Mercurial > hg > xemacs-beta
annotate src/data.c @ 4693:80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
src/ChangeLog addition:
2009-09-20 Aidan Kehoe <kehoea@parhasard.net>
* alloc.c (Flist):
(Fvector):
(Fbit_vector):
(Fmake_byte_code):
(Fstring):
* data.c (Feqlsign):
(Flss):
(Fgtr):
(Fleq):
(Fgeq):
(Fneq):
(Fgtr):
(Fplus):
(Fminus):
(Ftimes):
(Fdiv):
(Fquo):
(Fmax):
(Fmin):
(Flogand):
(Flogior):
(Flogxor):
* editfns.c (Fsave_excursion):
(Fsave_current_buffer):
(Fencode_time):
(Finsert):
(Finsert_before_markers):
(Fsave_restriction):
(Fformat):
* elhash.c (Fmake_hash_table):
* eval.c (Fdefun):
(Fdefmacro):
(Fcatch):
(Funwind_protect):
(Fcall_with_condition_handler):
(Ffuncall):
(Fapply):
(Frun_hooks):
* fns.c (Fappend):
(Fconcat):
(Fvconcat):
(Fbvconcat):
(Fnconc):
* print.c (Fwith_output_to_temp_buffer):
* process.c (Fstart_process_internal):
* window.c (Fsave_window_excursion):
* widget.c (Fwidget_apply):
Add argument information, in a form understood by
#'function-arglist, to all these MANY or UNEVALLED (that is to
say, special-operator) built-in functions.
author | Aidan Kehoe <kehoea@parhasard.net> |
---|---|
date | Sun, 20 Sep 2009 21:29:00 +0100 |
parents | 721daee0fcd8 |
children | aa5ed11f473b |
rev | line source |
---|---|
428 | 1 /* Primitive operations on Lisp data types for XEmacs Lisp interpreter. |
2 Copyright (C) 1985, 1986, 1988, 1992, 1993, 1994, 1995 | |
3 Free Software Foundation, Inc. | |
1330 | 4 Copyright (C) 2000, 2001, 2002, 2003 Ben Wing. |
428 | 5 |
6 This file is part of XEmacs. | |
7 | |
8 XEmacs is free software; you can redistribute it and/or modify it | |
9 under the terms of the GNU General Public License as published by the | |
10 Free Software Foundation; either version 2, or (at your option) any | |
11 later version. | |
12 | |
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
16 for more details. | |
17 | |
18 You should have received a copy of the GNU General Public License | |
19 along with XEmacs; see the file COPYING. If not, write to | |
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | |
21 Boston, MA 02111-1307, USA. */ | |
22 | |
23 /* Synched up with: Mule 2.0, FSF 19.30. Some of FSF's data.c is in | |
24 XEmacs' symbols.c. */ | |
25 | |
26 /* This file has been Mule-ized. */ | |
27 | |
28 #include <config.h> | |
29 #include "lisp.h" | |
30 | |
31 #include "buffer.h" | |
32 #include "bytecode.h" | |
33 #include "syssignal.h" | |
771 | 34 #include "sysfloat.h" |
428 | 35 |
36 Lisp_Object Qnil, Qt, Qquote, Qlambda, Qunbound; | |
37 Lisp_Object Qerror_conditions, Qerror_message; | |
442 | 38 Lisp_Object Qerror, Qquit, Qsyntax_error, Qinvalid_read_syntax; |
563 | 39 Lisp_Object Qlist_formation_error, Qstructure_formation_error; |
442 | 40 Lisp_Object Qmalformed_list, Qmalformed_property_list; |
41 Lisp_Object Qcircular_list, Qcircular_property_list; | |
563 | 42 Lisp_Object Qinvalid_argument, Qinvalid_constant, Qwrong_type_argument; |
43 Lisp_Object Qargs_out_of_range; | |
442 | 44 Lisp_Object Qwrong_number_of_arguments, Qinvalid_function, Qno_catch; |
563 | 45 Lisp_Object Qinternal_error, Qinvalid_state, Qstack_overflow, Qout_of_memory; |
428 | 46 Lisp_Object Qvoid_variable, Qcyclic_variable_indirection; |
47 Lisp_Object Qvoid_function, Qcyclic_function_indirection; | |
563 | 48 Lisp_Object Qinvalid_operation, Qinvalid_change, Qprinting_unreadable_object; |
442 | 49 Lisp_Object Qsetting_constant; |
50 Lisp_Object Qediting_error; | |
51 Lisp_Object Qbeginning_of_buffer, Qend_of_buffer, Qbuffer_read_only; | |
563 | 52 Lisp_Object Qio_error, Qfile_error, Qconversion_error, Qend_of_file; |
580 | 53 Lisp_Object Qtext_conversion_error; |
428 | 54 Lisp_Object Qarith_error, Qrange_error, Qdomain_error; |
55 Lisp_Object Qsingularity_error, Qoverflow_error, Qunderflow_error; | |
1983 | 56 Lisp_Object Qintegerp, Qnatnump, Qnonnegativep, Qsymbolp; |
428 | 57 Lisp_Object Qlistp, Qtrue_list_p, Qweak_listp; |
58 Lisp_Object Qconsp, Qsubrp; | |
59 Lisp_Object Qcharacterp, Qstringp, Qarrayp, Qsequencep, Qvectorp; | |
60 Lisp_Object Qchar_or_string_p, Qmarkerp, Qinteger_or_marker_p, Qbufferp; | |
61 Lisp_Object Qinteger_or_char_p, Qinteger_char_or_marker_p; | |
62 Lisp_Object Qnumberp, Qnumber_char_or_marker_p; | |
63 Lisp_Object Qbit_vectorp, Qbitp, Qcdr; | |
64 | |
563 | 65 Lisp_Object Qerror_lacks_explanatory_string; |
428 | 66 Lisp_Object Qfloatp; |
67 | |
68 #ifdef DEBUG_XEMACS | |
69 | |
70 int debug_issue_ebola_notices; | |
71 | |
458 | 72 Fixnum debug_ebola_backtrace_length; |
428 | 73 |
74 int | |
75 eq_with_ebola_notice (Lisp_Object obj1, Lisp_Object obj2) | |
76 { | |
77 if (debug_issue_ebola_notices | |
78 && ((CHARP (obj1) && INTP (obj2)) || (CHARP (obj2) && INTP (obj1)))) | |
79 { | |
80 /* #### It would be really nice if this were a proper warning | |
1551 | 81 instead of brain-dead print to Qexternal_debugging_output. */ |
826 | 82 write_c_string |
83 (Qexternal_debugging_output, | |
84 "Comparison between integer and character is constant nil ("); | |
428 | 85 Fprinc (obj1, Qexternal_debugging_output); |
826 | 86 write_c_string (Qexternal_debugging_output, " and "); |
428 | 87 Fprinc (obj2, Qexternal_debugging_output); |
826 | 88 write_c_string (Qexternal_debugging_output, ")\n"); |
428 | 89 debug_short_backtrace (debug_ebola_backtrace_length); |
90 } | |
91 return EQ (obj1, obj2); | |
92 } | |
93 | |
94 #endif /* DEBUG_XEMACS */ | |
95 | |
96 | |
97 | |
98 Lisp_Object | |
99 wrong_type_argument (Lisp_Object predicate, Lisp_Object value) | |
100 { | |
101 /* This function can GC */ | |
102 REGISTER Lisp_Object tem; | |
103 do | |
104 { | |
105 value = Fsignal (Qwrong_type_argument, list2 (predicate, value)); | |
106 tem = call1 (predicate, value); | |
107 } | |
108 while (NILP (tem)); | |
109 return value; | |
110 } | |
111 | |
112 DOESNT_RETURN | |
113 dead_wrong_type_argument (Lisp_Object predicate, Lisp_Object value) | |
114 { | |
563 | 115 signal_error_1 (Qwrong_type_argument, list2 (predicate, value)); |
428 | 116 } |
117 | |
118 DEFUN ("wrong-type-argument", Fwrong_type_argument, 2, 2, 0, /* | |
119 Signal an error until the correct type value is given by the user. | |
120 This function loops, signalling a continuable `wrong-type-argument' error | |
121 with PREDICATE and VALUE as the data associated with the error and then | |
122 calling PREDICATE on the returned value, until the value gotten satisfies | |
123 PREDICATE. At that point, the gotten value is returned. | |
124 */ | |
125 (predicate, value)) | |
126 { | |
127 return wrong_type_argument (predicate, value); | |
128 } | |
129 | |
130 DOESNT_RETURN | |
131 c_write_error (Lisp_Object obj) | |
132 { | |
563 | 133 signal_error (Qsetting_constant, |
134 "Attempt to modify read-only object (c)", obj); | |
428 | 135 } |
136 | |
137 DOESNT_RETURN | |
138 lisp_write_error (Lisp_Object obj) | |
139 { | |
563 | 140 signal_error (Qsetting_constant, |
141 "Attempt to modify read-only object (lisp)", obj); | |
428 | 142 } |
143 | |
144 DOESNT_RETURN | |
145 args_out_of_range (Lisp_Object a1, Lisp_Object a2) | |
146 { | |
563 | 147 signal_error_1 (Qargs_out_of_range, list2 (a1, a2)); |
428 | 148 } |
149 | |
150 DOESNT_RETURN | |
151 args_out_of_range_3 (Lisp_Object a1, Lisp_Object a2, Lisp_Object a3) | |
152 { | |
563 | 153 signal_error_1 (Qargs_out_of_range, list3 (a1, a2, a3)); |
428 | 154 } |
155 | |
156 void | |
157 check_int_range (EMACS_INT val, EMACS_INT min, EMACS_INT max) | |
158 { | |
159 if (val < min || val > max) | |
160 args_out_of_range_3 (make_int (val), make_int (min), make_int (max)); | |
161 } | |
162 | |
163 /* On some machines, XINT needs a temporary location. | |
164 Here it is, in case it is needed. */ | |
165 | |
166 EMACS_INT sign_extend_temp; | |
167 | |
168 /* On a few machines, XINT can only be done by calling this. */ | |
169 /* XEmacs: only used by m/convex.h */ | |
170 EMACS_INT sign_extend_lisp_int (EMACS_INT num); | |
171 EMACS_INT | |
172 sign_extend_lisp_int (EMACS_INT num) | |
173 { | |
2039 | 174 if (num & (1L << (INT_VALBITS - 1))) |
175 return num | ((-1L) << INT_VALBITS); | |
428 | 176 else |
2039 | 177 return num & (EMACS_INT) ((1UL << INT_VALBITS) - 1); |
428 | 178 } |
179 | |
180 | |
181 /* Data type predicates */ | |
182 | |
183 DEFUN ("eq", Feq, 2, 2, 0, /* | |
184 Return t if the two args are the same Lisp object. | |
185 */ | |
444 | 186 (object1, object2)) |
428 | 187 { |
444 | 188 return EQ_WITH_EBOLA_NOTICE (object1, object2) ? Qt : Qnil; |
428 | 189 } |
190 | |
191 DEFUN ("old-eq", Fold_eq, 2, 2, 0, /* | |
192 Return t if the two args are (in most cases) the same Lisp object. | |
193 | |
194 Special kludge: A character is considered `old-eq' to its equivalent integer | |
195 even though they are not the same object and are in fact of different | |
196 types. This is ABSOLUTELY AND UTTERLY HORRENDOUS but is necessary to | |
197 preserve byte-code compatibility with v19. This kludge is known as the | |
198 \"char-int confoundance disease\" and appears in a number of other | |
199 functions with `old-foo' equivalents. | |
200 | |
201 Do not use this function! | |
202 */ | |
444 | 203 (object1, object2)) |
428 | 204 { |
205 /* #### blasphemy */ | |
444 | 206 return HACKEQ_UNSAFE (object1, object2) ? Qt : Qnil; |
428 | 207 } |
208 | |
209 DEFUN ("null", Fnull, 1, 1, 0, /* | |
210 Return t if OBJECT is nil. | |
211 */ | |
212 (object)) | |
213 { | |
214 return NILP (object) ? Qt : Qnil; | |
215 } | |
216 | |
217 DEFUN ("consp", Fconsp, 1, 1, 0, /* | |
218 Return t if OBJECT is a cons cell. `nil' is not a cons cell. | |
3343 | 219 |
3355 | 220 See the documentation for `cons' or the Lisp manual for more details on what |
221 a cons cell is. | |
428 | 222 */ |
223 (object)) | |
224 { | |
225 return CONSP (object) ? Qt : Qnil; | |
226 } | |
227 | |
228 DEFUN ("atom", Fatom, 1, 1, 0, /* | |
229 Return t if OBJECT is not a cons cell. `nil' is not a cons cell. | |
3355 | 230 |
231 See the documentation for `cons' or the Lisp manual for more details on what | |
232 a cons cell is. | |
428 | 233 */ |
234 (object)) | |
235 { | |
236 return CONSP (object) ? Qnil : Qt; | |
237 } | |
238 | |
239 DEFUN ("listp", Flistp, 1, 1, 0, /* | |
240 Return t if OBJECT is a list. `nil' is a list. | |
3343 | 241 |
3355 | 242 A list is either the Lisp object nil (a symbol), interpreted as the empty |
243 list in this context, or a cons cell whose CDR refers to either nil or a | |
244 cons cell. A "proper list" contains no cycles. | |
428 | 245 */ |
246 (object)) | |
247 { | |
248 return LISTP (object) ? Qt : Qnil; | |
249 } | |
250 | |
251 DEFUN ("nlistp", Fnlistp, 1, 1, 0, /* | |
252 Return t if OBJECT is not a list. `nil' is a list. | |
253 */ | |
254 (object)) | |
255 { | |
256 return LISTP (object) ? Qnil : Qt; | |
257 } | |
258 | |
259 DEFUN ("true-list-p", Ftrue_list_p, 1, 1, 0, /* | |
1551 | 260 Return t if OBJECT is an acyclic, nil-terminated (ie, not dotted), list. |
428 | 261 */ |
262 (object)) | |
263 { | |
264 return TRUE_LIST_P (object) ? Qt : Qnil; | |
265 } | |
266 | |
267 DEFUN ("symbolp", Fsymbolp, 1, 1, 0, /* | |
268 Return t if OBJECT is a symbol. | |
3343 | 269 |
270 A symbol is a Lisp object with a name. It can optionally have any and all of | |
271 a value, a property list and an associated function. | |
428 | 272 */ |
273 (object)) | |
274 { | |
275 return SYMBOLP (object) ? Qt : Qnil; | |
276 } | |
277 | |
278 DEFUN ("keywordp", Fkeywordp, 1, 1, 0, /* | |
279 Return t if OBJECT is a keyword. | |
280 */ | |
281 (object)) | |
282 { | |
283 return KEYWORDP (object) ? Qt : Qnil; | |
284 } | |
285 | |
286 DEFUN ("vectorp", Fvectorp, 1, 1, 0, /* | |
287 Return t if OBJECT is a vector. | |
288 */ | |
289 (object)) | |
290 { | |
291 return VECTORP (object) ? Qt : Qnil; | |
292 } | |
293 | |
294 DEFUN ("bit-vector-p", Fbit_vector_p, 1, 1, 0, /* | |
295 Return t if OBJECT is a bit vector. | |
296 */ | |
297 (object)) | |
298 { | |
299 return BIT_VECTORP (object) ? Qt : Qnil; | |
300 } | |
301 | |
302 DEFUN ("stringp", Fstringp, 1, 1, 0, /* | |
303 Return t if OBJECT is a string. | |
304 */ | |
305 (object)) | |
306 { | |
307 return STRINGP (object) ? Qt : Qnil; | |
308 } | |
309 | |
310 DEFUN ("arrayp", Farrayp, 1, 1, 0, /* | |
311 Return t if OBJECT is an array (string, vector, or bit vector). | |
312 */ | |
313 (object)) | |
314 { | |
315 return (VECTORP (object) || | |
316 STRINGP (object) || | |
317 BIT_VECTORP (object)) | |
318 ? Qt : Qnil; | |
319 } | |
320 | |
321 DEFUN ("sequencep", Fsequencep, 1, 1, 0, /* | |
322 Return t if OBJECT is a sequence (list or array). | |
323 */ | |
324 (object)) | |
325 { | |
326 return (LISTP (object) || | |
327 VECTORP (object) || | |
328 STRINGP (object) || | |
329 BIT_VECTORP (object)) | |
330 ? Qt : Qnil; | |
331 } | |
332 | |
333 DEFUN ("markerp", Fmarkerp, 1, 1, 0, /* | |
334 Return t if OBJECT is a marker (editor pointer). | |
335 */ | |
336 (object)) | |
337 { | |
338 return MARKERP (object) ? Qt : Qnil; | |
339 } | |
340 | |
341 DEFUN ("subrp", Fsubrp, 1, 1, 0, /* | |
342 Return t if OBJECT is a built-in function. | |
343 */ | |
344 (object)) | |
345 { | |
346 return SUBRP (object) ? Qt : Qnil; | |
347 } | |
348 | |
349 DEFUN ("subr-min-args", Fsubr_min_args, 1, 1, 0, /* | |
350 Return minimum number of args built-in function SUBR may be called with. | |
351 */ | |
352 (subr)) | |
353 { | |
354 CHECK_SUBR (subr); | |
355 return make_int (XSUBR (subr)->min_args); | |
356 } | |
357 | |
358 DEFUN ("subr-max-args", Fsubr_max_args, 1, 1, 0, /* | |
359 Return maximum number of args built-in function SUBR may be called with, | |
360 or nil if it takes an arbitrary number of arguments or is a special form. | |
361 */ | |
362 (subr)) | |
363 { | |
364 int nargs; | |
365 CHECK_SUBR (subr); | |
366 nargs = XSUBR (subr)->max_args; | |
367 if (nargs == MANY || nargs == UNEVALLED) | |
368 return Qnil; | |
369 else | |
370 return make_int (nargs); | |
371 } | |
372 | |
373 DEFUN ("subr-interactive", Fsubr_interactive, 1, 1, 0, /* | |
444 | 374 Return the interactive spec of the subr object SUBR, or nil. |
428 | 375 If non-nil, the return value will be a list whose first element is |
376 `interactive' and whose second element is the interactive spec. | |
377 */ | |
378 (subr)) | |
379 { | |
867 | 380 const CIbyte *prompt; |
428 | 381 CHECK_SUBR (subr); |
382 prompt = XSUBR (subr)->prompt; | |
771 | 383 return prompt ? list2 (Qinteractive, build_msg_string (prompt)) : Qnil; |
428 | 384 } |
385 | |
386 | |
387 DEFUN ("characterp", Fcharacterp, 1, 1, 0, /* | |
388 Return t if OBJECT is a character. | |
389 Unlike in XEmacs v19 and FSF Emacs, a character is its own primitive type. | |
390 Any character can be converted into an equivalent integer using | |
391 `char-int'. To convert the other way, use `int-char'; however, | |
392 only some integers can be converted into characters. Such an integer | |
393 is called a `char-int'; see `char-int-p'. | |
394 | |
395 Some functions that work on integers (e.g. the comparison functions | |
396 <, <=, =, /=, etc. and the arithmetic functions +, -, *, etc.) | |
397 accept characters and implicitly convert them into integers. In | |
398 general, functions that work on characters also accept char-ints and | |
399 implicitly convert them into characters. WARNING: Neither of these | |
400 behaviors is very desirable, and they are maintained for backward | |
401 compatibility with old E-Lisp programs that confounded characters and | |
402 integers willy-nilly. These behaviors may change in the future; therefore, | |
403 do not rely on them. Instead, use the character-specific functions such | |
404 as `char='. | |
405 */ | |
406 (object)) | |
407 { | |
408 return CHARP (object) ? Qt : Qnil; | |
409 } | |
410 | |
411 DEFUN ("char-to-int", Fchar_to_int, 1, 1, 0, /* | |
444 | 412 Convert CHARACTER into an equivalent integer. |
428 | 413 The resulting integer will always be non-negative. The integers in |
414 the range 0 - 255 map to characters as follows: | |
415 | |
416 0 - 31 Control set 0 | |
417 32 - 127 ASCII | |
418 128 - 159 Control set 1 | |
419 160 - 255 Right half of ISO-8859-1 | |
420 | |
421 If support for Mule does not exist, these are the only valid character | |
422 values. When Mule support exists, the values assigned to other characters | |
423 may vary depending on the particular version of XEmacs, the order in which | |
424 character sets were loaded, etc., and you should not depend on them. | |
425 */ | |
444 | 426 (character)) |
428 | 427 { |
444 | 428 CHECK_CHAR (character); |
429 return make_int (XCHAR (character)); | |
428 | 430 } |
431 | |
432 DEFUN ("int-to-char", Fint_to_char, 1, 1, 0, /* | |
444 | 433 Convert integer INTEGER into the equivalent character. |
428 | 434 Not all integers correspond to valid characters; use `char-int-p' to |
435 determine whether this is the case. If the integer cannot be converted, | |
436 nil is returned. | |
437 */ | |
438 (integer)) | |
439 { | |
440 CHECK_INT (integer); | |
441 if (CHAR_INTP (integer)) | |
442 return make_char (XINT (integer)); | |
443 else | |
444 return Qnil; | |
445 } | |
446 | |
447 DEFUN ("char-int-p", Fchar_int_p, 1, 1, 0, /* | |
448 Return t if OBJECT is an integer that can be converted into a character. | |
449 See `char-int'. | |
450 */ | |
451 (object)) | |
452 { | |
453 return CHAR_INTP (object) ? Qt : Qnil; | |
454 } | |
455 | |
456 DEFUN ("char-or-char-int-p", Fchar_or_char_int_p, 1, 1, 0, /* | |
457 Return t if OBJECT is a character or an integer that can be converted into one. | |
458 */ | |
459 (object)) | |
460 { | |
461 return CHAR_OR_CHAR_INTP (object) ? Qt : Qnil; | |
462 } | |
463 | |
464 DEFUN ("char-or-string-p", Fchar_or_string_p, 1, 1, 0, /* | |
465 Return t if OBJECT is a character (or a char-int) or a string. | |
466 It is semi-hateful that we allow a char-int here, as it goes against | |
467 the name of this function, but it makes the most sense considering the | |
468 other steps we take to maintain compatibility with the old character/integer | |
469 confoundedness in older versions of E-Lisp. | |
470 */ | |
471 (object)) | |
472 { | |
473 return CHAR_OR_CHAR_INTP (object) || STRINGP (object) ? Qt : Qnil; | |
474 } | |
475 | |
1983 | 476 #ifdef HAVE_BIGNUM |
477 /* In this case, integerp is defined in number.c. */ | |
478 DEFUN ("fixnump", Ffixnump, 1, 1, 0, /* | |
479 Return t if OBJECT is a fixnum. | |
480 */ | |
481 (object)) | |
482 { | |
483 return INTP (object) ? Qt : Qnil; | |
484 } | |
485 #else | |
428 | 486 DEFUN ("integerp", Fintegerp, 1, 1, 0, /* |
487 Return t if OBJECT is an integer. | |
488 */ | |
489 (object)) | |
490 { | |
491 return INTP (object) ? Qt : Qnil; | |
492 } | |
1983 | 493 #endif |
428 | 494 |
495 DEFUN ("integer-or-marker-p", Finteger_or_marker_p, 1, 1, 0, /* | |
496 Return t if OBJECT is an integer or a marker (editor pointer). | |
497 */ | |
498 (object)) | |
499 { | |
500 return INTP (object) || MARKERP (object) ? Qt : Qnil; | |
501 } | |
502 | |
503 DEFUN ("integer-or-char-p", Finteger_or_char_p, 1, 1, 0, /* | |
504 Return t if OBJECT is an integer or a character. | |
505 */ | |
506 (object)) | |
507 { | |
508 return INTP (object) || CHARP (object) ? Qt : Qnil; | |
509 } | |
510 | |
511 DEFUN ("integer-char-or-marker-p", Finteger_char_or_marker_p, 1, 1, 0, /* | |
512 Return t if OBJECT is an integer, character or a marker (editor pointer). | |
513 */ | |
514 (object)) | |
515 { | |
516 return INTP (object) || CHARP (object) || MARKERP (object) ? Qt : Qnil; | |
517 } | |
518 | |
519 DEFUN ("natnump", Fnatnump, 1, 1, 0, /* | |
520 Return t if OBJECT is a nonnegative integer. | |
521 */ | |
522 (object)) | |
523 { | |
1983 | 524 return NATNUMP (object) |
525 #ifdef HAVE_BIGNUM | |
526 || (BIGNUMP (object) && bignum_sign (XBIGNUM_DATA (object)) >= 0) | |
527 #endif | |
528 ? Qt : Qnil; | |
529 } | |
530 | |
531 DEFUN ("nonnegativep", Fnonnegativep, 1, 1, 0, /* | |
532 Return t if OBJECT is a nonnegative number. | |
533 */ | |
534 (object)) | |
535 { | |
536 return NATNUMP (object) | |
537 #ifdef HAVE_BIGNUM | |
538 || (BIGNUMP (object) && bignum_sign (XBIGNUM_DATA (object)) >= 0) | |
539 #endif | |
540 #ifdef HAVE_RATIO | |
541 || (RATIOP (object) && ratio_sign (XRATIO_DATA (object)) >= 0) | |
542 #endif | |
543 #ifdef HAVE_BIGFLOAT | |
544 || (BIGFLOATP (object) && bigfloat_sign (XBIGFLOAT_DATA (object)) >= 0) | |
545 #endif | |
546 ? Qt : Qnil; | |
428 | 547 } |
548 | |
549 DEFUN ("bitp", Fbitp, 1, 1, 0, /* | |
550 Return t if OBJECT is a bit (0 or 1). | |
551 */ | |
552 (object)) | |
553 { | |
554 return BITP (object) ? Qt : Qnil; | |
555 } | |
556 | |
557 DEFUN ("numberp", Fnumberp, 1, 1, 0, /* | |
558 Return t if OBJECT is a number (floating point or integer). | |
559 */ | |
560 (object)) | |
561 { | |
1983 | 562 #ifdef WITH_NUMBER_TYPES |
563 return NUMBERP (object) ? Qt : Qnil; | |
564 #else | |
428 | 565 return INT_OR_FLOATP (object) ? Qt : Qnil; |
1983 | 566 #endif |
428 | 567 } |
568 | |
569 DEFUN ("number-or-marker-p", Fnumber_or_marker_p, 1, 1, 0, /* | |
570 Return t if OBJECT is a number or a marker. | |
571 */ | |
572 (object)) | |
573 { | |
574 return INT_OR_FLOATP (object) || MARKERP (object) ? Qt : Qnil; | |
575 } | |
576 | |
577 DEFUN ("number-char-or-marker-p", Fnumber_char_or_marker_p, 1, 1, 0, /* | |
578 Return t if OBJECT is a number, character or a marker. | |
579 */ | |
580 (object)) | |
581 { | |
582 return (INT_OR_FLOATP (object) || | |
583 CHARP (object) || | |
584 MARKERP (object)) | |
585 ? Qt : Qnil; | |
586 } | |
587 | |
588 DEFUN ("floatp", Ffloatp, 1, 1, 0, /* | |
589 Return t if OBJECT is a floating point number. | |
590 */ | |
591 (object)) | |
592 { | |
593 return FLOATP (object) ? Qt : Qnil; | |
594 } | |
595 | |
596 DEFUN ("type-of", Ftype_of, 1, 1, 0, /* | |
597 Return a symbol representing the type of OBJECT. | |
598 */ | |
599 (object)) | |
600 { | |
601 switch (XTYPE (object)) | |
602 { | |
603 case Lisp_Type_Record: | |
604 return intern (XRECORD_LHEADER_IMPLEMENTATION (object)->name); | |
605 | |
606 case Lisp_Type_Char: return Qcharacter; | |
607 | |
608 default: return Qinteger; | |
609 } | |
610 } | |
611 | |
612 | |
613 /* Extract and set components of lists */ | |
614 | |
615 DEFUN ("car", Fcar, 1, 1, 0, /* | |
3343 | 616 Return the car of CONS. If CONS is nil, return nil. |
617 The car of a list or a dotted pair is its first element. | |
618 | |
619 Error if CONS is not nil and not a cons cell. See also `car-safe'. | |
428 | 620 */ |
3343 | 621 (cons)) |
428 | 622 { |
623 while (1) | |
624 { | |
3343 | 625 if (CONSP (cons)) |
626 return XCAR (cons); | |
627 else if (NILP (cons)) | |
428 | 628 return Qnil; |
629 else | |
3343 | 630 cons = wrong_type_argument (Qlistp, cons); |
428 | 631 } |
632 } | |
633 | |
634 DEFUN ("car-safe", Fcar_safe, 1, 1, 0, /* | |
635 Return the car of OBJECT if it is a cons cell, or else nil. | |
636 */ | |
637 (object)) | |
638 { | |
639 return CONSP (object) ? XCAR (object) : Qnil; | |
640 } | |
641 | |
642 DEFUN ("cdr", Fcdr, 1, 1, 0, /* | |
3343 | 643 Return the cdr of CONS. If CONS is nil, return nil. |
644 The cdr of a list is the list without its first element. The cdr of a | |
645 dotted pair (A . B) is the second element, B. | |
646 | |
428 | 647 Error if arg is not nil and not a cons cell. See also `cdr-safe'. |
648 */ | |
3343 | 649 (cons)) |
428 | 650 { |
651 while (1) | |
652 { | |
3343 | 653 if (CONSP (cons)) |
654 return XCDR (cons); | |
655 else if (NILP (cons)) | |
428 | 656 return Qnil; |
657 else | |
3343 | 658 cons = wrong_type_argument (Qlistp, cons); |
428 | 659 } |
660 } | |
661 | |
662 DEFUN ("cdr-safe", Fcdr_safe, 1, 1, 0, /* | |
663 Return the cdr of OBJECT if it is a cons cell, else nil. | |
664 */ | |
665 (object)) | |
666 { | |
667 return CONSP (object) ? XCDR (object) : Qnil; | |
668 } | |
669 | |
670 DEFUN ("setcar", Fsetcar, 2, 2, 0, /* | |
444 | 671 Set the car of CONS-CELL to be NEWCAR. Return NEWCAR. |
3343 | 672 The car of a list or a dotted pair is its first element. |
428 | 673 */ |
444 | 674 (cons_cell, newcar)) |
428 | 675 { |
444 | 676 if (!CONSP (cons_cell)) |
677 cons_cell = wrong_type_argument (Qconsp, cons_cell); | |
428 | 678 |
444 | 679 XCAR (cons_cell) = newcar; |
428 | 680 return newcar; |
681 } | |
682 | |
683 DEFUN ("setcdr", Fsetcdr, 2, 2, 0, /* | |
444 | 684 Set the cdr of CONS-CELL to be NEWCDR. Return NEWCDR. |
3343 | 685 The cdr of a list is the list without its first element. The cdr of a |
686 dotted pair (A . B) is the second element, B. | |
428 | 687 */ |
444 | 688 (cons_cell, newcdr)) |
428 | 689 { |
444 | 690 if (!CONSP (cons_cell)) |
691 cons_cell = wrong_type_argument (Qconsp, cons_cell); | |
428 | 692 |
444 | 693 XCDR (cons_cell) = newcdr; |
428 | 694 return newcdr; |
695 } | |
696 | |
697 /* Find the function at the end of a chain of symbol function indirections. | |
698 | |
699 If OBJECT is a symbol, find the end of its function chain and | |
700 return the value found there. If OBJECT is not a symbol, just | |
701 return it. If there is a cycle in the function chain, signal a | |
702 cyclic-function-indirection error. | |
703 | |
442 | 704 This is like Findirect_function when VOID_FUNCTION_ERRORP is true. |
705 When VOID_FUNCTION_ERRORP is false, no error is signaled if the end | |
706 of the chain ends up being Qunbound. */ | |
428 | 707 Lisp_Object |
442 | 708 indirect_function (Lisp_Object object, int void_function_errorp) |
428 | 709 { |
710 #define FUNCTION_INDIRECTION_SUSPICION_LENGTH 16 | |
711 Lisp_Object tortoise, hare; | |
712 int count; | |
713 | |
714 for (hare = tortoise = object, count = 0; | |
715 SYMBOLP (hare); | |
716 hare = XSYMBOL (hare)->function, count++) | |
717 { | |
718 if (count < FUNCTION_INDIRECTION_SUSPICION_LENGTH) continue; | |
719 | |
720 if (count & 1) | |
721 tortoise = XSYMBOL (tortoise)->function; | |
722 if (EQ (hare, tortoise)) | |
723 return Fsignal (Qcyclic_function_indirection, list1 (object)); | |
724 } | |
725 | |
442 | 726 if (void_function_errorp && UNBOUNDP (hare)) |
436 | 727 return signal_void_function_error (object); |
428 | 728 |
729 return hare; | |
730 } | |
731 | |
732 DEFUN ("indirect-function", Findirect_function, 1, 1, 0, /* | |
733 Return the function at the end of OBJECT's function chain. | |
734 If OBJECT is a symbol, follow all function indirections and return | |
735 the final function binding. | |
736 If OBJECT is not a symbol, just return it. | |
737 Signal a void-function error if the final symbol is unbound. | |
738 Signal a cyclic-function-indirection error if there is a loop in the | |
739 function chain of symbols. | |
740 */ | |
741 (object)) | |
742 { | |
743 return indirect_function (object, 1); | |
744 } | |
745 | |
746 /* Extract and set vector and string elements */ | |
747 | |
748 DEFUN ("aref", Faref, 2, 2, 0, /* | |
749 Return the element of ARRAY at index INDEX. | |
750 ARRAY may be a vector, bit vector, or string. INDEX starts at 0. | |
751 */ | |
752 (array, index_)) | |
753 { | |
754 EMACS_INT idx; | |
755 | |
756 retry: | |
757 | |
758 if (INTP (index_)) idx = XINT (index_); | |
759 else if (CHARP (index_)) idx = XCHAR (index_); /* yuck! */ | |
760 else | |
761 { | |
762 index_ = wrong_type_argument (Qinteger_or_char_p, index_); | |
763 goto retry; | |
764 } | |
765 | |
766 if (idx < 0) goto range_error; | |
767 | |
768 if (VECTORP (array)) | |
769 { | |
770 if (idx >= XVECTOR_LENGTH (array)) goto range_error; | |
771 return XVECTOR_DATA (array)[idx]; | |
772 } | |
773 else if (BIT_VECTORP (array)) | |
774 { | |
647 | 775 if (idx >= (EMACS_INT) bit_vector_length (XBIT_VECTOR (array))) |
776 goto range_error; | |
428 | 777 return make_int (bit_vector_bit (XBIT_VECTOR (array), idx)); |
778 } | |
779 else if (STRINGP (array)) | |
780 { | |
826 | 781 if (idx >= string_char_length (array)) goto range_error; |
867 | 782 return make_char (string_ichar (array, idx)); |
428 | 783 } |
784 #ifdef LOSING_BYTECODE | |
785 else if (COMPILED_FUNCTIONP (array)) | |
786 { | |
787 /* Weird, gross compatibility kludge */ | |
788 return Felt (array, index_); | |
789 } | |
790 #endif | |
791 else | |
792 { | |
793 check_losing_bytecode ("aref", array); | |
794 array = wrong_type_argument (Qarrayp, array); | |
795 goto retry; | |
796 } | |
797 | |
798 range_error: | |
799 args_out_of_range (array, index_); | |
1204 | 800 RETURN_NOT_REACHED (Qnil); |
428 | 801 } |
802 | |
803 DEFUN ("aset", Faset, 3, 3, 0, /* | |
804 Store into the element of ARRAY at index INDEX the value NEWVAL. | |
805 ARRAY may be a vector, bit vector, or string. INDEX starts at 0. | |
806 */ | |
807 (array, index_, newval)) | |
808 { | |
809 EMACS_INT idx; | |
810 | |
811 retry: | |
812 | |
813 if (INTP (index_)) idx = XINT (index_); | |
814 else if (CHARP (index_)) idx = XCHAR (index_); /* yuck! */ | |
815 else | |
816 { | |
817 index_ = wrong_type_argument (Qinteger_or_char_p, index_); | |
818 goto retry; | |
819 } | |
820 | |
821 if (idx < 0) goto range_error; | |
822 | |
771 | 823 CHECK_LISP_WRITEABLE (array); |
428 | 824 if (VECTORP (array)) |
825 { | |
826 if (idx >= XVECTOR_LENGTH (array)) goto range_error; | |
827 XVECTOR_DATA (array)[idx] = newval; | |
828 } | |
829 else if (BIT_VECTORP (array)) | |
830 { | |
647 | 831 if (idx >= (EMACS_INT) bit_vector_length (XBIT_VECTOR (array))) |
832 goto range_error; | |
428 | 833 CHECK_BIT (newval); |
834 set_bit_vector_bit (XBIT_VECTOR (array), idx, !ZEROP (newval)); | |
835 } | |
836 else if (STRINGP (array)) | |
837 { | |
838 CHECK_CHAR_COERCE_INT (newval); | |
826 | 839 if (idx >= string_char_length (array)) goto range_error; |
793 | 840 set_string_char (array, idx, XCHAR (newval)); |
428 | 841 bump_string_modiff (array); |
842 } | |
843 else | |
844 { | |
845 array = wrong_type_argument (Qarrayp, array); | |
846 goto retry; | |
847 } | |
848 | |
849 return newval; | |
850 | |
851 range_error: | |
852 args_out_of_range (array, index_); | |
1204 | 853 RETURN_NOT_REACHED (Qnil); |
428 | 854 } |
855 | |
856 | |
857 /**********************************************************************/ | |
858 /* Arithmetic functions */ | |
859 /**********************************************************************/ | |
2001 | 860 #ifndef WITH_NUMBER_TYPES |
428 | 861 typedef struct |
862 { | |
863 int int_p; | |
864 union | |
865 { | |
866 EMACS_INT ival; | |
867 double dval; | |
868 } c; | |
869 } int_or_double; | |
870 | |
871 static void | |
872 number_char_or_marker_to_int_or_double (Lisp_Object obj, int_or_double *p) | |
873 { | |
874 retry: | |
875 p->int_p = 1; | |
876 if (INTP (obj)) p->c.ival = XINT (obj); | |
877 else if (CHARP (obj)) p->c.ival = XCHAR (obj); | |
878 else if (MARKERP (obj)) p->c.ival = marker_position (obj); | |
879 else if (FLOATP (obj)) p->c.dval = XFLOAT_DATA (obj), p->int_p = 0; | |
880 else | |
881 { | |
882 obj = wrong_type_argument (Qnumber_char_or_marker_p, obj); | |
883 goto retry; | |
884 } | |
885 } | |
886 | |
887 static double | |
888 number_char_or_marker_to_double (Lisp_Object obj) | |
889 { | |
890 retry: | |
891 if (INTP (obj)) return (double) XINT (obj); | |
892 else if (CHARP (obj)) return (double) XCHAR (obj); | |
893 else if (MARKERP (obj)) return (double) marker_position (obj); | |
894 else if (FLOATP (obj)) return XFLOAT_DATA (obj); | |
895 else | |
896 { | |
897 obj = wrong_type_argument (Qnumber_char_or_marker_p, obj); | |
898 goto retry; | |
899 } | |
900 } | |
2001 | 901 #endif /* WITH_NUMBER_TYPES */ |
428 | 902 |
903 static EMACS_INT | |
904 integer_char_or_marker_to_int (Lisp_Object obj) | |
905 { | |
906 retry: | |
907 if (INTP (obj)) return XINT (obj); | |
908 else if (CHARP (obj)) return XCHAR (obj); | |
909 else if (MARKERP (obj)) return marker_position (obj); | |
910 else | |
911 { | |
912 obj = wrong_type_argument (Qinteger_char_or_marker_p, obj); | |
913 goto retry; | |
914 } | |
915 } | |
916 | |
1983 | 917 #ifdef WITH_NUMBER_TYPES |
918 | |
919 #ifdef HAVE_BIGNUM | |
920 #define BIGNUM_CASE(op) \ | |
921 case BIGNUM_T: \ | |
922 if (!bignum_##op (XBIGNUM_DATA (obj1), XBIGNUM_DATA (obj2))) \ | |
923 return Qnil; \ | |
924 break; | |
925 #else | |
926 #define BIGNUM_CASE(op) | |
927 #endif /* HAVE_BIGNUM */ | |
928 | |
929 #ifdef HAVE_RATIO | |
930 #define RATIO_CASE(op) \ | |
931 case RATIO_T: \ | |
932 if (!ratio_##op (XRATIO_DATA (obj1), XRATIO_DATA (obj2))) \ | |
933 return Qnil; \ | |
934 break; | |
935 #else | |
936 #define RATIO_CASE(op) | |
937 #endif /* HAVE_RATIO */ | |
938 | |
939 #ifdef HAVE_BIGFLOAT | |
940 #define BIGFLOAT_CASE(op) \ | |
941 case BIGFLOAT_T: \ | |
942 if (!bigfloat_##op (XBIGFLOAT_DATA (obj1), XBIGFLOAT_DATA (obj2))) \ | |
943 return Qnil; \ | |
944 break; | |
945 #else | |
946 #define BIGFLOAT_CASE(op) | |
947 #endif /* HAVE_BIGFLOAT */ | |
948 | |
949 #define ARITHCOMPARE_MANY(c_op,op) \ | |
950 { \ | |
951 REGISTER int i; \ | |
952 Lisp_Object obj1, obj2; \ | |
953 \ | |
954 for (i = 1; i < nargs; i++) \ | |
955 { \ | |
956 obj1 = args[i - 1]; \ | |
957 obj2 = args[i]; \ | |
958 switch (promote_args (&obj1, &obj2)) \ | |
959 { \ | |
960 case FIXNUM_T: \ | |
961 if (!(XREALINT (obj1) c_op XREALINT (obj2))) \ | |
962 return Qnil; \ | |
963 break; \ | |
964 BIGNUM_CASE (op) \ | |
965 RATIO_CASE (op) \ | |
966 case FLOAT_T: \ | |
967 if (!(XFLOAT_DATA (obj1) c_op XFLOAT_DATA (obj2))) \ | |
968 return Qnil; \ | |
969 break; \ | |
970 BIGFLOAT_CASE (op) \ | |
971 } \ | |
972 } \ | |
973 return Qt; \ | |
974 } | |
975 #else /* !WITH_NUMBER_TYPES */ | |
976 #define ARITHCOMPARE_MANY(c_op,op) \ | |
428 | 977 { \ |
978 int_or_double iod1, iod2, *p = &iod1, *q = &iod2; \ | |
979 Lisp_Object *args_end = args + nargs; \ | |
980 \ | |
981 number_char_or_marker_to_int_or_double (*args++, p); \ | |
982 \ | |
983 while (args < args_end) \ | |
984 { \ | |
985 number_char_or_marker_to_int_or_double (*args++, q); \ | |
986 \ | |
987 if (!((p->int_p && q->int_p) ? \ | |
1983 | 988 (p->c.ival c_op q->c.ival) : \ |
989 ((p->int_p ? (double) p->c.ival : p->c.dval) c_op \ | |
428 | 990 (q->int_p ? (double) q->c.ival : q->c.dval)))) \ |
991 return Qnil; \ | |
992 \ | |
993 { /* swap */ int_or_double *r = p; p = q; q = r; } \ | |
994 } \ | |
995 return Qt; \ | |
996 } | |
1983 | 997 #endif /* WITH_NUMBER_TYPES */ |
428 | 998 |
999 DEFUN ("=", Feqlsign, 1, MANY, 0, /* | |
1000 Return t if all the arguments are numerically equal. | |
1001 The arguments may be numbers, characters or markers. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1002 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1003 arguments: (FIRST &rest ARGS) |
428 | 1004 */ |
1005 (int nargs, Lisp_Object *args)) | |
1006 { | |
1983 | 1007 ARITHCOMPARE_MANY (==, eql) |
428 | 1008 } |
1009 | |
1010 DEFUN ("<", Flss, 1, MANY, 0, /* | |
1011 Return t if the sequence of arguments is monotonically increasing. | |
3343 | 1012 |
1013 (That is, if there is a second argument, it must be numerically greater than | |
1014 the first. If there is a third, it must be numerically greater than the | |
1015 second, and so on.) At least one argument is required. | |
1016 | |
1017 The arguments may be numbers, characters or markers. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1018 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1019 arguments: (FIRST &rest ARGS) |
428 | 1020 */ |
1021 (int nargs, Lisp_Object *args)) | |
1022 { | |
1983 | 1023 ARITHCOMPARE_MANY (<, lt) |
428 | 1024 } |
1025 | |
1026 DEFUN (">", Fgtr, 1, MANY, 0, /* | |
1027 Return t if the sequence of arguments is monotonically decreasing. | |
3343 | 1028 |
1029 (That is, if there is a second argument, it must be numerically less than | |
1030 the first. If there is a third, it must be numerically less than the | |
1031 second, and so forth.) At least one argument is required. | |
1032 | |
428 | 1033 The arguments may be numbers, characters or markers. |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1034 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1035 arguments: (FIRST &rest ARGS) |
428 | 1036 */ |
1037 (int nargs, Lisp_Object *args)) | |
1038 { | |
1983 | 1039 ARITHCOMPARE_MANY (>, gt) |
428 | 1040 } |
1041 | |
1042 DEFUN ("<=", Fleq, 1, MANY, 0, /* | |
1043 Return t if the sequence of arguments is monotonically nondecreasing. | |
1044 The arguments may be numbers, characters or markers. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1045 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1046 arguments: (FIRST &rest ARGS) |
428 | 1047 */ |
1048 (int nargs, Lisp_Object *args)) | |
1049 { | |
1983 | 1050 ARITHCOMPARE_MANY (<=, le) |
428 | 1051 } |
1052 | |
1053 DEFUN (">=", Fgeq, 1, MANY, 0, /* | |
1054 Return t if the sequence of arguments is monotonically nonincreasing. | |
1055 The arguments may be numbers, characters or markers. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1056 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1057 arguments: (FIRST &rest ARGS) |
428 | 1058 */ |
1059 (int nargs, Lisp_Object *args)) | |
1060 { | |
1983 | 1061 ARITHCOMPARE_MANY (>=, ge) |
428 | 1062 } |
1063 | |
1983 | 1064 /* Unlike all the other comparisons, this is an O(N*N) algorithm. But who |
1065 cares? Inspection of all elisp code distributed by xemacs.org shows that | |
1066 it is almost always called with 2 arguments, rarely with 3, and never with | |
1067 more than 3. The constant factors of algorithms with better asymptotic | |
1068 complexity are higher, which means that those algorithms will run SLOWER | |
1069 than this one in the common case. Optimize the common case! */ | |
428 | 1070 DEFUN ("/=", Fneq, 1, MANY, 0, /* |
1071 Return t if no two arguments are numerically equal. | |
1072 The arguments may be numbers, characters or markers. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1073 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1074 arguments: (FIRST &rest ARGS) |
428 | 1075 */ |
1076 (int nargs, Lisp_Object *args)) | |
1077 { | |
1983 | 1078 #ifdef WITH_NUMBER_TYPES |
1079 REGISTER int i, j; | |
1080 Lisp_Object obj1, obj2; | |
1081 | |
1082 for (i = 0; i < nargs - 1; i++) | |
1083 { | |
1084 obj1 = args[i]; | |
1085 for (j = i + 1; j < nargs; j++) | |
1086 { | |
1087 obj2 = args[j]; | |
1088 switch (promote_args (&obj1, &obj2)) | |
1089 { | |
1090 case FIXNUM_T: | |
1091 if (XREALINT (obj1) == XREALINT (obj2)) | |
1092 return Qnil; | |
1093 break; | |
1094 #ifdef HAVE_BIGNUM | |
1095 case BIGNUM_T: | |
1096 if (bignum_eql (XBIGNUM_DATA (obj1), XBIGNUM_DATA (obj2))) | |
1097 return Qnil; | |
1098 break; | |
1099 #endif | |
1100 #ifdef HAVE_RATIO | |
1101 case RATIO_T: | |
1102 if (ratio_eql (XRATIO_DATA (obj1), XRATIO_DATA (obj2))) | |
1103 return Qnil; | |
1104 break; | |
1105 #endif | |
1106 case FLOAT_T: | |
1107 if (XFLOAT_DATA (obj1) == XFLOAT_DATA (obj2)) | |
1108 return Qnil; | |
1109 break; | |
1110 #ifdef HAVE_BIGFLOAT | |
1111 case BIGFLOAT_T: | |
1112 if (bigfloat_eql (XBIGFLOAT_DATA (obj1), XBIGFLOAT_DATA (obj2))) | |
1113 return Qnil; | |
1114 break; | |
1115 #endif | |
1116 } | |
1117 } | |
1118 } | |
1119 return Qt; | |
1120 #else /* !WITH_NUMBER_TYPES */ | |
428 | 1121 Lisp_Object *args_end = args + nargs; |
1122 Lisp_Object *p, *q; | |
1123 | |
1124 /* Unlike all the other comparisons, this is an N*N algorithm. | |
1125 We could use a hash table for nargs > 50 to make this linear. */ | |
1126 for (p = args; p < args_end; p++) | |
1127 { | |
1128 int_or_double iod1, iod2; | |
1129 number_char_or_marker_to_int_or_double (*p, &iod1); | |
1130 | |
1131 for (q = p + 1; q < args_end; q++) | |
1132 { | |
1133 number_char_or_marker_to_int_or_double (*q, &iod2); | |
1134 | |
1135 if (!((iod1.int_p && iod2.int_p) ? | |
1136 (iod1.c.ival != iod2.c.ival) : | |
1137 ((iod1.int_p ? (double) iod1.c.ival : iod1.c.dval) != | |
1138 (iod2.int_p ? (double) iod2.c.ival : iod2.c.dval)))) | |
1139 return Qnil; | |
1140 } | |
1141 } | |
1142 return Qt; | |
1983 | 1143 #endif /* WITH_NUMBER_TYPES */ |
428 | 1144 } |
1145 | |
1146 DEFUN ("zerop", Fzerop, 1, 1, 0, /* | |
1147 Return t if NUMBER is zero. | |
1148 */ | |
1149 (number)) | |
1150 { | |
1151 retry: | |
1152 if (INTP (number)) | |
1153 return EQ (number, Qzero) ? Qt : Qnil; | |
1983 | 1154 #ifdef HAVE_BIGNUM |
1155 else if (BIGNUMP (number)) | |
1156 return bignum_sign (XBIGNUM_DATA (number)) == 0 ? Qt : Qnil; | |
1157 #endif | |
1158 #ifdef HAVE_RATIO | |
1159 else if (RATIOP (number)) | |
1160 return ratio_sign (XRATIO_DATA (number)) == 0 ? Qt : Qnil; | |
1161 #endif | |
428 | 1162 else if (FLOATP (number)) |
1163 return XFLOAT_DATA (number) == 0.0 ? Qt : Qnil; | |
1983 | 1164 #ifdef HAVE_BIGFLOAT |
1165 else if (BIGFLOATP (number)) | |
1166 return bigfloat_sign (XBIGFLOAT_DATA (number)) == 0 ? Qt : Qnil; | |
1167 #endif | |
428 | 1168 else |
1169 { | |
1170 number = wrong_type_argument (Qnumberp, number); | |
1171 goto retry; | |
1172 } | |
1173 } | |
1174 | |
1175 /* Convert between a 32-bit value and a cons of two 16-bit values. | |
1176 This is used to pass 32-bit integers to and from the user. | |
1177 Use time_to_lisp() and lisp_to_time() for time values. | |
1178 | |
1179 If you're thinking of using this to store a pointer into a Lisp Object | |
1180 for internal purposes (such as when calling record_unwind_protect()), | |
1181 try using make_opaque_ptr()/get_opaque_ptr() instead. */ | |
1182 Lisp_Object | |
1183 word_to_lisp (unsigned int item) | |
1184 { | |
1185 return Fcons (make_int (item >> 16), make_int (item & 0xffff)); | |
1186 } | |
1187 | |
1188 unsigned int | |
1189 lisp_to_word (Lisp_Object item) | |
1190 { | |
1191 if (INTP (item)) | |
1192 return XINT (item); | |
1193 else | |
1194 { | |
1195 Lisp_Object top = Fcar (item); | |
1196 Lisp_Object bot = Fcdr (item); | |
1197 CHECK_INT (top); | |
1198 CHECK_INT (bot); | |
1199 return (XINT (top) << 16) | (XINT (bot) & 0xffff); | |
1200 } | |
1201 } | |
1202 | |
1203 | |
1204 DEFUN ("number-to-string", Fnumber_to_string, 1, 1, 0, /* | |
444 | 1205 Convert NUMBER to a string by printing it in decimal. |
428 | 1206 Uses a minus sign if negative. |
444 | 1207 NUMBER may be an integer or a floating point number. |
1983 | 1208 If supported, it may also be a ratio. |
428 | 1209 */ |
444 | 1210 (number)) |
428 | 1211 { |
1983 | 1212 #ifdef WITH_NUMBER_TYPES |
1213 CHECK_NUMBER (number); | |
1214 #else | |
444 | 1215 CHECK_INT_OR_FLOAT (number); |
1983 | 1216 #endif |
428 | 1217 |
444 | 1218 if (FLOATP (number)) |
428 | 1219 { |
1220 char pigbuf[350]; /* see comments in float_to_string */ | |
1221 | |
444 | 1222 float_to_string (pigbuf, XFLOAT_DATA (number)); |
428 | 1223 return build_string (pigbuf); |
1224 } | |
1983 | 1225 #ifdef HAVE_BIGNUM |
1226 if (BIGNUMP (number)) | |
1227 { | |
1228 char *str = bignum_to_string (XBIGNUM_DATA (number), 10); | |
1229 Lisp_Object retval = build_string (str); | |
1230 xfree (str, char *); | |
1231 return retval; | |
1232 } | |
1233 #endif | |
1234 #ifdef HAVE_RATIO | |
1235 if (RATIOP (number)) | |
1236 { | |
1237 char *str = ratio_to_string (XRATIO_DATA (number), 10); | |
1238 Lisp_Object retval = build_string (str); | |
1239 xfree (str, char *); | |
1240 return retval; | |
1241 } | |
1242 #endif | |
1243 #ifdef HAVE_BIGFLOAT | |
1244 if (BIGFLOATP (number)) | |
1245 { | |
1246 char *str = bigfloat_to_string (XBIGFLOAT_DATA (number), 10); | |
1247 Lisp_Object retval = build_string (str); | |
1248 xfree (str, char *); | |
1249 return retval; | |
1250 } | |
1251 #endif | |
428 | 1252 |
603 | 1253 { |
1254 char buffer[DECIMAL_PRINT_SIZE (long)]; | |
1255 | |
1256 long_to_string (buffer, XINT (number)); | |
1257 return build_string (buffer); | |
1258 } | |
428 | 1259 } |
1260 | |
2001 | 1261 #ifndef HAVE_BIGNUM |
428 | 1262 static int |
1263 digit_to_number (int character, int base) | |
1264 { | |
1265 /* Assumes ASCII */ | |
1266 int digit = ((character >= '0' && character <= '9') ? character - '0' : | |
1267 (character >= 'a' && character <= 'z') ? character - 'a' + 10 : | |
1268 (character >= 'A' && character <= 'Z') ? character - 'A' + 10 : | |
1269 -1); | |
1270 | |
1271 return digit >= base ? -1 : digit; | |
1272 } | |
2001 | 1273 #endif |
428 | 1274 |
1275 DEFUN ("string-to-number", Fstring_to_number, 1, 2, 0, /* | |
444 | 1276 Convert STRING to a number by parsing it as a number in base BASE. |
428 | 1277 This parses both integers and floating point numbers. |
1983 | 1278 If they are supported, it also reads ratios. |
428 | 1279 It ignores leading spaces and tabs. |
1280 | |
444 | 1281 If BASE is nil or omitted, base 10 is used. |
1282 BASE must be an integer between 2 and 16 (inclusive). | |
428 | 1283 Floating point numbers always use base 10. |
1284 */ | |
1285 (string, base)) | |
1286 { | |
1995 | 1287 Ibyte *p; |
428 | 1288 int b; |
1289 | |
1290 CHECK_STRING (string); | |
1291 | |
1292 if (NILP (base)) | |
1293 b = 10; | |
1294 else | |
1295 { | |
1296 CHECK_INT (base); | |
1297 b = XINT (base); | |
1298 check_int_range (b, 2, 16); | |
1299 } | |
1300 | |
1995 | 1301 p = XSTRING_DATA (string); |
428 | 1302 |
1303 /* Skip any whitespace at the front of the number. Some versions of | |
1304 atoi do this anyway, so we might as well make Emacs lisp consistent. */ | |
1305 while (*p == ' ' || *p == '\t') | |
1306 p++; | |
1307 | |
1995 | 1308 if (isfloat_string ((const char *) p) && b == 10) |
1983 | 1309 { |
1310 #ifdef HAVE_BIGFLOAT | |
1311 if (ZEROP (Vdefault_float_precision)) | |
1312 #endif | |
1995 | 1313 return make_float (atof ((const char *) p)); |
1983 | 1314 #ifdef HAVE_BIGFLOAT |
1315 else | |
1316 { | |
2013 | 1317 /* The GMP version of bigfloat_set_string (mpf_set_str) has the |
1318 following limitation: if p starts with a '+' sign, it does | |
1319 nothing; i.e., it leaves its bigfloat argument untouched. | |
1320 Therefore, move p past any leading '+' signs. */ | |
2010 | 1321 if (*p == '+') |
1322 p++; | |
1983 | 1323 bigfloat_set_prec (scratch_bigfloat, bigfloat_get_default_prec ()); |
1995 | 1324 bigfloat_set_string (scratch_bigfloat, (const char *) p, b); |
1983 | 1325 return make_bigfloat_bf (scratch_bigfloat); |
1326 } | |
1327 #endif | |
1328 } | |
1329 | |
1330 #ifdef HAVE_RATIO | |
1331 if (qxestrchr (p, '/') != NULL) | |
1332 { | |
2013 | 1333 /* The GMP version of ratio_set_string (mpq_set_str) has the following |
1334 limitations: | |
1335 - If p starts with a '+' sign, it does nothing; i.e., it leaves its | |
1336 ratio argument untouched. | |
1337 - If p has a '+' sign after the '/' (e.g., 300/+400), it sets the | |
1338 numerator from the string, but *leaves the denominator unchanged*. | |
1339 - If p has trailing nonnumeric characters, it sets the numerator from | |
1340 the string, but leaves the denominator unchanged. | |
1341 - If p has more than one '/', (e.g., 1/2/3), then it sets the | |
1342 numerator from the string, but leaves the denominator unchanged. | |
1343 | |
1344 Therefore, move p past any leading '+' signs, temporarily drop a null | |
1345 after the numeric characters we are trying to convert, and then put | |
1346 the nulled character back afterward. I am not going to fix problem | |
1347 #2; just don't write ratios that look like that. */ | |
1348 Ibyte *end, save; | |
1349 | |
2010 | 1350 if (*p == '+') |
1351 p++; | |
2013 | 1352 |
2014 | 1353 end = p; |
1354 if (*end == '-') | |
1355 end++; | |
1356 while ((*end >= '0' && *end <= '9') || | |
2013 | 1357 (b > 10 && *end >= 'a' && *end <= 'a' + b - 11) || |
2014 | 1358 (b > 10 && *end >= 'A' && *end <= 'A' + b - 11)) |
1359 end++; | |
2013 | 1360 if (*end == '/') |
2014 | 1361 { |
1362 end++; | |
1363 if (*end == '-') | |
1364 end++; | |
1365 while ((*end >= '0' && *end <= '9') || | |
1366 (b > 10 && *end >= 'a' && *end <= 'a' + b - 11) || | |
1367 (b > 10 && *end >= 'A' && *end <= 'A' + b - 11)) | |
1368 end++; | |
1369 } | |
2013 | 1370 save = *end; |
1371 *end = '\0'; | |
1995 | 1372 ratio_set_string (scratch_ratio, (const char *) p, b); |
2013 | 1373 *end = save; |
1374 ratio_canonicalize (scratch_ratio); | |
1983 | 1375 return make_ratio_rt (scratch_ratio); |
1376 } | |
1377 #endif /* HAVE_RATIO */ | |
1378 | |
1379 #ifdef HAVE_BIGNUM | |
2013 | 1380 { |
1381 /* The GMP version of bignum_set_string (mpz_set_str) has the following | |
1382 limitations: | |
1383 - If p starts with a '+' sign, it does nothing; i.e., it leaves its | |
1384 bignum argument untouched. | |
1385 - If p is the empty string, it does nothing. | |
1386 - If p has trailing nonnumeric characters, it does nothing. | |
1387 | |
1388 Therefore, move p past any leading '+' signs, temporarily drop a null | |
1389 after the numeric characters we are trying to convert, special case the | |
1390 empty string, and then put the nulled character back afterward. */ | |
1391 Ibyte *end, save; | |
1392 Lisp_Object retval; | |
1393 | |
1394 if (*p == '+') | |
1395 p++; | |
2014 | 1396 end = p; |
1397 if (*end == '-') | |
1398 end++; | |
1399 while ((*end >= '0' && *end <= '9') || | |
2013 | 1400 (b > 10 && *end >= 'a' && *end <= 'a' + b - 11) || |
2014 | 1401 (b > 10 && *end >= 'A' && *end <= 'A' + b - 11)) |
1402 end++; | |
2013 | 1403 save = *end; |
1404 *end = '\0'; | |
1405 if (*p == '\0') | |
1406 retval = make_int (0); | |
1407 else | |
1408 { | |
1409 bignum_set_string (scratch_bignum, (const char *) p, b); | |
1410 retval = Fcanonicalize_number (make_bignum_bg (scratch_bignum)); | |
1411 } | |
1412 *end = save; | |
1413 return retval; | |
1414 } | |
1983 | 1415 #else |
428 | 1416 if (b == 10) |
1417 { | |
1418 /* Use the system-provided functions for base 10. */ | |
1419 #if SIZEOF_EMACS_INT == SIZEOF_INT | |
2054 | 1420 return make_int (atoi ((char*) p)); |
428 | 1421 #elif SIZEOF_EMACS_INT == SIZEOF_LONG |
2054 | 1422 return make_int (atol ((char*) p)); |
428 | 1423 #elif SIZEOF_EMACS_INT == SIZEOF_LONG_LONG |
2054 | 1424 return make_int (atoll ((char*) p)); |
428 | 1425 #endif |
1426 } | |
1427 else | |
1428 { | |
444 | 1429 int negative = 1; |
428 | 1430 EMACS_INT v = 0; |
1431 | |
1432 if (*p == '-') | |
1433 { | |
1434 negative = -1; | |
1435 p++; | |
1436 } | |
1437 else if (*p == '+') | |
1438 p++; | |
1439 while (1) | |
1440 { | |
444 | 1441 int digit = digit_to_number (*p++, b); |
428 | 1442 if (digit < 0) |
1443 break; | |
1444 v = v * b + digit; | |
1445 } | |
1446 return make_int (negative * v); | |
1447 } | |
1983 | 1448 #endif /* HAVE_BIGNUM */ |
428 | 1449 } |
1450 | |
1451 | |
1452 DEFUN ("+", Fplus, 0, MANY, 0, /* | |
1453 Return sum of any number of arguments. | |
1454 The arguments should all be numbers, characters or markers. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1455 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1456 arguments: (&rest ARGS) |
428 | 1457 */ |
1458 (int nargs, Lisp_Object *args)) | |
1459 { | |
1983 | 1460 #ifdef WITH_NUMBER_TYPES |
1461 REGISTER int i; | |
1462 Lisp_Object accum = make_int (0), addend; | |
1463 | |
1464 for (i = 0; i < nargs; i++) | |
1465 { | |
1466 addend = args[i]; | |
1467 switch (promote_args (&accum, &addend)) | |
1468 { | |
1469 case FIXNUM_T: | |
1470 accum = make_integer (XREALINT (accum) + XREALINT (addend)); | |
1471 break; | |
1472 #ifdef HAVE_BIGNUM | |
1473 case BIGNUM_T: | |
1474 bignum_add (scratch_bignum, XBIGNUM_DATA (accum), | |
1475 XBIGNUM_DATA (addend)); | |
1476 accum = make_bignum_bg (scratch_bignum); | |
1477 break; | |
1478 #endif | |
1479 #ifdef HAVE_RATIO | |
1480 case RATIO_T: | |
1481 ratio_add (scratch_ratio, XRATIO_DATA (accum), | |
1482 XRATIO_DATA (addend)); | |
1483 accum = make_ratio_rt (scratch_ratio); | |
1484 break; | |
1485 #endif | |
1486 case FLOAT_T: | |
1487 accum = make_float (XFLOAT_DATA (accum) + XFLOAT_DATA (addend)); | |
1488 break; | |
1489 #ifdef HAVE_BIGFLOAT | |
1490 case BIGFLOAT_T: | |
1491 bigfloat_set_prec (scratch_bigfloat, | |
1492 max (XBIGFLOAT_GET_PREC (addend), | |
1493 XBIGFLOAT_GET_PREC (accum))); | |
1494 bigfloat_add (scratch_bigfloat, XBIGFLOAT_DATA (accum), | |
1495 XBIGFLOAT_DATA (addend)); | |
1496 accum = make_bigfloat_bf (scratch_bigfloat); | |
1497 break; | |
1498 #endif | |
1499 } | |
1500 } | |
1501 return Fcanonicalize_number (accum); | |
1502 #else /* !WITH_NUMBER_TYPES */ | |
428 | 1503 EMACS_INT iaccum = 0; |
1504 Lisp_Object *args_end = args + nargs; | |
1505 | |
1506 while (args < args_end) | |
1507 { | |
1508 int_or_double iod; | |
1509 number_char_or_marker_to_int_or_double (*args++, &iod); | |
1510 if (iod.int_p) | |
1511 iaccum += iod.c.ival; | |
1512 else | |
1513 { | |
1514 double daccum = (double) iaccum + iod.c.dval; | |
1515 while (args < args_end) | |
1516 daccum += number_char_or_marker_to_double (*args++); | |
1517 return make_float (daccum); | |
1518 } | |
1519 } | |
1520 | |
1521 return make_int (iaccum); | |
1983 | 1522 #endif /* WITH_NUMBER_TYPES */ |
428 | 1523 } |
1524 | |
1525 DEFUN ("-", Fminus, 1, MANY, 0, /* | |
1526 Negate number or subtract numbers, characters or markers. | |
1527 With one arg, negates it. With more than one arg, | |
1528 subtracts all but the first from the first. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1529 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1530 arguments: (FIRST &rest ARGS) |
428 | 1531 */ |
1532 (int nargs, Lisp_Object *args)) | |
1533 { | |
1983 | 1534 #ifdef WITH_NUMBER_TYPES |
1535 REGISTER int i; | |
1536 Lisp_Object accum = args[0], subtrahend; | |
1537 | |
1538 if (nargs == 1) | |
1539 { | |
1540 if (CHARP (accum)) | |
1541 accum = make_int (XCHAR (accum)); | |
1542 else if (MARKERP (accum)) | |
1543 accum = make_int (marker_position (accum)); | |
1544 | |
1545 /* Invert the sign of accum */ | |
1546 CHECK_NUMBER (accum); | |
1547 switch (get_number_type (accum)) | |
1548 { | |
1549 case FIXNUM_T: | |
1550 return make_integer (-XREALINT (accum)); | |
1551 #ifdef HAVE_BIGNUM | |
1552 case BIGNUM_T: | |
1553 bignum_neg (scratch_bignum, XBIGNUM_DATA (accum)); | |
1554 return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); | |
1555 #endif | |
1556 #ifdef HAVE_RATIO | |
1557 case RATIO_T: | |
1558 ratio_neg (scratch_ratio, XRATIO_DATA (accum)); | |
1559 return make_ratio_rt (scratch_ratio); | |
1560 #endif | |
1561 case FLOAT_T: | |
1562 return make_float (-XFLOAT_DATA (accum)); | |
1563 #ifdef HAVE_BIGFLOAT | |
1564 case BIGFLOAT_T: | |
1565 bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (accum)); | |
1566 bigfloat_neg (scratch_bigfloat, XBIGFLOAT_DATA (accum)); | |
1567 return make_bigfloat_bf (scratch_bigfloat); | |
1568 #endif | |
1569 } | |
1570 } | |
1571 else | |
1572 { | |
1573 /* Subtrace the remaining arguments from accum */ | |
1574 for (i = 1; i < nargs; i++) | |
1575 { | |
1576 subtrahend = args[i]; | |
1577 switch (promote_args (&accum, &subtrahend)) | |
1578 { | |
1579 case FIXNUM_T: | |
1580 accum = make_integer (XREALINT (accum) - XREALINT (subtrahend)); | |
1581 break; | |
1582 #ifdef HAVE_BIGNUM | |
1583 case BIGNUM_T: | |
1584 bignum_sub (scratch_bignum, XBIGNUM_DATA (accum), | |
1585 XBIGNUM_DATA (subtrahend)); | |
1586 accum = make_bignum_bg (scratch_bignum); | |
1587 break; | |
1588 #endif | |
1589 #ifdef HAVE_RATIO | |
1590 case RATIO_T: | |
1591 ratio_sub (scratch_ratio, XRATIO_DATA (accum), | |
1592 XRATIO_DATA (subtrahend)); | |
1593 accum = make_ratio_rt (scratch_ratio); | |
1594 break; | |
1595 #endif | |
1596 case FLOAT_T: | |
1597 accum = | |
1598 make_float (XFLOAT_DATA (accum) - XFLOAT_DATA (subtrahend)); | |
1599 break; | |
1600 #ifdef HAVE_BIGFLOAT | |
1601 case BIGFLOAT_T: | |
1602 bigfloat_set_prec (scratch_bigfloat, | |
1603 max (XBIGFLOAT_GET_PREC (subtrahend), | |
1604 XBIGFLOAT_GET_PREC (accum))); | |
1605 bigfloat_sub (scratch_bigfloat, XBIGFLOAT_DATA (accum), | |
1606 XBIGFLOAT_DATA (subtrahend)); | |
1607 accum = make_bigfloat_bf (scratch_bigfloat); | |
1608 break; | |
1609 #endif | |
1610 } | |
1611 } | |
1612 } | |
1613 return Fcanonicalize_number (accum); | |
1614 #else /* !WITH_NUMBER_TYPES */ | |
428 | 1615 EMACS_INT iaccum; |
1616 double daccum; | |
1617 Lisp_Object *args_end = args + nargs; | |
1618 int_or_double iod; | |
1619 | |
1620 number_char_or_marker_to_int_or_double (*args++, &iod); | |
1621 if (iod.int_p) | |
1622 iaccum = nargs > 1 ? iod.c.ival : - iod.c.ival; | |
1623 else | |
1624 { | |
1625 daccum = nargs > 1 ? iod.c.dval : - iod.c.dval; | |
1626 goto do_float; | |
1627 } | |
1628 | |
1629 while (args < args_end) | |
1630 { | |
1631 number_char_or_marker_to_int_or_double (*args++, &iod); | |
1632 if (iod.int_p) | |
1633 iaccum -= iod.c.ival; | |
1634 else | |
1635 { | |
1636 daccum = (double) iaccum - iod.c.dval; | |
1637 goto do_float; | |
1638 } | |
1639 } | |
1640 | |
1641 return make_int (iaccum); | |
1642 | |
1643 do_float: | |
1644 for (; args < args_end; args++) | |
1645 daccum -= number_char_or_marker_to_double (*args); | |
1646 return make_float (daccum); | |
1983 | 1647 #endif /* WITH_NUMBER_TYPES */ |
428 | 1648 } |
1649 | |
1650 DEFUN ("*", Ftimes, 0, MANY, 0, /* | |
1651 Return product of any number of arguments. | |
1652 The arguments should all be numbers, characters or markers. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1653 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1654 arguments: (&rest ARGS) |
428 | 1655 */ |
1656 (int nargs, Lisp_Object *args)) | |
1657 { | |
1983 | 1658 #ifdef WITH_NUMBER_TYPES |
1659 REGISTER int i; | |
1660 /* Start with a bignum to avoid overflow */ | |
1661 Lisp_Object accum = make_bignum (1L), multiplier; | |
1662 | |
1663 for (i = 0; i < nargs; i++) | |
1664 { | |
1665 multiplier = args[i]; | |
1666 switch (promote_args (&accum, &multiplier)) | |
1667 { | |
1668 #ifdef HAVE_BIGNUM | |
1669 case BIGNUM_T: | |
1670 bignum_mul (scratch_bignum, XBIGNUM_DATA (accum), | |
1671 XBIGNUM_DATA (multiplier)); | |
1672 accum = make_bignum_bg (scratch_bignum); | |
1673 break; | |
1674 #endif | |
1675 #ifdef HAVE_RATIO | |
1676 case RATIO_T: | |
1677 ratio_mul (scratch_ratio, XRATIO_DATA (accum), | |
1678 XRATIO_DATA (multiplier)); | |
1679 accum = make_ratio_rt (scratch_ratio); | |
1680 break; | |
1681 #endif | |
1682 case FLOAT_T: | |
1683 accum = make_float (XFLOAT_DATA (accum) * XFLOAT_DATA (multiplier)); | |
1684 break; | |
1685 #ifdef HAVE_BIGFLOAT | |
1686 case BIGFLOAT_T: | |
1687 bigfloat_set_prec (scratch_bigfloat, | |
1688 max (XBIGFLOAT_GET_PREC (multiplier), | |
1689 XBIGFLOAT_GET_PREC (accum))); | |
1690 bigfloat_mul (scratch_bigfloat, XBIGFLOAT_DATA (accum), | |
1691 XBIGFLOAT_DATA (multiplier)); | |
1692 accum = make_bigfloat_bf (scratch_bigfloat); | |
1693 break; | |
1694 #endif | |
1695 } | |
1696 } | |
1697 return Fcanonicalize_number (accum); | |
1698 #else /* !WITH_NUMBER_TYPES */ | |
428 | 1699 EMACS_INT iaccum = 1; |
1700 Lisp_Object *args_end = args + nargs; | |
1701 | |
1702 while (args < args_end) | |
1703 { | |
1704 int_or_double iod; | |
1705 number_char_or_marker_to_int_or_double (*args++, &iod); | |
1706 if (iod.int_p) | |
1707 iaccum *= iod.c.ival; | |
1708 else | |
1709 { | |
1710 double daccum = (double) iaccum * iod.c.dval; | |
1711 while (args < args_end) | |
1712 daccum *= number_char_or_marker_to_double (*args++); | |
1713 return make_float (daccum); | |
1714 } | |
1715 } | |
1716 | |
1717 return make_int (iaccum); | |
1983 | 1718 #endif /* WITH_NUMBER_TYPES */ |
428 | 1719 } |
1720 | |
1983 | 1721 #ifdef HAVE_RATIO |
1722 DEFUN ("div", Fdiv, 1, MANY, 0, /* | |
1723 Same as `/', but dividing integers creates a ratio instead of truncating. | |
1724 Note that this is a departure from Common Lisp, where / creates ratios when | |
1725 dividing integers. Having a separate function lets us avoid breaking existing | |
1726 Emacs Lisp code that expects / to do integer division. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1727 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1728 arguments: (FIRST &rest ARGS) |
1983 | 1729 */ |
1730 (int nargs, Lisp_Object *args)) | |
1731 { | |
1732 REGISTER int i; | |
1733 Lisp_Object accum, divisor; | |
1734 | |
1735 if (nargs == 1) | |
1736 { | |
1737 i = 0; | |
1738 accum = make_int (1); | |
1739 } | |
1740 else | |
1741 { | |
1742 i = 1; | |
1743 accum = args[0]; | |
1744 } | |
1745 for (; i < nargs; i++) | |
1746 { | |
1747 divisor = args[i]; | |
1748 switch (promote_args (&accum, &divisor)) | |
1749 { | |
1750 case FIXNUM_T: | |
1751 if (XREALINT (divisor) == 0) goto divide_by_zero; | |
1752 bignum_set_long (scratch_bignum, XREALINT (accum)); | |
1753 bignum_set_long (scratch_bignum2, XREALINT (divisor)); | |
1754 accum = make_ratio_bg (scratch_bignum, scratch_bignum2); | |
1755 break; | |
1756 case BIGNUM_T: | |
1757 if (bignum_sign (XBIGNUM_DATA (divisor)) == 0) goto divide_by_zero; | |
1758 accum = make_ratio_bg (XBIGNUM_DATA (accum), XBIGNUM_DATA (divisor)); | |
1759 break; | |
1760 case RATIO_T: | |
1761 if (ratio_sign (XRATIO_DATA (divisor)) == 0) goto divide_by_zero; | |
1762 ratio_div (scratch_ratio, XRATIO_DATA (accum), | |
1763 XRATIO_DATA (divisor)); | |
1764 accum = make_ratio_rt (scratch_ratio); | |
1765 break; | |
1766 case FLOAT_T: | |
1767 if (XFLOAT_DATA (divisor) == 0.0) goto divide_by_zero; | |
1768 accum = make_float (XFLOAT_DATA (accum) / XFLOAT_DATA (divisor)); | |
1769 break; | |
1770 #ifdef HAVE_BIGFLOAT | |
1771 case BIGFLOAT_T: | |
1772 if (bigfloat_sign (XBIGFLOAT_DATA (divisor)) == 0) | |
1773 goto divide_by_zero; | |
1774 bigfloat_set_prec (scratch_bigfloat, | |
1775 max (XBIGFLOAT_GET_PREC (divisor), | |
1776 XBIGFLOAT_GET_PREC (accum))); | |
1777 bigfloat_div (scratch_bigfloat, XBIGFLOAT_DATA (accum), | |
1778 XBIGFLOAT_DATA (divisor)); | |
1779 accum = make_bigfloat_bf (scratch_bigfloat); | |
1780 break; | |
1781 #endif | |
1782 } | |
1783 } | |
1784 return Fcanonicalize_number (accum); | |
1785 | |
1786 divide_by_zero: | |
1787 Fsignal (Qarith_error, Qnil); | |
1788 return Qnil; /* not (usually) reached */ | |
1789 } | |
1790 #endif /* HAVE_RATIO */ | |
1791 | |
428 | 1792 DEFUN ("/", Fquo, 1, MANY, 0, /* |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1793 Return FIRST divided by all the remaining arguments. |
428 | 1794 The arguments must be numbers, characters or markers. |
1795 With one argument, reciprocates the argument. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1796 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1797 arguments: (FIRST &rest ARGS) |
428 | 1798 */ |
1799 (int nargs, Lisp_Object *args)) | |
1800 { | |
1983 | 1801 #ifdef WITH_NUMBER_TYPES |
1802 REGISTER int i; | |
1803 Lisp_Object accum, divisor; | |
1804 | |
1805 if (nargs == 1) | |
1806 { | |
1807 i = 0; | |
1808 accum = make_int (1); | |
1809 } | |
1810 else | |
1811 { | |
1812 i = 1; | |
1813 accum = args[0]; | |
1814 } | |
1815 for (; i < nargs; i++) | |
1816 { | |
1817 divisor = args[i]; | |
1818 switch (promote_args (&accum, &divisor)) | |
1819 { | |
1820 case FIXNUM_T: | |
1821 if (XREALINT (divisor) == 0) goto divide_by_zero; | |
1822 accum = make_integer (XREALINT (accum) / XREALINT (divisor)); | |
1823 break; | |
1824 #ifdef HAVE_BIGNUM | |
1825 case BIGNUM_T: | |
1826 if (bignum_sign (XBIGNUM_DATA (divisor)) == 0) goto divide_by_zero; | |
1827 bignum_div (scratch_bignum, XBIGNUM_DATA (accum), | |
1828 XBIGNUM_DATA (divisor)); | |
1829 accum = make_bignum_bg (scratch_bignum); | |
1830 break; | |
1831 #endif | |
1832 #ifdef HAVE_RATIO | |
1833 case RATIO_T: | |
1834 if (ratio_sign (XRATIO_DATA (divisor)) == 0) goto divide_by_zero; | |
1835 ratio_div (scratch_ratio, XRATIO_DATA (accum), | |
1836 XRATIO_DATA (divisor)); | |
1837 accum = make_ratio_rt (scratch_ratio); | |
1838 break; | |
1839 #endif | |
1840 case FLOAT_T: | |
1841 if (XFLOAT_DATA (divisor) == 0.0) goto divide_by_zero; | |
1842 accum = make_float (XFLOAT_DATA (accum) / XFLOAT_DATA (divisor)); | |
1843 break; | |
1844 #ifdef HAVE_BIGFLOAT | |
1845 case BIGFLOAT_T: | |
1846 if (bigfloat_sign (XBIGFLOAT_DATA (divisor)) == 0) | |
1847 goto divide_by_zero; | |
1848 bigfloat_set_prec (scratch_bigfloat, | |
1849 max (XBIGFLOAT_GET_PREC (divisor), | |
1850 XBIGFLOAT_GET_PREC (accum))); | |
1851 bigfloat_div (scratch_bigfloat, XBIGFLOAT_DATA (accum), | |
1852 XBIGFLOAT_DATA (divisor)); | |
1853 accum = make_bigfloat_bf (scratch_bigfloat); | |
1854 break; | |
1855 #endif | |
1856 } | |
1857 } | |
1858 return Fcanonicalize_number (accum); | |
1859 #else /* !WITH_NUMBER_TYPES */ | |
428 | 1860 EMACS_INT iaccum; |
1861 double daccum; | |
1862 Lisp_Object *args_end = args + nargs; | |
1863 int_or_double iod; | |
1864 | |
1865 if (nargs == 1) | |
1866 iaccum = 1; | |
1867 else | |
1868 { | |
1869 number_char_or_marker_to_int_or_double (*args++, &iod); | |
1870 if (iod.int_p) | |
1871 iaccum = iod.c.ival; | |
1872 else | |
1873 { | |
1874 daccum = iod.c.dval; | |
1875 goto divide_floats; | |
1876 } | |
1877 } | |
1878 | |
1879 while (args < args_end) | |
1880 { | |
1881 number_char_or_marker_to_int_or_double (*args++, &iod); | |
1882 if (iod.int_p) | |
1883 { | |
1884 if (iod.c.ival == 0) goto divide_by_zero; | |
1885 iaccum /= iod.c.ival; | |
1886 } | |
1887 else | |
1888 { | |
1889 if (iod.c.dval == 0) goto divide_by_zero; | |
1890 daccum = (double) iaccum / iod.c.dval; | |
1891 goto divide_floats; | |
1892 } | |
1893 } | |
1894 | |
1895 return make_int (iaccum); | |
1896 | |
1897 divide_floats: | |
1898 for (; args < args_end; args++) | |
1899 { | |
1900 double dval = number_char_or_marker_to_double (*args); | |
1901 if (dval == 0) goto divide_by_zero; | |
1902 daccum /= dval; | |
1903 } | |
1904 return make_float (daccum); | |
1983 | 1905 #endif /* WITH_NUMBER_TYPES */ |
428 | 1906 |
1907 divide_by_zero: | |
1908 Fsignal (Qarith_error, Qnil); | |
801 | 1909 return Qnil; /* not (usually) reached */ |
428 | 1910 } |
1911 | |
1912 DEFUN ("max", Fmax, 1, MANY, 0, /* | |
1913 Return largest of all the arguments. | |
1983 | 1914 All arguments must be real numbers, characters or markers. |
428 | 1915 The value is always a number; markers and characters are converted |
1916 to numbers. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1917 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
1918 arguments: (FIRST &rest ARGS) |
428 | 1919 */ |
1920 (int nargs, Lisp_Object *args)) | |
1921 { | |
1983 | 1922 #ifdef WITH_NUMBER_TYPES |
1923 REGISTER int i, maxindex = 0; | |
1924 Lisp_Object comp1, comp2; | |
1925 | |
1926 while (!(CHARP (args[0]) || MARKERP (args[0]) || REALP (args[0]))) | |
1927 args[0] = wrong_type_argument (Qnumber_char_or_marker_p, args[0]); | |
1928 if (CHARP (args[0])) | |
1929 args[0] = make_int (XCHAR (args[0])); | |
1930 else if (MARKERP (args[0])) | |
1931 args[0] = make_int (marker_position (args[0])); | |
1932 for (i = 1; i < nargs; i++) | |
1933 { | |
1934 comp1 = args[maxindex]; | |
1935 comp2 = args[i]; | |
1936 switch (promote_args (&comp1, &comp2)) | |
1937 { | |
1938 case FIXNUM_T: | |
1939 if (XREALINT (comp1) < XREALINT (comp2)) | |
1940 maxindex = i; | |
1941 break; | |
1942 #ifdef HAVE_BIGNUM | |
1943 case BIGNUM_T: | |
1944 if (bignum_lt (XBIGNUM_DATA (comp1), XBIGNUM_DATA (comp2))) | |
1945 maxindex = i; | |
1946 break; | |
1947 #endif | |
1948 #ifdef HAVE_RATIO | |
1949 case RATIO_T: | |
1950 if (ratio_lt (XRATIO_DATA (comp1), XRATIO_DATA (comp2))) | |
1951 maxindex = i; | |
1952 break; | |
1953 #endif | |
1954 case FLOAT_T: | |
1955 if (XFLOAT_DATA (comp1) < XFLOAT_DATA (comp2)) | |
1956 maxindex = i; | |
1957 break; | |
1958 #ifdef HAVE_BIGFLOAT | |
1959 case BIGFLOAT_T: | |
1960 if (bigfloat_lt (XBIGFLOAT_DATA (comp1), XBIGFLOAT_DATA (comp2))) | |
1961 maxindex = i; | |
1962 break; | |
1963 #endif | |
1964 } | |
1965 } | |
1966 return args[maxindex]; | |
1967 #else /* !WITH_NUMBER_TYPES */ | |
428 | 1968 EMACS_INT imax; |
1969 double dmax; | |
1970 Lisp_Object *args_end = args + nargs; | |
1971 int_or_double iod; | |
1972 | |
1973 number_char_or_marker_to_int_or_double (*args++, &iod); | |
1974 if (iod.int_p) | |
1975 imax = iod.c.ival; | |
1976 else | |
1977 { | |
1978 dmax = iod.c.dval; | |
1979 goto max_floats; | |
1980 } | |
1981 | |
1982 while (args < args_end) | |
1983 { | |
1984 number_char_or_marker_to_int_or_double (*args++, &iod); | |
1985 if (iod.int_p) | |
1986 { | |
1987 if (imax < iod.c.ival) imax = iod.c.ival; | |
1988 } | |
1989 else | |
1990 { | |
1991 dmax = (double) imax; | |
1992 if (dmax < iod.c.dval) dmax = iod.c.dval; | |
1993 goto max_floats; | |
1994 } | |
1995 } | |
1996 | |
1997 return make_int (imax); | |
1998 | |
1999 max_floats: | |
2000 while (args < args_end) | |
2001 { | |
2002 double dval = number_char_or_marker_to_double (*args++); | |
2003 if (dmax < dval) dmax = dval; | |
2004 } | |
2005 return make_float (dmax); | |
1983 | 2006 #endif /* WITH_NUMBER_TYPES */ |
428 | 2007 } |
2008 | |
2009 DEFUN ("min", Fmin, 1, MANY, 0, /* | |
2010 Return smallest of all the arguments. | |
2011 All arguments must be numbers, characters or markers. | |
2012 The value is always a number; markers and characters are converted | |
2013 to numbers. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
2014 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
2015 arguments: (FIRST &rest ARGS) |
428 | 2016 */ |
2017 (int nargs, Lisp_Object *args)) | |
2018 { | |
1983 | 2019 #ifdef WITH_NUMBER_TYPES |
2020 REGISTER int i, minindex = 0; | |
2021 Lisp_Object comp1, comp2; | |
2022 | |
2023 while (!(CHARP (args[0]) || MARKERP (args[0]) || REALP (args[0]))) | |
2024 args[0] = wrong_type_argument (Qnumber_char_or_marker_p, args[0]); | |
2025 if (CHARP (args[0])) | |
2026 args[0] = make_int (XCHAR (args[0])); | |
2027 else if (MARKERP (args[0])) | |
2028 args[0] = make_int (marker_position (args[0])); | |
2029 for (i = 1; i < nargs; i++) | |
2030 { | |
2031 comp1 = args[minindex]; | |
2032 comp2 = args[i]; | |
2033 switch (promote_args (&comp1, &comp2)) | |
2034 { | |
2035 case FIXNUM_T: | |
2036 if (XREALINT (comp1) > XREALINT (comp2)) | |
2037 minindex = i; | |
2038 break; | |
2039 #ifdef HAVE_BIGNUM | |
2040 case BIGNUM_T: | |
2041 if (bignum_gt (XBIGNUM_DATA (comp1), XBIGNUM_DATA (comp2))) | |
2042 minindex = i; | |
2043 break; | |
2044 #endif | |
2045 #ifdef HAVE_RATIO | |
2046 case RATIO_T: | |
2047 if (ratio_gt (XRATIO_DATA (comp1), XRATIO_DATA (comp2))) | |
2048 minindex = i; | |
2049 break; | |
2050 #endif | |
2051 case FLOAT_T: | |
2052 if (XFLOAT_DATA (comp1) > XFLOAT_DATA (comp2)) | |
2053 minindex = i; | |
2054 break; | |
2055 #ifdef HAVE_BIGFLOAT | |
2056 case BIGFLOAT_T: | |
2057 if (bigfloat_gt (XBIGFLOAT_DATA (comp1), XBIGFLOAT_DATA (comp2))) | |
2058 minindex = i; | |
2059 break; | |
2060 #endif | |
2061 } | |
2062 } | |
2063 return args[minindex]; | |
2064 #else /* !WITH_NUMBER_TYPES */ | |
428 | 2065 EMACS_INT imin; |
2066 double dmin; | |
2067 Lisp_Object *args_end = args + nargs; | |
2068 int_or_double iod; | |
2069 | |
2070 number_char_or_marker_to_int_or_double (*args++, &iod); | |
2071 if (iod.int_p) | |
2072 imin = iod.c.ival; | |
2073 else | |
2074 { | |
2075 dmin = iod.c.dval; | |
2076 goto min_floats; | |
2077 } | |
2078 | |
2079 while (args < args_end) | |
2080 { | |
2081 number_char_or_marker_to_int_or_double (*args++, &iod); | |
2082 if (iod.int_p) | |
2083 { | |
2084 if (imin > iod.c.ival) imin = iod.c.ival; | |
2085 } | |
2086 else | |
2087 { | |
2088 dmin = (double) imin; | |
2089 if (dmin > iod.c.dval) dmin = iod.c.dval; | |
2090 goto min_floats; | |
2091 } | |
2092 } | |
2093 | |
2094 return make_int (imin); | |
2095 | |
2096 min_floats: | |
2097 while (args < args_end) | |
2098 { | |
2099 double dval = number_char_or_marker_to_double (*args++); | |
2100 if (dmin > dval) dmin = dval; | |
2101 } | |
2102 return make_float (dmin); | |
1983 | 2103 #endif /* WITH_NUMBER_TYPES */ |
428 | 2104 } |
2105 | |
2106 DEFUN ("logand", Flogand, 0, MANY, 0, /* | |
2107 Return bitwise-and of all the arguments. | |
2108 Arguments may be integers, or markers or characters converted to integers. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
2109 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
2110 arguments: (&rest ARGS) |
428 | 2111 */ |
2112 (int nargs, Lisp_Object *args)) | |
2113 { | |
1983 | 2114 #ifdef HAVE_BIGNUM |
2115 REGISTER int i; | |
2116 Lisp_Object result, other; | |
2117 | |
2118 if (nargs == 0) | |
2119 return make_int (~0); | |
2120 | |
2121 while (!(CHARP (args[0]) || MARKERP (args[0]) || INTEGERP (args[0]))) | |
2122 args[0] = wrong_type_argument (Qnumber_char_or_marker_p, args[0]); | |
2123 | |
2124 result = args[0]; | |
2125 if (CHARP (result)) | |
2126 result = make_int (XCHAR (result)); | |
2127 else if (MARKERP (result)) | |
2128 result = make_int (marker_position (result)); | |
2129 for (i = 1; i < nargs; i++) | |
2130 { | |
2131 while (!(CHARP (args[i]) || MARKERP (args[i]) || INTEGERP (args[i]))) | |
2132 args[i] = wrong_type_argument (Qnumber_char_or_marker_p, args[i]); | |
2133 other = args[i]; | |
1995 | 2134 switch (promote_args (&result, &other)) |
1983 | 2135 { |
2136 case FIXNUM_T: | |
1995 | 2137 result = make_int (XREALINT (result) & XREALINT (other)); |
1983 | 2138 break; |
2139 case BIGNUM_T: | |
2140 bignum_and (scratch_bignum, XBIGNUM_DATA (result), | |
2141 XBIGNUM_DATA (other)); | |
2142 result = make_bignum_bg (scratch_bignum); | |
2143 break; | |
2144 } | |
2145 } | |
2146 return Fcanonicalize_number (result); | |
2147 #else /* !HAVE_BIGNUM */ | |
428 | 2148 EMACS_INT bits = ~0; |
2149 Lisp_Object *args_end = args + nargs; | |
2150 | |
2151 while (args < args_end) | |
2152 bits &= integer_char_or_marker_to_int (*args++); | |
2153 | |
2154 return make_int (bits); | |
1983 | 2155 #endif /* HAVE_BIGNUM */ |
428 | 2156 } |
2157 | |
2158 DEFUN ("logior", Flogior, 0, MANY, 0, /* | |
2159 Return bitwise-or of all the arguments. | |
2160 Arguments may be integers, or markers or characters converted to integers. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
2161 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
2162 arguments: (&rest ARGS) |
428 | 2163 */ |
2164 (int nargs, Lisp_Object *args)) | |
2165 { | |
1983 | 2166 #ifdef HAVE_BIGNUM |
2167 REGISTER int i; | |
2168 Lisp_Object result, other; | |
2169 | |
2170 if (nargs == 0) | |
2171 return make_int (0); | |
2172 | |
2173 while (!(CHARP (args[0]) || MARKERP (args[0]) || INTEGERP (args[0]))) | |
2174 args[0] = wrong_type_argument (Qnumber_char_or_marker_p, args[0]); | |
2175 | |
2176 result = args[0]; | |
2177 if (CHARP (result)) | |
2178 result = make_int (XCHAR (result)); | |
2179 else if (MARKERP (result)) | |
2180 result = make_int (marker_position (result)); | |
2181 for (i = 1; i < nargs; i++) | |
2182 { | |
2183 while (!(CHARP (args[i]) || MARKERP (args[i]) || INTEGERP (args[i]))) | |
2184 args[i] = wrong_type_argument (Qnumber_char_or_marker_p, args[i]); | |
2185 other = args[i]; | |
2186 switch (promote_args (&result, &other)) | |
2187 { | |
2188 case FIXNUM_T: | |
1992 | 2189 result = make_int (XREALINT (result) | XREALINT (other)); |
1983 | 2190 break; |
2191 case BIGNUM_T: | |
2192 bignum_ior (scratch_bignum, XBIGNUM_DATA (result), | |
2193 XBIGNUM_DATA (other)); | |
2194 result = make_bignum_bg (scratch_bignum); | |
2195 break; | |
2196 } | |
2197 } | |
2198 return Fcanonicalize_number (result); | |
2199 #else /* !HAVE_BIGNUM */ | |
428 | 2200 EMACS_INT bits = 0; |
2201 Lisp_Object *args_end = args + nargs; | |
2202 | |
2203 while (args < args_end) | |
2204 bits |= integer_char_or_marker_to_int (*args++); | |
2205 | |
2206 return make_int (bits); | |
1983 | 2207 #endif /* HAVE_BIGNUM */ |
428 | 2208 } |
2209 | |
2210 DEFUN ("logxor", Flogxor, 0, MANY, 0, /* | |
2211 Return bitwise-exclusive-or of all the arguments. | |
2212 Arguments may be integers, or markers or characters converted to integers. | |
4693
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
2213 |
80cd90837ac5
Add argument information to remaining MANY or UNEVALLED C subrs.
Aidan Kehoe <kehoea@parhasard.net>
parents:
3355
diff
changeset
|
2214 arguments: (&rest ARGS) |
428 | 2215 */ |
2216 (int nargs, Lisp_Object *args)) | |
2217 { | |
1983 | 2218 #ifdef HAVE_BIGNUM |
2219 REGISTER int i; | |
2220 Lisp_Object result, other; | |
2221 | |
2222 if (nargs == 0) | |
2223 return make_int (0); | |
2224 | |
2225 while (!(CHARP (args[0]) || MARKERP (args[0]) || INTEGERP (args[0]))) | |
2226 args[0] = wrong_type_argument (Qnumber_char_or_marker_p, args[0]); | |
2227 | |
2228 result = args[0]; | |
2229 if (CHARP (result)) | |
2230 result = make_int (XCHAR (result)); | |
2231 else if (MARKERP (result)) | |
2232 result = make_int (marker_position (result)); | |
2233 for (i = 1; i < nargs; i++) | |
2234 { | |
2235 while (!(CHARP (args[i]) || MARKERP (args[i]) || INTEGERP (args[i]))) | |
2236 args[i] = wrong_type_argument (Qnumber_char_or_marker_p, args[i]); | |
2237 other = args[i]; | |
2238 if (promote_args (&result, &other) == FIXNUM_T) | |
2239 { | |
2240 result = make_int (XREALINT (result) ^ XREALINT (other)); | |
2241 } | |
2242 else | |
2243 { | |
2244 bignum_xor (scratch_bignum, XBIGNUM_DATA (result), | |
2245 XBIGNUM_DATA (other)); | |
2246 result = make_bignum_bg (scratch_bignum); | |
2247 } | |
2248 } | |
2249 return Fcanonicalize_number (result); | |
2250 #else /* !HAVE_BIGNUM */ | |
428 | 2251 EMACS_INT bits = 0; |
2252 Lisp_Object *args_end = args + nargs; | |
2253 | |
2254 while (args < args_end) | |
2255 bits ^= integer_char_or_marker_to_int (*args++); | |
2256 | |
2257 return make_int (bits); | |
1983 | 2258 #endif /* !HAVE_BIGNUM */ |
428 | 2259 } |
2260 | |
2261 DEFUN ("lognot", Flognot, 1, 1, 0, /* | |
2262 Return the bitwise complement of NUMBER. | |
2263 NUMBER may be an integer, marker or character converted to integer. | |
2264 */ | |
2265 (number)) | |
2266 { | |
1983 | 2267 #ifdef HAVE_BIGNUM |
2268 if (BIGNUMP (number)) | |
2269 { | |
2270 bignum_not (scratch_bignum, XBIGNUM_DATA (number)); | |
2271 return make_bignum_bg (scratch_bignum); | |
2272 } | |
2273 #endif /* HAVE_BIGNUM */ | |
428 | 2274 return make_int (~ integer_char_or_marker_to_int (number)); |
2275 } | |
2276 | |
2277 DEFUN ("%", Frem, 2, 2, 0, /* | |
2278 Return remainder of first arg divided by second. | |
2279 Both must be integers, characters or markers. | |
2280 */ | |
444 | 2281 (number1, number2)) |
428 | 2282 { |
1983 | 2283 #ifdef HAVE_BIGNUM |
2284 while (!(CHARP (number1) || MARKERP (number1) || INTEGERP (number1))) | |
2285 number1 = wrong_type_argument (Qnumber_char_or_marker_p, number1); | |
2286 while (!(CHARP (number2) || MARKERP (number2) || INTEGERP (number2))) | |
2287 number2 = wrong_type_argument (Qnumber_char_or_marker_p, number2); | |
2288 | |
2289 if (promote_args (&number1, &number2) == FIXNUM_T) | |
2290 { | |
2291 if (XREALINT (number2) == 0) | |
2292 Fsignal (Qarith_error, Qnil); | |
2293 return make_int (XREALINT (number1) % XREALINT (number2)); | |
2294 } | |
2295 else | |
2296 { | |
2297 if (bignum_sign (XBIGNUM_DATA (number2)) == 0) | |
2298 Fsignal (Qarith_error, Qnil); | |
2299 bignum_mod (scratch_bignum, XBIGNUM_DATA (number1), | |
2300 XBIGNUM_DATA (number2)); | |
2301 return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); | |
2302 } | |
2303 #else /* !HAVE_BIGNUM */ | |
444 | 2304 EMACS_INT ival1 = integer_char_or_marker_to_int (number1); |
2305 EMACS_INT ival2 = integer_char_or_marker_to_int (number2); | |
428 | 2306 |
2307 if (ival2 == 0) | |
2308 Fsignal (Qarith_error, Qnil); | |
2309 | |
2310 return make_int (ival1 % ival2); | |
1983 | 2311 #endif /* HAVE_BIGNUM */ |
428 | 2312 } |
2313 | |
2314 /* Note, ANSI *requires* the presence of the fmod() library routine. | |
2315 If your system doesn't have it, complain to your vendor, because | |
2316 that is a bug. */ | |
2317 | |
2318 #ifndef HAVE_FMOD | |
2319 double | |
2320 fmod (double f1, double f2) | |
2321 { | |
2322 if (f2 < 0.0) | |
2323 f2 = -f2; | |
2324 return f1 - f2 * floor (f1/f2); | |
2325 } | |
2326 #endif /* ! HAVE_FMOD */ | |
2327 | |
2328 | |
2329 DEFUN ("mod", Fmod, 2, 2, 0, /* | |
2330 Return X modulo Y. | |
2331 The result falls between zero (inclusive) and Y (exclusive). | |
2332 Both X and Y must be numbers, characters or markers. | |
2333 If either argument is a float, a float will be returned. | |
2334 */ | |
2335 (x, y)) | |
2336 { | |
1983 | 2337 #ifdef WITH_NUMBER_TYPES |
2338 while (!(CHARP (x) || MARKERP (x) || REALP (x))) | |
2339 x = wrong_type_argument (Qnumber_char_or_marker_p, x); | |
2340 while (!(CHARP (y) || MARKERP (y) || REALP (y))) | |
2341 y = wrong_type_argument (Qnumber_char_or_marker_p, y); | |
2342 switch (promote_args (&x, &y)) | |
2343 { | |
2344 case FIXNUM_T: | |
2345 { | |
2346 EMACS_INT ival; | |
2347 if (XREALINT (y) == 0) goto divide_by_zero; | |
2348 ival = XREALINT (x) % XREALINT (y); | |
2349 /* If the "remainder" comes out with the wrong sign, fix it. */ | |
2350 if (XREALINT (y) < 0 ? ival > 0 : ival < 0) | |
2351 ival += XREALINT (y); | |
2352 return make_int (ival); | |
2353 } | |
2354 #ifdef HAVE_BIGNUM | |
2355 case BIGNUM_T: | |
2356 if (bignum_sign (XBIGNUM_DATA (y)) == 0) goto divide_by_zero; | |
2357 bignum_mod (scratch_bignum, XBIGNUM_DATA (x), XBIGNUM_DATA (y)); | |
2358 return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); | |
2359 #endif | |
2360 #ifdef HAVE_RATIO | |
2361 case RATIO_T: | |
2362 if (ratio_sign (XRATIO_DATA (y)) == 0) goto divide_by_zero; | |
2363 ratio_div (scratch_ratio, XRATIO_DATA (x), XRATIO_DATA (y)); | |
2364 bignum_div (scratch_bignum, ratio_numerator (scratch_ratio), | |
2365 ratio_denominator (scratch_ratio)); | |
2366 ratio_set_bignum (scratch_ratio, scratch_bignum); | |
2367 ratio_mul (scratch_ratio, scratch_ratio, XRATIO_DATA (y)); | |
2368 ratio_sub (scratch_ratio, XRATIO_DATA (x), scratch_ratio); | |
2369 return Fcanonicalize_number (make_ratio_rt (scratch_ratio)); | |
2370 #endif | |
2371 case FLOAT_T: | |
2372 { | |
2373 double dval; | |
2374 if (XFLOAT_DATA (y) == 0.0) goto divide_by_zero; | |
2375 dval = fmod (XFLOAT_DATA (x), XFLOAT_DATA (y)); | |
2376 /* If the "remainder" comes out with the wrong sign, fix it. */ | |
2377 if (XFLOAT_DATA (y) < 0 ? dval > 0 : dval < 0) | |
2378 dval += XFLOAT_DATA (y); | |
2379 return make_float (dval); | |
2380 } | |
2381 #ifdef HAVE_BIGFLOAT | |
2382 case BIGFLOAT_T: | |
2383 bigfloat_set_prec (scratch_bigfloat, | |
2384 max (XBIGFLOAT_GET_PREC (x), XBIGFLOAT_GET_PREC (y))); | |
2385 bigfloat_div (scratch_bigfloat, XBIGFLOAT_DATA (x), XBIGFLOAT_DATA (y)); | |
2386 bigfloat_trunc (scratch_bigfloat, scratch_bigfloat); | |
2387 bigfloat_mul (scratch_bigfloat, scratch_bigfloat, XBIGFLOAT_DATA (y)); | |
2388 bigfloat_sub (scratch_bigfloat, XBIGFLOAT_DATA (x), scratch_bigfloat); | |
2389 return make_bigfloat_bf (scratch_bigfloat); | |
2390 #endif | |
2391 } | |
2392 #else /* !WITH_NUMBER_TYPES */ | |
428 | 2393 int_or_double iod1, iod2; |
2394 number_char_or_marker_to_int_or_double (x, &iod1); | |
2395 number_char_or_marker_to_int_or_double (y, &iod2); | |
2396 | |
2397 if (!iod1.int_p || !iod2.int_p) | |
2398 { | |
2399 double dval1 = iod1.int_p ? (double) iod1.c.ival : iod1.c.dval; | |
2400 double dval2 = iod2.int_p ? (double) iod2.c.ival : iod2.c.dval; | |
2401 if (dval2 == 0) goto divide_by_zero; | |
2402 dval1 = fmod (dval1, dval2); | |
2403 | |
2404 /* If the "remainder" comes out with the wrong sign, fix it. */ | |
2405 if (dval2 < 0 ? dval1 > 0 : dval1 < 0) | |
2406 dval1 += dval2; | |
2407 | |
2408 return make_float (dval1); | |
2409 } | |
1104 | 2410 |
428 | 2411 { |
2412 EMACS_INT ival; | |
2413 if (iod2.c.ival == 0) goto divide_by_zero; | |
2414 | |
2415 ival = iod1.c.ival % iod2.c.ival; | |
2416 | |
2417 /* If the "remainder" comes out with the wrong sign, fix it. */ | |
2418 if (iod2.c.ival < 0 ? ival > 0 : ival < 0) | |
2419 ival += iod2.c.ival; | |
2420 | |
2421 return make_int (ival); | |
2422 } | |
1983 | 2423 #endif /* WITH_NUMBER_TYPES */ |
428 | 2424 |
2425 divide_by_zero: | |
2426 Fsignal (Qarith_error, Qnil); | |
801 | 2427 return Qnil; /* not (usually) reached */ |
428 | 2428 } |
2429 | |
2430 DEFUN ("ash", Fash, 2, 2, 0, /* | |
2431 Return VALUE with its bits shifted left by COUNT. | |
2432 If COUNT is negative, shifting is actually to the right. | |
2433 In this case, the sign bit is duplicated. | |
1983 | 2434 This function cannot be applied to bignums, as there is no leftmost sign bit |
2435 to be duplicated. Use `lsh' instead. | |
428 | 2436 */ |
2437 (value, count)) | |
2438 { | |
2439 CHECK_INT_COERCE_CHAR (value); | |
2440 CONCHECK_INT (count); | |
2441 | |
2442 return make_int (XINT (count) > 0 ? | |
2443 XINT (value) << XINT (count) : | |
2444 XINT (value) >> -XINT (count)); | |
2445 } | |
2446 | |
2447 DEFUN ("lsh", Flsh, 2, 2, 0, /* | |
2448 Return VALUE with its bits shifted left by COUNT. | |
2449 If COUNT is negative, shifting is actually to the right. | |
2450 In this case, zeros are shifted in on the left. | |
2451 */ | |
2452 (value, count)) | |
2453 { | |
1983 | 2454 #ifdef HAVE_BIGNUM |
2455 while (!(CHARP (value) || MARKERP (value) || INTEGERP (value))) | |
2456 wrong_type_argument (Qnumber_char_or_marker_p, value); | |
2457 CONCHECK_INTEGER (count); | |
2458 | |
2459 if (promote_args (&value, &count) == FIXNUM_T) | |
2460 { | |
2461 if (XREALINT (count) <= 0) | |
2462 return make_int (XREALINT (value) >> -XREALINT (count)); | |
2463 /* Use bignums to avoid overflow */ | |
2464 bignum_set_long (scratch_bignum2, XREALINT (value)); | |
2465 bignum_lshift (scratch_bignum, scratch_bignum2, XREALINT (count)); | |
2466 return Fcanonicalize_number (make_bignum_bg (scratch_bignum)); | |
2467 } | |
2468 else | |
2469 { | |
2470 if (bignum_sign (XBIGNUM_DATA (count)) <= 0) | |
2471 { | |
2472 bignum_neg (scratch_bignum, XBIGNUM_DATA (count)); | |
2473 if (!bignum_fits_ulong_p (scratch_bignum)) | |
2474 args_out_of_range (Qnumber_char_or_marker_p, count); | |
2475 bignum_rshift (scratch_bignum2, XBIGNUM_DATA (value), | |
2476 bignum_to_ulong (scratch_bignum)); | |
2477 } | |
2478 else | |
2479 { | |
2480 if (!bignum_fits_ulong_p (XBIGNUM_DATA (count))) | |
2481 args_out_of_range (Qnumber_char_or_marker_p, count); | |
2482 bignum_lshift (scratch_bignum2, XBIGNUM_DATA (value), | |
2483 bignum_to_ulong (XBIGNUM_DATA (count))); | |
2484 } | |
2485 return Fcanonicalize_number (make_bignum_bg (scratch_bignum2)); | |
2486 } | |
2487 #else /* !HAVE_BIGNUM */ | |
428 | 2488 CHECK_INT_COERCE_CHAR (value); |
2489 CONCHECK_INT (count); | |
2490 | |
2491 return make_int (XINT (count) > 0 ? | |
2492 XUINT (value) << XINT (count) : | |
2493 XUINT (value) >> -XINT (count)); | |
1983 | 2494 #endif /* HAVE_BIGNUM */ |
428 | 2495 } |
2496 | |
2497 DEFUN ("1+", Fadd1, 1, 1, 0, /* | |
2498 Return NUMBER plus one. NUMBER may be a number, character or marker. | |
2499 Markers and characters are converted to integers. | |
2500 */ | |
2501 (number)) | |
2502 { | |
2503 retry: | |
2504 | |
1983 | 2505 if (INTP (number)) return make_integer (XINT (number) + 1); |
2506 if (CHARP (number)) return make_integer (XCHAR (number) + 1); | |
2507 if (MARKERP (number)) return make_integer (marker_position (number) + 1); | |
428 | 2508 if (FLOATP (number)) return make_float (XFLOAT_DATA (number) + 1.0); |
1983 | 2509 #ifdef HAVE_BIGNUM |
2510 if (BIGNUMP (number)) | |
2511 { | |
2512 bignum_set_long (scratch_bignum, 1L); | |
2513 bignum_add (scratch_bignum2, XBIGNUM_DATA (number), scratch_bignum); | |
2514 return Fcanonicalize_number (make_bignum_bg (scratch_bignum2)); | |
2515 } | |
2516 #endif | |
2517 #ifdef HAVE_RATIO | |
2518 if (RATIOP (number)) | |
2519 { | |
2520 ratio_set_long (scratch_ratio, 1L); | |
2521 ratio_add (scratch_ratio, XRATIO_DATA (number), scratch_ratio); | |
2522 /* No need to canonicalize after adding 1 */ | |
2523 return make_ratio_rt (scratch_ratio); | |
2524 } | |
2525 #endif | |
2526 #ifdef HAVE_BIGFLOAT | |
2527 if (BIGFLOATP (number)) | |
2528 { | |
2529 bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number)); | |
2530 bigfloat_set_long (scratch_bigfloat, 1L); | |
2531 bigfloat_add (scratch_bigfloat, XBIGFLOAT_DATA (number), | |
2532 scratch_bigfloat); | |
2533 return make_bigfloat_bf (scratch_bigfloat); | |
2534 } | |
2535 #endif | |
428 | 2536 |
2537 number = wrong_type_argument (Qnumber_char_or_marker_p, number); | |
2538 goto retry; | |
2539 } | |
2540 | |
2541 DEFUN ("1-", Fsub1, 1, 1, 0, /* | |
2542 Return NUMBER minus one. NUMBER may be a number, character or marker. | |
2543 Markers and characters are converted to integers. | |
2544 */ | |
2545 (number)) | |
2546 { | |
2547 retry: | |
2548 | |
1983 | 2549 if (INTP (number)) return make_integer (XINT (number) - 1); |
2550 if (CHARP (number)) return make_integer (XCHAR (number) - 1); | |
2551 if (MARKERP (number)) return make_integer (marker_position (number) - 1); | |
428 | 2552 if (FLOATP (number)) return make_float (XFLOAT_DATA (number) - 1.0); |
1983 | 2553 #ifdef HAVE_BIGNUM |
2554 if (BIGNUMP (number)) | |
2555 { | |
2556 bignum_set_long (scratch_bignum, 1L); | |
2557 bignum_sub (scratch_bignum2, XBIGNUM_DATA (number), scratch_bignum); | |
2558 return Fcanonicalize_number (make_bignum_bg (scratch_bignum2)); | |
2559 } | |
2560 #endif | |
2561 #ifdef HAVE_RATIO | |
2562 if (RATIOP (number)) | |
2563 { | |
2564 ratio_set_long (scratch_ratio, 1L); | |
2565 ratio_sub (scratch_ratio, XRATIO_DATA (number), scratch_ratio); | |
2566 /* No need to canonicalize after subtracting 1 */ | |
2567 return make_ratio_rt (scratch_ratio); | |
2568 } | |
2569 #endif | |
2570 #ifdef HAVE_BIGFLOAT | |
2571 if (BIGFLOATP (number)) | |
2572 { | |
2573 bigfloat_set_prec (scratch_bigfloat, XBIGFLOAT_GET_PREC (number)); | |
2574 bigfloat_set_long (scratch_bigfloat, 1L); | |
2575 bigfloat_sub (scratch_bigfloat, XBIGFLOAT_DATA (number), | |
2576 scratch_bigfloat); | |
2577 return make_bigfloat_bf (scratch_bigfloat); | |
2578 } | |
2579 #endif | |
428 | 2580 |
2581 number = wrong_type_argument (Qnumber_char_or_marker_p, number); | |
2582 goto retry; | |
2583 } | |
2584 | |
2585 | |
2586 /************************************************************************/ | |
2587 /* weak lists */ | |
2588 /************************************************************************/ | |
2589 | |
2590 /* A weak list is like a normal list except that elements automatically | |
2591 disappear when no longer in use, i.e. when no longer GC-protected. | |
2592 The basic idea is that we don't mark the elements during GC, but | |
2593 wait for them to be marked elsewhere. If they're not marked, we | |
2594 remove them. This is analogous to weak hash tables; see the explanation | |
2595 there for more info. */ | |
2596 | |
2597 static Lisp_Object Vall_weak_lists; /* Gemarke es nicht!!! */ | |
2598 | |
2599 static Lisp_Object encode_weak_list_type (enum weak_list_type type); | |
2600 | |
2601 static Lisp_Object | |
2286 | 2602 mark_weak_list (Lisp_Object UNUSED (obj)) |
428 | 2603 { |
2604 return Qnil; /* nichts ist gemarkt */ | |
2605 } | |
2606 | |
2607 static void | |
2286 | 2608 print_weak_list (Lisp_Object obj, Lisp_Object printcharfun, |
2609 int UNUSED (escapeflag)) | |
428 | 2610 { |
2611 if (print_readably) | |
563 | 2612 printing_unreadable_object ("#<weak-list>"); |
428 | 2613 |
800 | 2614 write_fmt_string_lisp (printcharfun, "#<weak-list %s %S>", 2, |
2615 encode_weak_list_type (XWEAK_LIST (obj)->type), | |
2616 XWEAK_LIST (obj)->list); | |
428 | 2617 } |
2618 | |
2619 static int | |
2620 weak_list_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
2621 { | |
2622 struct weak_list *w1 = XWEAK_LIST (obj1); | |
2623 struct weak_list *w2 = XWEAK_LIST (obj2); | |
2624 | |
2625 return ((w1->type == w2->type) && | |
2626 internal_equal (w1->list, w2->list, depth + 1)); | |
2627 } | |
2628 | |
665 | 2629 static Hashcode |
428 | 2630 weak_list_hash (Lisp_Object obj, int depth) |
2631 { | |
2632 struct weak_list *w = XWEAK_LIST (obj); | |
2633 | |
665 | 2634 return HASH2 ((Hashcode) w->type, |
428 | 2635 internal_hash (w->list, depth + 1)); |
2636 } | |
2637 | |
2638 Lisp_Object | |
2639 make_weak_list (enum weak_list_type type) | |
2640 { | |
2641 Lisp_Object result; | |
2642 struct weak_list *wl = | |
3017 | 2643 ALLOC_LCRECORD_TYPE (struct weak_list, &lrecord_weak_list); |
428 | 2644 |
2645 wl->list = Qnil; | |
2646 wl->type = type; | |
793 | 2647 result = wrap_weak_list (wl); |
428 | 2648 wl->next_weak = Vall_weak_lists; |
2649 Vall_weak_lists = result; | |
2650 return result; | |
2651 } | |
2652 | |
1204 | 2653 static const struct memory_description weak_list_description[] = { |
1598 | 2654 { XD_LISP_OBJECT, offsetof (struct weak_list, list), |
2551 | 2655 0, { 0 }, XD_FLAG_NO_KKCC }, |
1598 | 2656 { XD_LO_LINK, offsetof (struct weak_list, next_weak), |
2551 | 2657 0, { 0 }, XD_FLAG_NO_KKCC }, |
428 | 2658 { XD_END } |
2659 }; | |
2660 | |
934 | 2661 DEFINE_LRECORD_IMPLEMENTATION ("weak-list", weak_list, |
2662 1, /*dumpable-flag*/ | |
2663 mark_weak_list, print_weak_list, | |
2664 0, weak_list_equal, weak_list_hash, | |
2665 weak_list_description, | |
2666 struct weak_list); | |
428 | 2667 /* |
2668 -- we do not mark the list elements (either the elements themselves | |
2669 or the cons cells that hold them) in the normal marking phase. | |
2670 -- at the end of marking, we go through all weak lists that are | |
2671 marked, and mark the cons cells that hold all marked | |
2672 objects, and possibly parts of the objects themselves. | |
2673 (See alloc.c, "after-mark".) | |
2674 -- after that, we prune away all the cons cells that are not marked. | |
2675 | |
2676 WARNING WARNING WARNING WARNING WARNING: | |
2677 | |
2678 The code in the following two functions is *unbelievably* tricky. | |
2679 Don't mess with it. You'll be sorry. | |
2680 | |
2681 Linked lists just majorly suck, d'ya know? | |
2682 */ | |
2683 | |
2684 int | |
2685 finish_marking_weak_lists (void) | |
2686 { | |
2687 Lisp_Object rest; | |
2688 int did_mark = 0; | |
2689 | |
2690 for (rest = Vall_weak_lists; | |
2691 !NILP (rest); | |
2692 rest = XWEAK_LIST (rest)->next_weak) | |
2693 { | |
2694 Lisp_Object rest2; | |
2695 enum weak_list_type type = XWEAK_LIST (rest)->type; | |
2696 | |
2697 if (! marked_p (rest)) | |
2698 /* The weak list is probably garbage. Ignore it. */ | |
2699 continue; | |
2700 | |
2701 for (rest2 = XWEAK_LIST (rest)->list; | |
2702 /* We need to be trickier since we're inside of GC; | |
2703 use CONSP instead of !NILP in case of user-visible | |
2704 imperfect lists */ | |
2705 CONSP (rest2); | |
2706 rest2 = XCDR (rest2)) | |
2707 { | |
2708 Lisp_Object elem; | |
2709 /* If the element is "marked" (meaning depends on the type | |
2710 of weak list), we need to mark the cons containing the | |
2711 element, and maybe the element itself (if only some part | |
2712 was already marked). */ | |
2713 int need_to_mark_cons = 0; | |
2714 int need_to_mark_elem = 0; | |
2715 | |
2716 /* If a cons is already marked, then its car is already marked | |
2717 (either because of an external pointer or because of | |
2718 a previous call to this function), and likewise for all | |
2719 the rest of the elements in the list, so we can stop now. */ | |
2720 if (marked_p (rest2)) | |
2721 break; | |
2722 | |
2723 elem = XCAR (rest2); | |
2724 | |
2725 switch (type) | |
2726 { | |
2727 case WEAK_LIST_SIMPLE: | |
2728 if (marked_p (elem)) | |
2729 need_to_mark_cons = 1; | |
2730 break; | |
2731 | |
2732 case WEAK_LIST_ASSOC: | |
2733 if (!CONSP (elem)) | |
2734 { | |
2735 /* just leave bogus elements there */ | |
2736 need_to_mark_cons = 1; | |
2737 need_to_mark_elem = 1; | |
2738 } | |
2739 else if (marked_p (XCAR (elem)) && | |
2740 marked_p (XCDR (elem))) | |
2741 { | |
2742 need_to_mark_cons = 1; | |
2743 /* We still need to mark elem, because it's | |
2744 probably not marked. */ | |
2745 need_to_mark_elem = 1; | |
2746 } | |
2747 break; | |
2748 | |
2749 case WEAK_LIST_KEY_ASSOC: | |
2750 if (!CONSP (elem)) | |
2751 { | |
2752 /* just leave bogus elements there */ | |
2753 need_to_mark_cons = 1; | |
2754 need_to_mark_elem = 1; | |
2755 } | |
2756 else if (marked_p (XCAR (elem))) | |
2757 { | |
2758 need_to_mark_cons = 1; | |
2759 /* We still need to mark elem and XCDR (elem); | |
2760 marking elem does both */ | |
2761 need_to_mark_elem = 1; | |
2762 } | |
2763 break; | |
2764 | |
2765 case WEAK_LIST_VALUE_ASSOC: | |
2766 if (!CONSP (elem)) | |
2767 { | |
2768 /* just leave bogus elements there */ | |
2769 need_to_mark_cons = 1; | |
2770 need_to_mark_elem = 1; | |
2771 } | |
2772 else if (marked_p (XCDR (elem))) | |
2773 { | |
2774 need_to_mark_cons = 1; | |
2775 /* We still need to mark elem and XCAR (elem); | |
2776 marking elem does both */ | |
2777 need_to_mark_elem = 1; | |
2778 } | |
2779 break; | |
2780 | |
442 | 2781 case WEAK_LIST_FULL_ASSOC: |
2782 if (!CONSP (elem)) | |
2783 { | |
2784 /* just leave bogus elements there */ | |
2785 need_to_mark_cons = 1; | |
2786 need_to_mark_elem = 1; | |
2787 } | |
2788 else if (marked_p (XCAR (elem)) || | |
2789 marked_p (XCDR (elem))) | |
2790 { | |
2791 need_to_mark_cons = 1; | |
2792 /* We still need to mark elem and XCAR (elem); | |
2793 marking elem does both */ | |
2794 need_to_mark_elem = 1; | |
2795 } | |
2796 break; | |
2797 | |
428 | 2798 default: |
2500 | 2799 ABORT (); |
428 | 2800 } |
2801 | |
2802 if (need_to_mark_elem && ! marked_p (elem)) | |
2803 { | |
1598 | 2804 #ifdef USE_KKCC |
2645 | 2805 kkcc_gc_stack_push_lisp_object (elem, 0, -1); |
1598 | 2806 #else /* NOT USE_KKCC */ |
428 | 2807 mark_object (elem); |
1598 | 2808 #endif /* NOT USE_KKCC */ |
428 | 2809 did_mark = 1; |
2810 } | |
2811 | |
2812 /* We also need to mark the cons that holds the elem or | |
2813 assoc-pair. We do *not* want to call (mark_object) here | |
2814 because that will mark the entire list; we just want to | |
2815 mark the cons itself. | |
2816 */ | |
2817 if (need_to_mark_cons) | |
2818 { | |
2819 Lisp_Cons *c = XCONS (rest2); | |
2820 if (!CONS_MARKED_P (c)) | |
2821 { | |
2822 MARK_CONS (c); | |
2823 did_mark = 1; | |
2824 } | |
2825 } | |
2826 } | |
2827 | |
2828 /* In case of imperfect list, need to mark the final cons | |
2829 because we're not removing it */ | |
2830 if (!NILP (rest2) && ! marked_p (rest2)) | |
2831 { | |
1598 | 2832 #ifdef USE_KKCC |
2645 | 2833 kkcc_gc_stack_push_lisp_object (rest2, 0, -1); |
1598 | 2834 #else /* NOT USE_KKCC */ |
428 | 2835 mark_object (rest2); |
1598 | 2836 #endif /* NOT USE_KKCC */ |
428 | 2837 did_mark = 1; |
2838 } | |
2839 } | |
2840 | |
2841 return did_mark; | |
2842 } | |
2843 | |
2844 void | |
2845 prune_weak_lists (void) | |
2846 { | |
2847 Lisp_Object rest, prev = Qnil; | |
2848 | |
2849 for (rest = Vall_weak_lists; | |
2850 !NILP (rest); | |
2851 rest = XWEAK_LIST (rest)->next_weak) | |
2852 { | |
2853 if (! (marked_p (rest))) | |
2854 { | |
2855 /* This weak list itself is garbage. Remove it from the list. */ | |
2856 if (NILP (prev)) | |
2857 Vall_weak_lists = XWEAK_LIST (rest)->next_weak; | |
2858 else | |
2859 XWEAK_LIST (prev)->next_weak = | |
2860 XWEAK_LIST (rest)->next_weak; | |
2861 } | |
2862 else | |
2863 { | |
2864 Lisp_Object rest2, prev2 = Qnil; | |
2865 Lisp_Object tortoise; | |
2866 int go_tortoise = 0; | |
2867 | |
2868 for (rest2 = XWEAK_LIST (rest)->list, tortoise = rest2; | |
2869 /* We need to be trickier since we're inside of GC; | |
2870 use CONSP instead of !NILP in case of user-visible | |
2871 imperfect lists */ | |
2872 CONSP (rest2);) | |
2873 { | |
2874 /* It suffices to check the cons for marking, | |
2875 regardless of the type of weak list: | |
2876 | |
2877 -- if the cons is pointed to somewhere else, | |
2878 then it should stay around and will be marked. | |
2879 -- otherwise, if it should stay around, it will | |
2880 have been marked in finish_marking_weak_lists(). | |
2881 -- otherwise, it's not marked and should disappear. | |
2882 */ | |
2883 if (! marked_p (rest2)) | |
2884 { | |
2885 /* bye bye :-( */ | |
2886 if (NILP (prev2)) | |
2887 XWEAK_LIST (rest)->list = XCDR (rest2); | |
2888 else | |
2889 XCDR (prev2) = XCDR (rest2); | |
2890 rest2 = XCDR (rest2); | |
2891 /* Ouch. Circularity checking is even trickier | |
2892 than I thought. When we cut out a link | |
2893 like this, we can't advance the turtle or | |
2894 it'll catch up to us. Imagine that we're | |
2895 standing on floor tiles and moving forward -- | |
2896 what we just did here is as if the floor | |
2897 tile under us just disappeared and all the | |
2898 ones ahead of us slid one tile towards us. | |
2899 In other words, we didn't move at all; | |
2900 if the tortoise was one step behind us | |
2901 previously, it still is, and therefore | |
2902 it must not move. */ | |
2903 } | |
2904 else | |
2905 { | |
2906 prev2 = rest2; | |
2907 | |
2908 /* Implementing circularity checking is trickier here | |
2909 than in other places because we have to guarantee | |
2910 that we've processed all elements before exiting | |
2911 due to a circularity. (In most places, an error | |
2912 is issued upon encountering a circularity, so it | |
2913 doesn't really matter if all elements are processed.) | |
2914 The idea is that we process along with the hare | |
2915 rather than the tortoise. If at any point in | |
2916 our forward process we encounter the tortoise, | |
2917 we must have already visited the spot, so we exit. | |
2918 (If we process with the tortoise, we can fail to | |
2919 process cases where a cons points to itself, or | |
2920 where cons A points to cons B, which points to | |
2921 cons A.) */ | |
2922 | |
2923 rest2 = XCDR (rest2); | |
2924 if (go_tortoise) | |
2925 tortoise = XCDR (tortoise); | |
2926 go_tortoise = !go_tortoise; | |
2927 if (EQ (rest2, tortoise)) | |
2928 break; | |
2929 } | |
2930 } | |
2931 | |
2932 prev = rest; | |
2933 } | |
2934 } | |
2935 } | |
2936 | |
2937 static enum weak_list_type | |
2938 decode_weak_list_type (Lisp_Object symbol) | |
2939 { | |
2940 CHECK_SYMBOL (symbol); | |
2941 if (EQ (symbol, Qsimple)) return WEAK_LIST_SIMPLE; | |
2942 if (EQ (symbol, Qassoc)) return WEAK_LIST_ASSOC; | |
2943 if (EQ (symbol, Qold_assoc)) return WEAK_LIST_ASSOC; /* EBOLA ALERT! */ | |
2944 if (EQ (symbol, Qkey_assoc)) return WEAK_LIST_KEY_ASSOC; | |
2945 if (EQ (symbol, Qvalue_assoc)) return WEAK_LIST_VALUE_ASSOC; | |
442 | 2946 if (EQ (symbol, Qfull_assoc)) return WEAK_LIST_FULL_ASSOC; |
428 | 2947 |
563 | 2948 invalid_constant ("Invalid weak list type", symbol); |
1204 | 2949 RETURN_NOT_REACHED (WEAK_LIST_SIMPLE); |
428 | 2950 } |
2951 | |
2952 static Lisp_Object | |
2953 encode_weak_list_type (enum weak_list_type type) | |
2954 { | |
2955 switch (type) | |
2956 { | |
2957 case WEAK_LIST_SIMPLE: return Qsimple; | |
2958 case WEAK_LIST_ASSOC: return Qassoc; | |
2959 case WEAK_LIST_KEY_ASSOC: return Qkey_assoc; | |
2960 case WEAK_LIST_VALUE_ASSOC: return Qvalue_assoc; | |
442 | 2961 case WEAK_LIST_FULL_ASSOC: return Qfull_assoc; |
428 | 2962 default: |
2500 | 2963 ABORT (); |
428 | 2964 } |
2965 | |
801 | 2966 return Qnil; /* not (usually) reached */ |
428 | 2967 } |
2968 | |
2969 DEFUN ("weak-list-p", Fweak_list_p, 1, 1, 0, /* | |
2970 Return non-nil if OBJECT is a weak list. | |
2971 */ | |
2972 (object)) | |
2973 { | |
2974 return WEAK_LISTP (object) ? Qt : Qnil; | |
2975 } | |
2976 | |
2977 DEFUN ("make-weak-list", Fmake_weak_list, 0, 1, 0, /* | |
2978 Return a new weak list object of type TYPE. | |
2979 A weak list object is an object that contains a list. This list behaves | |
2980 like any other list except that its elements do not count towards | |
456 | 2981 garbage collection -- if the only pointer to an object is inside a weak |
428 | 2982 list (other than pointers in similar objects such as weak hash tables), |
2983 the object is garbage collected and automatically removed from the list. | |
2984 This is used internally, for example, to manage the list holding the | |
2985 children of an extent -- an extent that is unused but has a parent will | |
2986 still be reclaimed, and will automatically be removed from its parent's | |
2987 list of children. | |
2988 | |
2989 Optional argument TYPE specifies the type of the weak list, and defaults | |
2990 to `simple'. Recognized types are | |
2991 | |
2992 `simple' Objects in the list disappear if not pointed to. | |
2993 `assoc' Objects in the list disappear if they are conses | |
2994 and either the car or the cdr of the cons is not | |
2995 pointed to. | |
2996 `key-assoc' Objects in the list disappear if they are conses | |
2997 and the car is not pointed to. | |
2998 `value-assoc' Objects in the list disappear if they are conses | |
2999 and the cdr is not pointed to. | |
442 | 3000 `full-assoc' Objects in the list disappear if they are conses |
3001 and neither the car nor the cdr is pointed to. | |
428 | 3002 */ |
3003 (type)) | |
3004 { | |
3005 if (NILP (type)) | |
3006 type = Qsimple; | |
3007 | |
3008 return make_weak_list (decode_weak_list_type (type)); | |
3009 } | |
3010 | |
3011 DEFUN ("weak-list-type", Fweak_list_type, 1, 1, 0, /* | |
3012 Return the type of the given weak-list object. | |
3013 */ | |
3014 (weak)) | |
3015 { | |
3016 CHECK_WEAK_LIST (weak); | |
3017 return encode_weak_list_type (XWEAK_LIST (weak)->type); | |
3018 } | |
3019 | |
3020 DEFUN ("weak-list-list", Fweak_list_list, 1, 1, 0, /* | |
3021 Return the list contained in a weak-list object. | |
3022 */ | |
3023 (weak)) | |
3024 { | |
3025 CHECK_WEAK_LIST (weak); | |
3026 return XWEAK_LIST_LIST (weak); | |
3027 } | |
3028 | |
3029 DEFUN ("set-weak-list-list", Fset_weak_list_list, 2, 2, 0, /* | |
3030 Change the list contained in a weak-list object. | |
3031 */ | |
3032 (weak, new_list)) | |
3033 { | |
3034 CHECK_WEAK_LIST (weak); | |
3035 XWEAK_LIST_LIST (weak) = new_list; | |
3036 return new_list; | |
3037 } | |
3038 | |
888 | 3039 |
858 | 3040 /************************************************************************/ |
3041 /* weak boxes */ | |
3042 /************************************************************************/ | |
3043 | |
3044 static Lisp_Object Vall_weak_boxes; /* Gemarke es niemals ever!!! */ | |
3045 | |
3046 void | |
3047 prune_weak_boxes (void) | |
3048 { | |
3049 Lisp_Object rest, prev = Qnil; | |
888 | 3050 int removep = 0; |
858 | 3051 |
3052 for (rest = Vall_weak_boxes; | |
3053 !NILP(rest); | |
3054 rest = XWEAK_BOX (rest)->next_weak_box) | |
3055 { | |
3056 if (! (marked_p (rest))) | |
888 | 3057 /* This weak box itself is garbage. */ |
3058 removep = 1; | |
3059 | |
3060 if (! marked_p (XWEAK_BOX (rest)->value)) | |
3061 { | |
3062 XSET_WEAK_BOX (rest, Qnil); | |
3063 removep = 1; | |
3064 } | |
3065 | |
3066 if (removep) | |
3067 { | |
3068 /* Remove weak box from list. */ | |
3069 if (NILP (prev)) | |
3070 Vall_weak_boxes = XWEAK_BOX (rest)->next_weak_box; | |
3071 else | |
3072 XWEAK_BOX (prev)->next_weak_box = XWEAK_BOX (rest)->next_weak_box; | |
3073 removep = 0; | |
3074 } | |
3075 else | |
3076 prev = rest; | |
858 | 3077 } |
3078 } | |
3079 | |
3080 static Lisp_Object | |
2286 | 3081 mark_weak_box (Lisp_Object UNUSED (obj)) |
858 | 3082 { |
3083 return Qnil; | |
3084 } | |
3085 | |
3086 static void | |
2286 | 3087 print_weak_box (Lisp_Object UNUSED (obj), Lisp_Object printcharfun, |
3088 int UNUSED (escapeflag)) | |
858 | 3089 { |
3090 if (print_readably) | |
3091 printing_unreadable_object ("#<weak_box>"); | |
3092 write_fmt_string (printcharfun, "#<weak_box>"); | |
3093 } | |
3094 | |
3095 static int | |
3096 weak_box_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
3097 { | |
888 | 3098 struct weak_box *wb1 = XWEAK_BOX (obj1); |
3099 struct weak_box *wb2 = XWEAK_BOX (obj2); | |
858 | 3100 |
888 | 3101 return (internal_equal (wb1->value, wb2->value, depth + 1)); |
858 | 3102 } |
3103 | |
3104 static Hashcode | |
3105 weak_box_hash (Lisp_Object obj, int depth) | |
3106 { | |
888 | 3107 struct weak_box *wb = XWEAK_BOX (obj); |
858 | 3108 |
888 | 3109 return internal_hash (wb->value, depth + 1); |
858 | 3110 } |
3111 | |
3112 Lisp_Object | |
3113 make_weak_box (Lisp_Object value) | |
3114 { | |
3115 Lisp_Object result; | |
3116 | |
3117 struct weak_box *wb = | |
3017 | 3118 ALLOC_LCRECORD_TYPE (struct weak_box, &lrecord_weak_box); |
858 | 3119 |
3120 wb->value = value; | |
3121 result = wrap_weak_box (wb); | |
3122 wb->next_weak_box = Vall_weak_boxes; | |
3123 Vall_weak_boxes = result; | |
3124 return result; | |
3125 } | |
3126 | |
1204 | 3127 static const struct memory_description weak_box_description[] = { |
858 | 3128 { XD_LO_LINK, offsetof (struct weak_box, value) }, |
888 | 3129 { XD_END} |
858 | 3130 }; |
3131 | |
934 | 3132 DEFINE_LRECORD_IMPLEMENTATION ("weak_box", weak_box, |
3133 0, /*dumpable-flag*/ | |
3134 mark_weak_box, print_weak_box, | |
3135 0, weak_box_equal, weak_box_hash, | |
3136 weak_box_description, | |
3137 struct weak_box); | |
858 | 3138 |
3139 DEFUN ("make-weak-box", Fmake_weak_box, 1, 1, 0, /* | |
3140 Return a new weak box from value CONTENTS. | |
3141 The weak box is a reference to CONTENTS which may be extracted with | |
3142 `weak-box-ref'. However, the weak box does not contribute to the | |
3143 reachability of CONTENTS. When CONTENTS is garbage-collected, | |
3144 `weak-box-ref' will return NIL. | |
3145 */ | |
3146 (value)) | |
3147 { | |
3148 return make_weak_box(value); | |
3149 } | |
3150 | |
3151 DEFUN ("weak-box-ref", Fweak_box_ref, 1, 1, 0, /* | |
3152 Return the contents of weak box WEAK-BOX. | |
3153 If the contents have been GCed, return NIL. | |
3154 */ | |
888 | 3155 (wb)) |
858 | 3156 { |
888 | 3157 return XWEAK_BOX (wb)->value; |
858 | 3158 } |
3159 | |
3160 DEFUN ("weak-box-p", Fweak_boxp, 1, 1, 0, /* | |
3161 Return non-nil if OBJECT is a weak box. | |
3162 */ | |
3163 (object)) | |
3164 { | |
3165 return WEAK_BOXP (object) ? Qt : Qnil; | |
3166 } | |
3167 | |
888 | 3168 /************************************************************************/ |
3169 /* ephemerons */ | |
3170 /************************************************************************/ | |
3171 | |
993 | 3172 /* The concept of ephemerons is due to: |
3173 * Barry Hayes: Ephemerons: A New Finalization Mechanism. OOPSLA 1997: 176-183 | |
3174 * The original idea is due to George Bosworth of Digitalk, Inc. | |
3175 * | |
3176 * For a discussion of finalization and weakness that also reviews | |
3177 * ephemerons, refer to: | |
3178 * Simon Peyton Jones, Simon Marlow, Conal Elliot: | |
3179 * Stretching the storage manager | |
3180 * Implementation of Functional Languages, 1999 | |
3181 */ | |
3182 | |
888 | 3183 static Lisp_Object Vall_ephemerons; /* Gemarke es niemals ever!!! */ |
1590 | 3184 static Lisp_Object Vnew_all_ephemerons; |
888 | 3185 static Lisp_Object Vfinalize_list; |
3186 | |
1590 | 3187 void |
3188 init_marking_ephemerons(void) | |
3189 { | |
3190 Vnew_all_ephemerons = Qnil; | |
3191 } | |
3192 | |
3193 /* Move all live ephemerons with live keys over to | |
3194 * Vnew_all_ephemerons, marking the values and finalizers along the | |
3195 * way. */ | |
3196 | |
3197 int | |
3198 continue_marking_ephemerons(void) | |
3199 { | |
3200 Lisp_Object rest = Vall_ephemerons, next, prev = Qnil; | |
3201 int did_mark = 0; | |
3202 | |
3203 while (!NILP (rest)) | |
3204 { | |
3205 next = XEPHEMERON_NEXT (rest); | |
3206 | |
3207 if (marked_p (rest)) | |
3208 { | |
3209 MARK_CONS (XCONS (XEPHEMERON (rest)->cons_chain)); | |
3210 if (marked_p (XEPHEMERON (rest)->key)) | |
3211 { | |
1598 | 3212 #ifdef USE_KKCC |
3213 kkcc_gc_stack_push_lisp_object | |
2645 | 3214 (XCAR (XEPHEMERON (rest)->cons_chain), 0, -1); |
1598 | 3215 #else /* NOT USE_KKCC */ |
1590 | 3216 mark_object (XCAR (XEPHEMERON (rest)->cons_chain)); |
1598 | 3217 #endif /* NOT USE_KKCC */ |
1590 | 3218 did_mark = 1; |
3219 XSET_EPHEMERON_NEXT (rest, Vnew_all_ephemerons); | |
3220 Vnew_all_ephemerons = rest; | |
3221 if (NILP (prev)) | |
3222 Vall_ephemerons = next; | |
3223 else | |
3224 XSET_EPHEMERON_NEXT (prev, next); | |
3225 } | |
3226 else | |
3227 prev = rest; | |
3228 } | |
3229 else | |
3230 prev = rest; | |
3231 | |
3232 rest = next; | |
3233 } | |
3234 | |
3235 return did_mark; | |
3236 } | |
3237 | |
3238 /* At this point, everything that's in Vall_ephemerons is dead. | |
3239 * Well, almost: we still need to run the finalizers, so we need to | |
3240 * resurrect them. | |
3241 */ | |
3242 | |
888 | 3243 int |
3244 finish_marking_ephemerons(void) | |
3245 { | |
1590 | 3246 Lisp_Object rest = Vall_ephemerons, next, prev = Qnil; |
888 | 3247 int did_mark = 0; |
3248 | |
3249 while (! NILP (rest)) | |
3250 { | |
3251 next = XEPHEMERON_NEXT (rest); | |
3252 | |
3253 if (marked_p (rest)) | |
1590 | 3254 /* The ephemeron itself is live, but its key is garbage */ |
888 | 3255 { |
1590 | 3256 /* tombstone */ |
3257 XSET_EPHEMERON_VALUE (rest, Qnil); | |
3258 | |
3259 if (! NILP (XEPHEMERON_FINALIZER (rest))) | |
888 | 3260 { |
1590 | 3261 MARK_CONS (XCONS (XEPHEMERON (rest)->cons_chain)); |
1598 | 3262 #ifdef USE_KKCC |
3263 kkcc_gc_stack_push_lisp_object | |
2645 | 3264 (XCAR (XEPHEMERON (rest)->cons_chain), 0, -1); |
1598 | 3265 #else /* NOT USE_KKCC */ |
1590 | 3266 mark_object (XCAR (XEPHEMERON (rest)->cons_chain)); |
1598 | 3267 #endif /* NOT USE_KKCC */ |
1590 | 3268 |
3269 /* Register the finalizer */ | |
3270 XSET_EPHEMERON_NEXT (rest, Vfinalize_list); | |
3271 Vfinalize_list = XEPHEMERON (rest)->cons_chain; | |
3272 did_mark = 1; | |
888 | 3273 } |
3274 | |
3275 /* Remove it from the list. */ | |
3276 if (NILP (prev)) | |
3277 Vall_ephemerons = next; | |
3278 else | |
3279 XSET_EPHEMERON_NEXT (prev, next); | |
3280 } | |
3281 else | |
3282 prev = rest; | |
3283 | |
3284 rest = next; | |
3285 } | |
1590 | 3286 |
3287 return did_mark; | |
3288 } | |
3289 | |
3290 void | |
3291 prune_ephemerons(void) | |
3292 { | |
3293 Vall_ephemerons = Vnew_all_ephemerons; | |
888 | 3294 } |
3295 | |
3296 Lisp_Object | |
3297 zap_finalize_list(void) | |
3298 { | |
3299 Lisp_Object finalizers = Vfinalize_list; | |
3300 | |
3301 Vfinalize_list = Qnil; | |
3302 | |
3303 return finalizers; | |
3304 } | |
3305 | |
3306 static Lisp_Object | |
2286 | 3307 mark_ephemeron (Lisp_Object UNUSED (obj)) |
888 | 3308 { |
3309 return Qnil; | |
3310 } | |
3311 | |
3312 static void | |
2286 | 3313 print_ephemeron (Lisp_Object UNUSED (obj), Lisp_Object printcharfun, |
3314 int UNUSED (escapeflag)) | |
888 | 3315 { |
3316 if (print_readably) | |
3317 printing_unreadable_object ("#<ephemeron>"); | |
3318 write_fmt_string (printcharfun, "#<ephemeron>"); | |
3319 } | |
3320 | |
3321 static int | |
3322 ephemeron_equal (Lisp_Object obj1, Lisp_Object obj2, int depth) | |
3323 { | |
3324 return | |
3325 internal_equal (XEPHEMERON_REF (obj1), XEPHEMERON_REF(obj2), depth + 1); | |
3326 } | |
3327 | |
3328 static Hashcode | |
3329 ephemeron_hash(Lisp_Object obj, int depth) | |
3330 { | |
3331 return internal_hash (XEPHEMERON_REF (obj), depth + 1); | |
3332 } | |
3333 | |
3334 Lisp_Object | |
3335 make_ephemeron(Lisp_Object key, Lisp_Object value, Lisp_Object finalizer) | |
3336 { | |
3337 Lisp_Object result, temp = Qnil; | |
3338 struct gcpro gcpro1, gcpro2; | |
3339 | |
3340 struct ephemeron *eph = | |
3017 | 3341 ALLOC_LCRECORD_TYPE (struct ephemeron, &lrecord_ephemeron); |
888 | 3342 |
3343 eph->key = Qnil; | |
3344 eph->cons_chain = Qnil; | |
3345 eph->value = Qnil; | |
3346 | |
3347 result = wrap_ephemeron(eph); | |
3348 GCPRO2 (result, temp); | |
3349 | |
3350 eph->key = key; | |
3351 temp = Fcons(value, finalizer); | |
3352 eph->cons_chain = Fcons(temp, Vall_ephemerons); | |
3353 eph->value = value; | |
3354 | |
3355 Vall_ephemerons = result; | |
3356 | |
3357 UNGCPRO; | |
3358 return result; | |
3359 } | |
3360 | |
1598 | 3361 /* Ephemerons are special cases in the KKCC mark algorithm, so nothing |
3362 is marked here. */ | |
1204 | 3363 static const struct memory_description ephemeron_description[] = { |
3364 { XD_LISP_OBJECT, offsetof(struct ephemeron, key), | |
2551 | 3365 0, { 0 }, XD_FLAG_NO_KKCC }, |
1204 | 3366 { XD_LISP_OBJECT, offsetof(struct ephemeron, cons_chain), |
2551 | 3367 0, { 0 }, XD_FLAG_NO_KKCC }, |
1204 | 3368 { XD_LISP_OBJECT, offsetof(struct ephemeron, value), |
2551 | 3369 0, { 0 }, XD_FLAG_NO_KKCC }, |
888 | 3370 { XD_END } |
3371 }; | |
3372 | |
934 | 3373 DEFINE_LRECORD_IMPLEMENTATION ("ephemeron", ephemeron, |
3374 0, /*dumpable-flag*/ | |
3375 mark_ephemeron, print_ephemeron, | |
3376 0, ephemeron_equal, ephemeron_hash, | |
3377 ephemeron_description, | |
3378 struct ephemeron); | |
888 | 3379 |
3380 DEFUN ("make-ephemeron", Fmake_ephemeron, 2, 3, 0, /* | |
1590 | 3381 Return a new ephemeron with key KEY, value VALUE, and finalizer FINALIZER. |
3382 The ephemeron is a reference to VALUE which may be extracted with | |
3383 `ephemeron-ref'. VALUE is only reachable through the ephemeron as | |
888 | 3384 long as KEY is reachable; the ephemeron does not contribute to the |
3385 reachability of KEY. When KEY becomes unreachable while the ephemeron | |
1590 | 3386 itself is still reachable, VALUE is queued for finalization: FINALIZER |
3387 will possibly be called on VALUE some time in the future. Moreover, | |
888 | 3388 future calls to `ephemeron-ref' will return NIL. |
3389 */ | |
3390 (key, value, finalizer)) | |
3391 { | |
3392 return make_ephemeron(key, value, finalizer); | |
3393 } | |
3394 | |
3395 DEFUN ("ephemeron-ref", Fephemeron_ref, 1, 1, 0, /* | |
3396 Return the contents of ephemeron EPHEMERON. | |
3397 If the contents have been GCed, return NIL. | |
3398 */ | |
3399 (eph)) | |
3400 { | |
3401 return XEPHEMERON_REF (eph); | |
3402 } | |
3403 | |
3404 DEFUN ("ephemeron-p", Fephemeronp, 1, 1, 0, /* | |
3405 Return non-nil if OBJECT is an ephemeron. | |
3406 */ | |
3407 (object)) | |
3408 { | |
3409 return EPHEMERONP (object) ? Qt : Qnil; | |
3410 } | |
428 | 3411 |
3412 /************************************************************************/ | |
3413 /* initialization */ | |
3414 /************************************************************************/ | |
3415 | |
3416 static SIGTYPE | |
3417 arith_error (int signo) | |
3418 { | |
3419 EMACS_REESTABLISH_SIGNAL (signo, arith_error); | |
3420 EMACS_UNBLOCK_SIGNAL (signo); | |
563 | 3421 signal_error (Qarith_error, 0, Qunbound); |
428 | 3422 } |
3423 | |
3424 void | |
3425 init_data_very_early (void) | |
3426 { | |
3427 /* Don't do this if just dumping out. | |
3428 We don't want to call `signal' in this case | |
3429 so that we don't have trouble with dumping | |
3430 signal-delivering routines in an inconsistent state. */ | |
3431 if (!initialized) | |
3432 return; | |
613 | 3433 EMACS_SIGNAL (SIGFPE, arith_error); |
428 | 3434 #ifdef uts |
613 | 3435 EMACS_SIGNAL (SIGEMT, arith_error); |
428 | 3436 #endif /* uts */ |
3437 } | |
3438 | |
3439 void | |
3440 init_errors_once_early (void) | |
3441 { | |
442 | 3442 DEFSYMBOL (Qerror_conditions); |
3443 DEFSYMBOL (Qerror_message); | |
428 | 3444 |
3445 /* We declare the errors here because some other deferrors depend | |
3446 on some of the errors below. */ | |
3447 | |
3448 /* ERROR is used as a signaler for random errors for which nothing | |
3449 else is right */ | |
3450 | |
442 | 3451 DEFERROR (Qerror, "error", Qnil); |
3452 DEFERROR_STANDARD (Qquit, Qnil); | |
428 | 3453 |
563 | 3454 DEFERROR_STANDARD (Qinvalid_argument, Qerror); |
3455 | |
3456 DEFERROR_STANDARD (Qsyntax_error, Qinvalid_argument); | |
442 | 3457 DEFERROR_STANDARD (Qinvalid_read_syntax, Qsyntax_error); |
563 | 3458 DEFERROR_STANDARD (Qstructure_formation_error, Qsyntax_error); |
3459 DEFERROR_STANDARD (Qlist_formation_error, Qstructure_formation_error); | |
442 | 3460 DEFERROR_STANDARD (Qmalformed_list, Qlist_formation_error); |
3461 DEFERROR_STANDARD (Qmalformed_property_list, Qmalformed_list); | |
3462 DEFERROR_STANDARD (Qcircular_list, Qlist_formation_error); | |
3463 DEFERROR_STANDARD (Qcircular_property_list, Qcircular_list); | |
428 | 3464 |
442 | 3465 DEFERROR_STANDARD (Qwrong_type_argument, Qinvalid_argument); |
3466 DEFERROR_STANDARD (Qargs_out_of_range, Qinvalid_argument); | |
3467 DEFERROR_STANDARD (Qwrong_number_of_arguments, Qinvalid_argument); | |
3468 DEFERROR_STANDARD (Qinvalid_function, Qinvalid_argument); | |
563 | 3469 DEFERROR_STANDARD (Qinvalid_constant, Qinvalid_argument); |
442 | 3470 DEFERROR (Qno_catch, "No catch for tag", Qinvalid_argument); |
3471 | |
563 | 3472 DEFERROR_STANDARD (Qinvalid_state, Qerror); |
442 | 3473 DEFERROR (Qvoid_function, "Symbol's function definition is void", |
3474 Qinvalid_state); | |
3475 DEFERROR (Qcyclic_function_indirection, | |
3476 "Symbol's chain of function indirections contains a loop", | |
3477 Qinvalid_state); | |
3478 DEFERROR (Qvoid_variable, "Symbol's value as variable is void", | |
3479 Qinvalid_state); | |
3480 DEFERROR (Qcyclic_variable_indirection, | |
3481 "Symbol's chain of variable indirections contains a loop", | |
3482 Qinvalid_state); | |
563 | 3483 DEFERROR_STANDARD (Qstack_overflow, Qinvalid_state); |
3484 DEFERROR_STANDARD (Qinternal_error, Qinvalid_state); | |
3485 DEFERROR_STANDARD (Qout_of_memory, Qinvalid_state); | |
428 | 3486 |
563 | 3487 DEFERROR_STANDARD (Qinvalid_operation, Qerror); |
3488 DEFERROR_STANDARD (Qinvalid_change, Qinvalid_operation); | |
442 | 3489 DEFERROR (Qsetting_constant, "Attempt to set a constant symbol", |
3490 Qinvalid_change); | |
563 | 3491 DEFERROR_STANDARD (Qprinting_unreadable_object, Qinvalid_operation); |
3492 DEFERROR (Qunimplemented, "Feature not yet implemented", Qinvalid_operation); | |
442 | 3493 |
563 | 3494 DEFERROR_STANDARD (Qediting_error, Qinvalid_operation); |
442 | 3495 DEFERROR_STANDARD (Qbeginning_of_buffer, Qediting_error); |
3496 DEFERROR_STANDARD (Qend_of_buffer, Qediting_error); | |
3497 DEFERROR (Qbuffer_read_only, "Buffer is read-only", Qediting_error); | |
3498 | |
3499 DEFERROR (Qio_error, "IO Error", Qinvalid_operation); | |
563 | 3500 DEFERROR_STANDARD (Qfile_error, Qio_error); |
3501 DEFERROR (Qend_of_file, "End of file or stream", Qfile_error); | |
3502 DEFERROR_STANDARD (Qconversion_error, Qio_error); | |
580 | 3503 DEFERROR_STANDARD (Qtext_conversion_error, Qconversion_error); |
442 | 3504 |
3505 DEFERROR (Qarith_error, "Arithmetic error", Qinvalid_operation); | |
3506 DEFERROR (Qrange_error, "Arithmetic range error", Qarith_error); | |
3507 DEFERROR (Qdomain_error, "Arithmetic domain error", Qarith_error); | |
3508 DEFERROR (Qsingularity_error, "Arithmetic singularity error", Qdomain_error); | |
3509 DEFERROR (Qoverflow_error, "Arithmetic overflow error", Qdomain_error); | |
3510 DEFERROR (Qunderflow_error, "Arithmetic underflow error", Qdomain_error); | |
428 | 3511 } |
3512 | |
3513 void | |
3514 syms_of_data (void) | |
3515 { | |
442 | 3516 INIT_LRECORD_IMPLEMENTATION (weak_list); |
888 | 3517 INIT_LRECORD_IMPLEMENTATION (ephemeron); |
858 | 3518 INIT_LRECORD_IMPLEMENTATION (weak_box); |
442 | 3519 |
3520 DEFSYMBOL (Qquote); | |
3521 DEFSYMBOL (Qlambda); | |
3522 DEFSYMBOL (Qlistp); | |
3523 DEFSYMBOL (Qtrue_list_p); | |
3524 DEFSYMBOL (Qconsp); | |
3525 DEFSYMBOL (Qsubrp); | |
3526 DEFSYMBOL (Qsymbolp); | |
3527 DEFSYMBOL (Qintegerp); | |
3528 DEFSYMBOL (Qcharacterp); | |
3529 DEFSYMBOL (Qnatnump); | |
1983 | 3530 DEFSYMBOL (Qnonnegativep); |
442 | 3531 DEFSYMBOL (Qstringp); |
3532 DEFSYMBOL (Qarrayp); | |
3533 DEFSYMBOL (Qsequencep); | |
3534 DEFSYMBOL (Qbufferp); | |
3535 DEFSYMBOL (Qbitp); | |
3536 DEFSYMBOL_MULTIWORD_PREDICATE (Qbit_vectorp); | |
3537 DEFSYMBOL (Qvectorp); | |
3538 DEFSYMBOL (Qchar_or_string_p); | |
3539 DEFSYMBOL (Qmarkerp); | |
3540 DEFSYMBOL (Qinteger_or_marker_p); | |
3541 DEFSYMBOL (Qinteger_or_char_p); | |
3542 DEFSYMBOL (Qinteger_char_or_marker_p); | |
3543 DEFSYMBOL (Qnumberp); | |
3544 DEFSYMBOL (Qnumber_char_or_marker_p); | |
3545 DEFSYMBOL (Qcdr); | |
563 | 3546 DEFSYMBOL (Qerror_lacks_explanatory_string); |
442 | 3547 DEFSYMBOL_MULTIWORD_PREDICATE (Qweak_listp); |
3548 DEFSYMBOL (Qfloatp); | |
428 | 3549 |
3550 DEFSUBR (Fwrong_type_argument); | |
3551 | |
1983 | 3552 #ifdef HAVE_RATIO |
3553 DEFSUBR (Fdiv); | |
3554 #endif | |
428 | 3555 DEFSUBR (Feq); |
3556 DEFSUBR (Fold_eq); | |
3557 DEFSUBR (Fnull); | |
3558 Ffset (intern ("not"), intern ("null")); | |
3559 DEFSUBR (Flistp); | |
3560 DEFSUBR (Fnlistp); | |
3561 DEFSUBR (Ftrue_list_p); | |
3562 DEFSUBR (Fconsp); | |
3563 DEFSUBR (Fatom); | |
3564 DEFSUBR (Fchar_or_string_p); | |
3565 DEFSUBR (Fcharacterp); | |
3566 DEFSUBR (Fchar_int_p); | |
3567 DEFSUBR (Fchar_to_int); | |
3568 DEFSUBR (Fint_to_char); | |
3569 DEFSUBR (Fchar_or_char_int_p); | |
1983 | 3570 #ifdef HAVE_BIGNUM |
3571 DEFSUBR (Ffixnump); | |
3572 #else | |
428 | 3573 DEFSUBR (Fintegerp); |
1983 | 3574 #endif |
428 | 3575 DEFSUBR (Finteger_or_marker_p); |
3576 DEFSUBR (Finteger_or_char_p); | |
3577 DEFSUBR (Finteger_char_or_marker_p); | |
3578 DEFSUBR (Fnumberp); | |
3579 DEFSUBR (Fnumber_or_marker_p); | |
3580 DEFSUBR (Fnumber_char_or_marker_p); | |
3581 DEFSUBR (Ffloatp); | |
3582 DEFSUBR (Fnatnump); | |
1983 | 3583 DEFSUBR (Fnonnegativep); |
428 | 3584 DEFSUBR (Fsymbolp); |
3585 DEFSUBR (Fkeywordp); | |
3586 DEFSUBR (Fstringp); | |
3587 DEFSUBR (Fvectorp); | |
3588 DEFSUBR (Fbitp); | |
3589 DEFSUBR (Fbit_vector_p); | |
3590 DEFSUBR (Farrayp); | |
3591 DEFSUBR (Fsequencep); | |
3592 DEFSUBR (Fmarkerp); | |
3593 DEFSUBR (Fsubrp); | |
3594 DEFSUBR (Fsubr_min_args); | |
3595 DEFSUBR (Fsubr_max_args); | |
3596 DEFSUBR (Fsubr_interactive); | |
3597 DEFSUBR (Ftype_of); | |
3598 DEFSUBR (Fcar); | |
3599 DEFSUBR (Fcdr); | |
3600 DEFSUBR (Fcar_safe); | |
3601 DEFSUBR (Fcdr_safe); | |
3602 DEFSUBR (Fsetcar); | |
3603 DEFSUBR (Fsetcdr); | |
3604 DEFSUBR (Findirect_function); | |
3605 DEFSUBR (Faref); | |
3606 DEFSUBR (Faset); | |
3607 | |
3608 DEFSUBR (Fnumber_to_string); | |
3609 DEFSUBR (Fstring_to_number); | |
3610 DEFSUBR (Feqlsign); | |
3611 DEFSUBR (Flss); | |
3612 DEFSUBR (Fgtr); | |
3613 DEFSUBR (Fleq); | |
3614 DEFSUBR (Fgeq); | |
3615 DEFSUBR (Fneq); | |
3616 DEFSUBR (Fzerop); | |
3617 DEFSUBR (Fplus); | |
3618 DEFSUBR (Fminus); | |
3619 DEFSUBR (Ftimes); | |
3620 DEFSUBR (Fquo); | |
3621 DEFSUBR (Frem); | |
3622 DEFSUBR (Fmod); | |
3623 DEFSUBR (Fmax); | |
3624 DEFSUBR (Fmin); | |
3625 DEFSUBR (Flogand); | |
3626 DEFSUBR (Flogior); | |
3627 DEFSUBR (Flogxor); | |
3628 DEFSUBR (Flsh); | |
3629 DEFSUBR (Fash); | |
3630 DEFSUBR (Fadd1); | |
3631 DEFSUBR (Fsub1); | |
3632 DEFSUBR (Flognot); | |
3633 | |
3634 DEFSUBR (Fweak_list_p); | |
3635 DEFSUBR (Fmake_weak_list); | |
3636 DEFSUBR (Fweak_list_type); | |
3637 DEFSUBR (Fweak_list_list); | |
3638 DEFSUBR (Fset_weak_list_list); | |
858 | 3639 |
888 | 3640 DEFSUBR (Fmake_ephemeron); |
3641 DEFSUBR (Fephemeron_ref); | |
3642 DEFSUBR (Fephemeronp); | |
858 | 3643 DEFSUBR (Fmake_weak_box); |
3644 DEFSUBR (Fweak_box_ref); | |
3645 DEFSUBR (Fweak_boxp); | |
428 | 3646 } |
3647 | |
3648 void | |
3649 vars_of_data (void) | |
3650 { | |
3651 /* This must not be staticpro'd */ | |
3652 Vall_weak_lists = Qnil; | |
452 | 3653 dump_add_weak_object_chain (&Vall_weak_lists); |
428 | 3654 |
888 | 3655 Vall_ephemerons = Qnil; |
3656 dump_add_weak_object_chain (&Vall_ephemerons); | |
3657 | |
3658 Vfinalize_list = Qnil; | |
3659 staticpro (&Vfinalize_list); | |
3660 | |
858 | 3661 Vall_weak_boxes = Qnil; |
3662 dump_add_weak_object_chain (&Vall_weak_boxes); | |
3663 | |
428 | 3664 #ifdef DEBUG_XEMACS |
3665 DEFVAR_BOOL ("debug-issue-ebola-notices", &debug_issue_ebola_notices /* | |
3666 If non-zero, note when your code may be suffering from char-int confoundance. | |
3667 That is to say, if XEmacs encounters a usage of `eq', `memq', `equal', | |
3668 etc. where an int and a char with the same value are being compared, | |
3669 it will issue a notice on stderr to this effect, along with a backtrace. | |
3670 In such situations, the result would be different in XEmacs 19 versus | |
3671 XEmacs 20, and you probably don't want this. | |
3672 | |
3673 Note that in order to see these notices, you have to byte compile your | |
3674 code under XEmacs 20 -- any code byte-compiled under XEmacs 19 will | |
3675 have its chars and ints all confounded in the byte code, making it | |
3676 impossible to accurately determine Ebola infection. | |
3677 */ ); | |
3678 | |
3679 debug_issue_ebola_notices = 0; | |
3680 | |
3681 DEFVAR_INT ("debug-ebola-backtrace-length", | |
3682 &debug_ebola_backtrace_length /* | |
3683 Length (in stack frames) of short backtrace printed out in Ebola notices. | |
3684 See `debug-issue-ebola-notices'. | |
3685 */ ); | |
3686 debug_ebola_backtrace_length = 32; | |
3687 | |
3688 #endif /* DEBUG_XEMACS */ | |
3689 } |