0
|
1 /* Hash tables.
|
|
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
|
|
3
|
|
4 This file is part of XEmacs.
|
|
5
|
|
6 XEmacs is free software; you can redistribute it and/or modify it
|
|
7 under the terms of the GNU General Public License as published by the
|
|
8 Free Software Foundation; either version 2, or (at your option) any
|
|
9 later version.
|
|
10
|
|
11 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 for more details.
|
|
15
|
|
16 You should have received a copy of the GNU General Public License
|
|
17 along with XEmacs; see the file COPYING. If not, write to
|
|
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
19 Boston, MA 02111-1307, USA. */
|
|
20
|
|
21 /* Synched up with: Not in FSF. */
|
|
22
|
|
23 #include <config.h>
|
|
24 #include "lisp.h"
|
394
|
25 #include "hash.h"
|
0
|
26
|
394
|
27 #define NULL_ENTRY ((void *) 0xdeadbeef)
|
380
|
28
|
|
29 #define COMFORTABLE_SIZE(size) (21 * (size) / 16)
|
0
|
30
|
394
|
31 #define KEYS_DIFFER_P(old, new, testfun) \
|
|
32 (((old) != (new)) && (!(testfun) || !(testfun) ((old),(new))))
|
0
|
33
|
394
|
34 static void rehash (hentry *harray, struct hash_table *ht, hash_size_t size);
|
380
|
35
|
|
36 unsigned long
|
412
|
37 memory_hash (CONST void *xv, size_t size)
|
380
|
38 {
|
|
39 unsigned int h = 0;
|
412
|
40 unsigned CONST char *x = (unsigned CONST char *) xv;
|
380
|
41
|
|
42 if (!x) return 0;
|
|
43
|
|
44 while (size--)
|
|
45 {
|
|
46 unsigned int g;
|
|
47 h = (h << 4) + *x++;
|
|
48 if ((g = h & 0xf0000000) != 0)
|
|
49 h = (h ^ (g >> 24)) ^ g;
|
|
50 }
|
|
51
|
|
52 return h;
|
|
53 }
|
|
54
|
394
|
55 /* Return a suitable size for a hash table, with at least SIZE slots. */
|
|
56 static size_t
|
|
57 hash_table_size (size_t requested_size)
|
380
|
58 {
|
394
|
59 /* Return some prime near, but greater than or equal to, SIZE.
|
|
60 Decades from the time of writing, someone will have a system large
|
|
61 enough that the list below will be too short... */
|
412
|
62 static CONST size_t primes [] =
|
394
|
63 {
|
|
64 19, 29, 41, 59, 79, 107, 149, 197, 263, 347, 457, 599, 787, 1031,
|
|
65 1361, 1777, 2333, 3037, 3967, 5167, 6719, 8737, 11369, 14783,
|
|
66 19219, 24989, 32491, 42257, 54941, 71429, 92861, 120721, 156941,
|
|
67 204047, 265271, 344857, 448321, 582821, 757693, 985003, 1280519,
|
|
68 1664681, 2164111, 2813353, 3657361, 4754591, 6180989, 8035301,
|
|
69 10445899, 13579681, 17653589, 22949669, 29834603, 38784989,
|
|
70 50420551, 65546729, 85210757, 110774011, 144006217, 187208107,
|
|
71 243370577, 316381771, 411296309, 534685237, 695090819, 903618083,
|
|
72 1174703521, 1527114613, 1985248999, 2580823717UL, 3355070839UL
|
|
73 };
|
|
74 /* We've heard of binary search. */
|
380
|
75 int low, high;
|
|
76 for (low = 0, high = countof (primes) - 1; high - low > 1;)
|
|
77 {
|
|
78 /* Loop Invariant: size < primes [high] */
|
|
79 int mid = (low + high) / 2;
|
394
|
80 if (primes [mid] < requested_size)
|
380
|
81 low = mid;
|
|
82 else
|
|
83 high = mid;
|
|
84 }
|
|
85 return primes [high];
|
|
86 }
|
|
87
|
412
|
88 CONST void *
|
|
89 gethash (CONST void *key, struct hash_table *hash_table, CONST void **ret_value)
|
380
|
90 {
|
|
91 if (!key)
|
|
92 {
|
|
93 *ret_value = hash_table->zero_entry;
|
|
94 return (void *) hash_table->zero_set;
|
|
95 }
|
394
|
96 else
|
380
|
97 {
|
394
|
98 hentry *harray = hash_table->harray;
|
|
99 hash_table_test_function test_function = hash_table->test_function;
|
|
100 hash_size_t size = hash_table->size;
|
|
101 unsigned int hcode_initial =
|
|
102 hash_table->hash_function ?
|
|
103 hash_table->hash_function (key) :
|
|
104 (unsigned long) key;
|
|
105 unsigned int hcode = hcode_initial % size;
|
|
106 hentry *e = &harray [hcode];
|
412
|
107 CONST void *e_key = e->key;
|
394
|
108
|
|
109 if (e_key ?
|
|
110 KEYS_DIFFER_P (e_key, key, test_function) :
|
|
111 e->contents == NULL_ENTRY)
|
|
112 {
|
|
113 size_t h2 = size - 2;
|
|
114 unsigned int incr = 1 + (hcode_initial % h2);
|
|
115 do
|
|
116 {
|
|
117 hcode += incr; if (hcode >= size) hcode -= size;
|
|
118 e = &harray [hcode];
|
|
119 e_key = e->key;
|
|
120 }
|
|
121 while (e_key ?
|
|
122 KEYS_DIFFER_P (e_key, key, test_function) :
|
|
123 e->contents == NULL_ENTRY);
|
|
124 }
|
|
125
|
|
126 *ret_value = e->contents;
|
|
127 return e->key;
|
380
|
128 }
|
|
129 }
|
|
130
|
|
131 void
|
|
132 clrhash (struct hash_table *hash_table)
|
|
133 {
|
|
134 memset (hash_table->harray, 0, sizeof (hentry) * hash_table->size);
|
|
135 hash_table->zero_entry = 0;
|
|
136 hash_table->zero_set = 0;
|
|
137 hash_table->fullness = 0;
|
|
138 }
|
|
139
|
|
140 void
|
|
141 free_hash_table (struct hash_table *hash_table)
|
|
142 {
|
|
143 xfree (hash_table->harray);
|
|
144 xfree (hash_table);
|
|
145 }
|
|
146
|
|
147 struct hash_table*
|
|
148 make_hash_table (hash_size_t size)
|
|
149 {
|
|
150 struct hash_table *hash_table = xnew_and_zero (struct hash_table);
|
394
|
151 hash_table->size = hash_table_size (COMFORTABLE_SIZE (size));
|
380
|
152 hash_table->harray = xnew_array (hentry, hash_table->size);
|
|
153 clrhash (hash_table);
|
|
154 return hash_table;
|
|
155 }
|
|
156
|
|
157 struct hash_table *
|
|
158 make_general_hash_table (hash_size_t size,
|
|
159 hash_table_hash_function hash_function,
|
|
160 hash_table_test_function test_function)
|
|
161 {
|
|
162 struct hash_table* hash_table = make_hash_table (size);
|
|
163 hash_table->hash_function = hash_function;
|
|
164 hash_table->test_function = test_function;
|
|
165 return hash_table;
|
|
166 }
|
|
167
|
0
|
168 static void
|
380
|
169 grow_hash_table (struct hash_table *hash_table, hash_size_t new_size)
|
0
|
170 {
|
380
|
171 hash_size_t old_size = hash_table->size;
|
|
172 hentry *old_harray = hash_table->harray;
|
0
|
173
|
394
|
174 hash_table->size = hash_table_size (new_size);
|
|
175 hash_table->harray = xnew_array (hentry, hash_table->size);
|
0
|
176
|
|
177 /* do the rehash on the "grown" table */
|
|
178 {
|
380
|
179 long old_zero_set = hash_table->zero_set;
|
|
180 void *old_zero_entry = hash_table->zero_entry;
|
|
181 clrhash (hash_table);
|
|
182 hash_table->zero_set = old_zero_set;
|
|
183 hash_table->zero_entry = old_zero_entry;
|
|
184 rehash (old_harray, hash_table, old_size);
|
0
|
185 }
|
|
186
|
380
|
187 xfree (old_harray);
|
0
|
188 }
|
|
189
|
|
190 void
|
412
|
191 puthash (CONST void *key, void *contents, struct hash_table *hash_table)
|
0
|
192 {
|
173
|
193 if (!key)
|
0
|
194 {
|
380
|
195 hash_table->zero_entry = contents;
|
|
196 hash_table->zero_set = 1;
|
0
|
197 }
|
394
|
198 else
|
0
|
199 {
|
394
|
200 hash_table_test_function test_function = hash_table->test_function;
|
|
201 hash_size_t size = hash_table->size;
|
|
202 hentry *harray = hash_table->harray;
|
|
203 unsigned int hcode_initial =
|
|
204 hash_table->hash_function ?
|
|
205 hash_table->hash_function (key) :
|
|
206 (unsigned long) key;
|
|
207 unsigned int hcode = hcode_initial % size;
|
|
208 size_t h2 = size - 2;
|
|
209 unsigned int incr = 1 + (hcode_initial % h2);
|
412
|
210 CONST void *e_key = harray [hcode].key;
|
|
211 CONST void *oldcontents;
|
0
|
212
|
394
|
213 if (e_key && KEYS_DIFFER_P (e_key, key, test_function))
|
|
214 {
|
|
215 do
|
|
216 {
|
|
217 hcode += incr; if (hcode >= size) hcode -= size;
|
|
218 e_key = harray [hcode].key;
|
|
219 }
|
|
220 while (e_key && KEYS_DIFFER_P (e_key, key, test_function));
|
|
221 }
|
|
222 oldcontents = harray [hcode].contents;
|
|
223 harray [hcode].key = key;
|
|
224 harray [hcode].contents = contents;
|
|
225 /* If the entry that we used was a deleted entry,
|
|
226 check for a non deleted entry of the same key,
|
|
227 then delete it. */
|
|
228 if (!e_key && oldcontents == NULL_ENTRY)
|
|
229 {
|
|
230 hentry *e;
|
0
|
231
|
394
|
232 do
|
|
233 {
|
|
234 hcode += incr; if (hcode >= size) hcode -= size;
|
|
235 e = &harray [hcode];
|
|
236 e_key = e->key;
|
|
237 }
|
|
238 while (e_key ?
|
|
239 KEYS_DIFFER_P (e_key, key, test_function):
|
|
240 e->contents == NULL_ENTRY);
|
|
241
|
|
242 if (e_key)
|
|
243 {
|
|
244 e->key = 0;
|
|
245 e->contents = NULL_ENTRY;
|
|
246 }
|
|
247 }
|
|
248
|
|
249 /* only increment the fullness when we used up a new hentry */
|
|
250 if (!e_key || KEYS_DIFFER_P (e_key, key, test_function))
|
|
251 {
|
|
252 hash_size_t comfortable_size = COMFORTABLE_SIZE (++(hash_table->fullness));
|
|
253 if (hash_table->size < comfortable_size)
|
|
254 grow_hash_table (hash_table, comfortable_size + 1);
|
|
255 }
|
0
|
256 }
|
|
257 }
|
|
258
|
|
259 static void
|
380
|
260 rehash (hentry *harray, struct hash_table *hash_table, hash_size_t size)
|
0
|
261 {
|
|
262 hentry *limit = harray + size;
|
|
263 hentry *e;
|
|
264 for (e = harray; e < limit; e++)
|
|
265 {
|
|
266 if (e->key)
|
380
|
267 puthash (e->key, e->contents, hash_table);
|
0
|
268 }
|
|
269 }
|
|
270
|
173
|
271 void
|
412
|
272 remhash (CONST void *key, struct hash_table *hash_table)
|
0
|
273 {
|
173
|
274 if (!key)
|
0
|
275 {
|
380
|
276 hash_table->zero_entry = 0;
|
|
277 hash_table->zero_set = 0;
|
0
|
278 }
|
394
|
279 else
|
0
|
280 {
|
394
|
281 hentry *harray = hash_table->harray;
|
|
282 hash_table_test_function test_function = hash_table->test_function;
|
|
283 hash_size_t size = hash_table->size;
|
|
284 unsigned int hcode_initial =
|
|
285 (hash_table->hash_function) ?
|
|
286 (hash_table->hash_function (key)) :
|
|
287 ((unsigned long) key);
|
|
288 unsigned int hcode = hcode_initial % size;
|
|
289 hentry *e = &harray [hcode];
|
412
|
290 CONST void *e_key = e->key;
|
394
|
291
|
|
292 if (e_key ?
|
|
293 KEYS_DIFFER_P (e_key, key, test_function) :
|
|
294 e->contents == NULL_ENTRY)
|
|
295 {
|
|
296 size_t h2 = size - 2;
|
|
297 unsigned int incr = 1 + (hcode_initial % h2);
|
|
298 do
|
|
299 {
|
|
300 hcode += incr; if (hcode >= size) hcode -= size;
|
|
301 e = &harray [hcode];
|
|
302 e_key = e->key;
|
|
303 }
|
|
304 while (e_key?
|
|
305 KEYS_DIFFER_P (e_key, key, test_function):
|
|
306 e->contents == NULL_ENTRY);
|
|
307 }
|
|
308 if (e_key)
|
|
309 {
|
|
310 e->key = 0;
|
|
311 e->contents = NULL_ENTRY;
|
|
312 /* Note: you can't do fullness-- here, it breaks the world. */
|
|
313 }
|
0
|
314 }
|
|
315 }
|
|
316
|
173
|
317 void
|
380
|
318 maphash (maphash_function mf, struct hash_table *hash_table, void *arg)
|
0
|
319 {
|
|
320 hentry *e;
|
|
321 hentry *limit;
|
173
|
322
|
380
|
323 if (hash_table->zero_set)
|
241
|
324 {
|
380
|
325 if (mf (0, hash_table->zero_entry, arg))
|
241
|
326 return;
|
|
327 }
|
0
|
328
|
380
|
329 for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++)
|
0
|
330 {
|
380
|
331 if (e->key && mf (e->key, e->contents, arg))
|
|
332 return;
|
0
|
333 }
|
|
334 }
|
|
335
|
173
|
336 void
|
380
|
337 map_remhash (remhash_predicate predicate, struct hash_table *hash_table, void *arg)
|
0
|
338 {
|
|
339 hentry *e;
|
|
340 hentry *limit;
|
173
|
341
|
380
|
342 if (hash_table->zero_set && predicate (0, hash_table->zero_entry, arg))
|
0
|
343 {
|
380
|
344 hash_table->zero_set = 0;
|
|
345 hash_table->zero_entry = 0;
|
0
|
346 }
|
|
347
|
380
|
348 for (e = hash_table->harray, limit = e + hash_table->size; e < limit; e++)
|
|
349 if (predicate (e->key, e->contents, arg))
|
0
|
350 {
|
|
351 e->key = 0;
|
|
352 e->contents = NULL_ENTRY;
|
|
353 }
|
|
354 }
|