0
|
1 /* The "lrecord" structure (header of a compound lisp object).
|
|
2 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1996 Ben Wing.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: Not in FSF. */
|
|
23
|
412
|
24 #ifndef _XEMACS_LRECORD_H_
|
|
25 #define _XEMACS_LRECORD_H_
|
0
|
26
|
|
27 /* The "lrecord" type of Lisp object is used for all object types
|
|
28 other than a few simple ones. This allows many types to be
|
412
|
29 implemented but only a few bits required in a Lisp object for
|
|
30 type information. (The tradeoff is that each object has its
|
|
31 type marked in it, thereby increasing its size.) The first
|
|
32 four bytes of all lrecords is either a pointer to a struct
|
|
33 lrecord_implementation, which contains methods describing how
|
|
34 to process this object, or an index into an array of pointers
|
|
35 to struct lrecord_implementations plus some other data bits.
|
0
|
36
|
272
|
37 Lrecords are of two types: straight lrecords, and lcrecords.
|
|
38 Straight lrecords are used for those types of objects that have
|
|
39 their own allocation routines (typically allocated out of 2K chunks
|
|
40 of memory called `frob blocks'). These objects have a `struct
|
|
41 lrecord_header' at the top, containing only the bits needed to find
|
|
42 the lrecord_implementation for the object. There are special
|
|
43 routines in alloc.c to deal with each such object type.
|
0
|
44
|
412
|
45 Lcrecords are used for less common sorts of objects that don't
|
|
46 do their own allocation. Each such object is malloc()ed
|
|
47 individually, and the objects are chained together through
|
|
48 a `next' pointer. Lcrecords have a `struct lcrecord_header'
|
|
49 at the top, which contains a `struct lrecord_header' and
|
|
50 a `next' pointer, and are allocated using alloc_lcrecord().
|
0
|
51
|
|
52 Creating a new lcrecord type is fairly easy; just follow the
|
380
|
53 lead of some existing type (e.g. hash tables). Note that you
|
0
|
54 do not need to supply all the methods (see below); reasonable
|
|
55 defaults are provided for many of them. Alternatively, if you're
|
|
56 just looking for a way of encapsulating data (which possibly
|
|
57 could contain Lisp_Objects in it), you may well be able to use
|
|
58 the opaque type. */
|
|
59
|
|
60 struct lrecord_header
|
2
|
61 {
|
211
|
62 /* index into lrecord_implementations_table[] */
|
420
|
63 unsigned type :8;
|
|
64 /* 1 if the object is marked during GC. */
|
|
65 unsigned mark :1;
|
|
66 /* 1 if the object resides in read-only space */
|
|
67 unsigned c_readonly : 1;
|
|
68 /* 1 if the object is readonly from lisp */
|
|
69 unsigned lisp_readonly : 1;
|
2
|
70 };
|
211
|
71
|
243
|
72 struct lrecord_implementation;
|
412
|
73 int lrecord_type_index (CONST struct lrecord_implementation *implementation);
|
272
|
74
|
412
|
75 # define set_lheader_implementation(header,imp) do { \
|
380
|
76 struct lrecord_header* SLI_header = (header); \
|
412
|
77 (SLI_header)->type = lrecord_type_index (imp); \
|
420
|
78 (SLI_header)->mark = 0; \
|
|
79 (SLI_header)->c_readonly = 0; \
|
|
80 (SLI_header)->lisp_readonly = 0; \
|
272
|
81 } while (0)
|
0
|
82
|
|
83 struct lcrecord_header
|
2
|
84 {
|
|
85 struct lrecord_header lheader;
|
380
|
86
|
412
|
87 /* The `next' field is normally used to chain all lrecords together
|
2
|
88 so that the GC can find (and free) all of them.
|
412
|
89 `alloc_lcrecord' threads records together.
|
185
|
90
|
380
|
91 The `next' field may be used for other purposes as long as some
|
|
92 other mechanism is provided for letting the GC do its work.
|
|
93
|
|
94 For example, the event and marker object types allocate members
|
|
95 out of memory chunks, and are able to find all unmarked members
|
|
96 by sweeping through the elements of the list of chunks. */
|
2
|
97 struct lcrecord_header *next;
|
380
|
98
|
|
99 /* The `uid' field is just for debugging/printing convenience.
|
|
100 Having this slot doesn't hurt us much spacewise, since an
|
|
101 lcrecord already has the above slots plus malloc overhead. */
|
2
|
102 unsigned int uid :31;
|
380
|
103
|
|
104 /* The `free' field is a flag that indicates whether this lcrecord
|
|
105 is on a "free list". Free lists are used to minimize the number
|
|
106 of calls to malloc() when we're repeatedly allocating and freeing
|
|
107 a number of the same sort of lcrecord. Lcrecords on a free list
|
|
108 always get marked in a different fashion, so we can use this flag
|
|
109 as a sanity check to make sure that free lists only have freed
|
|
110 lcrecords and there are no freed lcrecords elsewhere. */
|
2
|
111 unsigned int free :1;
|
|
112 };
|
0
|
113
|
|
114 /* Used for lcrecords in an lcrecord-list. */
|
|
115 struct free_lcrecord_header
|
2
|
116 {
|
|
117 struct lcrecord_header lcheader;
|
|
118 Lisp_Object chain;
|
|
119 };
|
0
|
120
|
412
|
121 /* see alloc.c for an explanation */
|
|
122 Lisp_Object this_one_is_unmarkable (Lisp_Object obj,
|
|
123 void (*markobj) (Lisp_Object));
|
0
|
124
|
|
125 struct lrecord_implementation
|
2
|
126 {
|
412
|
127 CONST char *name;
|
|
128 /* This function is called at GC time, to make sure that all Lisp_Objects
|
2
|
129 pointed to by this object get properly marked. It should call
|
|
130 the mark_object function on all Lisp_Objects in the object. If
|
|
131 the return value is non-nil, it should be a Lisp_Object to be
|
|
132 marked (don't call the mark_object function explicitly on it,
|
|
133 because the GC routines will do this). Doing it this way reduces
|
|
134 recursion, so the object returned should preferably be the one
|
|
135 with the deepest level of Lisp_Object pointers. This function
|
|
136 can be NULL, meaning no GC marking is necessary. */
|
412
|
137 Lisp_Object (*marker) (Lisp_Object, void (*mark_object) (Lisp_Object));
|
|
138 /* This can be NULL if the object is an lcrecord; the
|
|
139 default_object_printer() in print.c will be used. */
|
2
|
140 void (*printer) (Lisp_Object, Lisp_Object printcharfun, int escapeflag);
|
412
|
141 /* This function is called at GC time when the object is about to
|
2
|
142 be freed, and at dump time (FOR_DISKSAVE will be non-zero in this
|
|
143 case). It should perform any necessary cleanup (e.g. freeing
|
412
|
144 malloc()ed memory. This can be NULL, meaning no special
|
2
|
145 finalization is necessary.
|
185
|
146
|
412
|
147 WARNING: remember that the finalizer is called at dump time even
|
2
|
148 though the object is not being freed. */
|
|
149 void (*finalizer) (void *header, int for_disksave);
|
|
150 /* This can be NULL, meaning compare objects with EQ(). */
|
|
151 int (*equal) (Lisp_Object obj1, Lisp_Object obj2, int depth);
|
412
|
152 /* This can be NULL, meaning use the Lisp_Object itself as the hash;
|
|
153 but *only* if the `equal' function is EQ (if two objects are
|
|
154 `equal', they *must* hash to the same value or the hashing won't
|
|
155 work). */
|
2
|
156 unsigned long (*hash) (Lisp_Object, int);
|
420
|
157
|
|
158 /* External data layout description */
|
|
159 const struct lrecord_description *description;
|
|
160
|
2
|
161 Lisp_Object (*getprop) (Lisp_Object obj, Lisp_Object prop);
|
|
162 int (*putprop) (Lisp_Object obj, Lisp_Object prop, Lisp_Object val);
|
|
163 int (*remprop) (Lisp_Object obj, Lisp_Object prop);
|
|
164 Lisp_Object (*plist) (Lisp_Object obj);
|
0
|
165
|
412
|
166 /* Only one of these is non-0. If both are 0, it means that this type
|
|
167 is not instantiable by alloc_lcrecord(). */
|
272
|
168 size_t static_size;
|
412
|
169 size_t (*size_in_bytes_method) (CONST void *header);
|
|
170 /* A unique subtag-code (dynamically) assigned to this datatype. */
|
|
171 /* (This is a pointer so the rest of this structure can be read-only.) */
|
|
172 int *lrecord_type_index;
|
2
|
173 /* A "basic" lrecord is any lrecord that's not an lcrecord, i.e.
|
|
174 one that does not have an lcrecord_header at the front and which
|
|
175 is (usually) allocated in frob blocks. We only use this flag for
|
|
176 some consistency checking, and that only when error-checking is
|
|
177 enabled. */
|
412
|
178 int basic_p;
|
2
|
179 };
|
0
|
180
|
412
|
181 extern CONST struct lrecord_implementation *lrecord_implementations_table[];
|
211
|
182
|
398
|
183 #define XRECORD_LHEADER_IMPLEMENTATION(obj) \
|
412
|
184 (lrecord_implementations_table[XRECORD_LHEADER (obj)->type])
|
|
185 #define LHEADER_IMPLEMENTATION(lh) (lrecord_implementations_table[(lh)->type])
|
211
|
186
|
0
|
187 extern int gc_in_progress;
|
|
188
|
420
|
189 #define MARKED_RECORD_P(obj) (gc_in_progress && XRECORD_LHEADER (obj)->mark)
|
|
190 #define MARKED_RECORD_HEADER_P(lheader) ((lheader)->mark)
|
|
191 #define MARK_RECORD_HEADER(lheader) ((void) ((lheader)->mark = 1))
|
|
192 #define UNMARK_RECORD_HEADER(lheader) ((void) ((lheader)->mark = 0))
|
398
|
193
|
412
|
194 #define UNMARKABLE_RECORD_HEADER_P(lheader) \
|
|
195 (LHEADER_IMPLEMENTATION (lheader)->marker == this_one_is_unmarkable)
|
398
|
196
|
420
|
197 #define C_READONLY_RECORD_HEADER_P(lheader) ((lheader)->c_readonly)
|
|
198 #define LISP_READONLY_RECORD_HEADER_P(lheader) ((lheader)->lisp_readonly)
|
412
|
199 #define SET_C_READONLY_RECORD_HEADER(lheader) \
|
420
|
200 ((void) ((lheader)->c_readonly = (lheader)->lisp_readonly = 1))
|
412
|
201 #define SET_LISP_READONLY_RECORD_HEADER(lheader) \
|
420
|
202 ((void) ((lheader)->lisp_readonly = 1))
|
|
203
|
|
204 /* External description stuff
|
|
205
|
|
206 A lrecord external description is an array of values. The first
|
|
207 value of each line is a type, the second the offset in the lrecord
|
|
208 structure. Following values are parameters, their presence, type
|
|
209 and number is type-dependant.
|
|
210
|
|
211 The description ends with a "XD_END" record.
|
|
212
|
|
213 Some example descriptions :
|
|
214 static const struct lrecord_description cons_description[] = {
|
|
215 { XD_LISP_OBJECT, offsetof(struct Lisp_Cons, car), 2 },
|
|
216 { XD_END }
|
|
217 };
|
|
218
|
|
219 Which means "two lisp objects starting at the 'car' element"
|
|
220
|
|
221 static const struct lrecord_description string_description[] = {
|
|
222 { XD_STRING_DATA, offsetof(Lisp_String, data) },
|
|
223 { XD_LISP_OBJECT, offsetof(Lisp_String, plist), 1 },
|
|
224 { XD_END }
|
|
225 };
|
|
226 "A string data pointer at 'data', one lisp object at 'plist'"
|
|
227
|
|
228 The existing types :
|
|
229 XD_LISP_OBJECT
|
|
230 Lisp objects. The third element is the count. This is also the type to use
|
|
231 for pointers to other lrecords.
|
|
232
|
|
233 XD_STRING_DATA
|
|
234 Pointer to string data.
|
|
235
|
|
236 XD_OPAQUE_PTR
|
|
237 Pointer to undumpable data. Must be NULL when dumping.
|
|
238
|
|
239 XD_STRUCT_PTR
|
|
240 Pointer to described struct. Parameters are number of structures and
|
|
241 struct_description.
|
|
242
|
|
243 XD_OPAQUE_DATA_PTR
|
|
244 Pointer to dumpable opaque data. Parameter is the size of the data.
|
|
245 Pointed data must be relocatable without changes.
|
|
246
|
|
247 XD_SIZE_T
|
|
248 size_t value. Used for counts.
|
|
249
|
|
250 XD_INT
|
|
251 int value. Used for counts.
|
|
252
|
|
253 XD_LONG
|
|
254 long value. Used for counts.
|
|
255
|
|
256 XD_END
|
|
257 Special type indicating the end of the array.
|
|
258
|
|
259
|
|
260 Special macros:
|
|
261 XD_INDIRECT(line)
|
|
262 Usable where a "count" or "size" is requested. Gives the value of the element
|
|
263 which is at line number 'line' in the description (count starts at zero).
|
|
264
|
|
265 XD_PARENT_INDIRECT(line)
|
|
266 Same as XD_INDIRECT but the element number refers to the parent structure.
|
|
267 Usable only in struct descriptions.
|
|
268 */
|
|
269
|
|
270 enum lrecord_description_type {
|
|
271 XD_LISP_OBJECT,
|
|
272 XD_STRING_DATA,
|
|
273 XD_OPAQUE_PTR,
|
|
274 XD_STRUCT_PTR,
|
|
275 XD_OPAQUE_DATA_PTR,
|
|
276 XD_SIZE_T,
|
|
277 XD_INT,
|
|
278 XD_LONG,
|
|
279 XD_END
|
|
280 };
|
|
281
|
|
282 struct lrecord_description {
|
|
283 enum lrecord_description_type type;
|
|
284 int offset;
|
|
285 EMACS_INT data1;
|
|
286 const struct struct_description *data2;
|
|
287 };
|
|
288
|
|
289 struct struct_description {
|
|
290 size_t size;
|
|
291 const struct lrecord_description *description;
|
|
292 };
|
|
293
|
|
294 #define XD_INDIRECT(count) (-1-(count))
|
|
295 #define XD_PARENT_INDIRECT(count) (-1000-(count))
|
|
296
|
|
297 #define XD_DYNARR_DESC(base_type, sub_desc) \
|
|
298 { XD_STRUCT_PTR, offsetof(base_type, base), XD_INDIRECT(1), sub_desc }, \
|
|
299 { XD_INT, offsetof(base_type, max) }
|
398
|
300
|
412
|
301 /* Declaring the following structures as const puts them in the
|
|
302 text (read-only) segment, which makes debugging inconvenient
|
|
303 because this segment is not mapped when processing a core-
|
|
304 dump file */
|
398
|
305
|
412
|
306 #ifdef DEBUG_XEMACS
|
|
307 #define CONST_IF_NOT_DEBUG
|
|
308 #else
|
|
309 #define CONST_IF_NOT_DEBUG CONST
|
|
310 #endif
|
398
|
311
|
0
|
312 /* DEFINE_LRECORD_IMPLEMENTATION is for objects with constant size.
|
|
313 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION is for objects whose size varies.
|
|
314 */
|
|
315
|
|
316 #if defined (ERROR_CHECK_TYPECHECK)
|
|
317 # define DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype)
|
|
318 #else
|
|
319 # define DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype)
|
|
320 #endif
|
|
321
|
420
|
322 #define DEFINE_BASIC_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,structtype) \
|
|
323 DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,structtype)
|
0
|
324
|
420
|
325 #define DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,props,structtype) \
|
|
326 MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,props,sizeof(structtype),0,1,structtype)
|
0
|
327
|
420
|
328 #define DEFINE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,structtype) \
|
|
329 DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,structtype)
|
398
|
330
|
420
|
331 #define DEFINE_LRECORD_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,props,structtype) \
|
|
332 MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,props,sizeof (structtype),0,0,structtype)
|
272
|
333
|
420
|
334 #define DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,sizer,structtype) \
|
|
335 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,0,0,0,0,sizer,structtype)
|
272
|
336
|
420
|
337 #define DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION_WITH_PROPS(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,props,sizer,structtype) \
|
|
338 MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,props,0,sizer,0,structtype) \
|
400
|
339
|
420
|
340 #define MAKE_LRECORD_IMPLEMENTATION(name,c_name,marker,printer,nuker,equal,hash,desc,getprop,putprop,remprop,props,size,sizer,basic_p,structtype) \
|
412
|
341 DECLARE_ERROR_CHECK_TYPECHECK(c_name, structtype) \
|
|
342 static int lrecord_##c_name##_lrecord_type_index; \
|
|
343 CONST_IF_NOT_DEBUG struct lrecord_implementation lrecord_##c_name = \
|
420
|
344 { name, marker, printer, nuker, equal, hash, desc, \
|
412
|
345 getprop, putprop, remprop, props, size, sizer, \
|
|
346 &(lrecord_##c_name##_lrecord_type_index), basic_p } \
|
400
|
347
|
412
|
348 #define LRECORDP(a) (XTYPE ((a)) == Lisp_Type_Record)
|
0
|
349 #define XRECORD_LHEADER(a) ((struct lrecord_header *) XPNTR (a))
|
211
|
350
|
398
|
351 #define RECORD_TYPEP(x, ty) \
|
412
|
352 (LRECORDP (x) && \
|
|
353 lrecord_implementations_table[XRECORD_LHEADER (x)->type] == (ty))
|
0
|
354
|
|
355 /* NOTE: the DECLARE_LRECORD() must come before the associated
|
|
356 DEFINE_LRECORD_*() or you will get compile errors.
|
|
357
|
|
358 Furthermore, you always need to put the DECLARE_LRECORD() in a header
|
|
359 file, and make sure the header file is included in inline.c, even
|
|
360 if the type is private to a particular file. Otherwise, you will
|
|
361 get undefined references for the error_check_foo() inline function
|
|
362 under GCC. */
|
|
363
|
|
364 #ifdef ERROR_CHECK_TYPECHECK
|
|
365
|
2
|
366 # define DECLARE_LRECORD(c_name, structtype) \
|
412
|
367 extern CONST_IF_NOT_DEBUG struct lrecord_implementation \
|
|
368 lrecord_##c_name; \
|
|
369 INLINE structtype *error_check_##c_name (Lisp_Object obj); \
|
|
370 INLINE structtype * \
|
380
|
371 error_check_##c_name (Lisp_Object obj) \
|
2
|
372 { \
|
412
|
373 assert (RECORD_TYPEP (obj, &lrecord_##c_name) || \
|
|
374 MARKED_RECORD_P (obj)); \
|
380
|
375 return (structtype *) XPNTR (obj); \
|
2
|
376 } \
|
0
|
377 extern Lisp_Object Q##c_name##p
|
|
378
|
2
|
379 # define DECLARE_NONRECORD(c_name, type_enum, structtype) \
|
412
|
380 INLINE structtype *error_check_##c_name (Lisp_Object obj); \
|
|
381 INLINE structtype * \
|
380
|
382 error_check_##c_name (Lisp_Object obj) \
|
2
|
383 { \
|
412
|
384 assert (XGCTYPE (obj) == type_enum); \
|
380
|
385 return (structtype *) XPNTR (obj); \
|
2
|
386 } \
|
0
|
387 extern Lisp_Object Q##c_name##p
|
|
388
|
|
389 # define XRECORD(x, c_name, structtype) error_check_##c_name (x)
|
|
390 # define XNONRECORD(x, c_name, type_enum, structtype) error_check_##c_name (x)
|
|
391
|
2
|
392 # define XSETRECORD(var, p, c_name) do \
|
|
393 { \
|
185
|
394 XSETOBJ (var, Lisp_Type_Record, p); \
|
412
|
395 assert (RECORD_TYPEP (var, &lrecord_##c_name) || \
|
|
396 MARKED_RECORD_P (var)); \
|
0
|
397 } while (0)
|
|
398
|
|
399 #else /* not ERROR_CHECK_TYPECHECK */
|
|
400
|
2
|
401 # define DECLARE_LRECORD(c_name, structtype) \
|
|
402 extern Lisp_Object Q##c_name##p; \
|
412
|
403 extern CONST_IF_NOT_DEBUG struct lrecord_implementation \
|
|
404 lrecord_##c_name
|
2
|
405 # define DECLARE_NONRECORD(c_name, type_enum, structtype) \
|
0
|
406 extern Lisp_Object Q##c_name##p
|
|
407 # define XRECORD(x, c_name, structtype) ((structtype *) XPNTR (x))
|
2
|
408 # define XNONRECORD(x, c_name, type_enum, structtype) \
|
0
|
409 ((structtype *) XPNTR (x))
|
185
|
410 # define XSETRECORD(var, p, c_name) XSETOBJ (var, Lisp_Type_Record, p)
|
0
|
411
|
|
412 #endif /* not ERROR_CHECK_TYPECHECK */
|
|
413
|
412
|
414 #define RECORDP(x, c_name) RECORD_TYPEP (x, &lrecord_##c_name)
|
|
415 #define GC_RECORDP(x, c_name) gc_record_type_p (x, &lrecord_##c_name)
|
0
|
416
|
|
417 /* Note: we now have two different kinds of type-checking macros.
|
|
418 The "old" kind has now been renamed CONCHECK_foo. The reason for
|
|
419 this is that the CONCHECK_foo macros signal a continuable error,
|
185
|
420 allowing the user (through debug-on-error) to substitute a different
|
0
|
421 value and return from the signal, which causes the lvalue argument
|
|
422 to get changed. Quite a lot of code would crash if that happened,
|
|
423 because it did things like
|
|
424
|
|
425 foo = XCAR (list);
|
|
426 CHECK_STRING (foo);
|
|
427
|
|
428 and later on did XSTRING (XCAR (list)), assuming that the type
|
|
429 is correct (when it might be wrong, if the user substituted a
|
|
430 correct value in the debugger).
|
|
431
|
|
432 To get around this, I made all the CHECK_foo macros signal a
|
|
433 non-continuable error. Places where a continuable error is OK
|
|
434 (generally only when called directly on the argument of a Lisp
|
|
435 primitive) should be changed to use CONCHECK().
|
|
436
|
|
437 FSF Emacs does not have this problem because RMS took the cheesy
|
|
438 way out and disabled returning from a signal entirely. */
|
|
439
|
185
|
440 #define CONCHECK_RECORD(x, c_name) do { \
|
412
|
441 if (!RECORD_TYPEP (x, &lrecord_##c_name)) \
|
185
|
442 x = wrong_type_argument (Q##c_name##p, x); \
|
|
443 } while (0)
|
|
444 #define CONCHECK_NONRECORD(x, lisp_enum, predicate) do {\
|
|
445 if (XTYPE (x) != lisp_enum) \
|
|
446 x = wrong_type_argument (predicate, x); \
|
|
447 } while (0)
|
|
448 #define CHECK_RECORD(x, c_name) do { \
|
412
|
449 if (!RECORD_TYPEP (x, &lrecord_##c_name)) \
|
185
|
450 dead_wrong_type_argument (Q##c_name##p, x); \
|
|
451 } while (0)
|
|
452 #define CHECK_NONRECORD(x, lisp_enum, predicate) do { \
|
|
453 if (XTYPE (x) != lisp_enum) \
|
|
454 dead_wrong_type_argument (predicate, x); \
|
|
455 } while (0)
|
0
|
456
|
412
|
457 void *alloc_lcrecord (size_t size, CONST struct lrecord_implementation *);
|
0
|
458
|
185
|
459 #define alloc_lcrecord_type(type, lrecord_implementation) \
|
|
460 ((type *) alloc_lcrecord (sizeof (type), lrecord_implementation))
|
|
461
|
412
|
462 int gc_record_type_p (Lisp_Object frob,
|
|
463 CONST struct lrecord_implementation *type);
|
|
464
|
0
|
465 /* Copy the data from one lcrecord structure into another, but don't
|
|
466 overwrite the header information. */
|
|
467
|
2
|
468 #define copy_lcrecord(dst, src) \
|
412
|
469 memcpy ((char *) dst + sizeof (struct lcrecord_header), \
|
|
470 (char *) src + sizeof (struct lcrecord_header), \
|
|
471 sizeof (*dst) - sizeof (struct lcrecord_header))
|
0
|
472
|
2
|
473 #define zero_lcrecord(lcr) \
|
412
|
474 memset ((char *) lcr + sizeof (struct lcrecord_header), 0, \
|
|
475 sizeof (*lcr) - sizeof (struct lcrecord_header))
|
0
|
476
|
412
|
477 #endif /* _XEMACS_LRECORD_H_ */
|