-table-test", Fhash_table_test, 1, 1, 0, /*
|
|
1048 Return the test function of HASH-TABLE.
|
|
1049 This can be one of `eq', `eql' or `equal'.
|
|
1050 */
|
|
1051 (hash_table))
|
|
1052 {
|
|
1053 hash_table_test_function_t fun = xhash_table (hash_table)->test_function;
|
|
1054
|
|
1055 return (fun == lisp_object_eql_equal ? Qeql :
|
|
1056 fun == lisp_object_equal_equal ? Qequal :
|
|
1057 Qeq);
|
|
1058 }
|
|
1059
|
|
1060 DEFUN ("hash-table-size", Fhash_table_size, 1, 1, 0, /*
|
|
1061 Return the size of HASH-TABLE.
|
|
1062 This is the current number of slots in HASH-TABLE, whether occupied or not.
|
|
1063 */
|
|
1064 (hash_table))
|
|
1065 {
|
|
1066 return make_int (xhash_table (hash_table)->size);
|
|
1067 }
|
|
1068
|
|
1069 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size, 1, 1, 0, /*
|
|
1070 Return the current rehash size of HASH-TABLE.
|
|
1071 This is a float greater than 1.0; the factor by which HASH-TABLE
|
|
1072 is enlarged when the rehash threshold is exceeded.
|
|
1073 */
|
|
1074 (hash_table))
|
|
1075 {
|
|
1076 return make_float (xhash_table (hash_table)->rehash_size);
|
|
1077 }
|
|
1078
|
|
1079 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold, 1, 1, 0, /*
|
|
1080 Return the current rehash threshold of HASH-TABLE.
|
|
1081 This is a float between 0.0 and 1.0; the maximum `load factor' of HASH-TABLE,
|
|
1082 beyond which the HASH-TABLE is enlarged by rehashing.
|
|
1083 */
|
|
1084 (hash_table))
|
|
1085 {
|
438
|
1086 return make_float (xhash_table (hash_table)->rehash_threshold);
|
428
|
1087 }
|
|
1088
|
|
1089 DEFUN ("hash-table-weakness", Fhash_table_weakness, 1, 1, 0, /*
|
|
1090 Return the weakness of HASH-TABLE.
|
|
1091 This can be one of `nil', `t', `key' or `value'.
|
|
1092 */
|
|
1093 (hash_table))
|
|
1094 {
|
|
1095 switch (xhash_table (hash_table)->weakness)
|
|
1096 {
|
|
1097 case HASH_TABLE_WEAK: return Qt;
|
|
1098 case HASH_TABLE_KEY_WEAK: return Qkey;
|
|
1099 case HASH_TABLE_VALUE_WEAK: return Qvalue;
|
|
1100 default: return Qnil;
|
|
1101 }
|
|
1102 }
|
|
1103
|
|
1104 /* obsolete as of 19990901 in xemacs-21.2 */
|
|
1105 DEFUN ("hash-table-type", Fhash_table_type, 1, 1, 0, /*
|
|
1106 Return the type of HASH-TABLE.
|
|
1107 This can be one of `non-weak', `weak', `key-weak' or `value-weak'.
|
|
1108 */
|
|
1109 (hash_table))
|
|
1110 {
|
|
1111 switch (xhash_table (hash_table)->weakness)
|
|
1112 {
|
|
1113 case HASH_TABLE_WEAK: return Qweak;
|
|
1114 case HASH_TABLE_KEY_WEAK: return Qkey_weak;
|
|
1115 case HASH_TABLE_VALUE_WEAK: return Qvalue_weak;
|
|
1116 default: return Qnon_weak;
|
|
1117 }
|
|
1118 }
|
|
1119
|
|
1120 /************************************************************************/
|
|
1121 /* Mapping Functions */
|
|
1122 /************************************************************************/
|
|
1123 DEFUN ("maphash", Fmaphash, 2, 2, 0, /*
|
|
1124 Map FUNCTION over entries in HASH-TABLE, calling it with two args,
|
|
1125 each key and value in HASH-TABLE.
|
|
1126
|
|
1127 FUNCTION may not modify HASH-TABLE, with the one exception that FUNCTION
|
|
1128 may remhash or puthash the entry currently being processed by FUNCTION.
|
|
1129 */
|
|
1130 (function, hash_table))
|
|
1131 {
|
|
1132 CONST Lisp_Hash_Table *ht = xhash_table (hash_table);
|
|
1133 CONST hentry *e, *sentinel;
|
|
1134
|
|
1135 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
|
1136 if (!HENTRY_CLEAR_P (e))
|
|
1137 {
|
|
1138 Lisp_Object args[3], key;
|
|
1139 again:
|
|
1140 key = e->key;
|
|
1141 args[0] = function;
|
|
1142 args[1] = key;
|
|
1143 args[2] = e->value;
|
|
1144 Ffuncall (countof (args), args);
|
|
1145 /* Has FUNCTION done a remhash? */
|
|
1146 if (!EQ (key, e->key) && !HENTRY_CLEAR_P (e))
|
|
1147 goto again;
|
|
1148 }
|
|
1149
|
|
1150 return Qnil;
|
|
1151 }
|
|
1152
|
|
1153 /* Map *C* function FUNCTION over the elements of a lisp hash table. */
|
|
1154 void
|
|
1155 elisp_maphash (maphash_function_t function,
|
|
1156 Lisp_Object hash_table, void *extra_arg)
|
|
1157 {
|
|
1158 CONST Lisp_Hash_Table *ht = XHASH_TABLE (hash_table);
|
|
1159 CONST hentry *e, *sentinel;
|
|
1160
|
|
1161 for (e = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
|
1162 if (!HENTRY_CLEAR_P (e))
|
|
1163 {
|
|
1164 Lisp_Object key;
|
|
1165 again:
|
|
1166 key = e->key;
|
|
1167 if (function (key, e->value, extra_arg))
|
|
1168 return;
|
|
1169 /* Has FUNCTION done a remhash? */
|
|
1170 if (!EQ (key, e->key) && !HENTRY_CLEAR_P (e))
|
|
1171 goto again;
|
|
1172 }
|
|
1173 }
|
|
1174
|
|
1175 /* Remove all elements of a lisp hash table satisfying *C* predicate PREDICATE. */
|
|
1176 void
|
|
1177 elisp_map_remhash (maphash_function_t predicate,
|
|
1178 Lisp_Object hash_table, void *extra_arg)
|
|
1179 {
|
|
1180 Lisp_Hash_Table *ht = XHASH_TABLE (hash_table);
|
|
1181 hentry *e, *entries, *sentinel;
|
|
1182
|
|
1183 for (e = entries = ht->hentries, sentinel = e + ht->size; e < sentinel; e++)
|
|
1184 if (!HENTRY_CLEAR_P (e))
|
|
1185 {
|
|
1186 again:
|
|
1187 if (predicate (e->key, e->value, extra_arg))
|
|
1188 {
|
|
1189 remhash_1 (ht, entries, e);
|
|
1190 if (!HENTRY_CLEAR_P (e))
|
|
1191 goto again;
|
|
1192 }
|
|
1193 }
|
|
1194 }
|
|
1195
|
|
1196
|
|
1197 /************************************************************************/
|
|
1198 /* garbage collecting weak hash tables */
|
|
1199 /************************************************************************/
|
|
1200
|
|
1201 /* Complete the marking for semi-weak hash tables. */
|
|
1202 int
|
|
1203 finish_marking_weak_hash_tables (void)
|
|
1204 {
|
|
1205 Lisp_Object hash_table;
|
|
1206 int did_mark = 0;
|
|
1207
|
|
1208 for (hash_table = Vall_weak_hash_tables;
|
|
1209 !NILP (hash_table);
|
|
1210 hash_table = XHASH_TABLE (hash_table)->next_weak)
|
|
1211 {
|
|
1212 CONST Lisp_Hash_Table *ht = XHASH_TABLE (hash_table);
|
|
1213 CONST hentry *e = ht->hentries;
|
|
1214 CONST hentry *sentinel = e + ht->size;
|
|
1215
|
|
1216 if (! marked_p (hash_table))
|
|
1217 /* The hash table is probably garbage. Ignore it. */
|
|
1218 continue;
|
|
1219
|
|
1220 /* Now, scan over all the pairs. For all pairs that are
|
|
1221 half-marked, we may need to mark the other half if we're
|
|
1222 keeping this pair. */
|
|
1223 #define MARK_OBJ(obj) \
|
|
1224 do { if (!marked_p (obj)) mark_object (obj), did_mark = 1; } while (0)
|
|
1225
|
|
1226 switch (ht->weakness)
|
|
1227 {
|
|
1228 case HASH_TABLE_KEY_WEAK:
|
|
1229 for (; e < sentinel; e++)
|
|
1230 if (!HENTRY_CLEAR_P (e))
|
|
1231 if (marked_p (e->key))
|
|
1232 MARK_OBJ (e->value);
|
|
1233 break;
|
|
1234
|
|
1235 case HASH_TABLE_VALUE_WEAK:
|
|
1236 for (; e < sentinel; e++)
|
|
1237 if (!HENTRY_CLEAR_P (e))
|
|
1238 if (marked_p (e->value))
|
|
1239 MARK_OBJ (e->key);
|
|
1240 break;
|
|
1241
|
|
1242 case HASH_TABLE_KEY_CAR_WEAK:
|
|
1243 for (; e < sentinel; e++)
|
|
1244 if (!HENTRY_CLEAR_P (e))
|
|
1245 if (!CONSP (e->key) || marked_p (XCAR (e->key)))
|
|
1246 {
|
|
1247 MARK_OBJ (e->key);
|
|
1248 MARK_OBJ (e->value);
|
|
1249 }
|
|
1250 break;
|
|
1251
|
|
1252 case HASH_TABLE_VALUE_CAR_WEAK:
|
|
1253 for (; e < sentinel; e++)
|
|
1254 if (!HENTRY_CLEAR_P (e))
|
|
1255 if (!CONSP (e->value) || marked_p (XCAR (e->value)))
|
|
1256 {
|
|
1257 MARK_OBJ (e->key);
|
|
1258 MARK_OBJ (e->value);
|
|
1259 }
|
|
1260 break;
|
|
1261
|
|
1262 default:
|
|
1263 break;
|
|
1264 }
|
|
1265 }
|
|
1266
|
|
1267 return did_mark;
|
|
1268 }
|
|
1269
|
|
1270 void
|
|
1271 prune_weak_hash_tables (void)
|
|
1272 {
|
|
1273 Lisp_Object hash_table, prev = Qnil;
|
|
1274 for (hash_table = Vall_weak_hash_tables;
|
|
1275 !NILP (hash_table);
|
|
1276 hash_table = XHASH_TABLE (hash_table)->next_weak)
|
|
1277 {
|
|
1278 if (! marked_p (hash_table))
|
|
1279 {
|
|
1280 /* This hash table itself is garbage. Remove it from the list. */
|
|
1281 if (NILP (prev))
|
|
1282 Vall_weak_hash_tables = XHASH_TABLE (hash_table)->next_weak;
|
|
1283 else
|
|
1284 XHASH_TABLE (prev)->next_weak = XHASH_TABLE (hash_table)->next_weak;
|
|
1285 }
|
|
1286 else
|
|
1287 {
|
|
1288 /* Now, scan over all the pairs. Remove all of the pairs
|
|
1289 in which the key or value, or both, is unmarked
|
|
1290 (depending on the weakness of the hash table). */
|
|
1291 Lisp_Hash_Table *ht = XHASH_TABLE (hash_table);
|
|
1292 hentry *entries = ht->hentries;
|
|
1293 hentry *sentinel = entries + ht->size;
|
|
1294 hentry *e;
|
|
1295
|
|
1296 for (e = entries; e < sentinel; e++)
|
|
1297 if (!HENTRY_CLEAR_P (e))
|
|
1298 {
|
|
1299 again:
|
|
1300 if (!marked_p (e->key) || !marked_p (e->value))
|
|
1301 {
|
|
1302 remhash_1 (ht, entries, e);
|
|
1303 if (!HENTRY_CLEAR_P (e))
|
|
1304 goto again;
|
|
1305 }
|
|
1306 }
|
|
1307
|
|
1308 prev = hash_table;
|
|
1309 }
|
|
1310 }
|
|
1311 }
|
|
1312
|
|
1313 /* Return a hash value for an array of Lisp_Objects of size SIZE. */
|
|
1314
|
|
1315 hashcode_t
|
|
1316 internal_array_hash (Lisp_Object *arr, int size, int depth)
|
|
1317 {
|
|
1318 int i;
|
|
1319 unsigned long hash = 0;
|
|
1320
|
|
1321 if (size <= 5)
|
|
1322 {
|
|
1323 for (i = 0; i < size; i++)
|
|
1324 hash = HASH2 (hash, internal_hash (arr[i], depth + 1));
|
|
1325 return hash;
|
|
1326 }
|
|
1327
|
|
1328 /* just pick five elements scattered throughout the array.
|
|
1329 A slightly better approach would be to offset by some
|
|
1330 noise factor from the points chosen below. */
|
|
1331 for (i = 0; i < 5; i++)
|
|
1332 hash = HASH2 (hash, internal_hash (arr[i*size/5], depth + 1));
|
|
1333
|
|
1334 return hash;
|
|
1335 }
|
|
1336
|
|
1337 /* Return a hash value for a Lisp_Object. This is for use when hashing
|
|
1338 objects with the comparison being `equal' (for `eq', you can just
|
|
1339 use the Lisp_Object itself as the hash value). You need to make a
|
|
1340 tradeoff between the speed of the hash function and how good the
|
|
1341 hashing is. In particular, the hash function needs to be FAST,
|
|
1342 so you can't just traipse down the whole tree hashing everything
|
|
1343 together. Most of the time, objects will differ in the first
|
|
1344 few elements you hash. Thus, we only go to a short depth (5)
|
|
1345 and only hash at most 5 elements out of a vector. Theoretically
|
|
1346 we could still take 5^5 time (a big big number) to compute a
|
|
1347 hash, but practically this won't ever happen. */
|
|
1348
|
|
1349 hashcode_t
|
|
1350 internal_hash (Lisp_Object obj, int depth)
|
|
1351 {
|
|
1352 if (depth > 5)
|
|
1353 return 0;
|
|
1354 if (CONSP (obj))
|
|
1355 {
|
|
1356 /* no point in worrying about tail recursion, since we're not
|
|
1357 going very deep */
|
|
1358 return HASH2 (internal_hash (XCAR (obj), depth + 1),
|
|
1359 internal_hash (XCDR (obj), depth + 1));
|
|
1360 }
|
|
1361 if (STRINGP (obj))
|
|
1362 {
|
|
1363 return hash_string (XSTRING_DATA (obj), XSTRING_LENGTH (obj));
|
|
1364 }
|
|
1365 if (VECTORP (obj))
|
|
1366 {
|
|
1367 return HASH2 (XVECTOR_LENGTH (obj),
|
|
1368 internal_array_hash (XVECTOR_DATA (obj),
|
|
1369 XVECTOR_LENGTH (obj),
|
|
1370 depth + 1));
|
|
1371 }
|
|
1372 if (LRECORDP (obj))
|
|
1373 {
|
|
1374 CONST struct lrecord_implementation
|
|
1375 *imp = XRECORD_LHEADER_IMPLEMENTATION (obj);
|
|
1376 if (imp->hash)
|
|
1377 return imp->hash (obj, depth);
|
|
1378 }
|
|
1379
|
|
1380 return LISP_HASH (obj);
|
|
1381 }
|
|
1382
|
|
1383 DEFUN ("sxhash", Fsxhash, 1, 1, 0, /*
|
|
1384 Return a hash value for OBJECT.
|
|
1385 (equal obj1 obj2) implies (= (sxhash obj1) (sxhash obj2)).
|
|
1386 */
|
|
1387 (object))
|
|
1388 {
|
|
1389 return make_int (internal_hash (object, 0));
|
|
1390 }
|
|
1391
|
|
1392 #if 0
|
|
1393 xxDEFUN ("internal-hash-value", Finternal_hash_value, 1, 1, 0, /*
|
|
1394 Hash value of OBJECT. For debugging.
|
|
1395 The value is returned as (HIGH . LOW).
|
|
1396 */
|
|
1397 (object))
|
|
1398 {
|
|
1399 /* This function is pretty 32bit-centric. */
|
|
1400 unsigned long hash = internal_hash (object, 0);
|
|
1401 return Fcons (hash >> 16, hash & 0xffff);
|
|
1402 }
|
|
1403 #endif
|
|
1404
|
|
1405
|
|
1406 /************************************************************************/
|
|
1407 /* initialization */
|
|
1408 /************************************************************************/
|
|
1409
|
|
1410 void
|
|
1411 syms_of_elhash (void)
|
|
1412 {
|
|
1413 DEFSUBR (Fhash_table_p);
|
|
1414 DEFSUBR (Fmake_hash_table);
|
|
1415 DEFSUBR (Fcopy_hash_table);
|
|
1416 DEFSUBR (Fgethash);
|
|
1417 DEFSUBR (Fremhash);
|
|
1418 DEFSUBR (Fputhash);
|
|
1419 DEFSUBR (Fclrhash);
|
|
1420 DEFSUBR (Fmaphash);
|
|
1421 DEFSUBR (Fhash_table_count);
|
|
1422 DEFSUBR (Fhash_table_test);
|
|
1423 DEFSUBR (Fhash_table_size);
|
|
1424 DEFSUBR (Fhash_table_rehash_size);
|
|
1425 DEFSUBR (Fhash_table_rehash_threshold);
|
|
1426 DEFSUBR (Fhash_table_weakness);
|
|
1427 DEFSUBR (Fhash_table_type); /* obsolete */
|
|
1428 DEFSUBR (Fsxhash);
|
|
1429 #if 0
|
|
1430 DEFSUBR (Finternal_hash_value);
|
|
1431 #endif
|
|
1432
|
|
1433 defsymbol (&Qhash_tablep, "hash-table-p");
|
|
1434 defsymbol (&Qhash_table, "hash-table");
|
|
1435 defsymbol (&Qhashtable, "hashtable");
|
|
1436 defsymbol (&Qweakness, "weakness");
|
|
1437 defsymbol (&Qvalue, "value");
|
|
1438 defsymbol (&Qrehash_size, "rehash-size");
|
|
1439 defsymbol (&Qrehash_threshold, "rehash-threshold");
|
|
1440
|
|
1441 defsymbol (&Qweak, "weak"); /* obsolete */
|
|
1442 defsymbol (&Qkey_weak, "key-weak"); /* obsolete */
|
|
1443 defsymbol (&Qvalue_weak, "value-weak"); /* obsolete */
|
|
1444 defsymbol (&Qnon_weak, "non-weak"); /* obsolete */
|
|
1445
|
|
1446 defkeyword (&Q_test, ":test");
|
|
1447 defkeyword (&Q_size, ":size");
|
|
1448 defkeyword (&Q_rehash_size, ":rehash-size");
|
|
1449 defkeyword (&Q_rehash_threshold, ":rehash-threshold");
|
|
1450 defkeyword (&Q_weakness, ":weakness");
|
|
1451 defkeyword (&Q_type, ":type"); /* obsolete */
|
|
1452 }
|
|
1453
|
|
1454 void
|
|
1455 vars_of_elhash (void)
|
|
1456 {
|
|
1457 /* This must NOT be staticpro'd */
|
|
1458 Vall_weak_hash_tables = Qnil;
|
|
1459 pdump_wire_list (&Vall_weak_hash_tables);
|
|
1460 }
|