2367
|
1 /* Text manipulation primitives for XEmacs.
|
771
|
2 Copyright (C) 1995 Sun Microsystems, Inc.
|
2367
|
3 Copyright (C) 1995, 1996, 2000, 2001, 2002, 2003, 2004 Ben Wing.
|
771
|
4 Copyright (C) 1999 Martin Buchholz.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: Not in FSF. */
|
|
24
|
|
25 /* Authorship:
|
|
26 */
|
|
27
|
|
28 #include <config.h>
|
|
29 #include "lisp.h"
|
|
30
|
|
31 #include "buffer.h"
|
|
32 #include "charset.h"
|
|
33 #include "file-coding.h"
|
|
34 #include "lstream.h"
|
1292
|
35 #include "profile.h"
|
771
|
36
|
|
37
|
|
38 /************************************************************************/
|
|
39 /* long comments */
|
|
40 /************************************************************************/
|
|
41
|
2367
|
42 /* NB: Everything below was written by Ben Wing except as otherwise noted. */
|
|
43
|
|
44 /************************************************************************/
|
|
45 /* */
|
|
46 /* */
|
|
47 /* Part A: More carefully-written documentation */
|
|
48 /* */
|
|
49 /* */
|
|
50 /************************************************************************/
|
|
51
|
|
52 /* Authorship: Ben Wing
|
|
53
|
771
|
54
|
826
|
55 ==========================================================================
|
2367
|
56 7. Handling non-default formats
|
826
|
57 ==========================================================================
|
771
|
58
|
2367
|
59 We support, at least to some extent, formats other than the default
|
|
60 variable-width format, for speed; all of these alternative formats are
|
|
61 fixed-width. Currently we only handle these non-default formats in
|
|
62 buffers, because access to their text is strictly controlled and thus
|
|
63 the details of the format mostly compartmentalized. The only really
|
|
64 tricky part is the search code -- the regex, Boyer-Moore, and
|
|
65 simple-search algorithms in search.c and regex.c. All other code that
|
|
66 knows directly about the buffer representation is the basic code to
|
|
67 modify or retrieve the buffer text.
|
|
68
|
|
69 Supporting fixed-width formats in Lisp strings is harder, but possible
|
|
70 -- FSF currently does this, for example. In this case, however,
|
|
71 probably only 8-bit-fixed is reasonable for Lisp strings -- getting
|
|
72 non-ASCII-compatible fixed-width formats to work is much, much harder
|
|
73 because a lot of code assumes that strings are ASCII-compatible
|
|
74 (i.e. ASCII + other characters represented exclusively using high-bit
|
|
75 bytes) and a lot of code mixes Lisp strings and non-Lisp strings freely.
|
|
76
|
|
77 The different possible fixed-width formats are 8-bit fixed, 16-bit
|
|
78 fixed, and 32-bit fixed. The latter can represent all possible
|
|
79 characters, but at a substantial memory penalty. The other two can
|
|
80 represent only a subset of the possible characters. How these subsets
|
|
81 are defined can be simple or very tricky.
|
|
82
|
|
83 Currently we support only the default format and the 8-bit fixed format,
|
|
84 and in the latter, we only allow these to be the first 256 characters in
|
|
85 an Ichar (ASCII and Latin 1).
|
|
86
|
|
87 One reasonable approach for 8-bit fixed is to allow the upper half to
|
|
88 represent any 1-byte charset, which is specified on a per-buffer basis.
|
|
89 This should work fairly well in practice since most documents are in
|
|
90 only one foreign language (possibly with some English mixed in). I
|
|
91 think FSF does something like this; or at least, they have something
|
|
92 called nonascii-translation-table and use it when converting from
|
|
93 8-bit-fixed text ("unibyte text") to default text ("multibyte text").
|
|
94 With 16-bit fixed, you could do something like assign chunks of the 64K
|
|
95 worth of characters to charsets as they're encountered in documents.
|
|
96 This should work well with most Asian documents.
|
|
97
|
|
98 If/when we switch to using Unicode internally, we might have formats more
|
|
99 like this:
|
|
100
|
|
101 -- UTF-8 or some extension as the default format. Perl uses an
|
|
102 extension that handles 64-bit chars and requires as much as 13 bytes per
|
|
103 char, vs. the standard of 31-bit chars and 6 bytes max. UTF-8 has the
|
|
104 same basic properties as our own variable-width format (see text.c,
|
|
105 Internal String Encoding) and so most code would not need to be changed.
|
|
106
|
|
107 -- UTF-16 as a "pseudo-fixed" format (i.e. 16-bit fixed plus surrogates
|
|
108 for representing characters not in the BMP, aka >= 65536). The vast
|
|
109 majority of documents will have no surrogates in them so byte/char
|
|
110 conversion will be very fast.
|
|
111
|
|
112 -- an 8-bit fixed format, like currently.
|
|
113
|
|
114 -- possibly, UCS-4 as a 32-bit fixed format.
|
|
115
|
|
116 The fixed-width formats essentially treat the buffer as an array of
|
|
117 8-bit, 16-bit or 32-bit integers. This means that how they are stored
|
|
118 in memory (in particular, big-endian or little-endian) depends on the
|
|
119 native format of the machine's processor. It also means we have to
|
|
120 worry a bit about alignment (basically, we just need to keep the gap an
|
|
121 integral size of the character size, and get things aligned properly
|
|
122 when converting the buffer between formats).
|
826
|
123
|
|
124 ==========================================================================
|
2367
|
125 8. Using UTF-16 as the default text format
|
826
|
126 ==========================================================================
|
|
127
|
2367
|
128 NOTE: The Eistring API is (or should be) Mule-correct even without
|
|
129 an ASCII-compatible internal representation.
|
|
130
|
|
131 #### Currently, the assumption that text units are one byte in size is
|
|
132 embedded throughout XEmacs, and `Ibyte *' is used where `Itext *' should
|
|
133 be. The way to fix this is to (among other things)
|
|
134
|
|
135 (a) review all places referencing `Ibyte' and `Ibyte *', change them to
|
|
136 use Itext, and fix up the code.
|
|
137 (b) change XSTRING_DATA to be of type Itext *
|
|
138 (c) review all uses of XSTRING_DATA
|
|
139 (d) eliminate XSTRING_LENGTH, splitting it into XSTRING_BYTE_LENGTH and
|
|
140 XSTRING_TEXT_LENGTH and reviewing all places referencing this
|
|
141 (e) make similar changes to other API's that refer to the "length" of
|
|
142 something, such as qxestrlen() and eilen()
|
|
143 (f) review all use of `CIbyte *'. Currently this is usually a way of
|
|
144 passing literal ASCII text strings in places that want internal text.
|
|
145 Either create separate _ascii() and _itext() versions of the
|
|
146 functions taking CIbyte *, or make use of something like the
|
|
147 WEXTTEXT() macro, which will generate wide strings as appropriate.
|
|
148 (g) review all uses of Bytecount and see which ones should be Textcount.
|
|
149 (h) put in error-checking code that will be tripped as often as possible
|
|
150 when doing anything with internal text, and check to see that ASCII
|
|
151 text has not mistakenly filtered in. This should be fairly easy as
|
|
152 ASCII text will generally be entirely spaces and letters whereas every
|
|
153 second byte of Unicode text will generally be a null byte. Either we
|
|
154 abort if the second bytes are entirely letters and numbers, or,
|
|
155 perhaps better, do the equivalent of a non-MULE build, where we should
|
|
156 be dealing entirely with 8-bit characters, and assert that the high
|
|
157 bytes of each pair are null.
|
|
158 (i) review places where xmalloc() is called. If we convert each use of
|
|
159 xmalloc() to instead be xnew_array() or some other typed routine,
|
|
160 then we will find every place that allocates space for Itext and
|
|
161 assumes it is based on one-byte units.
|
|
162 (j) encourage the use of ITEXT_ZTERM_SIZE instead of '+ 1' whenever we
|
|
163 are adding space for a zero-terminator, to emphasize what we are
|
|
164 doing and make sure the calculations are correct. Similarly for
|
|
165 EXTTEXT_ZTERM_SIZE.
|
|
166 (k) Note that the qxestr*() functions, among other things, will need to
|
|
167 be rewritten.
|
|
168
|
|
169 Note that this is a lot of work, and is not high on the list of priorities
|
|
170 currently.
|
826
|
171
|
|
172 ==========================================================================
|
2367
|
173 9. Miscellaneous
|
826
|
174 ==========================================================================
|
|
175
|
|
176 A. Unicode Support
|
771
|
177
|
1292
|
178 Unicode support is very desirable. Currrently we know how to handle
|
|
179 externally-encoded Unicode data in various encodings -- UTF-16, UTF-8,
|
|
180 etc. However, we really need to represent Unicode characters internally
|
|
181 as-is, rather than converting to some language-specific character set.
|
|
182 For efficiency, we should represent Unicode characters using 3 bytes
|
|
183 rather than 4. This means we need to find leading bytes for Unicode.
|
|
184 Given that there are 65,536 characters in Unicode and we can attach
|
|
185 96x96 = 9,216 characters per leading byte, we need eight leading bytes
|
|
186 for Unicode. We currently have four free (0x9A - 0x9D), and with a
|
|
187 little bit of rearranging we can get five: ASCII doesn't really need to
|
|
188 take up a leading byte. (We could just as well use 0x7F, with a little
|
|
189 change to the functions that assume that 0x80 is the lowest leading
|
|
190 byte.) This means we still need to dump three leading bytes and move
|
|
191 them into private space. The CNS charsets are good candidates since
|
|
192 they are rarely used, and JAPANESE_JISX0208_1978 is becoming less and
|
|
193 less used and could also be dumped.
|
826
|
194
|
|
195 B. Composite Characters
|
|
196
|
|
197 Composite characters are characters constructed by overstriking two
|
771
|
198 or more regular characters.
|
|
199
|
|
200 1) The old Mule implementation involves storing composite characters
|
|
201 in a buffer as a tag followed by all of the actual characters
|
|
202 used to make up the composite character. I think this is a bad
|
|
203 idea; it greatly complicates code that wants to handle strings
|
|
204 one character at a time because it has to deal with the possibility
|
|
205 of great big ungainly characters. It's much more reasonable to
|
|
206 simply store an index into a table of composite characters.
|
|
207
|
|
208 2) The current implementation only allows for 16,384 separate
|
|
209 composite characters over the lifetime of the XEmacs process.
|
|
210 This could become a potential problem if the user
|
|
211 edited lots of different files that use composite characters.
|
|
212 Due to FSF bogosity, increasing the number of allowable
|
|
213 composite characters under Mule would decrease the number
|
|
214 of possible faces that can exist. Mule already has shrunk
|
|
215 this to 2048, and further shrinkage would become uncomfortable.
|
|
216 No such problems exist in XEmacs.
|
|
217
|
|
218 Composite characters could be represented as 0x8D C1 C2 C3,
|
|
219 where each C[1-3] is in the range 0xA0 - 0xFF. This allows
|
|
220 for slightly under 2^20 (one million) composite characters
|
|
221 over the XEmacs process lifetime, and you only need to
|
|
222 increase the size of a Mule character from 19 to 21 bits.
|
|
223 Or you could use 0x8D C1 C2 C3 C4, allowing for about
|
826
|
224 85 million (slightly over 2^26) composite characters.
|
|
225
|
2367
|
226 ==========================================================================
|
|
227 10. Internal API's
|
|
228 ==========================================================================
|
|
229
|
|
230 All of these are documented in more detail in text.h.
|
|
231
|
|
232 @enumerate
|
|
233 @item
|
|
234 Basic internal-format API's
|
|
235
|
|
236 These are simple functions and macros to convert between text
|
|
237 representation and characters, move forward and back in text, etc.
|
|
238
|
|
239 @item
|
|
240 The DFC API
|
|
241
|
|
242 This is for conversion between internal and external text. Note that
|
|
243 there is also the "new DFC" API, which *returns* a pointer to the
|
|
244 converted text (in alloca space), rather than storing it into a
|
|
245 variable.
|
|
246
|
|
247 @item
|
|
248 The Eistring API
|
|
249
|
|
250 (This API is currently under-used) When doing simple things with
|
|
251 internal text, the basic internal-format API's are enough. But to do
|
|
252 things like delete or replace a substring, concatenate various strings,
|
|
253 etc. is difficult to do cleanly because of the allocation issues.
|
|
254 The Eistring API is designed to deal with this, and provides a clean
|
|
255 way of modifying and building up internal text. (Note that the former
|
|
256 lack of this API has meant that some code uses Lisp strings to do
|
|
257 similar manipulations, resulting in excess garbage and increased
|
|
258 garbage collection.)
|
|
259
|
|
260 NOTE: The Eistring API is (or should be) Mule-correct even without
|
|
261 an ASCII-compatible internal representation.
|
|
262 @end enumerate
|
|
263
|
|
264 ==========================================================================
|
|
265 11. Other Sources of Documentation
|
|
266 ==========================================================================
|
|
267
|
|
268 man/lispref/mule.texi
|
|
269 @enumerate
|
|
270 @item
|
|
271 another intro to characters, encodings, etc; #### Merge with the
|
|
272 above info
|
|
273 @item
|
|
274 documentation of ISO-2022
|
|
275 @item
|
|
276 The charset and coding-system Lisp API's
|
|
277 @item
|
|
278 The CCL conversion language for writing encoding conversions
|
|
279 @item
|
|
280 The Latin-Unity package for unifying Latin charsets
|
|
281 @end enumerate
|
|
282
|
|
283 man/internals/internals.texi (the Internals manual)
|
|
284 @enumerate
|
|
285 @item
|
|
286 "Coding for Mule" -- how to write Mule-aware code
|
|
287 @item
|
|
288 "Modules for Internationalization"
|
|
289 @item
|
|
290 "The Text in a Buffer" -- more about the different ways of
|
|
291 viewing buffer positions; #### Merge with the above info
|
|
292 @item
|
|
293 "MULE Character Sets and Encodings" -- yet another intro
|
|
294 to characters, encodings, etc; #### Merge with the
|
|
295 above info; also some documentation of Japanese EUC and JIS7,
|
|
296 and CCL internals
|
|
297 @end enumerate
|
|
298
|
|
299 text.h -- info about specific XEmacs-C API's for handling internal and
|
|
300 external text
|
|
301
|
|
302 intl-win32.c -- Windows-specific I18N information
|
|
303
|
|
304 lisp.h -- some info appears alongside the definitions of the basic
|
|
305 character-related types
|
|
306
|
|
307 unicode.c -- documentation about Unicode translation tables
|
826
|
308 */
|
771
|
309
|
2367
|
310
|
|
311 /************************************************************************/
|
|
312 /* */
|
|
313 /* */
|
|
314 /* Part B: Random proposals for work to be done */
|
|
315 /* */
|
|
316 /* */
|
|
317 /************************************************************************/
|
|
318
|
|
319
|
|
320 /*
|
|
321
|
|
322
|
|
323 ==========================================================================
|
|
324 - Mule design issues (ben)
|
|
325 ==========================================================================
|
|
326
|
|
327 circa 1999
|
|
328
|
|
329 Here is a more detailed list of Mule-related projects that we will be
|
|
330 working on. They are more or less ordered according to how we will
|
|
331 proceed, but it's not exact. In particular, there will probably be
|
|
332 time overlap among adjacent projects.
|
|
333
|
|
334 @enumerate
|
|
335 @item
|
|
336 Modify the internal/external conversion macros to allow for
|
|
337 MS Windows support.
|
|
338
|
|
339 @item
|
|
340 Modify the buffer macros to allow for more than one internal
|
|
341 representation, e.g. fixed width and variable width.
|
|
342
|
|
343 @item
|
|
344 Review the existing Mule code, especially the lisp code, for code
|
|
345 quality issues and improve the cleanliness of it. Also work on
|
|
346 creating a specification for the Mule API.
|
|
347
|
|
348 @item
|
|
349 Write some more automated mule tests.
|
|
350
|
|
351 @item
|
|
352 Integrate Tomohiko's UTF-2000 code, fixing it up so that nothing is
|
|
353 broken when the UTF-2000 configure option is not enabled.
|
|
354
|
|
355 @item
|
|
356 Fix up the MS Windows code to be Mule-correct, so that you can
|
|
357 compile with Mule support under MS windows and have a working
|
|
358 XEmacs, at least just with Latin-1.
|
|
359
|
|
360 @item
|
|
361 Implement a scheme to guarantee no corruption of files, even with
|
|
362 an incorrect coding system - in particular, guarantee no corruption
|
|
363 of binary files.
|
|
364
|
|
365 @item
|
|
366 Make the text property support in XEmacs robust with respect to
|
|
367 string and text operations, so that the `no corruption' support in
|
|
368 the previous entry works properly, even if a lot of cutting and
|
|
369 pasting is done.
|
|
370
|
|
371 @item
|
|
372 Improve the handling of auto-detection so that, when there is any
|
|
373 possibility at all of mistake, the user is informed of the detected
|
|
374 encoding and given the choice of choosing other possibilities.
|
|
375
|
|
376 @item
|
|
377 Improve the support for different language environments in XEmacs,
|
|
378 for example, the priority of coding systems used in auto-detection
|
|
379 should properly reflect the language environment. This probably
|
|
380 necessitates rethinking the current `coding system priority'
|
|
381 scheme.
|
|
382
|
|
383 @item
|
|
384 Do quality work to improve the existing UTF-2000 implementation.
|
|
385
|
|
386 @item
|
|
387 Implement preliminary support for 8-bit fixed width
|
|
388 representation. First, we will only implement 7-bit support, and
|
|
389 will fall back to variable width as soon as any non-ASCII
|
|
390 character is encountered. Then we will improve the support to
|
|
391 handle an arbitrary character set in the upper half of the 8-bit space.
|
|
392
|
|
393 @item
|
|
394 Investigate any remaining hurdles to making --with-mule be the
|
|
395 default configure option.
|
|
396 @end enumerate
|
|
397
|
|
398 ==========================================================================
|
|
399 - Mule design issues (stephen)
|
|
400 ==========================================================================
|
|
401
|
|
402 What I see as Mule priorities (in rough benefit order, I am not taking
|
|
403 account of difficulty, nor the fact that some - eg 8 & 10 - will
|
|
404 probably come as packages):
|
|
405
|
|
406 @enumerate
|
|
407 @item
|
|
408 Fix the autodetect problem (by making the coding priority list
|
|
409 user-configurable, as short as he likes, even null, with "binary"
|
|
410 as the default).
|
|
411 @item
|
|
412 Document the language environments and other Mule "APIs" as
|
|
413 implemented (since there is no real design spec). Check to see
|
|
414 how and where they are broken.
|
|
415 @item
|
|
416 Make the Mule menu useful to non-ISO-2022-literate folks.
|
|
417 @item
|
|
418 Redo the lstreams stuff to make it easy and robust to "pipeline",
|
|
419 eg, libz | gnupg | jis2mule.
|
|
420 @item
|
|
421 Make Custom Mule-aware. (This probably depends on a sensible
|
|
422 fonts model.)
|
|
423 @item
|
|
424 Implement the "literal byte stream" memory feature.
|
|
425 @item
|
|
426 Study the FSF implementation of Mule for background for 7 & 8.
|
|
427 @item
|
|
428 Identify desirable Mule features (eg, i18n-ized messages as above,
|
|
429 collating tables by language environment, etc). (New features
|
|
430 might have priority as high as 9.)
|
|
431 @item
|
|
432 Specify Mule UIs, APIs, etc, and design and (re)implement them.
|
|
433 @item
|
|
434 Implement the 8-bit-wide buffer optimization.
|
|
435 @item
|
|
436 Move the internal encoding to UTF-32 (subject to Olivier's caveats
|
|
437 regarding compose characters), with the variable-width char
|
|
438 buffers using UTF-8.
|
|
439 @item
|
|
440 Implement the 16- and 32-bit-wide buffer optimizations.
|
|
441 @end enumerate
|
|
442
|
|
443 ==========================================================================
|
|
444 - Mule design issues "short term" (ben)
|
|
445 ==========================================================================
|
|
446
|
|
447 @enumerate
|
|
448 @item
|
|
449 Finish changes in fixup/directory, get in CVS.
|
|
450
|
|
451 (Test with and without "quick-build", to see if really faster)
|
|
452 (need autoconf)
|
|
453
|
|
454 @item
|
|
455 Finish up Windows/Mule changes. Outline of this elsewhere; Do
|
|
456 *minimal* effort.
|
|
457
|
|
458 @item
|
|
459 Continue work on Windows stability, e.g. go through existing notes
|
|
460 on Windows Mule-ization + extract all info.
|
|
461
|
|
462 @item
|
|
463 Get Unicode translation tables integrated.
|
|
464
|
|
465 Finish UCS2/UTF16 coding system.
|
|
466
|
|
467 @item
|
|
468 Make sure coding system priority list is language-environment specific.
|
|
469
|
|
470 @item
|
|
471 Consider moving language selection Menu up to be parallel with Mule menu.
|
|
472
|
|
473 @item
|
|
474 Check to make sure we grok the default locale at startup under
|
|
475 Windows and understand the Windows locales. Finish implementation
|
|
476 of mswindows-multibyte and make sure it groks all the locales.
|
|
477
|
|
478 @item
|
|
479 Do the above as best as we can without using Unicode tables.
|
|
480
|
|
481 @item
|
|
482 Start tagging all text with a language text property,
|
|
483 indicating the current language environment when the text was input.
|
|
484
|
|
485 @item
|
|
486 Make sure we correctly accept input of non-ASCII chars
|
|
487 (probably already do!)
|
|
488
|
|
489 @item
|
|
490 Implement active language/keyboard switching under Windows.
|
|
491
|
|
492 @item
|
|
493 Look into implementing support for "MS IME" protocol (Microsoft
|
|
494 fancy built-in Asian input methods).
|
|
495
|
|
496 @item
|
|
497 Redo implementation of mswindows-multibyte and internal display to
|
|
498 entirely use translation to/from Unicode for increased accuracy.
|
|
499
|
|
500 @item
|
|
501 Implement buf<->char improvements from FSF. Also implement
|
|
502 my string byte<->char optimization structure.
|
|
503
|
|
504 @item
|
|
505 Integrate all Mule DOCS from 20.6 or 21.0. Try to add sections
|
|
506 for what we've added.
|
|
507
|
|
508 @item
|
|
509 Implement 8-bit fixed width optimizations. Then work on 16-bit.
|
|
510 @end enumerate
|
|
511
|
|
512 ==========================================================================
|
|
513 - Mule design issues (more) (ben)
|
|
514 ==========================================================================
|
|
515
|
|
516 Get minimal Mule for Windows working using Ikeyama's patches. At
|
|
517 first, rely on his conversion of internal -> external
|
|
518 locale-specific but very soon (as soon as we get translation
|
|
519 tables) can switch to using Unicode versions of display funs, which
|
|
520 will allow many more charsets to be handled and in a more
|
|
521 consistent fashion.
|
|
522
|
|
523 i.e. to convert an internal string to an external format, at first
|
|
524 we use our own knowledge of the Microsoft locale file formats but
|
|
525 an alternative is to convert to Unicode and use Microsoft's
|
|
526 convert-Unicode-to-locale encoding functions. This gains us a
|
|
527 great deal of generality, since in practice all charset caching
|
|
528 points can be wrapped into Unicode caching points.
|
|
529
|
|
530 This requires adding UCS2 support, which I'm doing. This support
|
|
531 would let us convert internal -> Unicode, which is exactly what we
|
|
532 want.
|
|
533
|
|
534 At first, though, I would do the UCS2 support, but leave the
|
|
535 existing way of doing things in redisplay. Meanwhile, I'd go
|
|
536 through and fix up the places in the code that assume we are
|
|
537 dealing with unibytes.
|
|
538
|
|
539 After this, the font problems will be fixed , we should have a
|
|
540 pretty well working XEmacs + MULE under Windows. The only real
|
|
541 other work is the clipboard code, which should be straightforward.
|
|
542
|
|
543 ==========================================================================
|
|
544 - Mule design discussion
|
|
545 ==========================================================================
|
|
546
|
|
547 --------------------------------------------------------------------------
|
|
548
|
|
549 Ben
|
|
550
|
|
551 April 11, 2000
|
|
552
|
|
553 Well yes, this was the whole point of my "no lossage" proposal of being
|
|
554 able to undo any coding-system transformation on a buffer. The idea was
|
|
555 to figure out which transformations were definitely reversable, and for
|
|
556 all the others, cache the original text in a text property. This way, you
|
|
557 could probably still do a fairly good job at constructing a good reversal
|
|
558 even after you've gone into the text and added, deleted, and rearranged
|
|
559 some things.
|
|
560
|
|
561 But you could implement it much more simply and usefully by just
|
|
562 determining, for any text being decoded into mule-internal, can we go back
|
|
563 and read the source again? If not, remember the entire file (GNUS
|
|
564 message, etc) in text properties. Then, implement the UI interface (like
|
|
565 Netscape's) on top of that. This way, you have something that at least
|
|
566 works, but it might be inefficient. All we would need to do is work on
|
|
567 making the
|
|
568 underlying implementation more efficient.
|
|
569
|
|
570 Are you interested in doing this? It would be a huge win for users.
|
|
571 Hrvoje Niksic wrote:
|
|
572
|
|
573 > Ben Wing <ben@666.com> writes:
|
|
574 >
|
|
575 > > let me know exactly what "rethink" functionality you want and i'll
|
|
576 > > come up with an interface. perhaps you just want something like
|
|
577 > > netscape's encoding menu, where if you switch encodings, it reloads
|
|
578 > > and reencodes?
|
|
579 >
|
|
580 > It might be a bit more complex than that. In many cases, it's hard or
|
|
581 > impossible to meaningfully "reload" -- for instance, this
|
|
582 > functionality should be available while editing a Gnus message, as
|
|
583 > well as while visiting a file.
|
|
584 >
|
|
585 > For the special case of Latin-N <-> Latin-M conversion, things could
|
|
586 > be done easily -- to convert from N to M, you only need to convert
|
|
587 > internal representation back to N, and then convert it forth to M.
|
|
588
|
|
589 --------------------------------------------------------------------------
|
|
590 April 11, 2000
|
|
591
|
|
592 Well yes, this was the whole point of my "no lossage" proposal of being
|
|
593 able to undo any coding-system transformation on a buffer. The idea was
|
|
594 to figure out which transformations were definitely reversable, and for
|
|
595 all the others, cache the original text in a text property. This way, you
|
|
596 could probably still do a fairly good job at constructing a good reversal
|
|
597 even after you've gone into the text and added, deleted, and rearranged
|
|
598 some things.
|
|
599
|
|
600 But you could implement it much more simply and usefully by just
|
|
601 determining, for any text being decoded into mule-internal, can we go back
|
|
602 and read the source again? If not, remember the entire file (GNUS
|
|
603 message, etc) in text properties. Then, implement the UI interface (like
|
|
604 Netscape's) on top of that. This way, you have something that at least
|
|
605 works, but it might be inefficient. All we would need to do is work on
|
|
606 making the
|
|
607 underlying implementation more efficient.
|
|
608
|
|
609 Are you interested in doing this? It would be a huge win for users.
|
|
610 Hrvoje Niksic wrote:
|
|
611
|
|
612 > Ben Wing <ben@666.com> writes:
|
|
613 >
|
|
614 > > let me know exactly what "rethink" functionality you want and i'll
|
|
615 > > come up with an interface. perhaps you just want something like
|
|
616 > > netscape's encoding menu, where if you switch encodings, it reloads
|
|
617 > > and reencodes?
|
|
618 >
|
|
619 > It might be a bit more complex than that. In many cases, it's hard or
|
|
620 > impossible to meaningfully "reload" -- for instance, this
|
|
621 > functionality should be available while editing a Gnus message, as
|
|
622 > well as while visiting a file.
|
|
623 >
|
|
624 > For the special case of Latin-N <-> Latin-M conversion, things could
|
|
625 > be done easily -- to convert from N to M, you only need to convert
|
|
626 > internal representation back to N, and then convert it forth to M.
|
|
627
|
|
628
|
|
629 ------------------------------------------------------------------------
|
|
630
|
|
631 ==========================================================================
|
|
632 - Redoing translation macros [old]
|
|
633 ==========================================================================
|
|
634
|
|
635 Currently the translation macros (the macros with names such as
|
|
636 GET_C_STRING_CTEXT_DATA_ALLOCA) have names that are difficult to parse
|
|
637 or remember, and are not all that general. In the process of
|
|
638 reviewing the Windows code so that it could be muleized, I discovered
|
|
639 that these macros need to be extended in various ways to allow for
|
|
640 the Windows code to be easily muleized.
|
|
641
|
|
642 Since the macros needed to be changed anyways, I figured it would be a
|
|
643 good time to redo them properly. I propose new macros which have
|
|
644 names like this:
|
|
645
|
|
646 @itemize @bullet
|
|
647 @item
|
|
648 <A>_TO_EXTERNAL_FORMAT_<B>
|
|
649 @item
|
|
650 <A>_TO_EXTERNAL_FORMAT_<B>_1
|
|
651 @item
|
|
652 <C>_TO_INTERNAL_FORMAT_<D>
|
|
653 @item
|
|
654 <C>_TO_INTERNAL_FORMAT_<D>_1
|
|
655 @end itemize
|
|
656
|
|
657 A and C represent the source of the data, and B and D represent the
|
|
658 sink of the data.
|
|
659
|
|
660 All of these macros call either the functions
|
|
661 convert_to_external_format or convert_to_internal_format internally,
|
|
662 with some massaging of the arguments.
|
|
663
|
|
664 All of these macros take the following arguments:
|
|
665
|
|
666 @itemize @bullet
|
|
667 @item
|
|
668 First, one or two arguments indicating the source of the data.
|
|
669 @item
|
|
670 Second, an argument indicating the coding system. (In order to avoid
|
|
671 an excessive number of macros, we no longer provide separate macros
|
|
672 for specific coding systems.)
|
|
673 @item
|
|
674 Third, one or two arguments indicating the sink of the data.
|
|
675 @item
|
|
676 Fourth, optionally, arguments indicating the error behavior and the
|
|
677 warning class (these arguments are only present in the _1 versions
|
|
678 of the macros). The other, shorter named macros are trivial
|
|
679 interfaces onto these macros with the error behavior being
|
|
680 ERROR_ME_WARN, with the warning class being Vstandard_warning_class.
|
|
681 @end itemize
|
|
682
|
|
683 <A> can be one of the following:
|
|
684 @itemize @bullet
|
|
685 @item
|
|
686 LISP (which means a Lisp string) Takes one argument, a Lisp Object.
|
|
687 @item
|
|
688 LSTREAM (which indicates an lstream) Takes one argument, an
|
|
689 lstream. The data is read from the lstream until EOF is reached.
|
|
690 @item
|
|
691 DATA (which indicates a raw memory area) Takes two arguments, a
|
|
692 pointer and a length in bytes.
|
|
693 (You must never use this if the source of the data is a Lisp string,
|
|
694 because of the possibility of relocation during garbage collection.)
|
|
695 @end itemize
|
|
696
|
|
697 <B> can be one of the following:
|
|
698 @itemize @bullet
|
|
699 @item
|
|
700 ALLOCA (which means that the resulting data is stored in alloca()ed
|
|
701 memory. Two arguments should be specified, a pointer and a length,
|
|
702 which should be lvalues.)
|
|
703 @item
|
|
704 MALLOC (which means that the resulting data is stored in malloc()ed
|
|
705 memory. Two arguments should be specified, a pointer and a
|
|
706 length. The memory must be free()d by the caller.
|
|
707 @item
|
|
708 OPAQUE (which means the resulting data is stored in an opaque Lisp
|
|
709 Object. This takes one argument, a lvalue Lisp Object.
|
|
710 @item
|
|
711 LSTREAM. The data is written to an lstream.
|
|
712 @end itemize
|
|
713
|
|
714 <C> can be one of the :
|
|
715 @itemize @bullet
|
|
716 @item
|
|
717 DATA
|
|
718 @item
|
|
719 LSTREAM
|
|
720 @end itemize
|
|
721 (just like <A> above)
|
|
722
|
|
723 <D> can be one of
|
|
724 @itemize @bullet
|
|
725 @item
|
|
726 ALLOCA
|
|
727 @item
|
|
728 MALLOC
|
|
729 @item
|
|
730 LISP This means a Lisp String.
|
|
731 @item
|
|
732 BUFFER The resulting data is inserted into a buffer at the buffer's
|
|
733 value of point.
|
|
734 @item
|
|
735 LSTREAM The data is written to the lstream.
|
|
736 @end itemize
|
|
737
|
|
738
|
|
739 Note that I have eliminated the FORMAT argument of previous macros,
|
|
740 and replaced it with a coding system. This was made possible by
|
|
741 coding system aliases. In place of old `format's, we use a `virtual
|
|
742 coding system', which is aliased to the actual coding system.
|
|
743
|
|
744 The value of the coding system argument can be anything that is legal
|
|
745 input to get_coding_system, i.e. a symbol or a coding system object.
|
|
746
|
|
747 ==========================================================================
|
|
748 - creation of generic macros for accessing internally formatted data [old]
|
|
749 ==========================================================================
|
|
750
|
|
751 I have a design; it's all written down (I did it in Tsukuba), and I just have
|
|
752 to have it transcribed. It's higher level than the macros, though; it's Lisp
|
|
753 primitives that I'm designing.
|
|
754
|
|
755 As for the design of the macros, don't worry so much about all files having to
|
|
756 get included (which is inevitable with macros), but about how the files are
|
|
757 separated. Your design might go like this:
|
|
758
|
|
759 @enumerate
|
|
760 @item
|
|
761 you have generic macro interfaces, which specify a particular
|
|
762 behavior but not an implementation. these generic macros have
|
|
763 complementary versions for buffers and for strings (and the buffer
|
|
764 or string is an argument to all of the macros), and do such things
|
|
765 as convert between byte and char indices, retrieve the character at
|
|
766 a particular byte or char index, increment or decrement a byte
|
|
767 index to the beginning of the next or previous character, indicate
|
|
768 the number of bytes occupied by the character at a particular byte
|
|
769 or character index, etc. These are similar to what's already out
|
|
770 there except that they confound buffers and strings and that they
|
|
771 can also work with actual char *'s, which I think is a really bad
|
|
772 idea because it encourages code to "assume" that the representation
|
|
773 is ASCII compatible, which is might not be (e.g. 16-bit fixed
|
|
774 width). In fact, one thing I'm planning on doing is redefining
|
|
775 Bufbyte as a struct, for debugging purposes, to catch all places
|
|
776 that cavalierly compare them with ASCII char's. Note also that I
|
|
777 really want to rename Bufpos and Bytind, which are confusing and
|
|
778 wrong in that they also apply to strings. They should be Bytepos
|
|
779 and Charpos, or something like that, to go along with Bytecount and
|
|
780 Charcount. Similarly, Bufbyte is similarly a misnomer and should be
|
|
781 Intbyte -- a byte in the internal string representation (any of the
|
|
782 internal representations) of a string or buffer. Corresponding to
|
|
783 this is Extbyte (which we already have), a byte in any external
|
|
784 string representation. We also have Extcount, which makes sense,
|
|
785 and we might possibly want Extcharcount, the number of characters
|
|
786 in an external string representation; but that gets sticky in modal
|
|
787 encodings, and it's not clear how useful it would be.
|
|
788
|
|
789 @item
|
|
790 for all generic macro interfaces, there are specific versions of
|
|
791 each of them for each possible representation (pure ASCII in the
|
|
792 non-Mule world, Mule standard, UTF-8, 8-bit fixed, 16-bit fixed,
|
|
793 32-bit fixed, etc.; there may well be more than one possible 16-bit
|
|
794 fixed version, as well). Each representation has a corresponding
|
|
795 prefix, e.g. MULE_ or FIXED16_ or whatever, which is prefixed onto
|
|
796 the generic macro names. The resulting macros perform the
|
|
797 operation defined for the macro, but assume, and only work
|
|
798 correctly with, text in the corresponding representation.
|
|
799
|
|
800 @item
|
|
801 The definition of the generic versions merely conditionalizes on
|
|
802 the appropriate things (i.e. bit flags in the buffer or string
|
|
803 object) and calls the appropriate representation-specific version.
|
|
804 There may be more than one definition (protected by ifdefs, of
|
|
805 course), or one definition that amalgamated out of many ifdef'ed
|
|
806 sections.
|
|
807
|
|
808 @item
|
|
809 You should probably put each different representation in its own
|
|
810 header file, e.g. charset-mule.h or charset-fixed16.h or
|
|
811 charset-ascii.h or whatever. Then put the main macros into
|
|
812 charset.h, and conditionalize in this file appropriately to include
|
|
813 the other ones. That way, code that actually needs to play around
|
|
814 with internal-format text at this level can include "charset.h"
|
|
815 (certainly a much better place than buffer.h), and everyone else
|
|
816 uses higher-level routines. The representation-specific macros
|
|
817 should not normally be used *directly* at all; they are invoked
|
|
818 automatically from the generic macros. However, code that needs to
|
|
819 be highly, highly optimized might choose to take a loop and write
|
|
820 two versions of it, one for each representation, to avoid the
|
|
821 per-loop-iteration cost of a comparison. Until the macro interface
|
|
822 is rock stable and solid, we should strongly discourage such
|
|
823 nanosecond optimizations.
|
|
824 @end enumerate
|
|
825
|
|
826 ==========================================================================
|
|
827 - UTF-16 compatible representation
|
|
828 ==========================================================================
|
|
829
|
|
830 NOTE: One possible default internal representation that was compatible
|
|
831 with UTF16 but allowed all possible chars in UCS4 would be to take a
|
|
832 more-or-less unused range of 2048 chars (not from the private area
|
|
833 because Microsoft actually uses up most or all of it with EUDC chars).
|
|
834 Let's say we picked A400 - ABFF. Then, we'd have:
|
|
835
|
|
836 0000 - FFFF Simple chars
|
|
837
|
|
838 D[8-B]xx D[C-F]xx Surrogate char, represents 1M chars
|
|
839
|
|
840 A[4-B]xx D[C-F]xx D[C-F]xx Surrogate char, represents 2G chars
|
|
841
|
|
842 This is exactly the same number of chars as UCS-4 handles, and it follows the
|
|
843 same property as UTF8 and Mule-internal:
|
|
844
|
|
845 @enumerate
|
|
846 @item
|
|
847 There are two disjoint groupings of units, one representing leading units
|
|
848 and one representing non-leading units.
|
|
849 @item
|
|
850 Given a leading unit, you immediately know how many units follow to make
|
|
851 up a valid char, irrespective of any other context.
|
|
852 @end enumerate
|
|
853
|
|
854 Note that A4xx is actually currently assigned to Yi. Since this is an
|
|
855 internal representation, we could just move these elsewhere.
|
|
856
|
|
857 An alternative is to pick two disjoint ranges, e.g. 2D00 - 2DFF and
|
|
858 A500 - ABFF.
|
|
859
|
|
860 ==========================================================================
|
|
861 New API for char->font mapping
|
|
862 ==========================================================================
|
|
863 - ; supersedes charset-registry and CCL;
|
|
864 supports all windows systems; powerful enough for Unicode; etc.
|
|
865
|
|
866 (charset-font-mapping charset)
|
|
867
|
|
868 font-mapping-specifier string
|
|
869
|
|
870 char-font-mapping-table
|
|
871
|
|
872 char-table, specifier; elements of char table are either strings (which
|
|
873 specify a registry or comparable font property, or vectors of a string
|
|
874 (same) followed by keyword-value pairs (optional). The only allowable
|
|
875 keyword currently is :ccl-program, which specifies a CCL program to map
|
|
876 the characters into font indices. Other keywords may be added
|
|
877 e.g. allowing Elisp fragments instead of CCL programs, also allowed is
|
|
878 [inherit], which inherits from the next less-specific char-table in the
|
|
879 specifier.
|
|
880
|
|
881 The preferred interface onto this mapping (which should be portable
|
|
882 across Emacsen) is
|
|
883
|
|
884 (set-char-font-mapping key value &optional locale tag-set how-to-add)
|
|
885
|
|
886 where key is a char, range or charset (as for put-char-table), value is
|
|
887 as above, and the other arguments are standard for specifiers. This
|
|
888 automatically creates a char table in the locale, as necessary (all
|
|
889 elements default to [inherit]). On GNU Emacs, some specifiers arguments
|
|
890 may be unimplemented.
|
|
891
|
|
892 (char-font-mapping key value &optional locale)
|
|
893 works vaguely like get-specifier? But does inheritance processing.
|
|
894 locale should clearly default here to current-buffer
|
|
895
|
|
896 #### should get-specifier as well? Would make it work most like
|
|
897 #### buffer-local variables.
|
|
898
|
|
899 NB. set-charset-registry and set-charset-ccl-program are obsoleted.
|
|
900
|
|
901 ==========================================================================
|
|
902 Implementing fixed-width 8,16,32 bit buffer optimizations
|
|
903 ==========================================================================
|
|
904
|
|
905 Add set-buffer-optimization (buffer &rest keywords) for
|
|
906 controlling these things.
|
|
907
|
|
908 Also, put in hack so that correct arglist can be retrieved by
|
|
909 Lisp code.
|
|
910
|
|
911 Look at the way keyword primitives are currently handled; make
|
|
912 sure it works and is documented, etc.
|
|
913
|
|
914 Implement 8-bit fixed width optimization. Take the things that
|
|
915 know about the actual implementation and put them in a single
|
|
916 file, in essence creating an abstraction layer to allow
|
|
917 pluggable internal representations. Implement a fairly general
|
|
918 scheme for mapping between character codes in the 8 bits or 16
|
|
919 bits representation and on actual charset characters. As part of
|
|
920 set-buffer-optimization, you can specify a list of character sets
|
|
921 to be used in the 8 bit to 16 bit, etc. world. You can also
|
|
922 request that the buffer be in 8, 16, etc. if possible.
|
|
923
|
|
924 -> set defaults wrt this.
|
|
925 -> perhaps this should be just buffer properties.
|
|
926 -> this brings up the idea of default properties on an object.
|
|
927 -> Implement default-put, default-get, etc.
|
|
928
|
|
929 What happens when a character not assigned in the range gets
|
|
930 added? Then, must convert to variable width of some sort.
|
|
931
|
|
932 Note: at first, possibly we just convert whole hog to get things
|
|
933 right. Then we'd have to poy alternative to characters that got
|
|
934 added + deleted that were unassigned in the fixed width. When
|
|
935 this goes to zero and there's been enough time (heuristics), we
|
|
936 go back to fixed.
|
|
937
|
|
938 Side note: We could dynamically build up the set of assigned
|
|
939 chars as they go. Conceivably this could even go down to the
|
|
940 single char level: Just keep a big array of mapping from 16 bit
|
|
941 values to chars, and add empty time, a char has been encountered
|
|
942 that wasn't there before. Problem need inverse mapping.
|
|
943
|
|
944 -> Possibility; chars are actual objects, not just numbers.
|
|
945 Then you could keep track of such info in the chars itself.
|
|
946 *Think about this.*
|
|
947
|
|
948 Eventually, we might consider allowing mixed fixed-width,
|
|
949 variable-width buffer encodings. Then, we use range tables to
|
|
950 indicate which sections are fixed and which variable and INC_CHAR does
|
|
951 something like this: binary search to find the current range, which
|
|
952 indicates whether it's fixed or variable, and tells us what the
|
|
953 increment is. We can cache this info and use it next time to speed
|
|
954 up.
|
|
955
|
|
956 -> We will then have two partially shared range tables - one for
|
|
957 overall fixed width vs. variable width, and possibly one containing
|
|
958 this same info, but partitioning the variable width in one. Maybe
|
|
959 need fancier nested range table model.
|
|
960
|
|
961 ==========================================================================
|
|
962 Expansion of display table and case mapping table support for all
|
|
963 chars, not just ASCII/Latin1.
|
|
964 ==========================================================================
|
|
965
|
|
966 ==========================================================================
|
|
967 Improved flexibility for display tables, and evaluation of its
|
|
968 features to make sure it meshes with and complements the char<->font
|
|
969 mapping API mentioned earlier
|
|
970 ==========================================================================
|
|
971
|
|
972 ==========================================================================
|
|
973 String access speedup:
|
|
974 ==========================================================================
|
|
975
|
|
976 For strings larger than some size in bytes (10?), keep extra fields of
|
|
977 info: length in chars, and a (char, byte) pair in the middle to speed
|
|
978 up sequential access.
|
|
979
|
|
980 (Better idea: do this for any size string, but only if it contains
|
|
981 non-ASCII chars. Then if info is missing, we know string is
|
|
982 ASCII-only.)
|
|
983
|
|
984 Use a string-extra-info object, replacing string property slot and
|
|
985 containing fields for string mod tick, string extents, string props,
|
|
986 and string char length, and cached (char,byte) pair.
|
|
987 string-extra-info (or string-auxiliary?) objects could be in frob
|
|
988 blocks, esp. if creating frob blocks is easy + worth it.
|
|
989
|
|
990 - Caching of char<->byte conversions in strings - should make nearly
|
|
991 all operations on strings O(N)
|
|
992
|
|
993 ==========================================================================
|
|
994 Improvements in buffer char<->byte mapping
|
|
995 ==========================================================================
|
|
996
|
|
997 - Range table implementation - especially when there are few runs of
|
|
998 different widths, e.g. recently converted from fixed-width
|
|
999 optimization to variable width
|
|
1000
|
|
1001 Range Tables to speed up Bufpos <-> Bytind caching
|
|
1002 ==================================================
|
|
1003
|
|
1004 This describes an alternative implementation using ranges. We
|
|
1005 maintain a range table of all spans of characters of a fixed width.
|
|
1006 Updating this table could take time if there are a large number of
|
|
1007 spans; but constant factors of operations should be quick. This method really wins
|
|
1008 when you have 8-bit buffers just converted to variable width, where
|
|
1009 there will be few spans. More specifically, lookup in this range
|
|
1010 table is O(log N) and can be done with simple binary search, which is
|
|
1011 very fast. If we maintain the ranges using a gap array, updating this
|
|
1012 table will be fast for local operations, which is most of the time.
|
|
1013
|
|
1014 We will also provide (at first, at least) a Lisp function to set the
|
|
1015 caching mechanism explicitly - either range tables or the existing
|
|
1016 implementation. Eventually, we want to improve things, to the point
|
|
1017 where we automatically pick the right caching for the situation and
|
|
1018 have more caching schemes implemented.
|
|
1019
|
|
1020 ==========================================================================
|
|
1021 - Robustify Text Properties
|
|
1022 ==========================================================================
|
|
1023
|
|
1024 ==========================================================================
|
|
1025 Support for unified internal representation, e.g. Unicode
|
|
1026 ==========================================================================
|
|
1027
|
|
1028 Start tagging all text with a language text property,
|
|
1029 indicating the current language environment when the text was input.
|
|
1030 (needs "Robustify Text Properties")
|
|
1031
|
|
1032 ==========================================================================
|
|
1033 - Generalized Coding Systems
|
|
1034 ==========================================================================
|
|
1035
|
|
1036 - Lisp API for Defining Coding Systems
|
|
1037
|
|
1038 User-defined coding systems.
|
|
1039
|
|
1040 (define-coding-system-type 'type
|
|
1041 :encode-function fun
|
|
1042 :decode-function fun
|
|
1043 :detect-function fun
|
|
1044 :buffering (number = at least this many chars
|
|
1045 line = buffer up to end of line
|
|
1046 regexp = buffer until this regexp is found in match
|
|
1047 source data. match data will be appropriate when fun is
|
|
1048 called
|
|
1049
|
|
1050 encode fun is called as
|
|
1051
|
|
1052 (encode instream outstream)
|
|
1053
|
|
1054 should read data from instream and write converted result onto
|
|
1055 outstream. Can leave some data stuff in stream, it will reappear
|
|
1056 next time. Generally, there is a finite amount of data in instream
|
|
1057 and further attempts to read lead to would-block errors or retvals.
|
|
1058 Can use instream properties to record state. May use read-stream
|
|
1059 functionality to read everything into a vector or string.
|
|
1060
|
|
1061 ->Need vectors + string exposed to resizing of Lisp implementation
|
|
1062 where necessary.
|
|
1063
|
|
1064 ==========================================================================
|
|
1065 Support Windows Active Kbd Switching, Far East IME API (done already?)
|
|
1066 ==========================================================================
|
|
1067
|
|
1068 ==========================================================================
|
|
1069 - UI/design changes for Coding System Pipelining
|
|
1070 ==========================================================================
|
|
1071
|
|
1072 ------------------------------------------------------------------
|
|
1073 CODING-SYSTEM CHAINS
|
|
1074 ------------------------------------------------------------------
|
|
1075
|
|
1076 sjt sez:
|
|
1077
|
|
1078 There should be no elementary coding systems in the Lisp API, only
|
|
1079 chains. Chains should be declared, not computed, as a sequence of coding
|
|
1080 formats. (Probably the internal representation can be a vector for
|
|
1081 efficiency but programmers would probably rather work with lists.) A
|
|
1082 stream has a token type. Most streams are octet streams. Text is a
|
|
1083 stream of characters (in _internal_ format; a file on disk is not text!)
|
|
1084 An octet-stream has no implicit semantics, so its format must always be
|
|
1085 specified. The only type currently having semantics is characters. This
|
|
1086 means that the chain [euc-jp -> internal -> shift_jis) may be specified
|
|
1087 (euc-jp, shift_jis), and if no euc-jp -> shift_jis converter is
|
|
1088 available, then the chain is automatically constructed. (N.B. I f we
|
|
1089 have fixed width buffers in the future, then we could have ASCII -> 8-bit
|
|
1090 char -> 16-bit char -> ISO-2022-JP (with escape sequences).
|
|
1091
|
|
1092 EOL handling is a char <-> char coding. It should not be part of another
|
|
1093 coding system except as a convenience for users. For text coding,
|
|
1094 automatically insert EOL handlers between char <-> octet boundaries.
|
|
1095
|
|
1096 ------------------------------------------------------------------
|
|
1097 ABOUT DETECTION
|
|
1098 ------------------------------------------------------------------
|
|
1099
|
|
1100
|
|
1101 ------------------------------------------------------------------
|
|
1102 EFFICIENCY OF CODING CONVERSION WITH MULTIPLE COPIES/CHAINS
|
|
1103 ------------------------------------------------------------------
|
|
1104
|
|
1105 A comment in encode_decode_coding_region():
|
|
1106
|
|
1107 The chain of streams looks like this:
|
|
1108
|
|
1109 [BUFFER] <----- (( read from/send to loop ))
|
|
1110 ------> [CHAR->BYTE i.e. ENCODE AS BINARY if source is
|
|
1111 in bytes]
|
|
1112 ------> [ENCODE/DECODE AS SPECIFIED]
|
|
1113 ------> [BYTE->CHAR i.e. DECODE AS BINARY
|
|
1114 if sink is in bytes]
|
|
1115 ------> [AUTODETECT EOL if
|
|
1116 we're decoding and
|
|
1117 coding system calls
|
|
1118 for this]
|
|
1119 ------> [BUFFER]
|
|
1120
|
|
1121 sjt (?) responds:
|
|
1122
|
|
1123 Of course, this is just horrible. BYTE<->CHAR should only be available
|
|
1124 to I/O routines. It should not be visible to Mule proper.
|
|
1125
|
|
1126 A comment on the implementation. Hrvoje and Kyle worry about the
|
|
1127 inefficiency of repeated copying among buffers that chained coding
|
|
1128 systems entail. But this may not be as time inefficient as it appears
|
|
1129 in the Mule ("house rules") context. The issue is how do you do chain
|
|
1130 coding systems without copying? In theory you could have
|
|
1131
|
|
1132 IChar external_to_raw (ExtChar *cp, State *s);
|
|
1133 IChar decode_utf16 (IChar c, State *s);
|
|
1134 IChar decode_crlf (ExtChar *cp, State *s);
|
|
1135
|
|
1136 typedef Ichar (*Converter[]) (Ichar, State*);
|
|
1137
|
|
1138 Converter utf16[2] = { &decode_utf16, &decode_crlf };
|
|
1139
|
|
1140 void convert (ExtChar *inbuf, IChar *outbuf, Converter cvtr)
|
|
1141 {
|
|
1142 int i;
|
|
1143 ExtChar c;
|
|
1144 State s;
|
|
1145
|
|
1146 while (c = external_to_raw (*inbuf++, &s))
|
|
1147 {
|
|
1148 for (i = 0; i < sizeof(cvtr)/sizeof(Converter); ++i)
|
|
1149 if (s.ready)
|
|
1150 c = (*cvtr[i]) (c, &s);
|
|
1151 }
|
|
1152 if (s.ready)
|
|
1153 *outbuf++ = c;
|
|
1154 }
|
|
1155
|
|
1156 But this is a lot of function calls; what Ben is doing is basically
|
|
1157 reducing this to one call per buffer-full. The only way to avoid this
|
|
1158 is to hardcode all the "interesting" coding systems, maybe using
|
|
1159 inline or macros to give structure. But this is still a huge amount
|
|
1160 of work, and code.
|
|
1161
|
|
1162 One advantage to the call-per-char approach is that we might be able
|
|
1163 to do something about the marker/extent destruction that coding
|
|
1164 normally entails.
|
|
1165
|
|
1166 ben sez:
|
|
1167
|
|
1168 it should be possible to preserve the markers/extents without
|
|
1169 switching completely to one-call-per-char -- we could at least do one
|
|
1170 call per "run", where a run is more or less the maximal stretch of
|
|
1171 text not overlapping any markers or extent boundaries. (It's a bit
|
|
1172 more complicated if we want to properly support the different extent
|
|
1173 begins/ends; in some cases we might have to pump a single character
|
|
1174 adjacent to where two extents meet.) The "stateless" way that I wrote
|
|
1175 all of the conversion routines may be a real hassle but it allows
|
|
1176 something like this to work without too much problem -- pump in one
|
|
1177 run at a time into one end of the chain, do a flush after each
|
|
1178 iteration, and stick what comes out the other end in its place.
|
|
1179
|
|
1180 ------------------------------------------------------------------
|
|
1181 ABOUT FORMATS
|
|
1182 ------------------------------------------------------------------
|
|
1183
|
|
1184 when calling make-coding-system, the name can be a cons of (format1 .
|
|
1185 format2), specifying that it decodes format1->format2 and encodes the other
|
|
1186 way. if only one name is given, that is assumed to be format1, and the
|
|
1187 other is either `external' or `internal' depending on the end type.
|
|
1188 normally the user when decoding gives the decoding order in formats, but
|
|
1189 can leave off the last one, `internal', which is assumed. a multichain
|
|
1190 might look like gzip|multibyte|unicode, using the coding systems named
|
|
1191 `gzip', `(unicode . multibyte)' and `unicode'. the way this actually works
|
|
1192 is by searching for gzip->multibyte; if not found, look for gzip->external
|
|
1193 or gzip->internal. (In general we automatically do conversion between
|
|
1194 internal and external as necessary: thus gzip|crlf does the expected, and
|
|
1195 maps to gzip->external, external->internal, crlf->internal, which when
|
|
1196 fully specified would be gzip|external:external|internal:crlf|internal --
|
|
1197 see below.) To forcibly fit together two converters that have explicitly
|
|
1198 specified and incompatible names (say you have unicode->multibyte and
|
|
1199 iso8859-1->ebcdic and you know that the multibyte and iso8859-1 in this
|
|
1200 case are compatible), you can force-cast using :, like this:
|
|
1201 ebcdic|iso8859-1:multibyte|unicode. (again, if you force-cast between
|
|
1202 internal and external formats, the conversion happens automatically.)
|
|
1203
|
|
1204 --------------------------------------------------------------------------
|
|
1205 ABOUT PDUMP, UNICODE, AND RUNNING XEMACS FROM A DIRECTORY WITH WEIRD CHARS
|
|
1206 --------------------------------------------------------------------------
|
|
1207
|
|
1208 -- there's the problem that XEmacs can't be run in a directory with
|
|
1209 non-ASCII/Latin-1 chars in it, since it will be doing Unicode
|
|
1210 processing before we've had a chance to load the tables. In fact,
|
|
1211 even finding the tables in such a situation is problematic using
|
|
1212 the normal commands. my idea is to eventually load the stuff
|
|
1213 extremely extremely early, at the same time as the pdump data gets
|
|
1214 loaded. in fact, the unicode table data (stored in an efficient
|
|
1215 binary format) can even be stuck into the pdump file (which would
|
|
1216 mean as a resource to the executable, for windows). we'd need to
|
|
1217 extend pdump a bit: to allow for attaching extra data to the pdump
|
|
1218 file. (something like pdump_attach_extra_data (addr, length)
|
|
1219 returns a number of some sort, an index into the file, which you
|
|
1220 can then retrieve with pdump_load_extra_data(), which returns an
|
|
1221 addr (mmap()ed or loaded), and later you pdump_unload_extra_data()
|
|
1222 when finished. we'd probably also need
|
|
1223 pdump_attach_extra_data_append(), which appends data to the data
|
|
1224 just written out with pdump_attach_extra_data(). this way,
|
|
1225 multiple tables in memory can be written out into one contiguous
|
|
1226 table. (we'd use the tar-like trick of allowing new blocks to be
|
|
1227 written without going back to change the old blocks -- we just rely
|
|
1228 on the end of file/end of memory.) this same mechanism could be
|
|
1229 extracted out of pdump and used to handle the non-pdump situation
|
|
1230 (or alternatively, we could just dump either the memory image of
|
|
1231 the tables themselves or the compressed binary version). in the
|
|
1232 case of extra unicode tables not known about at compile time that
|
|
1233 get loaded before dumping, we either just dump them into the image
|
|
1234 (pdump and all) or extract them into the compressed binary format,
|
|
1235 free the original tables, and treat them like all other tables.
|
|
1236
|
|
1237
|
|
1238 ==========================================================================
|
|
1239 - Generalized language appropriate word wrapping (requires
|
|
1240 layout-exposing API defined in BIDI section)
|
|
1241 ==========================================================================
|
|
1242
|
|
1243 ==========================================================================
|
|
1244 - Make Custom Mule-aware
|
|
1245 ==========================================================================
|
|
1246
|
|
1247 ==========================================================================
|
|
1248 - Composite character support
|
|
1249 ==========================================================================
|
|
1250
|
|
1251 ==========================================================================
|
|
1252 - Language appropriate sorting and searching
|
|
1253 ==========================================================================
|
|
1254
|
|
1255 ==========================================================================
|
|
1256 - Glyph shaping for Arabic and Devanagari
|
|
1257 ==========================================================================
|
|
1258
|
|
1259 - (needs to be handled mostly
|
|
1260 at C level, as part of layout; luckily it's entirely local in its
|
|
1261 changes, as this is not hard)
|
|
1262
|
|
1263
|
|
1264 ==========================================================================
|
|
1265 Consider moving language selection Menu up to be parallel with Mule menu
|
|
1266 ==========================================================================
|
|
1267
|
|
1268 */
|
|
1269
|
|
1270
|
771
|
1271
|
|
1272 /************************************************************************/
|
|
1273 /* declarations */
|
|
1274 /************************************************************************/
|
|
1275
|
|
1276 Eistring the_eistring_zero_init, the_eistring_malloc_zero_init;
|
|
1277
|
|
1278 #define MAX_CHARBPOS_GAP_SIZE_3 (65535/3)
|
|
1279 #define MAX_BYTEBPOS_GAP_SIZE_3 (3 * MAX_CHARBPOS_GAP_SIZE_3)
|
|
1280
|
|
1281 short three_to_one_table[1 + MAX_BYTEBPOS_GAP_SIZE_3];
|
|
1282
|
|
1283 #ifdef MULE
|
|
1284
|
|
1285 /* Table of number of bytes in the string representation of a character
|
|
1286 indexed by the first byte of that representation.
|
|
1287
|
|
1288 rep_bytes_by_first_byte(c) is more efficient than the equivalent
|
|
1289 canonical computation:
|
|
1290
|
826
|
1291 XCHARSET_REP_BYTES (charset_by_leading_byte (c)) */
|
771
|
1292
|
|
1293 const Bytecount rep_bytes_by_first_byte[0xA0] =
|
|
1294 { /* 0x00 - 0x7f are for straight ASCII */
|
|
1295 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1296 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1297 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1298 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1299 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1300 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1301 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1302 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1303 /* 0x80 - 0x8f are for Dimension-1 official charsets */
|
|
1304 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
1305 /* 0x90 - 0x9d are for Dimension-2 official charsets */
|
|
1306 /* 0x9e is for Dimension-1 private charsets */
|
|
1307 /* 0x9f is for Dimension-2 private charsets */
|
|
1308 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4
|
|
1309 };
|
|
1310
|
|
1311 #ifdef ENABLE_COMPOSITE_CHARS
|
|
1312
|
|
1313 /* Hash tables for composite chars. One maps string representing
|
|
1314 composed chars to their equivalent chars; one goes the
|
|
1315 other way. */
|
|
1316 Lisp_Object Vcomposite_char_char2string_hash_table;
|
|
1317 Lisp_Object Vcomposite_char_string2char_hash_table;
|
|
1318
|
|
1319 static int composite_char_row_next;
|
|
1320 static int composite_char_col_next;
|
|
1321
|
|
1322 #endif /* ENABLE_COMPOSITE_CHARS */
|
|
1323
|
|
1324 #endif /* MULE */
|
|
1325
|
1292
|
1326 Lisp_Object QSin_char_byte_conversion;
|
|
1327 Lisp_Object QSin_internal_external_conversion;
|
|
1328
|
771
|
1329
|
|
1330 /************************************************************************/
|
|
1331 /* qxestr***() functions */
|
|
1332 /************************************************************************/
|
|
1333
|
|
1334 /* Most are inline functions in lisp.h */
|
|
1335
|
|
1336 int
|
867
|
1337 qxesprintf (Ibyte *buffer, const CIbyte *format, ...)
|
771
|
1338 {
|
|
1339 va_list args;
|
|
1340 int retval;
|
|
1341
|
|
1342 va_start (args, format);
|
2367
|
1343 retval = vsprintf ((Chbyte *) buffer, format, args);
|
771
|
1344 va_end (args);
|
|
1345
|
|
1346 return retval;
|
|
1347 }
|
|
1348
|
|
1349 /* strcasecmp() implementation from BSD */
|
867
|
1350 static Ibyte strcasecmp_charmap[] = {
|
1429
|
1351 0000, 0001, 0002, 0003, 0004, 0005, 0006, 0007,
|
|
1352 0010, 0011, 0012, 0013, 0014, 0015, 0016, 0017,
|
|
1353 0020, 0021, 0022, 0023, 0024, 0025, 0026, 0027,
|
|
1354 0030, 0031, 0032, 0033, 0034, 0035, 0036, 0037,
|
|
1355 0040, 0041, 0042, 0043, 0044, 0045, 0046, 0047,
|
|
1356 0050, 0051, 0052, 0053, 0054, 0055, 0056, 0057,
|
|
1357 0060, 0061, 0062, 0063, 0064, 0065, 0066, 0067,
|
|
1358 0070, 0071, 0072, 0073, 0074, 0075, 0076, 0077,
|
|
1359 0100, 0141, 0142, 0143, 0144, 0145, 0146, 0147,
|
|
1360 0150, 0151, 0152, 0153, 0154, 0155, 0156, 0157,
|
|
1361 0160, 0161, 0162, 0163, 0164, 0165, 0166, 0167,
|
|
1362 0170, 0171, 0172, 0133, 0134, 0135, 0136, 0137,
|
|
1363 0140, 0141, 0142, 0143, 0144, 0145, 0146, 0147,
|
|
1364 0150, 0151, 0152, 0153, 0154, 0155, 0156, 0157,
|
|
1365 0160, 0161, 0162, 0163, 0164, 0165, 0166, 0167,
|
|
1366 0170, 0171, 0172, 0173, 0174, 0175, 0176, 0177,
|
|
1367 0200, 0201, 0202, 0203, 0204, 0205, 0206, 0207,
|
|
1368 0210, 0211, 0212, 0213, 0214, 0215, 0216, 0217,
|
|
1369 0220, 0221, 0222, 0223, 0224, 0225, 0226, 0227,
|
|
1370 0230, 0231, 0232, 0233, 0234, 0235, 0236, 0237,
|
|
1371 0240, 0241, 0242, 0243, 0244, 0245, 0246, 0247,
|
|
1372 0250, 0251, 0252, 0253, 0254, 0255, 0256, 0257,
|
|
1373 0260, 0261, 0262, 0263, 0264, 0265, 0266, 0267,
|
|
1374 0270, 0271, 0272, 0273, 0274, 0275, 0276, 0277,
|
|
1375 0300, 0301, 0302, 0303, 0304, 0305, 0306, 0307,
|
|
1376 0310, 0311, 0312, 0313, 0314, 0315, 0316, 0317,
|
|
1377 0320, 0321, 0322, 0323, 0324, 0325, 0326, 0327,
|
|
1378 0330, 0331, 0332, 0333, 0334, 0335, 0336, 0337,
|
|
1379 0340, 0341, 0342, 0343, 0344, 0345, 0346, 0347,
|
|
1380 0350, 0351, 0352, 0353, 0354, 0355, 0356, 0357,
|
|
1381 0360, 0361, 0362, 0363, 0364, 0365, 0366, 0367,
|
|
1382 0370, 0371, 0372, 0373, 0374, 0375, 0376, 0377
|
771
|
1383 };
|
|
1384
|
|
1385 /* A version that works like generic strcasecmp() -- only collapsing
|
|
1386 case in ASCII A-Z/a-z. This is safe on Mule strings due to the
|
|
1387 current representation.
|
|
1388
|
|
1389 This version was written by some Berkeley coder, favoring
|
|
1390 nanosecond improvements over clarity. In all other versions below,
|
|
1391 we use symmetrical algorithms that may sacrifice a few machine
|
|
1392 cycles but are MUCH MUCH clearer, which counts a lot more.
|
|
1393 */
|
|
1394
|
|
1395 int
|
867
|
1396 qxestrcasecmp (const Ibyte *s1, const Ibyte *s2)
|
771
|
1397 {
|
867
|
1398 Ibyte *cm = strcasecmp_charmap;
|
771
|
1399
|
|
1400 while (cm[*s1] == cm[*s2++])
|
|
1401 if (*s1++ == '\0')
|
|
1402 return (0);
|
|
1403
|
|
1404 return (cm[*s1] - cm[*--s2]);
|
|
1405 }
|
|
1406
|
|
1407 int
|
2367
|
1408 ascii_strcasecmp (const Ascbyte *s1, const Ascbyte *s2)
|
771
|
1409 {
|
867
|
1410 return qxestrcasecmp ((const Ibyte *) s1, (const Ibyte *) s2);
|
771
|
1411 }
|
|
1412
|
|
1413 int
|
2367
|
1414 qxestrcasecmp_ascii (const Ibyte *s1, const Ascbyte *s2)
|
771
|
1415 {
|
867
|
1416 return qxestrcasecmp (s1, (const Ibyte *) s2);
|
771
|
1417 }
|
|
1418
|
|
1419 /* An internationalized version that collapses case in a general fashion.
|
|
1420 */
|
|
1421
|
|
1422 int
|
867
|
1423 qxestrcasecmp_i18n (const Ibyte *s1, const Ibyte *s2)
|
771
|
1424 {
|
|
1425 while (*s1 && *s2)
|
|
1426 {
|
867
|
1427 if (DOWNCASE (0, itext_ichar (s1)) !=
|
|
1428 DOWNCASE (0, itext_ichar (s2)))
|
771
|
1429 break;
|
867
|
1430 INC_IBYTEPTR (s1);
|
|
1431 INC_IBYTEPTR (s2);
|
771
|
1432 }
|
|
1433
|
867
|
1434 return (DOWNCASE (0, itext_ichar (s1)) -
|
|
1435 DOWNCASE (0, itext_ichar (s2)));
|
771
|
1436 }
|
|
1437
|
|
1438 /* The only difference between these next two and
|
|
1439 qxememcasecmp()/qxememcasecmp_i18n() is that these two will stop if
|
|
1440 both strings are equal and less than LEN in length, while
|
|
1441 the mem...() versions would would run off the end. */
|
|
1442
|
|
1443 int
|
867
|
1444 qxestrncasecmp (const Ibyte *s1, const Ibyte *s2, Bytecount len)
|
771
|
1445 {
|
867
|
1446 Ibyte *cm = strcasecmp_charmap;
|
771
|
1447
|
|
1448 while (len--)
|
|
1449 {
|
|
1450 int diff = cm[*s1] - cm[*s2];
|
|
1451 if (diff != 0)
|
|
1452 return diff;
|
|
1453 if (!*s1)
|
|
1454 return 0;
|
|
1455 s1++, s2++;
|
|
1456 }
|
|
1457
|
|
1458 return 0;
|
|
1459 }
|
|
1460
|
|
1461 int
|
2367
|
1462 ascii_strncasecmp (const Ascbyte *s1, const Ascbyte *s2, Bytecount len)
|
771
|
1463 {
|
867
|
1464 return qxestrncasecmp ((const Ibyte *) s1, (const Ibyte *) s2, len);
|
771
|
1465 }
|
|
1466
|
|
1467 int
|
2367
|
1468 qxestrncasecmp_ascii (const Ibyte *s1, const Ascbyte *s2, Bytecount len)
|
771
|
1469 {
|
867
|
1470 return qxestrncasecmp (s1, (const Ibyte *) s2, len);
|
771
|
1471 }
|
|
1472
|
801
|
1473 /* Compare LEN_FROM_S1 worth of characters from S1 with the same number of
|
|
1474 characters from S2, case insensitive. NOTE: Downcasing can convert
|
|
1475 characters from one length in bytes to another, so reversing S1 and S2
|
|
1476 is *NOT* a symmetric operations! You must choose a length that agrees
|
|
1477 with S1. */
|
|
1478
|
771
|
1479 int
|
867
|
1480 qxestrncasecmp_i18n (const Ibyte *s1, const Ibyte *s2,
|
801
|
1481 Bytecount len_from_s1)
|
771
|
1482 {
|
801
|
1483 while (len_from_s1 > 0)
|
771
|
1484 {
|
867
|
1485 const Ibyte *old_s1 = s1;
|
|
1486 int diff = (DOWNCASE (0, itext_ichar (s1)) -
|
|
1487 DOWNCASE (0, itext_ichar (s2)));
|
771
|
1488 if (diff != 0)
|
|
1489 return diff;
|
|
1490 if (!*s1)
|
|
1491 return 0;
|
867
|
1492 INC_IBYTEPTR (s1);
|
|
1493 INC_IBYTEPTR (s2);
|
801
|
1494 len_from_s1 -= s1 - old_s1;
|
771
|
1495 }
|
|
1496
|
|
1497 return 0;
|
|
1498 }
|
|
1499
|
|
1500 int
|
867
|
1501 qxememcmp (const Ibyte *s1, const Ibyte *s2, Bytecount len)
|
771
|
1502 {
|
|
1503 return memcmp (s1, s2, len);
|
|
1504 }
|
|
1505
|
|
1506 int
|
867
|
1507 qxememcmp4 (const Ibyte *s1, Bytecount len1,
|
|
1508 const Ibyte *s2, Bytecount len2)
|
801
|
1509 {
|
|
1510 int retval = qxememcmp (s1, s2, min (len1, len2));
|
|
1511 if (retval)
|
|
1512 return retval;
|
|
1513 return len1 - len2;
|
|
1514 }
|
|
1515
|
|
1516 int
|
867
|
1517 qxememcasecmp (const Ibyte *s1, const Ibyte *s2, Bytecount len)
|
771
|
1518 {
|
867
|
1519 Ibyte *cm = strcasecmp_charmap;
|
771
|
1520
|
|
1521 while (len--)
|
|
1522 {
|
|
1523 int diff = cm[*s1] - cm[*s2];
|
|
1524 if (diff != 0)
|
|
1525 return diff;
|
|
1526 s1++, s2++;
|
|
1527 }
|
|
1528
|
|
1529 return 0;
|
|
1530 }
|
|
1531
|
|
1532 int
|
867
|
1533 qxememcasecmp4 (const Ibyte *s1, Bytecount len1,
|
|
1534 const Ibyte *s2, Bytecount len2)
|
771
|
1535 {
|
801
|
1536 int retval = qxememcasecmp (s1, s2, min (len1, len2));
|
|
1537 if (retval)
|
|
1538 return retval;
|
|
1539 return len1 - len2;
|
|
1540 }
|
|
1541
|
|
1542 /* Do a character-by-character comparison, returning "which is greater" by
|
867
|
1543 comparing the Ichar values. (#### Should have option to compare Unicode
|
801
|
1544 points) */
|
|
1545
|
|
1546 int
|
867
|
1547 qxetextcmp (const Ibyte *s1, Bytecount len1,
|
|
1548 const Ibyte *s2, Bytecount len2)
|
801
|
1549 {
|
|
1550 while (len1 > 0 && len2 > 0)
|
771
|
1551 {
|
867
|
1552 const Ibyte *old_s1 = s1;
|
|
1553 const Ibyte *old_s2 = s2;
|
|
1554 int diff = itext_ichar (s1) - itext_ichar (s2);
|
801
|
1555 if (diff != 0)
|
|
1556 return diff;
|
867
|
1557 INC_IBYTEPTR (s1);
|
|
1558 INC_IBYTEPTR (s2);
|
801
|
1559 len1 -= s1 - old_s1;
|
|
1560 len2 -= s2 - old_s2;
|
|
1561 }
|
|
1562
|
|
1563 assert (len1 >= 0 && len2 >= 0);
|
|
1564 return len1 - len2;
|
|
1565 }
|
|
1566
|
|
1567 int
|
867
|
1568 qxetextcmp_matching (const Ibyte *s1, Bytecount len1,
|
|
1569 const Ibyte *s2, Bytecount len2,
|
801
|
1570 Charcount *matching)
|
|
1571 {
|
|
1572 *matching = 0;
|
|
1573 while (len1 > 0 && len2 > 0)
|
|
1574 {
|
867
|
1575 const Ibyte *old_s1 = s1;
|
|
1576 const Ibyte *old_s2 = s2;
|
|
1577 int diff = itext_ichar (s1) - itext_ichar (s2);
|
801
|
1578 if (diff != 0)
|
|
1579 return diff;
|
867
|
1580 INC_IBYTEPTR (s1);
|
|
1581 INC_IBYTEPTR (s2);
|
801
|
1582 len1 -= s1 - old_s1;
|
|
1583 len2 -= s2 - old_s2;
|
|
1584 (*matching)++;
|
|
1585 }
|
|
1586
|
|
1587 assert (len1 >= 0 && len2 >= 0);
|
|
1588 return len1 - len2;
|
|
1589 }
|
|
1590
|
|
1591 /* Do a character-by-character comparison, returning "which is greater" by
|
867
|
1592 comparing the Ichar values, case insensitively (by downcasing both
|
801
|
1593 first). (#### Should have option to compare Unicode points)
|
|
1594
|
|
1595 In this case, both lengths must be specified becaused downcasing can
|
|
1596 convert characters from one length in bytes to another; therefore, two
|
|
1597 blocks of text of different length might be equal. If both compare
|
|
1598 equal up to the limit in length of one but not the other, the longer one
|
|
1599 is "greater". */
|
|
1600
|
|
1601 int
|
867
|
1602 qxetextcasecmp (const Ibyte *s1, Bytecount len1,
|
|
1603 const Ibyte *s2, Bytecount len2)
|
801
|
1604 {
|
|
1605 while (len1 > 0 && len2 > 0)
|
|
1606 {
|
867
|
1607 const Ibyte *old_s1 = s1;
|
|
1608 const Ibyte *old_s2 = s2;
|
|
1609 int diff = (DOWNCASE (0, itext_ichar (s1)) -
|
|
1610 DOWNCASE (0, itext_ichar (s2)));
|
771
|
1611 if (diff != 0)
|
|
1612 return diff;
|
867
|
1613 INC_IBYTEPTR (s1);
|
|
1614 INC_IBYTEPTR (s2);
|
801
|
1615 len1 -= s1 - old_s1;
|
|
1616 len2 -= s2 - old_s2;
|
771
|
1617 }
|
|
1618
|
801
|
1619 assert (len1 >= 0 && len2 >= 0);
|
|
1620 return len1 - len2;
|
|
1621 }
|
|
1622
|
|
1623 /* Like qxetextcasecmp() but also return number of characters at
|
|
1624 beginning that match. */
|
|
1625
|
|
1626 int
|
867
|
1627 qxetextcasecmp_matching (const Ibyte *s1, Bytecount len1,
|
|
1628 const Ibyte *s2, Bytecount len2,
|
801
|
1629 Charcount *matching)
|
|
1630 {
|
|
1631 *matching = 0;
|
|
1632 while (len1 > 0 && len2 > 0)
|
|
1633 {
|
867
|
1634 const Ibyte *old_s1 = s1;
|
|
1635 const Ibyte *old_s2 = s2;
|
|
1636 int diff = (DOWNCASE (0, itext_ichar (s1)) -
|
|
1637 DOWNCASE (0, itext_ichar (s2)));
|
801
|
1638 if (diff != 0)
|
|
1639 return diff;
|
867
|
1640 INC_IBYTEPTR (s1);
|
|
1641 INC_IBYTEPTR (s2);
|
801
|
1642 len1 -= s1 - old_s1;
|
|
1643 len2 -= s2 - old_s2;
|
|
1644 (*matching)++;
|
|
1645 }
|
|
1646
|
|
1647 assert (len1 >= 0 && len2 >= 0);
|
|
1648 return len1 - len2;
|
771
|
1649 }
|
|
1650
|
|
1651 int
|
|
1652 lisp_strcasecmp (Lisp_Object s1, Lisp_Object s2)
|
|
1653 {
|
867
|
1654 Ibyte *cm = strcasecmp_charmap;
|
|
1655 Ibyte *p1 = XSTRING_DATA (s1);
|
|
1656 Ibyte *p2 = XSTRING_DATA (s2);
|
|
1657 Ibyte *e1 = p1 + XSTRING_LENGTH (s1);
|
|
1658 Ibyte *e2 = p2 + XSTRING_LENGTH (s2);
|
771
|
1659
|
|
1660 /* again, we use a symmetric algorithm and favor clarity over
|
|
1661 nanosecond improvements. */
|
|
1662 while (1)
|
|
1663 {
|
|
1664 /* if we reached the end of either string, compare lengths.
|
|
1665 do NOT compare the final null byte against anything, in case
|
|
1666 the other string also has a null byte at that position. */
|
|
1667 if (p1 == e1 || p2 == e2)
|
|
1668 return e1 - e2;
|
|
1669 if (cm[*p1] != cm[*p2])
|
|
1670 return cm[*p1] - cm[*p2];
|
|
1671 p1++, p2++;
|
|
1672 }
|
|
1673 }
|
|
1674
|
|
1675 int
|
|
1676 lisp_strcasecmp_i18n (Lisp_Object s1, Lisp_Object s2)
|
|
1677 {
|
801
|
1678 return qxetextcasecmp (XSTRING_DATA (s1), XSTRING_LENGTH (s1),
|
|
1679 XSTRING_DATA (s2), XSTRING_LENGTH (s2));
|
771
|
1680 }
|
|
1681
|
2367
|
1682 /* Compare a wide string with an ASCII string */
|
|
1683
|
|
1684 int
|
|
1685 wcscmp_ascii (const wchar_t *s1, const Ascbyte *s2)
|
|
1686 {
|
|
1687 while (*s1 && *s2)
|
|
1688 {
|
2956
|
1689 if (*s1 != (wchar_t) *s2)
|
2367
|
1690 break;
|
|
1691 s1++, s2++;
|
|
1692 }
|
|
1693
|
|
1694 return *s1 - *s2;
|
|
1695 }
|
|
1696
|
|
1697 int
|
|
1698 wcsncmp_ascii (const wchar_t *s1, const Ascbyte *s2, Charcount len)
|
|
1699 {
|
|
1700 while (len--)
|
|
1701 {
|
|
1702 int diff = *s1 - *s2;
|
|
1703 if (diff != 0)
|
|
1704 return diff;
|
|
1705 if (!*s1)
|
|
1706 return 0;
|
|
1707 s1++, s2++;
|
|
1708 }
|
|
1709
|
|
1710 return 0;
|
|
1711 }
|
|
1712
|
771
|
1713
|
|
1714 /************************************************************************/
|
|
1715 /* conversion between textual representations */
|
|
1716 /************************************************************************/
|
|
1717
|
|
1718 /* NOTE: Does not reset the Dynarr. */
|
|
1719
|
|
1720 void
|
867
|
1721 convert_ibyte_string_into_ichar_dynarr (const Ibyte *str, Bytecount len,
|
2367
|
1722 Ichar_dynarr *dyn)
|
771
|
1723 {
|
867
|
1724 const Ibyte *strend = str + len;
|
771
|
1725
|
|
1726 while (str < strend)
|
|
1727 {
|
867
|
1728 Ichar ch = itext_ichar (str);
|
771
|
1729 Dynarr_add (dyn, ch);
|
867
|
1730 INC_IBYTEPTR (str);
|
771
|
1731 }
|
|
1732 }
|
|
1733
|
|
1734 Charcount
|
867
|
1735 convert_ibyte_string_into_ichar_string (const Ibyte *str, Bytecount len,
|
2367
|
1736 Ichar *arr)
|
771
|
1737 {
|
867
|
1738 const Ibyte *strend = str + len;
|
771
|
1739 Charcount newlen = 0;
|
|
1740 while (str < strend)
|
|
1741 {
|
867
|
1742 Ichar ch = itext_ichar (str);
|
771
|
1743 arr[newlen++] = ch;
|
867
|
1744 INC_IBYTEPTR (str);
|
771
|
1745 }
|
|
1746 return newlen;
|
|
1747 }
|
|
1748
|
867
|
1749 /* Convert an array of Ichars into the equivalent string representation.
|
|
1750 Store into the given Ibyte dynarr. Does not reset the dynarr.
|
771
|
1751 Does not add a terminating zero. */
|
|
1752
|
|
1753 void
|
867
|
1754 convert_ichar_string_into_ibyte_dynarr (Ichar *arr, int nels,
|
|
1755 Ibyte_dynarr *dyn)
|
771
|
1756 {
|
867
|
1757 Ibyte str[MAX_ICHAR_LEN];
|
771
|
1758 int i;
|
|
1759
|
|
1760 for (i = 0; i < nels; i++)
|
|
1761 {
|
867
|
1762 Bytecount len = set_itext_ichar (str, arr[i]);
|
771
|
1763 Dynarr_add_many (dyn, str, len);
|
|
1764 }
|
|
1765 }
|
|
1766
|
867
|
1767 /* Convert an array of Ichars into the equivalent string representation.
|
771
|
1768 Malloc the space needed for this and return it. If LEN_OUT is not a
|
867
|
1769 NULL pointer, store into LEN_OUT the number of Ibytes in the
|
|
1770 malloc()ed string. Note that the actual number of Ibytes allocated
|
771
|
1771 is one more than this: the returned string is zero-terminated. */
|
|
1772
|
867
|
1773 Ibyte *
|
|
1774 convert_ichar_string_into_malloced_string (Ichar *arr, int nels,
|
826
|
1775 Bytecount *len_out)
|
771
|
1776 {
|
|
1777 /* Damn zero-termination. */
|
2367
|
1778 Ibyte *str = alloca_ibytes (nels * MAX_ICHAR_LEN + 1);
|
867
|
1779 Ibyte *strorig = str;
|
771
|
1780 Bytecount len;
|
|
1781
|
|
1782 int i;
|
|
1783
|
|
1784 for (i = 0; i < nels; i++)
|
867
|
1785 str += set_itext_ichar (str, arr[i]);
|
771
|
1786 *str = '\0';
|
|
1787 len = str - strorig;
|
2367
|
1788 str = xnew_ibytes (1 + len);
|
771
|
1789 memcpy (str, strorig, 1 + len);
|
|
1790 if (len_out)
|
|
1791 *len_out = len;
|
|
1792 return str;
|
|
1793 }
|
|
1794
|
826
|
1795 #define COPY_TEXT_BETWEEN_FORMATS(srcfmt, dstfmt) \
|
|
1796 do \
|
|
1797 { \
|
|
1798 if (dst) \
|
|
1799 { \
|
867
|
1800 Ibyte *dstend = dst + dstlen; \
|
|
1801 Ibyte *dstp = dst; \
|
|
1802 const Ibyte *srcend = src + srclen; \
|
|
1803 const Ibyte *srcp = src; \
|
826
|
1804 \
|
|
1805 while (srcp < srcend) \
|
|
1806 { \
|
867
|
1807 Ichar ch = itext_ichar_fmt (srcp, srcfmt, srcobj); \
|
|
1808 Bytecount len = ichar_len_fmt (ch, dstfmt); \
|
826
|
1809 \
|
|
1810 if (dstp + len <= dstend) \
|
|
1811 { \
|
2956
|
1812 (void) set_itext_ichar_fmt (dstp, ch, dstfmt, dstobj); \
|
826
|
1813 dstp += len; \
|
|
1814 } \
|
|
1815 else \
|
|
1816 break; \
|
867
|
1817 INC_IBYTEPTR_FMT (srcp, srcfmt); \
|
826
|
1818 } \
|
|
1819 text_checking_assert (srcp <= srcend); \
|
|
1820 if (src_used) \
|
|
1821 *src_used = srcp - src; \
|
|
1822 return dstp - dst; \
|
|
1823 } \
|
|
1824 else \
|
|
1825 { \
|
867
|
1826 const Ibyte *srcend = src + srclen; \
|
|
1827 const Ibyte *srcp = src; \
|
826
|
1828 Bytecount total = 0; \
|
|
1829 \
|
|
1830 while (srcp < srcend) \
|
|
1831 { \
|
867
|
1832 total += ichar_len_fmt (itext_ichar_fmt (srcp, srcfmt, \
|
826
|
1833 srcobj), dstfmt); \
|
867
|
1834 INC_IBYTEPTR_FMT (srcp, srcfmt); \
|
826
|
1835 } \
|
|
1836 text_checking_assert (srcp == srcend); \
|
|
1837 if (src_used) \
|
|
1838 *src_used = srcp - src; \
|
|
1839 return total; \
|
|
1840 } \
|
|
1841 } \
|
|
1842 while (0)
|
|
1843
|
|
1844 /* Copy as much text from SRC/SRCLEN to DST/DSTLEN as will fit, converting
|
|
1845 from SRCFMT/SRCOBJ to DSTFMT/DSTOBJ. Return number of bytes stored into
|
|
1846 DST as return value, and number of bytes copied from SRC through
|
|
1847 SRC_USED (if not NULL). If DST is NULL, don't actually store anything
|
|
1848 and just return the size needed to store all the text. Will not copy
|
|
1849 partial characters into DST. */
|
|
1850
|
|
1851 Bytecount
|
867
|
1852 copy_text_between_formats (const Ibyte *src, Bytecount srclen,
|
826
|
1853 Internal_Format srcfmt,
|
2333
|
1854 Lisp_Object USED_IF_MULE (srcobj),
|
867
|
1855 Ibyte *dst, Bytecount dstlen,
|
826
|
1856 Internal_Format dstfmt,
|
2333
|
1857 Lisp_Object USED_IF_MULE (dstobj),
|
826
|
1858 Bytecount *src_used)
|
|
1859 {
|
|
1860 if (srcfmt == dstfmt &&
|
|
1861 objects_have_same_internal_representation (srcobj, dstobj))
|
|
1862 {
|
|
1863 if (dst)
|
|
1864 {
|
|
1865 srclen = min (srclen, dstlen);
|
867
|
1866 srclen = validate_ibyte_string_backward (src, srclen);
|
826
|
1867 memcpy (dst, src, srclen);
|
|
1868 if (src_used)
|
|
1869 *src_used = srclen;
|
|
1870 return srclen;
|
|
1871 }
|
|
1872 else
|
|
1873 return srclen;
|
|
1874 }
|
|
1875 /* Everything before the final else statement is an optimization.
|
|
1876 The inner loops inside COPY_TEXT_BETWEEN_FORMATS() have a number
|
|
1877 of calls to *_fmt(), each of which has a switch statement in it.
|
|
1878 By using constants as the FMT argument, these switch statements
|
|
1879 will be optimized out of existence. */
|
|
1880 #define ELSE_FORMATS(fmt1, fmt2) \
|
|
1881 else if (srcfmt == fmt1 && dstfmt == fmt2) \
|
|
1882 COPY_TEXT_BETWEEN_FORMATS (fmt1, fmt2)
|
|
1883 ELSE_FORMATS (FORMAT_DEFAULT, FORMAT_8_BIT_FIXED);
|
|
1884 ELSE_FORMATS (FORMAT_8_BIT_FIXED, FORMAT_DEFAULT);
|
|
1885 ELSE_FORMATS (FORMAT_DEFAULT, FORMAT_32_BIT_FIXED);
|
|
1886 ELSE_FORMATS (FORMAT_32_BIT_FIXED, FORMAT_DEFAULT);
|
|
1887 else
|
|
1888 COPY_TEXT_BETWEEN_FORMATS (srcfmt, dstfmt);
|
|
1889 #undef ELSE_FORMATS
|
|
1890 }
|
|
1891
|
|
1892 /* Copy as much buffer text in BUF, starting at POS, of length LEN, as will
|
|
1893 fit into DST/DSTLEN, converting to DSTFMT. Return number of bytes
|
|
1894 stored into DST as return value, and number of bytes copied from BUF
|
|
1895 through SRC_USED (if not NULL). If DST is NULL, don't actually store
|
|
1896 anything and just return the size needed to store all the text. */
|
|
1897
|
|
1898 Bytecount
|
|
1899 copy_buffer_text_out (struct buffer *buf, Bytebpos pos,
|
867
|
1900 Bytecount len, Ibyte *dst, Bytecount dstlen,
|
826
|
1901 Internal_Format dstfmt, Lisp_Object dstobj,
|
|
1902 Bytecount *src_used)
|
|
1903 {
|
|
1904 Bytecount dst_used = 0;
|
|
1905 if (src_used)
|
|
1906 *src_used = 0;
|
|
1907
|
|
1908 {
|
|
1909 BUFFER_TEXT_LOOP (buf, pos, len, runptr, runlen)
|
|
1910 {
|
|
1911 Bytecount the_src_used, the_dst_used;
|
|
1912
|
|
1913 the_dst_used = copy_text_between_formats (runptr, runlen,
|
|
1914 BUF_FORMAT (buf),
|
|
1915 wrap_buffer (buf),
|
|
1916 dst, dstlen, dstfmt,
|
|
1917 dstobj, &the_src_used);
|
|
1918 dst_used += the_dst_used;
|
|
1919 if (src_used)
|
|
1920 *src_used += the_src_used;
|
|
1921 if (dst)
|
|
1922 {
|
|
1923 dst += the_dst_used;
|
|
1924 dstlen -= the_dst_used;
|
841
|
1925 /* Stop if we didn't use all of the source text. Also stop
|
|
1926 if the destination is full. We need the first test because
|
|
1927 there might be a couple bytes left in the destination, but
|
|
1928 not enough to fit a full character. The first test will in
|
|
1929 fact catch the vast majority of cases where the destination
|
|
1930 is empty, too -- but in case the destination holds *exactly*
|
|
1931 the run length, we put in the second check. (It shouldn't
|
|
1932 really matter though -- next time through we'll just get a
|
|
1933 0.) */
|
|
1934 if (the_src_used < runlen || !dstlen)
|
826
|
1935 break;
|
|
1936 }
|
|
1937 }
|
|
1938 }
|
|
1939
|
|
1940 return dst_used;
|
|
1941 }
|
|
1942
|
771
|
1943
|
|
1944 /************************************************************************/
|
|
1945 /* charset properties of strings */
|
|
1946 /************************************************************************/
|
|
1947
|
|
1948 void
|
2333
|
1949 find_charsets_in_ibyte_string (unsigned char *charsets,
|
|
1950 const Ibyte *USED_IF_MULE (str),
|
|
1951 Bytecount USED_IF_MULE (len))
|
771
|
1952 {
|
|
1953 #ifndef MULE
|
|
1954 /* Telescope this. */
|
|
1955 charsets[0] = 1;
|
|
1956 #else
|
867
|
1957 const Ibyte *strend = str + len;
|
771
|
1958 memset (charsets, 0, NUM_LEADING_BYTES);
|
|
1959
|
|
1960 /* #### SJT doesn't like this. */
|
|
1961 if (len == 0)
|
|
1962 {
|
|
1963 charsets[XCHARSET_LEADING_BYTE (Vcharset_ascii) - MIN_LEADING_BYTE] = 1;
|
|
1964 return;
|
|
1965 }
|
|
1966
|
|
1967 while (str < strend)
|
|
1968 {
|
867
|
1969 charsets[ichar_leading_byte (itext_ichar (str)) - MIN_LEADING_BYTE] =
|
771
|
1970 1;
|
867
|
1971 INC_IBYTEPTR (str);
|
771
|
1972 }
|
|
1973 #endif
|
|
1974 }
|
|
1975
|
|
1976 void
|
2333
|
1977 find_charsets_in_ichar_string (unsigned char *charsets,
|
|
1978 const Ichar *USED_IF_MULE (str),
|
|
1979 Charcount USED_IF_MULE (len))
|
771
|
1980 {
|
|
1981 #ifndef MULE
|
|
1982 /* Telescope this. */
|
|
1983 charsets[0] = 1;
|
|
1984 #else
|
|
1985 int i;
|
|
1986
|
|
1987 memset (charsets, 0, NUM_LEADING_BYTES);
|
|
1988
|
|
1989 /* #### SJT doesn't like this. */
|
|
1990 if (len == 0)
|
|
1991 {
|
|
1992 charsets[XCHARSET_LEADING_BYTE (Vcharset_ascii) - MIN_LEADING_BYTE] = 1;
|
|
1993 return;
|
|
1994 }
|
|
1995
|
|
1996 for (i = 0; i < len; i++)
|
|
1997 {
|
867
|
1998 charsets[ichar_leading_byte (str[i]) - MIN_LEADING_BYTE] = 1;
|
771
|
1999 }
|
|
2000 #endif
|
|
2001 }
|
|
2002
|
|
2003 int
|
867
|
2004 ibyte_string_displayed_columns (const Ibyte *str, Bytecount len)
|
771
|
2005 {
|
|
2006 int cols = 0;
|
867
|
2007 const Ibyte *end = str + len;
|
771
|
2008
|
|
2009 while (str < end)
|
|
2010 {
|
|
2011 #ifdef MULE
|
867
|
2012 Ichar ch = itext_ichar (str);
|
|
2013 cols += XCHARSET_COLUMNS (ichar_charset (ch));
|
771
|
2014 #else
|
|
2015 cols++;
|
|
2016 #endif
|
867
|
2017 INC_IBYTEPTR (str);
|
771
|
2018 }
|
|
2019
|
|
2020 return cols;
|
|
2021 }
|
|
2022
|
|
2023 int
|
2333
|
2024 ichar_string_displayed_columns (const Ichar *USED_IF_MULE (str), Charcount len)
|
771
|
2025 {
|
|
2026 #ifdef MULE
|
|
2027 int cols = 0;
|
|
2028 int i;
|
|
2029
|
|
2030 for (i = 0; i < len; i++)
|
867
|
2031 cols += XCHARSET_COLUMNS (ichar_charset (str[i]));
|
771
|
2032
|
|
2033 return cols;
|
|
2034 #else /* not MULE */
|
|
2035 return len;
|
|
2036 #endif
|
|
2037 }
|
|
2038
|
|
2039 Charcount
|
2333
|
2040 ibyte_string_nonascii_chars (const Ibyte *USED_IF_MULE (str),
|
|
2041 Bytecount USED_IF_MULE (len))
|
771
|
2042 {
|
|
2043 #ifdef MULE
|
867
|
2044 const Ibyte *end = str + len;
|
771
|
2045 Charcount retval = 0;
|
|
2046
|
|
2047 while (str < end)
|
|
2048 {
|
826
|
2049 if (!byte_ascii_p (*str))
|
771
|
2050 retval++;
|
867
|
2051 INC_IBYTEPTR (str);
|
771
|
2052 }
|
|
2053
|
|
2054 return retval;
|
|
2055 #else
|
|
2056 return 0;
|
|
2057 #endif
|
|
2058 }
|
|
2059
|
|
2060
|
|
2061 /***************************************************************************/
|
|
2062 /* Eistring helper functions */
|
|
2063 /***************************************************************************/
|
|
2064
|
|
2065 int
|
867
|
2066 eistr_casefiddle_1 (Ibyte *olddata, Bytecount len, Ibyte *newdata,
|
771
|
2067 int downp)
|
|
2068 {
|
867
|
2069 Ibyte *endp = olddata + len;
|
|
2070 Ibyte *newp = newdata;
|
771
|
2071 int changedp = 0;
|
|
2072
|
|
2073 while (olddata < endp)
|
|
2074 {
|
867
|
2075 Ichar c = itext_ichar (olddata);
|
|
2076 Ichar newc;
|
771
|
2077
|
|
2078 if (downp)
|
|
2079 newc = DOWNCASE (0, c);
|
|
2080 else
|
|
2081 newc = UPCASE (0, c);
|
|
2082
|
|
2083 if (c != newc)
|
|
2084 changedp = 1;
|
|
2085
|
867
|
2086 newp += set_itext_ichar (newp, newc);
|
|
2087 INC_IBYTEPTR (olddata);
|
771
|
2088 }
|
|
2089
|
|
2090 *newp = '\0';
|
|
2091
|
|
2092 return changedp ? newp - newdata : 0;
|
|
2093 }
|
|
2094
|
|
2095 int
|
|
2096 eifind_large_enough_buffer (int oldbufsize, int needed_size)
|
|
2097 {
|
|
2098 while (oldbufsize < needed_size)
|
|
2099 {
|
|
2100 oldbufsize = oldbufsize * 3 / 2;
|
|
2101 oldbufsize = max (oldbufsize, 32);
|
|
2102 }
|
|
2103
|
|
2104 return oldbufsize;
|
|
2105 }
|
|
2106
|
|
2107 void
|
|
2108 eito_malloc_1 (Eistring *ei)
|
|
2109 {
|
|
2110 if (ei->mallocp_)
|
|
2111 return;
|
|
2112 ei->mallocp_ = 1;
|
|
2113 if (ei->data_)
|
|
2114 {
|
867
|
2115 Ibyte *newdata;
|
771
|
2116
|
|
2117 ei->max_size_allocated_ =
|
|
2118 eifind_large_enough_buffer (0, ei->bytelen_ + 1);
|
2367
|
2119 newdata = xnew_ibytes (ei->max_size_allocated_);
|
771
|
2120 memcpy (newdata, ei->data_, ei->bytelen_ + 1);
|
|
2121 ei->data_ = newdata;
|
|
2122 }
|
|
2123
|
|
2124 if (ei->extdata_)
|
|
2125 {
|
2367
|
2126 Extbyte *newdata = xnew_extbytes (ei->extlen_ + 2);
|
771
|
2127
|
|
2128 memcpy (newdata, ei->extdata_, ei->extlen_);
|
|
2129 /* Double null-terminate in case of Unicode data */
|
|
2130 newdata[ei->extlen_] = '\0';
|
|
2131 newdata[ei->extlen_ + 1] = '\0';
|
|
2132 ei->extdata_ = newdata;
|
|
2133 }
|
|
2134 }
|
|
2135
|
|
2136 int
|
|
2137 eicmp_1 (Eistring *ei, Bytecount off, Charcount charoff,
|
867
|
2138 Bytecount len, Charcount charlen, const Ibyte *data,
|
2421
|
2139 const Eistring *ei2, int is_ascii, int fold_case)
|
771
|
2140 {
|
3462
|
2141 assert ((data == 0) != (ei == 0));
|
|
2142 assert ((is_ascii != 0) == (data != 0));
|
|
2143 assert (fold_case >= 0 && fold_case <= 2);
|
771
|
2144 assert ((off < 0) != (charoff < 0));
|
3462
|
2145
|
771
|
2146 if (off < 0)
|
|
2147 {
|
|
2148 off = charcount_to_bytecount (ei->data_, charoff);
|
|
2149 if (charlen < 0)
|
|
2150 len = -1;
|
|
2151 else
|
|
2152 len = charcount_to_bytecount (ei->data_ + off, charlen);
|
|
2153 }
|
|
2154 if (len < 0)
|
|
2155 len = ei->bytelen_ - off;
|
|
2156
|
|
2157 assert (off >= 0 && off <= ei->bytelen_);
|
|
2158 assert (len >= 0 && off + len <= ei->bytelen_);
|
|
2159
|
|
2160 {
|
|
2161 Bytecount dstlen;
|
867
|
2162 const Ibyte *src = ei->data_, *dst;
|
771
|
2163
|
|
2164 if (data)
|
|
2165 {
|
|
2166 dst = data;
|
|
2167 dstlen = qxestrlen (data);
|
|
2168 }
|
|
2169 else
|
|
2170 {
|
|
2171 dst = ei2->data_;
|
|
2172 dstlen = ei2->bytelen_;
|
|
2173 }
|
|
2174
|
2421
|
2175 if (is_ascii)
|
2367
|
2176 ASSERT_ASCTEXT_ASCII_LEN ((Ascbyte *) dst, dstlen);
|
771
|
2177
|
801
|
2178 return (fold_case == 0 ? qxememcmp4 (src, len, dst, dstlen) :
|
|
2179 fold_case == 1 ? qxememcasecmp4 (src, len, dst, dstlen) :
|
|
2180 qxetextcasecmp (src, len, dst, dstlen));
|
771
|
2181 }
|
|
2182 }
|
|
2183
|
867
|
2184 Ibyte *
|
826
|
2185 eicpyout_malloc_fmt (Eistring *eistr, Bytecount *len_out, Internal_Format fmt,
|
2286
|
2186 Lisp_Object UNUSED (object))
|
771
|
2187 {
|
867
|
2188 Ibyte *ptr;
|
771
|
2189
|
|
2190 assert (fmt == FORMAT_DEFAULT);
|
867
|
2191 ptr = xnew_array (Ibyte, eistr->bytelen_ + 1);
|
771
|
2192 if (len_out)
|
|
2193 *len_out = eistr->bytelen_;
|
|
2194 memcpy (ptr, eistr->data_, eistr->bytelen_ + 1);
|
|
2195 return ptr;
|
|
2196 }
|
|
2197
|
|
2198
|
|
2199 /************************************************************************/
|
|
2200 /* Charcount/Bytecount conversion */
|
|
2201 /************************************************************************/
|
|
2202
|
|
2203 /* Optimization. Do it. Live it. Love it. */
|
|
2204
|
|
2205 #ifdef MULE
|
|
2206
|
826
|
2207 #ifdef EFFICIENT_INT_128_BIT
|
|
2208 # define STRIDE_TYPE INT_128_BIT
|
|
2209 # define HIGH_BIT_MASK \
|
|
2210 MAKE_128_BIT_UNSIGNED_CONSTANT (0x80808080808080808080808080808080)
|
|
2211 #elif defined (EFFICIENT_INT_64_BIT)
|
|
2212 # define STRIDE_TYPE INT_64_BIT
|
|
2213 # define HIGH_BIT_MASK MAKE_64_BIT_UNSIGNED_CONSTANT (0x8080808080808080)
|
771
|
2214 #else
|
826
|
2215 # define STRIDE_TYPE INT_32_BIT
|
|
2216 # define HIGH_BIT_MASK MAKE_32_BIT_UNSIGNED_CONSTANT (0x80808080)
|
771
|
2217 #endif
|
|
2218
|
|
2219 #define ALIGN_BITS ((EMACS_UINT) (ALIGNOF (STRIDE_TYPE) - 1))
|
|
2220 #define ALIGN_MASK (~ ALIGN_BITS)
|
|
2221 #define ALIGNED(ptr) ((((EMACS_UINT) ptr) & ALIGN_BITS) == 0)
|
|
2222 #define STRIDE sizeof (STRIDE_TYPE)
|
|
2223
|
2367
|
2224 /* Skip as many ASCII bytes as possible in the memory block [PTR, END).
|
|
2225 Return pointer to the first non-ASCII byte. optimized for long
|
|
2226 stretches of ASCII. */
|
|
2227 inline static const Ibyte *
|
|
2228 skip_ascii (const Ibyte *ptr, const Ibyte *end)
|
|
2229 {
|
826
|
2230 const unsigned STRIDE_TYPE *ascii_end;
|
|
2231
|
|
2232 /* Need to do in 3 sections -- before alignment start, aligned chunk,
|
|
2233 after alignment end. */
|
|
2234 while (!ALIGNED (ptr))
|
771
|
2235 {
|
826
|
2236 if (ptr == end || !byte_ascii_p (*ptr))
|
|
2237 return ptr;
|
|
2238 ptr++;
|
|
2239 }
|
|
2240 ascii_end = (const unsigned STRIDE_TYPE *) ptr;
|
|
2241 /* This loop screams, because we can detect ASCII
|
|
2242 characters 4 or 8 at a time. */
|
867
|
2243 while ((const Ibyte *) ascii_end + STRIDE <= end
|
826
|
2244 && !(*ascii_end & HIGH_BIT_MASK))
|
|
2245 ascii_end++;
|
867
|
2246 ptr = (Ibyte *) ascii_end;
|
826
|
2247 while (ptr < end && byte_ascii_p (*ptr))
|
|
2248 ptr++;
|
|
2249 return ptr;
|
|
2250 }
|
|
2251
|
2367
|
2252 /* Skip as many ASCII bytes as possible in the memory block [END, PTR),
|
|
2253 going downwards. Return pointer to the location above the first
|
|
2254 non-ASCII byte. Optimized for long stretches of ASCII. */
|
|
2255 inline static const Ibyte *
|
|
2256 skip_ascii_down (const Ibyte *ptr, const Ibyte *end)
|
|
2257 {
|
|
2258 const unsigned STRIDE_TYPE *ascii_end;
|
|
2259
|
|
2260 /* Need to do in 3 sections -- before alignment start, aligned chunk,
|
|
2261 after alignment end. */
|
|
2262 while (!ALIGNED (ptr))
|
|
2263 {
|
|
2264 if (ptr == end || !byte_ascii_p (*(ptr - 1)))
|
|
2265 return ptr;
|
|
2266 ptr--;
|
|
2267 }
|
|
2268 ascii_end = (const unsigned STRIDE_TYPE *) ptr - 1;
|
|
2269 /* This loop screams, because we can detect ASCII
|
|
2270 characters 4 or 8 at a time. */
|
|
2271 while ((const Ibyte *) ascii_end >= end
|
|
2272 && !(*ascii_end & HIGH_BIT_MASK))
|
|
2273 ascii_end--;
|
|
2274 ptr = (Ibyte *) (ascii_end + 1);
|
|
2275 while (ptr > end && byte_ascii_p (*(ptr - 1)))
|
|
2276 ptr--;
|
|
2277 return ptr;
|
|
2278 }
|
|
2279
|
826
|
2280 /* Function equivalents of bytecount_to_charcount/charcount_to_bytecount.
|
|
2281 These work on strings of all sizes but are more efficient than a simple
|
|
2282 loop on large strings and probably less efficient on sufficiently small
|
|
2283 strings. */
|
|
2284
|
|
2285 Charcount
|
867
|
2286 bytecount_to_charcount_fun (const Ibyte *ptr, Bytecount len)
|
826
|
2287 {
|
|
2288 Charcount count = 0;
|
867
|
2289 const Ibyte *end = ptr + len;
|
826
|
2290 while (1)
|
|
2291 {
|
867
|
2292 const Ibyte *newptr = skip_ascii (ptr, end);
|
826
|
2293 count += newptr - ptr;
|
|
2294 ptr = newptr;
|
|
2295 if (ptr == end)
|
|
2296 break;
|
|
2297 {
|
|
2298 /* Optimize for successive characters from the same charset */
|
867
|
2299 Ibyte leading_byte = *ptr;
|
826
|
2300 int bytes = rep_bytes_by_first_byte (leading_byte);
|
|
2301 while (ptr < end && *ptr == leading_byte)
|
|
2302 ptr += bytes, count++;
|
|
2303 }
|
771
|
2304 }
|
|
2305
|
|
2306 /* Bomb out if the specified substring ends in the middle
|
|
2307 of a character. Note that we might have already gotten
|
|
2308 a core dump above from an invalid reference, but at least
|
|
2309 we will get no farther than here.
|
|
2310
|
|
2311 This also catches len < 0. */
|
800
|
2312 text_checking_assert (ptr == end);
|
771
|
2313
|
|
2314 return count;
|
|
2315 }
|
|
2316
|
|
2317 Bytecount
|
867
|
2318 charcount_to_bytecount_fun (const Ibyte *ptr, Charcount len)
|
771
|
2319 {
|
867
|
2320 const Ibyte *newptr = ptr;
|
826
|
2321 while (1)
|
771
|
2322 {
|
867
|
2323 const Ibyte *newnewptr = skip_ascii (newptr, newptr + len);
|
826
|
2324 len -= newnewptr - newptr;
|
|
2325 newptr = newnewptr;
|
|
2326 if (!len)
|
|
2327 break;
|
|
2328 {
|
|
2329 /* Optimize for successive characters from the same charset */
|
867
|
2330 Ibyte leading_byte = *newptr;
|
826
|
2331 int bytes = rep_bytes_by_first_byte (leading_byte);
|
|
2332 while (len > 0 && *newptr == leading_byte)
|
|
2333 newptr += bytes, len--;
|
|
2334 }
|
771
|
2335 }
|
|
2336 return newptr - ptr;
|
|
2337 }
|
|
2338
|
2367
|
2339 /* Function equivalent of charcount_to_bytecount_down. This works on strings
|
|
2340 of all sizes but is more efficient than a simple loop on large strings
|
|
2341 and probably less efficient on sufficiently small strings. */
|
|
2342
|
|
2343 Bytecount
|
|
2344 charcount_to_bytecount_down_fun (const Ibyte *ptr, Charcount len)
|
|
2345 {
|
|
2346 const Ibyte *newptr = ptr;
|
|
2347 while (1)
|
|
2348 {
|
|
2349 const Ibyte *newnewptr = skip_ascii_down (newptr, newptr - len);
|
|
2350 len -= newptr - newnewptr;
|
|
2351 newptr = newnewptr;
|
|
2352 /* Skip over all non-ASCII chars, counting the length and
|
|
2353 stopping if it's zero */
|
|
2354 while (len && !byte_ascii_p (*(newptr - 1)))
|
|
2355 if (ibyte_first_byte_p (*--newptr))
|
|
2356 len--;
|
|
2357 if (!len)
|
|
2358 break;
|
|
2359 }
|
|
2360 text_checking_assert (ptr - newptr >= 0);
|
|
2361 return ptr - newptr;
|
|
2362 }
|
|
2363
|
771
|
2364 /* The next two functions are the actual meat behind the
|
|
2365 charbpos-to-bytebpos and bytebpos-to-charbpos conversions. Currently
|
|
2366 the method they use is fairly unsophisticated; see buffer.h.
|
|
2367
|
|
2368 Note that charbpos_to_bytebpos_func() is probably the most-called
|
|
2369 function in all of XEmacs. Therefore, it must be FAST FAST FAST.
|
|
2370 This is the reason why so much of the code is duplicated.
|
|
2371
|
|
2372 Similar considerations apply to bytebpos_to_charbpos_func(), although
|
|
2373 less so because the function is not called so often.
|
2367
|
2374 */
|
|
2375
|
|
2376 /*
|
|
2377
|
|
2378 Info on Byte-Char conversion:
|
|
2379
|
|
2380 (Info-goto-node "(internals)Byte-Char Position Conversion")
|
|
2381 */
|
|
2382
|
|
2383 #ifdef OLD_BYTE_CHAR
|
771
|
2384 static int not_very_random_number;
|
2367
|
2385 #endif /* OLD_BYTE_CHAR */
|
|
2386
|
|
2387 #define OLD_LOOP
|
|
2388
|
|
2389 /* If we are this many characters away from any known position, cache the
|
|
2390 new position in the buffer's char-byte cache. */
|
|
2391 #define FAR_AWAY_DISTANCE 5000
|
|
2392
|
|
2393 /* Converting between character positions and byte positions. */
|
|
2394
|
|
2395 /* There are several places in the buffer where we know
|
|
2396 the correspondence: BEG, BEGV, PT, GPT, ZV and Z,
|
|
2397 and everywhere there is a marker. So we find the one of these places
|
|
2398 that is closest to the specified position, and scan from there. */
|
|
2399
|
|
2400 /* This macro is a subroutine of charbpos_to_bytebpos_func.
|
|
2401 Note that it is desirable that BYTEPOS is not evaluated
|
|
2402 except when we really want its value. */
|
|
2403
|
|
2404 #define CONSIDER(CHARPOS, BYTEPOS) \
|
|
2405 do \
|
|
2406 { \
|
|
2407 Charbpos this_charpos = (CHARPOS); \
|
|
2408 int changed = 0; \
|
|
2409 \
|
|
2410 if (this_charpos == x) \
|
|
2411 { \
|
|
2412 retval = (BYTEPOS); \
|
|
2413 goto done; \
|
|
2414 } \
|
|
2415 else if (this_charpos > x) \
|
|
2416 { \
|
|
2417 if (this_charpos < best_above) \
|
|
2418 { \
|
|
2419 best_above = this_charpos; \
|
|
2420 best_above_byte = (BYTEPOS); \
|
|
2421 changed = 1; \
|
|
2422 } \
|
|
2423 } \
|
|
2424 else if (this_charpos > best_below) \
|
|
2425 { \
|
|
2426 best_below = this_charpos; \
|
|
2427 best_below_byte = (BYTEPOS); \
|
|
2428 changed = 1; \
|
|
2429 } \
|
|
2430 \
|
|
2431 if (changed) \
|
|
2432 { \
|
|
2433 if (best_above - best_below == best_above_byte - best_below_byte) \
|
|
2434 { \
|
|
2435 retval = best_below_byte + (x - best_below); \
|
|
2436 goto done; \
|
|
2437 } \
|
|
2438 } \
|
|
2439 } \
|
|
2440 while (0)
|
|
2441
|
771
|
2442
|
|
2443 Bytebpos
|
|
2444 charbpos_to_bytebpos_func (struct buffer *buf, Charbpos x)
|
|
2445 {
|
2367
|
2446 #ifdef OLD_BYTE_CHAR
|
771
|
2447 Charbpos bufmin;
|
|
2448 Charbpos bufmax;
|
|
2449 Bytebpos bytmin;
|
|
2450 Bytebpos bytmax;
|
|
2451 int size;
|
|
2452 int forward_p;
|
|
2453 int diff_so_far;
|
|
2454 int add_to_cache = 0;
|
2367
|
2455 #endif /* OLD_BYTE_CHAR */
|
|
2456
|
|
2457 Charbpos best_above, best_below;
|
|
2458 Bytebpos best_above_byte, best_below_byte;
|
|
2459 int i;
|
|
2460 struct buffer_text *t;
|
|
2461 Bytebpos retval;
|
|
2462
|
1292
|
2463 PROFILE_DECLARE ();
|
771
|
2464
|
1292
|
2465 PROFILE_RECORD_ENTERING_SECTION (QSin_char_byte_conversion);
|
|
2466
|
2367
|
2467 best_above = BUF_Z (buf);
|
|
2468 best_above_byte = BYTE_BUF_Z (buf);
|
|
2469
|
|
2470 /* In this case, we simply have all one-byte characters. But this should
|
|
2471 have been intercepted before, in charbpos_to_bytebpos(). */
|
|
2472 text_checking_assert (best_above != best_above_byte);
|
|
2473
|
|
2474 best_below = BUF_BEG (buf);
|
|
2475 best_below_byte = BYTE_BUF_BEG (buf);
|
|
2476
|
|
2477 /* We find in best_above and best_above_byte
|
|
2478 the closest known point above CHARPOS,
|
|
2479 and in best_below and best_below_byte
|
|
2480 the closest known point below CHARPOS,
|
|
2481
|
|
2482 If at any point we can tell that the space between those
|
|
2483 two best approximations is all single-byte,
|
|
2484 we interpolate the result immediately. */
|
|
2485
|
|
2486 CONSIDER (BUF_PT (buf), BYTE_BUF_PT (buf));
|
|
2487 CONSIDER (BUF_GPT (buf), BYTE_BUF_GPT (buf));
|
|
2488 CONSIDER (BUF_BEGV (buf), BYTE_BUF_BEGV (buf));
|
|
2489 CONSIDER (BUF_ZV (buf), BYTE_BUF_ZV (buf));
|
|
2490
|
|
2491 t = buf->text;
|
|
2492 CONSIDER (t->cached_charpos, t->cached_bytepos);
|
|
2493
|
|
2494 /* Check the most recently entered positions first */
|
|
2495
|
|
2496 for (i = t->next_cache_pos - 1; i >= 0; i--)
|
|
2497 {
|
|
2498 CONSIDER (t->mule_charbpos_cache[i], t->mule_bytebpos_cache[i]);
|
|
2499
|
|
2500 /* If we are down to a range of 50 chars,
|
|
2501 don't bother checking any other markers;
|
|
2502 scan the intervening chars directly now. */
|
|
2503 if (best_above - best_below < 50)
|
|
2504 break;
|
|
2505 }
|
|
2506
|
|
2507 /* We get here if we did not exactly hit one of the known places.
|
|
2508 We have one known above and one known below.
|
|
2509 Scan, counting characters, from whichever one is closer. */
|
|
2510
|
|
2511 if (x - best_below < best_above - x)
|
|
2512 {
|
|
2513 int record = x - best_below > FAR_AWAY_DISTANCE;
|
|
2514
|
|
2515 #ifdef OLD_LOOP /* old code */
|
|
2516 while (best_below != x)
|
|
2517 {
|
|
2518 best_below++;
|
|
2519 INC_BYTEBPOS (buf, best_below_byte);
|
|
2520 }
|
|
2521 #else
|
|
2522 text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT);
|
|
2523 /* The gap should not occur between best_below and x, or we will be
|
|
2524 screwed in using charcount_to_bytecount(). It should not be exactly
|
|
2525 at x either, because we already should have caught that. */
|
|
2526 text_checking_assert
|
|
2527 (BUF_CEILING_OF_IGNORE_ACCESSIBLE (buf, best_below) > x);
|
|
2528
|
|
2529 /* Using charcount_to_bytecount() is potentially a lot faster than a
|
|
2530 simple loop using INC_BYTEBPOS() because (a) the checks for gap
|
|
2531 and buffer format are factored out instead of getting checked
|
|
2532 every time; (b) the checking goes 4 or 8 bytes at a time in ASCII
|
|
2533 text.
|
|
2534 */
|
|
2535 best_below_byte +=
|
|
2536 charcount_to_bytecount
|
|
2537 (BYTE_BUF_BYTE_ADDRESS (buf, best_below_byte), x - best_below);
|
|
2538 best_below = x;
|
|
2539 #endif /* 0 */
|
|
2540
|
|
2541 /* If this position is quite far from the nearest known position,
|
|
2542 cache the correspondence.
|
|
2543
|
|
2544 NB FSF does this: "... by creating a marker here.
|
|
2545 It will last until the next GC."
|
|
2546 */
|
|
2547
|
|
2548 if (record)
|
|
2549 {
|
|
2550 /* If we have run out of positions to record, discard some of the
|
|
2551 old ones. I used to use a circular buffer, which avoids the
|
|
2552 need to block-move any memory. But it makes it more difficult
|
|
2553 to keep track of which positions haven't been used -- commonly
|
|
2554 we haven't yet filled out anywhere near the whole set of
|
|
2555 positions and don't want to check them all. We should not be
|
|
2556 recording that often, and block-moving is extremely fast in
|
|
2557 any case. --ben */
|
|
2558 if (t->next_cache_pos == NUM_CACHED_POSITIONS)
|
|
2559 {
|
|
2560 memmove (t->mule_charbpos_cache,
|
|
2561 t->mule_charbpos_cache + NUM_MOVED_POSITIONS,
|
|
2562 sizeof (Charbpos) *
|
|
2563 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS));
|
|
2564 memmove (t->mule_bytebpos_cache,
|
|
2565 t->mule_bytebpos_cache + NUM_MOVED_POSITIONS,
|
|
2566 sizeof (Bytebpos) *
|
|
2567 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS));
|
|
2568 t->next_cache_pos -= NUM_MOVED_POSITIONS;
|
|
2569 }
|
|
2570 t->mule_charbpos_cache[t->next_cache_pos] = best_below;
|
|
2571 t->mule_bytebpos_cache[t->next_cache_pos] = best_below_byte;
|
|
2572 t->next_cache_pos++;
|
|
2573 }
|
|
2574
|
|
2575 t->cached_charpos = best_below;
|
|
2576 t->cached_bytepos = best_below_byte;
|
|
2577
|
|
2578 retval = best_below_byte;
|
|
2579 text_checking_assert (best_below_byte >= best_below);
|
|
2580 goto done;
|
|
2581 }
|
|
2582 else
|
|
2583 {
|
|
2584 int record = best_above - x > FAR_AWAY_DISTANCE;
|
|
2585
|
|
2586 #ifdef OLD_LOOP
|
|
2587 while (best_above != x)
|
|
2588 {
|
|
2589 best_above--;
|
|
2590 DEC_BYTEBPOS (buf, best_above_byte);
|
|
2591 }
|
|
2592 #else
|
|
2593 text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT);
|
|
2594 /* The gap should not occur between best_above and x, or we will be
|
|
2595 screwed in using charcount_to_bytecount_down(). It should not be
|
|
2596 exactly at x either, because we already should have caught
|
|
2597 that. */
|
|
2598 text_checking_assert
|
|
2599 (BUF_FLOOR_OF_IGNORE_ACCESSIBLE (buf, best_above) < x);
|
|
2600
|
|
2601 /* Using charcount_to_bytecount_down() is potentially a lot faster
|
|
2602 than a simple loop using DEC_BYTEBPOS(); see above. */
|
|
2603 best_above_byte -=
|
|
2604 charcount_to_bytecount_down
|
|
2605 /* BYTE_BUF_BYTE_ADDRESS will return a value on the high side of the
|
|
2606 gap if we are at the gap, which is the wrong side. So do the
|
|
2607 following trick instead. */
|
|
2608 (BYTE_BUF_BYTE_ADDRESS_BEFORE (buf, best_above_byte) + 1,
|
|
2609 best_above - x);
|
|
2610 best_above = x;
|
|
2611 #endif /* SLEDGEHAMMER_CHECK_TEXT */
|
|
2612
|
|
2613
|
|
2614 /* If this position is quite far from the nearest known position,
|
|
2615 cache the correspondence.
|
|
2616
|
|
2617 NB FSF does this: "... by creating a marker here.
|
|
2618 It will last until the next GC."
|
|
2619 */
|
|
2620 if (record)
|
|
2621 {
|
|
2622 if (t->next_cache_pos == NUM_CACHED_POSITIONS)
|
|
2623 {
|
|
2624 memmove (t->mule_charbpos_cache,
|
|
2625 t->mule_charbpos_cache + NUM_MOVED_POSITIONS,
|
|
2626 sizeof (Charbpos) *
|
|
2627 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS));
|
|
2628 memmove (t->mule_bytebpos_cache,
|
|
2629 t->mule_bytebpos_cache + NUM_MOVED_POSITIONS,
|
|
2630 sizeof (Bytebpos) *
|
|
2631 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS));
|
|
2632 t->next_cache_pos -= NUM_MOVED_POSITIONS;
|
|
2633 }
|
|
2634 t->mule_charbpos_cache[t->next_cache_pos] = best_above;
|
|
2635 t->mule_bytebpos_cache[t->next_cache_pos] = best_above_byte;
|
|
2636 t->next_cache_pos++;
|
|
2637 }
|
|
2638
|
|
2639 t->cached_charpos = best_above;
|
|
2640 t->cached_bytepos = best_above_byte;
|
|
2641
|
|
2642 retval = best_above_byte;
|
|
2643 text_checking_assert (best_above_byte >= best_above);
|
|
2644 goto done;
|
|
2645 }
|
|
2646
|
|
2647 #ifdef OLD_BYTE_CHAR
|
|
2648
|
771
|
2649 bufmin = buf->text->mule_bufmin;
|
|
2650 bufmax = buf->text->mule_bufmax;
|
|
2651 bytmin = buf->text->mule_bytmin;
|
|
2652 bytmax = buf->text->mule_bytmax;
|
|
2653 size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p;
|
|
2654
|
|
2655 /* The basic idea here is that we shift the "known region" up or down
|
|
2656 until it overlaps the specified position. We do this by moving
|
|
2657 the upper bound of the known region up one character at a time,
|
|
2658 and moving the lower bound of the known region up as necessary
|
|
2659 when the size of the character just seen changes.
|
|
2660
|
|
2661 We optimize this, however, by first shifting the known region to
|
|
2662 one of the cached points if it's close by. (We don't check BEG or
|
|
2663 Z, even though they're cached; most of the time these will be the
|
|
2664 same as BEGV and ZV, and when they're not, they're not likely
|
|
2665 to be used.) */
|
|
2666
|
|
2667 if (x > bufmax)
|
|
2668 {
|
|
2669 Charbpos diffmax = x - bufmax;
|
|
2670 Charbpos diffpt = x - BUF_PT (buf);
|
|
2671 Charbpos diffzv = BUF_ZV (buf) - x;
|
|
2672 /* #### This value could stand some more exploration. */
|
|
2673 Charcount heuristic_hack = (bufmax - bufmin) >> 2;
|
|
2674
|
|
2675 /* Check if the position is closer to PT or ZV than to the
|
|
2676 end of the known region. */
|
|
2677
|
|
2678 if (diffpt < 0)
|
|
2679 diffpt = -diffpt;
|
|
2680 if (diffzv < 0)
|
|
2681 diffzv = -diffzv;
|
|
2682
|
|
2683 /* But also implement a heuristic that favors the known region
|
|
2684 over PT or ZV. The reason for this is that switching to
|
|
2685 PT or ZV will wipe out the knowledge in the known region,
|
|
2686 which might be annoying if the known region is large and
|
|
2687 PT or ZV is not that much closer than the end of the known
|
|
2688 region. */
|
|
2689
|
|
2690 diffzv += heuristic_hack;
|
|
2691 diffpt += heuristic_hack;
|
|
2692 if (diffpt < diffmax && diffpt <= diffzv)
|
|
2693 {
|
|
2694 bufmax = bufmin = BUF_PT (buf);
|
826
|
2695 bytmax = bytmin = BYTE_BUF_PT (buf);
|
771
|
2696 /* We set the size to 1 even though it doesn't really
|
|
2697 matter because the new known region contains no
|
|
2698 characters. We do this because this is the most
|
|
2699 likely size of the characters around the new known
|
|
2700 region, and we avoid potential yuckiness that is
|
|
2701 done when size == 3. */
|
|
2702 size = 1;
|
|
2703 }
|
|
2704 if (diffzv < diffmax)
|
|
2705 {
|
|
2706 bufmax = bufmin = BUF_ZV (buf);
|
826
|
2707 bytmax = bytmin = BYTE_BUF_ZV (buf);
|
771
|
2708 size = 1;
|
|
2709 }
|
|
2710 }
|
800
|
2711 #ifdef ERROR_CHECK_TEXT
|
771
|
2712 else if (x >= bufmin)
|
2500
|
2713 ABORT ();
|
771
|
2714 #endif
|
|
2715 else
|
|
2716 {
|
|
2717 Charbpos diffmin = bufmin - x;
|
|
2718 Charbpos diffpt = BUF_PT (buf) - x;
|
|
2719 Charbpos diffbegv = x - BUF_BEGV (buf);
|
|
2720 /* #### This value could stand some more exploration. */
|
|
2721 Charcount heuristic_hack = (bufmax - bufmin) >> 2;
|
|
2722
|
|
2723 if (diffpt < 0)
|
|
2724 diffpt = -diffpt;
|
|
2725 if (diffbegv < 0)
|
|
2726 diffbegv = -diffbegv;
|
|
2727
|
|
2728 /* But also implement a heuristic that favors the known region --
|
|
2729 see above. */
|
|
2730
|
|
2731 diffbegv += heuristic_hack;
|
|
2732 diffpt += heuristic_hack;
|
|
2733
|
|
2734 if (diffpt < diffmin && diffpt <= diffbegv)
|
|
2735 {
|
|
2736 bufmax = bufmin = BUF_PT (buf);
|
826
|
2737 bytmax = bytmin = BYTE_BUF_PT (buf);
|
771
|
2738 /* We set the size to 1 even though it doesn't really
|
|
2739 matter because the new known region contains no
|
|
2740 characters. We do this because this is the most
|
|
2741 likely size of the characters around the new known
|
|
2742 region, and we avoid potential yuckiness that is
|
|
2743 done when size == 3. */
|
|
2744 size = 1;
|
|
2745 }
|
|
2746 if (diffbegv < diffmin)
|
|
2747 {
|
|
2748 bufmax = bufmin = BUF_BEGV (buf);
|
826
|
2749 bytmax = bytmin = BYTE_BUF_BEGV (buf);
|
771
|
2750 size = 1;
|
|
2751 }
|
|
2752 }
|
|
2753
|
|
2754 diff_so_far = x > bufmax ? x - bufmax : bufmin - x;
|
|
2755 if (diff_so_far > 50)
|
|
2756 {
|
|
2757 /* If we have to move more than a certain amount, then look
|
|
2758 into our cache. */
|
|
2759 int minval = INT_MAX;
|
|
2760 int found = 0;
|
|
2761 int i;
|
|
2762
|
|
2763 add_to_cache = 1;
|
|
2764 /* I considered keeping the positions ordered. This would speed
|
|
2765 up this loop, but updating the cache would take longer, so
|
|
2766 it doesn't seem like it would really matter. */
|
2367
|
2767 for (i = 0; i < NUM_CACHED_POSITIONS; i++)
|
771
|
2768 {
|
|
2769 int diff = buf->text->mule_charbpos_cache[i] - x;
|
|
2770
|
|
2771 if (diff < 0)
|
|
2772 diff = -diff;
|
|
2773 if (diff < minval)
|
|
2774 {
|
|
2775 minval = diff;
|
|
2776 found = i;
|
|
2777 }
|
|
2778 }
|
|
2779
|
|
2780 if (minval < diff_so_far)
|
|
2781 {
|
|
2782 bufmax = bufmin = buf->text->mule_charbpos_cache[found];
|
|
2783 bytmax = bytmin = buf->text->mule_bytebpos_cache[found];
|
|
2784 size = 1;
|
|
2785 }
|
|
2786 }
|
|
2787
|
|
2788 /* It's conceivable that the caching above could lead to X being
|
|
2789 the same as one of the range edges. */
|
|
2790 if (x >= bufmax)
|
|
2791 {
|
|
2792 Bytebpos newmax;
|
|
2793 Bytecount newsize;
|
|
2794
|
|
2795 forward_p = 1;
|
|
2796 while (x > bufmax)
|
|
2797 {
|
|
2798 newmax = bytmax;
|
|
2799
|
|
2800 INC_BYTEBPOS (buf, newmax);
|
|
2801 newsize = newmax - bytmax;
|
|
2802 if (newsize != size)
|
|
2803 {
|
|
2804 bufmin = bufmax;
|
|
2805 bytmin = bytmax;
|
|
2806 size = newsize;
|
|
2807 }
|
|
2808 bytmax = newmax;
|
|
2809 bufmax++;
|
|
2810 }
|
|
2811 retval = bytmax;
|
|
2812
|
|
2813 /* #### Should go past the found location to reduce the number
|
|
2814 of times that this function is called */
|
|
2815 }
|
|
2816 else /* x < bufmin */
|
|
2817 {
|
|
2818 Bytebpos newmin;
|
|
2819 Bytecount newsize;
|
|
2820
|
|
2821 forward_p = 0;
|
|
2822 while (x < bufmin)
|
|
2823 {
|
|
2824 newmin = bytmin;
|
|
2825
|
|
2826 DEC_BYTEBPOS (buf, newmin);
|
|
2827 newsize = bytmin - newmin;
|
|
2828 if (newsize != size)
|
|
2829 {
|
|
2830 bufmax = bufmin;
|
|
2831 bytmax = bytmin;
|
|
2832 size = newsize;
|
|
2833 }
|
|
2834 bytmin = newmin;
|
|
2835 bufmin--;
|
|
2836 }
|
|
2837 retval = bytmin;
|
|
2838
|
|
2839 /* #### Should go past the found location to reduce the number
|
|
2840 of times that this function is called
|
|
2841 */
|
|
2842 }
|
|
2843
|
|
2844 /* If size is three, than we have to max sure that the range we
|
|
2845 discovered isn't too large, because we use a fixed-length
|
|
2846 table to divide by 3. */
|
|
2847
|
|
2848 if (size == 3)
|
|
2849 {
|
|
2850 int gap = bytmax - bytmin;
|
|
2851 buf->text->mule_three_p = 1;
|
|
2852 buf->text->mule_shifter = 1;
|
|
2853
|
|
2854 if (gap > MAX_BYTEBPOS_GAP_SIZE_3)
|
|
2855 {
|
|
2856 if (forward_p)
|
|
2857 {
|
|
2858 bytmin = bytmax - MAX_BYTEBPOS_GAP_SIZE_3;
|
|
2859 bufmin = bufmax - MAX_CHARBPOS_GAP_SIZE_3;
|
|
2860 }
|
|
2861 else
|
|
2862 {
|
|
2863 bytmax = bytmin + MAX_BYTEBPOS_GAP_SIZE_3;
|
|
2864 bufmax = bufmin + MAX_CHARBPOS_GAP_SIZE_3;
|
|
2865 }
|
|
2866 }
|
|
2867 }
|
|
2868 else
|
|
2869 {
|
|
2870 buf->text->mule_three_p = 0;
|
|
2871 if (size == 4)
|
|
2872 buf->text->mule_shifter = 2;
|
|
2873 else
|
|
2874 buf->text->mule_shifter = size - 1;
|
|
2875 }
|
|
2876
|
|
2877 buf->text->mule_bufmin = bufmin;
|
|
2878 buf->text->mule_bufmax = bufmax;
|
|
2879 buf->text->mule_bytmin = bytmin;
|
|
2880 buf->text->mule_bytmax = bytmax;
|
|
2881
|
|
2882 if (add_to_cache)
|
|
2883 {
|
|
2884 int replace_loc;
|
|
2885
|
|
2886 /* We throw away a "random" cached value and replace it with
|
|
2887 the new value. It doesn't actually have to be very random
|
|
2888 at all, just evenly distributed.
|
|
2889
|
|
2890 #### It would be better to use a least-recently-used algorithm
|
|
2891 or something that tries to space things out, but I'm not sure
|
|
2892 it's worth it to go to the trouble of maintaining that. */
|
|
2893 not_very_random_number += 621;
|
|
2894 replace_loc = not_very_random_number & 15;
|
|
2895 buf->text->mule_charbpos_cache[replace_loc] = x;
|
|
2896 buf->text->mule_bytebpos_cache[replace_loc] = retval;
|
|
2897 }
|
|
2898
|
2367
|
2899 #endif /* OLD_BYTE_CHAR */
|
|
2900
|
|
2901 done:
|
1292
|
2902 PROFILE_RECORD_EXITING_SECTION (QSin_char_byte_conversion);
|
|
2903
|
771
|
2904 return retval;
|
|
2905 }
|
|
2906
|
2367
|
2907 #undef CONSIDER
|
|
2908
|
|
2909 /* bytepos_to_charpos returns the char position corresponding to BYTEPOS. */
|
|
2910
|
|
2911 /* This macro is a subroutine of bytebpos_to_charbpos_func.
|
|
2912 It is used when BYTEPOS is actually the byte position. */
|
|
2913
|
|
2914 #define CONSIDER(BYTEPOS, CHARPOS) \
|
|
2915 do \
|
|
2916 { \
|
|
2917 Bytebpos this_bytepos = (BYTEPOS); \
|
|
2918 int changed = 0; \
|
|
2919 \
|
|
2920 if (this_bytepos == x) \
|
|
2921 { \
|
|
2922 retval = (CHARPOS); \
|
|
2923 goto done; \
|
|
2924 } \
|
|
2925 else if (this_bytepos > x) \
|
|
2926 { \
|
|
2927 if (this_bytepos < best_above_byte) \
|
|
2928 { \
|
|
2929 best_above = (CHARPOS); \
|
|
2930 best_above_byte = this_bytepos; \
|
|
2931 changed = 1; \
|
|
2932 } \
|
|
2933 } \
|
|
2934 else if (this_bytepos > best_below_byte) \
|
|
2935 { \
|
|
2936 best_below = (CHARPOS); \
|
|
2937 best_below_byte = this_bytepos; \
|
|
2938 changed = 1; \
|
|
2939 } \
|
|
2940 \
|
|
2941 if (changed) \
|
|
2942 { \
|
|
2943 if (best_above - best_below == best_above_byte - best_below_byte) \
|
|
2944 { \
|
|
2945 retval = best_below + (x - best_below_byte); \
|
|
2946 goto done; \
|
|
2947 } \
|
|
2948 } \
|
|
2949 } \
|
|
2950 while (0)
|
|
2951
|
771
|
2952 /* The logic in this function is almost identical to the logic in
|
|
2953 the previous function. */
|
|
2954
|
|
2955 Charbpos
|
|
2956 bytebpos_to_charbpos_func (struct buffer *buf, Bytebpos x)
|
|
2957 {
|
2367
|
2958 #ifdef OLD_BYTE_CHAR
|
771
|
2959 Charbpos bufmin;
|
|
2960 Charbpos bufmax;
|
|
2961 Bytebpos bytmin;
|
|
2962 Bytebpos bytmax;
|
|
2963 int size;
|
|
2964 int forward_p;
|
|
2965 int diff_so_far;
|
|
2966 int add_to_cache = 0;
|
2367
|
2967 #endif /* OLD_BYTE_CHAR */
|
|
2968
|
|
2969 Charbpos best_above, best_above_byte;
|
|
2970 Bytebpos best_below, best_below_byte;
|
|
2971 int i;
|
|
2972 struct buffer_text *t;
|
|
2973 Charbpos retval;
|
|
2974
|
1292
|
2975 PROFILE_DECLARE ();
|
771
|
2976
|
1292
|
2977 PROFILE_RECORD_ENTERING_SECTION (QSin_char_byte_conversion);
|
|
2978
|
2367
|
2979 best_above = BUF_Z (buf);
|
|
2980 best_above_byte = BYTE_BUF_Z (buf);
|
|
2981
|
|
2982 /* In this case, we simply have all one-byte characters. But this should
|
|
2983 have been intercepted before, in bytebpos_to_charbpos(). */
|
|
2984 text_checking_assert (best_above != best_above_byte);
|
|
2985
|
|
2986 best_below = BUF_BEG (buf);
|
|
2987 best_below_byte = BYTE_BUF_BEG (buf);
|
|
2988
|
|
2989 CONSIDER (BYTE_BUF_PT (buf), BUF_PT (buf));
|
|
2990 CONSIDER (BYTE_BUF_GPT (buf), BUF_GPT (buf));
|
|
2991 CONSIDER (BYTE_BUF_BEGV (buf), BUF_BEGV (buf));
|
|
2992 CONSIDER (BYTE_BUF_ZV (buf), BUF_ZV (buf));
|
|
2993
|
|
2994 t = buf->text;
|
|
2995 CONSIDER (t->cached_bytepos, t->cached_charpos);
|
|
2996
|
|
2997 /* Check the most recently entered positions first */
|
|
2998
|
|
2999 for (i = t->next_cache_pos - 1; i >= 0; i--)
|
|
3000 {
|
|
3001 CONSIDER (t->mule_bytebpos_cache[i], t->mule_charbpos_cache[i]);
|
|
3002
|
|
3003 /* If we are down to a range of 50 chars,
|
|
3004 don't bother checking any other markers;
|
|
3005 scan the intervening chars directly now. */
|
|
3006 if (best_above - best_below < 50)
|
|
3007 break;
|
|
3008 }
|
|
3009
|
|
3010 /* We get here if we did not exactly hit one of the known places.
|
|
3011 We have one known above and one known below.
|
|
3012 Scan, counting characters, from whichever one is closer. */
|
|
3013
|
|
3014 if (x - best_below_byte < best_above_byte - x)
|
|
3015 {
|
|
3016 int record = x - best_below_byte > 5000;
|
|
3017
|
|
3018 #ifdef OLD_LOOP /* old code */
|
|
3019 while (best_below_byte < x)
|
|
3020 {
|
|
3021 best_below++;
|
|
3022 INC_BYTEBPOS (buf, best_below_byte);
|
|
3023 }
|
|
3024 #else
|
|
3025 text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT);
|
|
3026 /* The gap should not occur between best_below and x, or we will be
|
|
3027 screwed in using charcount_to_bytecount(). It should not be exactly
|
|
3028 at x either, because we already should have caught that. */
|
|
3029 text_checking_assert
|
|
3030 (BYTE_BUF_CEILING_OF_IGNORE_ACCESSIBLE (buf, best_below_byte) > x);
|
|
3031
|
|
3032 /* Using bytecount_to_charcount() is potentially a lot faster than
|
|
3033 a simple loop above using INC_BYTEBPOS(); see above.
|
|
3034 */
|
|
3035 best_below +=
|
|
3036 bytecount_to_charcount
|
|
3037 (BYTE_BUF_BYTE_ADDRESS (buf, best_below_byte), x - best_below_byte);
|
|
3038 best_below_byte = x;
|
|
3039 #endif
|
|
3040
|
|
3041 /* If this position is quite far from the nearest known position,
|
|
3042 cache the correspondence.
|
|
3043
|
|
3044 NB FSF does this: "... by creating a marker here.
|
|
3045 It will last until the next GC."
|
|
3046 */
|
|
3047
|
|
3048 if (record)
|
|
3049 {
|
|
3050 if (t->next_cache_pos == NUM_CACHED_POSITIONS)
|
|
3051 {
|
|
3052 memmove (t->mule_charbpos_cache,
|
|
3053 t->mule_charbpos_cache + NUM_MOVED_POSITIONS,
|
|
3054 sizeof (Charbpos) *
|
|
3055 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS));
|
|
3056 memmove (t->mule_bytebpos_cache,
|
|
3057 t->mule_bytebpos_cache + NUM_MOVED_POSITIONS,
|
|
3058 sizeof (Bytebpos) *
|
|
3059 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS));
|
|
3060 t->next_cache_pos -= NUM_MOVED_POSITIONS;
|
|
3061 }
|
|
3062 t->mule_charbpos_cache[t->next_cache_pos] = best_below;
|
|
3063 t->mule_bytebpos_cache[t->next_cache_pos] = best_below_byte;
|
|
3064 t->next_cache_pos++;
|
|
3065 }
|
|
3066
|
|
3067
|
|
3068 t->cached_charpos = best_below;
|
|
3069 t->cached_bytepos = best_below_byte;
|
|
3070
|
|
3071 retval = best_below;
|
|
3072 text_checking_assert (best_below_byte >= best_below);
|
|
3073 goto done;
|
|
3074 }
|
|
3075 else
|
|
3076 {
|
|
3077 int record = best_above_byte - x > 5000;
|
|
3078
|
|
3079 #ifdef OLD_LOOP /* old code */
|
|
3080 while (best_above_byte > x)
|
|
3081 {
|
|
3082 best_above--;
|
|
3083 DEC_BYTEBPOS (buf, best_above_byte);
|
|
3084 }
|
|
3085 #else
|
|
3086 text_checking_assert (BUF_FORMAT (buf) == FORMAT_DEFAULT);
|
|
3087 /* The gap should not occur between best_above and x, or we will be
|
|
3088 screwed in using bytecount_to_charcount_down(). It should not be
|
|
3089 exactly at x either, because we already should have caught
|
|
3090 that. */
|
|
3091 text_checking_assert
|
|
3092 (BYTE_BUF_FLOOR_OF_IGNORE_ACCESSIBLE (buf, best_above_byte) < x);
|
|
3093
|
|
3094 /* Using bytecount_to_charcount_down() is potentially a lot faster
|
|
3095 than a simple loop using INC_BYTEBPOS(); see above. */
|
|
3096 best_above -=
|
|
3097 bytecount_to_charcount_down
|
|
3098 /* BYTE_BUF_BYTE_ADDRESS will return a value on the high side of the
|
|
3099 gap if we are at the gap, which is the wrong side. So do the
|
|
3100 following trick instead. */
|
|
3101 (BYTE_BUF_BYTE_ADDRESS_BEFORE (buf, best_above_byte) + 1,
|
|
3102 best_above_byte - x);
|
|
3103 best_above_byte = x;
|
|
3104 #endif
|
|
3105
|
|
3106
|
|
3107 /* If this position is quite far from the nearest known position,
|
|
3108 cache the correspondence.
|
|
3109
|
|
3110 NB FSF does this: "... by creating a marker here.
|
|
3111 It will last until the next GC."
|
|
3112 */
|
|
3113 if (record)
|
|
3114 {
|
|
3115 if (t->next_cache_pos == NUM_CACHED_POSITIONS)
|
|
3116 {
|
|
3117 memmove (t->mule_charbpos_cache,
|
|
3118 t->mule_charbpos_cache + NUM_MOVED_POSITIONS,
|
|
3119 sizeof (Charbpos) *
|
|
3120 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS));
|
|
3121 memmove (t->mule_bytebpos_cache,
|
|
3122 t->mule_bytebpos_cache + NUM_MOVED_POSITIONS,
|
|
3123 sizeof (Bytebpos) *
|
|
3124 (NUM_CACHED_POSITIONS - NUM_MOVED_POSITIONS));
|
|
3125 t->next_cache_pos -= NUM_MOVED_POSITIONS;
|
|
3126 }
|
|
3127 t->mule_charbpos_cache[t->next_cache_pos] = best_above;
|
|
3128 t->mule_bytebpos_cache[t->next_cache_pos] = best_above_byte;
|
|
3129 t->next_cache_pos++;
|
|
3130 }
|
|
3131
|
|
3132 t->cached_charpos = best_above;
|
|
3133 t->cached_bytepos = best_above_byte;
|
|
3134
|
|
3135 retval = best_above;
|
|
3136 text_checking_assert (best_above_byte >= best_above);
|
|
3137 goto done;
|
|
3138 }
|
|
3139
|
|
3140 #ifdef OLD_BYTE_CHAR
|
|
3141
|
771
|
3142 bufmin = buf->text->mule_bufmin;
|
|
3143 bufmax = buf->text->mule_bufmax;
|
|
3144 bytmin = buf->text->mule_bytmin;
|
|
3145 bytmax = buf->text->mule_bytmax;
|
|
3146 size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p;
|
|
3147
|
|
3148 /* The basic idea here is that we shift the "known region" up or down
|
|
3149 until it overlaps the specified position. We do this by moving
|
|
3150 the upper bound of the known region up one character at a time,
|
|
3151 and moving the lower bound of the known region up as necessary
|
|
3152 when the size of the character just seen changes.
|
|
3153
|
|
3154 We optimize this, however, by first shifting the known region to
|
826
|
3155 one of the cached points if it's close by. (We don't check BYTE_BEG or
|
|
3156 BYTE_Z, even though they're cached; most of the time these will be the
|
|
3157 same as BYTE_BEGV and BYTE_ZV, and when they're not, they're not likely
|
771
|
3158 to be used.) */
|
|
3159
|
|
3160 if (x > bytmax)
|
|
3161 {
|
|
3162 Bytebpos diffmax = x - bytmax;
|
826
|
3163 Bytebpos diffpt = x - BYTE_BUF_PT (buf);
|
|
3164 Bytebpos diffzv = BYTE_BUF_ZV (buf) - x;
|
771
|
3165 /* #### This value could stand some more exploration. */
|
|
3166 Bytecount heuristic_hack = (bytmax - bytmin) >> 2;
|
|
3167
|
|
3168 /* Check if the position is closer to PT or ZV than to the
|
|
3169 end of the known region. */
|
|
3170
|
|
3171 if (diffpt < 0)
|
|
3172 diffpt = -diffpt;
|
|
3173 if (diffzv < 0)
|
|
3174 diffzv = -diffzv;
|
|
3175
|
|
3176 /* But also implement a heuristic that favors the known region
|
826
|
3177 over BYTE_PT or BYTE_ZV. The reason for this is that switching to
|
|
3178 BYTE_PT or BYTE_ZV will wipe out the knowledge in the known region,
|
771
|
3179 which might be annoying if the known region is large and
|
826
|
3180 BYTE_PT or BYTE_ZV is not that much closer than the end of the known
|
771
|
3181 region. */
|
|
3182
|
|
3183 diffzv += heuristic_hack;
|
|
3184 diffpt += heuristic_hack;
|
|
3185 if (diffpt < diffmax && diffpt <= diffzv)
|
|
3186 {
|
|
3187 bufmax = bufmin = BUF_PT (buf);
|
826
|
3188 bytmax = bytmin = BYTE_BUF_PT (buf);
|
771
|
3189 /* We set the size to 1 even though it doesn't really
|
|
3190 matter because the new known region contains no
|
|
3191 characters. We do this because this is the most
|
|
3192 likely size of the characters around the new known
|
|
3193 region, and we avoid potential yuckiness that is
|
|
3194 done when size == 3. */
|
|
3195 size = 1;
|
|
3196 }
|
|
3197 if (diffzv < diffmax)
|
|
3198 {
|
|
3199 bufmax = bufmin = BUF_ZV (buf);
|
826
|
3200 bytmax = bytmin = BYTE_BUF_ZV (buf);
|
771
|
3201 size = 1;
|
|
3202 }
|
|
3203 }
|
800
|
3204 #ifdef ERROR_CHECK_TEXT
|
771
|
3205 else if (x >= bytmin)
|
2500
|
3206 ABORT ();
|
771
|
3207 #endif
|
|
3208 else
|
|
3209 {
|
|
3210 Bytebpos diffmin = bytmin - x;
|
826
|
3211 Bytebpos diffpt = BYTE_BUF_PT (buf) - x;
|
|
3212 Bytebpos diffbegv = x - BYTE_BUF_BEGV (buf);
|
771
|
3213 /* #### This value could stand some more exploration. */
|
|
3214 Bytecount heuristic_hack = (bytmax - bytmin) >> 2;
|
|
3215
|
|
3216 if (diffpt < 0)
|
|
3217 diffpt = -diffpt;
|
|
3218 if (diffbegv < 0)
|
|
3219 diffbegv = -diffbegv;
|
|
3220
|
|
3221 /* But also implement a heuristic that favors the known region --
|
|
3222 see above. */
|
|
3223
|
|
3224 diffbegv += heuristic_hack;
|
|
3225 diffpt += heuristic_hack;
|
|
3226
|
|
3227 if (diffpt < diffmin && diffpt <= diffbegv)
|
|
3228 {
|
|
3229 bufmax = bufmin = BUF_PT (buf);
|
826
|
3230 bytmax = bytmin = BYTE_BUF_PT (buf);
|
771
|
3231 /* We set the size to 1 even though it doesn't really
|
|
3232 matter because the new known region contains no
|
|
3233 characters. We do this because this is the most
|
|
3234 likely size of the characters around the new known
|
|
3235 region, and we avoid potential yuckiness that is
|
|
3236 done when size == 3. */
|
|
3237 size = 1;
|
|
3238 }
|
|
3239 if (diffbegv < diffmin)
|
|
3240 {
|
|
3241 bufmax = bufmin = BUF_BEGV (buf);
|
826
|
3242 bytmax = bytmin = BYTE_BUF_BEGV (buf);
|
771
|
3243 size = 1;
|
|
3244 }
|
|
3245 }
|
|
3246
|
|
3247 diff_so_far = x > bytmax ? x - bytmax : bytmin - x;
|
|
3248 if (diff_so_far > 50)
|
|
3249 {
|
|
3250 /* If we have to move more than a certain amount, then look
|
|
3251 into our cache. */
|
|
3252 int minval = INT_MAX;
|
|
3253 int found = 0;
|
|
3254 int i;
|
|
3255
|
|
3256 add_to_cache = 1;
|
|
3257 /* I considered keeping the positions ordered. This would speed
|
|
3258 up this loop, but updating the cache would take longer, so
|
|
3259 it doesn't seem like it would really matter. */
|
2367
|
3260 for (i = 0; i < NUM_CACHED_POSITIONS; i++)
|
771
|
3261 {
|
|
3262 int diff = buf->text->mule_bytebpos_cache[i] - x;
|
|
3263
|
|
3264 if (diff < 0)
|
|
3265 diff = -diff;
|
|
3266 if (diff < minval)
|
|
3267 {
|
|
3268 minval = diff;
|
|
3269 found = i;
|
|
3270 }
|
|
3271 }
|
|
3272
|
|
3273 if (minval < diff_so_far)
|
|
3274 {
|
|
3275 bufmax = bufmin = buf->text->mule_charbpos_cache[found];
|
|
3276 bytmax = bytmin = buf->text->mule_bytebpos_cache[found];
|
|
3277 size = 1;
|
|
3278 }
|
|
3279 }
|
|
3280
|
|
3281 /* It's conceivable that the caching above could lead to X being
|
|
3282 the same as one of the range edges. */
|
|
3283 if (x >= bytmax)
|
|
3284 {
|
|
3285 Bytebpos newmax;
|
|
3286 Bytecount newsize;
|
|
3287
|
|
3288 forward_p = 1;
|
|
3289 while (x > bytmax)
|
|
3290 {
|
|
3291 newmax = bytmax;
|
|
3292
|
|
3293 INC_BYTEBPOS (buf, newmax);
|
|
3294 newsize = newmax - bytmax;
|
|
3295 if (newsize != size)
|
|
3296 {
|
|
3297 bufmin = bufmax;
|
|
3298 bytmin = bytmax;
|
|
3299 size = newsize;
|
|
3300 }
|
|
3301 bytmax = newmax;
|
|
3302 bufmax++;
|
|
3303 }
|
|
3304 retval = bufmax;
|
|
3305
|
|
3306 /* #### Should go past the found location to reduce the number
|
|
3307 of times that this function is called */
|
|
3308 }
|
|
3309 else /* x <= bytmin */
|
|
3310 {
|
|
3311 Bytebpos newmin;
|
|
3312 Bytecount newsize;
|
|
3313
|
|
3314 forward_p = 0;
|
|
3315 while (x < bytmin)
|
|
3316 {
|
|
3317 newmin = bytmin;
|
|
3318
|
|
3319 DEC_BYTEBPOS (buf, newmin);
|
|
3320 newsize = bytmin - newmin;
|
|
3321 if (newsize != size)
|
|
3322 {
|
|
3323 bufmax = bufmin;
|
|
3324 bytmax = bytmin;
|
|
3325 size = newsize;
|
|
3326 }
|
|
3327 bytmin = newmin;
|
|
3328 bufmin--;
|
|
3329 }
|
|
3330 retval = bufmin;
|
|
3331
|
|
3332 /* #### Should go past the found location to reduce the number
|
|
3333 of times that this function is called
|
|
3334 */
|
|
3335 }
|
|
3336
|
|
3337 /* If size is three, than we have to max sure that the range we
|
|
3338 discovered isn't too large, because we use a fixed-length
|
|
3339 table to divide by 3. */
|
|
3340
|
|
3341 if (size == 3)
|
|
3342 {
|
|
3343 int gap = bytmax - bytmin;
|
|
3344 buf->text->mule_three_p = 1;
|
|
3345 buf->text->mule_shifter = 1;
|
|
3346
|
|
3347 if (gap > MAX_BYTEBPOS_GAP_SIZE_3)
|
|
3348 {
|
|
3349 if (forward_p)
|
|
3350 {
|
|
3351 bytmin = bytmax - MAX_BYTEBPOS_GAP_SIZE_3;
|
|
3352 bufmin = bufmax - MAX_CHARBPOS_GAP_SIZE_3;
|
|
3353 }
|
|
3354 else
|
|
3355 {
|
|
3356 bytmax = bytmin + MAX_BYTEBPOS_GAP_SIZE_3;
|
|
3357 bufmax = bufmin + MAX_CHARBPOS_GAP_SIZE_3;
|
|
3358 }
|
|
3359 }
|
|
3360 }
|
|
3361 else
|
|
3362 {
|
|
3363 buf->text->mule_three_p = 0;
|
|
3364 if (size == 4)
|
|
3365 buf->text->mule_shifter = 2;
|
|
3366 else
|
|
3367 buf->text->mule_shifter = size - 1;
|
|
3368 }
|
|
3369
|
|
3370 buf->text->mule_bufmin = bufmin;
|
|
3371 buf->text->mule_bufmax = bufmax;
|
|
3372 buf->text->mule_bytmin = bytmin;
|
|
3373 buf->text->mule_bytmax = bytmax;
|
|
3374
|
|
3375 if (add_to_cache)
|
|
3376 {
|
|
3377 int replace_loc;
|
|
3378
|
|
3379 /* We throw away a "random" cached value and replace it with
|
|
3380 the new value. It doesn't actually have to be very random
|
|
3381 at all, just evenly distributed.
|
|
3382
|
|
3383 #### It would be better to use a least-recently-used algorithm
|
|
3384 or something that tries to space things out, but I'm not sure
|
|
3385 it's worth it to go to the trouble of maintaining that. */
|
|
3386 not_very_random_number += 621;
|
|
3387 replace_loc = not_very_random_number & 15;
|
|
3388 buf->text->mule_charbpos_cache[replace_loc] = retval;
|
|
3389 buf->text->mule_bytebpos_cache[replace_loc] = x;
|
|
3390 }
|
2367
|
3391 #endif /* OLD_BYTE_CHAR */
|
|
3392
|
|
3393 done:
|
1292
|
3394 PROFILE_RECORD_EXITING_SECTION (QSin_char_byte_conversion);
|
|
3395
|
771
|
3396 return retval;
|
|
3397 }
|
|
3398
|
|
3399 /* Text of length BYTELENGTH and CHARLENGTH (in different units)
|
|
3400 was inserted at charbpos START. */
|
|
3401
|
|
3402 void
|
|
3403 buffer_mule_signal_inserted_region (struct buffer *buf, Charbpos start,
|
|
3404 Bytecount bytelength,
|
|
3405 Charcount charlength)
|
|
3406 {
|
2367
|
3407 #ifdef OLD_BYTE_CHAR
|
771
|
3408 int size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p;
|
2367
|
3409 #endif /* OLD_BYTE_CHAR */
|
771
|
3410 int i;
|
|
3411
|
|
3412 /* Adjust the cache of known positions. */
|
2367
|
3413 for (i = 0; i < buf->text->next_cache_pos; i++)
|
771
|
3414 {
|
|
3415
|
|
3416 if (buf->text->mule_charbpos_cache[i] > start)
|
|
3417 {
|
|
3418 buf->text->mule_charbpos_cache[i] += charlength;
|
|
3419 buf->text->mule_bytebpos_cache[i] += bytelength;
|
|
3420 }
|
|
3421 }
|
|
3422
|
2367
|
3423 /* Adjust the special cached position. */
|
|
3424
|
|
3425 if (buf->text->cached_charpos > start)
|
|
3426 {
|
|
3427 buf->text->cached_charpos += charlength;
|
|
3428 buf->text->cached_bytepos += bytelength;
|
|
3429 }
|
|
3430
|
|
3431 #ifdef OLD_BYTE_CHAR
|
771
|
3432 if (start >= buf->text->mule_bufmax)
|
826
|
3433 return;
|
771
|
3434
|
|
3435 /* The insertion is either before the known region, in which case
|
|
3436 it shoves it forward; or within the known region, in which case
|
|
3437 it shoves the end forward. (But it may make the known region
|
|
3438 inconsistent, so we may have to shorten it.) */
|
|
3439
|
|
3440 if (start <= buf->text->mule_bufmin)
|
|
3441 {
|
|
3442 buf->text->mule_bufmin += charlength;
|
|
3443 buf->text->mule_bufmax += charlength;
|
|
3444 buf->text->mule_bytmin += bytelength;
|
|
3445 buf->text->mule_bytmax += bytelength;
|
|
3446 }
|
|
3447 else
|
|
3448 {
|
|
3449 Charbpos end = start + charlength;
|
|
3450 /* the insertion point divides the known region in two.
|
|
3451 Keep the longer half, at least, and expand into the
|
|
3452 inserted chunk as much as possible. */
|
|
3453
|
|
3454 if (start - buf->text->mule_bufmin > buf->text->mule_bufmax - start)
|
|
3455 {
|
|
3456 Bytebpos bytestart = (buf->text->mule_bytmin
|
|
3457 + size * (start - buf->text->mule_bufmin));
|
|
3458 Bytebpos bytenew;
|
|
3459
|
|
3460 while (start < end)
|
|
3461 {
|
|
3462 bytenew = bytestart;
|
|
3463 INC_BYTEBPOS (buf, bytenew);
|
|
3464 if (bytenew - bytestart != size)
|
|
3465 break;
|
|
3466 start++;
|
|
3467 bytestart = bytenew;
|
|
3468 }
|
|
3469 if (start != end)
|
|
3470 {
|
|
3471 buf->text->mule_bufmax = start;
|
|
3472 buf->text->mule_bytmax = bytestart;
|
|
3473 }
|
|
3474 else
|
|
3475 {
|
|
3476 buf->text->mule_bufmax += charlength;
|
|
3477 buf->text->mule_bytmax += bytelength;
|
|
3478 }
|
|
3479 }
|
|
3480 else
|
|
3481 {
|
|
3482 Bytebpos byteend = (buf->text->mule_bytmin
|
|
3483 + size * (start - buf->text->mule_bufmin)
|
|
3484 + bytelength);
|
|
3485 Bytebpos bytenew;
|
|
3486
|
|
3487 buf->text->mule_bufmax += charlength;
|
|
3488 buf->text->mule_bytmax += bytelength;
|
|
3489
|
|
3490 while (end > start)
|
|
3491 {
|
|
3492 bytenew = byteend;
|
|
3493 DEC_BYTEBPOS (buf, bytenew);
|
|
3494 if (byteend - bytenew != size)
|
|
3495 break;
|
|
3496 end--;
|
|
3497 byteend = bytenew;
|
|
3498 }
|
|
3499 if (start != end)
|
|
3500 {
|
|
3501 buf->text->mule_bufmin = end;
|
|
3502 buf->text->mule_bytmin = byteend;
|
|
3503 }
|
|
3504 }
|
|
3505 }
|
2367
|
3506 #endif /* OLD_BYTE_CHAR */
|
771
|
3507 }
|
|
3508
|
826
|
3509 /* Text from START to END (equivalent in Bytebpos's: from BYTE_START to
|
|
3510 BYTE_END) was deleted. */
|
771
|
3511
|
|
3512 void
|
|
3513 buffer_mule_signal_deleted_region (struct buffer *buf, Charbpos start,
|
826
|
3514 Charbpos end, Bytebpos byte_start,
|
|
3515 Bytebpos byte_end)
|
771
|
3516 {
|
|
3517 int i;
|
|
3518
|
|
3519 /* Adjust the cache of known positions. */
|
2367
|
3520 for (i = 0; i < buf->text->next_cache_pos; i++)
|
771
|
3521 {
|
|
3522 /* After the end; gets shoved backward */
|
|
3523 if (buf->text->mule_charbpos_cache[i] > end)
|
|
3524 {
|
|
3525 buf->text->mule_charbpos_cache[i] -= end - start;
|
826
|
3526 buf->text->mule_bytebpos_cache[i] -= byte_end - byte_start;
|
771
|
3527 }
|
|
3528 /* In the range; moves to start of range */
|
|
3529 else if (buf->text->mule_charbpos_cache[i] > start)
|
|
3530 {
|
|
3531 buf->text->mule_charbpos_cache[i] = start;
|
826
|
3532 buf->text->mule_bytebpos_cache[i] = byte_start;
|
771
|
3533 }
|
|
3534 }
|
|
3535
|
2367
|
3536 /* Adjust the special cached position. */
|
|
3537
|
|
3538 /* After the end; gets shoved backward */
|
|
3539 if (buf->text->cached_charpos > end)
|
|
3540 {
|
|
3541 buf->text->cached_charpos -= end - start;
|
|
3542 buf->text->cached_bytepos -= byte_end - byte_start;
|
|
3543 }
|
|
3544 /* In the range; moves to start of range */
|
|
3545 else if (buf->text->cached_charpos > start)
|
|
3546 {
|
|
3547 buf->text->cached_charpos = start;
|
|
3548 buf->text->cached_bytepos = byte_start;
|
|
3549 }
|
|
3550
|
|
3551 #ifdef OLD_BYTE_CHAR
|
771
|
3552 /* We don't care about any text after the end of the known region. */
|
|
3553
|
|
3554 end = min (end, buf->text->mule_bufmax);
|
826
|
3555 byte_end = min (byte_end, buf->text->mule_bytmax);
|
771
|
3556 if (start >= end)
|
826
|
3557 return;
|
771
|
3558
|
|
3559 /* The end of the known region offsets by the total amount of deletion,
|
|
3560 since it's all before it. */
|
|
3561
|
|
3562 buf->text->mule_bufmax -= end - start;
|
826
|
3563 buf->text->mule_bytmax -= byte_end - byte_start;
|
771
|
3564
|
|
3565 /* Now we don't care about any text after the start of the known region. */
|
|
3566
|
|
3567 end = min (end, buf->text->mule_bufmin);
|
826
|
3568 byte_end = min (byte_end, buf->text->mule_bytmin);
|
771
|
3569 if (start < end)
|
|
3570 {
|
|
3571 buf->text->mule_bufmin -= end - start;
|
826
|
3572 buf->text->mule_bytmin -= byte_end - byte_start;
|
771
|
3573 }
|
2367
|
3574 #endif /* OLD_BYTE_CHAR */
|
771
|
3575 }
|
|
3576
|
|
3577 #endif /* MULE */
|
|
3578
|
|
3579
|
|
3580 /************************************************************************/
|
|
3581 /* verifying buffer and string positions */
|
|
3582 /************************************************************************/
|
|
3583
|
|
3584 /* Functions below are tagged with either _byte or _char indicating
|
|
3585 whether they return byte or character positions. For a buffer,
|
|
3586 a character position is a "Charbpos" and a byte position is a "Bytebpos".
|
|
3587 For strings, these are sometimes typed using "Charcount" and
|
|
3588 "Bytecount". */
|
|
3589
|
|
3590 /* Flags for the functions below are:
|
|
3591
|
|
3592 GB_ALLOW_PAST_ACCESSIBLE
|
|
3593
|
|
3594 Allow positions to range over the entire buffer (BUF_BEG to BUF_Z),
|
|
3595 rather than just the accessible portion (BUF_BEGV to BUF_ZV).
|
|
3596 For strings, this flag has no effect.
|
|
3597
|
|
3598 GB_COERCE_RANGE
|
|
3599
|
|
3600 If the position is outside the allowable range, return the lower
|
|
3601 or upper bound of the range, whichever is closer to the specified
|
|
3602 position.
|
|
3603
|
|
3604 GB_NO_ERROR_IF_BAD
|
|
3605
|
|
3606 If the position is outside the allowable range, return -1.
|
|
3607
|
|
3608 GB_NEGATIVE_FROM_END
|
|
3609
|
|
3610 If a value is negative, treat it as an offset from the end.
|
|
3611 Only applies to strings.
|
|
3612
|
|
3613 The following additional flags apply only to the functions
|
|
3614 that return ranges:
|
|
3615
|
|
3616 GB_ALLOW_NIL
|
|
3617
|
|
3618 Either or both positions can be nil. If FROM is nil,
|
|
3619 FROM_OUT will contain the lower bound of the allowed range.
|
|
3620 If TO is nil, TO_OUT will contain the upper bound of the
|
|
3621 allowed range.
|
|
3622
|
|
3623 GB_CHECK_ORDER
|
|
3624
|
|
3625 FROM must contain the lower bound and TO the upper bound
|
|
3626 of the range. If the positions are reversed, an error is
|
|
3627 signalled.
|
|
3628
|
|
3629 The following is a combination flag:
|
|
3630
|
|
3631 GB_HISTORICAL_STRING_BEHAVIOR
|
|
3632
|
|
3633 Equivalent to (GB_NEGATIVE_FROM_END | GB_ALLOW_NIL).
|
|
3634 */
|
|
3635
|
|
3636 /* Return a buffer position stored in a Lisp_Object. Full
|
|
3637 error-checking is done on the position. Flags can be specified to
|
|
3638 control the behavior of out-of-range values. The default behavior
|
|
3639 is to require that the position is within the accessible part of
|
|
3640 the buffer (BEGV and ZV), and to signal an error if the position is
|
|
3641 out of range.
|
|
3642
|
|
3643 */
|
|
3644
|
|
3645 Charbpos
|
|
3646 get_buffer_pos_char (struct buffer *b, Lisp_Object pos, unsigned int flags)
|
|
3647 {
|
|
3648 /* Does not GC */
|
|
3649 Charbpos ind;
|
|
3650 Charbpos min_allowed, max_allowed;
|
|
3651
|
|
3652 CHECK_INT_COERCE_MARKER (pos);
|
|
3653 ind = XINT (pos);
|
|
3654 min_allowed = flags & GB_ALLOW_PAST_ACCESSIBLE ? BUF_BEG (b) : BUF_BEGV (b);
|
|
3655 max_allowed = flags & GB_ALLOW_PAST_ACCESSIBLE ? BUF_Z (b) : BUF_ZV (b);
|
|
3656
|
|
3657 if (ind < min_allowed || ind > max_allowed)
|
|
3658 {
|
|
3659 if (flags & GB_COERCE_RANGE)
|
|
3660 ind = ind < min_allowed ? min_allowed : max_allowed;
|
|
3661 else if (flags & GB_NO_ERROR_IF_BAD)
|
|
3662 ind = -1;
|
|
3663 else
|
|
3664 {
|
793
|
3665 Lisp_Object buffer = wrap_buffer (b);
|
|
3666
|
771
|
3667 args_out_of_range (buffer, pos);
|
|
3668 }
|
|
3669 }
|
|
3670
|
|
3671 return ind;
|
|
3672 }
|
|
3673
|
|
3674 Bytebpos
|
|
3675 get_buffer_pos_byte (struct buffer *b, Lisp_Object pos, unsigned int flags)
|
|
3676 {
|
|
3677 Charbpos bpos = get_buffer_pos_char (b, pos, flags);
|
|
3678 if (bpos < 0) /* could happen with GB_NO_ERROR_IF_BAD */
|
|
3679 return -1;
|
|
3680 return charbpos_to_bytebpos (b, bpos);
|
|
3681 }
|
|
3682
|
|
3683 /* Return a pair of buffer positions representing a range of text,
|
|
3684 taken from a pair of Lisp_Objects. Full error-checking is
|
|
3685 done on the positions. Flags can be specified to control the
|
|
3686 behavior of out-of-range values. The default behavior is to
|
|
3687 allow the range bounds to be specified in either order
|
|
3688 (however, FROM_OUT will always be the lower bound of the range
|
|
3689 and TO_OUT the upper bound),to require that the positions
|
|
3690 are within the accessible part of the buffer (BEGV and ZV),
|
|
3691 and to signal an error if the positions are out of range.
|
|
3692 */
|
|
3693
|
|
3694 void
|
|
3695 get_buffer_range_char (struct buffer *b, Lisp_Object from, Lisp_Object to,
|
826
|
3696 Charbpos *from_out, Charbpos *to_out,
|
|
3697 unsigned int flags)
|
771
|
3698 {
|
|
3699 /* Does not GC */
|
|
3700 Charbpos min_allowed, max_allowed;
|
|
3701
|
|
3702 min_allowed = (flags & GB_ALLOW_PAST_ACCESSIBLE) ?
|
|
3703 BUF_BEG (b) : BUF_BEGV (b);
|
|
3704 max_allowed = (flags & GB_ALLOW_PAST_ACCESSIBLE) ?
|
|
3705 BUF_Z (b) : BUF_ZV (b);
|
|
3706
|
|
3707 if (NILP (from) && (flags & GB_ALLOW_NIL))
|
|
3708 *from_out = min_allowed;
|
|
3709 else
|
|
3710 *from_out = get_buffer_pos_char (b, from, flags | GB_NO_ERROR_IF_BAD);
|
|
3711
|
|
3712 if (NILP (to) && (flags & GB_ALLOW_NIL))
|
|
3713 *to_out = max_allowed;
|
|
3714 else
|
|
3715 *to_out = get_buffer_pos_char (b, to, flags | GB_NO_ERROR_IF_BAD);
|
|
3716
|
|
3717 if ((*from_out < 0 || *to_out < 0) && !(flags & GB_NO_ERROR_IF_BAD))
|
|
3718 {
|
793
|
3719 Lisp_Object buffer = wrap_buffer (b);
|
|
3720
|
771
|
3721 args_out_of_range_3 (buffer, from, to);
|
|
3722 }
|
|
3723
|
|
3724 if (*from_out >= 0 && *to_out >= 0 && *from_out > *to_out)
|
|
3725 {
|
|
3726 if (flags & GB_CHECK_ORDER)
|
|
3727 invalid_argument_2 ("start greater than end", from, to);
|
|
3728 else
|
|
3729 {
|
|
3730 Charbpos temp = *from_out;
|
|
3731 *from_out = *to_out;
|
|
3732 *to_out = temp;
|
|
3733 }
|
|
3734 }
|
|
3735 }
|
|
3736
|
|
3737 void
|
|
3738 get_buffer_range_byte (struct buffer *b, Lisp_Object from, Lisp_Object to,
|
826
|
3739 Bytebpos *from_out, Bytebpos *to_out,
|
|
3740 unsigned int flags)
|
771
|
3741 {
|
|
3742 Charbpos s, e;
|
|
3743
|
|
3744 get_buffer_range_char (b, from, to, &s, &e, flags);
|
|
3745 if (s >= 0)
|
|
3746 *from_out = charbpos_to_bytebpos (b, s);
|
|
3747 else /* could happen with GB_NO_ERROR_IF_BAD */
|
|
3748 *from_out = -1;
|
|
3749 if (e >= 0)
|
|
3750 *to_out = charbpos_to_bytebpos (b, e);
|
|
3751 else
|
|
3752 *to_out = -1;
|
|
3753 }
|
|
3754
|
|
3755 static Charcount
|
|
3756 get_string_pos_char_1 (Lisp_Object string, Lisp_Object pos, unsigned int flags,
|
|
3757 Charcount known_length)
|
|
3758 {
|
|
3759 Charcount ccpos;
|
|
3760 Charcount min_allowed = 0;
|
|
3761 Charcount max_allowed = known_length;
|
|
3762
|
|
3763 /* Computation of KNOWN_LENGTH is potentially expensive so we pass
|
|
3764 it in. */
|
|
3765 CHECK_INT (pos);
|
|
3766 ccpos = XINT (pos);
|
|
3767 if (ccpos < 0 && flags & GB_NEGATIVE_FROM_END)
|
|
3768 ccpos += max_allowed;
|
|
3769
|
|
3770 if (ccpos < min_allowed || ccpos > max_allowed)
|
|
3771 {
|
|
3772 if (flags & GB_COERCE_RANGE)
|
|
3773 ccpos = ccpos < min_allowed ? min_allowed : max_allowed;
|
|
3774 else if (flags & GB_NO_ERROR_IF_BAD)
|
|
3775 ccpos = -1;
|
|
3776 else
|
|
3777 args_out_of_range (string, pos);
|
|
3778 }
|
|
3779
|
|
3780 return ccpos;
|
|
3781 }
|
|
3782
|
|
3783 Charcount
|
|
3784 get_string_pos_char (Lisp_Object string, Lisp_Object pos, unsigned int flags)
|
|
3785 {
|
|
3786 return get_string_pos_char_1 (string, pos, flags,
|
826
|
3787 string_char_length (string));
|
771
|
3788 }
|
|
3789
|
|
3790 Bytecount
|
|
3791 get_string_pos_byte (Lisp_Object string, Lisp_Object pos, unsigned int flags)
|
|
3792 {
|
|
3793 Charcount ccpos = get_string_pos_char (string, pos, flags);
|
|
3794 if (ccpos < 0) /* could happen with GB_NO_ERROR_IF_BAD */
|
|
3795 return -1;
|
793
|
3796 return string_index_char_to_byte (string, ccpos);
|
771
|
3797 }
|
|
3798
|
|
3799 void
|
|
3800 get_string_range_char (Lisp_Object string, Lisp_Object from, Lisp_Object to,
|
|
3801 Charcount *from_out, Charcount *to_out,
|
|
3802 unsigned int flags)
|
|
3803 {
|
|
3804 Charcount min_allowed = 0;
|
826
|
3805 Charcount max_allowed = string_char_length (string);
|
771
|
3806
|
|
3807 if (NILP (from) && (flags & GB_ALLOW_NIL))
|
|
3808 *from_out = min_allowed;
|
|
3809 else
|
|
3810 *from_out = get_string_pos_char_1 (string, from,
|
|
3811 flags | GB_NO_ERROR_IF_BAD,
|
|
3812 max_allowed);
|
|
3813
|
|
3814 if (NILP (to) && (flags & GB_ALLOW_NIL))
|
|
3815 *to_out = max_allowed;
|
|
3816 else
|
|
3817 *to_out = get_string_pos_char_1 (string, to,
|
|
3818 flags | GB_NO_ERROR_IF_BAD,
|
|
3819 max_allowed);
|
|
3820
|
|
3821 if ((*from_out < 0 || *to_out < 0) && !(flags & GB_NO_ERROR_IF_BAD))
|
|
3822 args_out_of_range_3 (string, from, to);
|
|
3823
|
|
3824 if (*from_out >= 0 && *to_out >= 0 && *from_out > *to_out)
|
|
3825 {
|
|
3826 if (flags & GB_CHECK_ORDER)
|
|
3827 invalid_argument_2 ("start greater than end", from, to);
|
|
3828 else
|
|
3829 {
|
|
3830 Charbpos temp = *from_out;
|
|
3831 *from_out = *to_out;
|
|
3832 *to_out = temp;
|
|
3833 }
|
|
3834 }
|
|
3835 }
|
|
3836
|
|
3837 void
|
|
3838 get_string_range_byte (Lisp_Object string, Lisp_Object from, Lisp_Object to,
|
|
3839 Bytecount *from_out, Bytecount *to_out,
|
|
3840 unsigned int flags)
|
|
3841 {
|
|
3842 Charcount s, e;
|
|
3843
|
|
3844 get_string_range_char (string, from, to, &s, &e, flags);
|
|
3845 if (s >= 0)
|
793
|
3846 *from_out = string_index_char_to_byte (string, s);
|
771
|
3847 else /* could happen with GB_NO_ERROR_IF_BAD */
|
|
3848 *from_out = -1;
|
|
3849 if (e >= 0)
|
793
|
3850 *to_out = string_index_char_to_byte (string, e);
|
771
|
3851 else
|
|
3852 *to_out = -1;
|
|
3853
|
|
3854 }
|
|
3855
|
826
|
3856 Charxpos
|
771
|
3857 get_buffer_or_string_pos_char (Lisp_Object object, Lisp_Object pos,
|
|
3858 unsigned int flags)
|
|
3859 {
|
|
3860 return STRINGP (object) ?
|
|
3861 get_string_pos_char (object, pos, flags) :
|
|
3862 get_buffer_pos_char (XBUFFER (object), pos, flags);
|
|
3863 }
|
|
3864
|
826
|
3865 Bytexpos
|
771
|
3866 get_buffer_or_string_pos_byte (Lisp_Object object, Lisp_Object pos,
|
|
3867 unsigned int flags)
|
|
3868 {
|
|
3869 return STRINGP (object) ?
|
|
3870 get_string_pos_byte (object, pos, flags) :
|
|
3871 get_buffer_pos_byte (XBUFFER (object), pos, flags);
|
|
3872 }
|
|
3873
|
|
3874 void
|
|
3875 get_buffer_or_string_range_char (Lisp_Object object, Lisp_Object from,
|
826
|
3876 Lisp_Object to, Charxpos *from_out,
|
|
3877 Charxpos *to_out, unsigned int flags)
|
771
|
3878 {
|
|
3879 if (STRINGP (object))
|
|
3880 get_string_range_char (object, from, to, from_out, to_out, flags);
|
|
3881 else
|
826
|
3882 get_buffer_range_char (XBUFFER (object), from, to, from_out, to_out,
|
|
3883 flags);
|
771
|
3884 }
|
|
3885
|
|
3886 void
|
|
3887 get_buffer_or_string_range_byte (Lisp_Object object, Lisp_Object from,
|
826
|
3888 Lisp_Object to, Bytexpos *from_out,
|
|
3889 Bytexpos *to_out, unsigned int flags)
|
771
|
3890 {
|
|
3891 if (STRINGP (object))
|
|
3892 get_string_range_byte (object, from, to, from_out, to_out, flags);
|
|
3893 else
|
826
|
3894 get_buffer_range_byte (XBUFFER (object), from, to, from_out, to_out,
|
|
3895 flags);
|
771
|
3896 }
|
|
3897
|
826
|
3898 Charxpos
|
771
|
3899 buffer_or_string_accessible_begin_char (Lisp_Object object)
|
|
3900 {
|
|
3901 return STRINGP (object) ? 0 : BUF_BEGV (XBUFFER (object));
|
|
3902 }
|
|
3903
|
826
|
3904 Charxpos
|
771
|
3905 buffer_or_string_accessible_end_char (Lisp_Object object)
|
|
3906 {
|
|
3907 return STRINGP (object) ?
|
826
|
3908 string_char_length (object) : BUF_ZV (XBUFFER (object));
|
771
|
3909 }
|
|
3910
|
826
|
3911 Bytexpos
|
771
|
3912 buffer_or_string_accessible_begin_byte (Lisp_Object object)
|
|
3913 {
|
826
|
3914 return STRINGP (object) ? 0 : BYTE_BUF_BEGV (XBUFFER (object));
|
771
|
3915 }
|
|
3916
|
826
|
3917 Bytexpos
|
771
|
3918 buffer_or_string_accessible_end_byte (Lisp_Object object)
|
|
3919 {
|
|
3920 return STRINGP (object) ?
|
826
|
3921 XSTRING_LENGTH (object) : BYTE_BUF_ZV (XBUFFER (object));
|
771
|
3922 }
|
|
3923
|
826
|
3924 Charxpos
|
771
|
3925 buffer_or_string_absolute_begin_char (Lisp_Object object)
|
|
3926 {
|
|
3927 return STRINGP (object) ? 0 : BUF_BEG (XBUFFER (object));
|
|
3928 }
|
|
3929
|
826
|
3930 Charxpos
|
771
|
3931 buffer_or_string_absolute_end_char (Lisp_Object object)
|
|
3932 {
|
|
3933 return STRINGP (object) ?
|
826
|
3934 string_char_length (object) : BUF_Z (XBUFFER (object));
|
|
3935 }
|
|
3936
|
|
3937 Bytexpos
|
|
3938 buffer_or_string_absolute_begin_byte (Lisp_Object object)
|
|
3939 {
|
|
3940 return STRINGP (object) ? 0 : BYTE_BUF_BEG (XBUFFER (object));
|
|
3941 }
|
|
3942
|
|
3943 Bytexpos
|
|
3944 buffer_or_string_absolute_end_byte (Lisp_Object object)
|
|
3945 {
|
|
3946 return STRINGP (object) ?
|
|
3947 XSTRING_LENGTH (object) : BYTE_BUF_Z (XBUFFER (object));
|
|
3948 }
|
|
3949
|
|
3950 Charbpos
|
|
3951 charbpos_clip_to_bounds (Charbpos lower, Charbpos num, Charbpos upper)
|
|
3952 {
|
|
3953 return (num < lower ? lower :
|
|
3954 num > upper ? upper :
|
|
3955 num);
|
771
|
3956 }
|
|
3957
|
|
3958 Bytebpos
|
826
|
3959 bytebpos_clip_to_bounds (Bytebpos lower, Bytebpos num, Bytebpos upper)
|
|
3960 {
|
|
3961 return (num < lower ? lower :
|
|
3962 num > upper ? upper :
|
|
3963 num);
|
|
3964 }
|
|
3965
|
|
3966 Charxpos
|
|
3967 charxpos_clip_to_bounds (Charxpos lower, Charxpos num, Charxpos upper)
|
771
|
3968 {
|
826
|
3969 return (num < lower ? lower :
|
|
3970 num > upper ? upper :
|
|
3971 num);
|
|
3972 }
|
|
3973
|
|
3974 Bytexpos
|
|
3975 bytexpos_clip_to_bounds (Bytexpos lower, Bytexpos num, Bytexpos upper)
|
|
3976 {
|
|
3977 return (num < lower ? lower :
|
|
3978 num > upper ? upper :
|
|
3979 num);
|
771
|
3980 }
|
|
3981
|
826
|
3982 /* These could be implemented in terms of the get_buffer_or_string()
|
|
3983 functions above, but those are complicated and handle lots of weird
|
|
3984 cases stemming from uncertain external input. */
|
|
3985
|
|
3986 Charxpos
|
|
3987 buffer_or_string_clip_to_accessible_char (Lisp_Object object, Charxpos pos)
|
|
3988 {
|
|
3989 return (charxpos_clip_to_bounds
|
|
3990 (pos, buffer_or_string_accessible_begin_char (object),
|
|
3991 buffer_or_string_accessible_end_char (object)));
|
|
3992 }
|
|
3993
|
|
3994 Bytexpos
|
|
3995 buffer_or_string_clip_to_accessible_byte (Lisp_Object object, Bytexpos pos)
|
771
|
3996 {
|
826
|
3997 return (bytexpos_clip_to_bounds
|
|
3998 (pos, buffer_or_string_accessible_begin_byte (object),
|
|
3999 buffer_or_string_accessible_end_byte (object)));
|
|
4000 }
|
|
4001
|
|
4002 Charxpos
|
|
4003 buffer_or_string_clip_to_absolute_char (Lisp_Object object, Charxpos pos)
|
|
4004 {
|
|
4005 return (charxpos_clip_to_bounds
|
|
4006 (pos, buffer_or_string_absolute_begin_char (object),
|
|
4007 buffer_or_string_absolute_end_char (object)));
|
|
4008 }
|
|
4009
|
|
4010 Bytexpos
|
|
4011 buffer_or_string_clip_to_absolute_byte (Lisp_Object object, Bytexpos pos)
|
|
4012 {
|
|
4013 return (bytexpos_clip_to_bounds
|
|
4014 (pos, buffer_or_string_absolute_begin_byte (object),
|
|
4015 buffer_or_string_absolute_end_byte (object)));
|
771
|
4016 }
|
|
4017
|
|
4018
|
|
4019 /************************************************************************/
|
|
4020 /* Implement TO_EXTERNAL_FORMAT, TO_INTERNAL_FORMAT */
|
|
4021 /************************************************************************/
|
|
4022
|
|
4023 typedef struct
|
|
4024 {
|
867
|
4025 Dynarr_declare (Ibyte_dynarr *);
|
|
4026 } Ibyte_dynarr_dynarr;
|
771
|
4027
|
|
4028 typedef struct
|
|
4029 {
|
|
4030 Dynarr_declare (Extbyte_dynarr *);
|
|
4031 } Extbyte_dynarr_dynarr;
|
|
4032
|
|
4033 static Extbyte_dynarr_dynarr *conversion_out_dynarr_list;
|
867
|
4034 static Ibyte_dynarr_dynarr *conversion_in_dynarr_list;
|
771
|
4035
|
|
4036 static int dfc_convert_to_external_format_in_use;
|
|
4037 static int dfc_convert_to_internal_format_in_use;
|
|
4038
|
|
4039 void
|
|
4040 dfc_convert_to_external_format (dfc_conversion_type source_type,
|
|
4041 dfc_conversion_data *source,
|
|
4042 Lisp_Object coding_system,
|
|
4043 dfc_conversion_type sink_type,
|
|
4044 dfc_conversion_data *sink)
|
|
4045 {
|
|
4046 /* It's guaranteed that many callers are not prepared for GC here,
|
|
4047 esp. given that this code conversion occurs in many very hidden
|
|
4048 places. */
|
1292
|
4049 int count;
|
771
|
4050 Extbyte_dynarr *conversion_out_dynarr;
|
1292
|
4051 PROFILE_DECLARE ();
|
|
4052
|
2367
|
4053 assert (!inhibit_non_essential_conversion_operations);
|
1292
|
4054 PROFILE_RECORD_ENTERING_SECTION (QSin_internal_external_conversion);
|
|
4055
|
|
4056 count = begin_gc_forbidden ();
|
771
|
4057
|
|
4058 type_checking_assert
|
|
4059 (((source_type == DFC_TYPE_DATA) ||
|
|
4060 (source_type == DFC_TYPE_LISP_LSTREAM && LSTREAMP (source->lisp_object)) ||
|
|
4061 (source_type == DFC_TYPE_LISP_STRING && STRINGP (source->lisp_object)))
|
|
4062 &&
|
|
4063 ((sink_type == DFC_TYPE_DATA) ||
|
|
4064 (sink_type == DFC_TYPE_LISP_LSTREAM && LSTREAMP (source->lisp_object))));
|
|
4065
|
|
4066 if (Dynarr_length (conversion_out_dynarr_list) <=
|
|
4067 dfc_convert_to_external_format_in_use)
|
|
4068 Dynarr_add (conversion_out_dynarr_list, Dynarr_new (Extbyte));
|
|
4069 conversion_out_dynarr = Dynarr_at (conversion_out_dynarr_list,
|
|
4070 dfc_convert_to_external_format_in_use);
|
|
4071 Dynarr_reset (conversion_out_dynarr);
|
|
4072
|
853
|
4073 internal_bind_int (&dfc_convert_to_external_format_in_use,
|
|
4074 dfc_convert_to_external_format_in_use + 1);
|
|
4075
|
771
|
4076 coding_system = get_coding_system_for_text_file (coding_system, 0);
|
|
4077
|
|
4078 /* Here we optimize in the case where the coding system does no
|
|
4079 conversion. However, we don't want to optimize in case the source
|
|
4080 or sink is an lstream, since writing to an lstream can cause a
|
|
4081 garbage collection, and this could be problematic if the source
|
|
4082 is a lisp string. */
|
|
4083 if (source_type != DFC_TYPE_LISP_LSTREAM &&
|
|
4084 sink_type != DFC_TYPE_LISP_LSTREAM &&
|
|
4085 coding_system_is_binary (coding_system))
|
|
4086 {
|
867
|
4087 const Ibyte *ptr;
|
771
|
4088 Bytecount len;
|
|
4089
|
|
4090 if (source_type == DFC_TYPE_LISP_STRING)
|
|
4091 {
|
|
4092 ptr = XSTRING_DATA (source->lisp_object);
|
|
4093 len = XSTRING_LENGTH (source->lisp_object);
|
|
4094 }
|
|
4095 else
|
|
4096 {
|
867
|
4097 ptr = (Ibyte *) source->data.ptr;
|
771
|
4098 len = source->data.len;
|
|
4099 }
|
|
4100
|
|
4101 #ifdef MULE
|
|
4102 {
|
867
|
4103 const Ibyte *end;
|
771
|
4104 for (end = ptr + len; ptr < end;)
|
|
4105 {
|
867
|
4106 Ibyte c =
|
826
|
4107 (byte_ascii_p (*ptr)) ? *ptr :
|
771
|
4108 (*ptr == LEADING_BYTE_CONTROL_1) ? (*(ptr+1) - 0x20) :
|
|
4109 (*ptr == LEADING_BYTE_LATIN_ISO8859_1) ? (*(ptr+1)) :
|
|
4110 '~';
|
|
4111
|
|
4112 Dynarr_add (conversion_out_dynarr, (Extbyte) c);
|
867
|
4113 INC_IBYTEPTR (ptr);
|
771
|
4114 }
|
800
|
4115 text_checking_assert (ptr == end);
|
771
|
4116 }
|
|
4117 #else
|
|
4118 Dynarr_add_many (conversion_out_dynarr, ptr, len);
|
|
4119 #endif
|
|
4120
|
|
4121 }
|
1315
|
4122 #ifdef WIN32_ANY
|
771
|
4123 /* Optimize the common case involving Unicode where only ASCII is involved */
|
|
4124 else if (source_type != DFC_TYPE_LISP_LSTREAM &&
|
|
4125 sink_type != DFC_TYPE_LISP_LSTREAM &&
|
|
4126 dfc_coding_system_is_unicode (coding_system))
|
|
4127 {
|
867
|
4128 const Ibyte *ptr, *p;
|
771
|
4129 Bytecount len;
|
867
|
4130 const Ibyte *end;
|
771
|
4131
|
|
4132 if (source_type == DFC_TYPE_LISP_STRING)
|
|
4133 {
|
|
4134 ptr = XSTRING_DATA (source->lisp_object);
|
|
4135 len = XSTRING_LENGTH (source->lisp_object);
|
|
4136 }
|
|
4137 else
|
|
4138 {
|
867
|
4139 ptr = (Ibyte *) source->data.ptr;
|
771
|
4140 len = source->data.len;
|
|
4141 }
|
|
4142 end = ptr + len;
|
|
4143
|
|
4144 for (p = ptr; p < end; p++)
|
|
4145 {
|
826
|
4146 if (!byte_ascii_p (*p))
|
771
|
4147 goto the_hard_way;
|
|
4148 }
|
|
4149
|
|
4150 for (p = ptr; p < end; p++)
|
|
4151 {
|
|
4152 Dynarr_add (conversion_out_dynarr, (Extbyte) (*p));
|
|
4153 Dynarr_add (conversion_out_dynarr, (Extbyte) '\0');
|
|
4154 }
|
|
4155 }
|
1315
|
4156 #endif /* WIN32_ANY */
|
771
|
4157 else
|
|
4158 {
|
|
4159 Lisp_Object streams_to_delete[3];
|
|
4160 int delete_count;
|
|
4161 Lisp_Object instream, outstream;
|
|
4162 Lstream *reader, *writer;
|
|
4163
|
1315
|
4164 #ifdef WIN32_ANY
|
771
|
4165 the_hard_way:
|
1315
|
4166 #endif /* WIN32_ANY */
|
771
|
4167 delete_count = 0;
|
|
4168 if (source_type == DFC_TYPE_LISP_LSTREAM)
|
|
4169 instream = source->lisp_object;
|
|
4170 else if (source_type == DFC_TYPE_DATA)
|
|
4171 streams_to_delete[delete_count++] = instream =
|
|
4172 make_fixed_buffer_input_stream (source->data.ptr, source->data.len);
|
|
4173 else
|
|
4174 {
|
|
4175 type_checking_assert (source_type == DFC_TYPE_LISP_STRING);
|
|
4176 streams_to_delete[delete_count++] = instream =
|
|
4177 /* This will GCPRO the Lisp string */
|
|
4178 make_lisp_string_input_stream (source->lisp_object, 0, -1);
|
|
4179 }
|
|
4180
|
|
4181 if (sink_type == DFC_TYPE_LISP_LSTREAM)
|
|
4182 outstream = sink->lisp_object;
|
|
4183 else
|
|
4184 {
|
|
4185 type_checking_assert (sink_type == DFC_TYPE_DATA);
|
|
4186 streams_to_delete[delete_count++] = outstream =
|
|
4187 make_dynarr_output_stream
|
|
4188 ((unsigned_char_dynarr *) conversion_out_dynarr);
|
|
4189 }
|
|
4190
|
|
4191 streams_to_delete[delete_count++] = outstream =
|
800
|
4192 make_coding_output_stream (XLSTREAM (outstream), coding_system,
|
|
4193 CODING_ENCODE, 0);
|
771
|
4194
|
|
4195 reader = XLSTREAM (instream);
|
|
4196 writer = XLSTREAM (outstream);
|
|
4197 /* decoding_stream will gc-protect outstream */
|
1204
|
4198 {
|
|
4199 struct gcpro gcpro1, gcpro2;
|
|
4200 GCPRO2 (instream, outstream);
|
|
4201
|
|
4202 while (1)
|
|
4203 {
|
|
4204 Bytecount size_in_bytes;
|
|
4205 char tempbuf[1024]; /* some random amount */
|
|
4206
|
|
4207 size_in_bytes = Lstream_read (reader, tempbuf, sizeof (tempbuf));
|
|
4208
|
|
4209 if (size_in_bytes == 0)
|
|
4210 break;
|
|
4211 else if (size_in_bytes < 0)
|
|
4212 signal_error (Qtext_conversion_error,
|
|
4213 "Error converting to external format", Qunbound);
|
|
4214
|
|
4215 if (Lstream_write (writer, tempbuf, size_in_bytes) < 0)
|
|
4216 signal_error (Qtext_conversion_error,
|
|
4217 "Error converting to external format", Qunbound);
|
|
4218 }
|
|
4219
|
|
4220 /* Closing writer will close any stream at the other end of writer. */
|
|
4221 Lstream_close (writer);
|
|
4222 Lstream_close (reader);
|
|
4223 UNGCPRO;
|
|
4224 }
|
771
|
4225
|
|
4226 /* The idea is that this function will create no garbage. */
|
|
4227 while (delete_count)
|
|
4228 Lstream_delete (XLSTREAM (streams_to_delete [--delete_count]));
|
|
4229 }
|
|
4230
|
|
4231 unbind_to (count);
|
|
4232
|
|
4233 if (sink_type != DFC_TYPE_LISP_LSTREAM)
|
|
4234 {
|
|
4235 sink->data.len = Dynarr_length (conversion_out_dynarr);
|
|
4236 /* double zero-extend because we may be dealing with Unicode data */
|
|
4237 Dynarr_add (conversion_out_dynarr, '\0');
|
|
4238 Dynarr_add (conversion_out_dynarr, '\0');
|
|
4239 sink->data.ptr = Dynarr_atp (conversion_out_dynarr, 0);
|
|
4240 }
|
1292
|
4241
|
|
4242 PROFILE_RECORD_EXITING_SECTION (QSin_internal_external_conversion);
|
771
|
4243 }
|
|
4244
|
|
4245 void
|
|
4246 dfc_convert_to_internal_format (dfc_conversion_type source_type,
|
|
4247 dfc_conversion_data *source,
|
|
4248 Lisp_Object coding_system,
|
|
4249 dfc_conversion_type sink_type,
|
|
4250 dfc_conversion_data *sink)
|
|
4251 {
|
|
4252 /* It's guaranteed that many callers are not prepared for GC here,
|
|
4253 esp. given that this code conversion occurs in many very hidden
|
|
4254 places. */
|
1292
|
4255 int count;
|
867
|
4256 Ibyte_dynarr *conversion_in_dynarr;
|
2421
|
4257 Lisp_Object underlying_cs;
|
1292
|
4258 PROFILE_DECLARE ();
|
|
4259
|
2367
|
4260 assert (!inhibit_non_essential_conversion_operations);
|
1292
|
4261 PROFILE_RECORD_ENTERING_SECTION (QSin_internal_external_conversion);
|
|
4262
|
|
4263 count = begin_gc_forbidden ();
|
771
|
4264
|
|
4265 type_checking_assert
|
|
4266 ((source_type == DFC_TYPE_DATA ||
|
|
4267 source_type == DFC_TYPE_LISP_LSTREAM)
|
|
4268 &&
|
|
4269 (sink_type == DFC_TYPE_DATA ||
|
|
4270 sink_type == DFC_TYPE_LISP_LSTREAM));
|
|
4271
|
|
4272 if (Dynarr_length (conversion_in_dynarr_list) <=
|
|
4273 dfc_convert_to_internal_format_in_use)
|
867
|
4274 Dynarr_add (conversion_in_dynarr_list, Dynarr_new (Ibyte));
|
771
|
4275 conversion_in_dynarr = Dynarr_at (conversion_in_dynarr_list,
|
|
4276 dfc_convert_to_internal_format_in_use);
|
|
4277 Dynarr_reset (conversion_in_dynarr);
|
|
4278
|
853
|
4279 internal_bind_int (&dfc_convert_to_internal_format_in_use,
|
|
4280 dfc_convert_to_internal_format_in_use + 1);
|
|
4281
|
2421
|
4282 /* The second call does the equivalent of both calls, but we need
|
|
4283 the result after the first call (which wraps just a to-text
|
|
4284 converter) as well as the result after the second call (which
|
|
4285 also wraps an EOL-detection converter). */
|
|
4286 underlying_cs = get_coding_system_for_text_file (coding_system, 0);
|
|
4287 coding_system = get_coding_system_for_text_file (underlying_cs, 1);
|
771
|
4288
|
|
4289 if (source_type != DFC_TYPE_LISP_LSTREAM &&
|
|
4290 sink_type != DFC_TYPE_LISP_LSTREAM &&
|
2421
|
4291 coding_system_is_binary (underlying_cs))
|
771
|
4292 {
|
|
4293 #ifdef MULE
|
2421
|
4294 const Ibyte *ptr;
|
771
|
4295 Bytecount len = source->data.len;
|
2421
|
4296 const Ibyte *end;
|
|
4297
|
|
4298 /* Make sure no EOL conversion is needed. With a little work we
|
|
4299 could handle EOL conversion as well but it may not be needed as an
|
|
4300 optimization. */
|
|
4301 if (!EQ (coding_system, underlying_cs))
|
|
4302 {
|
|
4303 for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len;
|
|
4304 ptr < end; ptr++)
|
|
4305 {
|
|
4306 if (*ptr == '\r' || *ptr == '\n')
|
|
4307 goto the_hard_way;
|
|
4308 }
|
|
4309 }
|
|
4310
|
|
4311 for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len;
|
|
4312 ptr < end; ptr++)
|
771
|
4313 {
|
867
|
4314 Ibyte c = *ptr;
|
771
|
4315
|
826
|
4316 if (byte_ascii_p (c))
|
771
|
4317 Dynarr_add (conversion_in_dynarr, c);
|
826
|
4318 else if (byte_c1_p (c))
|
771
|
4319 {
|
|
4320 Dynarr_add (conversion_in_dynarr, LEADING_BYTE_CONTROL_1);
|
|
4321 Dynarr_add (conversion_in_dynarr, c + 0x20);
|
|
4322 }
|
|
4323 else
|
|
4324 {
|
|
4325 Dynarr_add (conversion_in_dynarr, LEADING_BYTE_LATIN_ISO8859_1);
|
|
4326 Dynarr_add (conversion_in_dynarr, c);
|
|
4327 }
|
|
4328 }
|
|
4329 #else
|
|
4330 Dynarr_add_many (conversion_in_dynarr, source->data.ptr, source->data.len);
|
|
4331 #endif
|
|
4332 }
|
1315
|
4333 #ifdef WIN32_ANY
|
1292
|
4334 /* Optimize the common case involving Unicode where only ASCII/Latin-1 is
|
|
4335 involved */
|
771
|
4336 else if (source_type != DFC_TYPE_LISP_LSTREAM &&
|
|
4337 sink_type != DFC_TYPE_LISP_LSTREAM &&
|
2421
|
4338 dfc_coding_system_is_unicode (underlying_cs))
|
771
|
4339 {
|
2421
|
4340 const Ibyte *ptr;
|
771
|
4341 Bytecount len = source->data.len;
|
2421
|
4342 const Ibyte *end;
|
771
|
4343
|
|
4344 if (len & 1)
|
|
4345 goto the_hard_way;
|
|
4346
|
2421
|
4347 /* Make sure only ASCII/Latin-1 is involved */
|
|
4348 for (ptr = (const Ibyte *) source->data.ptr + 1, end = ptr + len;
|
|
4349 ptr < end; ptr += 2)
|
771
|
4350 {
|
|
4351 if (*ptr)
|
|
4352 goto the_hard_way;
|
|
4353 }
|
|
4354
|
2421
|
4355 /* Make sure no EOL conversion is needed. With a little work we
|
|
4356 could handle EOL conversion as well but it may not be needed as an
|
|
4357 optimization. */
|
|
4358 if (!EQ (coding_system, underlying_cs))
|
|
4359 {
|
|
4360 for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len;
|
|
4361 ptr < end; ptr += 2)
|
|
4362 {
|
|
4363 if (*ptr == '\r' || *ptr == '\n')
|
|
4364 goto the_hard_way;
|
|
4365 }
|
|
4366 }
|
|
4367
|
|
4368 for (ptr = (const Ibyte *) source->data.ptr, end = ptr + len;
|
|
4369 ptr < end; ptr += 2)
|
771
|
4370 {
|
867
|
4371 Ibyte c = *ptr;
|
771
|
4372
|
826
|
4373 if (byte_ascii_p (c))
|
771
|
4374 Dynarr_add (conversion_in_dynarr, c);
|
|
4375 #ifdef MULE
|
826
|
4376 else if (byte_c1_p (c))
|
771
|
4377 {
|
|
4378 Dynarr_add (conversion_in_dynarr, LEADING_BYTE_CONTROL_1);
|
|
4379 Dynarr_add (conversion_in_dynarr, c + 0x20);
|
|
4380 }
|
|
4381 else
|
|
4382 {
|
|
4383 Dynarr_add (conversion_in_dynarr, LEADING_BYTE_LATIN_ISO8859_1);
|
|
4384 Dynarr_add (conversion_in_dynarr, c);
|
|
4385 }
|
|
4386 #endif /* MULE */
|
|
4387 }
|
|
4388 }
|
1315
|
4389 #endif /* WIN32_ANY */
|
771
|
4390 else
|
|
4391 {
|
|
4392 Lisp_Object streams_to_delete[3];
|
|
4393 int delete_count;
|
|
4394 Lisp_Object instream, outstream;
|
|
4395 Lstream *reader, *writer;
|
|
4396
|
2421
|
4397 #if defined (WIN32_ANY) || defined (MULE)
|
771
|
4398 the_hard_way:
|
2421
|
4399 #endif
|
771
|
4400 delete_count = 0;
|
|
4401 if (source_type == DFC_TYPE_LISP_LSTREAM)
|
|
4402 instream = source->lisp_object;
|
|
4403 else
|
|
4404 {
|
|
4405 type_checking_assert (source_type == DFC_TYPE_DATA);
|
|
4406 streams_to_delete[delete_count++] = instream =
|
|
4407 make_fixed_buffer_input_stream (source->data.ptr, source->data.len);
|
|
4408 }
|
|
4409
|
|
4410 if (sink_type == DFC_TYPE_LISP_LSTREAM)
|
|
4411 outstream = sink->lisp_object;
|
|
4412 else
|
|
4413 {
|
|
4414 type_checking_assert (sink_type == DFC_TYPE_DATA);
|
|
4415 streams_to_delete[delete_count++] = outstream =
|
|
4416 make_dynarr_output_stream
|
|
4417 ((unsigned_char_dynarr *) conversion_in_dynarr);
|
|
4418 }
|
|
4419
|
|
4420 streams_to_delete[delete_count++] = outstream =
|
800
|
4421 make_coding_output_stream (XLSTREAM (outstream), coding_system,
|
|
4422 CODING_DECODE, 0);
|
771
|
4423
|
|
4424 reader = XLSTREAM (instream);
|
|
4425 writer = XLSTREAM (outstream);
|
1204
|
4426 {
|
|
4427 struct gcpro gcpro1, gcpro2;
|
|
4428 /* outstream will gc-protect its sink stream, if necessary */
|
|
4429 GCPRO2 (instream, outstream);
|
|
4430
|
|
4431 while (1)
|
|
4432 {
|
|
4433 Bytecount size_in_bytes;
|
|
4434 char tempbuf[1024]; /* some random amount */
|
|
4435
|
|
4436 size_in_bytes = Lstream_read (reader, tempbuf, sizeof (tempbuf));
|
|
4437
|
|
4438 if (size_in_bytes == 0)
|
|
4439 break;
|
|
4440 else if (size_in_bytes < 0)
|
|
4441 signal_error (Qtext_conversion_error,
|
|
4442 "Error converting to internal format", Qunbound);
|
|
4443
|
|
4444 if (Lstream_write (writer, tempbuf, size_in_bytes) < 0)
|
|
4445 signal_error (Qtext_conversion_error,
|
|
4446 "Error converting to internal format", Qunbound);
|
|
4447 }
|
|
4448
|
|
4449 /* Closing writer will close any stream at the other end of writer. */
|
|
4450 Lstream_close (writer);
|
|
4451 Lstream_close (reader);
|
|
4452 UNGCPRO;
|
|
4453 }
|
771
|
4454
|
|
4455 /* The idea is that this function will create no garbage. */
|
|
4456 while (delete_count)
|
|
4457 Lstream_delete (XLSTREAM (streams_to_delete [--delete_count]));
|
|
4458 }
|
|
4459
|
|
4460 unbind_to (count);
|
|
4461
|
|
4462 if (sink_type != DFC_TYPE_LISP_LSTREAM)
|
|
4463 {
|
|
4464 sink->data.len = Dynarr_length (conversion_in_dynarr);
|
|
4465 Dynarr_add (conversion_in_dynarr, '\0'); /* remember to NUL-terminate! */
|
|
4466 /* The macros don't currently distinguish between internal and
|
|
4467 external sinks, and allocate and copy two extra bytes in both
|
|
4468 cases. So we add a second zero, just like for external data
|
|
4469 (in that case, because we may be converting to Unicode). */
|
|
4470 Dynarr_add (conversion_in_dynarr, '\0');
|
|
4471 sink->data.ptr = Dynarr_atp (conversion_in_dynarr, 0);
|
|
4472 }
|
1292
|
4473
|
|
4474 PROFILE_RECORD_EXITING_SECTION (QSin_internal_external_conversion);
|
771
|
4475 }
|
|
4476
|
1318
|
4477 /* ----------------------------------------------------------------------- */
|
2367
|
4478 /* Alloca-conversion helpers */
|
|
4479 /* ----------------------------------------------------------------------- */
|
|
4480
|
|
4481 /* For alloca(), things are trickier because the calling function needs to
|
|
4482 allocate. This means that the caller needs to do the following:
|
|
4483
|
|
4484 (a) invoke us to do the conversion, remember the data and return the size.
|
|
4485 (b) alloca() the proper size.
|
|
4486 (c) invoke us again to copy the data.
|
|
4487
|
|
4488 We need to handle the possibility of two or more invocations of the
|
|
4489 converter in the same expression. In such cases it's conceivable that
|
|
4490 the evaluation of the sub-expressions will be overlapping (e.g. one size
|
|
4491 function called, then the other one called, then the copy functions
|
|
4492 called). To handle this, we keep a list of active data, indexed by the
|
|
4493 src expression. (We use the stringize operator to avoid evaluating the
|
|
4494 expression multiple times.) If the caller uses the exact same src
|
|
4495 expression twice in two converter calls in the same subexpression, we
|
2500
|
4496 will lose, but at least we can check for this and ABORT(). We could
|
2367
|
4497 conceivably try to index on other parameters as well, but there is not
|
|
4498 really any point. */
|
|
4499
|
|
4500 alloca_convert_vals_dynarr *active_alloca_convert;
|
|
4501
|
|
4502 int
|
|
4503 find_pos_of_existing_active_alloca_convert (const char *srctext)
|
|
4504 {
|
|
4505 alloca_convert_vals *vals = NULL;
|
|
4506 int i;
|
|
4507
|
|
4508 if (!active_alloca_convert)
|
|
4509 active_alloca_convert = Dynarr_new (alloca_convert_vals);
|
|
4510
|
|
4511 for (i = 0; i < Dynarr_length (active_alloca_convert); i++)
|
|
4512 {
|
|
4513 vals = Dynarr_atp (active_alloca_convert, i);
|
2385
|
4514 /* On my system, two different occurrences of the same stringized
|
|
4515 argument always point to the same string. However, on someone
|
|
4516 else's system, that wasn't the case. We check for equality
|
|
4517 first, since it seems systems work my way more than the other
|
|
4518 way. */
|
|
4519 if (vals->srctext == srctext || !strcmp (vals->srctext, srctext))
|
2367
|
4520 return i;
|
|
4521 }
|
|
4522
|
|
4523 return -1;
|
|
4524 }
|
|
4525
|
|
4526 /* ----------------------------------------------------------------------- */
|
1318
|
4527 /* New-style DFC converters (data is returned rather than stored into var) */
|
|
4528 /* ----------------------------------------------------------------------- */
|
|
4529
|
|
4530 /* We handle here the cases where SRC is a Lisp_Object, internal data
|
|
4531 (sized or unsized), or external data (sized or unsized), and return type
|
|
4532 is unsized alloca() or malloc() data. If the return type is a
|
|
4533 Lisp_Object, use build_ext_string() for unsized external data,
|
|
4534 make_ext_string() for sized external data. If the return type needs to
|
|
4535 be sized data, use the *_TO_SIZED_*() macros, and for other more
|
|
4536 complicated cases, use the original TO_*_FORMAT() macros. */
|
|
4537
|
|
4538 static void
|
|
4539 new_dfc_convert_now_damn_it (const void *src, Bytecount src_size,
|
|
4540 enum new_dfc_src_type type,
|
|
4541 void **dst, Bytecount *dst_size,
|
|
4542 Lisp_Object codesys)
|
|
4543 {
|
|
4544 /* #### In the case of alloca(), it would be a bit more efficient, for
|
|
4545 small strings, to use static Dynarr's like are used internally in
|
|
4546 TO_*_FORMAT(), or some other way of avoiding malloc() followed by
|
|
4547 free(). I doubt it really matters, though. */
|
|
4548
|
|
4549 switch (type)
|
|
4550 {
|
|
4551 case DFC_EXTERNAL:
|
|
4552 TO_INTERNAL_FORMAT (C_STRING, src,
|
|
4553 MALLOC, (*dst, *dst_size), codesys);
|
|
4554 break;
|
|
4555
|
|
4556 case DFC_SIZED_EXTERNAL:
|
|
4557 TO_INTERNAL_FORMAT (DATA, (src, src_size),
|
|
4558 MALLOC, (*dst, *dst_size), codesys);
|
|
4559 break;
|
|
4560
|
|
4561 case DFC_INTERNAL:
|
|
4562 TO_EXTERNAL_FORMAT (C_STRING, src,
|
|
4563 MALLOC, (*dst, *dst_size), codesys);
|
|
4564 break;
|
|
4565
|
|
4566 case DFC_SIZED_INTERNAL:
|
|
4567 TO_EXTERNAL_FORMAT (DATA, (src, src_size),
|
|
4568 MALLOC, (*dst, *dst_size), codesys);
|
|
4569 break;
|
|
4570
|
|
4571 case DFC_LISP_STRING:
|
|
4572 TO_EXTERNAL_FORMAT (LISP_STRING, VOID_TO_LISP (src),
|
|
4573 MALLOC, (*dst, *dst_size), codesys);
|
|
4574 break;
|
|
4575
|
|
4576 default:
|
2500
|
4577 ABORT ();
|
1318
|
4578 }
|
2367
|
4579
|
|
4580 /* The size is always + 2 because we have double zero-termination at the
|
|
4581 end of all data (for Unicode-correctness). */
|
|
4582 *dst_size += 2;
|
|
4583 }
|
|
4584
|
|
4585 Bytecount
|
|
4586 new_dfc_convert_size (const char *srctext, const void *src,
|
|
4587 Bytecount src_size, enum new_dfc_src_type type,
|
|
4588 Lisp_Object codesys)
|
|
4589 {
|
|
4590 alloca_convert_vals vals;
|
|
4591
|
2721
|
4592 int i = find_pos_of_existing_active_alloca_convert (srctext);
|
|
4593 assert (i < 0);
|
2367
|
4594
|
|
4595 vals.srctext = srctext;
|
|
4596
|
|
4597 new_dfc_convert_now_damn_it (src, src_size, type, &vals.dst, &vals.dst_size,
|
|
4598 codesys);
|
|
4599
|
|
4600 Dynarr_add (active_alloca_convert, vals);
|
|
4601 return vals.dst_size;
|
|
4602 }
|
|
4603
|
|
4604 void *
|
|
4605 new_dfc_convert_copy_data (const char *srctext, void *alloca_data)
|
|
4606 {
|
|
4607 alloca_convert_vals *vals;
|
|
4608 int i = find_pos_of_existing_active_alloca_convert (srctext);
|
|
4609
|
|
4610 assert (i >= 0);
|
|
4611 vals = Dynarr_atp (active_alloca_convert, i);
|
|
4612 assert (alloca_data);
|
|
4613 memcpy (alloca_data, vals->dst, vals->dst_size);
|
|
4614 xfree (vals->dst, void *);
|
|
4615 Dynarr_delete (active_alloca_convert, i);
|
|
4616 return alloca_data;
|
1318
|
4617 }
|
|
4618
|
|
4619 void *
|
|
4620 new_dfc_convert_malloc (const void *src, Bytecount src_size,
|
|
4621 enum new_dfc_src_type type, Lisp_Object codesys)
|
|
4622 {
|
|
4623 void *dst;
|
|
4624 Bytecount dst_size;
|
|
4625
|
|
4626 new_dfc_convert_now_damn_it (src, src_size, type, &dst, &dst_size, codesys);
|
|
4627 return dst;
|
|
4628 }
|
|
4629
|
771
|
4630
|
|
4631 /************************************************************************/
|
867
|
4632 /* Basic Ichar functions */
|
771
|
4633 /************************************************************************/
|
|
4634
|
|
4635 #ifdef MULE
|
|
4636
|
|
4637 /* Convert a non-ASCII Mule character C into a one-character Mule-encoded
|
|
4638 string in STR. Returns the number of bytes stored.
|
867
|
4639 Do not call this directly. Use the macro set_itext_ichar() instead.
|
771
|
4640 */
|
|
4641
|
|
4642 Bytecount
|
867
|
4643 non_ascii_set_itext_ichar (Ibyte *str, Ichar c)
|
771
|
4644 {
|
867
|
4645 Ibyte *p;
|
|
4646 Ibyte lb;
|
771
|
4647 int c1, c2;
|
|
4648 Lisp_Object charset;
|
|
4649
|
|
4650 p = str;
|
867
|
4651 BREAKUP_ICHAR (c, charset, c1, c2);
|
|
4652 lb = ichar_leading_byte (c);
|
826
|
4653 if (leading_byte_private_p (lb))
|
|
4654 *p++ = private_leading_byte_prefix (lb);
|
771
|
4655 *p++ = lb;
|
|
4656 if (EQ (charset, Vcharset_control_1))
|
|
4657 c1 += 0x20;
|
|
4658 *p++ = c1 | 0x80;
|
|
4659 if (c2)
|
|
4660 *p++ = c2 | 0x80;
|
|
4661
|
|
4662 return (p - str);
|
|
4663 }
|
|
4664
|
|
4665 /* Return the first character from a Mule-encoded string in STR,
|
|
4666 assuming it's non-ASCII. Do not call this directly.
|
867
|
4667 Use the macro itext_ichar() instead. */
|
|
4668
|
|
4669 Ichar
|
|
4670 non_ascii_itext_ichar (const Ibyte *str)
|
771
|
4671 {
|
867
|
4672 Ibyte i0 = *str, i1, i2 = 0;
|
771
|
4673 Lisp_Object charset;
|
|
4674
|
|
4675 if (i0 == LEADING_BYTE_CONTROL_1)
|
867
|
4676 return (Ichar) (*++str - 0x20);
|
771
|
4677
|
826
|
4678 if (leading_byte_prefix_p (i0))
|
771
|
4679 i0 = *++str;
|
|
4680
|
|
4681 i1 = *++str & 0x7F;
|
|
4682
|
826
|
4683 charset = charset_by_leading_byte (i0);
|
771
|
4684 if (XCHARSET_DIMENSION (charset) == 2)
|
|
4685 i2 = *++str & 0x7F;
|
|
4686
|
867
|
4687 return make_ichar (charset, i1, i2);
|
771
|
4688 }
|
|
4689
|
867
|
4690 /* Return whether CH is a valid Ichar, assuming it's non-ASCII.
|
|
4691 Do not call this directly. Use the macro valid_ichar_p() instead. */
|
771
|
4692
|
|
4693 int
|
867
|
4694 non_ascii_valid_ichar_p (Ichar ch)
|
771
|
4695 {
|
|
4696 int f1, f2, f3;
|
|
4697
|
|
4698 /* Must have only lowest 19 bits set */
|
|
4699 if (ch & ~0x7FFFF)
|
|
4700 return 0;
|
|
4701
|
867
|
4702 f1 = ichar_field1 (ch);
|
|
4703 f2 = ichar_field2 (ch);
|
|
4704 f3 = ichar_field3 (ch);
|
771
|
4705
|
|
4706 if (f1 == 0)
|
|
4707 {
|
|
4708 /* dimension-1 char */
|
|
4709 Lisp_Object charset;
|
|
4710
|
|
4711 /* leading byte must be correct */
|
867
|
4712 if (f2 < MIN_ICHAR_FIELD2_OFFICIAL ||
|
|
4713 (f2 > MAX_ICHAR_FIELD2_OFFICIAL && f2 < MIN_ICHAR_FIELD2_PRIVATE) ||
|
|
4714 f2 > MAX_ICHAR_FIELD2_PRIVATE)
|
771
|
4715 return 0;
|
|
4716 /* octet not out of range */
|
|
4717 if (f3 < 0x20)
|
|
4718 return 0;
|
|
4719 /* charset exists */
|
|
4720 /*
|
|
4721 NOTE: This takes advantage of the fact that
|
|
4722 FIELD2_TO_OFFICIAL_LEADING_BYTE and
|
|
4723 FIELD2_TO_PRIVATE_LEADING_BYTE are the same.
|
|
4724 */
|
826
|
4725 charset = charset_by_leading_byte (f2 + FIELD2_TO_OFFICIAL_LEADING_BYTE);
|
771
|
4726 if (EQ (charset, Qnil))
|
|
4727 return 0;
|
|
4728 /* check range as per size (94 or 96) of charset */
|
|
4729 return ((f3 > 0x20 && f3 < 0x7f) || XCHARSET_CHARS (charset) == 96);
|
|
4730 }
|
|
4731 else
|
|
4732 {
|
|
4733 /* dimension-2 char */
|
|
4734 Lisp_Object charset;
|
|
4735
|
|
4736 /* leading byte must be correct */
|
867
|
4737 if (f1 < MIN_ICHAR_FIELD1_OFFICIAL ||
|
|
4738 (f1 > MAX_ICHAR_FIELD1_OFFICIAL && f1 < MIN_ICHAR_FIELD1_PRIVATE) ||
|
|
4739 f1 > MAX_ICHAR_FIELD1_PRIVATE)
|
771
|
4740 return 0;
|
|
4741 /* octets not out of range */
|
|
4742 if (f2 < 0x20 || f3 < 0x20)
|
|
4743 return 0;
|
|
4744
|
|
4745 #ifdef ENABLE_COMPOSITE_CHARS
|
|
4746 if (f1 + FIELD1_TO_OFFICIAL_LEADING_BYTE == LEADING_BYTE_COMPOSITE)
|
|
4747 {
|
|
4748 if (UNBOUNDP (Fgethash (make_int (ch),
|
|
4749 Vcomposite_char_char2string_hash_table,
|
|
4750 Qunbound)))
|
|
4751 return 0;
|
|
4752 return 1;
|
|
4753 }
|
|
4754 #endif /* ENABLE_COMPOSITE_CHARS */
|
|
4755
|
|
4756 /* charset exists */
|
867
|
4757 if (f1 <= MAX_ICHAR_FIELD1_OFFICIAL)
|
771
|
4758 charset =
|
826
|
4759 charset_by_leading_byte (f1 + FIELD1_TO_OFFICIAL_LEADING_BYTE);
|
771
|
4760 else
|
|
4761 charset =
|
826
|
4762 charset_by_leading_byte (f1 + FIELD1_TO_PRIVATE_LEADING_BYTE);
|
771
|
4763
|
|
4764 if (EQ (charset, Qnil))
|
|
4765 return 0;
|
|
4766 /* check range as per size (94x94 or 96x96) of charset */
|
|
4767 return ((f2 != 0x20 && f2 != 0x7F && f3 != 0x20 && f3 != 0x7F) ||
|
|
4768 XCHARSET_CHARS (charset) == 96);
|
|
4769 }
|
|
4770 }
|
|
4771
|
|
4772 /* Copy the character pointed to by SRC into DST. Do not call this
|
867
|
4773 directly. Use the macro itext_copy_ichar() instead.
|
771
|
4774 Return the number of bytes copied. */
|
|
4775
|
|
4776 Bytecount
|
867
|
4777 non_ascii_itext_copy_ichar (const Ibyte *src, Ibyte *dst)
|
771
|
4778 {
|
826
|
4779 Bytecount bytes = rep_bytes_by_first_byte (*src);
|
771
|
4780 Bytecount i;
|
|
4781 for (i = bytes; i; i--, dst++, src++)
|
|
4782 *dst = *src;
|
|
4783 return bytes;
|
|
4784 }
|
|
4785
|
|
4786 #endif /* MULE */
|
|
4787
|
|
4788
|
|
4789 /************************************************************************/
|
867
|
4790 /* streams of Ichars */
|
771
|
4791 /************************************************************************/
|
|
4792
|
|
4793 #ifdef MULE
|
|
4794
|
867
|
4795 /* Treat a stream as a stream of Ichar's rather than a stream of bytes.
|
771
|
4796 The functions below are not meant to be called directly; use
|
|
4797 the macros in insdel.h. */
|
|
4798
|
867
|
4799 Ichar
|
|
4800 Lstream_get_ichar_1 (Lstream *stream, int ch)
|
771
|
4801 {
|
867
|
4802 Ibyte str[MAX_ICHAR_LEN];
|
|
4803 Ibyte *strptr = str;
|
771
|
4804 Bytecount bytes;
|
|
4805
|
867
|
4806 str[0] = (Ibyte) ch;
|
771
|
4807
|
826
|
4808 for (bytes = rep_bytes_by_first_byte (ch) - 1; bytes; bytes--)
|
771
|
4809 {
|
|
4810 int c = Lstream_getc (stream);
|
800
|
4811 text_checking_assert (c >= 0);
|
867
|
4812 *++strptr = (Ibyte) c;
|
771
|
4813 }
|
867
|
4814 return itext_ichar (str);
|
771
|
4815 }
|
|
4816
|
|
4817 int
|
867
|
4818 Lstream_fput_ichar (Lstream *stream, Ichar ch)
|
771
|
4819 {
|
867
|
4820 Ibyte str[MAX_ICHAR_LEN];
|
|
4821 Bytecount len = set_itext_ichar (str, ch);
|
771
|
4822 return Lstream_write (stream, str, len);
|
|
4823 }
|
|
4824
|
|
4825 void
|
867
|
4826 Lstream_funget_ichar (Lstream *stream, Ichar ch)
|
771
|
4827 {
|
867
|
4828 Ibyte str[MAX_ICHAR_LEN];
|
|
4829 Bytecount len = set_itext_ichar (str, ch);
|
771
|
4830 Lstream_unread (stream, str, len);
|
|
4831 }
|
|
4832
|
|
4833 #endif /* MULE */
|
|
4834
|
|
4835
|
|
4836 /************************************************************************/
|
|
4837 /* Lisp primitives for working with characters */
|
|
4838 /************************************************************************/
|
|
4839
|
|
4840 DEFUN ("make-char", Fmake_char, 2, 3, 0, /*
|
|
4841 Make a character from CHARSET and octets ARG1 and ARG2.
|
|
4842 ARG2 is required only for characters from two-dimensional charsets.
|
|
4843
|
|
4844 Each octet should be in the range 32 through 127 for a 96 or 96x96
|
|
4845 charset and 33 through 126 for a 94 or 94x94 charset. (Most charsets
|
|
4846 are either 96 or 94x94.) Note that this is 32 more than the values
|
|
4847 typically given for 94x94 charsets. When two octets are required, the
|
|
4848 order is "standard" -- the same as appears in ISO-2022 encodings,
|
|
4849 reference tables, etc.
|
|
4850
|
|
4851 \(Note the following non-obvious result: Computerized translation
|
|
4852 tables often encode the two octets as the high and low bytes,
|
|
4853 respectively, of a hex short, while when there's only one octet, it
|
|
4854 goes in the low byte. When decoding such a value, you need to treat
|
|
4855 the two cases differently when calling make-char: One is (make-char
|
|
4856 CHARSET HIGH LOW), the other is (make-char CHARSET LOW).)
|
|
4857
|
|
4858 For example, (make-char 'latin-iso8859-2 185) or (make-char
|
|
4859 'latin-iso8859-2 57) will return the Latin 2 character s with caron.
|
|
4860
|
|
4861 As another example, the Japanese character for "kawa" (stream), which
|
|
4862 looks something like this:
|
|
4863
|
|
4864 | |
|
|
4865 | | |
|
|
4866 | | |
|
|
4867 | | |
|
|
4868 / |
|
|
4869
|
|
4870 appears in the Unicode Standard (version 2.0) on page 7-287 with the
|
|
4871 following values (see also page 7-4):
|
|
4872
|
|
4873 U 5DDD (Unicode)
|
|
4874 G 0-2008 (GB 2312-80)
|
|
4875 J 0-3278 (JIS X 0208-1990)
|
|
4876 K 0-8425 (KS C 5601-1987)
|
|
4877 B A474 (Big Five)
|
|
4878 C 1-4455 (CNS 11643-1986 (1st plane))
|
|
4879 A 213C34 (ANSI Z39.64-1989)
|
|
4880
|
|
4881 These are equivalent to:
|
|
4882
|
|
4883 \(make-char 'chinese-gb2312 52 40)
|
|
4884 \(make-char 'japanese-jisx0208 64 110)
|
|
4885 \(make-char 'korean-ksc5601 116 57)
|
|
4886 \(make-char 'chinese-cns11643-1 76 87)
|
|
4887 \(decode-big5-char '(164 . 116))
|
|
4888
|
|
4889 \(All codes above are two decimal numbers except for Big Five and ANSI
|
|
4890 Z39.64, which we don't support. We add 32 to each of the decimal
|
|
4891 numbers. Big Five is split in a rather hackish fashion into two
|
|
4892 charsets, `big5-1' and `big5-2', due to its excessive size -- 94x157,
|
|
4893 with the first codepoint in the range 0xA1 to 0xFE and the second in
|
|
4894 the range 0x40 to 0x7E or 0xA1 to 0xFE. `decode-big5-char' is used to
|
|
4895 generate the char from its codes, and `encode-big5-char' extracts the
|
|
4896 codes.)
|
|
4897
|
|
4898 When compiled without MULE, this function does not do much, but it's
|
|
4899 provided for compatibility. In this case, the following CHARSET symbols
|
|
4900 are allowed:
|
|
4901
|
|
4902 `ascii' -- ARG1 should be in the range 0 through 127.
|
|
4903 `control-1' -- ARG1 should be in the range 128 through 159.
|
|
4904 else -- ARG1 is coerced to be between 0 and 255, and then the high
|
|
4905 bit is set.
|
|
4906
|
|
4907 `int-to-char of the resulting ARG1' is returned, and ARG2 is always ignored.
|
|
4908 */
|
2333
|
4909 (charset, arg1, USED_IF_MULE (arg2)))
|
771
|
4910 {
|
|
4911 #ifdef MULE
|
|
4912 Lisp_Charset *cs;
|
|
4913 int a1, a2;
|
|
4914 int lowlim, highlim;
|
|
4915
|
|
4916 charset = Fget_charset (charset);
|
|
4917 cs = XCHARSET (charset);
|
|
4918
|
788
|
4919 get_charset_limits (charset, &lowlim, &highlim);
|
771
|
4920
|
|
4921 CHECK_INT (arg1);
|
|
4922 /* It is useful (and safe, according to Olivier Galibert) to strip
|
|
4923 the 8th bit off ARG1 and ARG2 because it allows programmers to
|
|
4924 write (make-char 'latin-iso8859-2 CODE) where code is the actual
|
|
4925 Latin 2 code of the character. */
|
|
4926 a1 = XINT (arg1) & 0x7f;
|
|
4927 if (a1 < lowlim || a1 > highlim)
|
|
4928 args_out_of_range_3 (arg1, make_int (lowlim), make_int (highlim));
|
|
4929
|
|
4930 if (CHARSET_DIMENSION (cs) == 1)
|
|
4931 {
|
|
4932 if (!NILP (arg2))
|
|
4933 invalid_argument
|
|
4934 ("Charset is of dimension one; second octet must be nil", arg2);
|
867
|
4935 return make_char (make_ichar (charset, a1, 0));
|
771
|
4936 }
|
|
4937
|
|
4938 CHECK_INT (arg2);
|
|
4939 a2 = XINT (arg2) & 0x7f;
|
|
4940 if (a2 < lowlim || a2 > highlim)
|
|
4941 args_out_of_range_3 (arg2, make_int (lowlim), make_int (highlim));
|
|
4942
|
867
|
4943 return make_char (make_ichar (charset, a1, a2));
|
771
|
4944 #else
|
|
4945 int a1;
|
|
4946 int lowlim, highlim;
|
|
4947
|
|
4948 if (EQ (charset, Qascii)) lowlim = 0, highlim = 127;
|
|
4949 else if (EQ (charset, Qcontrol_1)) lowlim = 0, highlim = 31;
|
|
4950 else lowlim = 0, highlim = 127;
|
|
4951
|
|
4952 CHECK_INT (arg1);
|
|
4953 /* It is useful (and safe, according to Olivier Galibert) to strip
|
|
4954 the 8th bit off ARG1 and ARG2 because it allows programmers to
|
|
4955 write (make-char 'latin-iso8859-2 CODE) where code is the actual
|
|
4956 Latin 2 code of the character. */
|
|
4957 a1 = XINT (arg1) & 0x7f;
|
|
4958 if (a1 < lowlim || a1 > highlim)
|
|
4959 args_out_of_range_3 (arg1, make_int (lowlim), make_int (highlim));
|
|
4960
|
|
4961 if (EQ (charset, Qascii))
|
|
4962 return make_char (a1);
|
|
4963 return make_char (a1 + 128);
|
|
4964 #endif /* MULE */
|
|
4965 }
|
|
4966
|
|
4967 #ifdef MULE
|
|
4968
|
|
4969 DEFUN ("char-charset", Fchar_charset, 1, 1, 0, /*
|
|
4970 Return the character set of char CH.
|
|
4971 */
|
|
4972 (ch))
|
|
4973 {
|
|
4974 CHECK_CHAR_COERCE_INT (ch);
|
|
4975
|
826
|
4976 return XCHARSET_NAME (charset_by_leading_byte
|
867
|
4977 (ichar_leading_byte (XCHAR (ch))));
|
771
|
4978 }
|
|
4979
|
|
4980 DEFUN ("char-octet", Fchar_octet, 1, 2, 0, /*
|
|
4981 Return the octet numbered N (should be 0 or 1) of char CH.
|
|
4982 N defaults to 0 if omitted.
|
|
4983 */
|
|
4984 (ch, n))
|
|
4985 {
|
|
4986 Lisp_Object charset;
|
|
4987 int octet0, octet1;
|
|
4988
|
|
4989 CHECK_CHAR_COERCE_INT (ch);
|
|
4990
|
867
|
4991 BREAKUP_ICHAR (XCHAR (ch), charset, octet0, octet1);
|
771
|
4992
|
|
4993 if (NILP (n) || EQ (n, Qzero))
|
|
4994 return make_int (octet0);
|
|
4995 else if (EQ (n, make_int (1)))
|
|
4996 return make_int (octet1);
|
|
4997 else
|
|
4998 invalid_constant ("Octet number must be 0 or 1", n);
|
|
4999 }
|
|
5000
|
|
5001 DEFUN ("split-char", Fsplit_char, 1, 1, 0, /*
|
|
5002 Return list of charset and one or two position-codes of CHAR.
|
|
5003 */
|
|
5004 (character))
|
|
5005 {
|
|
5006 /* This function can GC */
|
|
5007 struct gcpro gcpro1, gcpro2;
|
|
5008 Lisp_Object charset = Qnil;
|
|
5009 Lisp_Object rc = Qnil;
|
|
5010 int c1, c2;
|
|
5011
|
|
5012 GCPRO2 (charset, rc);
|
|
5013 CHECK_CHAR_COERCE_INT (character);
|
|
5014
|
867
|
5015 BREAKUP_ICHAR (XCHAR (character), charset, c1, c2);
|
771
|
5016
|
|
5017 if (XCHARSET_DIMENSION (Fget_charset (charset)) == 2)
|
|
5018 {
|
|
5019 rc = list3 (XCHARSET_NAME (charset), make_int (c1), make_int (c2));
|
|
5020 }
|
|
5021 else
|
|
5022 {
|
|
5023 rc = list2 (XCHARSET_NAME (charset), make_int (c1));
|
|
5024 }
|
|
5025 UNGCPRO;
|
|
5026
|
|
5027 return rc;
|
|
5028 }
|
|
5029
|
|
5030 #endif /* MULE */
|
|
5031
|
|
5032
|
|
5033 /************************************************************************/
|
|
5034 /* composite character functions */
|
|
5035 /************************************************************************/
|
|
5036
|
|
5037 #ifdef ENABLE_COMPOSITE_CHARS
|
|
5038
|
867
|
5039 Ichar
|
|
5040 lookup_composite_char (Ibyte *str, int len)
|
771
|
5041 {
|
|
5042 Lisp_Object lispstr = make_string (str, len);
|
|
5043 Lisp_Object ch = Fgethash (lispstr,
|
|
5044 Vcomposite_char_string2char_hash_table,
|
|
5045 Qunbound);
|
867
|
5046 Ichar emch;
|
771
|
5047
|
|
5048 if (UNBOUNDP (ch))
|
|
5049 {
|
|
5050 if (composite_char_row_next >= 128)
|
|
5051 invalid_operation ("No more composite chars available", lispstr);
|
867
|
5052 emch = make_ichar (Vcharset_composite, composite_char_row_next,
|
771
|
5053 composite_char_col_next);
|
|
5054 Fputhash (make_char (emch), lispstr,
|
|
5055 Vcomposite_char_char2string_hash_table);
|
|
5056 Fputhash (lispstr, make_char (emch),
|
|
5057 Vcomposite_char_string2char_hash_table);
|
|
5058 composite_char_col_next++;
|
|
5059 if (composite_char_col_next >= 128)
|
|
5060 {
|
|
5061 composite_char_col_next = 32;
|
|
5062 composite_char_row_next++;
|
|
5063 }
|
|
5064 }
|
|
5065 else
|
|
5066 emch = XCHAR (ch);
|
|
5067 return emch;
|
|
5068 }
|
|
5069
|
|
5070 Lisp_Object
|
867
|
5071 composite_char_string (Ichar ch)
|
771
|
5072 {
|
|
5073 Lisp_Object str = Fgethash (make_char (ch),
|
|
5074 Vcomposite_char_char2string_hash_table,
|
|
5075 Qunbound);
|
|
5076 assert (!UNBOUNDP (str));
|
|
5077 return str;
|
|
5078 }
|
|
5079
|
826
|
5080 DEFUN ("make-composite-char", Fmake_composite_char, 1, 1, 0, /*
|
771
|
5081 Convert a string into a single composite character.
|
|
5082 The character is the result of overstriking all the characters in
|
|
5083 the string.
|
|
5084 */
|
|
5085 (string))
|
|
5086 {
|
|
5087 CHECK_STRING (string);
|
|
5088 return make_char (lookup_composite_char (XSTRING_DATA (string),
|
|
5089 XSTRING_LENGTH (string)));
|
|
5090 }
|
|
5091
|
826
|
5092 DEFUN ("composite-char-string", Fcomposite_char_string, 1, 1, 0, /*
|
771
|
5093 Return a string of the characters comprising a composite character.
|
|
5094 */
|
|
5095 (ch))
|
|
5096 {
|
867
|
5097 Ichar emch;
|
771
|
5098
|
|
5099 CHECK_CHAR (ch);
|
|
5100 emch = XCHAR (ch);
|
867
|
5101 if (ichar_leading_byte (emch) != LEADING_BYTE_COMPOSITE)
|
771
|
5102 invalid_argument ("Must be composite char", ch);
|
|
5103 return composite_char_string (emch);
|
|
5104 }
|
|
5105 #endif /* ENABLE_COMPOSITE_CHARS */
|
|
5106
|
|
5107
|
|
5108 /************************************************************************/
|
|
5109 /* initialization */
|
|
5110 /************************************************************************/
|
|
5111
|
|
5112 void
|
1204
|
5113 reinit_eistring_early (void)
|
771
|
5114 {
|
|
5115 the_eistring_malloc_zero_init = the_eistring_zero_init;
|
|
5116 the_eistring_malloc_zero_init.mallocp_ = 1;
|
|
5117 }
|
|
5118
|
|
5119 void
|
814
|
5120 init_eistring_once_early (void)
|
|
5121 {
|
1204
|
5122 reinit_eistring_early ();
|
814
|
5123 }
|
|
5124
|
|
5125 void
|
771
|
5126 syms_of_text (void)
|
|
5127 {
|
|
5128 DEFSUBR (Fmake_char);
|
|
5129
|
|
5130 #ifdef MULE
|
|
5131 DEFSUBR (Fchar_charset);
|
|
5132 DEFSUBR (Fchar_octet);
|
|
5133 DEFSUBR (Fsplit_char);
|
|
5134
|
|
5135 #ifdef ENABLE_COMPOSITE_CHARS
|
|
5136 DEFSUBR (Fmake_composite_char);
|
|
5137 DEFSUBR (Fcomposite_char_string);
|
|
5138 #endif
|
|
5139 #endif /* MULE */
|
|
5140 }
|
|
5141
|
|
5142 void
|
|
5143 reinit_vars_of_text (void)
|
|
5144 {
|
|
5145 int i;
|
|
5146
|
867
|
5147 conversion_in_dynarr_list = Dynarr_new2 (Ibyte_dynarr_dynarr,
|
|
5148 Ibyte_dynarr *);
|
771
|
5149 conversion_out_dynarr_list = Dynarr_new2 (Extbyte_dynarr_dynarr,
|
|
5150 Extbyte_dynarr *);
|
|
5151
|
|
5152 for (i = 0; i <= MAX_BYTEBPOS_GAP_SIZE_3; i++)
|
|
5153 three_to_one_table[i] = i / 3;
|
|
5154 }
|
|
5155
|
|
5156 void
|
|
5157 vars_of_text (void)
|
|
5158 {
|
1292
|
5159 QSin_char_byte_conversion = build_msg_string ("(in char-byte conversion)");
|
|
5160 staticpro (&QSin_char_byte_conversion);
|
|
5161 QSin_internal_external_conversion =
|
|
5162 build_msg_string ("(in internal-external conversion)");
|
|
5163 staticpro (&QSin_internal_external_conversion);
|
|
5164
|
771
|
5165 #ifdef ENABLE_COMPOSITE_CHARS
|
|
5166 /* #### not dumped properly */
|
|
5167 composite_char_row_next = 32;
|
|
5168 composite_char_col_next = 32;
|
|
5169
|
|
5170 Vcomposite_char_string2char_hash_table =
|
|
5171 make_lisp_hash_table (500, HASH_TABLE_NON_WEAK, HASH_TABLE_EQUAL);
|
|
5172 Vcomposite_char_char2string_hash_table =
|
|
5173 make_lisp_hash_table (500, HASH_TABLE_NON_WEAK, HASH_TABLE_EQ);
|
|
5174 staticpro (&Vcomposite_char_string2char_hash_table);
|
|
5175 staticpro (&Vcomposite_char_char2string_hash_table);
|
|
5176 #endif /* ENABLE_COMPOSITE_CHARS */
|
|
5177 }
|