153
|
1 /*
|
|
2 * Copyright (c) 1995 by Sun Microsystems, Inc.
|
|
3 * All rights reserved.
|
|
4 *
|
|
5 * This source code is a product of Sun Microsystems, Inc. and is provided
|
|
6 * for unrestricted use provided that this legend is included on all tape
|
|
7 * media and as a part of the software program in whole or part. Users
|
|
8 * may copy or modify this source code without charge, but are not authorized
|
|
9 * to license or distribute it to anyone else except as part of a product or
|
|
10 * program developed by the user.
|
|
11 *
|
|
12 * THIS PROGRAM CONTAINS SOURCE CODE COPYRIGHTED BY SUN MICROSYSTEMS, INC.
|
|
13 * SUN MICROSYSTEMS, INC., MAKES NO REPRESENTATIONS ABOUT THE SUITABLITY
|
|
14 * OF SUCH SOURCE CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT
|
|
15 * EXPRESS OR IMPLIED WARRANTY OF ANY KIND. SUN MICROSYSTEMS, INC. DISCLAIMS
|
|
16 * ALL WARRANTIES WITH REGARD TO SUCH SOURCE CODE, INCLUDING ALL IMPLIED
|
|
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN
|
|
18 * NO EVENT SHALL SUN MICROSYSTEMS, INC. BE LIABLE FOR ANY SPECIAL, INDIRECT,
|
|
19 * INCIDENTAL, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
|
|
20 * FROM USE OF SUCH SOURCE CODE, REGARDLESS OF THE THEORY OF LIABILITY.
|
|
21 *
|
|
22 * This source code is provided with no support and without any obligation on
|
|
23 * the part of Sun Microsystems, Inc. to assist in its use, correction,
|
|
24 * modification or enhancement.
|
|
25 *
|
|
26 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
|
|
27 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS
|
|
28 * SOURCE CODE OR ANY PART THEREOF.
|
|
29 *
|
|
30 * Sun Microsystems, Inc.
|
|
31 * 2550 Garcia Avenue
|
|
32 * Mountain View, California 94043
|
|
33 */
|
|
34
|
|
35 /*
|
|
36 * dynodump(3x) dumps a running executable into a specified ELF file. The new
|
|
37 * file consists of the memory contents of the original file together with any
|
|
38 * heap. This heap is assigned to a new `.heap' section within the new file.
|
|
39 *
|
|
40 * The new file may be re-executed, and will contain any data modifications
|
|
41 * made to the original image up until the time dynodump(3x) was called.
|
|
42 *
|
|
43 * The original image may have undergone relocations (performed by ld.so.1)
|
|
44 * prior to control being transferred to the image. These relocations will
|
|
45 * reside as the data copied from the image. To prevent subsequent executions
|
|
46 * of the new image from undergoing the same relocations, any relocation entries
|
|
47 * (besides copy or jump slot relocations) are nulled out. Note that copy
|
|
48 * relocations such as required for __iob must be reinitialized each time the
|
|
49 * process starts, so it is not sufficient to simply null out the .dynamic
|
|
50 * sections relocation information. The effect of this is that if the new
|
|
51 * image was bound to definitions in any shared object dependencies, then these
|
|
52 * dependencies *must* reside in the same location as when dynodump(3x) was
|
|
53 * called. Any changes to the shared object dependencies of the new image, or
|
|
54 * uses of such things as LD_PRELOAD, may result in the bindings encoded in the
|
|
55 * image becoming invalid.
|
|
56 *
|
|
57 * The following flags modify the data of the image created:
|
|
58 *
|
|
59 * RTLD_SAVREL save the original relocation data. Under this option any
|
|
60 * relocation offset is reset to contain the same data as was
|
|
61 * found in the images original file.
|
|
62 *
|
|
63 * This option allows relocation information to be retained in the
|
|
64 * new image so that it may be re-executed when the new image is
|
|
65 * run. This allows far greater flexibility as the new image can
|
|
66 * now take advantage of new shared objects.
|
|
67 *
|
|
68 * Note. under this mechanism, any data item that undergoes
|
|
69 * relocation and is then further modified during the execution of
|
|
70 * the image before dynodump(3x) is called will lose the
|
|
71 * modification that occured during the applications execution.
|
|
72 *
|
|
73 * N.B. The above commentary is not quite correct in the flags have been hardwired
|
|
74 * to RTLD_SAVREL.
|
|
75 */
|
185
|
76 #pragma ident "@(#) $Id: dynodump.c,v 1.5 1997/09/03 03:39:06 steve Exp $ - SMI"
|
173
|
77
|
|
78 #define __EXTENSIONS__ 1
|
153
|
79
|
|
80 #include <sys/param.h>
|
|
81 #include <sys/procfs.h>
|
|
82 #include <fcntl.h>
|
|
83 #include <stdio.h>
|
|
84 #include <libelf.h>
|
|
85 #include <link.h>
|
|
86 #include <stdlib.h>
|
|
87 #include <string.h>
|
|
88 #include <unistd.h>
|
|
89 #include <errno.h>
|
|
90 #include <malloc.h>
|
|
91 #include "machdep.h"
|
|
92 #include "_dynodump.h"
|
|
93
|
|
94 /*
|
|
95 * Generic elf error message generator
|
|
96 */
|
|
97 static int
|
|
98 elferr(const char * str)
|
|
99 {
|
|
100 fprintf(stderr, "%s: %s\n", str, elf_errmsg(elf_errno()));
|
|
101 return (1);
|
|
102 }
|
|
103
|
|
104 int dynodump (const char * file);
|
|
105 int
|
|
106 dynodump(const char * file)
|
|
107 {
|
|
108 Elf *ielf, *oelf;
|
|
109 Ehdr *iehdr, *oehdr;
|
|
110 Phdr *iphdr, *ophdr, *data_phdr = 0;
|
|
111 Cache *icache, *ocache, *_icache, *_ocache;
|
|
112 Cache *data_cache = 0, *shstr_cache = 0;
|
|
113 Cache *heap_cache = 0;
|
|
114 Word heap_sz = 0;
|
|
115 Elf_Scn *scn;
|
|
116 Shdr *shdr;
|
|
117 Elf_Data *data, rundata;
|
|
118 Half ndx, _ndx;
|
|
119 int fd, _fd;
|
|
120 Addr edata, _addr;
|
|
121 char *istrs, *ostrs, *_ostrs, proc[16];
|
|
122 const char heap[] = ".heap";
|
|
123 prstatus_t pstat;
|
|
124
|
|
125 /* make a call to the processor specific un-init stuff */
|
|
126 dynodump_uninit();
|
|
127
|
|
128 /*
|
|
129 * Obtain a file descriptor for this process,
|
|
130 * for the executable and get a prstatus_t
|
|
131 * structure.
|
|
132 */
|
|
133 sprintf(proc, "/proc/%ld", getpid());
|
|
134 if (((_fd = open(proc, O_RDONLY, 0)) == -1) ||
|
|
135 ((fd = ioctl(_fd, PIOCOPENM, (void *)0)) == -1) ||
|
|
136 (ioctl(_fd, PIOCSTATUS, &pstat) == -1)) {
|
|
137 fprintf(stderr, "/proc: initialization error: %s\n",
|
|
138 strerror(errno));
|
|
139 close(_fd);
|
|
140 return (1);
|
|
141 }
|
|
142 close(_fd);
|
|
143
|
|
144 /*
|
|
145 * Initialize with the ELF library and make sure this is an executable
|
|
146 * ELF file we're dealing with.
|
|
147 */
|
|
148 elf_version(EV_CURRENT);
|
|
149 if ((ielf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) {
|
|
150 close(fd);
|
|
151 return (elferr("elf_begin"));
|
|
152 }
|
|
153 close(fd);
|
|
154
|
|
155 if ((elf_kind(ielf) != ELF_K_ELF) ||
|
|
156 ((iehdr = elf_getehdr(ielf)) == NULL) ||
|
|
157 (iehdr->e_type != ET_EXEC)) {
|
|
158 fprintf(stderr, "image is not an ELF executable\n");
|
|
159 elf_end(ielf);
|
|
160 return (1);
|
|
161 }
|
|
162 /*
|
|
163 * Elf_elf_header(iehdr);
|
|
164 */
|
|
165
|
|
166 /*
|
|
167 * Create the new output file.
|
|
168 */
|
|
169 if ((fd = open(file, O_RDWR | O_CREAT | O_TRUNC, 0777)) == -1) {
|
|
170 fprintf(stderr, "%s: open failed: %s\n", file,
|
|
171 strerror(errno));
|
|
172 elf_end(ielf);
|
|
173 return (1);
|
|
174 }
|
|
175 if ((oelf = elf_begin(fd, ELF_C_WRITE, NULL)) == NULL) {
|
|
176 elf_end(ielf);
|
|
177 close(fd);
|
|
178 return (elferr("elf_begin"));
|
|
179 }
|
|
180
|
|
181 /*
|
|
182 * Obtain the input program headers. Remember the data segments
|
|
183 * program header entry as this will be updated later to reflect the
|
|
184 * new .heap sections size.
|
|
185 */
|
|
186 if ((iphdr = elf_getphdr(ielf)) == NULL)
|
|
187 return (elferr("elf_getphdr"));
|
|
188
|
|
189 for (ndx = 0, ophdr = iphdr; ndx != iehdr->e_phnum; ndx++, ophdr++) {
|
|
190 /*
|
|
191 * Save the program header that contains the NOBITS section, or
|
|
192 * the last loadable program header if no NOBITS exists.
|
|
193 * A NOBITS section translates to a memory size requirement that
|
|
194 * is greater than the file data it is mapped from.
|
|
195 */
|
|
196 if (ophdr->p_type == PT_LOAD) {
|
|
197 if (ophdr->p_filesz != ophdr->p_memsz)
|
|
198 data_phdr = ophdr;
|
|
199 else if (data_phdr) {
|
|
200 if (data_phdr->p_vaddr < ophdr->p_vaddr)
|
|
201 data_phdr = ophdr;
|
|
202 } else
|
|
203 data_phdr = ophdr;
|
|
204 }
|
|
205 }
|
|
206 if (data_phdr == 0) {
|
|
207 fprintf(stderr, "no data segment found!\n");
|
|
208 return (0);
|
|
209 }
|
|
210
|
|
211 /*
|
|
212 * Obtain the input files section header string table.
|
|
213 */
|
|
214 if ((scn = elf_getscn(ielf, iehdr->e_shstrndx)) == NULL)
|
|
215 return (elferr("elf_getscn"));
|
|
216 if ((data = elf_getdata(scn, NULL)) == NULL)
|
|
217 return (elferr("elf_getdata"));
|
185
|
218 istrs = (char *) data->d_buf;
|
153
|
219
|
|
220 /*
|
|
221 * Construct a cache to maintain the input files section information.
|
|
222 */
|
|
223 if ((icache = (Cache *) malloc(iehdr->e_shnum * sizeof (Cache))) == 0) {
|
|
224 fprintf(stderr, "malloc failed: %s\n", strerror(errno));
|
|
225 return (1);
|
|
226 }
|
|
227 _icache = icache;
|
|
228 _icache++;
|
|
229
|
|
230 /*
|
|
231 * Traverse each section from the input file.
|
|
232 */
|
|
233 for (ndx = 1, scn = 0;
|
|
234 (_icache->c_scn = elf_nextscn(ielf, scn));
|
|
235 ndx++, scn = _icache->c_scn, _icache++) {
|
|
236
|
|
237 if ((_icache->c_shdr = shdr = elf_getshdr(_icache->c_scn)) == NULL)
|
|
238 return (elferr("elf_getshdr"));
|
|
239
|
|
240 if ((_icache->c_data = elf_getdata(_icache->c_scn, NULL)) == NULL)
|
|
241 return (elferr("elf_getdata"));
|
|
242
|
|
243 _icache->c_name = istrs + (size_t)(shdr->sh_name);
|
|
244
|
|
245 /*
|
|
246 * For each section that has a virtual address reestablish the
|
|
247 * data buffer to point to the memory image.
|
|
248 *
|
|
249 * if (shdr->sh_addr)
|
|
250 * _icache->c_data->d_buf = (void *)shdr->sh_addr;
|
|
251 */
|
|
252
|
|
253 /*
|
|
254 * Remember the last section of the data segment, the new .heap
|
|
255 * section will be added after this section.
|
|
256 * If we already have one, then set data_cache to the previous
|
|
257 * section and set heap_cache to this one.
|
|
258 */
|
|
259 if ((shdr->sh_addr + shdr->sh_size)
|
|
260 == (data_phdr->p_vaddr + data_phdr->p_memsz)) {
|
|
261 if (strcmp(_icache->c_name, heap) == 0) {
|
|
262 #ifdef DEBUG
|
|
263 printf("Found a previous .heap section\n");
|
|
264 #endif
|
|
265 data_cache = _icache - 1;
|
|
266 heap_cache = _icache;
|
|
267 heap_sz = shdr->sh_size;
|
|
268 } else {
|
|
269 data_cache = _icache;
|
|
270 }
|
|
271 }
|
|
272
|
|
273 /*
|
|
274 * Remember the section header string table as this will be
|
|
275 * rewritten with the new .heap name.
|
|
276 */
|
|
277 if ((shdr->sh_type == SHT_STRTAB) &&
|
|
278 ((strcmp(_icache->c_name, ".shstrtab")) == 0))
|
|
279 shstr_cache = _icache;
|
|
280 }
|
|
281 if (data_cache == 0) {
|
|
282 fprintf(stderr, "final data section not found!\n");
|
|
283 return (0);
|
|
284 }
|
|
285
|
|
286 /*
|
|
287 * Determine the new .heap section to create.
|
|
288 */
|
|
289 rundata.d_buf = (void *)(data_cache->c_shdr->sh_addr +
|
|
290 data_cache->c_shdr->sh_size);
|
|
291 rundata.d_size = (int)sbrk(0) - (int)rundata.d_buf;
|
|
292 rundata.d_type = ELF_T_BYTE;
|
|
293 rundata.d_off = 0;
|
|
294 rundata.d_align = 1;
|
|
295 rundata.d_version = EV_CURRENT;
|
|
296
|
|
297 /*
|
|
298 * From the new data buffer determine the new value for _end and _edata.
|
|
299 * This will also be used to update the data segment program header.
|
|
300 *
|
|
301 * If we had a .heap section, then its size is part of the program
|
|
302 * headers notion of data size. Because we're only going to output one
|
|
303 * heap section (ignoring the one in the running binary) we need to
|
|
304 * subract the size of that which we're ignoring.
|
|
305 */
|
|
306 if (heap_cache) {
|
|
307 edata = S_ROUND((data_phdr->p_vaddr
|
|
308 + data_phdr->p_memsz
|
|
309 - heap_sz), rundata.d_align) + rundata.d_size;
|
|
310 } else {
|
|
311 edata = S_ROUND((data_phdr->p_vaddr + data_phdr->p_memsz),
|
|
312 rundata.d_align) + rundata.d_size;
|
|
313 }
|
|
314
|
|
315 /*
|
|
316 * We're now ready to construct the new elf image.
|
|
317 *
|
|
318 * Obtain a new elf header and initialize it with any basic information
|
|
319 * that isn't calculated as part of elf_update(). Bump the section
|
|
320 * header string table index to account for the .heap section we'll be
|
|
321 * adding.
|
|
322 */
|
|
323 if ((oehdr = elf_newehdr(oelf)) == NULL)
|
|
324 return (elferr("elf_newehdr"));
|
|
325
|
|
326 oehdr->e_entry = iehdr->e_entry;
|
|
327 oehdr->e_machine = iehdr->e_machine;
|
|
328 oehdr->e_type = iehdr->e_type;
|
|
329 oehdr->e_flags = iehdr->e_flags;
|
|
330 /*
|
|
331 * If we already have a heap section, we don't need any adjustment
|
|
332 */
|
|
333 if (heap_cache)
|
|
334 oehdr->e_shstrndx = iehdr->e_shstrndx;
|
|
335 else
|
|
336 oehdr->e_shstrndx = iehdr->e_shstrndx + 1;
|
|
337
|
|
338 #ifdef DEBUG
|
|
339 printf("iehdr->e_flags = %x\n", iehdr->e_flags);
|
|
340 printf("iehdr->e_entry = %x\n", iehdr->e_entry);
|
|
341 printf("iehdr->e_shstrndx= %d\n", iehdr->e_shstrndx);
|
|
342 printf("iehdr->e_machine = %d\n", iehdr->e_machine);
|
|
343 printf("iehdr->e_type = 0x%x\n", iehdr->e_type);
|
|
344 printf("oehdr->e_machine = %d\n", oehdr->e_machine);
|
|
345 printf("oehdr->e_type = 0x%x\n", oehdr->e_type);
|
|
346 #endif
|
|
347
|
|
348 /*
|
|
349 * Obtain a new set of program headers. Initialize these with the same
|
|
350 * information as the input program headers and update the data segment
|
|
351 * to reflect the new .heap section.
|
|
352 */
|
|
353 if ((ophdr = elf_newphdr(oelf, iehdr->e_phnum)) == NULL)
|
|
354 return (elferr("elf_newphdr"));
|
|
355
|
|
356 for (ndx = 0; ndx != iehdr->e_phnum; ndx++, iphdr++, ophdr++) {
|
|
357 *ophdr = *iphdr;
|
|
358 if (data_phdr == iphdr)
|
|
359 ophdr->p_filesz = ophdr->p_memsz = edata - ophdr->p_vaddr;
|
|
360 }
|
|
361
|
|
362 /*
|
|
363 * Obtain a new set of sections.
|
|
364 */
|
|
365 _icache = icache;
|
|
366 _icache++;
|
|
367 for (ndx = 1; ndx != iehdr->e_shnum; ndx++, _icache++) {
|
|
368 /*
|
|
369 * Skip the heap section of the running executable
|
|
370 */
|
|
371 if (_icache == heap_cache)
|
|
372 continue;
|
|
373 /*
|
|
374 * Create a matching section header in the output file.
|
|
375 */
|
|
376 if ((scn = elf_newscn(oelf)) == NULL)
|
|
377 return (elferr("elf_newscn"));
|
|
378 if ((shdr = elf_getshdr(scn)) == NULL)
|
|
379 return (elferr("elf_getshdr"));
|
|
380 *shdr = *_icache->c_shdr;
|
|
381
|
|
382 /*
|
|
383 * Create a matching data buffer for this section.
|
|
384 */
|
|
385 if ((data = elf_newdata(scn)) == NULL)
|
|
386 return (elferr("elf_newdata"));
|
|
387 *data = *_icache->c_data;
|
|
388
|
|
389 /*
|
|
390 * For each section that has a virtual address reestablish the
|
|
391 * data buffer to point to the memory image. Note, we skip
|
|
392 * the plt section.
|
|
393 */
|
|
394 if ((shdr->sh_addr) && (!((shdr->sh_type == SHT_PROGBITS)
|
|
395 && (strcmp(_icache->c_name, ".plt") == 0))))
|
|
396 data->d_buf = (void *)shdr->sh_addr;
|
|
397
|
|
398 /*
|
|
399 * Update any NOBITS section to indicate that it now contains
|
|
400 * data.
|
|
401 */
|
|
402 if (shdr->sh_type == SHT_NOBITS)
|
|
403 shdr->sh_type = SHT_PROGBITS;
|
|
404
|
|
405 /*
|
|
406 * Add the new .heap section after the last section of the
|
|
407 * present data segment. If we had a heap section, then
|
|
408 * this is the section preceding it.
|
|
409 */
|
|
410 if (data_cache == _icache) {
|
|
411 if ((scn = elf_newscn(oelf)) == NULL)
|
|
412 return (elferr("elf_newscn"));
|
|
413 if ((shdr = elf_getshdr(scn)) == NULL)
|
|
414 return (elferr("elf_getshdr"));
|
|
415 shdr->sh_type = SHT_PROGBITS;
|
|
416 shdr->sh_flags = SHF_ALLOC | SHF_WRITE;
|
|
417
|
|
418 if ((data = elf_newdata(scn)) == NULL)
|
|
419 return (elferr("elf_newdata"));
|
|
420 *data = rundata;
|
|
421 }
|
|
422
|
|
423 /*
|
|
424 * Update the section header string table size to reflect the
|
|
425 * new section name (only if we didn't already have a heap).
|
|
426 */
|
|
427 if (!heap_cache) {
|
|
428 if (shstr_cache && (shstr_cache == _icache)) {
|
|
429 data->d_size += sizeof (heap);
|
|
430 }
|
|
431 }
|
|
432 }
|
|
433
|
|
434 /*
|
|
435 * Write out the new image, and obtain a new elf descriptor that will
|
|
436 * allow us to write to the new image.
|
|
437 */
|
|
438 if (elf_update(oelf, ELF_C_WRITE) == -1)
|
|
439 return (elferr("elf_update"));
|
|
440 elf_end(oelf);
|
|
441 if ((oelf = elf_begin(fd, ELF_C_RDWR, NULL)) == NULL)
|
|
442 return (elferr("elf_begin"));
|
|
443 if ((oehdr = elf_getehdr(oelf)) == NULL)
|
|
444 return (elferr("elf_getehdr"));
|
|
445
|
|
446 /*
|
|
447 * Obtain the output files section header string table.
|
|
448 */
|
|
449 if ((scn = elf_getscn(oelf, oehdr->e_shstrndx)) == NULL)
|
|
450 return (elferr("elf_getscn"));
|
|
451 if ((data = elf_getdata(scn, NULL)) == NULL)
|
|
452 return (elferr("elf_getdata"));
|
185
|
453 ostrs = _ostrs = (char *) data->d_buf;
|
153
|
454 *_ostrs++ = '\0';
|
|
455
|
|
456 /*
|
|
457 * Construct a cache to maintain the output files section information.
|
|
458 */
|
|
459 if ((ocache = (Cache *)malloc(oehdr->e_shnum * sizeof (Cache))) == 0) {
|
|
460 fprintf(stderr, "malloc failed: %s\n", strerror(errno));
|
|
461 return (1);
|
|
462 }
|
|
463 _ocache = ocache;
|
|
464 _ocache++;
|
|
465 _icache = icache;
|
|
466 _icache++;
|
|
467
|
|
468 /*
|
|
469 * Traverse each section from the input file rebuilding the section
|
|
470 * header string table as we go.
|
|
471 */
|
|
472 _ndx = _addr = 0;
|
|
473 for (ndx = 1, scn = 0;
|
|
474 (_ocache->c_scn = elf_nextscn(oelf, scn));
|
|
475 ndx++, scn = _ocache->c_scn, _ocache++, _icache++) {
|
|
476
|
|
477 const char *strs;
|
|
478
|
|
479 if (_icache == heap_cache) {
|
|
480 #ifdef DEBUG
|
|
481 printf("ignoring .heap section in input\n");
|
|
482 #endif
|
|
483 _icache++;
|
|
484 }
|
|
485
|
|
486 if ((_ocache->c_shdr = shdr =
|
|
487 elf_getshdr(_ocache->c_scn)) == NULL)
|
|
488 return (elferr("elf_getshdr"));
|
|
489 if ((_ocache->c_data =
|
|
490 elf_getdata(_ocache->c_scn, NULL)) == NULL)
|
|
491 return (elferr("elf_getdata"));
|
|
492
|
|
493 /*
|
|
494 * If were inserting the new .heap section, insert the new
|
|
495 * section name and initialize it's virtual address.
|
|
496 */
|
|
497 if (_addr) {
|
|
498 strs = heap;
|
|
499 shdr->sh_addr = S_ROUND(_addr, shdr->sh_addralign);
|
|
500 _addr = 0;
|
|
501 } else {
|
|
502 strs = istrs + (size_t)(_icache->c_shdr->sh_name);
|
|
503 }
|
|
504
|
|
505 strcpy(_ostrs, strs);
|
|
506 shdr->sh_name = _ostrs - ostrs;
|
|
507 _ocache->c_name = _ostrs;
|
|
508 _ostrs += strlen(strs) + 1;
|
|
509
|
|
510 /*
|
|
511 * If we've inserted a new section any later section may need
|
|
512 * their sh_link fields updated.
|
|
513 * If we already had a heap section, then this is not required.
|
|
514 */
|
|
515 if (!heap_cache) {
|
|
516 if (_ndx) {
|
|
517 if (_ocache->c_shdr->sh_link >= _ndx)
|
|
518 _ocache->c_shdr->sh_link++;
|
|
519 }
|
|
520 }
|
|
521
|
|
522 /*
|
|
523 * If this is the last section of the original data segment
|
|
524 * determine sufficient information to initialize the new .heap
|
|
525 * section which will be obtained next.
|
|
526 */
|
|
527 if (data_cache == _icache) {
|
|
528 _ndx = ndx + 1;
|
|
529 _addr = shdr->sh_addr + shdr->sh_size;
|
|
530 _icache--;
|
|
531 data_cache = 0;
|
|
532 }
|
|
533 }
|
|
534
|
|
535 /*
|
|
536 * Now that we have a complete description of the new image update any
|
|
537 * sections that are required.
|
|
538 *
|
|
539 * o update the value of _edata and _end.
|
|
540 *
|
|
541 * o reset any relocation entries if necessary.
|
|
542 */
|
|
543 _ocache = &ocache[1];
|
|
544 _icache = &icache[1];
|
|
545 for (ndx = 1; ndx < oehdr->e_shnum; ndx++, _ocache++, _icache++) {
|
|
546 if ((_ocache->c_shdr->sh_type == SHT_SYMTAB) ||
|
|
547 (_ocache->c_shdr->sh_type == SHT_DYNSYM))
|
|
548 update_sym(ocache, _ocache, edata);
|
|
549
|
|
550 if (_ocache->c_shdr->sh_type == M_REL_SHT_TYPE)
|
|
551 update_reloc(ocache, _ocache, icache, _icache, oehdr->e_shnum);
|
|
552 }
|
|
553
|
|
554 if (elf_update(oelf, ELF_C_WRITE) == -1)
|
|
555 return (elferr("elf_update"));
|
|
556
|
|
557 elf_end(oelf);
|
|
558 elf_end(ielf);
|
|
559 return (0);
|
|
560 }
|