428
|
1 /* Buffer insertion/deletion and gap motion for XEmacs.
|
|
2 Copyright (C) 1985, 1986, 1991, 1992, 1993, 1994, 1995
|
|
3 Free Software Foundation, Inc.
|
|
4 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: Mule 2.0, FSF 19.30. Diverges significantly. */
|
|
24
|
|
25 /* This file has been Mule-ized. */
|
|
26
|
|
27 /* Overhauled by Ben Wing, December 1994, for Mule implementation. */
|
|
28
|
|
29 /*
|
|
30 There are three possible ways to specify positions in a buffer. All
|
|
31 of these are one-based: the beginning of the buffer is position or
|
|
32 index 1, and 0 is not a valid position.
|
|
33
|
|
34 As a "buffer position" (typedef Bufpos):
|
|
35
|
|
36 This is an index specifying an offset in characters from the
|
|
37 beginning of the buffer. Note that buffer positions are
|
|
38 logically *between* characters, not on a character. The
|
|
39 difference between two buffer positions specifies the number of
|
|
40 characters between those positions. Buffer positions are the
|
|
41 only kind of position externally visible to the user.
|
|
42
|
|
43 As a "byte index" (typedef Bytind):
|
|
44
|
|
45 This is an index over the bytes used to represent the characters
|
|
46 in the buffer. If there is no Mule support, this is identical
|
|
47 to a buffer position, because each character is represented
|
|
48 using one byte. However, with Mule support, many characters
|
|
49 require two or more bytes for their representation, and so a
|
|
50 byte index may be greater than the corresponding buffer
|
|
51 position.
|
|
52
|
|
53 As a "memory index" (typedef Memind):
|
|
54
|
|
55 This is the byte index adjusted for the gap. For positions
|
|
56 before the gap, this is identical to the byte index. For
|
|
57 positions after the gap, this is the byte index plus the gap
|
|
58 size. There are two possible memory indices for the gap
|
|
59 position; the memory index at the beginning of the gap should
|
|
60 always be used, except in code that deals with manipulating the
|
|
61 gap, where both indices may be seen. The address of the
|
|
62 character "at" (i.e. following) a particular position can be
|
|
63 obtained from the formula
|
|
64
|
|
65 buffer_start_address + memory_index(position) - 1
|
|
66
|
|
67 except in the case of characters at the gap position.
|
|
68
|
|
69 Other typedefs:
|
|
70 ===============
|
|
71
|
|
72 Emchar:
|
|
73 -------
|
|
74 This typedef represents a single Emacs character, which can be
|
|
75 ASCII, ISO-8859, or some extended character, as would typically
|
|
76 be used for Kanji. Note that the representation of a character
|
|
77 as an Emchar is *not* the same as the representation of that
|
|
78 same character in a string; thus, you cannot do the standard
|
|
79 C trick of passing a pointer to a character to a function that
|
|
80 expects a string.
|
|
81
|
|
82 An Emchar takes up 19 bits of representation and (for code
|
|
83 compatibility and such) is compatible with an int. This
|
|
84 representation is visible on the Lisp level. The important
|
|
85 characteristics of the Emchar representation are
|
|
86
|
|
87 -- values 0x00 - 0x7f represent ASCII.
|
|
88 -- values 0x80 - 0xff represent the right half of ISO-8859-1.
|
|
89 -- values 0x100 and up represent all other characters.
|
|
90
|
|
91 This means that Emchar values are upwardly compatible with
|
|
92 the standard 8-bit representation of ASCII/ISO-8859-1.
|
|
93
|
|
94 Bufbyte:
|
|
95 --------
|
|
96 The data in a buffer or string is logically made up of Bufbyte
|
|
97 objects, where a Bufbyte takes up the same amount of space as a
|
|
98 char. (It is declared differently, though, to catch invalid
|
|
99 usages.) Strings stored using Bufbytes are said to be in
|
|
100 "internal format". The important characteristics of internal
|
|
101 format are
|
|
102
|
|
103 -- ASCII characters are represented as a single Bufbyte,
|
|
104 in the range 0 - 0x7f.
|
|
105 -- All other characters are represented as a Bufbyte in
|
|
106 the range 0x80 - 0x9f followed by one or more Bufbytes
|
|
107 in the range 0xa0 to 0xff.
|
|
108
|
|
109 This leads to a number of desirable properties:
|
|
110
|
|
111 -- Given the position of the beginning of a character,
|
|
112 you can find the beginning of the next or previous
|
|
113 character in constant time.
|
|
114 -- When searching for a substring or an ASCII character
|
|
115 within the string, you need merely use standard
|
|
116 searching routines.
|
|
117
|
|
118 array of char:
|
|
119 --------------
|
|
120 Strings that go in or out of Emacs are in "external format",
|
|
121 typedef'ed as an array of char or a char *. There is more
|
|
122 than one external format (JIS, EUC, etc.) but they all
|
|
123 have similar properties. They are modal encodings,
|
|
124 which is to say that the meaning of particular bytes is
|
|
125 not fixed but depends on what "mode" the string is currently
|
|
126 in (e.g. bytes in the range 0 - 0x7f might be
|
|
127 interpreted as ASCII, or as Hiragana, or as 2-byte Kanji,
|
|
128 depending on the current mode). The mode starts out in
|
|
129 ASCII/ISO-8859-1 and is switched using escape sequences --
|
|
130 for example, in the JIS encoding, 'ESC $ B' switches to a
|
|
131 mode where pairs of bytes in the range 0 - 0x7f
|
|
132 are interpreted as Kanji characters.
|
|
133
|
|
134 External-formatted data is generally desirable for passing
|
|
135 data between programs because it is upwardly compatible
|
|
136 with standard ASCII/ISO-8859-1 strings and may require
|
|
137 less space than internal encodings such as the one
|
|
138 described above. In addition, some encodings (e.g. JIS)
|
|
139 keep all characters (except the ESC used to switch modes)
|
|
140 in the printing ASCII range 0x20 - 0x7e, which results in
|
|
141 a much higher probability that the data will avoid being
|
|
142 garbled in transmission. Externally-formatted data is
|
|
143 generally not very convenient to work with, however, and
|
|
144 for this reason is usually converted to internal format
|
|
145 before any work is done on the string.
|
|
146
|
|
147 NOTE: filenames need to be in external format so that
|
|
148 ISO-8859-1 characters come out correctly.
|
|
149
|
|
150 Charcount:
|
|
151 ----------
|
|
152 This typedef represents a count of characters, such as
|
|
153 a character offset into a string or the number of
|
|
154 characters between two positions in a buffer. The
|
|
155 difference between two Bufpos's is a Charcount, and
|
|
156 character positions in a string are represented using
|
|
157 a Charcount.
|
|
158
|
|
159 Bytecount:
|
|
160 ----------
|
|
161 Similar to a Charcount but represents a count of bytes.
|
|
162 The difference between two Bytind's is a Bytecount.
|
|
163
|
|
164
|
|
165 Usage of the various representations:
|
|
166 =====================================
|
|
167
|
|
168 Memory indices are used in low-level functions in insdel.c and for
|
|
169 extent endpoints and marker positions. The reason for this is that
|
|
170 this way, the extents and markers don't need to be updated for most
|
|
171 insertions, which merely shrink the gap and don't move any
|
|
172 characters around in memory.
|
|
173
|
|
174 (The beginning-of-gap memory index simplifies insertions w.r.t.
|
|
175 markers, because text usually gets inserted after markers. For
|
|
176 extents, it is merely for consistency, because text can get
|
|
177 inserted either before or after an extent's endpoint depending on
|
|
178 the open/closedness of the endpoint.)
|
|
179
|
|
180 Byte indices are used in other code that needs to be fast,
|
|
181 such as the searching, redisplay, and extent-manipulation code.
|
|
182
|
|
183 Buffer positions are used in all other code. This is because this
|
|
184 representation is easiest to work with (especially since Lisp
|
|
185 code always uses buffer positions), necessitates the fewest
|
|
186 changes to existing code, and is the safest (e.g. if the text gets
|
|
187 shifted underneath a buffer position, it will still point to a
|
|
188 character; if text is shifted under a byte index, it might point
|
|
189 to the middle of a character, which would be bad).
|
|
190
|
|
191 Similarly, Charcounts are used in all code that deals with strings
|
|
192 except for code that needs to be fast, which used Bytecounts.
|
|
193
|
|
194 Strings are always passed around internally using internal format.
|
|
195 Conversions between external format are performed at the time
|
|
196 that the data goes in or out of Emacs.
|
|
197
|
|
198 Working with the various representations:
|
|
199 ========================================= */
|
|
200
|
|
201 #include <config.h>
|
|
202 #include "lisp.h"
|
|
203 #include <limits.h>
|
|
204
|
|
205 #include "buffer.h"
|
|
206 #include "device.h"
|
|
207 #include "frame.h"
|
|
208 #include "extents.h"
|
|
209 #include "insdel.h"
|
|
210 #include "lstream.h"
|
|
211 #include "redisplay.h"
|
|
212 #include "line-number.h"
|
|
213
|
|
214 /* We write things this way because it's very important the
|
|
215 MAX_BYTIND_GAP_SIZE_3 is a multiple of 3. (As it happens,
|
|
216 65535 is a multiple of 3, but this may not always be the
|
|
217 case.) */
|
|
218
|
|
219 #define MAX_BUFPOS_GAP_SIZE_3 (65535/3)
|
|
220 #define MAX_BYTIND_GAP_SIZE_3 (3 * MAX_BUFPOS_GAP_SIZE_3)
|
|
221
|
|
222 short three_to_one_table[1 + MAX_BYTIND_GAP_SIZE_3];
|
|
223
|
|
224 /* Various macros modelled along the lines of those in buffer.h.
|
|
225 Purposefully omitted from buffer.h because files other than this
|
|
226 one should not be using them. */
|
|
227
|
|
228 /* Address of beginning of buffer. This is an lvalue because
|
|
229 BUFFER_ALLOC needs it to be. */
|
|
230 #define BUF_BEG_ADDR(buf) ((buf)->text->beg)
|
|
231
|
|
232 /* Set the address of beginning of buffer. */
|
|
233 #define SET_BUF_BEG_ADDR(buf, addr) do { (buf)->text->beg = (addr); } while (0)
|
|
234
|
|
235 /* Gap size. */
|
|
236 #define BUF_GAP_SIZE(buf) ((buf)->text->gap_size + 0)
|
|
237 #define BUF_END_GAP_SIZE(buf) ((buf)->text->end_gap_size + 0)
|
|
238 /* Set gap size. */
|
|
239 #define SET_BUF_GAP_SIZE(buf, value) \
|
|
240 do { (buf)->text->gap_size = (value); } while (0)
|
|
241 #define SET_BUF_END_GAP_SIZE(buf, value) \
|
|
242 do { (buf)->text->end_gap_size = (value); } while (0)
|
|
243
|
|
244 /* Gap location. */
|
|
245 #define BI_BUF_GPT(buf) ((buf)->text->gpt + 0)
|
|
246 #define BUF_GPT_ADDR(buf) (BUF_BEG_ADDR (buf) + BI_BUF_GPT (buf) - 1)
|
|
247
|
|
248 /* Set gap location. */
|
|
249 #define SET_BI_BUF_GPT(buf, value) do { (buf)->text->gpt = (value); } while (0)
|
|
250
|
|
251 /* Set end of buffer. */
|
|
252 #define SET_BOTH_BUF_Z(buf, val, bival) \
|
|
253 do \
|
|
254 { \
|
|
255 (buf)->text->z = (bival); \
|
|
256 (buf)->text->bufz = (val); \
|
|
257 } while (0)
|
|
258
|
|
259 /* Under Mule, we maintain two sentinels in the buffer: one at the
|
|
260 beginning of the gap, and one at the end of the buffer. This
|
|
261 allows us to move forward, examining bytes looking for the
|
|
262 end of a character, and not worry about running off the end.
|
|
263 We do not need corresponding sentinels when moving backwards
|
|
264 because we do not have to look past the beginning of a character
|
|
265 to find the beginning of the character.
|
|
266
|
|
267 Every time we change the beginning of the gap, we have to
|
|
268 call SET_GAP_SENTINEL().
|
|
269
|
|
270 Every time we change the total size (characters plus gap)
|
|
271 of the buffer, we have to call SET_END_SENTINEL().
|
|
272 */
|
|
273
|
|
274
|
|
275 #ifdef MULE
|
|
276 # define GAP_CAN_HOLD_SIZE_P(buf, len) (BUF_GAP_SIZE (buf) >= (len) + 1)
|
|
277 # define SET_GAP_SENTINEL(buf) (*BUF_GPT_ADDR (buf) = 0)
|
|
278 # define BUF_END_SENTINEL_SIZE 1
|
|
279 # define SET_END_SENTINEL(buf) \
|
|
280 (*(BUF_BEG_ADDR (buf) + BUF_GAP_SIZE (buf) + BI_BUF_Z (buf) - 1) = 0)
|
|
281 #else
|
|
282 # define GAP_CAN_HOLD_SIZE_P(buf, len) (BUF_GAP_SIZE (buf) >= (len))
|
|
283 # define SET_GAP_SENTINEL(buf)
|
|
284 # define BUF_END_SENTINEL_SIZE 0
|
|
285 # define SET_END_SENTINEL(buf)
|
|
286 #endif
|
|
287
|
|
288
|
|
289 /************************************************************************/
|
|
290 /* Charcount/Bytecount conversion */
|
|
291 /************************************************************************/
|
|
292
|
|
293 /* Optimization. Do it. Live it. Love it. */
|
|
294
|
|
295 #ifdef MULE
|
|
296
|
|
297 /* We include the basic functions here that require no specific
|
|
298 knowledge of how data is Mule-encoded into a buffer other
|
|
299 than the basic (00 - 7F), (80 - 9F), (A0 - FF) scheme.
|
|
300 Anything that requires more specific knowledge goes into
|
|
301 mule-charset.c. */
|
|
302
|
|
303 /* Given a pointer to a text string and a length in bytes, return
|
|
304 the equivalent length in characters. */
|
|
305
|
|
306 Charcount
|
|
307 bytecount_to_charcount (CONST Bufbyte *ptr, Bytecount len)
|
|
308 {
|
|
309 Charcount count = 0;
|
|
310 CONST Bufbyte *end = ptr + len;
|
|
311
|
|
312 #if (LONGBITS == 32 || LONGBITS == 64)
|
|
313
|
|
314 # if (LONGBITS == 32)
|
|
315 # define LONG_BYTES 4
|
|
316 # define ALIGN_MASK 0xFFFFFFFCU
|
|
317 # define HIGH_BIT_MASK 0x80808080U
|
|
318 # else
|
|
319 # define LONG_BYTES 8
|
|
320 # define ALIGN_MASK 0xFFFFFFFFFFFFFFF8UL
|
|
321 /* I had a dream, I was being overrun with early Intel processors ... */
|
|
322 # define HIGH_BIT_MASK 0x8080808080808080UL
|
|
323 # endif
|
|
324
|
|
325 /* When we have a large number of bytes to scan, we can be trickier
|
|
326 and significantly faster by scanning them in chunks of the CPU word
|
|
327 size (assuming that they're all ASCII -- we cut out as soon as
|
|
328 we find something non-ASCII). */
|
|
329 if (len >= 12)
|
|
330 {
|
|
331 /* Determine the section in the middle of the string that's
|
|
332 amenable to this treatment. Everything has to be aligned
|
|
333 on CPU word boundaries. */
|
|
334 CONST Bufbyte *aligned_ptr =
|
|
335 (CONST Bufbyte *) (((unsigned long) (ptr + LONG_BYTES - 1)) &
|
|
336 ALIGN_MASK);
|
|
337 CONST Bufbyte *aligned_end =
|
|
338 (CONST Bufbyte *) (((unsigned long) end) & ALIGN_MASK);
|
|
339
|
|
340 /* Handle unaligned stuff at the beginning. */
|
|
341 while (ptr < aligned_ptr)
|
|
342 {
|
|
343 if (!BYTE_ASCII_P (*ptr))
|
|
344 goto bail;
|
|
345 count++, ptr++;
|
|
346 }
|
|
347 /* Now do it. */
|
|
348 while (ptr < aligned_end)
|
|
349 {
|
|
350
|
|
351 if ((* (unsigned long *) ptr) & HIGH_BIT_MASK)
|
|
352 goto bail;
|
|
353 ptr += LONG_BYTES;
|
|
354 count += LONG_BYTES;
|
|
355 }
|
|
356 }
|
|
357
|
|
358 #endif /* LONGBITS == 32 || LONGBITS == 64 */
|
|
359
|
|
360 bail:
|
|
361 while (ptr < end)
|
|
362 {
|
|
363 count++;
|
|
364 INC_CHARPTR (ptr);
|
|
365 }
|
|
366 #ifdef ERROR_CHECK_BUFPOS
|
|
367 /* Bomb out if the specified substring ends in the middle
|
|
368 of a character. Note that we might have already gotten
|
|
369 a core dump above from an invalid reference, but at least
|
|
370 we will get no farther than here. */
|
|
371 assert (ptr == end);
|
|
372 #endif
|
|
373
|
|
374 return count;
|
|
375 }
|
|
376
|
|
377 /* Given a pointer to a text string and a length in characters, return
|
|
378 the equivalent length in bytes. */
|
|
379
|
|
380 Bytecount
|
|
381 charcount_to_bytecount (CONST Bufbyte *ptr, Charcount len)
|
|
382 {
|
|
383 CONST Bufbyte *newptr = ptr;
|
|
384
|
|
385 while (len > 0)
|
|
386 {
|
|
387 INC_CHARPTR (newptr);
|
|
388 len--;
|
|
389 }
|
|
390 return newptr - ptr;
|
|
391 }
|
|
392
|
|
393 /* The next two functions are the actual meat behind the
|
|
394 bufpos-to-bytind and bytind-to-bufpos conversions. Currently
|
|
395 the method they use is fairly unsophisticated; see buffer.h.
|
|
396
|
|
397 Note that bufpos_to_bytind_func() is probably the most-called
|
|
398 function in all of XEmacs. Therefore, it must be FAST FAST FAST.
|
|
399 This is the reason why so much of the code is duplicated.
|
|
400
|
|
401 Similar considerations apply to bytind_to_bufpos_func(), although
|
|
402 less so because the function is not called so often.
|
|
403
|
|
404 #### At some point this should use a more sophisticated method;
|
|
405 see buffer.h. */
|
|
406
|
|
407 static int not_very_random_number;
|
|
408
|
|
409 Bytind
|
|
410 bufpos_to_bytind_func (struct buffer *buf, Bufpos x)
|
|
411 {
|
|
412 Bufpos bufmin;
|
|
413 Bufpos bufmax;
|
|
414 Bytind bytmin;
|
|
415 Bytind bytmax;
|
|
416 int size;
|
|
417 int forward_p;
|
|
418 Bytind retval;
|
|
419 int diff_so_far;
|
|
420 int add_to_cache = 0;
|
|
421
|
|
422 /* Check for some cached positions, for speed. */
|
|
423 if (x == BUF_PT (buf))
|
|
424 return BI_BUF_PT (buf);
|
|
425 if (x == BUF_ZV (buf))
|
|
426 return BI_BUF_ZV (buf);
|
|
427 if (x == BUF_BEGV (buf))
|
|
428 return BI_BUF_BEGV (buf);
|
|
429
|
|
430 bufmin = buf->text->mule_bufmin;
|
|
431 bufmax = buf->text->mule_bufmax;
|
|
432 bytmin = buf->text->mule_bytmin;
|
|
433 bytmax = buf->text->mule_bytmax;
|
|
434 size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p;
|
|
435
|
|
436 /* The basic idea here is that we shift the "known region" up or down
|
|
437 until it overlaps the specified position. We do this by moving
|
|
438 the upper bound of the known region up one character at a time,
|
|
439 and moving the lower bound of the known region up as necessary
|
|
440 when the size of the character just seen changes.
|
|
441
|
|
442 We optimize this, however, by first shifting the known region to
|
|
443 one of the cached points if it's close by. (We don't check BEG or
|
|
444 Z, even though they're cached; most of the time these will be the
|
|
445 same as BEGV and ZV, and when they're not, they're not likely
|
|
446 to be used.) */
|
|
447
|
|
448 if (x > bufmax)
|
|
449 {
|
|
450 Bufpos diffmax = x - bufmax;
|
|
451 Bufpos diffpt = x - BUF_PT (buf);
|
|
452 Bufpos diffzv = BUF_ZV (buf) - x;
|
|
453 /* #### This value could stand some more exploration. */
|
|
454 Charcount heuristic_hack = (bufmax - bufmin) >> 2;
|
|
455
|
|
456 /* Check if the position is closer to PT or ZV than to the
|
|
457 end of the known region. */
|
|
458
|
|
459 if (diffpt < 0)
|
|
460 diffpt = -diffpt;
|
|
461 if (diffzv < 0)
|
|
462 diffzv = -diffzv;
|
|
463
|
|
464 /* But also implement a heuristic that favors the known region
|
|
465 over PT or ZV. The reason for this is that switching to
|
|
466 PT or ZV will wipe out the knowledge in the known region,
|
|
467 which might be annoying if the known region is large and
|
|
468 PT or ZV is not that much closer than the end of the known
|
|
469 region. */
|
|
470
|
|
471 diffzv += heuristic_hack;
|
|
472 diffpt += heuristic_hack;
|
|
473 if (diffpt < diffmax && diffpt <= diffzv)
|
|
474 {
|
|
475 bufmax = bufmin = BUF_PT (buf);
|
|
476 bytmax = bytmin = BI_BUF_PT (buf);
|
|
477 /* We set the size to 1 even though it doesn't really
|
|
478 matter because the new known region contains no
|
|
479 characters. We do this because this is the most
|
|
480 likely size of the characters around the new known
|
|
481 region, and we avoid potential yuckiness that is
|
|
482 done when size == 3. */
|
|
483 size = 1;
|
|
484 }
|
|
485 if (diffzv < diffmax)
|
|
486 {
|
|
487 bufmax = bufmin = BUF_ZV (buf);
|
|
488 bytmax = bytmin = BI_BUF_ZV (buf);
|
|
489 size = 1;
|
|
490 }
|
|
491 }
|
|
492 #ifdef ERROR_CHECK_BUFPOS
|
|
493 else if (x >= bufmin)
|
|
494 abort ();
|
|
495 #endif
|
|
496 else
|
|
497 {
|
|
498 Bufpos diffmin = bufmin - x;
|
|
499 Bufpos diffpt = BUF_PT (buf) - x;
|
|
500 Bufpos diffbegv = x - BUF_BEGV (buf);
|
|
501 /* #### This value could stand some more exploration. */
|
|
502 Charcount heuristic_hack = (bufmax - bufmin) >> 2;
|
|
503
|
|
504 if (diffpt < 0)
|
|
505 diffpt = -diffpt;
|
|
506 if (diffbegv < 0)
|
|
507 diffbegv = -diffbegv;
|
|
508
|
|
509 /* But also implement a heuristic that favors the known region --
|
|
510 see above. */
|
|
511
|
|
512 diffbegv += heuristic_hack;
|
|
513 diffpt += heuristic_hack;
|
|
514
|
|
515 if (diffpt < diffmin && diffpt <= diffbegv)
|
|
516 {
|
|
517 bufmax = bufmin = BUF_PT (buf);
|
|
518 bytmax = bytmin = BI_BUF_PT (buf);
|
|
519 /* We set the size to 1 even though it doesn't really
|
|
520 matter because the new known region contains no
|
|
521 characters. We do this because this is the most
|
|
522 likely size of the characters around the new known
|
|
523 region, and we avoid potential yuckiness that is
|
|
524 done when size == 3. */
|
|
525 size = 1;
|
|
526 }
|
|
527 if (diffbegv < diffmin)
|
|
528 {
|
|
529 bufmax = bufmin = BUF_BEGV (buf);
|
|
530 bytmax = bytmin = BI_BUF_BEGV (buf);
|
|
531 size = 1;
|
|
532 }
|
|
533 }
|
|
534
|
|
535 diff_so_far = x > bufmax ? x - bufmax : bufmin - x;
|
|
536 if (diff_so_far > 50)
|
|
537 {
|
|
538 /* If we have to move more than a certain amount, then look
|
|
539 into our cache. */
|
|
540 int minval = INT_MAX;
|
|
541 int found = 0;
|
|
542 int i;
|
|
543
|
|
544 add_to_cache = 1;
|
|
545 /* I considered keeping the positions ordered. This would speed
|
|
546 up this loop, but updating the cache would take longer, so
|
|
547 it doesn't seem like it would really matter. */
|
|
548 for (i = 0; i < 16; i++)
|
|
549 {
|
|
550 int diff = buf->text->mule_bufpos_cache[i] - x;
|
|
551
|
|
552 if (diff < 0)
|
|
553 diff = -diff;
|
|
554 if (diff < minval)
|
|
555 {
|
|
556 minval = diff;
|
|
557 found = i;
|
|
558 }
|
|
559 }
|
|
560
|
|
561 if (minval < diff_so_far)
|
|
562 {
|
|
563 bufmax = bufmin = buf->text->mule_bufpos_cache[found];
|
|
564 bytmax = bytmin = buf->text->mule_bytind_cache[found];
|
|
565 size = 1;
|
|
566 }
|
|
567 }
|
|
568
|
|
569 /* It's conceivable that the caching above could lead to X being
|
|
570 the same as one of the range edges. */
|
|
571 if (x >= bufmax)
|
|
572 {
|
|
573 Bytind newmax;
|
|
574 Bytecount newsize;
|
|
575
|
|
576 forward_p = 1;
|
|
577 while (x > bufmax)
|
|
578 {
|
|
579 newmax = bytmax;
|
|
580
|
|
581 INC_BYTIND (buf, newmax);
|
|
582 newsize = newmax - bytmax;
|
|
583 if (newsize != size)
|
|
584 {
|
|
585 bufmin = bufmax;
|
|
586 bytmin = bytmax;
|
|
587 size = newsize;
|
|
588 }
|
|
589 bytmax = newmax;
|
|
590 bufmax++;
|
|
591 }
|
|
592 retval = bytmax;
|
|
593
|
|
594 /* #### Should go past the found location to reduce the number
|
|
595 of times that this function is called */
|
|
596 }
|
|
597 else /* x < bufmin */
|
|
598 {
|
|
599 Bytind newmin;
|
|
600 Bytecount newsize;
|
|
601
|
|
602 forward_p = 0;
|
|
603 while (x < bufmin)
|
|
604 {
|
|
605 newmin = bytmin;
|
|
606
|
|
607 DEC_BYTIND (buf, newmin);
|
|
608 newsize = bytmin - newmin;
|
|
609 if (newsize != size)
|
|
610 {
|
|
611 bufmax = bufmin;
|
|
612 bytmax = bytmin;
|
|
613 size = newsize;
|
|
614 }
|
|
615 bytmin = newmin;
|
|
616 bufmin--;
|
|
617 }
|
|
618 retval = bytmin;
|
|
619
|
|
620 /* #### Should go past the found location to reduce the number
|
|
621 of times that this function is called
|
|
622 */
|
|
623 }
|
|
624
|
|
625 /* If size is three, than we have to max sure that the range we
|
|
626 discovered isn't too large, because we use a fixed-length
|
|
627 table to divide by 3. */
|
|
628
|
|
629 if (size == 3)
|
|
630 {
|
|
631 int gap = bytmax - bytmin;
|
|
632 buf->text->mule_three_p = 1;
|
|
633 buf->text->mule_shifter = 1;
|
|
634
|
|
635 if (gap > MAX_BYTIND_GAP_SIZE_3)
|
|
636 {
|
|
637 if (forward_p)
|
|
638 {
|
|
639 bytmin = bytmax - MAX_BYTIND_GAP_SIZE_3;
|
|
640 bufmin = bufmax - MAX_BUFPOS_GAP_SIZE_3;
|
|
641 }
|
|
642 else
|
|
643 {
|
|
644 bytmax = bytmin + MAX_BYTIND_GAP_SIZE_3;
|
|
645 bufmax = bufmin + MAX_BUFPOS_GAP_SIZE_3;
|
|
646 }
|
|
647 }
|
|
648 }
|
|
649 else
|
|
650 {
|
|
651 buf->text->mule_three_p = 0;
|
|
652 if (size == 4)
|
|
653 buf->text->mule_shifter = 2;
|
|
654 else
|
|
655 buf->text->mule_shifter = size - 1;
|
|
656 }
|
|
657
|
|
658 buf->text->mule_bufmin = bufmin;
|
|
659 buf->text->mule_bufmax = bufmax;
|
|
660 buf->text->mule_bytmin = bytmin;
|
|
661 buf->text->mule_bytmax = bytmax;
|
|
662
|
|
663 if (add_to_cache)
|
|
664 {
|
|
665 int replace_loc;
|
|
666
|
|
667 /* We throw away a "random" cached value and replace it with
|
|
668 the new value. It doesn't actually have to be very random
|
|
669 at all, just evenly distributed.
|
|
670
|
|
671 #### It would be better to use a least-recently-used algorithm
|
|
672 or something that tries to space things out, but I'm not sure
|
|
673 it's worth it to go to the trouble of maintaining that. */
|
|
674 not_very_random_number += 621;
|
|
675 replace_loc = not_very_random_number & 15;
|
|
676 buf->text->mule_bufpos_cache[replace_loc] = x;
|
|
677 buf->text->mule_bytind_cache[replace_loc] = retval;
|
|
678 }
|
|
679
|
|
680 return retval;
|
|
681 }
|
|
682
|
|
683 /* The logic in this function is almost identical to the logic in
|
|
684 the previous function. */
|
|
685
|
|
686 Bufpos
|
|
687 bytind_to_bufpos_func (struct buffer *buf, Bytind x)
|
|
688 {
|
|
689 Bufpos bufmin;
|
|
690 Bufpos bufmax;
|
|
691 Bytind bytmin;
|
|
692 Bytind bytmax;
|
|
693 int size;
|
|
694 int forward_p;
|
|
695 Bufpos retval;
|
|
696 int diff_so_far;
|
|
697 int add_to_cache = 0;
|
|
698
|
|
699 /* Check for some cached positions, for speed. */
|
|
700 if (x == BI_BUF_PT (buf))
|
|
701 return BUF_PT (buf);
|
|
702 if (x == BI_BUF_ZV (buf))
|
|
703 return BUF_ZV (buf);
|
|
704 if (x == BI_BUF_BEGV (buf))
|
|
705 return BUF_BEGV (buf);
|
|
706
|
|
707 bufmin = buf->text->mule_bufmin;
|
|
708 bufmax = buf->text->mule_bufmax;
|
|
709 bytmin = buf->text->mule_bytmin;
|
|
710 bytmax = buf->text->mule_bytmax;
|
|
711 size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p;
|
|
712
|
|
713 /* The basic idea here is that we shift the "known region" up or down
|
|
714 until it overlaps the specified position. We do this by moving
|
|
715 the upper bound of the known region up one character at a time,
|
|
716 and moving the lower bound of the known region up as necessary
|
|
717 when the size of the character just seen changes.
|
|
718
|
|
719 We optimize this, however, by first shifting the known region to
|
|
720 one of the cached points if it's close by. (We don't check BI_BEG or
|
|
721 BI_Z, even though they're cached; most of the time these will be the
|
|
722 same as BI_BEGV and BI_ZV, and when they're not, they're not likely
|
|
723 to be used.) */
|
|
724
|
|
725 if (x > bytmax)
|
|
726 {
|
|
727 Bytind diffmax = x - bytmax;
|
|
728 Bytind diffpt = x - BI_BUF_PT (buf);
|
|
729 Bytind diffzv = BI_BUF_ZV (buf) - x;
|
|
730 /* #### This value could stand some more exploration. */
|
|
731 Bytecount heuristic_hack = (bytmax - bytmin) >> 2;
|
|
732
|
|
733 /* Check if the position is closer to PT or ZV than to the
|
|
734 end of the known region. */
|
|
735
|
|
736 if (diffpt < 0)
|
|
737 diffpt = -diffpt;
|
|
738 if (diffzv < 0)
|
|
739 diffzv = -diffzv;
|
|
740
|
|
741 /* But also implement a heuristic that favors the known region
|
|
742 over BI_PT or BI_ZV. The reason for this is that switching to
|
|
743 BI_PT or BI_ZV will wipe out the knowledge in the known region,
|
|
744 which might be annoying if the known region is large and
|
|
745 BI_PT or BI_ZV is not that much closer than the end of the known
|
|
746 region. */
|
|
747
|
|
748 diffzv += heuristic_hack;
|
|
749 diffpt += heuristic_hack;
|
|
750 if (diffpt < diffmax && diffpt <= diffzv)
|
|
751 {
|
|
752 bufmax = bufmin = BUF_PT (buf);
|
|
753 bytmax = bytmin = BI_BUF_PT (buf);
|
|
754 /* We set the size to 1 even though it doesn't really
|
|
755 matter because the new known region contains no
|
|
756 characters. We do this because this is the most
|
|
757 likely size of the characters around the new known
|
|
758 region, and we avoid potential yuckiness that is
|
|
759 done when size == 3. */
|
|
760 size = 1;
|
|
761 }
|
|
762 if (diffzv < diffmax)
|
|
763 {
|
|
764 bufmax = bufmin = BUF_ZV (buf);
|
|
765 bytmax = bytmin = BI_BUF_ZV (buf);
|
|
766 size = 1;
|
|
767 }
|
|
768 }
|
|
769 #ifdef ERROR_CHECK_BUFPOS
|
|
770 else if (x >= bytmin)
|
|
771 abort ();
|
|
772 #endif
|
|
773 else
|
|
774 {
|
|
775 Bytind diffmin = bytmin - x;
|
|
776 Bytind diffpt = BI_BUF_PT (buf) - x;
|
|
777 Bytind diffbegv = x - BI_BUF_BEGV (buf);
|
|
778 /* #### This value could stand some more exploration. */
|
|
779 Bytecount heuristic_hack = (bytmax - bytmin) >> 2;
|
|
780
|
|
781 if (diffpt < 0)
|
|
782 diffpt = -diffpt;
|
|
783 if (diffbegv < 0)
|
|
784 diffbegv = -diffbegv;
|
|
785
|
|
786 /* But also implement a heuristic that favors the known region --
|
|
787 see above. */
|
|
788
|
|
789 diffbegv += heuristic_hack;
|
|
790 diffpt += heuristic_hack;
|
|
791
|
|
792 if (diffpt < diffmin && diffpt <= diffbegv)
|
|
793 {
|
|
794 bufmax = bufmin = BUF_PT (buf);
|
|
795 bytmax = bytmin = BI_BUF_PT (buf);
|
|
796 /* We set the size to 1 even though it doesn't really
|
|
797 matter because the new known region contains no
|
|
798 characters. We do this because this is the most
|
|
799 likely size of the characters around the new known
|
|
800 region, and we avoid potential yuckiness that is
|
|
801 done when size == 3. */
|
|
802 size = 1;
|
|
803 }
|
|
804 if (diffbegv < diffmin)
|
|
805 {
|
|
806 bufmax = bufmin = BUF_BEGV (buf);
|
|
807 bytmax = bytmin = BI_BUF_BEGV (buf);
|
|
808 size = 1;
|
|
809 }
|
|
810 }
|
|
811
|
|
812 diff_so_far = x > bytmax ? x - bytmax : bytmin - x;
|
|
813 if (diff_so_far > 50)
|
|
814 {
|
|
815 /* If we have to move more than a certain amount, then look
|
|
816 into our cache. */
|
|
817 int minval = INT_MAX;
|
|
818 int found = 0;
|
|
819 int i;
|
|
820
|
|
821 add_to_cache = 1;
|
|
822 /* I considered keeping the positions ordered. This would speed
|
|
823 up this loop, but updating the cache would take longer, so
|
|
824 it doesn't seem like it would really matter. */
|
|
825 for (i = 0; i < 16; i++)
|
|
826 {
|
|
827 int diff = buf->text->mule_bytind_cache[i] - x;
|
|
828
|
|
829 if (diff < 0)
|
|
830 diff = -diff;
|
|
831 if (diff < minval)
|
|
832 {
|
|
833 minval = diff;
|
|
834 found = i;
|
|
835 }
|
|
836 }
|
|
837
|
|
838 if (minval < diff_so_far)
|
|
839 {
|
|
840 bufmax = bufmin = buf->text->mule_bufpos_cache[found];
|
|
841 bytmax = bytmin = buf->text->mule_bytind_cache[found];
|
|
842 size = 1;
|
|
843 }
|
|
844 }
|
|
845
|
|
846 /* It's conceivable that the caching above could lead to X being
|
|
847 the same as one of the range edges. */
|
|
848 if (x >= bytmax)
|
|
849 {
|
|
850 Bytind newmax;
|
|
851 Bytecount newsize;
|
|
852
|
|
853 forward_p = 1;
|
|
854 while (x > bytmax)
|
|
855 {
|
|
856 newmax = bytmax;
|
|
857
|
|
858 INC_BYTIND (buf, newmax);
|
|
859 newsize = newmax - bytmax;
|
|
860 if (newsize != size)
|
|
861 {
|
|
862 bufmin = bufmax;
|
|
863 bytmin = bytmax;
|
|
864 size = newsize;
|
|
865 }
|
|
866 bytmax = newmax;
|
|
867 bufmax++;
|
|
868 }
|
|
869 retval = bufmax;
|
|
870
|
|
871 /* #### Should go past the found location to reduce the number
|
|
872 of times that this function is called */
|
|
873 }
|
|
874 else /* x <= bytmin */
|
|
875 {
|
|
876 Bytind newmin;
|
|
877 Bytecount newsize;
|
|
878
|
|
879 forward_p = 0;
|
|
880 while (x < bytmin)
|
|
881 {
|
|
882 newmin = bytmin;
|
|
883
|
|
884 DEC_BYTIND (buf, newmin);
|
|
885 newsize = bytmin - newmin;
|
|
886 if (newsize != size)
|
|
887 {
|
|
888 bufmax = bufmin;
|
|
889 bytmax = bytmin;
|
|
890 size = newsize;
|
|
891 }
|
|
892 bytmin = newmin;
|
|
893 bufmin--;
|
|
894 }
|
|
895 retval = bufmin;
|
|
896
|
|
897 /* #### Should go past the found location to reduce the number
|
|
898 of times that this function is called
|
|
899 */
|
|
900 }
|
|
901
|
|
902 /* If size is three, than we have to max sure that the range we
|
|
903 discovered isn't too large, because we use a fixed-length
|
|
904 table to divide by 3. */
|
|
905
|
|
906 if (size == 3)
|
|
907 {
|
|
908 int gap = bytmax - bytmin;
|
|
909 buf->text->mule_three_p = 1;
|
|
910 buf->text->mule_shifter = 1;
|
|
911
|
|
912 if (gap > MAX_BYTIND_GAP_SIZE_3)
|
|
913 {
|
|
914 if (forward_p)
|
|
915 {
|
|
916 bytmin = bytmax - MAX_BYTIND_GAP_SIZE_3;
|
|
917 bufmin = bufmax - MAX_BUFPOS_GAP_SIZE_3;
|
|
918 }
|
|
919 else
|
|
920 {
|
|
921 bytmax = bytmin + MAX_BYTIND_GAP_SIZE_3;
|
|
922 bufmax = bufmin + MAX_BUFPOS_GAP_SIZE_3;
|
|
923 }
|
|
924 }
|
|
925 }
|
|
926 else
|
|
927 {
|
|
928 buf->text->mule_three_p = 0;
|
|
929 if (size == 4)
|
|
930 buf->text->mule_shifter = 2;
|
|
931 else
|
|
932 buf->text->mule_shifter = size - 1;
|
|
933 }
|
|
934
|
|
935 buf->text->mule_bufmin = bufmin;
|
|
936 buf->text->mule_bufmax = bufmax;
|
|
937 buf->text->mule_bytmin = bytmin;
|
|
938 buf->text->mule_bytmax = bytmax;
|
|
939
|
|
940 if (add_to_cache)
|
|
941 {
|
|
942 int replace_loc;
|
|
943
|
|
944 /* We throw away a "random" cached value and replace it with
|
|
945 the new value. It doesn't actually have to be very random
|
|
946 at all, just evenly distributed.
|
|
947
|
|
948 #### It would be better to use a least-recently-used algorithm
|
|
949 or something that tries to space things out, but I'm not sure
|
|
950 it's worth it to go to the trouble of maintaining that. */
|
|
951 not_very_random_number += 621;
|
|
952 replace_loc = not_very_random_number & 15;
|
|
953 buf->text->mule_bufpos_cache[replace_loc] = retval;
|
|
954 buf->text->mule_bytind_cache[replace_loc] = x;
|
|
955 }
|
|
956
|
|
957 return retval;
|
|
958 }
|
|
959
|
|
960 /* Text of length BYTELENGTH and CHARLENGTH (in different units)
|
|
961 was inserted at bufpos START. */
|
|
962
|
|
963 static void
|
|
964 buffer_mule_signal_inserted_region (struct buffer *buf, Bufpos start,
|
|
965 Bytecount bytelength,
|
|
966 Charcount charlength)
|
|
967 {
|
|
968 int size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p;
|
|
969 int i;
|
|
970
|
|
971 /* Adjust the cache of known positions. */
|
|
972 for (i = 0; i < 16; i++)
|
|
973 {
|
|
974
|
|
975 if (buf->text->mule_bufpos_cache[i] > start)
|
|
976 {
|
|
977 buf->text->mule_bufpos_cache[i] += charlength;
|
|
978 buf->text->mule_bytind_cache[i] += bytelength;
|
|
979 }
|
|
980 }
|
|
981
|
|
982 if (start >= buf->text->mule_bufmax)
|
|
983 return;
|
|
984
|
|
985 /* The insertion is either before the known region, in which case
|
|
986 it shoves it forward; or within the known region, in which case
|
|
987 it shoves the end forward. (But it may make the known region
|
|
988 inconsistent, so we may have to shorten it.) */
|
|
989
|
|
990 if (start <= buf->text->mule_bufmin)
|
|
991 {
|
|
992 buf->text->mule_bufmin += charlength;
|
|
993 buf->text->mule_bufmax += charlength;
|
|
994 buf->text->mule_bytmin += bytelength;
|
|
995 buf->text->mule_bytmax += bytelength;
|
|
996 }
|
|
997 else
|
|
998 {
|
|
999 Bufpos end = start + charlength;
|
|
1000 /* the insertion point divides the known region in two.
|
|
1001 Keep the longer half, at least, and expand into the
|
|
1002 inserted chunk as much as possible. */
|
|
1003
|
|
1004 if (start - buf->text->mule_bufmin > buf->text->mule_bufmax - start)
|
|
1005 {
|
|
1006 Bytind bytestart = (buf->text->mule_bytmin
|
|
1007 + size * (start - buf->text->mule_bufmin));
|
|
1008 Bytind bytenew;
|
|
1009
|
|
1010 while (start < end)
|
|
1011 {
|
|
1012 bytenew = bytestart;
|
|
1013 INC_BYTIND (buf, bytenew);
|
|
1014 if (bytenew - bytestart != size)
|
|
1015 break;
|
|
1016 start++;
|
|
1017 bytestart = bytenew;
|
|
1018 }
|
|
1019 if (start != end)
|
|
1020 {
|
|
1021 buf->text->mule_bufmax = start;
|
|
1022 buf->text->mule_bytmax = bytestart;
|
|
1023 }
|
|
1024 else
|
|
1025 {
|
|
1026 buf->text->mule_bufmax += charlength;
|
|
1027 buf->text->mule_bytmax += bytelength;
|
|
1028 }
|
|
1029 }
|
|
1030 else
|
|
1031 {
|
|
1032 Bytind byteend = (buf->text->mule_bytmin
|
|
1033 + size * (start - buf->text->mule_bufmin)
|
|
1034 + bytelength);
|
|
1035 Bytind bytenew;
|
|
1036
|
|
1037 buf->text->mule_bufmax += charlength;
|
|
1038 buf->text->mule_bytmax += bytelength;
|
|
1039
|
|
1040 while (end > start)
|
|
1041 {
|
|
1042 bytenew = byteend;
|
|
1043 DEC_BYTIND (buf, bytenew);
|
|
1044 if (byteend - bytenew != size)
|
|
1045 break;
|
|
1046 end--;
|
|
1047 byteend = bytenew;
|
|
1048 }
|
|
1049 if (start != end)
|
|
1050 {
|
|
1051 buf->text->mule_bufmin = end;
|
|
1052 buf->text->mule_bytmin = byteend;
|
|
1053 }
|
|
1054 }
|
|
1055 }
|
|
1056 }
|
|
1057
|
|
1058 /* Text from START to END (equivalent in Bytinds: from BI_START to
|
|
1059 BI_END) was deleted. */
|
|
1060
|
|
1061 static void
|
|
1062 buffer_mule_signal_deleted_region (struct buffer *buf, Bufpos start,
|
|
1063 Bufpos end, Bytind bi_start,
|
|
1064 Bytind bi_end)
|
|
1065 {
|
|
1066 int i;
|
|
1067
|
|
1068 /* Adjust the cache of known positions. */
|
|
1069 for (i = 0; i < 16; i++)
|
|
1070 {
|
|
1071 /* After the end; gets shoved backward */
|
|
1072 if (buf->text->mule_bufpos_cache[i] > end)
|
|
1073 {
|
|
1074 buf->text->mule_bufpos_cache[i] -= end - start;
|
|
1075 buf->text->mule_bytind_cache[i] -= bi_end - bi_start;
|
|
1076 }
|
|
1077 /* In the range; moves to start of range */
|
|
1078 else if (buf->text->mule_bufpos_cache[i] > start)
|
|
1079 {
|
|
1080 buf->text->mule_bufpos_cache[i] = start;
|
|
1081 buf->text->mule_bytind_cache[i] = bi_start;
|
|
1082 }
|
|
1083 }
|
|
1084
|
|
1085 /* We don't care about any text after the end of the known region. */
|
|
1086
|
|
1087 end = min (end, buf->text->mule_bufmax);
|
|
1088 bi_end = min (bi_end, buf->text->mule_bytmax);
|
|
1089 if (start >= end)
|
|
1090 return;
|
|
1091
|
|
1092 /* The end of the known region offsets by the total amount of deletion,
|
|
1093 since it's all before it. */
|
|
1094
|
|
1095 buf->text->mule_bufmax -= end - start;
|
|
1096 buf->text->mule_bytmax -= bi_end - bi_start;
|
|
1097
|
|
1098 /* Now we don't care about any text after the start of the known region. */
|
|
1099
|
|
1100 end = min (end, buf->text->mule_bufmin);
|
|
1101 bi_end = min (bi_end, buf->text->mule_bytmin);
|
|
1102 if (start >= end)
|
|
1103 return;
|
|
1104
|
|
1105 buf->text->mule_bufmin -= end - start;
|
|
1106 buf->text->mule_bytmin -= bi_end - bi_start;
|
|
1107 }
|
|
1108
|
|
1109 #endif /* MULE */
|
|
1110
|
|
1111 #ifdef ERROR_CHECK_BUFPOS
|
|
1112
|
|
1113 Bytind
|
|
1114 bufpos_to_bytind (struct buffer *buf, Bufpos x)
|
|
1115 {
|
|
1116 Bytind retval = real_bufpos_to_bytind (buf, x);
|
|
1117 ASSERT_VALID_BYTIND_UNSAFE (buf, retval);
|
|
1118 return retval;
|
|
1119 }
|
|
1120
|
|
1121 Bufpos
|
|
1122 bytind_to_bufpos (struct buffer *buf, Bytind x)
|
|
1123 {
|
|
1124 ASSERT_VALID_BYTIND_UNSAFE (buf, x);
|
|
1125 return real_bytind_to_bufpos (buf, x);
|
|
1126 }
|
|
1127
|
|
1128 #endif /* ERROR_CHECK_BUFPOS */
|
|
1129
|
|
1130
|
|
1131 /************************************************************************/
|
|
1132 /* verifying buffer and string positions */
|
|
1133 /************************************************************************/
|
|
1134
|
|
1135 /* Functions below are tagged with either _byte or _char indicating
|
|
1136 whether they return byte or character positions. For a buffer,
|
|
1137 a character position is a "Bufpos" and a byte position is a "Bytind".
|
|
1138 For strings, these are sometimes typed using "Charcount" and
|
|
1139 "Bytecount". */
|
|
1140
|
|
1141 /* Flags for the functions below are:
|
|
1142
|
|
1143 GB_ALLOW_PAST_ACCESSIBLE
|
|
1144
|
|
1145 Allow positions to range over the entire buffer (BUF_BEG to BUF_Z),
|
|
1146 rather than just the accessible portion (BUF_BEGV to BUF_ZV).
|
|
1147 For strings, this flag has no effect.
|
|
1148
|
|
1149 GB_COERCE_RANGE
|
|
1150
|
|
1151 If the position is outside the allowable range, return the lower
|
|
1152 or upper bound of the range, whichever is closer to the specified
|
|
1153 position.
|
|
1154
|
|
1155 GB_NO_ERROR_IF_BAD
|
|
1156
|
|
1157 If the position is outside the allowable range, return -1.
|
|
1158
|
|
1159 GB_NEGATIVE_FROM_END
|
|
1160
|
|
1161 If a value is negative, treat it as an offset from the end.
|
|
1162 Only applies to strings.
|
|
1163
|
|
1164 The following additional flags apply only to the functions
|
|
1165 that return ranges:
|
|
1166
|
|
1167 GB_ALLOW_NIL
|
|
1168
|
|
1169 Either or both positions can be nil. If FROM is nil,
|
|
1170 FROM_OUT will contain the lower bound of the allowed range.
|
|
1171 If TO is nil, TO_OUT will contain the upper bound of the
|
|
1172 allowed range.
|
|
1173
|
|
1174 GB_CHECK_ORDER
|
|
1175
|
|
1176 FROM must contain the lower bound and TO the upper bound
|
|
1177 of the range. If the positions are reversed, an error is
|
|
1178 signalled.
|
|
1179
|
|
1180 The following is a combination flag:
|
|
1181
|
|
1182 GB_HISTORICAL_STRING_BEHAVIOR
|
|
1183
|
|
1184 Equivalent to (GB_NEGATIVE_FROM_END | GB_ALLOW_NIL).
|
|
1185 */
|
|
1186
|
|
1187 /* Return a buffer position stored in a Lisp_Object. Full
|
|
1188 error-checking is done on the position. Flags can be specified to
|
|
1189 control the behavior of out-of-range values. The default behavior
|
|
1190 is to require that the position is within the accessible part of
|
|
1191 the buffer (BEGV and ZV), and to signal an error if the position is
|
|
1192 out of range.
|
|
1193
|
|
1194 */
|
|
1195
|
|
1196 Bufpos
|
|
1197 get_buffer_pos_char (struct buffer *b, Lisp_Object pos, unsigned int flags)
|
|
1198 {
|
|
1199 Bufpos ind;
|
|
1200 Bufpos min_allowed, max_allowed;
|
|
1201
|
|
1202 CHECK_INT_COERCE_MARKER (pos);
|
|
1203 ind = XINT (pos);
|
|
1204 min_allowed = flags & GB_ALLOW_PAST_ACCESSIBLE ? BUF_BEG (b) : BUF_BEGV (b);
|
|
1205 max_allowed = flags & GB_ALLOW_PAST_ACCESSIBLE ? BUF_Z (b) : BUF_ZV (b);
|
|
1206
|
|
1207 if (ind < min_allowed || ind > max_allowed)
|
|
1208 {
|
|
1209 if (flags & GB_COERCE_RANGE)
|
|
1210 ind = ind < min_allowed ? min_allowed : max_allowed;
|
|
1211 else if (flags & GB_NO_ERROR_IF_BAD)
|
|
1212 ind = -1;
|
|
1213 else
|
|
1214 {
|
|
1215 Lisp_Object buffer;
|
|
1216 XSETBUFFER (buffer, b);
|
|
1217 args_out_of_range (buffer, pos);
|
|
1218 }
|
|
1219 }
|
|
1220
|
|
1221 return ind;
|
|
1222 }
|
|
1223
|
|
1224 Bytind
|
|
1225 get_buffer_pos_byte (struct buffer *b, Lisp_Object pos, unsigned int flags)
|
|
1226 {
|
|
1227 Bufpos bpos = get_buffer_pos_char (b, pos, flags);
|
|
1228 if (bpos < 0) /* could happen with GB_NO_ERROR_IF_BAD */
|
|
1229 return -1;
|
|
1230 return bufpos_to_bytind (b, bpos);
|
|
1231 }
|
|
1232
|
|
1233 /* Return a pair of buffer positions representing a range of text,
|
|
1234 taken from a pair of Lisp_Objects. Full error-checking is
|
|
1235 done on the positions. Flags can be specified to control the
|
|
1236 behavior of out-of-range values. The default behavior is to
|
|
1237 allow the range bounds to be specified in either order
|
|
1238 (however, FROM_OUT will always be the lower bound of the range
|
|
1239 and TO_OUT the upper bound),to require that the positions
|
|
1240 are within the accessible part of the buffer (BEGV and ZV),
|
|
1241 and to signal an error if the positions are out of range.
|
|
1242 */
|
|
1243
|
|
1244 void
|
|
1245 get_buffer_range_char (struct buffer *b, Lisp_Object from, Lisp_Object to,
|
|
1246 Bufpos *from_out, Bufpos *to_out, unsigned int flags)
|
|
1247 {
|
|
1248 Bufpos min_allowed, max_allowed;
|
|
1249
|
|
1250 min_allowed = (flags & GB_ALLOW_PAST_ACCESSIBLE) ?
|
|
1251 BUF_BEG (b) : BUF_BEGV (b);
|
|
1252 max_allowed = (flags & GB_ALLOW_PAST_ACCESSIBLE) ?
|
|
1253 BUF_Z (b) : BUF_ZV (b);
|
|
1254
|
|
1255 if (NILP (from) && (flags & GB_ALLOW_NIL))
|
|
1256 *from_out = min_allowed;
|
|
1257 else
|
|
1258 *from_out = get_buffer_pos_char (b, from, flags | GB_NO_ERROR_IF_BAD);
|
|
1259
|
|
1260 if (NILP (to) && (flags & GB_ALLOW_NIL))
|
|
1261 *to_out = max_allowed;
|
|
1262 else
|
|
1263 *to_out = get_buffer_pos_char (b, to, flags | GB_NO_ERROR_IF_BAD);
|
|
1264
|
|
1265 if ((*from_out < 0 || *to_out < 0) && !(flags & GB_NO_ERROR_IF_BAD))
|
|
1266 {
|
|
1267 Lisp_Object buffer;
|
|
1268 XSETBUFFER (buffer, b);
|
|
1269 args_out_of_range_3 (buffer, from, to);
|
|
1270 }
|
|
1271
|
|
1272 if (*from_out >= 0 && *to_out >= 0 && *from_out > *to_out)
|
|
1273 {
|
|
1274 if (flags & GB_CHECK_ORDER)
|
|
1275 signal_simple_error_2 ("start greater than end", from, to);
|
|
1276 else
|
|
1277 {
|
|
1278 Bufpos temp = *from_out;
|
|
1279 *from_out = *to_out;
|
|
1280 *to_out = temp;
|
|
1281 }
|
|
1282 }
|
|
1283 }
|
|
1284
|
|
1285 void
|
|
1286 get_buffer_range_byte (struct buffer *b, Lisp_Object from, Lisp_Object to,
|
|
1287 Bytind *from_out, Bytind *to_out, unsigned int flags)
|
|
1288 {
|
|
1289 Bufpos s, e;
|
|
1290
|
|
1291 get_buffer_range_char (b, from, to, &s, &e, flags);
|
|
1292 if (s >= 0)
|
|
1293 *from_out = bufpos_to_bytind (b, s);
|
|
1294 else /* could happen with GB_NO_ERROR_IF_BAD */
|
|
1295 *from_out = -1;
|
|
1296 if (e >= 0)
|
|
1297 *to_out = bufpos_to_bytind (b, e);
|
|
1298 else
|
|
1299 *to_out = -1;
|
|
1300 }
|
|
1301
|
|
1302 static Charcount
|
|
1303 get_string_pos_char_1 (Lisp_Object string, Lisp_Object pos, unsigned int flags,
|
|
1304 Charcount known_length)
|
|
1305 {
|
|
1306 Charcount ccpos;
|
|
1307 Charcount min_allowed = 0;
|
|
1308 Charcount max_allowed = known_length;
|
|
1309
|
|
1310 /* Computation of KNOWN_LENGTH is potentially expensive so we pass
|
|
1311 it in. */
|
|
1312 CHECK_INT (pos);
|
|
1313 ccpos = XINT (pos);
|
|
1314 if (ccpos < 0 && flags & GB_NEGATIVE_FROM_END)
|
|
1315 ccpos += max_allowed;
|
|
1316
|
|
1317 if (ccpos < min_allowed || ccpos > max_allowed)
|
|
1318 {
|
|
1319 if (flags & GB_COERCE_RANGE)
|
|
1320 ccpos = ccpos < min_allowed ? min_allowed : max_allowed;
|
|
1321 else if (flags & GB_NO_ERROR_IF_BAD)
|
|
1322 ccpos = -1;
|
|
1323 else
|
|
1324 args_out_of_range (string, pos);
|
|
1325 }
|
|
1326
|
|
1327 return ccpos;
|
|
1328 }
|
|
1329
|
|
1330 Charcount
|
|
1331 get_string_pos_char (Lisp_Object string, Lisp_Object pos, unsigned int flags)
|
|
1332 {
|
|
1333 return get_string_pos_char_1 (string, pos, flags,
|
|
1334 XSTRING_CHAR_LENGTH (string));
|
|
1335 }
|
|
1336
|
|
1337 Bytecount
|
|
1338 get_string_pos_byte (Lisp_Object string, Lisp_Object pos, unsigned int flags)
|
|
1339 {
|
|
1340 Charcount ccpos = get_string_pos_char (string, pos, flags);
|
|
1341 if (ccpos < 0) /* could happen with GB_NO_ERROR_IF_BAD */
|
|
1342 return -1;
|
|
1343 return charcount_to_bytecount (XSTRING_DATA (string), ccpos);
|
|
1344 }
|
|
1345
|
|
1346 void
|
|
1347 get_string_range_char (Lisp_Object string, Lisp_Object from, Lisp_Object to,
|
|
1348 Charcount *from_out, Charcount *to_out,
|
|
1349 unsigned int flags)
|
|
1350 {
|
|
1351 Charcount min_allowed = 0;
|
|
1352 Charcount max_allowed = XSTRING_CHAR_LENGTH (string);
|
|
1353
|
|
1354 if (NILP (from) && (flags & GB_ALLOW_NIL))
|
|
1355 *from_out = min_allowed;
|
|
1356 else
|
|
1357 *from_out = get_string_pos_char_1 (string, from,
|
|
1358 flags | GB_NO_ERROR_IF_BAD,
|
|
1359 max_allowed);
|
|
1360
|
|
1361 if (NILP (to) && (flags & GB_ALLOW_NIL))
|
|
1362 *to_out = max_allowed;
|
|
1363 else
|
|
1364 *to_out = get_string_pos_char_1 (string, to,
|
|
1365 flags | GB_NO_ERROR_IF_BAD,
|
|
1366 max_allowed);
|
|
1367
|
|
1368 if ((*from_out < 0 || *to_out < 0) && !(flags & GB_NO_ERROR_IF_BAD))
|
|
1369 args_out_of_range_3 (string, from, to);
|
|
1370
|
|
1371 if (*from_out >= 0 && *to_out >= 0 && *from_out > *to_out)
|
|
1372 {
|
|
1373 if (flags & GB_CHECK_ORDER)
|
|
1374 signal_simple_error_2 ("start greater than end", from, to);
|
|
1375 else
|
|
1376 {
|
|
1377 Bufpos temp = *from_out;
|
|
1378 *from_out = *to_out;
|
|
1379 *to_out = temp;
|
|
1380 }
|
|
1381 }
|
|
1382 }
|
|
1383
|
|
1384 void
|
|
1385 get_string_range_byte (Lisp_Object string, Lisp_Object from, Lisp_Object to,
|
|
1386 Bytecount *from_out, Bytecount *to_out,
|
|
1387 unsigned int flags)
|
|
1388 {
|
|
1389 Charcount s, e;
|
|
1390
|
|
1391 get_string_range_char (string, from, to, &s, &e, flags);
|
|
1392 if (s >= 0)
|
|
1393 *from_out = charcount_to_bytecount (XSTRING_DATA (string), s);
|
|
1394 else /* could happen with GB_NO_ERROR_IF_BAD */
|
|
1395 *from_out = -1;
|
|
1396 if (e >= 0)
|
|
1397 *to_out = charcount_to_bytecount (XSTRING_DATA (string), e);
|
|
1398 else
|
|
1399 *to_out = -1;
|
|
1400
|
|
1401 }
|
|
1402
|
|
1403 Bufpos
|
|
1404 get_buffer_or_string_pos_char (Lisp_Object object, Lisp_Object pos,
|
|
1405 unsigned int flags)
|
|
1406 {
|
|
1407 return STRINGP (object) ?
|
|
1408 get_string_pos_char (object, pos, flags) :
|
|
1409 get_buffer_pos_char (XBUFFER (object), pos, flags);
|
|
1410 }
|
|
1411
|
|
1412 Bytind
|
|
1413 get_buffer_or_string_pos_byte (Lisp_Object object, Lisp_Object pos,
|
|
1414 unsigned int flags)
|
|
1415 {
|
|
1416 return STRINGP (object) ?
|
|
1417 get_string_pos_byte (object, pos, flags) :
|
|
1418 get_buffer_pos_byte (XBUFFER (object), pos, flags);
|
|
1419 }
|
|
1420
|
|
1421 void
|
|
1422 get_buffer_or_string_range_char (Lisp_Object object, Lisp_Object from,
|
|
1423 Lisp_Object to, Bufpos *from_out,
|
|
1424 Bufpos *to_out, unsigned int flags)
|
|
1425 {
|
|
1426 if (STRINGP (object))
|
|
1427 get_string_range_char (object, from, to, from_out, to_out, flags);
|
|
1428 else
|
|
1429 get_buffer_range_char (XBUFFER (object), from, to, from_out, to_out, flags);
|
|
1430 }
|
|
1431
|
|
1432 void
|
|
1433 get_buffer_or_string_range_byte (Lisp_Object object, Lisp_Object from,
|
|
1434 Lisp_Object to, Bytind *from_out,
|
|
1435 Bytind *to_out, unsigned int flags)
|
|
1436 {
|
|
1437 if (STRINGP (object))
|
|
1438 get_string_range_byte (object, from, to, from_out, to_out, flags);
|
|
1439 else
|
|
1440 get_buffer_range_byte (XBUFFER (object), from, to, from_out, to_out, flags);
|
|
1441 }
|
|
1442
|
|
1443 Bufpos
|
|
1444 buffer_or_string_accessible_begin_char (Lisp_Object object)
|
|
1445 {
|
|
1446 return STRINGP (object) ? 0 : BUF_BEGV (XBUFFER (object));
|
|
1447 }
|
|
1448
|
|
1449 Bufpos
|
|
1450 buffer_or_string_accessible_end_char (Lisp_Object object)
|
|
1451 {
|
|
1452 return STRINGP (object) ?
|
|
1453 XSTRING_CHAR_LENGTH (object) : BUF_ZV (XBUFFER (object));
|
|
1454 }
|
|
1455
|
|
1456 Bytind
|
|
1457 buffer_or_string_accessible_begin_byte (Lisp_Object object)
|
|
1458 {
|
|
1459 return STRINGP (object) ? 0 : BI_BUF_BEGV (XBUFFER (object));
|
|
1460 }
|
|
1461
|
|
1462 Bytind
|
|
1463 buffer_or_string_accessible_end_byte (Lisp_Object object)
|
|
1464 {
|
|
1465 return STRINGP (object) ?
|
|
1466 XSTRING_LENGTH (object) : BI_BUF_ZV (XBUFFER (object));
|
|
1467 }
|
|
1468
|
|
1469 Bufpos
|
|
1470 buffer_or_string_absolute_begin_char (Lisp_Object object)
|
|
1471 {
|
|
1472 return STRINGP (object) ? 0 : BUF_BEG (XBUFFER (object));
|
|
1473 }
|
|
1474
|
|
1475 Bufpos
|
|
1476 buffer_or_string_absolute_end_char (Lisp_Object object)
|
|
1477 {
|
|
1478 return STRINGP (object) ?
|
|
1479 XSTRING_CHAR_LENGTH (object) : BUF_Z (XBUFFER (object));
|
|
1480 }
|
|
1481
|
|
1482 Bytind
|
|
1483 buffer_or_string_absolute_begin_byte (Lisp_Object object)
|
|
1484 {
|
|
1485 return STRINGP (object) ? 0 : BI_BUF_BEG (XBUFFER (object));
|
|
1486 }
|
|
1487
|
|
1488 Bytind
|
|
1489 buffer_or_string_absolute_end_byte (Lisp_Object object)
|
|
1490 {
|
|
1491 return STRINGP (object) ?
|
|
1492 XSTRING_LENGTH (object) : BI_BUF_Z (XBUFFER (object));
|
|
1493 }
|
|
1494
|
|
1495
|
|
1496 /************************************************************************/
|
|
1497 /* point and marker adjustment */
|
|
1498 /************************************************************************/
|
|
1499
|
|
1500 /* just_set_point() is the only place `PT' is an lvalue in all of emacs.
|
|
1501 This function is called from set_buffer_point(), which is the function
|
|
1502 that the SET_PT and BUF_SET_PT macros expand into, and from the
|
|
1503 routines below that insert and delete text. (This is in cases where
|
|
1504 the point marker logically doesn't move but PT (being a byte index)
|
|
1505 needs to get adjusted.) */
|
|
1506
|
|
1507 /* Set point to a specified value. This is used only when the value
|
|
1508 of point changes due to an insert or delete; it does not represent
|
|
1509 a conceptual change in point as a marker. In particular, point is
|
|
1510 not crossing any interval boundaries, so there's no need to use the
|
|
1511 usual SET_PT macro. In fact it would be incorrect to do so, because
|
|
1512 either the old or the new value of point is out of synch with the
|
|
1513 current set of intervals. */
|
|
1514
|
|
1515 /* This gets called more than enough to make the function call
|
|
1516 overhead a significant factor so we've turned it into a macro. */
|
|
1517 #define JUST_SET_POINT(buf, bufpos, ind) \
|
|
1518 do \
|
|
1519 { \
|
|
1520 buf->bufpt = (bufpos); \
|
|
1521 buf->pt = (ind); \
|
|
1522 } while (0)
|
|
1523
|
|
1524 /* Set a buffer's point. */
|
|
1525
|
|
1526 void
|
|
1527 set_buffer_point (struct buffer *buf, Bufpos bufpos, Bytind bytpos)
|
|
1528 {
|
|
1529 assert (bytpos >= BI_BUF_BEGV (buf) && bytpos <= BI_BUF_ZV (buf));
|
|
1530 if (bytpos == BI_BUF_PT (buf))
|
|
1531 return;
|
|
1532 JUST_SET_POINT (buf, bufpos, bytpos);
|
|
1533 MARK_POINT_CHANGED;
|
|
1534 assert (MARKERP (buf->point_marker));
|
|
1535 XMARKER (buf->point_marker)->memind =
|
|
1536 bytind_to_memind (buf, bytpos);
|
|
1537
|
|
1538 /* FSF makes sure that PT is not being set within invisible text.
|
|
1539 However, this is the wrong place for that check. The check
|
|
1540 should happen only at the next redisplay. */
|
|
1541
|
|
1542 /* Some old coder said:
|
|
1543
|
|
1544 "If there were to be hooks which were run when point entered/left an
|
|
1545 extent, this would be the place to put them.
|
|
1546
|
|
1547 However, it's probably the case that such hooks should be implemented
|
|
1548 using a post-command-hook instead, to avoid running the hooks as a
|
|
1549 result of intermediate motion inside of save-excursions, for example."
|
|
1550
|
|
1551 I definitely agree with this. PT gets moved all over the place
|
|
1552 and it would be a Bad Thing for any hooks to get called, both for
|
|
1553 the reason above and because many callers are not prepared for
|
|
1554 a GC within this function. --ben
|
|
1555 */
|
|
1556 }
|
|
1557
|
|
1558 /* Do the correct marker-like adjustment on MPOS (see below). FROM, TO,
|
|
1559 and AMOUNT are as in adjust_markers(). If MPOS doesn't need to be
|
|
1560 adjusted, nothing will happen. */
|
|
1561 Memind
|
|
1562 do_marker_adjustment (Memind mpos, Memind from,
|
|
1563 Memind to, Bytecount amount)
|
|
1564 {
|
|
1565 if (amount > 0)
|
|
1566 {
|
|
1567 if (mpos > to && mpos < to + amount)
|
|
1568 mpos = to + amount;
|
|
1569 }
|
|
1570 else
|
|
1571 {
|
|
1572 if (mpos > from + amount && mpos <= from)
|
|
1573 mpos = from + amount;
|
|
1574 }
|
|
1575 if (mpos > from && mpos <= to)
|
|
1576 mpos += amount;
|
|
1577 return mpos;
|
|
1578 }
|
|
1579
|
|
1580 /* Do the following:
|
|
1581
|
|
1582 (1) Add `amount' to the position of every marker in the current buffer
|
|
1583 whose current position is between `from' (exclusive) and `to' (inclusive).
|
|
1584
|
|
1585 (2) Also, any markers past the outside of that interval, in the direction
|
|
1586 of adjustment, are first moved back to the near end of the interval
|
|
1587 and then adjusted by `amount'.
|
|
1588
|
|
1589 This function is called in two different cases: when a region of
|
|
1590 characters adjacent to the gap is moved, causing the gap to shift
|
|
1591 to the other side of the region (in this case, `from' and `to'
|
|
1592 point to the old position of the region and there should be no
|
|
1593 markers affected by (2) because they would be inside the gap),
|
|
1594 or when a region of characters adjacent to the gap is wiped out,
|
|
1595 causing the gap to increase to include the region (in this case,
|
|
1596 `from' and `to' are the same, both pointing to the boundary
|
|
1597 between the gap and the deleted region, and there are no markers
|
|
1598 affected by (1)).
|
|
1599
|
|
1600 The reason for the use of exclusive and inclusive is that markers at
|
|
1601 the gap always sit at the beginning, not at the end.
|
|
1602 */
|
|
1603
|
|
1604 static void
|
|
1605 adjust_markers (struct buffer *buf, Memind from, Memind to,
|
|
1606 Bytecount amount)
|
|
1607 {
|
|
1608 struct Lisp_Marker *m;
|
|
1609
|
|
1610 for (m = BUF_MARKERS (buf); m; m = marker_next (m))
|
|
1611 m->memind = do_marker_adjustment (m->memind, from, to, amount);
|
|
1612 }
|
|
1613
|
|
1614 /* Adjust markers whose insertion-type is t
|
|
1615 for an insertion of AMOUNT characters at POS. */
|
|
1616
|
|
1617 static void
|
|
1618 adjust_markers_for_insert (struct buffer *buf, Memind ind, Bytecount amount)
|
|
1619 {
|
|
1620 struct Lisp_Marker *m;
|
|
1621
|
|
1622 for (m = BUF_MARKERS (buf); m; m = marker_next (m))
|
|
1623 {
|
|
1624 if (m->insertion_type && m->memind == ind)
|
|
1625 m->memind += amount;
|
|
1626 }
|
|
1627 }
|
|
1628
|
|
1629
|
|
1630 /************************************************************************/
|
|
1631 /* Routines for dealing with the gap */
|
|
1632 /************************************************************************/
|
|
1633
|
|
1634 /* XEmacs requires an ANSI C compiler, and it damn well better have a
|
|
1635 working memmove() */
|
|
1636 #define GAP_USE_BCOPY
|
|
1637 #ifdef BCOPY_UPWARD_SAFE
|
|
1638 # undef BCOPY_UPWARD_SAFE
|
|
1639 #endif
|
|
1640 #ifdef BCOPY_DOWNWARD_SAFE
|
|
1641 # undef BCOPY_DOWNWARD_SAFE
|
|
1642 #endif
|
|
1643 #define BCOPY_UPWARD_SAFE 1
|
|
1644 #define BCOPY_DOWNWARD_SAFE 1
|
|
1645
|
|
1646 /* maximum amount of memory moved in a single chunk. Increasing this
|
|
1647 value improves gap-motion efficiency but decreases QUIT responsiveness
|
|
1648 time. Was 32000 but today's processors are faster and files are
|
|
1649 bigger. --ben */
|
|
1650 #define GAP_MOVE_CHUNK 300000
|
|
1651
|
|
1652 /* Move the gap to POS, which is less than the current GPT. */
|
|
1653
|
|
1654 static void
|
|
1655 gap_left (struct buffer *buf, Bytind pos)
|
|
1656 {
|
|
1657 Bufbyte *to, *from;
|
|
1658 Bytecount i;
|
|
1659 Bytind new_s1;
|
|
1660 struct buffer *mbuf;
|
|
1661 Lisp_Object bufcons;
|
|
1662
|
|
1663 from = BUF_GPT_ADDR (buf);
|
|
1664 to = from + BUF_GAP_SIZE (buf);
|
|
1665 new_s1 = BI_BUF_GPT (buf);
|
|
1666
|
|
1667 /* Now copy the characters. To move the gap down,
|
|
1668 copy characters up. */
|
|
1669
|
|
1670 while (1)
|
|
1671 {
|
|
1672 /* I gets number of characters left to copy. */
|
|
1673 i = new_s1 - pos;
|
|
1674 if (i == 0)
|
|
1675 break;
|
|
1676 /* If a quit is requested, stop copying now.
|
|
1677 Change POS to be where we have actually moved the gap to. */
|
|
1678 if (QUITP)
|
|
1679 {
|
|
1680 pos = new_s1;
|
|
1681 break;
|
|
1682 }
|
|
1683 /* Move at most GAP_MOVE_CHUNK chars before checking again for a quit. */
|
|
1684 if (i > GAP_MOVE_CHUNK)
|
|
1685 i = GAP_MOVE_CHUNK;
|
|
1686 #ifdef GAP_USE_BCOPY
|
|
1687 if (i >= 128
|
|
1688 /* bcopy is safe if the two areas of memory do not overlap
|
|
1689 or on systems where bcopy is always safe for moving upward. */
|
|
1690 && (BCOPY_UPWARD_SAFE
|
|
1691 || to - from >= 128))
|
|
1692 {
|
|
1693 /* If overlap is not safe, avoid it by not moving too many
|
|
1694 characters at once. */
|
|
1695 if (!BCOPY_UPWARD_SAFE && i > to - from)
|
|
1696 i = to - from;
|
|
1697 new_s1 -= i;
|
|
1698 from -= i, to -= i;
|
|
1699 memmove (to, from, i);
|
|
1700 }
|
|
1701 else
|
|
1702 #endif
|
|
1703 {
|
|
1704 new_s1 -= i;
|
|
1705 while (--i >= 0)
|
|
1706 *--to = *--from;
|
|
1707 }
|
|
1708 }
|
|
1709
|
|
1710 /* Adjust markers, and buffer data structure, to put the gap at POS.
|
|
1711 POS is where the loop above stopped, which may be what was specified
|
|
1712 or may be where a quit was detected. */
|
|
1713 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
1714 {
|
|
1715 adjust_markers (mbuf, pos, BI_BUF_GPT (mbuf), BUF_GAP_SIZE (mbuf));
|
|
1716 }
|
|
1717 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
1718 {
|
|
1719 adjust_extents (make_buffer (mbuf), pos, BI_BUF_GPT (mbuf),
|
|
1720 BUF_GAP_SIZE (mbuf));
|
|
1721 }
|
|
1722 SET_BI_BUF_GPT (buf, pos);
|
|
1723 SET_GAP_SENTINEL (buf);
|
|
1724 #ifdef ERROR_CHECK_EXTENTS
|
|
1725 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
1726 {
|
|
1727 sledgehammer_extent_check (make_buffer (mbuf));
|
|
1728 }
|
|
1729 #endif
|
|
1730 QUIT;
|
|
1731 }
|
|
1732
|
|
1733 static void
|
|
1734 gap_right (struct buffer *buf, Bytind pos)
|
|
1735 {
|
|
1736 Bufbyte *to, *from;
|
|
1737 Bytecount i;
|
|
1738 Bytind new_s1;
|
|
1739 struct buffer *mbuf;
|
|
1740 Lisp_Object bufcons;
|
|
1741
|
|
1742 to = BUF_GPT_ADDR (buf);
|
|
1743 from = to + BUF_GAP_SIZE (buf);
|
|
1744 new_s1 = BI_BUF_GPT (buf);
|
|
1745
|
|
1746 /* Now copy the characters. To move the gap up,
|
|
1747 copy characters down. */
|
|
1748
|
|
1749 while (1)
|
|
1750 {
|
|
1751 /* I gets number of characters left to copy. */
|
|
1752 i = pos - new_s1;
|
|
1753 if (i == 0)
|
|
1754 break;
|
|
1755 /* If a quit is requested, stop copying now.
|
|
1756 Change POS to be where we have actually moved the gap to. */
|
|
1757 if (QUITP)
|
|
1758 {
|
|
1759 pos = new_s1;
|
|
1760 break;
|
|
1761 }
|
|
1762 /* Move at most GAP_MOVE_CHUNK chars before checking again for a quit. */
|
|
1763 if (i > GAP_MOVE_CHUNK)
|
|
1764 i = GAP_MOVE_CHUNK;
|
|
1765 #ifdef GAP_USE_BCOPY
|
|
1766 if (i >= 128
|
|
1767 /* bcopy is safe if the two areas of memory do not overlap
|
|
1768 or on systems where bcopy is always safe for moving downward. */
|
|
1769 && (BCOPY_DOWNWARD_SAFE
|
|
1770 || from - to >= 128))
|
|
1771 {
|
|
1772 /* If overlap is not safe, avoid it by not moving too many
|
|
1773 characters at once. */
|
|
1774 if (!BCOPY_DOWNWARD_SAFE && i > from - to)
|
|
1775 i = from - to;
|
|
1776 new_s1 += i;
|
|
1777 memmove (to, from, i);
|
|
1778 from += i, to += i;
|
|
1779 }
|
|
1780 else
|
|
1781 #endif
|
|
1782 {
|
|
1783 new_s1 += i;
|
|
1784 while (--i >= 0)
|
|
1785 *to++ = *from++;
|
|
1786 }
|
|
1787 }
|
|
1788
|
|
1789 {
|
|
1790 int gsize = BUF_GAP_SIZE (buf);
|
|
1791 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
1792 {
|
|
1793 adjust_markers (mbuf, BI_BUF_GPT (mbuf) + gsize, pos + gsize, - gsize);
|
|
1794 }
|
|
1795 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
1796 {
|
|
1797 adjust_extents (make_buffer (mbuf), BI_BUF_GPT (mbuf) + gsize,
|
|
1798 pos + gsize, - gsize);
|
|
1799 }
|
|
1800 SET_BI_BUF_GPT (buf, pos);
|
|
1801 SET_GAP_SENTINEL (buf);
|
|
1802 #ifdef ERROR_CHECK_EXTENTS
|
|
1803 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
1804 {
|
|
1805 sledgehammer_extent_check (make_buffer (mbuf));
|
|
1806 }
|
|
1807 #endif
|
|
1808 }
|
|
1809 if (pos == BI_BUF_Z (buf))
|
|
1810 {
|
|
1811 /* merge gap with end gap */
|
|
1812
|
|
1813 SET_BUF_GAP_SIZE (buf, BUF_GAP_SIZE (buf) + BUF_END_GAP_SIZE (buf));
|
|
1814 SET_BUF_END_GAP_SIZE (buf, 0);
|
|
1815 SET_END_SENTINEL (buf);
|
|
1816 }
|
|
1817
|
|
1818 QUIT;
|
|
1819 }
|
|
1820
|
|
1821 /* Move gap to position `pos'.
|
|
1822 Note that this can quit! */
|
|
1823
|
|
1824 static void
|
|
1825 move_gap (struct buffer *buf, Bytind pos)
|
|
1826 {
|
|
1827 if (! BUF_BEG_ADDR (buf))
|
|
1828 abort ();
|
|
1829 if (pos < BI_BUF_GPT (buf))
|
|
1830 gap_left (buf, pos);
|
|
1831 else if (pos > BI_BUF_GPT (buf))
|
|
1832 gap_right (buf, pos);
|
|
1833 }
|
|
1834
|
|
1835 /* Merge the end gap into the gap */
|
|
1836
|
|
1837 static void
|
|
1838 merge_gap_with_end_gap (struct buffer *buf)
|
|
1839 {
|
|
1840 Lisp_Object tem;
|
|
1841 Bytind real_gap_loc;
|
|
1842 Bytecount old_gap_size;
|
|
1843 Bytecount increment;
|
|
1844
|
|
1845 increment = BUF_END_GAP_SIZE (buf);
|
|
1846 SET_BUF_END_GAP_SIZE (buf, 0);
|
|
1847
|
|
1848 if (increment > 0)
|
|
1849 {
|
|
1850 /* Prevent quitting in move_gap. */
|
|
1851 tem = Vinhibit_quit;
|
|
1852 Vinhibit_quit = Qt;
|
|
1853
|
|
1854 real_gap_loc = BI_BUF_GPT (buf);
|
|
1855 old_gap_size = BUF_GAP_SIZE (buf);
|
|
1856
|
|
1857 /* Pretend the end gap is the gap */
|
|
1858 SET_BI_BUF_GPT (buf, BI_BUF_Z (buf) + BUF_GAP_SIZE (buf));
|
|
1859 SET_BUF_GAP_SIZE (buf, increment);
|
|
1860
|
|
1861 /* Move the new gap down to be consecutive with the end of the old one.
|
|
1862 This adjusts the markers properly too. */
|
|
1863 gap_left (buf, real_gap_loc + old_gap_size);
|
|
1864
|
|
1865 /* Now combine the two into one large gap. */
|
|
1866 SET_BUF_GAP_SIZE (buf, BUF_GAP_SIZE (buf) + old_gap_size);
|
|
1867 SET_BI_BUF_GPT (buf, real_gap_loc);
|
|
1868 SET_GAP_SENTINEL (buf);
|
|
1869
|
|
1870 /* We changed the total size of the buffer (including gap),
|
|
1871 so we need to fix up the end sentinel. */
|
|
1872 SET_END_SENTINEL (buf);
|
|
1873
|
|
1874 Vinhibit_quit = tem;
|
|
1875 }
|
|
1876 }
|
|
1877
|
|
1878 /* Make the gap INCREMENT bytes longer. */
|
|
1879
|
|
1880 static void
|
|
1881 make_gap (struct buffer *buf, Bytecount increment)
|
|
1882 {
|
|
1883 Bufbyte *result;
|
|
1884 Lisp_Object tem;
|
|
1885 Bytind real_gap_loc;
|
|
1886 Bytecount old_gap_size;
|
|
1887
|
|
1888 /* If we have to get more space, get enough to last a while. We use
|
|
1889 a geometric progression that saves on realloc space. */
|
|
1890 increment += 2000 + ((BI_BUF_Z (buf) - BI_BUF_BEG (buf)) / 8);
|
|
1891
|
|
1892 if (increment > BUF_END_GAP_SIZE (buf))
|
|
1893 {
|
|
1894 /* Don't allow a buffer size that won't fit in an int
|
|
1895 even if it will fit in a Lisp integer.
|
|
1896 That won't work because so many places use `int'. */
|
|
1897
|
|
1898 if (BUF_Z (buf) - BUF_BEG (buf) + BUF_GAP_SIZE (buf) + increment
|
|
1899 > EMACS_INT_MAX)
|
|
1900 error ("Maximum buffer size exceeded");
|
|
1901
|
|
1902 result = BUFFER_REALLOC (buf->text->beg,
|
|
1903 BI_BUF_Z (buf) - BI_BUF_BEG (buf) +
|
|
1904 BUF_GAP_SIZE (buf) + increment +
|
|
1905 BUF_END_SENTINEL_SIZE);
|
|
1906 if (result == 0)
|
|
1907 memory_full ();
|
|
1908
|
|
1909 SET_BUF_BEG_ADDR (buf, result);
|
|
1910 }
|
|
1911 else
|
|
1912 increment = BUF_END_GAP_SIZE (buf);
|
|
1913
|
|
1914 /* Prevent quitting in move_gap. */
|
|
1915 tem = Vinhibit_quit;
|
|
1916 Vinhibit_quit = Qt;
|
|
1917
|
|
1918 real_gap_loc = BI_BUF_GPT (buf);
|
|
1919 old_gap_size = BUF_GAP_SIZE (buf);
|
|
1920
|
|
1921 /* Call the newly allocated space a gap at the end of the whole space. */
|
|
1922 SET_BI_BUF_GPT (buf, BI_BUF_Z (buf) + BUF_GAP_SIZE (buf));
|
|
1923 SET_BUF_GAP_SIZE (buf, increment);
|
|
1924
|
|
1925 SET_BUF_END_GAP_SIZE (buf, 0);
|
|
1926
|
|
1927 /* Move the new gap down to be consecutive with the end of the old one.
|
|
1928 This adjusts the markers properly too. */
|
|
1929 gap_left (buf, real_gap_loc + old_gap_size);
|
|
1930
|
|
1931 /* Now combine the two into one large gap. */
|
|
1932 SET_BUF_GAP_SIZE (buf, BUF_GAP_SIZE (buf) + old_gap_size);
|
|
1933 SET_BI_BUF_GPT (buf, real_gap_loc);
|
|
1934 SET_GAP_SENTINEL (buf);
|
|
1935
|
|
1936 /* We changed the total size of the buffer (including gap),
|
|
1937 so we need to fix up the end sentinel. */
|
|
1938 SET_END_SENTINEL (buf);
|
|
1939
|
|
1940 Vinhibit_quit = tem;
|
|
1941 }
|
|
1942
|
|
1943
|
|
1944 /************************************************************************/
|
|
1945 /* Before/after-change processing */
|
|
1946 /************************************************************************/
|
|
1947
|
|
1948 /* Those magic changes ... */
|
|
1949
|
|
1950 static void
|
|
1951 buffer_signal_changed_region (struct buffer *buf, Bufpos start,
|
|
1952 Bufpos end)
|
|
1953 {
|
|
1954 /* The changed region is recorded as the number of unchanged
|
|
1955 characters from the beginning and from the end of the
|
|
1956 buffer. This obviates much of the need of shifting the
|
|
1957 region around to compensate for insertions and deletions.
|
|
1958 */
|
|
1959 if (buf->changes->begin_unchanged < 0 ||
|
|
1960 buf->changes->begin_unchanged > start - BUF_BEG (buf))
|
|
1961 buf->changes->begin_unchanged = start - BUF_BEG (buf);
|
|
1962 if (buf->changes->end_unchanged < 0 ||
|
|
1963 buf->changes->end_unchanged > BUF_Z (buf) - end)
|
|
1964 buf->changes->end_unchanged = BUF_Z (buf) - end;
|
|
1965 }
|
|
1966
|
|
1967 void
|
|
1968 buffer_extent_signal_changed_region (struct buffer *buf, Bufpos start,
|
|
1969 Bufpos end)
|
|
1970 {
|
|
1971 if (buf->changes->begin_extent_unchanged < 0 ||
|
|
1972 buf->changes->begin_extent_unchanged > start - BUF_BEG (buf))
|
|
1973 buf->changes->begin_extent_unchanged = start - BUF_BEG (buf);
|
|
1974 if (buf->changes->end_extent_unchanged < 0 ||
|
|
1975 buf->changes->end_extent_unchanged > BUF_Z (buf) - end)
|
|
1976 buf->changes->end_extent_unchanged = BUF_Z (buf) - end;
|
|
1977 }
|
|
1978
|
|
1979 void
|
|
1980 buffer_reset_changes (struct buffer *buf)
|
|
1981 {
|
|
1982 buf->changes->begin_unchanged = -1;
|
|
1983 buf->changes->end_unchanged = -1;
|
|
1984 buf->changes->begin_extent_unchanged = -1;
|
|
1985 buf->changes->end_extent_unchanged = -1;
|
|
1986 buf->changes->newline_was_deleted = 0;
|
|
1987 }
|
|
1988
|
|
1989 static void
|
|
1990 signal_after_change (struct buffer *buf, Bufpos start, Bufpos orig_end,
|
|
1991 Bufpos new_end);
|
|
1992
|
|
1993
|
|
1994 /* Call the after-change-functions according to the changes made so far
|
|
1995 and treat all further changes as single until the outermost
|
|
1996 multiple change exits. This is called when the outermost multiple
|
|
1997 change exits and when someone is trying to make a change that violates
|
|
1998 the constraints specified in begin_multiple_change(), typically
|
|
1999 when nested multiple-change sessions occur. (There are smarter ways of
|
|
2000 dealing with nested multiple changes, but these rarely occur so there's
|
|
2001 probably no point in it.) */
|
|
2002
|
|
2003 /* #### This needs to keep track of what actually changed and only
|
|
2004 call the after-change functions on that region. */
|
|
2005
|
|
2006 static void
|
|
2007 cancel_multiple_change (struct buffer *buf)
|
|
2008 {
|
|
2009 /* This function can GC */
|
|
2010 /* Call the after-change-functions except when they've already been
|
|
2011 called or when there were no changes made to the buffer at all. */
|
|
2012 if (buf->text->changes->mc_begin != 0 &&
|
|
2013 buf->text->changes->mc_begin_signaled)
|
|
2014 {
|
|
2015 Bufpos real_mc_begin = buf->text->changes->mc_begin;
|
|
2016 buf->text->changes->mc_begin = 0;
|
|
2017
|
|
2018 signal_after_change (buf, real_mc_begin, buf->text->changes->mc_orig_end,
|
|
2019 buf->text->changes->mc_new_end);
|
|
2020 }
|
|
2021 else
|
|
2022 {
|
|
2023 buf->text->changes->mc_begin = 0;
|
|
2024 }
|
|
2025 }
|
|
2026
|
|
2027 /* this is an unwind_protect, to ensure that the after-change-functions
|
|
2028 get called even in a non-local exit. */
|
|
2029
|
|
2030 static Lisp_Object
|
|
2031 multiple_change_finish_up (Lisp_Object buffer)
|
|
2032 {
|
|
2033 struct buffer *buf = XBUFFER (buffer);
|
|
2034
|
|
2035 /* #### I don't know whether or not it should even be possible to
|
|
2036 get here with a dead buffer (though given how it is called I can
|
|
2037 see how it might be). In any case, there isn't time before 19.14
|
|
2038 to find out. */
|
|
2039 if (!BUFFER_LIVE_P (buf))
|
|
2040 return Qnil;
|
|
2041
|
|
2042 /* This function can GC */
|
|
2043 buf->text->changes->in_multiple_change = 0; /* do this first so that
|
|
2044 errors in the after-change
|
|
2045 functions don't mess things
|
|
2046 up. */
|
|
2047 cancel_multiple_change (buf);
|
|
2048 return Qnil;
|
|
2049 }
|
|
2050
|
|
2051 /* Call this function when you're about to make a number of buffer changes
|
|
2052 that should be considered a single change. (e.g. `replace-match' calls
|
|
2053 this.) You need to specify the START and END of the region that is
|
|
2054 going to be changed so that the before-change-functions are called
|
|
2055 with the correct arguments. The after-change region is calculated
|
|
2056 automatically, however, and if changes somehow or other happen outside
|
|
2057 of the specified region, that will also be handled correctly.
|
|
2058
|
|
2059 begin_multiple_change() returns a number (actually a specpdl depth)
|
|
2060 that you must pass to end_multiple_change() when you are done. */
|
|
2061
|
|
2062 int
|
|
2063 begin_multiple_change (struct buffer *buf, Bufpos start, Bufpos end)
|
|
2064 {
|
|
2065 /* This function can GC */
|
|
2066 int count = -1;
|
|
2067 if (buf->text->changes->in_multiple_change)
|
|
2068 {
|
|
2069 if (buf->text->changes->mc_begin != 0 &&
|
|
2070 (start < buf->text->changes->mc_begin ||
|
|
2071 end > buf->text->changes->mc_new_end))
|
|
2072 cancel_multiple_change (buf);
|
|
2073 }
|
|
2074 else
|
|
2075 {
|
|
2076 Lisp_Object buffer;
|
|
2077
|
|
2078 buf->text->changes->mc_begin = start;
|
|
2079 buf->text->changes->mc_orig_end = buf->text->changes->mc_new_end = end;
|
|
2080 buf->text->changes->mc_begin_signaled = 0;
|
|
2081 count = specpdl_depth ();
|
|
2082 XSETBUFFER (buffer, buf);
|
|
2083 record_unwind_protect (multiple_change_finish_up, buffer);
|
|
2084 }
|
|
2085 buf->text->changes->in_multiple_change++;
|
|
2086 /* We don't call before-change-functions until signal_before_change()
|
|
2087 is called, in case there is a read-only or other error. */
|
|
2088 return count;
|
|
2089 }
|
|
2090
|
|
2091 void
|
|
2092 end_multiple_change (struct buffer *buf, int count)
|
|
2093 {
|
|
2094 assert (buf->text->changes->in_multiple_change > 0);
|
|
2095 buf->text->changes->in_multiple_change--;
|
|
2096 if (!buf->text->changes->in_multiple_change)
|
|
2097 unbind_to (count, Qnil);
|
|
2098 }
|
|
2099
|
|
2100 static int inside_change_hook;
|
|
2101
|
|
2102 static Lisp_Object
|
|
2103 change_function_restore (Lisp_Object buffer)
|
|
2104 {
|
|
2105 /* We should first reset the variable and then change the buffer,
|
|
2106 because Fset_buffer() can throw. */
|
|
2107 inside_change_hook = 0;
|
|
2108 Fset_buffer (buffer);
|
|
2109 return Qnil;
|
|
2110 }
|
|
2111
|
|
2112 static int in_first_change;
|
|
2113
|
|
2114 static Lisp_Object
|
|
2115 first_change_hook_restore (Lisp_Object buffer)
|
|
2116 {
|
|
2117 in_first_change = 0;
|
|
2118 Fset_buffer (buffer);
|
|
2119 return Qnil;
|
|
2120 }
|
|
2121
|
|
2122 /* Signal an initial modification to the buffer. */
|
|
2123
|
|
2124 static void
|
|
2125 signal_first_change (struct buffer *buf)
|
|
2126 {
|
|
2127 /* This function can GC */
|
|
2128 Lisp_Object buffer;
|
|
2129 XSETBUFFER (buffer, current_buffer);
|
|
2130
|
|
2131 if (!in_first_change)
|
|
2132 {
|
|
2133 if (!NILP (symbol_value_in_buffer (Qfirst_change_hook, buffer)))
|
|
2134 {
|
|
2135 int speccount = specpdl_depth ();
|
|
2136 record_unwind_protect (first_change_hook_restore, buffer);
|
|
2137 set_buffer_internal (buf);
|
|
2138 in_first_change = 1;
|
|
2139 run_hook (Qfirst_change_hook);
|
|
2140 unbind_to (speccount, Qnil);
|
|
2141 }
|
|
2142 }
|
|
2143 }
|
|
2144
|
|
2145 /* Signal a change to the buffer immediately before it happens.
|
|
2146 START and END are the bounds of the text to be changed. */
|
|
2147
|
|
2148 static void
|
|
2149 signal_before_change (struct buffer *buf, Bufpos start, Bufpos end)
|
|
2150 {
|
|
2151 /* This function can GC */
|
|
2152 struct buffer *mbuf;
|
|
2153 Lisp_Object bufcons;
|
|
2154
|
|
2155 if (!inside_change_hook)
|
|
2156 {
|
|
2157 Lisp_Object buffer;
|
|
2158
|
|
2159 /* Are we in a multiple-change session? */
|
|
2160 if (buf->text->changes->in_multiple_change &&
|
|
2161 buf->text->changes->mc_begin != 0)
|
|
2162 {
|
|
2163 /* If we're violating the constraints of the session,
|
|
2164 call the after-change-functions as necessary for the
|
|
2165 changes already made and treat further changes as
|
|
2166 single. */
|
|
2167 if (start < buf->text->changes->mc_begin ||
|
|
2168 end > buf->text->changes->mc_new_end)
|
|
2169 cancel_multiple_change (buf);
|
|
2170 /* Do nothing if this is not the first change in the session. */
|
|
2171 else if (buf->text->changes->mc_begin_signaled)
|
|
2172 return;
|
|
2173 else
|
|
2174 {
|
|
2175 /* First time through; call the before-change-functions
|
|
2176 specifying the entire region to be changed. (Note that
|
|
2177 we didn't call before-change-functions in
|
|
2178 begin_multiple_change() because the buffer might be
|
|
2179 read-only, etc.) */
|
|
2180 start = buf->text->changes->mc_begin;
|
|
2181 end = buf->text->changes->mc_new_end;
|
|
2182 }
|
|
2183 }
|
|
2184
|
|
2185 /* If buffer is unmodified, run a special hook for that case. */
|
|
2186 if (BUF_SAVE_MODIFF (buf) >= BUF_MODIFF (buf))
|
|
2187 {
|
|
2188 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2189 {
|
|
2190 signal_first_change (mbuf);
|
|
2191 }
|
|
2192 }
|
|
2193
|
|
2194 /* Now in any case run the before-change-functions if any. */
|
|
2195
|
|
2196 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2197 {
|
|
2198 XSETBUFFER (buffer, mbuf);
|
|
2199 if (!NILP (symbol_value_in_buffer (Qbefore_change_functions, buffer))
|
|
2200 /* Obsolete, for compatibility */
|
|
2201 || !NILP (symbol_value_in_buffer (Qbefore_change_function, buffer)))
|
|
2202 {
|
|
2203 int speccount = specpdl_depth ();
|
|
2204 record_unwind_protect (change_function_restore, Fcurrent_buffer ());
|
|
2205 set_buffer_internal (buf);
|
|
2206 inside_change_hook = 1;
|
|
2207 va_run_hook_with_args (Qbefore_change_functions, 2,
|
|
2208 make_int (start), make_int (end));
|
|
2209 /* Obsolete, for compatibility */
|
|
2210 va_run_hook_with_args (Qbefore_change_function, 2,
|
|
2211 make_int (start), make_int (end));
|
|
2212 unbind_to (speccount, Qnil);
|
|
2213 }
|
|
2214 }
|
|
2215
|
|
2216 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2217 {
|
|
2218 XSETBUFFER (buffer, mbuf);
|
|
2219 report_extent_modification (buffer, start, end,
|
|
2220 &inside_change_hook, 0);
|
|
2221 }
|
|
2222
|
|
2223 /* Only now do we indicate that the before-change-functions have
|
|
2224 been called, in case some function throws out. */
|
|
2225 buf->text->changes->mc_begin_signaled = 1;
|
|
2226 }
|
|
2227 }
|
|
2228
|
|
2229 /* Signal a change immediately after it happens.
|
|
2230 START is the bufpos of the start of the changed text.
|
|
2231 ORIG_END is the bufpos of the end of the before-changed text.
|
|
2232 NEW_END is the bufpos of the end of the after-changed text.
|
|
2233 */
|
|
2234
|
|
2235 static void
|
|
2236 signal_after_change (struct buffer *buf, Bufpos start, Bufpos orig_end,
|
|
2237 Bufpos new_end)
|
|
2238 {
|
|
2239 /* This function can GC */
|
|
2240 struct buffer *mbuf;
|
|
2241 Lisp_Object bufcons;
|
|
2242
|
|
2243 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2244 {
|
|
2245 /* always do this. */
|
|
2246 buffer_signal_changed_region (mbuf, start, new_end);
|
|
2247 }
|
|
2248 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2249 {
|
|
2250 /* #### This seems inefficient. Wouldn't it be better to just
|
|
2251 keep one cache per base buffer? */
|
|
2252 font_lock_maybe_update_syntactic_caches (mbuf, start, orig_end, new_end);
|
|
2253 }
|
|
2254
|
|
2255 if (!inside_change_hook)
|
|
2256 {
|
|
2257 Lisp_Object buffer;
|
|
2258
|
|
2259 if (buf->text->changes->in_multiple_change &&
|
|
2260 buf->text->changes->mc_begin != 0)
|
|
2261 {
|
|
2262 assert (start >= buf->text->changes->mc_begin &&
|
|
2263 start <= buf->text->changes->mc_new_end);
|
|
2264 assert (orig_end >= buf->text->changes->mc_begin &&
|
|
2265 orig_end <= buf->text->changes->mc_new_end);
|
|
2266 buf->text->changes->mc_new_end += new_end - orig_end;
|
|
2267 return; /* after-change-functions signalled when all changes done */
|
|
2268 }
|
|
2269
|
|
2270 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2271 {
|
|
2272 XSETBUFFER (buffer, mbuf);
|
|
2273
|
|
2274 if (!NILP (symbol_value_in_buffer (Qafter_change_functions, buffer))
|
|
2275 /* Obsolete, for compatibility */
|
|
2276 || !NILP (symbol_value_in_buffer (Qafter_change_function, buffer)))
|
|
2277 {
|
|
2278 int speccount = specpdl_depth ();
|
|
2279 record_unwind_protect (change_function_restore, Fcurrent_buffer ());
|
|
2280 set_buffer_internal (buf);
|
|
2281 inside_change_hook = 1;
|
|
2282 /* The actual after-change functions take slightly
|
|
2283 different arguments than what we were passed. */
|
|
2284 va_run_hook_with_args (Qafter_change_functions, 3,
|
|
2285 make_int (start), make_int (new_end),
|
|
2286 make_int (orig_end - start));
|
|
2287 /* Obsolete, for compatibility */
|
|
2288 va_run_hook_with_args (Qafter_change_function, 3,
|
|
2289 make_int (start), make_int (new_end),
|
|
2290 make_int (orig_end - start));
|
|
2291 unbind_to (speccount, Qnil);
|
|
2292 }
|
|
2293 }
|
|
2294
|
|
2295 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2296 {
|
|
2297 XSETBUFFER (buffer, mbuf);
|
|
2298 report_extent_modification (buffer, start, new_end,
|
|
2299 &inside_change_hook, 1);
|
|
2300 }
|
|
2301 }
|
|
2302 }
|
|
2303
|
|
2304 /* Call this if you're about to change the region of BUFFER from START
|
|
2305 to END. This checks the read-only properties of the region, calls
|
|
2306 the necessary modification hooks, and warns the next redisplay that
|
|
2307 it should pay attention to that area. */
|
|
2308
|
|
2309 static void
|
|
2310 prepare_to_modify_buffer (struct buffer *buf, Bufpos start, Bufpos end,
|
|
2311 int lockit)
|
|
2312 {
|
|
2313 /* This function can GC */
|
|
2314 /* dmoore - This function can also kill the buffer buf, the current
|
|
2315 buffer, and do anything it pleases. So if you call it, be
|
|
2316 careful. */
|
|
2317 struct buffer *mbuf;
|
|
2318 Lisp_Object buffer, bufcons;
|
|
2319 struct gcpro gcpro1;
|
|
2320
|
|
2321 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2322 {
|
|
2323 barf_if_buffer_read_only (mbuf, start, end);
|
|
2324 }
|
|
2325
|
|
2326 /* if this is the first modification, see about locking the buffer's
|
|
2327 file */
|
|
2328 XSETBUFFER (buffer, buf);
|
|
2329 GCPRO1 (buffer);
|
|
2330 if (!NILP (buf->filename) && lockit &&
|
|
2331 BUF_SAVE_MODIFF (buf) >= BUF_MODIFF (buf))
|
|
2332 {
|
|
2333 #ifdef CLASH_DETECTION
|
|
2334 if (!NILP (buf->file_truename))
|
|
2335 /* Make binding buffer-file-name to nil effective. */
|
|
2336 lock_file (buf->file_truename);
|
|
2337 #else
|
|
2338 /* At least warn if this file has changed on disk since it was visited.*/
|
|
2339 if (NILP (Fverify_visited_file_modtime (buffer))
|
|
2340 && !NILP (Ffile_exists_p (buf->filename)))
|
|
2341 call1_in_buffer (buf, intern ("ask-user-about-supersession-threat"),
|
|
2342 buf->filename);
|
|
2343 #endif /* not CLASH_DETECTION */
|
|
2344 }
|
|
2345 UNGCPRO;
|
|
2346
|
|
2347 /* #### dmoore - is this reasonable in case of buf being killed above? */
|
|
2348 if (!BUFFER_LIVE_P (buf))
|
|
2349 return;
|
|
2350
|
|
2351 signal_before_change (buf, start, end);
|
|
2352
|
|
2353 #ifdef REGION_CACHE_NEEDS_WORK
|
|
2354 if (buf->newline_cache)
|
|
2355 invalidate_region_cache (buf,
|
|
2356 buf->newline_cache,
|
|
2357 start - BUF_BEG (buf), BUF_Z (buf) - end);
|
|
2358 if (buf->width_run_cache)
|
|
2359 invalidate_region_cache (buf,
|
|
2360 buf->width_run_cache,
|
|
2361 start - BUF_BEG (buf), BUF_Z (buf) - end);
|
|
2362 #endif
|
|
2363
|
|
2364 #if 0 /* FSFmacs */
|
|
2365 Vdeactivate_mark = Qt;
|
|
2366 #endif
|
|
2367
|
|
2368 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2369 {
|
|
2370 mbuf->point_before_scroll = Qnil;
|
|
2371 }
|
|
2372 }
|
|
2373
|
|
2374
|
|
2375 /************************************************************************/
|
|
2376 /* Insertion of strings */
|
|
2377 /************************************************************************/
|
|
2378
|
|
2379 void
|
|
2380 fixup_internal_substring (CONST Bufbyte *nonreloc, Lisp_Object reloc,
|
|
2381 Bytecount offset, Bytecount *len)
|
|
2382 {
|
|
2383 assert ((nonreloc && NILP (reloc)) || (!nonreloc && STRINGP (reloc)));
|
|
2384
|
|
2385 if (*len < 0)
|
|
2386 {
|
|
2387 if (nonreloc)
|
|
2388 *len = strlen ((CONST char *) nonreloc) - offset;
|
|
2389 else
|
|
2390 *len = XSTRING_LENGTH (reloc) - offset;
|
|
2391 }
|
|
2392 #ifdef ERROR_CHECK_BUFPOS
|
|
2393 assert (*len >= 0);
|
|
2394 if (STRINGP (reloc))
|
|
2395 {
|
|
2396 assert (offset >= 0 && offset <= XSTRING_LENGTH (reloc));
|
|
2397 assert (offset + *len <= XSTRING_LENGTH (reloc));
|
|
2398 }
|
|
2399 #endif
|
|
2400 }
|
|
2401
|
|
2402 /* Insert a string into BUF at Bufpos POS. The string data comes
|
|
2403 from one of two sources: constant, non-relocatable data (specified
|
|
2404 in NONRELOC), or a Lisp string object (specified in RELOC), which
|
|
2405 is relocatable and may have extent data that needs to be copied
|
|
2406 into the buffer. OFFSET and LENGTH specify the substring of the
|
|
2407 data that is actually to be inserted. As a special case, if POS
|
|
2408 is -1, insert the string at point and move point to the end of the
|
|
2409 string.
|
|
2410
|
|
2411 Normally, markers at the insertion point end up before the
|
|
2412 inserted string. If INSDEL_BEFORE_MARKERS is set in flags, however,
|
|
2413 they end up after the string.
|
|
2414
|
|
2415 INSDEL_NO_LOCKING is kludgy and is used when insert-file-contents is
|
|
2416 visiting a new file; it inhibits the locking checks normally done
|
|
2417 before modifying a buffer. Similar checks were already done
|
|
2418 in the higher-level Lisp functions calling insert-file-contents. */
|
|
2419
|
|
2420 Charcount
|
|
2421 buffer_insert_string_1 (struct buffer *buf, Bufpos pos,
|
|
2422 CONST Bufbyte *nonreloc, Lisp_Object reloc,
|
|
2423 Bytecount offset, Bytecount length,
|
|
2424 int flags)
|
|
2425 {
|
|
2426 /* This function can GC */
|
|
2427 struct gcpro gcpro1;
|
|
2428 Bytind ind;
|
|
2429 Charcount cclen;
|
|
2430 int move_point = 0;
|
|
2431 struct buffer *mbuf;
|
|
2432 Lisp_Object bufcons;
|
|
2433
|
|
2434 /* Defensive steps just in case a buffer gets deleted and a calling
|
|
2435 function doesn't notice it. */
|
|
2436 if (!BUFFER_LIVE_P (buf))
|
|
2437 return 0;
|
|
2438
|
|
2439 fixup_internal_substring (nonreloc, reloc, offset, &length);
|
|
2440
|
|
2441 if (pos == -1)
|
|
2442 {
|
|
2443 pos = BUF_PT (buf);
|
|
2444 move_point = 1;
|
|
2445 }
|
|
2446
|
|
2447 #ifdef I18N3
|
|
2448 /* #### See the comment in print_internal(). If this buffer is marked
|
|
2449 as translatable, then Fgettext() should be called on obj if it
|
|
2450 is a string. */
|
|
2451 #endif
|
|
2452
|
|
2453 /* Make sure that point-max won't exceed the size of an emacs int. */
|
|
2454 if ((length + BUF_Z (buf)) > EMACS_INT_MAX)
|
|
2455 error ("Maximum buffer size exceeded");
|
|
2456
|
|
2457 /* theoretically not necessary -- caller should GCPRO.
|
|
2458 #### buffer_insert_from_buffer_1() doesn't! */
|
|
2459 GCPRO1 (reloc);
|
|
2460
|
|
2461 prepare_to_modify_buffer (buf, pos, pos, !(flags & INSDEL_NO_LOCKING));
|
|
2462
|
|
2463 /* Defensive steps in case the before-change-functions fuck around */
|
|
2464 if (!BUFFER_LIVE_P (buf))
|
|
2465 {
|
|
2466 UNGCPRO;
|
|
2467 /* Bad bad pre-change function. */
|
|
2468 return 0;
|
|
2469 }
|
|
2470
|
|
2471 /* Make args be valid again. prepare_to_modify_buffer() might have
|
|
2472 modified the buffer. */
|
|
2473 if (pos < BUF_BEGV (buf))
|
|
2474 pos = BUF_BEGV (buf);
|
|
2475 if (pos > BUF_ZV (buf))
|
|
2476 pos = BUF_ZV (buf);
|
|
2477
|
|
2478 /* string may have been relocated up to this point */
|
|
2479 if (STRINGP (reloc))
|
|
2480 nonreloc = XSTRING_DATA (reloc);
|
|
2481
|
|
2482 ind = bufpos_to_bytind (buf, pos);
|
|
2483 cclen = bytecount_to_charcount (nonreloc + offset, length);
|
|
2484
|
|
2485 if (ind != BI_BUF_GPT (buf))
|
|
2486 /* #### if debug-on-quit is invoked and the user changes the
|
|
2487 buffer, bad things can happen. This is a rampant problem
|
|
2488 in Emacs. */
|
|
2489 move_gap (buf, ind); /* may QUIT */
|
|
2490 if (! GAP_CAN_HOLD_SIZE_P (buf, length))
|
|
2491 {
|
|
2492 if (BUF_END_GAP_SIZE (buf) >= length)
|
|
2493 merge_gap_with_end_gap (buf);
|
|
2494 else
|
|
2495 make_gap (buf, length - BUF_GAP_SIZE (buf));
|
|
2496 }
|
|
2497
|
|
2498 insert_invalidate_line_number_cache (buf, pos, nonreloc + offset, length);
|
|
2499
|
|
2500 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2501 {
|
|
2502 record_insert (mbuf, pos, cclen);
|
|
2503 }
|
|
2504
|
|
2505 BUF_MODIFF (buf)++;
|
|
2506 MARK_BUFFERS_CHANGED;
|
|
2507
|
|
2508 /* string may have been relocated up to this point */
|
|
2509 if (STRINGP (reloc))
|
|
2510 nonreloc = XSTRING_DATA (reloc);
|
|
2511
|
|
2512 memcpy (BUF_GPT_ADDR (buf), nonreloc + offset, length);
|
|
2513
|
|
2514 SET_BUF_GAP_SIZE (buf, BUF_GAP_SIZE (buf) - length);
|
|
2515 SET_BI_BUF_GPT (buf, BI_BUF_GPT (buf) + length);
|
|
2516 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2517 {
|
|
2518 SET_BOTH_BUF_ZV (mbuf, BUF_ZV (mbuf) + cclen, BI_BUF_ZV (mbuf) + length);
|
|
2519 }
|
|
2520 SET_BOTH_BUF_Z (buf, BUF_Z (buf) + cclen, BI_BUF_Z (buf) + length);
|
|
2521 SET_GAP_SENTINEL (buf);
|
|
2522
|
|
2523 #ifdef MULE
|
|
2524 buffer_mule_signal_inserted_region (buf, pos, length, cclen);
|
|
2525 #endif
|
|
2526
|
|
2527 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2528 {
|
|
2529 process_extents_for_insertion (make_buffer (mbuf), ind, length);
|
|
2530 }
|
|
2531
|
|
2532 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2533 {
|
|
2534 /* We know the gap is at IND so the cast is OK. */
|
|
2535 adjust_markers_for_insert (mbuf, (Memind) ind, length);
|
|
2536 }
|
|
2537
|
|
2538 /* Point logically doesn't move, but may need to be adjusted because
|
|
2539 it's a byte index. point-marker doesn't change because it's a
|
|
2540 memory index. */
|
|
2541 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2542 {
|
|
2543 if (BI_BUF_PT (mbuf) > ind)
|
|
2544 JUST_SET_POINT (mbuf, BUF_PT (mbuf) + cclen,
|
|
2545 BI_BUF_PT (mbuf) + length);
|
|
2546 }
|
|
2547
|
|
2548 /* Well, point might move. */
|
|
2549 if (move_point)
|
|
2550 BI_BUF_SET_PT (buf, ind + length);
|
|
2551
|
|
2552 if (STRINGP (reloc))
|
|
2553 {
|
|
2554 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2555 {
|
|
2556 splice_in_string_extents (reloc, mbuf, ind, length, offset);
|
|
2557 }
|
|
2558 }
|
|
2559
|
|
2560 if (flags & INSDEL_BEFORE_MARKERS)
|
|
2561 {
|
|
2562 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2563 {
|
|
2564 /* ind - 1 is correct because the FROM argument is exclusive.
|
|
2565 I formerly used DEC_BYTIND() but that caused problems at the
|
|
2566 beginning of the buffer. */
|
|
2567 adjust_markers (mbuf, ind - 1, ind, length);
|
|
2568 }
|
|
2569 }
|
|
2570
|
|
2571 signal_after_change (buf, pos, pos, pos + cclen);
|
|
2572
|
|
2573 UNGCPRO;
|
|
2574
|
|
2575 return cclen;
|
|
2576 }
|
|
2577
|
|
2578
|
|
2579 /* The following functions are interfaces onto the above function,
|
|
2580 for inserting particular sorts of data. In all the functions,
|
|
2581 BUF and POS specify the buffer and location where the insertion is
|
|
2582 to take place. (If POS is -1, text is inserted at point and point
|
|
2583 moves forward past the text.) FLAGS is as above. */
|
|
2584
|
|
2585 Charcount
|
|
2586 buffer_insert_raw_string_1 (struct buffer *buf, Bufpos pos,
|
|
2587 CONST Bufbyte *nonreloc, Bytecount length,
|
|
2588 int flags)
|
|
2589 {
|
|
2590 /* This function can GC */
|
|
2591 return buffer_insert_string_1 (buf, pos, nonreloc, Qnil, 0, length,
|
|
2592 flags);
|
|
2593 }
|
|
2594
|
|
2595 Charcount
|
|
2596 buffer_insert_lisp_string_1 (struct buffer *buf, Bufpos pos, Lisp_Object str,
|
|
2597 int flags)
|
|
2598 {
|
|
2599 /* This function can GC */
|
|
2600 #ifdef ERROR_CHECK_TYPECHECK
|
|
2601 assert (STRINGP (str));
|
|
2602 #endif
|
|
2603 return buffer_insert_string_1 (buf, pos, 0, str, 0,
|
|
2604 XSTRING_LENGTH (str),
|
|
2605 flags);
|
|
2606 }
|
|
2607
|
|
2608 /* Insert the null-terminated string S (in external format). */
|
|
2609
|
|
2610 Charcount
|
|
2611 buffer_insert_c_string_1 (struct buffer *buf, Bufpos pos, CONST char *s,
|
|
2612 int flags)
|
|
2613 {
|
|
2614 /* This function can GC */
|
|
2615 CONST char *translated = GETTEXT (s);
|
|
2616 return buffer_insert_string_1 (buf, pos, (CONST Bufbyte *) translated, Qnil,
|
|
2617 0, strlen (translated), flags);
|
|
2618 }
|
|
2619
|
|
2620 Charcount
|
|
2621 buffer_insert_emacs_char_1 (struct buffer *buf, Bufpos pos, Emchar ch,
|
|
2622 int flags)
|
|
2623 {
|
|
2624 /* This function can GC */
|
|
2625 Bufbyte str[MAX_EMCHAR_LEN];
|
|
2626 Bytecount len = set_charptr_emchar (str, ch);
|
|
2627 return buffer_insert_string_1 (buf, pos, str, Qnil, 0, len, flags);
|
|
2628 }
|
|
2629
|
|
2630 Charcount
|
|
2631 buffer_insert_c_char_1 (struct buffer *buf, Bufpos pos, char c,
|
|
2632 int flags)
|
|
2633 {
|
|
2634 /* This function can GC */
|
|
2635 return buffer_insert_emacs_char_1 (buf, pos, (Emchar) (unsigned char) c,
|
|
2636 flags);
|
|
2637 }
|
|
2638
|
|
2639 Charcount
|
|
2640 buffer_insert_from_buffer_1 (struct buffer *buf, Bufpos pos,
|
|
2641 struct buffer *buf2, Bufpos pos2,
|
|
2642 Charcount length, int flags)
|
|
2643 {
|
|
2644 /* This function can GC */
|
|
2645 Lisp_Object str = make_string_from_buffer (buf2, pos2, length);
|
|
2646 return buffer_insert_string_1 (buf, pos, 0, str, 0,
|
|
2647 XSTRING_LENGTH (str), flags);
|
|
2648 }
|
|
2649
|
|
2650
|
|
2651 /************************************************************************/
|
|
2652 /* Deletion of ranges */
|
|
2653 /************************************************************************/
|
|
2654
|
|
2655 /* Delete characters in buffer from FROM up to (but not including) TO. */
|
|
2656
|
|
2657 void
|
|
2658 buffer_delete_range (struct buffer *buf, Bufpos from, Bufpos to, int flags)
|
|
2659 {
|
|
2660 /* This function can GC */
|
|
2661 Charcount numdel;
|
|
2662 Bytind bi_from, bi_to;
|
|
2663 Bytecount bc_numdel;
|
|
2664 EMACS_INT shortage;
|
|
2665 struct buffer *mbuf;
|
|
2666 Lisp_Object bufcons;
|
|
2667
|
|
2668 /* Defensive steps just in case a buffer gets deleted and a calling
|
|
2669 function doesn't notice it. */
|
|
2670 if (!BUFFER_LIVE_P (buf))
|
|
2671 return;
|
|
2672
|
|
2673 /* Make args be valid */
|
|
2674 if (from < BUF_BEGV (buf))
|
|
2675 from = BUF_BEGV (buf);
|
|
2676 if (to > BUF_ZV (buf))
|
|
2677 to = BUF_ZV (buf);
|
|
2678 if ((numdel = to - from) <= 0)
|
|
2679 return;
|
|
2680
|
|
2681 prepare_to_modify_buffer (buf, from, to, !(flags & INSDEL_NO_LOCKING));
|
|
2682
|
|
2683 /* Defensive steps in case the before-change-functions fuck around */
|
|
2684 if (!BUFFER_LIVE_P (buf))
|
|
2685 /* Bad bad pre-change function. */
|
|
2686 return;
|
|
2687
|
|
2688 /* Make args be valid again. prepare_to_modify_buffer() might have
|
|
2689 modified the buffer. */
|
|
2690 if (from < BUF_BEGV (buf))
|
|
2691 from = BUF_BEGV (buf);
|
|
2692 if (to > BUF_ZV (buf))
|
|
2693 to = BUF_ZV (buf);
|
|
2694 if ((numdel = to - from) <= 0)
|
|
2695 return;
|
|
2696
|
|
2697 /* Redisplay needs to know if a newline was in the deleted region.
|
|
2698 If we've already marked the changed region as having a deleted
|
|
2699 newline there is no use in performing the check. */
|
|
2700 if (!buf->changes->newline_was_deleted)
|
|
2701 {
|
|
2702 scan_buffer (buf, '\n', from, to, 1, &shortage, 1);
|
|
2703 if (!shortage)
|
|
2704 {
|
|
2705 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2706 {
|
|
2707 mbuf->changes->newline_was_deleted = 1;
|
|
2708 }
|
|
2709 }
|
|
2710 }
|
|
2711
|
|
2712 bi_from = bufpos_to_bytind (buf, from);
|
|
2713 bi_to = bufpos_to_bytind (buf, to);
|
|
2714 bc_numdel = bi_to - bi_from;
|
|
2715
|
|
2716 delete_invalidate_line_number_cache (buf, from, to);
|
|
2717
|
|
2718 if (to == BUF_Z (buf) &&
|
|
2719 bi_from > BI_BUF_GPT (buf))
|
|
2720 {
|
|
2721 /* avoid moving the gap just to delete from the bottom. */
|
|
2722
|
|
2723 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2724 {
|
|
2725 record_delete (mbuf, from, numdel);
|
|
2726 }
|
|
2727 BUF_MODIFF (buf)++;
|
|
2728 MARK_BUFFERS_CHANGED;
|
|
2729
|
|
2730 /* #### Point used to be modified here, but this causes problems
|
|
2731 with MULE, as point is used to calculate bytinds, and if the
|
|
2732 offset in bc_numdel causes point to move to a non first-byte
|
|
2733 location, causing some other function to throw an assertion
|
|
2734 in ASSERT_VALID_BYTIND. I've moved the code to right after
|
|
2735 the other movements and adjustments, but before the gap is
|
|
2736 moved. -- jh 970813 */
|
|
2737
|
|
2738 /* Detach any extents that are completely within the range [FROM, TO],
|
|
2739 if the extents are detachable.
|
|
2740
|
|
2741 This must come AFTER record_delete(), so that the appropriate
|
|
2742 extents will be present to be recorded, and BEFORE the gap
|
|
2743 size is increased, as otherwise we will be confused about
|
|
2744 where the extents end. */
|
|
2745 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2746 {
|
|
2747 process_extents_for_deletion (make_buffer (mbuf), bi_from, bi_to, 0);
|
|
2748 }
|
|
2749
|
|
2750 /* Relocate all markers pointing into the new, larger gap to
|
|
2751 point at the end of the text before the gap. */
|
|
2752 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2753 {
|
|
2754 adjust_markers (mbuf,
|
|
2755 (bi_to + BUF_GAP_SIZE (mbuf)),
|
|
2756 (bi_to + BUF_GAP_SIZE (mbuf)),
|
|
2757 (- bc_numdel));
|
|
2758 }
|
|
2759
|
|
2760 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2761 {
|
|
2762 /* Relocate any extent endpoints just like markers. */
|
|
2763 adjust_extents_for_deletion (make_buffer (mbuf), bi_from, bi_to,
|
|
2764 BUF_GAP_SIZE (mbuf), bc_numdel, 0);
|
|
2765 }
|
|
2766
|
|
2767 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2768 {
|
|
2769 /* Relocate point as if it were a marker. */
|
|
2770 if (bi_from < BI_BUF_PT (mbuf))
|
|
2771 {
|
|
2772 if (BI_BUF_PT (mbuf) < bi_to)
|
|
2773 JUST_SET_POINT (mbuf, from, bi_from);
|
|
2774 else
|
|
2775 JUST_SET_POINT (mbuf, BUF_PT (mbuf) - numdel,
|
|
2776 BI_BUF_PT (mbuf) - bc_numdel);
|
|
2777 }
|
|
2778 }
|
|
2779
|
|
2780 SET_BUF_END_GAP_SIZE (buf, BUF_END_GAP_SIZE (buf) + bc_numdel);
|
|
2781
|
|
2782 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2783 {
|
|
2784 SET_BOTH_BUF_ZV (mbuf, BUF_ZV (mbuf) - numdel,
|
|
2785 BI_BUF_ZV (mbuf) - bc_numdel);
|
|
2786 }
|
|
2787 SET_BOTH_BUF_Z (buf, BUF_Z (buf) - numdel, BI_BUF_Z (buf) - bc_numdel);
|
|
2788 SET_GAP_SENTINEL (buf);
|
|
2789 }
|
|
2790 else
|
|
2791 {
|
|
2792 /* Make sure the gap is somewhere in or next to what we are deleting. */
|
|
2793 if (bi_to < BI_BUF_GPT (buf))
|
|
2794 gap_left (buf, bi_to);
|
|
2795 if (bi_from > BI_BUF_GPT (buf))
|
|
2796 gap_right (buf, bi_from);
|
|
2797
|
|
2798 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2799 {
|
|
2800 record_delete (mbuf, from, numdel);
|
|
2801 }
|
|
2802 BUF_MODIFF (buf)++;
|
|
2803 MARK_BUFFERS_CHANGED;
|
|
2804
|
|
2805 /* #### Point used to be modified here, but this causes problems
|
|
2806 with MULE, as point is used to calculate bytinds, and if the
|
|
2807 offset in bc_numdel causes point to move to a non first-byte
|
|
2808 location, causing some other function to throw an assertion
|
|
2809 in ASSERT_VALID_BYTIND. I've moved the code to right after
|
|
2810 the other movements and adjustments, but before the gap is
|
|
2811 moved. -- jh 970813 */
|
|
2812
|
|
2813 /* Detach any extents that are completely within the range [FROM, TO],
|
|
2814 if the extents are detachable.
|
|
2815
|
|
2816 This must come AFTER record_delete(), so that the appropriate extents
|
|
2817 will be present to be recorded, and BEFORE the gap size is increased,
|
|
2818 as otherwise we will be confused about where the extents end. */
|
|
2819 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2820 {
|
|
2821 process_extents_for_deletion (make_buffer (mbuf), bi_from, bi_to, 0);
|
|
2822 }
|
|
2823
|
|
2824 /* Relocate all markers pointing into the new, larger gap to
|
|
2825 point at the end of the text before the gap. */
|
|
2826 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2827 {
|
|
2828 adjust_markers (mbuf,
|
|
2829 (bi_to + BUF_GAP_SIZE (mbuf)),
|
|
2830 (bi_to + BUF_GAP_SIZE (mbuf)),
|
|
2831 (- bc_numdel - BUF_GAP_SIZE (mbuf)));
|
|
2832 }
|
|
2833
|
|
2834 /* Relocate any extent endpoints just like markers. */
|
|
2835 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2836 {
|
|
2837 adjust_extents_for_deletion (make_buffer (mbuf), bi_from, bi_to,
|
|
2838 BUF_GAP_SIZE (mbuf),
|
|
2839 bc_numdel, BUF_GAP_SIZE (mbuf));
|
|
2840 }
|
|
2841
|
|
2842 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2843 {
|
|
2844 /* Relocate point as if it were a marker. */
|
|
2845 if (bi_from < BI_BUF_PT (mbuf))
|
|
2846 {
|
|
2847 if (BI_BUF_PT (mbuf) < bi_to)
|
|
2848 JUST_SET_POINT (mbuf, from, bi_from);
|
|
2849 else
|
|
2850 JUST_SET_POINT (mbuf, BUF_PT (mbuf) - numdel,
|
|
2851 BI_BUF_PT (mbuf) - bc_numdel);
|
|
2852 }
|
|
2853 }
|
|
2854
|
|
2855 SET_BUF_GAP_SIZE (buf, BUF_GAP_SIZE (buf) + bc_numdel);
|
|
2856 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2857 {
|
|
2858 SET_BOTH_BUF_ZV (mbuf, BUF_ZV (mbuf) - numdel,
|
|
2859 BI_BUF_ZV (mbuf) - bc_numdel);
|
|
2860 }
|
|
2861 SET_BOTH_BUF_Z (buf, BUF_Z (buf) - numdel, BI_BUF_Z (buf) - bc_numdel);
|
|
2862 SET_BI_BUF_GPT (buf, bi_from);
|
|
2863 SET_GAP_SENTINEL (buf);
|
|
2864 }
|
|
2865
|
|
2866 #ifdef MULE
|
|
2867 buffer_mule_signal_deleted_region (buf, from, to, bi_from, bi_to);
|
|
2868 #endif
|
|
2869
|
|
2870 #ifdef ERROR_CHECK_EXTENTS
|
|
2871 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2872 {
|
|
2873 sledgehammer_extent_check (make_buffer (mbuf));
|
|
2874 }
|
|
2875 #endif
|
|
2876
|
|
2877 signal_after_change (buf, from, to, from);
|
|
2878 }
|
|
2879
|
|
2880
|
|
2881 /************************************************************************/
|
|
2882 /* Replacement of characters */
|
|
2883 /************************************************************************/
|
|
2884
|
|
2885 /* Replace the character at POS in buffer B with CH. */
|
|
2886
|
|
2887 void
|
|
2888 buffer_replace_char (struct buffer *buf, Bufpos pos, Emchar ch,
|
|
2889 int not_real_change, int force_lock_check)
|
|
2890 {
|
|
2891 /* This function can GC */
|
|
2892 Bufbyte curstr[MAX_EMCHAR_LEN];
|
|
2893 Bufbyte newstr[MAX_EMCHAR_LEN];
|
|
2894 Bytecount curlen, newlen;
|
|
2895
|
|
2896 /* Defensive steps just in case a buffer gets deleted and a calling
|
|
2897 function doesn't notice it. */
|
|
2898 if (!BUFFER_LIVE_P (buf))
|
|
2899 return;
|
|
2900
|
|
2901 curlen = BUF_CHARPTR_COPY_CHAR (buf, pos, curstr);
|
|
2902 newlen = set_charptr_emchar (newstr, ch);
|
|
2903
|
|
2904 if (curlen == newlen)
|
|
2905 {
|
|
2906 struct buffer *mbuf;
|
|
2907 Lisp_Object bufcons;
|
|
2908
|
|
2909 /* then we can just replace the text. */
|
|
2910 prepare_to_modify_buffer (buf, pos, pos + 1,
|
|
2911 !not_real_change || force_lock_check);
|
|
2912 /* Defensive steps in case the before-change-functions fuck around */
|
|
2913 if (!BUFFER_LIVE_P (buf))
|
|
2914 /* Bad bad pre-change function. */
|
|
2915 return;
|
|
2916
|
|
2917 /* Make args be valid again. prepare_to_modify_buffer() might have
|
|
2918 modified the buffer. */
|
|
2919 if (pos < BUF_BEGV (buf))
|
|
2920 pos = BUF_BEGV (buf);
|
|
2921 if (pos >= BUF_ZV (buf))
|
|
2922 pos = BUF_ZV (buf) - 1;
|
|
2923 if (pos < BUF_BEGV (buf))
|
|
2924 /* no more characters in buffer! */
|
|
2925 return;
|
|
2926
|
|
2927 if (BUF_FETCH_CHAR (buf, pos) == '\n')
|
|
2928 {
|
|
2929 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2930 {
|
|
2931 mbuf->changes->newline_was_deleted = 1;
|
|
2932 }
|
|
2933 }
|
|
2934 MARK_BUFFERS_CHANGED;
|
|
2935 if (!not_real_change)
|
|
2936 {
|
|
2937 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2938 {
|
|
2939 record_change (mbuf, pos, 1);
|
|
2940 }
|
|
2941 BUF_MODIFF (buf)++;
|
|
2942 }
|
|
2943 memcpy (BUF_BYTE_ADDRESS (buf, pos), newstr, newlen);
|
|
2944
|
|
2945 signal_after_change (buf, pos, pos + 1, pos + 1);
|
|
2946
|
|
2947 /* We do not have to adjust the Mule data; we just replaced a
|
|
2948 character with another of the same number of bytes. */
|
|
2949 }
|
|
2950 else
|
|
2951 {
|
|
2952 /*
|
|
2953 * Must implement as deletion followed by insertion.
|
|
2954 *
|
|
2955 * Make a note to move point forward later in the one situation
|
|
2956 * where it is needed, a delete/insert one position behind
|
|
2957 * point. Point will drift backward by one position and stay
|
|
2958 * there otherwise.
|
|
2959 */
|
|
2960 int movepoint = (pos == BUF_PT (buf) - 1);
|
|
2961
|
|
2962 buffer_delete_range (buf, pos, pos + 1, 0);
|
|
2963 /* Defensive steps in case the before-change-functions fuck around */
|
|
2964 if (!BUFFER_LIVE_P (buf))
|
|
2965 /* Bad bad pre-change function. */
|
|
2966 return;
|
|
2967
|
|
2968 /* Make args be valid again. prepare_to_modify_buffer() might have
|
|
2969 modified the buffer. */
|
|
2970 if (pos < BUF_BEGV (buf))
|
|
2971 pos = BUF_BEGV (buf);
|
|
2972 if (pos >= BUF_ZV (buf))
|
|
2973 pos = BUF_ZV (buf) - 1;
|
|
2974 if (pos < BUF_BEGV (buf))
|
|
2975 /* no more characters in buffer! */
|
|
2976 return;
|
|
2977 /*
|
|
2978 * -1 as the pos argument means to move point forward with the
|
|
2979 * insertion, which we must do if the deletion moved point
|
|
2980 * backward so that it now equals the insertion point.
|
|
2981 */
|
|
2982 buffer_insert_string_1 (buf, (movepoint ? -1 : pos),
|
|
2983 newstr, Qnil, 0, newlen, 0);
|
|
2984 }
|
|
2985 }
|
|
2986
|
|
2987
|
|
2988 /************************************************************************/
|
|
2989 /* Other functions */
|
|
2990 /************************************************************************/
|
|
2991
|
|
2992 /* Make a string from a buffer. This needs to take into account the gap,
|
|
2993 and add any necessary extents from the buffer. */
|
|
2994
|
|
2995 static Lisp_Object
|
|
2996 make_string_from_buffer_1 (struct buffer *buf, Bufpos pos, Charcount length,
|
|
2997 int no_extents)
|
|
2998 {
|
|
2999 /* This function can GC */
|
|
3000 Bytind bi_ind = bufpos_to_bytind (buf, pos);
|
|
3001 Bytecount bi_len = bufpos_to_bytind (buf, pos + length) - bi_ind;
|
|
3002 Lisp_Object val = make_uninit_string (bi_len);
|
|
3003
|
|
3004 struct gcpro gcpro1;
|
|
3005 GCPRO1 (val);
|
|
3006
|
|
3007 if (!no_extents)
|
|
3008 add_string_extents (val, buf, bi_ind, bi_len);
|
|
3009
|
|
3010 {
|
|
3011 Bytecount len1 = BI_BUF_GPT (buf) - bi_ind;
|
|
3012 Bufbyte *start1 = BI_BUF_BYTE_ADDRESS (buf, bi_ind);
|
|
3013 Bufbyte *dest = XSTRING_DATA (val);
|
|
3014
|
|
3015 if (len1 < 0)
|
|
3016 {
|
|
3017 /* Completely after gap */
|
|
3018 memcpy (dest, start1, bi_len);
|
|
3019 }
|
|
3020 else if (bi_len <= len1)
|
|
3021 {
|
|
3022 /* Completely before gap */
|
|
3023 memcpy (dest, start1, bi_len);
|
|
3024 }
|
|
3025 else
|
|
3026 {
|
|
3027 /* Spans gap */
|
|
3028 Bytind pos2 = bi_ind + len1;
|
|
3029 Bufbyte *start2 = BI_BUF_BYTE_ADDRESS (buf, pos2);
|
|
3030
|
|
3031 memcpy (dest, start1, len1);
|
|
3032 memcpy (dest + len1, start2, bi_len - len1);
|
|
3033 }
|
|
3034 }
|
|
3035
|
|
3036 UNGCPRO;
|
|
3037 return val;
|
|
3038 }
|
|
3039
|
|
3040 Lisp_Object
|
|
3041 make_string_from_buffer (struct buffer *buf, Bufpos pos, Charcount length)
|
|
3042 {
|
|
3043 return make_string_from_buffer_1 (buf, pos, length, 0);
|
|
3044 }
|
|
3045
|
|
3046 Lisp_Object
|
|
3047 make_string_from_buffer_no_extents (struct buffer *buf, Bufpos pos,
|
|
3048 Charcount length)
|
|
3049 {
|
|
3050 return make_string_from_buffer_1 (buf, pos, length, 1);
|
|
3051 }
|
|
3052
|
|
3053 void
|
|
3054 barf_if_buffer_read_only (struct buffer *buf, Bufpos from, Bufpos to)
|
|
3055 {
|
|
3056 Lisp_Object buffer;
|
|
3057 Lisp_Object iro;
|
|
3058
|
|
3059 XSETBUFFER (buffer, buf);
|
|
3060 back:
|
|
3061 iro = (buf == current_buffer ? Vinhibit_read_only :
|
|
3062 symbol_value_in_buffer (Qinhibit_read_only, buffer));
|
|
3063 if (!LISTP (iro))
|
|
3064 return;
|
|
3065 if (NILP (iro) && !NILP (buf->read_only))
|
|
3066 {
|
|
3067 Fsignal (Qbuffer_read_only, (list1 (buffer)));
|
|
3068 goto back;
|
|
3069 }
|
|
3070 if (from > 0)
|
|
3071 {
|
|
3072 if (to < 0)
|
|
3073 to = from;
|
|
3074 verify_extent_modification (buffer,
|
|
3075 bufpos_to_bytind (buf, from),
|
|
3076 bufpos_to_bytind (buf, to),
|
|
3077 iro);
|
|
3078 }
|
|
3079 }
|
|
3080
|
|
3081 void
|
|
3082 find_charsets_in_bufbyte_string (unsigned char *charsets, CONST Bufbyte *str,
|
|
3083 Bytecount len)
|
|
3084 {
|
|
3085 #ifndef MULE
|
|
3086 /* Telescope this. */
|
|
3087 charsets[0] = 1;
|
|
3088 #else
|
|
3089 CONST Bufbyte *strend = str + len;
|
|
3090 memset (charsets, 0, NUM_LEADING_BYTES);
|
|
3091
|
|
3092 while (str < strend)
|
|
3093 {
|
|
3094 charsets[CHAR_LEADING_BYTE (charptr_emchar (str)) - 128] = 1;
|
|
3095 INC_CHARPTR (str);
|
|
3096 }
|
|
3097 #endif
|
|
3098 }
|
|
3099
|
|
3100 void
|
|
3101 find_charsets_in_emchar_string (unsigned char *charsets, CONST Emchar *str,
|
|
3102 Charcount len)
|
|
3103 {
|
|
3104 #ifndef MULE
|
|
3105 /* Telescope this. */
|
|
3106 charsets[0] = 1;
|
|
3107 #else
|
|
3108 int i;
|
|
3109
|
|
3110 memset (charsets, 0, NUM_LEADING_BYTES);
|
|
3111 for (i = 0; i < len; i++)
|
|
3112 {
|
|
3113 charsets[CHAR_LEADING_BYTE (str[i]) - 128] = 1;
|
|
3114 }
|
|
3115 #endif
|
|
3116 }
|
|
3117
|
|
3118 int
|
|
3119 bufbyte_string_displayed_columns (CONST Bufbyte *str, Bytecount len)
|
|
3120 {
|
|
3121 int cols = 0;
|
|
3122 CONST Bufbyte *end = str + len;
|
|
3123
|
|
3124 while (str < end)
|
|
3125 {
|
|
3126 #ifdef MULE
|
|
3127 Emchar ch = charptr_emchar (str);
|
|
3128 cols += XCHARSET_COLUMNS (CHAR_CHARSET (ch));
|
|
3129 #else
|
|
3130 cols++;
|
|
3131 #endif
|
|
3132 INC_CHARPTR (str);
|
|
3133 }
|
|
3134
|
|
3135 return cols;
|
|
3136 }
|
|
3137
|
|
3138 int
|
|
3139 emchar_string_displayed_columns (CONST Emchar *str, Charcount len)
|
|
3140 {
|
|
3141 #ifdef MULE
|
|
3142 int cols = 0;
|
|
3143 int i;
|
|
3144
|
|
3145 for (i = 0; i < len; i++)
|
|
3146 cols += XCHARSET_COLUMNS (CHAR_CHARSET (str[i]));
|
|
3147
|
|
3148 return cols;
|
|
3149 #else /* not MULE */
|
|
3150 return len;
|
|
3151 #endif
|
|
3152 }
|
|
3153
|
|
3154 /* NOTE: Does not reset the Dynarr. */
|
|
3155
|
|
3156 void
|
|
3157 convert_bufbyte_string_into_emchar_dynarr (CONST Bufbyte *str, Bytecount len,
|
|
3158 Emchar_dynarr *dyn)
|
|
3159 {
|
|
3160 CONST Bufbyte *strend = str + len;
|
|
3161
|
|
3162 while (str < strend)
|
|
3163 {
|
|
3164 Emchar ch = charptr_emchar (str);
|
|
3165 Dynarr_add (dyn, ch);
|
|
3166 INC_CHARPTR (str);
|
|
3167 }
|
|
3168 }
|
|
3169
|
|
3170 Charcount
|
|
3171 convert_bufbyte_string_into_emchar_string (CONST Bufbyte *str, Bytecount len,
|
|
3172 Emchar *arr)
|
|
3173 {
|
|
3174 CONST Bufbyte *strend = str + len;
|
|
3175 Charcount newlen = 0;
|
|
3176 while (str < strend)
|
|
3177 {
|
|
3178 Emchar ch = charptr_emchar (str);
|
|
3179 arr[newlen++] = ch;
|
|
3180 INC_CHARPTR (str);
|
|
3181 }
|
|
3182 return newlen;
|
|
3183 }
|
|
3184
|
|
3185 /* Convert an array of Emchars into the equivalent string representation.
|
|
3186 Store into the given Bufbyte dynarr. Does not reset the dynarr.
|
|
3187 Does not add a terminating zero. */
|
|
3188
|
|
3189 void
|
|
3190 convert_emchar_string_into_bufbyte_dynarr (Emchar *arr, int nels,
|
|
3191 Bufbyte_dynarr *dyn)
|
|
3192 {
|
|
3193 Bufbyte str[MAX_EMCHAR_LEN];
|
|
3194 int i;
|
|
3195
|
|
3196 for (i = 0; i < nels; i++)
|
|
3197 {
|
|
3198 Bytecount len = set_charptr_emchar (str, arr[i]);
|
|
3199 Dynarr_add_many (dyn, str, len);
|
|
3200 }
|
|
3201 }
|
|
3202
|
|
3203 /* Convert an array of Emchars into the equivalent string representation.
|
|
3204 Malloc the space needed for this and return it. If LEN_OUT is not a
|
|
3205 NULL pointer, store into LEN_OUT the number of Bufbytes in the
|
|
3206 malloc()ed string. Note that the actual number of Bufbytes allocated
|
|
3207 is one more than this: the returned string is zero-terminated. */
|
|
3208
|
|
3209 Bufbyte *
|
|
3210 convert_emchar_string_into_malloced_string (Emchar *arr, int nels,
|
|
3211 Bytecount *len_out)
|
|
3212 {
|
|
3213 /* Damn zero-termination. */
|
|
3214 Bufbyte *str = (Bufbyte *) alloca (nels * MAX_EMCHAR_LEN + 1);
|
|
3215 Bufbyte *strorig = str;
|
|
3216 Bytecount len;
|
|
3217
|
|
3218 int i;
|
|
3219
|
|
3220 for (i = 0; i < nels; i++)
|
|
3221 str += set_charptr_emchar (str, arr[i]);
|
|
3222 *str = '\0';
|
|
3223 len = str - strorig;
|
|
3224 str = (Bufbyte *) xmalloc (1 + len);
|
|
3225 memcpy (str, strorig, 1 + len);
|
|
3226 if (len_out)
|
|
3227 *len_out = len;
|
|
3228 return str;
|
|
3229 }
|
|
3230
|
|
3231
|
|
3232 /************************************************************************/
|
|
3233 /* initialization */
|
|
3234 /************************************************************************/
|
|
3235
|
|
3236 void
|
|
3237 reinit_vars_of_insdel (void)
|
|
3238 {
|
|
3239 int i;
|
|
3240
|
|
3241 inside_change_hook = 0;
|
|
3242 in_first_change = 0;
|
|
3243
|
|
3244 for (i = 0; i <= MAX_BYTIND_GAP_SIZE_3; i++)
|
|
3245 three_to_one_table[i] = i / 3;
|
|
3246 }
|
|
3247
|
|
3248 void
|
|
3249 vars_of_insdel (void)
|
|
3250 {
|
|
3251 reinit_vars_of_insdel ();
|
|
3252 }
|
|
3253
|
|
3254 void
|
|
3255 init_buffer_text (struct buffer *b)
|
|
3256 {
|
|
3257 if (!b->base_buffer)
|
|
3258 {
|
|
3259 SET_BUF_GAP_SIZE (b, 20);
|
|
3260 BUFFER_ALLOC (b->text->beg, BUF_GAP_SIZE (b) + BUF_END_SENTINEL_SIZE);
|
|
3261 if (! BUF_BEG_ADDR (b))
|
|
3262 memory_full ();
|
|
3263
|
|
3264 SET_BUF_END_GAP_SIZE (b, 0);
|
|
3265 SET_BI_BUF_GPT (b, 1);
|
|
3266 SET_BOTH_BUF_Z (b, 1, 1);
|
|
3267 SET_GAP_SENTINEL (b);
|
|
3268 SET_END_SENTINEL (b);
|
|
3269 #ifdef MULE
|
|
3270 {
|
|
3271 int i;
|
|
3272
|
|
3273 b->text->mule_bufmin = b->text->mule_bufmax = 1;
|
|
3274 b->text->mule_bytmin = b->text->mule_bytmax = 1;
|
|
3275 b->text->mule_shifter = 0;
|
|
3276 b->text->mule_three_p = 0;
|
|
3277
|
|
3278 for (i = 0; i < 16; i++)
|
|
3279 {
|
|
3280 b->text->mule_bufpos_cache[i] = 1;
|
|
3281 b->text->mule_bytind_cache[i] = 1;
|
|
3282 }
|
|
3283 }
|
|
3284 #endif /* MULE */
|
|
3285 b->text->line_number_cache = Qnil;
|
|
3286
|
|
3287 BUF_MODIFF (b) = 1;
|
|
3288 BUF_SAVE_MODIFF (b) = 1;
|
|
3289
|
|
3290 JUST_SET_POINT (b, 1, 1);
|
|
3291 SET_BOTH_BUF_BEGV (b, 1, 1);
|
|
3292 SET_BOTH_BUF_ZV (b, 1, 1);
|
|
3293
|
|
3294 b->text->changes = xnew_and_zero (struct buffer_text_change_data);
|
|
3295 }
|
|
3296 else
|
|
3297 {
|
|
3298 JUST_SET_POINT (b, BUF_PT (b->base_buffer), BI_BUF_PT (b->base_buffer));
|
|
3299 SET_BOTH_BUF_BEGV (b, BUF_BEGV (b->base_buffer),
|
|
3300 BI_BUF_BEGV (b->base_buffer));
|
|
3301 SET_BOTH_BUF_ZV (b, BUF_ZV (b->base_buffer),
|
|
3302 BI_BUF_ZV (b->base_buffer));
|
|
3303 }
|
|
3304
|
|
3305 b->changes = xnew_and_zero (struct each_buffer_change_data);
|
|
3306 BUF_FACECHANGE (b) = 1;
|
|
3307
|
|
3308 #ifdef REGION_CACHE_NEEDS_WORK
|
|
3309 b->newline_cache = 0;
|
|
3310 b->width_run_cache = 0;
|
|
3311 b->width_table = Qnil;
|
|
3312 #endif
|
|
3313 }
|
|
3314
|
|
3315 void
|
|
3316 uninit_buffer_text (struct buffer *b)
|
|
3317 {
|
|
3318 if (!b->base_buffer)
|
|
3319 {
|
|
3320 BUFFER_FREE (b->text->beg);
|
|
3321 xfree (b->text->changes);
|
|
3322 }
|
|
3323 xfree (b->changes);
|
|
3324
|
|
3325 #ifdef REGION_CACHE_NEEDS_WORK
|
|
3326 if (b->newline_cache)
|
|
3327 {
|
|
3328 free_region_cache (b->newline_cache);
|
|
3329 b->newline_cache = 0;
|
|
3330 }
|
|
3331 if (b->width_run_cache)
|
|
3332 {
|
|
3333 free_region_cache (b->width_run_cache);
|
|
3334 b->width_run_cache = 0;
|
|
3335 }
|
|
3336 b->width_table = Qnil;
|
|
3337 #endif
|
|
3338 }
|