428
|
1 /* Buffer insertion/deletion and gap motion for XEmacs.
|
|
2 Copyright (C) 1985, 1986, 1991, 1992, 1993, 1994, 1995
|
|
3 Free Software Foundation, Inc.
|
|
4 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: Mule 2.0, FSF 19.30. Diverges significantly. */
|
|
24
|
|
25 /* This file has been Mule-ized. */
|
|
26
|
|
27 /* Overhauled by Ben Wing, December 1994, for Mule implementation. */
|
|
28
|
|
29 /*
|
|
30 There are three possible ways to specify positions in a buffer. All
|
|
31 of these are one-based: the beginning of the buffer is position or
|
|
32 index 1, and 0 is not a valid position.
|
|
33
|
665
|
34 As a "buffer position" (typedef Charbpos):
|
428
|
35
|
|
36 This is an index specifying an offset in characters from the
|
|
37 beginning of the buffer. Note that buffer positions are
|
|
38 logically *between* characters, not on a character. The
|
|
39 difference between two buffer positions specifies the number of
|
|
40 characters between those positions. Buffer positions are the
|
|
41 only kind of position externally visible to the user.
|
|
42
|
665
|
43 As a "byte index" (typedef Bytebpos):
|
428
|
44
|
|
45 This is an index over the bytes used to represent the characters
|
|
46 in the buffer. If there is no Mule support, this is identical
|
|
47 to a buffer position, because each character is represented
|
|
48 using one byte. However, with Mule support, many characters
|
|
49 require two or more bytes for their representation, and so a
|
|
50 byte index may be greater than the corresponding buffer
|
|
51 position.
|
|
52
|
665
|
53 As a "memory index" (typedef Membpos):
|
428
|
54
|
|
55 This is the byte index adjusted for the gap. For positions
|
|
56 before the gap, this is identical to the byte index. For
|
|
57 positions after the gap, this is the byte index plus the gap
|
|
58 size. There are two possible memory indices for the gap
|
|
59 position; the memory index at the beginning of the gap should
|
|
60 always be used, except in code that deals with manipulating the
|
|
61 gap, where both indices may be seen. The address of the
|
|
62 character "at" (i.e. following) a particular position can be
|
|
63 obtained from the formula
|
|
64
|
|
65 buffer_start_address + memory_index(position) - 1
|
|
66
|
|
67 except in the case of characters at the gap position.
|
|
68
|
|
69 Other typedefs:
|
|
70 ===============
|
|
71
|
|
72 Emchar:
|
|
73 -------
|
|
74 This typedef represents a single Emacs character, which can be
|
|
75 ASCII, ISO-8859, or some extended character, as would typically
|
|
76 be used for Kanji. Note that the representation of a character
|
|
77 as an Emchar is *not* the same as the representation of that
|
|
78 same character in a string; thus, you cannot do the standard
|
|
79 C trick of passing a pointer to a character to a function that
|
|
80 expects a string.
|
|
81
|
|
82 An Emchar takes up 19 bits of representation and (for code
|
|
83 compatibility and such) is compatible with an int. This
|
|
84 representation is visible on the Lisp level. The important
|
|
85 characteristics of the Emchar representation are
|
|
86
|
|
87 -- values 0x00 - 0x7f represent ASCII.
|
|
88 -- values 0x80 - 0xff represent the right half of ISO-8859-1.
|
|
89 -- values 0x100 and up represent all other characters.
|
|
90
|
|
91 This means that Emchar values are upwardly compatible with
|
|
92 the standard 8-bit representation of ASCII/ISO-8859-1.
|
|
93
|
665
|
94 Intbyte:
|
428
|
95 --------
|
665
|
96 The data in a buffer or string is logically made up of Intbyte
|
|
97 objects, where a Intbyte takes up the same amount of space as a
|
428
|
98 char. (It is declared differently, though, to catch invalid
|
665
|
99 usages.) Strings stored using Intbytes are said to be in
|
428
|
100 "internal format". The important characteristics of internal
|
|
101 format are
|
|
102
|
665
|
103 -- ASCII characters are represented as a single Intbyte,
|
428
|
104 in the range 0 - 0x7f.
|
665
|
105 -- All other characters are represented as a Intbyte in
|
|
106 the range 0x80 - 0x9f followed by one or more Intbytes
|
428
|
107 in the range 0xa0 to 0xff.
|
|
108
|
|
109 This leads to a number of desirable properties:
|
|
110
|
|
111 -- Given the position of the beginning of a character,
|
|
112 you can find the beginning of the next or previous
|
|
113 character in constant time.
|
|
114 -- When searching for a substring or an ASCII character
|
|
115 within the string, you need merely use standard
|
|
116 searching routines.
|
|
117
|
|
118 array of char:
|
|
119 --------------
|
|
120 Strings that go in or out of Emacs are in "external format",
|
|
121 typedef'ed as an array of char or a char *. There is more
|
|
122 than one external format (JIS, EUC, etc.) but they all
|
|
123 have similar properties. They are modal encodings,
|
|
124 which is to say that the meaning of particular bytes is
|
|
125 not fixed but depends on what "mode" the string is currently
|
|
126 in (e.g. bytes in the range 0 - 0x7f might be
|
|
127 interpreted as ASCII, or as Hiragana, or as 2-byte Kanji,
|
|
128 depending on the current mode). The mode starts out in
|
|
129 ASCII/ISO-8859-1 and is switched using escape sequences --
|
|
130 for example, in the JIS encoding, 'ESC $ B' switches to a
|
|
131 mode where pairs of bytes in the range 0 - 0x7f
|
|
132 are interpreted as Kanji characters.
|
|
133
|
|
134 External-formatted data is generally desirable for passing
|
|
135 data between programs because it is upwardly compatible
|
|
136 with standard ASCII/ISO-8859-1 strings and may require
|
|
137 less space than internal encodings such as the one
|
|
138 described above. In addition, some encodings (e.g. JIS)
|
|
139 keep all characters (except the ESC used to switch modes)
|
|
140 in the printing ASCII range 0x20 - 0x7e, which results in
|
|
141 a much higher probability that the data will avoid being
|
|
142 garbled in transmission. Externally-formatted data is
|
|
143 generally not very convenient to work with, however, and
|
|
144 for this reason is usually converted to internal format
|
|
145 before any work is done on the string.
|
|
146
|
|
147 NOTE: filenames need to be in external format so that
|
|
148 ISO-8859-1 characters come out correctly.
|
|
149
|
|
150 Charcount:
|
|
151 ----------
|
|
152 This typedef represents a count of characters, such as
|
|
153 a character offset into a string or the number of
|
|
154 characters between two positions in a buffer. The
|
665
|
155 difference between two Charbpos's is a Charcount, and
|
428
|
156 character positions in a string are represented using
|
|
157 a Charcount.
|
|
158
|
|
159 Bytecount:
|
|
160 ----------
|
|
161 Similar to a Charcount but represents a count of bytes.
|
665
|
162 The difference between two Bytebpos's is a Bytecount.
|
428
|
163
|
|
164
|
|
165 Usage of the various representations:
|
|
166 =====================================
|
|
167
|
|
168 Memory indices are used in low-level functions in insdel.c and for
|
|
169 extent endpoints and marker positions. The reason for this is that
|
|
170 this way, the extents and markers don't need to be updated for most
|
|
171 insertions, which merely shrink the gap and don't move any
|
|
172 characters around in memory.
|
|
173
|
|
174 (The beginning-of-gap memory index simplifies insertions w.r.t.
|
|
175 markers, because text usually gets inserted after markers. For
|
|
176 extents, it is merely for consistency, because text can get
|
|
177 inserted either before or after an extent's endpoint depending on
|
|
178 the open/closedness of the endpoint.)
|
|
179
|
|
180 Byte indices are used in other code that needs to be fast,
|
|
181 such as the searching, redisplay, and extent-manipulation code.
|
|
182
|
|
183 Buffer positions are used in all other code. This is because this
|
|
184 representation is easiest to work with (especially since Lisp
|
|
185 code always uses buffer positions), necessitates the fewest
|
|
186 changes to existing code, and is the safest (e.g. if the text gets
|
|
187 shifted underneath a buffer position, it will still point to a
|
|
188 character; if text is shifted under a byte index, it might point
|
|
189 to the middle of a character, which would be bad).
|
|
190
|
|
191 Similarly, Charcounts are used in all code that deals with strings
|
|
192 except for code that needs to be fast, which used Bytecounts.
|
|
193
|
|
194 Strings are always passed around internally using internal format.
|
|
195 Conversions between external format are performed at the time
|
|
196 that the data goes in or out of Emacs.
|
|
197
|
|
198 Working with the various representations:
|
|
199 ========================================= */
|
|
200
|
|
201 #include <config.h>
|
|
202 #include "lisp.h"
|
|
203
|
|
204 #include "buffer.h"
|
|
205 #include "device.h"
|
|
206 #include "frame.h"
|
|
207 #include "extents.h"
|
|
208 #include "insdel.h"
|
|
209 #include "lstream.h"
|
|
210 #include "redisplay.h"
|
|
211 #include "line-number.h"
|
|
212
|
|
213 /* We write things this way because it's very important the
|
665
|
214 MAX_BYTEBPOS_GAP_SIZE_3 is a multiple of 3. (As it happens,
|
428
|
215 65535 is a multiple of 3, but this may not always be the
|
|
216 case.) */
|
|
217
|
665
|
218 #define MAX_CHARBPOS_GAP_SIZE_3 (65535/3)
|
|
219 #define MAX_BYTEBPOS_GAP_SIZE_3 (3 * MAX_CHARBPOS_GAP_SIZE_3)
|
|
220
|
|
221 short three_to_one_table[1 + MAX_BYTEBPOS_GAP_SIZE_3];
|
428
|
222
|
|
223 /* Various macros modelled along the lines of those in buffer.h.
|
|
224 Purposefully omitted from buffer.h because files other than this
|
|
225 one should not be using them. */
|
|
226
|
|
227 /* Address of beginning of buffer. This is an lvalue because
|
|
228 BUFFER_ALLOC needs it to be. */
|
|
229 #define BUF_BEG_ADDR(buf) ((buf)->text->beg)
|
|
230
|
|
231 /* Set the address of beginning of buffer. */
|
|
232 #define SET_BUF_BEG_ADDR(buf, addr) do { (buf)->text->beg = (addr); } while (0)
|
|
233
|
|
234 /* Gap size. */
|
|
235 #define BUF_GAP_SIZE(buf) ((buf)->text->gap_size + 0)
|
|
236 #define BUF_END_GAP_SIZE(buf) ((buf)->text->end_gap_size + 0)
|
|
237 /* Set gap size. */
|
|
238 #define SET_BUF_GAP_SIZE(buf, value) \
|
|
239 do { (buf)->text->gap_size = (value); } while (0)
|
|
240 #define SET_BUF_END_GAP_SIZE(buf, value) \
|
|
241 do { (buf)->text->end_gap_size = (value); } while (0)
|
|
242
|
|
243 /* Gap location. */
|
|
244 #define BI_BUF_GPT(buf) ((buf)->text->gpt + 0)
|
|
245 #define BUF_GPT_ADDR(buf) (BUF_BEG_ADDR (buf) + BI_BUF_GPT (buf) - 1)
|
|
246
|
|
247 /* Set gap location. */
|
|
248 #define SET_BI_BUF_GPT(buf, value) do { (buf)->text->gpt = (value); } while (0)
|
|
249
|
|
250 /* Set end of buffer. */
|
|
251 #define SET_BOTH_BUF_Z(buf, val, bival) \
|
|
252 do \
|
|
253 { \
|
|
254 (buf)->text->z = (bival); \
|
|
255 (buf)->text->bufz = (val); \
|
|
256 } while (0)
|
|
257
|
|
258 /* Under Mule, we maintain two sentinels in the buffer: one at the
|
|
259 beginning of the gap, and one at the end of the buffer. This
|
|
260 allows us to move forward, examining bytes looking for the
|
|
261 end of a character, and not worry about running off the end.
|
|
262 We do not need corresponding sentinels when moving backwards
|
|
263 because we do not have to look past the beginning of a character
|
|
264 to find the beginning of the character.
|
|
265
|
|
266 Every time we change the beginning of the gap, we have to
|
|
267 call SET_GAP_SENTINEL().
|
|
268
|
|
269 Every time we change the total size (characters plus gap)
|
|
270 of the buffer, we have to call SET_END_SENTINEL().
|
|
271 */
|
|
272
|
|
273
|
|
274 #ifdef MULE
|
|
275 # define GAP_CAN_HOLD_SIZE_P(buf, len) (BUF_GAP_SIZE (buf) >= (len) + 1)
|
|
276 # define SET_GAP_SENTINEL(buf) (*BUF_GPT_ADDR (buf) = 0)
|
|
277 # define BUF_END_SENTINEL_SIZE 1
|
|
278 # define SET_END_SENTINEL(buf) \
|
|
279 (*(BUF_BEG_ADDR (buf) + BUF_GAP_SIZE (buf) + BI_BUF_Z (buf) - 1) = 0)
|
|
280 #else
|
|
281 # define GAP_CAN_HOLD_SIZE_P(buf, len) (BUF_GAP_SIZE (buf) >= (len))
|
|
282 # define SET_GAP_SENTINEL(buf)
|
|
283 # define BUF_END_SENTINEL_SIZE 0
|
|
284 # define SET_END_SENTINEL(buf)
|
|
285 #endif
|
|
286
|
|
287
|
|
288 /************************************************************************/
|
|
289 /* Charcount/Bytecount conversion */
|
|
290 /************************************************************************/
|
|
291
|
|
292 /* Optimization. Do it. Live it. Love it. */
|
|
293
|
|
294 #ifdef MULE
|
|
295
|
|
296 /* We include the basic functions here that require no specific
|
|
297 knowledge of how data is Mule-encoded into a buffer other
|
|
298 than the basic (00 - 7F), (80 - 9F), (A0 - FF) scheme.
|
|
299 Anything that requires more specific knowledge goes into
|
|
300 mule-charset.c. */
|
|
301
|
|
302 /* Given a pointer to a text string and a length in bytes, return
|
|
303 the equivalent length in characters. */
|
|
304
|
|
305 Charcount
|
665
|
306 bytecount_to_charcount (const Intbyte *ptr, Bytecount len)
|
428
|
307 {
|
|
308 Charcount count = 0;
|
665
|
309 const Intbyte *end = ptr + len;
|
442
|
310
|
|
311 #if SIZEOF_LONG == 8
|
|
312 # define STRIDE_TYPE long
|
|
313 # define HIGH_BIT_MASK 0x8080808080808080UL
|
|
314 #elif SIZEOF_LONG_LONG == 8 && !(defined (i386) || defined (__i386__))
|
|
315 # define STRIDE_TYPE long long
|
|
316 # define HIGH_BIT_MASK 0x8080808080808080ULL
|
|
317 #elif SIZEOF_LONG == 4
|
|
318 # define STRIDE_TYPE long
|
|
319 # define HIGH_BIT_MASK 0x80808080UL
|
|
320 #else
|
|
321 # error Add support for 128-bit systems here
|
|
322 #endif
|
|
323
|
|
324 #define ALIGN_BITS ((EMACS_UINT) (ALIGNOF (STRIDE_TYPE) - 1))
|
|
325 #define ALIGN_MASK (~ ALIGN_BITS)
|
|
326 #define ALIGNED(ptr) ((((EMACS_UINT) ptr) & ALIGN_BITS) == 0)
|
|
327 #define STRIDE sizeof (STRIDE_TYPE)
|
|
328
|
|
329 while (ptr < end)
|
428
|
330 {
|
442
|
331 if (BYTE_ASCII_P (*ptr))
|
428
|
332 {
|
442
|
333 /* optimize for long stretches of ASCII */
|
|
334 if (! ALIGNED (ptr))
|
|
335 ptr++, count++;
|
|
336 else
|
|
337 {
|
|
338 const unsigned STRIDE_TYPE *ascii_end =
|
|
339 (const unsigned STRIDE_TYPE *) ptr;
|
|
340 /* This loop screams, because we can typically
|
|
341 detect ASCII characters 8 at a time. */
|
665
|
342 while ((const Intbyte *) ascii_end + STRIDE <= end
|
442
|
343 && !(*ascii_end & HIGH_BIT_MASK))
|
|
344 ascii_end++;
|
665
|
345 if ((Intbyte *) ascii_end == ptr)
|
442
|
346 ptr++, count++;
|
|
347 else
|
|
348 {
|
665
|
349 count += (Intbyte *) ascii_end - ptr;
|
|
350 ptr = (Intbyte *) ascii_end;
|
442
|
351 }
|
|
352 }
|
428
|
353 }
|
442
|
354 else
|
428
|
355 {
|
442
|
356 /* optimize for successive characters from the same charset */
|
665
|
357 Intbyte leading_byte = *ptr;
|
|
358 Bytecount bytes = REP_BYTES_BY_FIRST_BYTE (leading_byte);
|
442
|
359 while ((ptr < end) && (*ptr == leading_byte))
|
|
360 ptr += bytes, count++;
|
428
|
361 }
|
|
362 }
|
|
363
|
665
|
364 #ifdef ERROR_CHECK_CHARBPOS
|
428
|
365 /* Bomb out if the specified substring ends in the middle
|
|
366 of a character. Note that we might have already gotten
|
|
367 a core dump above from an invalid reference, but at least
|
|
368 we will get no farther than here. */
|
|
369 assert (ptr == end);
|
|
370 #endif
|
|
371
|
|
372 return count;
|
|
373 }
|
|
374
|
|
375 /* Given a pointer to a text string and a length in characters, return
|
|
376 the equivalent length in bytes. */
|
|
377
|
|
378 Bytecount
|
665
|
379 charcount_to_bytecount (const Intbyte *ptr, Charcount len)
|
428
|
380 {
|
665
|
381 const Intbyte *newptr = ptr;
|
428
|
382
|
|
383 while (len > 0)
|
|
384 {
|
|
385 INC_CHARPTR (newptr);
|
|
386 len--;
|
|
387 }
|
|
388 return newptr - ptr;
|
|
389 }
|
|
390
|
|
391 /* The next two functions are the actual meat behind the
|
665
|
392 charbpos-to-bytebpos and bytebpos-to-charbpos conversions. Currently
|
428
|
393 the method they use is fairly unsophisticated; see buffer.h.
|
|
394
|
665
|
395 Note that charbpos_to_bytebpos_func() is probably the most-called
|
428
|
396 function in all of XEmacs. Therefore, it must be FAST FAST FAST.
|
|
397 This is the reason why so much of the code is duplicated.
|
|
398
|
665
|
399 Similar considerations apply to bytebpos_to_charbpos_func(), although
|
428
|
400 less so because the function is not called so often.
|
|
401
|
|
402 #### At some point this should use a more sophisticated method;
|
|
403 see buffer.h. */
|
|
404
|
|
405 static int not_very_random_number;
|
|
406
|
665
|
407 Bytebpos
|
|
408 charbpos_to_bytebpos_func (struct buffer *buf, Charbpos x)
|
428
|
409 {
|
665
|
410 Charbpos bufmin;
|
|
411 Charbpos bufmax;
|
|
412 Bytebpos bytmin;
|
|
413 Bytebpos bytmax;
|
428
|
414 int size;
|
|
415 int forward_p;
|
665
|
416 Bytebpos retval;
|
428
|
417 int diff_so_far;
|
|
418 int add_to_cache = 0;
|
|
419
|
|
420 /* Check for some cached positions, for speed. */
|
|
421 if (x == BUF_PT (buf))
|
|
422 return BI_BUF_PT (buf);
|
|
423 if (x == BUF_ZV (buf))
|
|
424 return BI_BUF_ZV (buf);
|
|
425 if (x == BUF_BEGV (buf))
|
|
426 return BI_BUF_BEGV (buf);
|
|
427
|
|
428 bufmin = buf->text->mule_bufmin;
|
|
429 bufmax = buf->text->mule_bufmax;
|
|
430 bytmin = buf->text->mule_bytmin;
|
|
431 bytmax = buf->text->mule_bytmax;
|
|
432 size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p;
|
|
433
|
|
434 /* The basic idea here is that we shift the "known region" up or down
|
|
435 until it overlaps the specified position. We do this by moving
|
|
436 the upper bound of the known region up one character at a time,
|
|
437 and moving the lower bound of the known region up as necessary
|
|
438 when the size of the character just seen changes.
|
|
439
|
|
440 We optimize this, however, by first shifting the known region to
|
|
441 one of the cached points if it's close by. (We don't check BEG or
|
|
442 Z, even though they're cached; most of the time these will be the
|
|
443 same as BEGV and ZV, and when they're not, they're not likely
|
|
444 to be used.) */
|
|
445
|
|
446 if (x > bufmax)
|
|
447 {
|
665
|
448 Charbpos diffmax = x - bufmax;
|
|
449 Charbpos diffpt = x - BUF_PT (buf);
|
|
450 Charbpos diffzv = BUF_ZV (buf) - x;
|
428
|
451 /* #### This value could stand some more exploration. */
|
|
452 Charcount heuristic_hack = (bufmax - bufmin) >> 2;
|
|
453
|
|
454 /* Check if the position is closer to PT or ZV than to the
|
|
455 end of the known region. */
|
|
456
|
|
457 if (diffpt < 0)
|
|
458 diffpt = -diffpt;
|
|
459 if (diffzv < 0)
|
|
460 diffzv = -diffzv;
|
|
461
|
|
462 /* But also implement a heuristic that favors the known region
|
|
463 over PT or ZV. The reason for this is that switching to
|
|
464 PT or ZV will wipe out the knowledge in the known region,
|
|
465 which might be annoying if the known region is large and
|
|
466 PT or ZV is not that much closer than the end of the known
|
|
467 region. */
|
|
468
|
|
469 diffzv += heuristic_hack;
|
|
470 diffpt += heuristic_hack;
|
|
471 if (diffpt < diffmax && diffpt <= diffzv)
|
|
472 {
|
|
473 bufmax = bufmin = BUF_PT (buf);
|
|
474 bytmax = bytmin = BI_BUF_PT (buf);
|
|
475 /* We set the size to 1 even though it doesn't really
|
|
476 matter because the new known region contains no
|
|
477 characters. We do this because this is the most
|
|
478 likely size of the characters around the new known
|
|
479 region, and we avoid potential yuckiness that is
|
|
480 done when size == 3. */
|
|
481 size = 1;
|
|
482 }
|
|
483 if (diffzv < diffmax)
|
|
484 {
|
|
485 bufmax = bufmin = BUF_ZV (buf);
|
|
486 bytmax = bytmin = BI_BUF_ZV (buf);
|
|
487 size = 1;
|
|
488 }
|
|
489 }
|
665
|
490 #ifdef ERROR_CHECK_CHARBPOS
|
428
|
491 else if (x >= bufmin)
|
|
492 abort ();
|
|
493 #endif
|
|
494 else
|
|
495 {
|
665
|
496 Charbpos diffmin = bufmin - x;
|
|
497 Charbpos diffpt = BUF_PT (buf) - x;
|
|
498 Charbpos diffbegv = x - BUF_BEGV (buf);
|
428
|
499 /* #### This value could stand some more exploration. */
|
|
500 Charcount heuristic_hack = (bufmax - bufmin) >> 2;
|
|
501
|
|
502 if (diffpt < 0)
|
|
503 diffpt = -diffpt;
|
|
504 if (diffbegv < 0)
|
|
505 diffbegv = -diffbegv;
|
|
506
|
|
507 /* But also implement a heuristic that favors the known region --
|
|
508 see above. */
|
|
509
|
|
510 diffbegv += heuristic_hack;
|
|
511 diffpt += heuristic_hack;
|
|
512
|
|
513 if (diffpt < diffmin && diffpt <= diffbegv)
|
|
514 {
|
|
515 bufmax = bufmin = BUF_PT (buf);
|
|
516 bytmax = bytmin = BI_BUF_PT (buf);
|
|
517 /* We set the size to 1 even though it doesn't really
|
|
518 matter because the new known region contains no
|
|
519 characters. We do this because this is the most
|
|
520 likely size of the characters around the new known
|
|
521 region, and we avoid potential yuckiness that is
|
|
522 done when size == 3. */
|
|
523 size = 1;
|
|
524 }
|
|
525 if (diffbegv < diffmin)
|
|
526 {
|
|
527 bufmax = bufmin = BUF_BEGV (buf);
|
|
528 bytmax = bytmin = BI_BUF_BEGV (buf);
|
|
529 size = 1;
|
|
530 }
|
|
531 }
|
|
532
|
|
533 diff_so_far = x > bufmax ? x - bufmax : bufmin - x;
|
|
534 if (diff_so_far > 50)
|
|
535 {
|
|
536 /* If we have to move more than a certain amount, then look
|
|
537 into our cache. */
|
|
538 int minval = INT_MAX;
|
|
539 int found = 0;
|
|
540 int i;
|
|
541
|
|
542 add_to_cache = 1;
|
|
543 /* I considered keeping the positions ordered. This would speed
|
|
544 up this loop, but updating the cache would take longer, so
|
|
545 it doesn't seem like it would really matter. */
|
|
546 for (i = 0; i < 16; i++)
|
|
547 {
|
665
|
548 int diff = buf->text->mule_charbpos_cache[i] - x;
|
428
|
549
|
|
550 if (diff < 0)
|
|
551 diff = -diff;
|
|
552 if (diff < minval)
|
|
553 {
|
|
554 minval = diff;
|
|
555 found = i;
|
|
556 }
|
|
557 }
|
|
558
|
|
559 if (minval < diff_so_far)
|
|
560 {
|
665
|
561 bufmax = bufmin = buf->text->mule_charbpos_cache[found];
|
|
562 bytmax = bytmin = buf->text->mule_bytebpos_cache[found];
|
428
|
563 size = 1;
|
|
564 }
|
|
565 }
|
|
566
|
|
567 /* It's conceivable that the caching above could lead to X being
|
|
568 the same as one of the range edges. */
|
|
569 if (x >= bufmax)
|
|
570 {
|
665
|
571 Bytebpos newmax;
|
428
|
572 Bytecount newsize;
|
|
573
|
|
574 forward_p = 1;
|
|
575 while (x > bufmax)
|
|
576 {
|
|
577 newmax = bytmax;
|
|
578
|
665
|
579 INC_BYTEBPOS (buf, newmax);
|
428
|
580 newsize = newmax - bytmax;
|
|
581 if (newsize != size)
|
|
582 {
|
|
583 bufmin = bufmax;
|
|
584 bytmin = bytmax;
|
|
585 size = newsize;
|
|
586 }
|
|
587 bytmax = newmax;
|
|
588 bufmax++;
|
|
589 }
|
|
590 retval = bytmax;
|
|
591
|
|
592 /* #### Should go past the found location to reduce the number
|
|
593 of times that this function is called */
|
|
594 }
|
|
595 else /* x < bufmin */
|
|
596 {
|
665
|
597 Bytebpos newmin;
|
428
|
598 Bytecount newsize;
|
|
599
|
|
600 forward_p = 0;
|
|
601 while (x < bufmin)
|
|
602 {
|
|
603 newmin = bytmin;
|
|
604
|
665
|
605 DEC_BYTEBPOS (buf, newmin);
|
428
|
606 newsize = bytmin - newmin;
|
|
607 if (newsize != size)
|
|
608 {
|
|
609 bufmax = bufmin;
|
|
610 bytmax = bytmin;
|
|
611 size = newsize;
|
|
612 }
|
|
613 bytmin = newmin;
|
|
614 bufmin--;
|
|
615 }
|
|
616 retval = bytmin;
|
|
617
|
|
618 /* #### Should go past the found location to reduce the number
|
|
619 of times that this function is called
|
|
620 */
|
|
621 }
|
|
622
|
|
623 /* If size is three, than we have to max sure that the range we
|
|
624 discovered isn't too large, because we use a fixed-length
|
|
625 table to divide by 3. */
|
|
626
|
|
627 if (size == 3)
|
|
628 {
|
|
629 int gap = bytmax - bytmin;
|
|
630 buf->text->mule_three_p = 1;
|
|
631 buf->text->mule_shifter = 1;
|
|
632
|
665
|
633 if (gap > MAX_BYTEBPOS_GAP_SIZE_3)
|
428
|
634 {
|
|
635 if (forward_p)
|
|
636 {
|
665
|
637 bytmin = bytmax - MAX_BYTEBPOS_GAP_SIZE_3;
|
|
638 bufmin = bufmax - MAX_CHARBPOS_GAP_SIZE_3;
|
428
|
639 }
|
|
640 else
|
|
641 {
|
665
|
642 bytmax = bytmin + MAX_BYTEBPOS_GAP_SIZE_3;
|
|
643 bufmax = bufmin + MAX_CHARBPOS_GAP_SIZE_3;
|
428
|
644 }
|
|
645 }
|
|
646 }
|
|
647 else
|
|
648 {
|
|
649 buf->text->mule_three_p = 0;
|
|
650 if (size == 4)
|
|
651 buf->text->mule_shifter = 2;
|
|
652 else
|
|
653 buf->text->mule_shifter = size - 1;
|
|
654 }
|
|
655
|
|
656 buf->text->mule_bufmin = bufmin;
|
|
657 buf->text->mule_bufmax = bufmax;
|
|
658 buf->text->mule_bytmin = bytmin;
|
|
659 buf->text->mule_bytmax = bytmax;
|
|
660
|
|
661 if (add_to_cache)
|
|
662 {
|
|
663 int replace_loc;
|
|
664
|
|
665 /* We throw away a "random" cached value and replace it with
|
|
666 the new value. It doesn't actually have to be very random
|
|
667 at all, just evenly distributed.
|
|
668
|
|
669 #### It would be better to use a least-recently-used algorithm
|
|
670 or something that tries to space things out, but I'm not sure
|
|
671 it's worth it to go to the trouble of maintaining that. */
|
|
672 not_very_random_number += 621;
|
|
673 replace_loc = not_very_random_number & 15;
|
665
|
674 buf->text->mule_charbpos_cache[replace_loc] = x;
|
|
675 buf->text->mule_bytebpos_cache[replace_loc] = retval;
|
428
|
676 }
|
|
677
|
|
678 return retval;
|
|
679 }
|
|
680
|
|
681 /* The logic in this function is almost identical to the logic in
|
|
682 the previous function. */
|
|
683
|
665
|
684 Charbpos
|
|
685 bytebpos_to_charbpos_func (struct buffer *buf, Bytebpos x)
|
428
|
686 {
|
665
|
687 Charbpos bufmin;
|
|
688 Charbpos bufmax;
|
|
689 Bytebpos bytmin;
|
|
690 Bytebpos bytmax;
|
428
|
691 int size;
|
|
692 int forward_p;
|
665
|
693 Charbpos retval;
|
428
|
694 int diff_so_far;
|
|
695 int add_to_cache = 0;
|
|
696
|
|
697 /* Check for some cached positions, for speed. */
|
|
698 if (x == BI_BUF_PT (buf))
|
|
699 return BUF_PT (buf);
|
|
700 if (x == BI_BUF_ZV (buf))
|
|
701 return BUF_ZV (buf);
|
|
702 if (x == BI_BUF_BEGV (buf))
|
|
703 return BUF_BEGV (buf);
|
|
704
|
|
705 bufmin = buf->text->mule_bufmin;
|
|
706 bufmax = buf->text->mule_bufmax;
|
|
707 bytmin = buf->text->mule_bytmin;
|
|
708 bytmax = buf->text->mule_bytmax;
|
|
709 size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p;
|
|
710
|
|
711 /* The basic idea here is that we shift the "known region" up or down
|
|
712 until it overlaps the specified position. We do this by moving
|
|
713 the upper bound of the known region up one character at a time,
|
|
714 and moving the lower bound of the known region up as necessary
|
|
715 when the size of the character just seen changes.
|
|
716
|
|
717 We optimize this, however, by first shifting the known region to
|
|
718 one of the cached points if it's close by. (We don't check BI_BEG or
|
|
719 BI_Z, even though they're cached; most of the time these will be the
|
|
720 same as BI_BEGV and BI_ZV, and when they're not, they're not likely
|
|
721 to be used.) */
|
|
722
|
|
723 if (x > bytmax)
|
|
724 {
|
665
|
725 Bytebpos diffmax = x - bytmax;
|
|
726 Bytebpos diffpt = x - BI_BUF_PT (buf);
|
|
727 Bytebpos diffzv = BI_BUF_ZV (buf) - x;
|
428
|
728 /* #### This value could stand some more exploration. */
|
|
729 Bytecount heuristic_hack = (bytmax - bytmin) >> 2;
|
|
730
|
|
731 /* Check if the position is closer to PT or ZV than to the
|
|
732 end of the known region. */
|
|
733
|
|
734 if (diffpt < 0)
|
|
735 diffpt = -diffpt;
|
|
736 if (diffzv < 0)
|
|
737 diffzv = -diffzv;
|
|
738
|
|
739 /* But also implement a heuristic that favors the known region
|
|
740 over BI_PT or BI_ZV. The reason for this is that switching to
|
|
741 BI_PT or BI_ZV will wipe out the knowledge in the known region,
|
|
742 which might be annoying if the known region is large and
|
|
743 BI_PT or BI_ZV is not that much closer than the end of the known
|
|
744 region. */
|
|
745
|
|
746 diffzv += heuristic_hack;
|
|
747 diffpt += heuristic_hack;
|
|
748 if (diffpt < diffmax && diffpt <= diffzv)
|
|
749 {
|
|
750 bufmax = bufmin = BUF_PT (buf);
|
|
751 bytmax = bytmin = BI_BUF_PT (buf);
|
|
752 /* We set the size to 1 even though it doesn't really
|
|
753 matter because the new known region contains no
|
|
754 characters. We do this because this is the most
|
|
755 likely size of the characters around the new known
|
|
756 region, and we avoid potential yuckiness that is
|
|
757 done when size == 3. */
|
|
758 size = 1;
|
|
759 }
|
|
760 if (diffzv < diffmax)
|
|
761 {
|
|
762 bufmax = bufmin = BUF_ZV (buf);
|
|
763 bytmax = bytmin = BI_BUF_ZV (buf);
|
|
764 size = 1;
|
|
765 }
|
|
766 }
|
665
|
767 #ifdef ERROR_CHECK_CHARBPOS
|
428
|
768 else if (x >= bytmin)
|
|
769 abort ();
|
|
770 #endif
|
|
771 else
|
|
772 {
|
665
|
773 Bytebpos diffmin = bytmin - x;
|
|
774 Bytebpos diffpt = BI_BUF_PT (buf) - x;
|
|
775 Bytebpos diffbegv = x - BI_BUF_BEGV (buf);
|
428
|
776 /* #### This value could stand some more exploration. */
|
|
777 Bytecount heuristic_hack = (bytmax - bytmin) >> 2;
|
|
778
|
|
779 if (diffpt < 0)
|
|
780 diffpt = -diffpt;
|
|
781 if (diffbegv < 0)
|
|
782 diffbegv = -diffbegv;
|
|
783
|
|
784 /* But also implement a heuristic that favors the known region --
|
|
785 see above. */
|
|
786
|
|
787 diffbegv += heuristic_hack;
|
|
788 diffpt += heuristic_hack;
|
|
789
|
|
790 if (diffpt < diffmin && diffpt <= diffbegv)
|
|
791 {
|
|
792 bufmax = bufmin = BUF_PT (buf);
|
|
793 bytmax = bytmin = BI_BUF_PT (buf);
|
|
794 /* We set the size to 1 even though it doesn't really
|
|
795 matter because the new known region contains no
|
|
796 characters. We do this because this is the most
|
|
797 likely size of the characters around the new known
|
|
798 region, and we avoid potential yuckiness that is
|
|
799 done when size == 3. */
|
|
800 size = 1;
|
|
801 }
|
|
802 if (diffbegv < diffmin)
|
|
803 {
|
|
804 bufmax = bufmin = BUF_BEGV (buf);
|
|
805 bytmax = bytmin = BI_BUF_BEGV (buf);
|
|
806 size = 1;
|
|
807 }
|
|
808 }
|
|
809
|
|
810 diff_so_far = x > bytmax ? x - bytmax : bytmin - x;
|
|
811 if (diff_so_far > 50)
|
|
812 {
|
|
813 /* If we have to move more than a certain amount, then look
|
|
814 into our cache. */
|
|
815 int minval = INT_MAX;
|
|
816 int found = 0;
|
|
817 int i;
|
|
818
|
|
819 add_to_cache = 1;
|
|
820 /* I considered keeping the positions ordered. This would speed
|
|
821 up this loop, but updating the cache would take longer, so
|
|
822 it doesn't seem like it would really matter. */
|
|
823 for (i = 0; i < 16; i++)
|
|
824 {
|
665
|
825 int diff = buf->text->mule_bytebpos_cache[i] - x;
|
428
|
826
|
|
827 if (diff < 0)
|
|
828 diff = -diff;
|
|
829 if (diff < minval)
|
|
830 {
|
|
831 minval = diff;
|
|
832 found = i;
|
|
833 }
|
|
834 }
|
|
835
|
|
836 if (minval < diff_so_far)
|
|
837 {
|
665
|
838 bufmax = bufmin = buf->text->mule_charbpos_cache[found];
|
|
839 bytmax = bytmin = buf->text->mule_bytebpos_cache[found];
|
428
|
840 size = 1;
|
|
841 }
|
|
842 }
|
|
843
|
|
844 /* It's conceivable that the caching above could lead to X being
|
|
845 the same as one of the range edges. */
|
|
846 if (x >= bytmax)
|
|
847 {
|
665
|
848 Bytebpos newmax;
|
428
|
849 Bytecount newsize;
|
|
850
|
|
851 forward_p = 1;
|
|
852 while (x > bytmax)
|
|
853 {
|
|
854 newmax = bytmax;
|
|
855
|
665
|
856 INC_BYTEBPOS (buf, newmax);
|
428
|
857 newsize = newmax - bytmax;
|
|
858 if (newsize != size)
|
|
859 {
|
|
860 bufmin = bufmax;
|
|
861 bytmin = bytmax;
|
|
862 size = newsize;
|
|
863 }
|
|
864 bytmax = newmax;
|
|
865 bufmax++;
|
|
866 }
|
|
867 retval = bufmax;
|
|
868
|
|
869 /* #### Should go past the found location to reduce the number
|
|
870 of times that this function is called */
|
|
871 }
|
|
872 else /* x <= bytmin */
|
|
873 {
|
665
|
874 Bytebpos newmin;
|
428
|
875 Bytecount newsize;
|
|
876
|
|
877 forward_p = 0;
|
|
878 while (x < bytmin)
|
|
879 {
|
|
880 newmin = bytmin;
|
|
881
|
665
|
882 DEC_BYTEBPOS (buf, newmin);
|
428
|
883 newsize = bytmin - newmin;
|
|
884 if (newsize != size)
|
|
885 {
|
|
886 bufmax = bufmin;
|
|
887 bytmax = bytmin;
|
|
888 size = newsize;
|
|
889 }
|
|
890 bytmin = newmin;
|
|
891 bufmin--;
|
|
892 }
|
|
893 retval = bufmin;
|
|
894
|
|
895 /* #### Should go past the found location to reduce the number
|
|
896 of times that this function is called
|
|
897 */
|
|
898 }
|
|
899
|
|
900 /* If size is three, than we have to max sure that the range we
|
|
901 discovered isn't too large, because we use a fixed-length
|
|
902 table to divide by 3. */
|
|
903
|
|
904 if (size == 3)
|
|
905 {
|
|
906 int gap = bytmax - bytmin;
|
|
907 buf->text->mule_three_p = 1;
|
|
908 buf->text->mule_shifter = 1;
|
|
909
|
665
|
910 if (gap > MAX_BYTEBPOS_GAP_SIZE_3)
|
428
|
911 {
|
|
912 if (forward_p)
|
|
913 {
|
665
|
914 bytmin = bytmax - MAX_BYTEBPOS_GAP_SIZE_3;
|
|
915 bufmin = bufmax - MAX_CHARBPOS_GAP_SIZE_3;
|
428
|
916 }
|
|
917 else
|
|
918 {
|
665
|
919 bytmax = bytmin + MAX_BYTEBPOS_GAP_SIZE_3;
|
|
920 bufmax = bufmin + MAX_CHARBPOS_GAP_SIZE_3;
|
428
|
921 }
|
|
922 }
|
|
923 }
|
|
924 else
|
|
925 {
|
|
926 buf->text->mule_three_p = 0;
|
|
927 if (size == 4)
|
|
928 buf->text->mule_shifter = 2;
|
|
929 else
|
|
930 buf->text->mule_shifter = size - 1;
|
|
931 }
|
|
932
|
|
933 buf->text->mule_bufmin = bufmin;
|
|
934 buf->text->mule_bufmax = bufmax;
|
|
935 buf->text->mule_bytmin = bytmin;
|
|
936 buf->text->mule_bytmax = bytmax;
|
|
937
|
|
938 if (add_to_cache)
|
|
939 {
|
|
940 int replace_loc;
|
|
941
|
|
942 /* We throw away a "random" cached value and replace it with
|
|
943 the new value. It doesn't actually have to be very random
|
|
944 at all, just evenly distributed.
|
|
945
|
|
946 #### It would be better to use a least-recently-used algorithm
|
|
947 or something that tries to space things out, but I'm not sure
|
|
948 it's worth it to go to the trouble of maintaining that. */
|
|
949 not_very_random_number += 621;
|
|
950 replace_loc = not_very_random_number & 15;
|
665
|
951 buf->text->mule_charbpos_cache[replace_loc] = retval;
|
|
952 buf->text->mule_bytebpos_cache[replace_loc] = x;
|
428
|
953 }
|
|
954
|
|
955 return retval;
|
|
956 }
|
|
957
|
|
958 /* Text of length BYTELENGTH and CHARLENGTH (in different units)
|
665
|
959 was inserted at charbpos START. */
|
428
|
960
|
|
961 static void
|
665
|
962 buffer_mule_signal_inserted_region (struct buffer *buf, Charbpos start,
|
428
|
963 Bytecount bytelength,
|
|
964 Charcount charlength)
|
|
965 {
|
|
966 int size = (1 << buf->text->mule_shifter) + !!buf->text->mule_three_p;
|
|
967 int i;
|
|
968
|
|
969 /* Adjust the cache of known positions. */
|
|
970 for (i = 0; i < 16; i++)
|
|
971 {
|
|
972
|
665
|
973 if (buf->text->mule_charbpos_cache[i] > start)
|
428
|
974 {
|
665
|
975 buf->text->mule_charbpos_cache[i] += charlength;
|
|
976 buf->text->mule_bytebpos_cache[i] += bytelength;
|
428
|
977 }
|
|
978 }
|
|
979
|
|
980 if (start >= buf->text->mule_bufmax)
|
|
981 return;
|
|
982
|
|
983 /* The insertion is either before the known region, in which case
|
|
984 it shoves it forward; or within the known region, in which case
|
|
985 it shoves the end forward. (But it may make the known region
|
|
986 inconsistent, so we may have to shorten it.) */
|
|
987
|
|
988 if (start <= buf->text->mule_bufmin)
|
|
989 {
|
|
990 buf->text->mule_bufmin += charlength;
|
|
991 buf->text->mule_bufmax += charlength;
|
|
992 buf->text->mule_bytmin += bytelength;
|
|
993 buf->text->mule_bytmax += bytelength;
|
|
994 }
|
|
995 else
|
|
996 {
|
665
|
997 Charbpos end = start + charlength;
|
428
|
998 /* the insertion point divides the known region in two.
|
|
999 Keep the longer half, at least, and expand into the
|
|
1000 inserted chunk as much as possible. */
|
|
1001
|
|
1002 if (start - buf->text->mule_bufmin > buf->text->mule_bufmax - start)
|
|
1003 {
|
665
|
1004 Bytebpos bytestart = (buf->text->mule_bytmin
|
428
|
1005 + size * (start - buf->text->mule_bufmin));
|
665
|
1006 Bytebpos bytenew;
|
428
|
1007
|
|
1008 while (start < end)
|
|
1009 {
|
|
1010 bytenew = bytestart;
|
665
|
1011 INC_BYTEBPOS (buf, bytenew);
|
428
|
1012 if (bytenew - bytestart != size)
|
|
1013 break;
|
|
1014 start++;
|
|
1015 bytestart = bytenew;
|
|
1016 }
|
|
1017 if (start != end)
|
|
1018 {
|
|
1019 buf->text->mule_bufmax = start;
|
|
1020 buf->text->mule_bytmax = bytestart;
|
|
1021 }
|
|
1022 else
|
|
1023 {
|
|
1024 buf->text->mule_bufmax += charlength;
|
|
1025 buf->text->mule_bytmax += bytelength;
|
|
1026 }
|
|
1027 }
|
|
1028 else
|
|
1029 {
|
665
|
1030 Bytebpos byteend = (buf->text->mule_bytmin
|
428
|
1031 + size * (start - buf->text->mule_bufmin)
|
|
1032 + bytelength);
|
665
|
1033 Bytebpos bytenew;
|
428
|
1034
|
|
1035 buf->text->mule_bufmax += charlength;
|
|
1036 buf->text->mule_bytmax += bytelength;
|
|
1037
|
|
1038 while (end > start)
|
|
1039 {
|
|
1040 bytenew = byteend;
|
665
|
1041 DEC_BYTEBPOS (buf, bytenew);
|
428
|
1042 if (byteend - bytenew != size)
|
|
1043 break;
|
|
1044 end--;
|
|
1045 byteend = bytenew;
|
|
1046 }
|
|
1047 if (start != end)
|
|
1048 {
|
|
1049 buf->text->mule_bufmin = end;
|
|
1050 buf->text->mule_bytmin = byteend;
|
|
1051 }
|
|
1052 }
|
|
1053 }
|
|
1054 }
|
|
1055
|
665
|
1056 /* Text from START to END (equivalent in Bytebposs: from BI_START to
|
428
|
1057 BI_END) was deleted. */
|
|
1058
|
|
1059 static void
|
665
|
1060 buffer_mule_signal_deleted_region (struct buffer *buf, Charbpos start,
|
|
1061 Charbpos end, Bytebpos bi_start,
|
|
1062 Bytebpos bi_end)
|
428
|
1063 {
|
|
1064 int i;
|
|
1065
|
|
1066 /* Adjust the cache of known positions. */
|
|
1067 for (i = 0; i < 16; i++)
|
|
1068 {
|
|
1069 /* After the end; gets shoved backward */
|
665
|
1070 if (buf->text->mule_charbpos_cache[i] > end)
|
428
|
1071 {
|
665
|
1072 buf->text->mule_charbpos_cache[i] -= end - start;
|
|
1073 buf->text->mule_bytebpos_cache[i] -= bi_end - bi_start;
|
428
|
1074 }
|
|
1075 /* In the range; moves to start of range */
|
665
|
1076 else if (buf->text->mule_charbpos_cache[i] > start)
|
428
|
1077 {
|
665
|
1078 buf->text->mule_charbpos_cache[i] = start;
|
|
1079 buf->text->mule_bytebpos_cache[i] = bi_start;
|
428
|
1080 }
|
|
1081 }
|
|
1082
|
|
1083 /* We don't care about any text after the end of the known region. */
|
|
1084
|
|
1085 end = min (end, buf->text->mule_bufmax);
|
|
1086 bi_end = min (bi_end, buf->text->mule_bytmax);
|
|
1087 if (start >= end)
|
|
1088 return;
|
|
1089
|
|
1090 /* The end of the known region offsets by the total amount of deletion,
|
|
1091 since it's all before it. */
|
|
1092
|
|
1093 buf->text->mule_bufmax -= end - start;
|
|
1094 buf->text->mule_bytmax -= bi_end - bi_start;
|
|
1095
|
|
1096 /* Now we don't care about any text after the start of the known region. */
|
|
1097
|
|
1098 end = min (end, buf->text->mule_bufmin);
|
|
1099 bi_end = min (bi_end, buf->text->mule_bytmin);
|
|
1100 if (start >= end)
|
|
1101 return;
|
|
1102
|
|
1103 buf->text->mule_bufmin -= end - start;
|
|
1104 buf->text->mule_bytmin -= bi_end - bi_start;
|
|
1105 }
|
|
1106
|
|
1107 #endif /* MULE */
|
|
1108
|
665
|
1109 #ifdef ERROR_CHECK_CHARBPOS
|
|
1110
|
|
1111 Bytebpos
|
|
1112 charbpos_to_bytebpos (struct buffer *buf, Charbpos x)
|
428
|
1113 {
|
665
|
1114 Bytebpos retval = real_charbpos_to_bytebpos (buf, x);
|
|
1115 ASSERT_VALID_BYTEBPOS_UNSAFE (buf, retval);
|
428
|
1116 return retval;
|
|
1117 }
|
|
1118
|
665
|
1119 Charbpos
|
|
1120 bytebpos_to_charbpos (struct buffer *buf, Bytebpos x)
|
428
|
1121 {
|
665
|
1122 ASSERT_VALID_BYTEBPOS_UNSAFE (buf, x);
|
|
1123 return real_bytebpos_to_charbpos (buf, x);
|
428
|
1124 }
|
|
1125
|
665
|
1126 #endif /* ERROR_CHECK_CHARBPOS */
|
428
|
1127
|
|
1128
|
|
1129 /************************************************************************/
|
|
1130 /* verifying buffer and string positions */
|
|
1131 /************************************************************************/
|
|
1132
|
|
1133 /* Functions below are tagged with either _byte or _char indicating
|
|
1134 whether they return byte or character positions. For a buffer,
|
665
|
1135 a character position is a "Charbpos" and a byte position is a "Bytebpos".
|
428
|
1136 For strings, these are sometimes typed using "Charcount" and
|
|
1137 "Bytecount". */
|
|
1138
|
|
1139 /* Flags for the functions below are:
|
|
1140
|
|
1141 GB_ALLOW_PAST_ACCESSIBLE
|
|
1142
|
|
1143 Allow positions to range over the entire buffer (BUF_BEG to BUF_Z),
|
|
1144 rather than just the accessible portion (BUF_BEGV to BUF_ZV).
|
|
1145 For strings, this flag has no effect.
|
|
1146
|
|
1147 GB_COERCE_RANGE
|
|
1148
|
|
1149 If the position is outside the allowable range, return the lower
|
|
1150 or upper bound of the range, whichever is closer to the specified
|
|
1151 position.
|
|
1152
|
|
1153 GB_NO_ERROR_IF_BAD
|
|
1154
|
|
1155 If the position is outside the allowable range, return -1.
|
|
1156
|
|
1157 GB_NEGATIVE_FROM_END
|
|
1158
|
|
1159 If a value is negative, treat it as an offset from the end.
|
|
1160 Only applies to strings.
|
|
1161
|
|
1162 The following additional flags apply only to the functions
|
|
1163 that return ranges:
|
|
1164
|
|
1165 GB_ALLOW_NIL
|
|
1166
|
|
1167 Either or both positions can be nil. If FROM is nil,
|
|
1168 FROM_OUT will contain the lower bound of the allowed range.
|
|
1169 If TO is nil, TO_OUT will contain the upper bound of the
|
|
1170 allowed range.
|
|
1171
|
|
1172 GB_CHECK_ORDER
|
|
1173
|
|
1174 FROM must contain the lower bound and TO the upper bound
|
|
1175 of the range. If the positions are reversed, an error is
|
|
1176 signalled.
|
|
1177
|
|
1178 The following is a combination flag:
|
|
1179
|
|
1180 GB_HISTORICAL_STRING_BEHAVIOR
|
|
1181
|
|
1182 Equivalent to (GB_NEGATIVE_FROM_END | GB_ALLOW_NIL).
|
|
1183 */
|
|
1184
|
|
1185 /* Return a buffer position stored in a Lisp_Object. Full
|
|
1186 error-checking is done on the position. Flags can be specified to
|
|
1187 control the behavior of out-of-range values. The default behavior
|
|
1188 is to require that the position is within the accessible part of
|
|
1189 the buffer (BEGV and ZV), and to signal an error if the position is
|
|
1190 out of range.
|
|
1191
|
|
1192 */
|
|
1193
|
665
|
1194 Charbpos
|
428
|
1195 get_buffer_pos_char (struct buffer *b, Lisp_Object pos, unsigned int flags)
|
|
1196 {
|
442
|
1197 /* Does not GC */
|
665
|
1198 Charbpos ind;
|
|
1199 Charbpos min_allowed, max_allowed;
|
428
|
1200
|
|
1201 CHECK_INT_COERCE_MARKER (pos);
|
|
1202 ind = XINT (pos);
|
|
1203 min_allowed = flags & GB_ALLOW_PAST_ACCESSIBLE ? BUF_BEG (b) : BUF_BEGV (b);
|
|
1204 max_allowed = flags & GB_ALLOW_PAST_ACCESSIBLE ? BUF_Z (b) : BUF_ZV (b);
|
|
1205
|
|
1206 if (ind < min_allowed || ind > max_allowed)
|
|
1207 {
|
|
1208 if (flags & GB_COERCE_RANGE)
|
|
1209 ind = ind < min_allowed ? min_allowed : max_allowed;
|
|
1210 else if (flags & GB_NO_ERROR_IF_BAD)
|
|
1211 ind = -1;
|
|
1212 else
|
|
1213 {
|
|
1214 Lisp_Object buffer;
|
|
1215 XSETBUFFER (buffer, b);
|
|
1216 args_out_of_range (buffer, pos);
|
|
1217 }
|
|
1218 }
|
|
1219
|
|
1220 return ind;
|
|
1221 }
|
|
1222
|
665
|
1223 Bytebpos
|
428
|
1224 get_buffer_pos_byte (struct buffer *b, Lisp_Object pos, unsigned int flags)
|
|
1225 {
|
665
|
1226 Charbpos bpos = get_buffer_pos_char (b, pos, flags);
|
428
|
1227 if (bpos < 0) /* could happen with GB_NO_ERROR_IF_BAD */
|
|
1228 return -1;
|
665
|
1229 return charbpos_to_bytebpos (b, bpos);
|
428
|
1230 }
|
|
1231
|
|
1232 /* Return a pair of buffer positions representing a range of text,
|
|
1233 taken from a pair of Lisp_Objects. Full error-checking is
|
|
1234 done on the positions. Flags can be specified to control the
|
|
1235 behavior of out-of-range values. The default behavior is to
|
|
1236 allow the range bounds to be specified in either order
|
|
1237 (however, FROM_OUT will always be the lower bound of the range
|
|
1238 and TO_OUT the upper bound),to require that the positions
|
|
1239 are within the accessible part of the buffer (BEGV and ZV),
|
|
1240 and to signal an error if the positions are out of range.
|
|
1241 */
|
|
1242
|
|
1243 void
|
|
1244 get_buffer_range_char (struct buffer *b, Lisp_Object from, Lisp_Object to,
|
665
|
1245 Charbpos *from_out, Charbpos *to_out, unsigned int flags)
|
428
|
1246 {
|
442
|
1247 /* Does not GC */
|
665
|
1248 Charbpos min_allowed, max_allowed;
|
428
|
1249
|
|
1250 min_allowed = (flags & GB_ALLOW_PAST_ACCESSIBLE) ?
|
|
1251 BUF_BEG (b) : BUF_BEGV (b);
|
|
1252 max_allowed = (flags & GB_ALLOW_PAST_ACCESSIBLE) ?
|
|
1253 BUF_Z (b) : BUF_ZV (b);
|
|
1254
|
|
1255 if (NILP (from) && (flags & GB_ALLOW_NIL))
|
|
1256 *from_out = min_allowed;
|
|
1257 else
|
|
1258 *from_out = get_buffer_pos_char (b, from, flags | GB_NO_ERROR_IF_BAD);
|
|
1259
|
|
1260 if (NILP (to) && (flags & GB_ALLOW_NIL))
|
|
1261 *to_out = max_allowed;
|
|
1262 else
|
|
1263 *to_out = get_buffer_pos_char (b, to, flags | GB_NO_ERROR_IF_BAD);
|
|
1264
|
|
1265 if ((*from_out < 0 || *to_out < 0) && !(flags & GB_NO_ERROR_IF_BAD))
|
|
1266 {
|
|
1267 Lisp_Object buffer;
|
|
1268 XSETBUFFER (buffer, b);
|
|
1269 args_out_of_range_3 (buffer, from, to);
|
|
1270 }
|
|
1271
|
|
1272 if (*from_out >= 0 && *to_out >= 0 && *from_out > *to_out)
|
|
1273 {
|
|
1274 if (flags & GB_CHECK_ORDER)
|
563
|
1275 invalid_argument_2 ("start greater than end", from, to);
|
428
|
1276 else
|
|
1277 {
|
665
|
1278 Charbpos temp = *from_out;
|
428
|
1279 *from_out = *to_out;
|
|
1280 *to_out = temp;
|
|
1281 }
|
|
1282 }
|
|
1283 }
|
|
1284
|
|
1285 void
|
|
1286 get_buffer_range_byte (struct buffer *b, Lisp_Object from, Lisp_Object to,
|
665
|
1287 Bytebpos *from_out, Bytebpos *to_out, unsigned int flags)
|
428
|
1288 {
|
665
|
1289 Charbpos s, e;
|
428
|
1290
|
|
1291 get_buffer_range_char (b, from, to, &s, &e, flags);
|
|
1292 if (s >= 0)
|
665
|
1293 *from_out = charbpos_to_bytebpos (b, s);
|
428
|
1294 else /* could happen with GB_NO_ERROR_IF_BAD */
|
|
1295 *from_out = -1;
|
|
1296 if (e >= 0)
|
665
|
1297 *to_out = charbpos_to_bytebpos (b, e);
|
428
|
1298 else
|
|
1299 *to_out = -1;
|
|
1300 }
|
|
1301
|
|
1302 static Charcount
|
|
1303 get_string_pos_char_1 (Lisp_Object string, Lisp_Object pos, unsigned int flags,
|
|
1304 Charcount known_length)
|
|
1305 {
|
|
1306 Charcount ccpos;
|
|
1307 Charcount min_allowed = 0;
|
|
1308 Charcount max_allowed = known_length;
|
|
1309
|
|
1310 /* Computation of KNOWN_LENGTH is potentially expensive so we pass
|
|
1311 it in. */
|
|
1312 CHECK_INT (pos);
|
|
1313 ccpos = XINT (pos);
|
|
1314 if (ccpos < 0 && flags & GB_NEGATIVE_FROM_END)
|
|
1315 ccpos += max_allowed;
|
|
1316
|
|
1317 if (ccpos < min_allowed || ccpos > max_allowed)
|
|
1318 {
|
|
1319 if (flags & GB_COERCE_RANGE)
|
|
1320 ccpos = ccpos < min_allowed ? min_allowed : max_allowed;
|
|
1321 else if (flags & GB_NO_ERROR_IF_BAD)
|
|
1322 ccpos = -1;
|
|
1323 else
|
|
1324 args_out_of_range (string, pos);
|
|
1325 }
|
|
1326
|
|
1327 return ccpos;
|
|
1328 }
|
|
1329
|
|
1330 Charcount
|
|
1331 get_string_pos_char (Lisp_Object string, Lisp_Object pos, unsigned int flags)
|
|
1332 {
|
|
1333 return get_string_pos_char_1 (string, pos, flags,
|
|
1334 XSTRING_CHAR_LENGTH (string));
|
|
1335 }
|
|
1336
|
|
1337 Bytecount
|
|
1338 get_string_pos_byte (Lisp_Object string, Lisp_Object pos, unsigned int flags)
|
|
1339 {
|
|
1340 Charcount ccpos = get_string_pos_char (string, pos, flags);
|
|
1341 if (ccpos < 0) /* could happen with GB_NO_ERROR_IF_BAD */
|
|
1342 return -1;
|
|
1343 return charcount_to_bytecount (XSTRING_DATA (string), ccpos);
|
|
1344 }
|
|
1345
|
|
1346 void
|
|
1347 get_string_range_char (Lisp_Object string, Lisp_Object from, Lisp_Object to,
|
|
1348 Charcount *from_out, Charcount *to_out,
|
|
1349 unsigned int flags)
|
|
1350 {
|
|
1351 Charcount min_allowed = 0;
|
|
1352 Charcount max_allowed = XSTRING_CHAR_LENGTH (string);
|
|
1353
|
|
1354 if (NILP (from) && (flags & GB_ALLOW_NIL))
|
|
1355 *from_out = min_allowed;
|
|
1356 else
|
|
1357 *from_out = get_string_pos_char_1 (string, from,
|
|
1358 flags | GB_NO_ERROR_IF_BAD,
|
|
1359 max_allowed);
|
|
1360
|
|
1361 if (NILP (to) && (flags & GB_ALLOW_NIL))
|
|
1362 *to_out = max_allowed;
|
|
1363 else
|
|
1364 *to_out = get_string_pos_char_1 (string, to,
|
|
1365 flags | GB_NO_ERROR_IF_BAD,
|
|
1366 max_allowed);
|
|
1367
|
|
1368 if ((*from_out < 0 || *to_out < 0) && !(flags & GB_NO_ERROR_IF_BAD))
|
|
1369 args_out_of_range_3 (string, from, to);
|
|
1370
|
|
1371 if (*from_out >= 0 && *to_out >= 0 && *from_out > *to_out)
|
|
1372 {
|
|
1373 if (flags & GB_CHECK_ORDER)
|
563
|
1374 invalid_argument_2 ("start greater than end", from, to);
|
428
|
1375 else
|
|
1376 {
|
665
|
1377 Charbpos temp = *from_out;
|
428
|
1378 *from_out = *to_out;
|
|
1379 *to_out = temp;
|
|
1380 }
|
|
1381 }
|
|
1382 }
|
|
1383
|
|
1384 void
|
|
1385 get_string_range_byte (Lisp_Object string, Lisp_Object from, Lisp_Object to,
|
|
1386 Bytecount *from_out, Bytecount *to_out,
|
|
1387 unsigned int flags)
|
|
1388 {
|
|
1389 Charcount s, e;
|
|
1390
|
|
1391 get_string_range_char (string, from, to, &s, &e, flags);
|
|
1392 if (s >= 0)
|
|
1393 *from_out = charcount_to_bytecount (XSTRING_DATA (string), s);
|
|
1394 else /* could happen with GB_NO_ERROR_IF_BAD */
|
|
1395 *from_out = -1;
|
|
1396 if (e >= 0)
|
|
1397 *to_out = charcount_to_bytecount (XSTRING_DATA (string), e);
|
|
1398 else
|
|
1399 *to_out = -1;
|
|
1400
|
|
1401 }
|
|
1402
|
665
|
1403 Charbpos
|
428
|
1404 get_buffer_or_string_pos_char (Lisp_Object object, Lisp_Object pos,
|
|
1405 unsigned int flags)
|
|
1406 {
|
|
1407 return STRINGP (object) ?
|
|
1408 get_string_pos_char (object, pos, flags) :
|
|
1409 get_buffer_pos_char (XBUFFER (object), pos, flags);
|
|
1410 }
|
|
1411
|
665
|
1412 Bytebpos
|
428
|
1413 get_buffer_or_string_pos_byte (Lisp_Object object, Lisp_Object pos,
|
|
1414 unsigned int flags)
|
|
1415 {
|
|
1416 return STRINGP (object) ?
|
|
1417 get_string_pos_byte (object, pos, flags) :
|
|
1418 get_buffer_pos_byte (XBUFFER (object), pos, flags);
|
|
1419 }
|
|
1420
|
|
1421 void
|
|
1422 get_buffer_or_string_range_char (Lisp_Object object, Lisp_Object from,
|
665
|
1423 Lisp_Object to, Charbpos *from_out,
|
|
1424 Charbpos *to_out, unsigned int flags)
|
428
|
1425 {
|
|
1426 if (STRINGP (object))
|
|
1427 get_string_range_char (object, from, to, from_out, to_out, flags);
|
|
1428 else
|
|
1429 get_buffer_range_char (XBUFFER (object), from, to, from_out, to_out, flags);
|
|
1430 }
|
|
1431
|
|
1432 void
|
|
1433 get_buffer_or_string_range_byte (Lisp_Object object, Lisp_Object from,
|
665
|
1434 Lisp_Object to, Bytebpos *from_out,
|
|
1435 Bytebpos *to_out, unsigned int flags)
|
428
|
1436 {
|
|
1437 if (STRINGP (object))
|
|
1438 get_string_range_byte (object, from, to, from_out, to_out, flags);
|
|
1439 else
|
|
1440 get_buffer_range_byte (XBUFFER (object), from, to, from_out, to_out, flags);
|
|
1441 }
|
|
1442
|
665
|
1443 Charbpos
|
428
|
1444 buffer_or_string_accessible_begin_char (Lisp_Object object)
|
|
1445 {
|
|
1446 return STRINGP (object) ? 0 : BUF_BEGV (XBUFFER (object));
|
|
1447 }
|
|
1448
|
665
|
1449 Charbpos
|
428
|
1450 buffer_or_string_accessible_end_char (Lisp_Object object)
|
|
1451 {
|
|
1452 return STRINGP (object) ?
|
|
1453 XSTRING_CHAR_LENGTH (object) : BUF_ZV (XBUFFER (object));
|
|
1454 }
|
|
1455
|
665
|
1456 Bytebpos
|
428
|
1457 buffer_or_string_accessible_begin_byte (Lisp_Object object)
|
|
1458 {
|
|
1459 return STRINGP (object) ? 0 : BI_BUF_BEGV (XBUFFER (object));
|
|
1460 }
|
|
1461
|
665
|
1462 Bytebpos
|
428
|
1463 buffer_or_string_accessible_end_byte (Lisp_Object object)
|
|
1464 {
|
|
1465 return STRINGP (object) ?
|
|
1466 XSTRING_LENGTH (object) : BI_BUF_ZV (XBUFFER (object));
|
|
1467 }
|
|
1468
|
665
|
1469 Charbpos
|
428
|
1470 buffer_or_string_absolute_begin_char (Lisp_Object object)
|
|
1471 {
|
|
1472 return STRINGP (object) ? 0 : BUF_BEG (XBUFFER (object));
|
|
1473 }
|
|
1474
|
665
|
1475 Charbpos
|
428
|
1476 buffer_or_string_absolute_end_char (Lisp_Object object)
|
|
1477 {
|
|
1478 return STRINGP (object) ?
|
|
1479 XSTRING_CHAR_LENGTH (object) : BUF_Z (XBUFFER (object));
|
|
1480 }
|
|
1481
|
665
|
1482 Bytebpos
|
428
|
1483 buffer_or_string_absolute_begin_byte (Lisp_Object object)
|
|
1484 {
|
|
1485 return STRINGP (object) ? 0 : BI_BUF_BEG (XBUFFER (object));
|
|
1486 }
|
|
1487
|
665
|
1488 Bytebpos
|
428
|
1489 buffer_or_string_absolute_end_byte (Lisp_Object object)
|
|
1490 {
|
|
1491 return STRINGP (object) ?
|
|
1492 XSTRING_LENGTH (object) : BI_BUF_Z (XBUFFER (object));
|
|
1493 }
|
|
1494
|
|
1495
|
|
1496 /************************************************************************/
|
|
1497 /* point and marker adjustment */
|
|
1498 /************************************************************************/
|
|
1499
|
|
1500 /* just_set_point() is the only place `PT' is an lvalue in all of emacs.
|
|
1501 This function is called from set_buffer_point(), which is the function
|
|
1502 that the SET_PT and BUF_SET_PT macros expand into, and from the
|
|
1503 routines below that insert and delete text. (This is in cases where
|
|
1504 the point marker logically doesn't move but PT (being a byte index)
|
|
1505 needs to get adjusted.) */
|
|
1506
|
|
1507 /* Set point to a specified value. This is used only when the value
|
|
1508 of point changes due to an insert or delete; it does not represent
|
|
1509 a conceptual change in point as a marker. In particular, point is
|
|
1510 not crossing any interval boundaries, so there's no need to use the
|
|
1511 usual SET_PT macro. In fact it would be incorrect to do so, because
|
|
1512 either the old or the new value of point is out of synch with the
|
|
1513 current set of intervals. */
|
|
1514
|
|
1515 /* This gets called more than enough to make the function call
|
|
1516 overhead a significant factor so we've turned it into a macro. */
|
665
|
1517 #define JUST_SET_POINT(buf, charbpos, ind) \
|
428
|
1518 do \
|
|
1519 { \
|
665
|
1520 buf->bufpt = (charbpos); \
|
428
|
1521 buf->pt = (ind); \
|
|
1522 } while (0)
|
|
1523
|
|
1524 /* Set a buffer's point. */
|
|
1525
|
|
1526 void
|
665
|
1527 set_buffer_point (struct buffer *buf, Charbpos charbpos, Bytebpos bytpos)
|
428
|
1528 {
|
|
1529 assert (bytpos >= BI_BUF_BEGV (buf) && bytpos <= BI_BUF_ZV (buf));
|
|
1530 if (bytpos == BI_BUF_PT (buf))
|
|
1531 return;
|
665
|
1532 JUST_SET_POINT (buf, charbpos, bytpos);
|
428
|
1533 MARK_POINT_CHANGED;
|
|
1534 assert (MARKERP (buf->point_marker));
|
665
|
1535 XMARKER (buf->point_marker)->membpos =
|
|
1536 bytebpos_to_membpos (buf, bytpos);
|
428
|
1537
|
|
1538 /* FSF makes sure that PT is not being set within invisible text.
|
|
1539 However, this is the wrong place for that check. The check
|
|
1540 should happen only at the next redisplay. */
|
|
1541
|
|
1542 /* Some old coder said:
|
|
1543
|
|
1544 "If there were to be hooks which were run when point entered/left an
|
|
1545 extent, this would be the place to put them.
|
|
1546
|
|
1547 However, it's probably the case that such hooks should be implemented
|
|
1548 using a post-command-hook instead, to avoid running the hooks as a
|
|
1549 result of intermediate motion inside of save-excursions, for example."
|
|
1550
|
|
1551 I definitely agree with this. PT gets moved all over the place
|
|
1552 and it would be a Bad Thing for any hooks to get called, both for
|
|
1553 the reason above and because many callers are not prepared for
|
|
1554 a GC within this function. --ben
|
|
1555 */
|
|
1556 }
|
|
1557
|
|
1558 /* Do the correct marker-like adjustment on MPOS (see below). FROM, TO,
|
|
1559 and AMOUNT are as in adjust_markers(). If MPOS doesn't need to be
|
|
1560 adjusted, nothing will happen. */
|
665
|
1561 Membpos
|
|
1562 do_marker_adjustment (Membpos mpos, Membpos from,
|
|
1563 Membpos to, Bytecount amount)
|
428
|
1564 {
|
|
1565 if (amount > 0)
|
|
1566 {
|
|
1567 if (mpos > to && mpos < to + amount)
|
|
1568 mpos = to + amount;
|
|
1569 }
|
|
1570 else
|
|
1571 {
|
|
1572 if (mpos > from + amount && mpos <= from)
|
|
1573 mpos = from + amount;
|
|
1574 }
|
|
1575 if (mpos > from && mpos <= to)
|
|
1576 mpos += amount;
|
|
1577 return mpos;
|
|
1578 }
|
|
1579
|
|
1580 /* Do the following:
|
|
1581
|
|
1582 (1) Add `amount' to the position of every marker in the current buffer
|
|
1583 whose current position is between `from' (exclusive) and `to' (inclusive).
|
|
1584
|
|
1585 (2) Also, any markers past the outside of that interval, in the direction
|
|
1586 of adjustment, are first moved back to the near end of the interval
|
|
1587 and then adjusted by `amount'.
|
|
1588
|
|
1589 This function is called in two different cases: when a region of
|
|
1590 characters adjacent to the gap is moved, causing the gap to shift
|
|
1591 to the other side of the region (in this case, `from' and `to'
|
|
1592 point to the old position of the region and there should be no
|
|
1593 markers affected by (2) because they would be inside the gap),
|
|
1594 or when a region of characters adjacent to the gap is wiped out,
|
|
1595 causing the gap to increase to include the region (in this case,
|
|
1596 `from' and `to' are the same, both pointing to the boundary
|
|
1597 between the gap and the deleted region, and there are no markers
|
|
1598 affected by (1)).
|
|
1599
|
|
1600 The reason for the use of exclusive and inclusive is that markers at
|
|
1601 the gap always sit at the beginning, not at the end.
|
|
1602 */
|
|
1603
|
|
1604 static void
|
665
|
1605 adjust_markers (struct buffer *buf, Membpos from, Membpos to,
|
428
|
1606 Bytecount amount)
|
|
1607 {
|
440
|
1608 Lisp_Marker *m;
|
428
|
1609
|
|
1610 for (m = BUF_MARKERS (buf); m; m = marker_next (m))
|
665
|
1611 m->membpos = do_marker_adjustment (m->membpos, from, to, amount);
|
428
|
1612 }
|
|
1613
|
|
1614 /* Adjust markers whose insertion-type is t
|
|
1615 for an insertion of AMOUNT characters at POS. */
|
|
1616
|
|
1617 static void
|
665
|
1618 adjust_markers_for_insert (struct buffer *buf, Membpos ind, Bytecount amount)
|
428
|
1619 {
|
440
|
1620 Lisp_Marker *m;
|
428
|
1621
|
|
1622 for (m = BUF_MARKERS (buf); m; m = marker_next (m))
|
|
1623 {
|
665
|
1624 if (m->insertion_type && m->membpos == ind)
|
|
1625 m->membpos += amount;
|
428
|
1626 }
|
|
1627 }
|
|
1628
|
|
1629
|
|
1630 /************************************************************************/
|
|
1631 /* Routines for dealing with the gap */
|
|
1632 /************************************************************************/
|
|
1633
|
|
1634 /* maximum amount of memory moved in a single chunk. Increasing this
|
|
1635 value improves gap-motion efficiency but decreases QUIT responsiveness
|
|
1636 time. Was 32000 but today's processors are faster and files are
|
|
1637 bigger. --ben */
|
|
1638 #define GAP_MOVE_CHUNK 300000
|
|
1639
|
|
1640 /* Move the gap to POS, which is less than the current GPT. */
|
|
1641
|
|
1642 static void
|
665
|
1643 gap_left (struct buffer *buf, Bytebpos pos)
|
428
|
1644 {
|
665
|
1645 Intbyte *to, *from;
|
428
|
1646 Bytecount i;
|
665
|
1647 Bytebpos new_s1;
|
428
|
1648 struct buffer *mbuf;
|
|
1649 Lisp_Object bufcons;
|
|
1650
|
|
1651 from = BUF_GPT_ADDR (buf);
|
|
1652 to = from + BUF_GAP_SIZE (buf);
|
|
1653 new_s1 = BI_BUF_GPT (buf);
|
|
1654
|
|
1655 /* Now copy the characters. To move the gap down,
|
|
1656 copy characters up. */
|
|
1657
|
|
1658 while (1)
|
|
1659 {
|
|
1660 /* I gets number of characters left to copy. */
|
|
1661 i = new_s1 - pos;
|
|
1662 if (i == 0)
|
|
1663 break;
|
|
1664 /* If a quit is requested, stop copying now.
|
|
1665 Change POS to be where we have actually moved the gap to. */
|
|
1666 if (QUITP)
|
|
1667 {
|
|
1668 pos = new_s1;
|
|
1669 break;
|
|
1670 }
|
|
1671 /* Move at most GAP_MOVE_CHUNK chars before checking again for a quit. */
|
|
1672 if (i > GAP_MOVE_CHUNK)
|
|
1673 i = GAP_MOVE_CHUNK;
|
440
|
1674
|
|
1675 if (i >= 128)
|
428
|
1676 {
|
|
1677 new_s1 -= i;
|
440
|
1678 from -= i;
|
|
1679 to -= i;
|
428
|
1680 memmove (to, from, i);
|
|
1681 }
|
|
1682 else
|
|
1683 {
|
|
1684 new_s1 -= i;
|
|
1685 while (--i >= 0)
|
|
1686 *--to = *--from;
|
|
1687 }
|
|
1688 }
|
|
1689
|
|
1690 /* Adjust markers, and buffer data structure, to put the gap at POS.
|
|
1691 POS is where the loop above stopped, which may be what was specified
|
|
1692 or may be where a quit was detected. */
|
|
1693 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
1694 {
|
|
1695 adjust_markers (mbuf, pos, BI_BUF_GPT (mbuf), BUF_GAP_SIZE (mbuf));
|
|
1696 }
|
|
1697 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
1698 {
|
|
1699 adjust_extents (make_buffer (mbuf), pos, BI_BUF_GPT (mbuf),
|
|
1700 BUF_GAP_SIZE (mbuf));
|
|
1701 }
|
|
1702 SET_BI_BUF_GPT (buf, pos);
|
|
1703 SET_GAP_SENTINEL (buf);
|
|
1704 #ifdef ERROR_CHECK_EXTENTS
|
|
1705 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
1706 {
|
|
1707 sledgehammer_extent_check (make_buffer (mbuf));
|
|
1708 }
|
|
1709 #endif
|
|
1710 QUIT;
|
|
1711 }
|
|
1712
|
|
1713 static void
|
665
|
1714 gap_right (struct buffer *buf, Bytebpos pos)
|
428
|
1715 {
|
665
|
1716 Intbyte *to, *from;
|
428
|
1717 Bytecount i;
|
665
|
1718 Bytebpos new_s1;
|
428
|
1719 struct buffer *mbuf;
|
|
1720 Lisp_Object bufcons;
|
|
1721
|
|
1722 to = BUF_GPT_ADDR (buf);
|
|
1723 from = to + BUF_GAP_SIZE (buf);
|
|
1724 new_s1 = BI_BUF_GPT (buf);
|
|
1725
|
|
1726 /* Now copy the characters. To move the gap up,
|
|
1727 copy characters down. */
|
|
1728
|
|
1729 while (1)
|
|
1730 {
|
|
1731 /* I gets number of characters left to copy. */
|
|
1732 i = pos - new_s1;
|
|
1733 if (i == 0)
|
|
1734 break;
|
|
1735 /* If a quit is requested, stop copying now.
|
|
1736 Change POS to be where we have actually moved the gap to. */
|
|
1737 if (QUITP)
|
|
1738 {
|
|
1739 pos = new_s1;
|
|
1740 break;
|
|
1741 }
|
|
1742 /* Move at most GAP_MOVE_CHUNK chars before checking again for a quit. */
|
|
1743 if (i > GAP_MOVE_CHUNK)
|
|
1744 i = GAP_MOVE_CHUNK;
|
440
|
1745
|
|
1746 if (i >= 128)
|
428
|
1747 {
|
|
1748 new_s1 += i;
|
|
1749 memmove (to, from, i);
|
440
|
1750 from += i;
|
|
1751 to += i;
|
428
|
1752 }
|
|
1753 else
|
|
1754 {
|
|
1755 new_s1 += i;
|
|
1756 while (--i >= 0)
|
|
1757 *to++ = *from++;
|
|
1758 }
|
|
1759 }
|
|
1760
|
|
1761 {
|
|
1762 int gsize = BUF_GAP_SIZE (buf);
|
|
1763 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
1764 {
|
|
1765 adjust_markers (mbuf, BI_BUF_GPT (mbuf) + gsize, pos + gsize, - gsize);
|
|
1766 }
|
|
1767 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
1768 {
|
|
1769 adjust_extents (make_buffer (mbuf), BI_BUF_GPT (mbuf) + gsize,
|
|
1770 pos + gsize, - gsize);
|
|
1771 }
|
|
1772 SET_BI_BUF_GPT (buf, pos);
|
|
1773 SET_GAP_SENTINEL (buf);
|
|
1774 #ifdef ERROR_CHECK_EXTENTS
|
|
1775 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
1776 {
|
|
1777 sledgehammer_extent_check (make_buffer (mbuf));
|
|
1778 }
|
|
1779 #endif
|
|
1780 }
|
|
1781 if (pos == BI_BUF_Z (buf))
|
|
1782 {
|
|
1783 /* merge gap with end gap */
|
|
1784
|
|
1785 SET_BUF_GAP_SIZE (buf, BUF_GAP_SIZE (buf) + BUF_END_GAP_SIZE (buf));
|
|
1786 SET_BUF_END_GAP_SIZE (buf, 0);
|
|
1787 SET_END_SENTINEL (buf);
|
|
1788 }
|
|
1789
|
|
1790 QUIT;
|
|
1791 }
|
|
1792
|
|
1793 /* Move gap to position `pos'.
|
|
1794 Note that this can quit! */
|
|
1795
|
|
1796 static void
|
665
|
1797 move_gap (struct buffer *buf, Bytebpos pos)
|
428
|
1798 {
|
|
1799 if (! BUF_BEG_ADDR (buf))
|
|
1800 abort ();
|
|
1801 if (pos < BI_BUF_GPT (buf))
|
|
1802 gap_left (buf, pos);
|
|
1803 else if (pos > BI_BUF_GPT (buf))
|
|
1804 gap_right (buf, pos);
|
|
1805 }
|
|
1806
|
|
1807 /* Merge the end gap into the gap */
|
|
1808
|
|
1809 static void
|
|
1810 merge_gap_with_end_gap (struct buffer *buf)
|
|
1811 {
|
|
1812 Lisp_Object tem;
|
665
|
1813 Bytebpos real_gap_loc;
|
428
|
1814 Bytecount old_gap_size;
|
|
1815 Bytecount increment;
|
|
1816
|
|
1817 increment = BUF_END_GAP_SIZE (buf);
|
|
1818 SET_BUF_END_GAP_SIZE (buf, 0);
|
|
1819
|
|
1820 if (increment > 0)
|
|
1821 {
|
|
1822 /* Prevent quitting in move_gap. */
|
|
1823 tem = Vinhibit_quit;
|
|
1824 Vinhibit_quit = Qt;
|
|
1825
|
|
1826 real_gap_loc = BI_BUF_GPT (buf);
|
|
1827 old_gap_size = BUF_GAP_SIZE (buf);
|
|
1828
|
|
1829 /* Pretend the end gap is the gap */
|
|
1830 SET_BI_BUF_GPT (buf, BI_BUF_Z (buf) + BUF_GAP_SIZE (buf));
|
|
1831 SET_BUF_GAP_SIZE (buf, increment);
|
|
1832
|
|
1833 /* Move the new gap down to be consecutive with the end of the old one.
|
|
1834 This adjusts the markers properly too. */
|
|
1835 gap_left (buf, real_gap_loc + old_gap_size);
|
|
1836
|
|
1837 /* Now combine the two into one large gap. */
|
|
1838 SET_BUF_GAP_SIZE (buf, BUF_GAP_SIZE (buf) + old_gap_size);
|
|
1839 SET_BI_BUF_GPT (buf, real_gap_loc);
|
|
1840 SET_GAP_SENTINEL (buf);
|
|
1841
|
|
1842 /* We changed the total size of the buffer (including gap),
|
|
1843 so we need to fix up the end sentinel. */
|
|
1844 SET_END_SENTINEL (buf);
|
|
1845
|
|
1846 Vinhibit_quit = tem;
|
|
1847 }
|
|
1848 }
|
|
1849
|
|
1850 /* Make the gap INCREMENT bytes longer. */
|
|
1851
|
|
1852 static void
|
|
1853 make_gap (struct buffer *buf, Bytecount increment)
|
|
1854 {
|
665
|
1855 Intbyte *result;
|
428
|
1856 Lisp_Object tem;
|
665
|
1857 Bytebpos real_gap_loc;
|
428
|
1858 Bytecount old_gap_size;
|
|
1859
|
|
1860 /* If we have to get more space, get enough to last a while. We use
|
|
1861 a geometric progression that saves on realloc space. */
|
|
1862 increment += 2000 + ((BI_BUF_Z (buf) - BI_BUF_BEG (buf)) / 8);
|
|
1863
|
|
1864 if (increment > BUF_END_GAP_SIZE (buf))
|
|
1865 {
|
|
1866 /* Don't allow a buffer size that won't fit in an int
|
|
1867 even if it will fit in a Lisp integer.
|
|
1868 That won't work because so many places use `int'. */
|
|
1869
|
|
1870 if (BUF_Z (buf) - BUF_BEG (buf) + BUF_GAP_SIZE (buf) + increment
|
|
1871 > EMACS_INT_MAX)
|
563
|
1872 out_of_memory ("Maximum buffer size exceeded", Qunbound);
|
428
|
1873
|
|
1874 result = BUFFER_REALLOC (buf->text->beg,
|
|
1875 BI_BUF_Z (buf) - BI_BUF_BEG (buf) +
|
|
1876 BUF_GAP_SIZE (buf) + increment +
|
|
1877 BUF_END_SENTINEL_SIZE);
|
|
1878 if (result == 0)
|
|
1879 memory_full ();
|
|
1880
|
|
1881 SET_BUF_BEG_ADDR (buf, result);
|
|
1882 }
|
|
1883 else
|
|
1884 increment = BUF_END_GAP_SIZE (buf);
|
|
1885
|
|
1886 /* Prevent quitting in move_gap. */
|
|
1887 tem = Vinhibit_quit;
|
|
1888 Vinhibit_quit = Qt;
|
|
1889
|
|
1890 real_gap_loc = BI_BUF_GPT (buf);
|
|
1891 old_gap_size = BUF_GAP_SIZE (buf);
|
|
1892
|
|
1893 /* Call the newly allocated space a gap at the end of the whole space. */
|
|
1894 SET_BI_BUF_GPT (buf, BI_BUF_Z (buf) + BUF_GAP_SIZE (buf));
|
|
1895 SET_BUF_GAP_SIZE (buf, increment);
|
|
1896
|
|
1897 SET_BUF_END_GAP_SIZE (buf, 0);
|
|
1898
|
|
1899 /* Move the new gap down to be consecutive with the end of the old one.
|
|
1900 This adjusts the markers properly too. */
|
|
1901 gap_left (buf, real_gap_loc + old_gap_size);
|
|
1902
|
|
1903 /* Now combine the two into one large gap. */
|
|
1904 SET_BUF_GAP_SIZE (buf, BUF_GAP_SIZE (buf) + old_gap_size);
|
|
1905 SET_BI_BUF_GPT (buf, real_gap_loc);
|
|
1906 SET_GAP_SENTINEL (buf);
|
|
1907
|
|
1908 /* We changed the total size of the buffer (including gap),
|
|
1909 so we need to fix up the end sentinel. */
|
|
1910 SET_END_SENTINEL (buf);
|
|
1911
|
|
1912 Vinhibit_quit = tem;
|
|
1913 }
|
|
1914
|
|
1915
|
|
1916 /************************************************************************/
|
|
1917 /* Before/after-change processing */
|
|
1918 /************************************************************************/
|
|
1919
|
|
1920 /* Those magic changes ... */
|
|
1921
|
|
1922 static void
|
665
|
1923 buffer_signal_changed_region (struct buffer *buf, Charbpos start,
|
|
1924 Charbpos end)
|
428
|
1925 {
|
|
1926 /* The changed region is recorded as the number of unchanged
|
|
1927 characters from the beginning and from the end of the
|
|
1928 buffer. This obviates much of the need of shifting the
|
|
1929 region around to compensate for insertions and deletions.
|
|
1930 */
|
|
1931 if (buf->changes->begin_unchanged < 0 ||
|
|
1932 buf->changes->begin_unchanged > start - BUF_BEG (buf))
|
|
1933 buf->changes->begin_unchanged = start - BUF_BEG (buf);
|
|
1934 if (buf->changes->end_unchanged < 0 ||
|
|
1935 buf->changes->end_unchanged > BUF_Z (buf) - end)
|
|
1936 buf->changes->end_unchanged = BUF_Z (buf) - end;
|
|
1937 }
|
|
1938
|
|
1939 void
|
665
|
1940 buffer_extent_signal_changed_region (struct buffer *buf, Charbpos start,
|
|
1941 Charbpos end)
|
428
|
1942 {
|
|
1943 if (buf->changes->begin_extent_unchanged < 0 ||
|
|
1944 buf->changes->begin_extent_unchanged > start - BUF_BEG (buf))
|
|
1945 buf->changes->begin_extent_unchanged = start - BUF_BEG (buf);
|
|
1946 if (buf->changes->end_extent_unchanged < 0 ||
|
|
1947 buf->changes->end_extent_unchanged > BUF_Z (buf) - end)
|
|
1948 buf->changes->end_extent_unchanged = BUF_Z (buf) - end;
|
|
1949 }
|
|
1950
|
|
1951 void
|
|
1952 buffer_reset_changes (struct buffer *buf)
|
|
1953 {
|
|
1954 buf->changes->begin_unchanged = -1;
|
|
1955 buf->changes->end_unchanged = -1;
|
|
1956 buf->changes->begin_extent_unchanged = -1;
|
|
1957 buf->changes->end_extent_unchanged = -1;
|
|
1958 buf->changes->newline_was_deleted = 0;
|
|
1959 }
|
|
1960
|
|
1961 static void
|
665
|
1962 signal_after_change (struct buffer *buf, Charbpos start, Charbpos orig_end,
|
|
1963 Charbpos new_end);
|
428
|
1964
|
|
1965
|
|
1966 /* Call the after-change-functions according to the changes made so far
|
|
1967 and treat all further changes as single until the outermost
|
|
1968 multiple change exits. This is called when the outermost multiple
|
|
1969 change exits and when someone is trying to make a change that violates
|
|
1970 the constraints specified in begin_multiple_change(), typically
|
|
1971 when nested multiple-change sessions occur. (There are smarter ways of
|
|
1972 dealing with nested multiple changes, but these rarely occur so there's
|
|
1973 probably no point in it.) */
|
|
1974
|
|
1975 /* #### This needs to keep track of what actually changed and only
|
|
1976 call the after-change functions on that region. */
|
|
1977
|
|
1978 static void
|
|
1979 cancel_multiple_change (struct buffer *buf)
|
|
1980 {
|
|
1981 /* This function can GC */
|
|
1982 /* Call the after-change-functions except when they've already been
|
|
1983 called or when there were no changes made to the buffer at all. */
|
|
1984 if (buf->text->changes->mc_begin != 0 &&
|
|
1985 buf->text->changes->mc_begin_signaled)
|
|
1986 {
|
665
|
1987 Charbpos real_mc_begin = buf->text->changes->mc_begin;
|
428
|
1988 buf->text->changes->mc_begin = 0;
|
|
1989
|
|
1990 signal_after_change (buf, real_mc_begin, buf->text->changes->mc_orig_end,
|
|
1991 buf->text->changes->mc_new_end);
|
|
1992 }
|
|
1993 else
|
|
1994 {
|
|
1995 buf->text->changes->mc_begin = 0;
|
|
1996 }
|
|
1997 }
|
|
1998
|
|
1999 /* this is an unwind_protect, to ensure that the after-change-functions
|
|
2000 get called even in a non-local exit. */
|
|
2001
|
|
2002 static Lisp_Object
|
|
2003 multiple_change_finish_up (Lisp_Object buffer)
|
|
2004 {
|
|
2005 struct buffer *buf = XBUFFER (buffer);
|
|
2006
|
|
2007 /* #### I don't know whether or not it should even be possible to
|
|
2008 get here with a dead buffer (though given how it is called I can
|
|
2009 see how it might be). In any case, there isn't time before 19.14
|
|
2010 to find out. */
|
|
2011 if (!BUFFER_LIVE_P (buf))
|
|
2012 return Qnil;
|
|
2013
|
|
2014 /* This function can GC */
|
|
2015 buf->text->changes->in_multiple_change = 0; /* do this first so that
|
|
2016 errors in the after-change
|
|
2017 functions don't mess things
|
|
2018 up. */
|
|
2019 cancel_multiple_change (buf);
|
|
2020 return Qnil;
|
|
2021 }
|
|
2022
|
|
2023 /* Call this function when you're about to make a number of buffer changes
|
|
2024 that should be considered a single change. (e.g. `replace-match' calls
|
|
2025 this.) You need to specify the START and END of the region that is
|
|
2026 going to be changed so that the before-change-functions are called
|
|
2027 with the correct arguments. The after-change region is calculated
|
|
2028 automatically, however, and if changes somehow or other happen outside
|
|
2029 of the specified region, that will also be handled correctly.
|
|
2030
|
|
2031 begin_multiple_change() returns a number (actually a specpdl depth)
|
438
|
2032 that you must pass to end_multiple_change() when you are done.
|
|
2033
|
|
2034 FSF Emacs 20 implements a similar feature, accessible from Lisp
|
|
2035 through a `combine-after-change-calls' special form, which is
|
|
2036 essentially equivalent to this function. We should consider
|
|
2037 whether we want to introduce a similar Lisp form. */
|
428
|
2038
|
|
2039 int
|
665
|
2040 begin_multiple_change (struct buffer *buf, Charbpos start, Charbpos end)
|
428
|
2041 {
|
|
2042 /* This function can GC */
|
|
2043 int count = -1;
|
|
2044 if (buf->text->changes->in_multiple_change)
|
|
2045 {
|
|
2046 if (buf->text->changes->mc_begin != 0 &&
|
|
2047 (start < buf->text->changes->mc_begin ||
|
|
2048 end > buf->text->changes->mc_new_end))
|
|
2049 cancel_multiple_change (buf);
|
|
2050 }
|
|
2051 else
|
|
2052 {
|
|
2053 Lisp_Object buffer;
|
|
2054
|
|
2055 buf->text->changes->mc_begin = start;
|
|
2056 buf->text->changes->mc_orig_end = buf->text->changes->mc_new_end = end;
|
|
2057 buf->text->changes->mc_begin_signaled = 0;
|
|
2058 count = specpdl_depth ();
|
|
2059 XSETBUFFER (buffer, buf);
|
|
2060 record_unwind_protect (multiple_change_finish_up, buffer);
|
|
2061 }
|
|
2062 buf->text->changes->in_multiple_change++;
|
|
2063 /* We don't call before-change-functions until signal_before_change()
|
|
2064 is called, in case there is a read-only or other error. */
|
|
2065 return count;
|
|
2066 }
|
|
2067
|
|
2068 void
|
|
2069 end_multiple_change (struct buffer *buf, int count)
|
|
2070 {
|
|
2071 assert (buf->text->changes->in_multiple_change > 0);
|
|
2072 buf->text->changes->in_multiple_change--;
|
|
2073 if (!buf->text->changes->in_multiple_change)
|
|
2074 unbind_to (count, Qnil);
|
|
2075 }
|
|
2076
|
|
2077 static int inside_change_hook;
|
|
2078
|
|
2079 static Lisp_Object
|
|
2080 change_function_restore (Lisp_Object buffer)
|
|
2081 {
|
|
2082 /* We should first reset the variable and then change the buffer,
|
|
2083 because Fset_buffer() can throw. */
|
|
2084 inside_change_hook = 0;
|
438
|
2085 if (XBUFFER (buffer) != current_buffer)
|
|
2086 Fset_buffer (buffer);
|
428
|
2087 return Qnil;
|
|
2088 }
|
|
2089
|
|
2090 static int in_first_change;
|
|
2091
|
|
2092 static Lisp_Object
|
|
2093 first_change_hook_restore (Lisp_Object buffer)
|
|
2094 {
|
|
2095 in_first_change = 0;
|
|
2096 Fset_buffer (buffer);
|
|
2097 return Qnil;
|
|
2098 }
|
|
2099
|
|
2100 /* Signal an initial modification to the buffer. */
|
|
2101
|
|
2102 static void
|
|
2103 signal_first_change (struct buffer *buf)
|
|
2104 {
|
|
2105 /* This function can GC */
|
|
2106 Lisp_Object buffer;
|
|
2107 XSETBUFFER (buffer, current_buffer);
|
|
2108
|
|
2109 if (!in_first_change)
|
|
2110 {
|
|
2111 if (!NILP (symbol_value_in_buffer (Qfirst_change_hook, buffer)))
|
|
2112 {
|
|
2113 int speccount = specpdl_depth ();
|
|
2114 record_unwind_protect (first_change_hook_restore, buffer);
|
|
2115 set_buffer_internal (buf);
|
|
2116 in_first_change = 1;
|
|
2117 run_hook (Qfirst_change_hook);
|
|
2118 unbind_to (speccount, Qnil);
|
|
2119 }
|
|
2120 }
|
|
2121 }
|
|
2122
|
|
2123 /* Signal a change to the buffer immediately before it happens.
|
|
2124 START and END are the bounds of the text to be changed. */
|
|
2125
|
|
2126 static void
|
665
|
2127 signal_before_change (struct buffer *buf, Charbpos start, Charbpos end)
|
428
|
2128 {
|
|
2129 /* This function can GC */
|
|
2130 struct buffer *mbuf;
|
|
2131 Lisp_Object bufcons;
|
|
2132
|
|
2133 if (!inside_change_hook)
|
|
2134 {
|
|
2135 Lisp_Object buffer;
|
438
|
2136 int speccount;
|
428
|
2137
|
|
2138 /* Are we in a multiple-change session? */
|
|
2139 if (buf->text->changes->in_multiple_change &&
|
|
2140 buf->text->changes->mc_begin != 0)
|
|
2141 {
|
|
2142 /* If we're violating the constraints of the session,
|
|
2143 call the after-change-functions as necessary for the
|
|
2144 changes already made and treat further changes as
|
|
2145 single. */
|
|
2146 if (start < buf->text->changes->mc_begin ||
|
|
2147 end > buf->text->changes->mc_new_end)
|
|
2148 cancel_multiple_change (buf);
|
|
2149 /* Do nothing if this is not the first change in the session. */
|
|
2150 else if (buf->text->changes->mc_begin_signaled)
|
|
2151 return;
|
|
2152 else
|
|
2153 {
|
|
2154 /* First time through; call the before-change-functions
|
|
2155 specifying the entire region to be changed. (Note that
|
|
2156 we didn't call before-change-functions in
|
|
2157 begin_multiple_change() because the buffer might be
|
|
2158 read-only, etc.) */
|
|
2159 start = buf->text->changes->mc_begin;
|
|
2160 end = buf->text->changes->mc_new_end;
|
|
2161 }
|
|
2162 }
|
|
2163
|
|
2164 /* If buffer is unmodified, run a special hook for that case. */
|
|
2165 if (BUF_SAVE_MODIFF (buf) >= BUF_MODIFF (buf))
|
|
2166 {
|
|
2167 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2168 {
|
|
2169 signal_first_change (mbuf);
|
|
2170 }
|
|
2171 }
|
|
2172
|
|
2173 /* Now in any case run the before-change-functions if any. */
|
438
|
2174 speccount = specpdl_depth ();
|
|
2175 record_unwind_protect (change_function_restore, Fcurrent_buffer ());
|
|
2176 inside_change_hook = 1;
|
428
|
2177
|
|
2178 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2179 {
|
|
2180 XSETBUFFER (buffer, mbuf);
|
|
2181 if (!NILP (symbol_value_in_buffer (Qbefore_change_functions, buffer))
|
|
2182 /* Obsolete, for compatibility */
|
|
2183 || !NILP (symbol_value_in_buffer (Qbefore_change_function, buffer)))
|
|
2184 {
|
|
2185 set_buffer_internal (buf);
|
|
2186 va_run_hook_with_args (Qbefore_change_functions, 2,
|
|
2187 make_int (start), make_int (end));
|
|
2188 /* Obsolete, for compatibility */
|
|
2189 va_run_hook_with_args (Qbefore_change_function, 2,
|
|
2190 make_int (start), make_int (end));
|
|
2191 }
|
|
2192 }
|
|
2193
|
438
|
2194 /* Make sure endpoints remain valid. before-change-functions
|
|
2195 might have modified the buffer. */
|
|
2196 if (start < BUF_BEGV (buf)) start = BUF_BEGV (buf);
|
|
2197 if (start > BUF_ZV (buf)) start = BUF_ZV (buf);
|
|
2198 if (end < BUF_BEGV (buf)) end = BUF_BEGV (buf);
|
|
2199 if (end > BUF_ZV (buf)) end = BUF_ZV (buf);
|
|
2200
|
428
|
2201 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2202 {
|
|
2203 XSETBUFFER (buffer, mbuf);
|
438
|
2204 report_extent_modification (buffer, start, end, 0);
|
428
|
2205 }
|
438
|
2206 unbind_to (speccount, Qnil);
|
428
|
2207
|
|
2208 /* Only now do we indicate that the before-change-functions have
|
|
2209 been called, in case some function throws out. */
|
|
2210 buf->text->changes->mc_begin_signaled = 1;
|
|
2211 }
|
|
2212 }
|
|
2213
|
|
2214 /* Signal a change immediately after it happens.
|
665
|
2215 START is the charbpos of the start of the changed text.
|
|
2216 ORIG_END is the charbpos of the end of the before-changed text.
|
|
2217 NEW_END is the charbpos of the end of the after-changed text.
|
428
|
2218 */
|
|
2219
|
|
2220 static void
|
665
|
2221 signal_after_change (struct buffer *buf, Charbpos start, Charbpos orig_end,
|
|
2222 Charbpos new_end)
|
428
|
2223 {
|
|
2224 /* This function can GC */
|
|
2225 struct buffer *mbuf;
|
|
2226 Lisp_Object bufcons;
|
|
2227
|
|
2228 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2229 {
|
|
2230 /* always do this. */
|
|
2231 buffer_signal_changed_region (mbuf, start, new_end);
|
|
2232 }
|
|
2233 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2234 {
|
|
2235 /* #### This seems inefficient. Wouldn't it be better to just
|
|
2236 keep one cache per base buffer? */
|
|
2237 font_lock_maybe_update_syntactic_caches (mbuf, start, orig_end, new_end);
|
|
2238 }
|
|
2239
|
|
2240 if (!inside_change_hook)
|
|
2241 {
|
|
2242 Lisp_Object buffer;
|
438
|
2243 int speccount;
|
428
|
2244
|
|
2245 if (buf->text->changes->in_multiple_change &&
|
|
2246 buf->text->changes->mc_begin != 0)
|
|
2247 {
|
|
2248 assert (start >= buf->text->changes->mc_begin &&
|
|
2249 start <= buf->text->changes->mc_new_end);
|
|
2250 assert (orig_end >= buf->text->changes->mc_begin &&
|
|
2251 orig_end <= buf->text->changes->mc_new_end);
|
|
2252 buf->text->changes->mc_new_end += new_end - orig_end;
|
|
2253 return; /* after-change-functions signalled when all changes done */
|
|
2254 }
|
|
2255
|
438
|
2256 speccount = specpdl_depth ();
|
|
2257 record_unwind_protect (change_function_restore, Fcurrent_buffer ());
|
|
2258 inside_change_hook = 1;
|
428
|
2259 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2260 {
|
|
2261 XSETBUFFER (buffer, mbuf);
|
|
2262
|
|
2263 if (!NILP (symbol_value_in_buffer (Qafter_change_functions, buffer))
|
|
2264 /* Obsolete, for compatibility */
|
|
2265 || !NILP (symbol_value_in_buffer (Qafter_change_function, buffer)))
|
|
2266 {
|
|
2267 set_buffer_internal (buf);
|
|
2268 /* The actual after-change functions take slightly
|
|
2269 different arguments than what we were passed. */
|
|
2270 va_run_hook_with_args (Qafter_change_functions, 3,
|
|
2271 make_int (start), make_int (new_end),
|
|
2272 make_int (orig_end - start));
|
|
2273 /* Obsolete, for compatibility */
|
|
2274 va_run_hook_with_args (Qafter_change_function, 3,
|
|
2275 make_int (start), make_int (new_end),
|
|
2276 make_int (orig_end - start));
|
|
2277 }
|
|
2278 }
|
|
2279
|
438
|
2280 /* Make sure endpoints remain valid. after-change-functions
|
|
2281 might have modified the buffer. */
|
|
2282 if (start < BUF_BEGV (buf)) start = BUF_BEGV (buf);
|
|
2283 if (start > BUF_ZV (buf)) start = BUF_ZV (buf);
|
|
2284 if (new_end < BUF_BEGV (buf)) new_end = BUF_BEGV (buf);
|
|
2285 if (new_end > BUF_ZV (buf)) new_end = BUF_ZV (buf);
|
|
2286 if (orig_end < BUF_BEGV (buf)) orig_end = BUF_BEGV (buf);
|
|
2287 if (orig_end > BUF_ZV (buf)) orig_end = BUF_ZV (buf);
|
|
2288
|
428
|
2289 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2290 {
|
|
2291 XSETBUFFER (buffer, mbuf);
|
438
|
2292 report_extent_modification (buffer, start, new_end, 1);
|
428
|
2293 }
|
438
|
2294 unbind_to (speccount, Qnil); /* sets inside_change_hook back to 0 */
|
428
|
2295 }
|
|
2296 }
|
|
2297
|
|
2298 /* Call this if you're about to change the region of BUFFER from START
|
|
2299 to END. This checks the read-only properties of the region, calls
|
|
2300 the necessary modification hooks, and warns the next redisplay that
|
|
2301 it should pay attention to that area. */
|
|
2302
|
|
2303 static void
|
665
|
2304 prepare_to_modify_buffer (struct buffer *buf, Charbpos start, Charbpos end,
|
428
|
2305 int lockit)
|
|
2306 {
|
|
2307 /* This function can GC */
|
|
2308 /* dmoore - This function can also kill the buffer buf, the current
|
|
2309 buffer, and do anything it pleases. So if you call it, be
|
|
2310 careful. */
|
|
2311 struct buffer *mbuf;
|
|
2312 Lisp_Object buffer, bufcons;
|
|
2313 struct gcpro gcpro1;
|
|
2314
|
|
2315 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2316 {
|
|
2317 barf_if_buffer_read_only (mbuf, start, end);
|
|
2318 }
|
|
2319
|
|
2320 /* if this is the first modification, see about locking the buffer's
|
|
2321 file */
|
|
2322 XSETBUFFER (buffer, buf);
|
|
2323 GCPRO1 (buffer);
|
|
2324 if (!NILP (buf->filename) && lockit &&
|
|
2325 BUF_SAVE_MODIFF (buf) >= BUF_MODIFF (buf))
|
|
2326 {
|
758
|
2327 #ifdef CLASH_DETECTION
|
|
2328 if (!NILP (buf->file_truename))
|
|
2329 /* Make binding buffer-file-name to nil effective. */
|
|
2330 lock_file (buf->file_truename);
|
|
2331 #else
|
428
|
2332 /* At least warn if this file has changed on disk since it was visited.*/
|
|
2333 if (NILP (Fverify_visited_file_modtime (buffer))
|
|
2334 && !NILP (Ffile_exists_p (buf->filename)))
|
|
2335 call1_in_buffer (buf, intern ("ask-user-about-supersession-threat"),
|
|
2336 buf->filename);
|
|
2337 #endif /* not CLASH_DETECTION */
|
|
2338 }
|
|
2339 UNGCPRO;
|
|
2340
|
|
2341 /* #### dmoore - is this reasonable in case of buf being killed above? */
|
|
2342 if (!BUFFER_LIVE_P (buf))
|
|
2343 return;
|
|
2344
|
|
2345 signal_before_change (buf, start, end);
|
|
2346
|
|
2347 #ifdef REGION_CACHE_NEEDS_WORK
|
|
2348 if (buf->newline_cache)
|
|
2349 invalidate_region_cache (buf,
|
|
2350 buf->newline_cache,
|
|
2351 start - BUF_BEG (buf), BUF_Z (buf) - end);
|
|
2352 if (buf->width_run_cache)
|
|
2353 invalidate_region_cache (buf,
|
|
2354 buf->width_run_cache,
|
|
2355 start - BUF_BEG (buf), BUF_Z (buf) - end);
|
|
2356 #endif
|
|
2357
|
|
2358 #if 0 /* FSFmacs */
|
|
2359 Vdeactivate_mark = Qt;
|
|
2360 #endif
|
|
2361
|
|
2362 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2363 {
|
|
2364 mbuf->point_before_scroll = Qnil;
|
|
2365 }
|
|
2366 }
|
|
2367
|
|
2368
|
|
2369 /************************************************************************/
|
|
2370 /* Insertion of strings */
|
|
2371 /************************************************************************/
|
|
2372
|
|
2373 void
|
665
|
2374 fixup_internal_substring (const Intbyte *nonreloc, Lisp_Object reloc,
|
428
|
2375 Bytecount offset, Bytecount *len)
|
|
2376 {
|
|
2377 assert ((nonreloc && NILP (reloc)) || (!nonreloc && STRINGP (reloc)));
|
|
2378
|
|
2379 if (*len < 0)
|
|
2380 {
|
|
2381 if (nonreloc)
|
442
|
2382 *len = strlen ((const char *) nonreloc) - offset;
|
428
|
2383 else
|
|
2384 *len = XSTRING_LENGTH (reloc) - offset;
|
|
2385 }
|
665
|
2386 #ifdef ERROR_CHECK_CHARBPOS
|
428
|
2387 assert (*len >= 0);
|
|
2388 if (STRINGP (reloc))
|
|
2389 {
|
|
2390 assert (offset >= 0 && offset <= XSTRING_LENGTH (reloc));
|
|
2391 assert (offset + *len <= XSTRING_LENGTH (reloc));
|
|
2392 }
|
|
2393 #endif
|
|
2394 }
|
|
2395
|
665
|
2396 /* Insert a string into BUF at Charbpos POS. The string data comes
|
428
|
2397 from one of two sources: constant, non-relocatable data (specified
|
|
2398 in NONRELOC), or a Lisp string object (specified in RELOC), which
|
|
2399 is relocatable and may have extent data that needs to be copied
|
|
2400 into the buffer. OFFSET and LENGTH specify the substring of the
|
|
2401 data that is actually to be inserted. As a special case, if POS
|
|
2402 is -1, insert the string at point and move point to the end of the
|
|
2403 string.
|
|
2404
|
|
2405 Normally, markers at the insertion point end up before the
|
|
2406 inserted string. If INSDEL_BEFORE_MARKERS is set in flags, however,
|
|
2407 they end up after the string.
|
|
2408
|
|
2409 INSDEL_NO_LOCKING is kludgy and is used when insert-file-contents is
|
|
2410 visiting a new file; it inhibits the locking checks normally done
|
|
2411 before modifying a buffer. Similar checks were already done
|
|
2412 in the higher-level Lisp functions calling insert-file-contents. */
|
|
2413
|
|
2414 Charcount
|
665
|
2415 buffer_insert_string_1 (struct buffer *buf, Charbpos pos,
|
|
2416 const Intbyte *nonreloc, Lisp_Object reloc,
|
428
|
2417 Bytecount offset, Bytecount length,
|
|
2418 int flags)
|
|
2419 {
|
|
2420 /* This function can GC */
|
|
2421 struct gcpro gcpro1;
|
665
|
2422 Bytebpos ind;
|
428
|
2423 Charcount cclen;
|
|
2424 int move_point = 0;
|
|
2425 struct buffer *mbuf;
|
|
2426 Lisp_Object bufcons;
|
|
2427
|
|
2428 /* Defensive steps just in case a buffer gets deleted and a calling
|
|
2429 function doesn't notice it. */
|
|
2430 if (!BUFFER_LIVE_P (buf))
|
|
2431 return 0;
|
|
2432
|
|
2433 fixup_internal_substring (nonreloc, reloc, offset, &length);
|
|
2434
|
|
2435 if (pos == -1)
|
|
2436 {
|
|
2437 pos = BUF_PT (buf);
|
|
2438 move_point = 1;
|
|
2439 }
|
|
2440
|
|
2441 #ifdef I18N3
|
|
2442 /* #### See the comment in print_internal(). If this buffer is marked
|
|
2443 as translatable, then Fgettext() should be called on obj if it
|
|
2444 is a string. */
|
|
2445 #endif
|
|
2446
|
|
2447 /* Make sure that point-max won't exceed the size of an emacs int. */
|
|
2448 if ((length + BUF_Z (buf)) > EMACS_INT_MAX)
|
563
|
2449 out_of_memory ("Maximum buffer size exceeded", Qunbound);
|
428
|
2450
|
|
2451 /* theoretically not necessary -- caller should GCPRO.
|
|
2452 #### buffer_insert_from_buffer_1() doesn't! */
|
|
2453 GCPRO1 (reloc);
|
|
2454
|
|
2455 prepare_to_modify_buffer (buf, pos, pos, !(flags & INSDEL_NO_LOCKING));
|
|
2456
|
|
2457 /* Defensive steps in case the before-change-functions fuck around */
|
|
2458 if (!BUFFER_LIVE_P (buf))
|
|
2459 {
|
|
2460 UNGCPRO;
|
|
2461 /* Bad bad pre-change function. */
|
|
2462 return 0;
|
|
2463 }
|
|
2464
|
|
2465 /* Make args be valid again. prepare_to_modify_buffer() might have
|
|
2466 modified the buffer. */
|
|
2467 if (pos < BUF_BEGV (buf))
|
|
2468 pos = BUF_BEGV (buf);
|
|
2469 if (pos > BUF_ZV (buf))
|
|
2470 pos = BUF_ZV (buf);
|
|
2471
|
|
2472 /* string may have been relocated up to this point */
|
|
2473 if (STRINGP (reloc))
|
|
2474 nonreloc = XSTRING_DATA (reloc);
|
|
2475
|
665
|
2476 ind = charbpos_to_bytebpos (buf, pos);
|
428
|
2477 cclen = bytecount_to_charcount (nonreloc + offset, length);
|
|
2478
|
|
2479 if (ind != BI_BUF_GPT (buf))
|
|
2480 /* #### if debug-on-quit is invoked and the user changes the
|
|
2481 buffer, bad things can happen. This is a rampant problem
|
|
2482 in Emacs. */
|
|
2483 move_gap (buf, ind); /* may QUIT */
|
|
2484 if (! GAP_CAN_HOLD_SIZE_P (buf, length))
|
|
2485 {
|
|
2486 if (BUF_END_GAP_SIZE (buf) >= length)
|
|
2487 merge_gap_with_end_gap (buf);
|
|
2488 else
|
|
2489 make_gap (buf, length - BUF_GAP_SIZE (buf));
|
|
2490 }
|
|
2491
|
|
2492 insert_invalidate_line_number_cache (buf, pos, nonreloc + offset, length);
|
|
2493
|
|
2494 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2495 {
|
|
2496 record_insert (mbuf, pos, cclen);
|
|
2497 }
|
|
2498
|
|
2499 BUF_MODIFF (buf)++;
|
|
2500 MARK_BUFFERS_CHANGED;
|
|
2501
|
|
2502 /* string may have been relocated up to this point */
|
|
2503 if (STRINGP (reloc))
|
|
2504 nonreloc = XSTRING_DATA (reloc);
|
|
2505
|
|
2506 memcpy (BUF_GPT_ADDR (buf), nonreloc + offset, length);
|
|
2507
|
|
2508 SET_BUF_GAP_SIZE (buf, BUF_GAP_SIZE (buf) - length);
|
|
2509 SET_BI_BUF_GPT (buf, BI_BUF_GPT (buf) + length);
|
|
2510 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2511 {
|
|
2512 SET_BOTH_BUF_ZV (mbuf, BUF_ZV (mbuf) + cclen, BI_BUF_ZV (mbuf) + length);
|
|
2513 }
|
|
2514 SET_BOTH_BUF_Z (buf, BUF_Z (buf) + cclen, BI_BUF_Z (buf) + length);
|
|
2515 SET_GAP_SENTINEL (buf);
|
|
2516
|
|
2517 #ifdef MULE
|
|
2518 buffer_mule_signal_inserted_region (buf, pos, length, cclen);
|
|
2519 #endif
|
|
2520
|
|
2521 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2522 {
|
|
2523 process_extents_for_insertion (make_buffer (mbuf), ind, length);
|
|
2524 }
|
|
2525
|
|
2526 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2527 {
|
|
2528 /* We know the gap is at IND so the cast is OK. */
|
665
|
2529 adjust_markers_for_insert (mbuf, (Membpos) ind, length);
|
428
|
2530 }
|
|
2531
|
|
2532 /* Point logically doesn't move, but may need to be adjusted because
|
|
2533 it's a byte index. point-marker doesn't change because it's a
|
|
2534 memory index. */
|
|
2535 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2536 {
|
|
2537 if (BI_BUF_PT (mbuf) > ind)
|
|
2538 JUST_SET_POINT (mbuf, BUF_PT (mbuf) + cclen,
|
|
2539 BI_BUF_PT (mbuf) + length);
|
|
2540 }
|
|
2541
|
|
2542 /* Well, point might move. */
|
|
2543 if (move_point)
|
|
2544 BI_BUF_SET_PT (buf, ind + length);
|
|
2545
|
|
2546 if (STRINGP (reloc))
|
|
2547 {
|
|
2548 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2549 {
|
|
2550 splice_in_string_extents (reloc, mbuf, ind, length, offset);
|
|
2551 }
|
|
2552 }
|
|
2553
|
|
2554 if (flags & INSDEL_BEFORE_MARKERS)
|
|
2555 {
|
|
2556 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2557 {
|
|
2558 /* ind - 1 is correct because the FROM argument is exclusive.
|
665
|
2559 I formerly used DEC_BYTEBPOS() but that caused problems at the
|
428
|
2560 beginning of the buffer. */
|
|
2561 adjust_markers (mbuf, ind - 1, ind, length);
|
|
2562 }
|
|
2563 }
|
|
2564
|
|
2565 signal_after_change (buf, pos, pos, pos + cclen);
|
|
2566
|
|
2567 UNGCPRO;
|
|
2568
|
|
2569 return cclen;
|
|
2570 }
|
|
2571
|
|
2572
|
|
2573 /* The following functions are interfaces onto the above function,
|
|
2574 for inserting particular sorts of data. In all the functions,
|
|
2575 BUF and POS specify the buffer and location where the insertion is
|
|
2576 to take place. (If POS is -1, text is inserted at point and point
|
|
2577 moves forward past the text.) FLAGS is as above. */
|
|
2578
|
|
2579 Charcount
|
665
|
2580 buffer_insert_raw_string_1 (struct buffer *buf, Charbpos pos,
|
|
2581 const Intbyte *nonreloc, Bytecount length,
|
428
|
2582 int flags)
|
|
2583 {
|
|
2584 /* This function can GC */
|
|
2585 return buffer_insert_string_1 (buf, pos, nonreloc, Qnil, 0, length,
|
|
2586 flags);
|
|
2587 }
|
|
2588
|
|
2589 Charcount
|
665
|
2590 buffer_insert_lisp_string_1 (struct buffer *buf, Charbpos pos, Lisp_Object str,
|
428
|
2591 int flags)
|
|
2592 {
|
|
2593 /* This function can GC */
|
|
2594 #ifdef ERROR_CHECK_TYPECHECK
|
|
2595 assert (STRINGP (str));
|
|
2596 #endif
|
|
2597 return buffer_insert_string_1 (buf, pos, 0, str, 0,
|
|
2598 XSTRING_LENGTH (str),
|
|
2599 flags);
|
|
2600 }
|
|
2601
|
|
2602 /* Insert the null-terminated string S (in external format). */
|
|
2603
|
|
2604 Charcount
|
665
|
2605 buffer_insert_c_string_1 (struct buffer *buf, Charbpos pos, const char *s,
|
428
|
2606 int flags)
|
|
2607 {
|
|
2608 /* This function can GC */
|
442
|
2609 const char *translated = GETTEXT (s);
|
665
|
2610 return buffer_insert_string_1 (buf, pos, (const Intbyte *) translated, Qnil,
|
428
|
2611 0, strlen (translated), flags);
|
|
2612 }
|
|
2613
|
|
2614 Charcount
|
665
|
2615 buffer_insert_emacs_char_1 (struct buffer *buf, Charbpos pos, Emchar ch,
|
428
|
2616 int flags)
|
|
2617 {
|
|
2618 /* This function can GC */
|
665
|
2619 Intbyte str[MAX_EMCHAR_LEN];
|
428
|
2620 Bytecount len = set_charptr_emchar (str, ch);
|
|
2621 return buffer_insert_string_1 (buf, pos, str, Qnil, 0, len, flags);
|
|
2622 }
|
|
2623
|
|
2624 Charcount
|
665
|
2625 buffer_insert_c_char_1 (struct buffer *buf, Charbpos pos, char c,
|
428
|
2626 int flags)
|
|
2627 {
|
|
2628 /* This function can GC */
|
|
2629 return buffer_insert_emacs_char_1 (buf, pos, (Emchar) (unsigned char) c,
|
|
2630 flags);
|
|
2631 }
|
|
2632
|
|
2633 Charcount
|
665
|
2634 buffer_insert_from_buffer_1 (struct buffer *buf, Charbpos pos,
|
|
2635 struct buffer *buf2, Charbpos pos2,
|
428
|
2636 Charcount length, int flags)
|
|
2637 {
|
|
2638 /* This function can GC */
|
|
2639 Lisp_Object str = make_string_from_buffer (buf2, pos2, length);
|
|
2640 return buffer_insert_string_1 (buf, pos, 0, str, 0,
|
|
2641 XSTRING_LENGTH (str), flags);
|
|
2642 }
|
|
2643
|
|
2644
|
|
2645 /************************************************************************/
|
|
2646 /* Deletion of ranges */
|
|
2647 /************************************************************************/
|
|
2648
|
|
2649 /* Delete characters in buffer from FROM up to (but not including) TO. */
|
|
2650
|
|
2651 void
|
665
|
2652 buffer_delete_range (struct buffer *buf, Charbpos from, Charbpos to, int flags)
|
428
|
2653 {
|
|
2654 /* This function can GC */
|
|
2655 Charcount numdel;
|
665
|
2656 Bytebpos bi_from, bi_to;
|
428
|
2657 Bytecount bc_numdel;
|
|
2658 EMACS_INT shortage;
|
|
2659 struct buffer *mbuf;
|
|
2660 Lisp_Object bufcons;
|
|
2661
|
|
2662 /* Defensive steps just in case a buffer gets deleted and a calling
|
|
2663 function doesn't notice it. */
|
|
2664 if (!BUFFER_LIVE_P (buf))
|
|
2665 return;
|
|
2666
|
|
2667 /* Make args be valid */
|
|
2668 if (from < BUF_BEGV (buf))
|
|
2669 from = BUF_BEGV (buf);
|
|
2670 if (to > BUF_ZV (buf))
|
|
2671 to = BUF_ZV (buf);
|
|
2672 if ((numdel = to - from) <= 0)
|
|
2673 return;
|
|
2674
|
|
2675 prepare_to_modify_buffer (buf, from, to, !(flags & INSDEL_NO_LOCKING));
|
|
2676
|
|
2677 /* Defensive steps in case the before-change-functions fuck around */
|
|
2678 if (!BUFFER_LIVE_P (buf))
|
|
2679 /* Bad bad pre-change function. */
|
|
2680 return;
|
|
2681
|
|
2682 /* Make args be valid again. prepare_to_modify_buffer() might have
|
|
2683 modified the buffer. */
|
|
2684 if (from < BUF_BEGV (buf))
|
|
2685 from = BUF_BEGV (buf);
|
|
2686 if (to > BUF_ZV (buf))
|
|
2687 to = BUF_ZV (buf);
|
|
2688 if ((numdel = to - from) <= 0)
|
|
2689 return;
|
|
2690
|
|
2691 /* Redisplay needs to know if a newline was in the deleted region.
|
|
2692 If we've already marked the changed region as having a deleted
|
|
2693 newline there is no use in performing the check. */
|
|
2694 if (!buf->changes->newline_was_deleted)
|
|
2695 {
|
|
2696 scan_buffer (buf, '\n', from, to, 1, &shortage, 1);
|
|
2697 if (!shortage)
|
|
2698 {
|
|
2699 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2700 {
|
|
2701 mbuf->changes->newline_was_deleted = 1;
|
|
2702 }
|
|
2703 }
|
|
2704 }
|
|
2705
|
665
|
2706 bi_from = charbpos_to_bytebpos (buf, from);
|
|
2707 bi_to = charbpos_to_bytebpos (buf, to);
|
428
|
2708 bc_numdel = bi_to - bi_from;
|
|
2709
|
|
2710 delete_invalidate_line_number_cache (buf, from, to);
|
|
2711
|
|
2712 if (to == BUF_Z (buf) &&
|
|
2713 bi_from > BI_BUF_GPT (buf))
|
|
2714 {
|
|
2715 /* avoid moving the gap just to delete from the bottom. */
|
|
2716
|
|
2717 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2718 {
|
|
2719 record_delete (mbuf, from, numdel);
|
|
2720 }
|
|
2721 BUF_MODIFF (buf)++;
|
|
2722 MARK_BUFFERS_CHANGED;
|
|
2723
|
|
2724 /* #### Point used to be modified here, but this causes problems
|
665
|
2725 with MULE, as point is used to calculate bytebposs, and if the
|
428
|
2726 offset in bc_numdel causes point to move to a non first-byte
|
|
2727 location, causing some other function to throw an assertion
|
665
|
2728 in ASSERT_VALID_BYTEBPOS. I've moved the code to right after
|
428
|
2729 the other movements and adjustments, but before the gap is
|
|
2730 moved. -- jh 970813 */
|
|
2731
|
|
2732 /* Detach any extents that are completely within the range [FROM, TO],
|
|
2733 if the extents are detachable.
|
|
2734
|
|
2735 This must come AFTER record_delete(), so that the appropriate
|
|
2736 extents will be present to be recorded, and BEFORE the gap
|
|
2737 size is increased, as otherwise we will be confused about
|
|
2738 where the extents end. */
|
|
2739 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2740 {
|
|
2741 process_extents_for_deletion (make_buffer (mbuf), bi_from, bi_to, 0);
|
|
2742 }
|
|
2743
|
|
2744 /* Relocate all markers pointing into the new, larger gap to
|
|
2745 point at the end of the text before the gap. */
|
|
2746 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2747 {
|
|
2748 adjust_markers (mbuf,
|
|
2749 (bi_to + BUF_GAP_SIZE (mbuf)),
|
|
2750 (bi_to + BUF_GAP_SIZE (mbuf)),
|
|
2751 (- bc_numdel));
|
|
2752 }
|
|
2753
|
|
2754 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2755 {
|
|
2756 /* Relocate any extent endpoints just like markers. */
|
|
2757 adjust_extents_for_deletion (make_buffer (mbuf), bi_from, bi_to,
|
|
2758 BUF_GAP_SIZE (mbuf), bc_numdel, 0);
|
|
2759 }
|
|
2760
|
|
2761 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2762 {
|
|
2763 /* Relocate point as if it were a marker. */
|
|
2764 if (bi_from < BI_BUF_PT (mbuf))
|
|
2765 {
|
|
2766 if (BI_BUF_PT (mbuf) < bi_to)
|
|
2767 JUST_SET_POINT (mbuf, from, bi_from);
|
|
2768 else
|
|
2769 JUST_SET_POINT (mbuf, BUF_PT (mbuf) - numdel,
|
|
2770 BI_BUF_PT (mbuf) - bc_numdel);
|
|
2771 }
|
|
2772 }
|
|
2773
|
|
2774 SET_BUF_END_GAP_SIZE (buf, BUF_END_GAP_SIZE (buf) + bc_numdel);
|
|
2775
|
|
2776 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2777 {
|
|
2778 SET_BOTH_BUF_ZV (mbuf, BUF_ZV (mbuf) - numdel,
|
|
2779 BI_BUF_ZV (mbuf) - bc_numdel);
|
|
2780 }
|
|
2781 SET_BOTH_BUF_Z (buf, BUF_Z (buf) - numdel, BI_BUF_Z (buf) - bc_numdel);
|
|
2782 SET_GAP_SENTINEL (buf);
|
|
2783 }
|
|
2784 else
|
|
2785 {
|
|
2786 /* Make sure the gap is somewhere in or next to what we are deleting. */
|
|
2787 if (bi_to < BI_BUF_GPT (buf))
|
|
2788 gap_left (buf, bi_to);
|
|
2789 if (bi_from > BI_BUF_GPT (buf))
|
|
2790 gap_right (buf, bi_from);
|
|
2791
|
|
2792 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2793 {
|
|
2794 record_delete (mbuf, from, numdel);
|
|
2795 }
|
|
2796 BUF_MODIFF (buf)++;
|
|
2797 MARK_BUFFERS_CHANGED;
|
|
2798
|
|
2799 /* #### Point used to be modified here, but this causes problems
|
665
|
2800 with MULE, as point is used to calculate bytebposs, and if the
|
428
|
2801 offset in bc_numdel causes point to move to a non first-byte
|
|
2802 location, causing some other function to throw an assertion
|
665
|
2803 in ASSERT_VALID_BYTEBPOS. I've moved the code to right after
|
428
|
2804 the other movements and adjustments, but before the gap is
|
|
2805 moved. -- jh 970813 */
|
|
2806
|
|
2807 /* Detach any extents that are completely within the range [FROM, TO],
|
|
2808 if the extents are detachable.
|
|
2809
|
|
2810 This must come AFTER record_delete(), so that the appropriate extents
|
|
2811 will be present to be recorded, and BEFORE the gap size is increased,
|
|
2812 as otherwise we will be confused about where the extents end. */
|
|
2813 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2814 {
|
|
2815 process_extents_for_deletion (make_buffer (mbuf), bi_from, bi_to, 0);
|
|
2816 }
|
|
2817
|
|
2818 /* Relocate all markers pointing into the new, larger gap to
|
|
2819 point at the end of the text before the gap. */
|
|
2820 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2821 {
|
|
2822 adjust_markers (mbuf,
|
|
2823 (bi_to + BUF_GAP_SIZE (mbuf)),
|
|
2824 (bi_to + BUF_GAP_SIZE (mbuf)),
|
|
2825 (- bc_numdel - BUF_GAP_SIZE (mbuf)));
|
|
2826 }
|
|
2827
|
|
2828 /* Relocate any extent endpoints just like markers. */
|
|
2829 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2830 {
|
|
2831 adjust_extents_for_deletion (make_buffer (mbuf), bi_from, bi_to,
|
|
2832 BUF_GAP_SIZE (mbuf),
|
|
2833 bc_numdel, BUF_GAP_SIZE (mbuf));
|
|
2834 }
|
|
2835
|
|
2836 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2837 {
|
|
2838 /* Relocate point as if it were a marker. */
|
|
2839 if (bi_from < BI_BUF_PT (mbuf))
|
|
2840 {
|
|
2841 if (BI_BUF_PT (mbuf) < bi_to)
|
|
2842 JUST_SET_POINT (mbuf, from, bi_from);
|
|
2843 else
|
|
2844 JUST_SET_POINT (mbuf, BUF_PT (mbuf) - numdel,
|
|
2845 BI_BUF_PT (mbuf) - bc_numdel);
|
|
2846 }
|
|
2847 }
|
|
2848
|
|
2849 SET_BUF_GAP_SIZE (buf, BUF_GAP_SIZE (buf) + bc_numdel);
|
|
2850 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2851 {
|
|
2852 SET_BOTH_BUF_ZV (mbuf, BUF_ZV (mbuf) - numdel,
|
|
2853 BI_BUF_ZV (mbuf) - bc_numdel);
|
|
2854 }
|
|
2855 SET_BOTH_BUF_Z (buf, BUF_Z (buf) - numdel, BI_BUF_Z (buf) - bc_numdel);
|
|
2856 SET_BI_BUF_GPT (buf, bi_from);
|
|
2857 SET_GAP_SENTINEL (buf);
|
|
2858 }
|
|
2859
|
|
2860 #ifdef MULE
|
|
2861 buffer_mule_signal_deleted_region (buf, from, to, bi_from, bi_to);
|
|
2862 #endif
|
|
2863
|
|
2864 #ifdef ERROR_CHECK_EXTENTS
|
|
2865 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2866 {
|
|
2867 sledgehammer_extent_check (make_buffer (mbuf));
|
|
2868 }
|
|
2869 #endif
|
|
2870
|
|
2871 signal_after_change (buf, from, to, from);
|
|
2872 }
|
|
2873
|
|
2874
|
|
2875 /************************************************************************/
|
|
2876 /* Replacement of characters */
|
|
2877 /************************************************************************/
|
|
2878
|
|
2879 /* Replace the character at POS in buffer B with CH. */
|
|
2880
|
|
2881 void
|
665
|
2882 buffer_replace_char (struct buffer *buf, Charbpos pos, Emchar ch,
|
428
|
2883 int not_real_change, int force_lock_check)
|
|
2884 {
|
|
2885 /* This function can GC */
|
665
|
2886 Intbyte curstr[MAX_EMCHAR_LEN];
|
|
2887 Intbyte newstr[MAX_EMCHAR_LEN];
|
428
|
2888 Bytecount curlen, newlen;
|
|
2889
|
|
2890 /* Defensive steps just in case a buffer gets deleted and a calling
|
|
2891 function doesn't notice it. */
|
|
2892 if (!BUFFER_LIVE_P (buf))
|
|
2893 return;
|
|
2894
|
|
2895 curlen = BUF_CHARPTR_COPY_CHAR (buf, pos, curstr);
|
|
2896 newlen = set_charptr_emchar (newstr, ch);
|
|
2897
|
|
2898 if (curlen == newlen)
|
|
2899 {
|
|
2900 struct buffer *mbuf;
|
|
2901 Lisp_Object bufcons;
|
|
2902
|
|
2903 /* then we can just replace the text. */
|
|
2904 prepare_to_modify_buffer (buf, pos, pos + 1,
|
|
2905 !not_real_change || force_lock_check);
|
|
2906 /* Defensive steps in case the before-change-functions fuck around */
|
|
2907 if (!BUFFER_LIVE_P (buf))
|
|
2908 /* Bad bad pre-change function. */
|
|
2909 return;
|
|
2910
|
|
2911 /* Make args be valid again. prepare_to_modify_buffer() might have
|
|
2912 modified the buffer. */
|
|
2913 if (pos < BUF_BEGV (buf))
|
|
2914 pos = BUF_BEGV (buf);
|
|
2915 if (pos >= BUF_ZV (buf))
|
|
2916 pos = BUF_ZV (buf) - 1;
|
|
2917 if (pos < BUF_BEGV (buf))
|
|
2918 /* no more characters in buffer! */
|
|
2919 return;
|
|
2920
|
|
2921 if (BUF_FETCH_CHAR (buf, pos) == '\n')
|
|
2922 {
|
|
2923 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2924 {
|
|
2925 mbuf->changes->newline_was_deleted = 1;
|
|
2926 }
|
|
2927 }
|
|
2928 MARK_BUFFERS_CHANGED;
|
|
2929 if (!not_real_change)
|
|
2930 {
|
|
2931 MAP_INDIRECT_BUFFERS (buf, mbuf, bufcons)
|
|
2932 {
|
|
2933 record_change (mbuf, pos, 1);
|
|
2934 }
|
|
2935 BUF_MODIFF (buf)++;
|
|
2936 }
|
|
2937 memcpy (BUF_BYTE_ADDRESS (buf, pos), newstr, newlen);
|
|
2938
|
|
2939 signal_after_change (buf, pos, pos + 1, pos + 1);
|
|
2940
|
|
2941 /* We do not have to adjust the Mule data; we just replaced a
|
|
2942 character with another of the same number of bytes. */
|
|
2943 }
|
|
2944 else
|
|
2945 {
|
|
2946 /*
|
|
2947 * Must implement as deletion followed by insertion.
|
|
2948 *
|
|
2949 * Make a note to move point forward later in the one situation
|
|
2950 * where it is needed, a delete/insert one position behind
|
|
2951 * point. Point will drift backward by one position and stay
|
|
2952 * there otherwise.
|
|
2953 */
|
|
2954 int movepoint = (pos == BUF_PT (buf) - 1);
|
|
2955
|
|
2956 buffer_delete_range (buf, pos, pos + 1, 0);
|
|
2957 /* Defensive steps in case the before-change-functions fuck around */
|
|
2958 if (!BUFFER_LIVE_P (buf))
|
|
2959 /* Bad bad pre-change function. */
|
|
2960 return;
|
|
2961
|
|
2962 /* Make args be valid again. prepare_to_modify_buffer() might have
|
|
2963 modified the buffer. */
|
|
2964 if (pos < BUF_BEGV (buf))
|
|
2965 pos = BUF_BEGV (buf);
|
|
2966 if (pos >= BUF_ZV (buf))
|
|
2967 pos = BUF_ZV (buf) - 1;
|
|
2968 if (pos < BUF_BEGV (buf))
|
|
2969 /* no more characters in buffer! */
|
|
2970 return;
|
|
2971 /*
|
|
2972 * -1 as the pos argument means to move point forward with the
|
|
2973 * insertion, which we must do if the deletion moved point
|
|
2974 * backward so that it now equals the insertion point.
|
|
2975 */
|
|
2976 buffer_insert_string_1 (buf, (movepoint ? -1 : pos),
|
|
2977 newstr, Qnil, 0, newlen, 0);
|
|
2978 }
|
|
2979 }
|
|
2980
|
|
2981
|
|
2982 /************************************************************************/
|
|
2983 /* Other functions */
|
|
2984 /************************************************************************/
|
|
2985
|
|
2986 /* Make a string from a buffer. This needs to take into account the gap,
|
|
2987 and add any necessary extents from the buffer. */
|
|
2988
|
|
2989 static Lisp_Object
|
665
|
2990 make_string_from_buffer_1 (struct buffer *buf, Charbpos pos, Charcount length,
|
428
|
2991 int no_extents)
|
|
2992 {
|
|
2993 /* This function can GC */
|
665
|
2994 Bytebpos bi_ind = charbpos_to_bytebpos (buf, pos);
|
|
2995 Bytecount bi_len = charbpos_to_bytebpos (buf, pos + length) - bi_ind;
|
428
|
2996 Lisp_Object val = make_uninit_string (bi_len);
|
|
2997
|
|
2998 struct gcpro gcpro1;
|
|
2999 GCPRO1 (val);
|
|
3000
|
|
3001 if (!no_extents)
|
|
3002 add_string_extents (val, buf, bi_ind, bi_len);
|
|
3003
|
|
3004 {
|
|
3005 Bytecount len1 = BI_BUF_GPT (buf) - bi_ind;
|
665
|
3006 Intbyte *start1 = BI_BUF_BYTE_ADDRESS (buf, bi_ind);
|
|
3007 Intbyte *dest = XSTRING_DATA (val);
|
428
|
3008
|
|
3009 if (len1 < 0)
|
|
3010 {
|
|
3011 /* Completely after gap */
|
|
3012 memcpy (dest, start1, bi_len);
|
|
3013 }
|
|
3014 else if (bi_len <= len1)
|
|
3015 {
|
|
3016 /* Completely before gap */
|
|
3017 memcpy (dest, start1, bi_len);
|
|
3018 }
|
|
3019 else
|
|
3020 {
|
|
3021 /* Spans gap */
|
665
|
3022 Bytebpos pos2 = bi_ind + len1;
|
|
3023 Intbyte *start2 = BI_BUF_BYTE_ADDRESS (buf, pos2);
|
428
|
3024
|
|
3025 memcpy (dest, start1, len1);
|
|
3026 memcpy (dest + len1, start2, bi_len - len1);
|
|
3027 }
|
|
3028 }
|
|
3029
|
|
3030 UNGCPRO;
|
|
3031 return val;
|
|
3032 }
|
|
3033
|
|
3034 Lisp_Object
|
665
|
3035 make_string_from_buffer (struct buffer *buf, Charbpos pos, Charcount length)
|
428
|
3036 {
|
|
3037 return make_string_from_buffer_1 (buf, pos, length, 0);
|
|
3038 }
|
|
3039
|
|
3040 Lisp_Object
|
665
|
3041 make_string_from_buffer_no_extents (struct buffer *buf, Charbpos pos,
|
428
|
3042 Charcount length)
|
|
3043 {
|
|
3044 return make_string_from_buffer_1 (buf, pos, length, 1);
|
|
3045 }
|
|
3046
|
|
3047 void
|
665
|
3048 barf_if_buffer_read_only (struct buffer *buf, Charbpos from, Charbpos to)
|
428
|
3049 {
|
|
3050 Lisp_Object buffer;
|
|
3051 Lisp_Object iro;
|
|
3052
|
|
3053 XSETBUFFER (buffer, buf);
|
|
3054 back:
|
|
3055 iro = (buf == current_buffer ? Vinhibit_read_only :
|
|
3056 symbol_value_in_buffer (Qinhibit_read_only, buffer));
|
|
3057 if (!LISTP (iro))
|
|
3058 return;
|
|
3059 if (NILP (iro) && !NILP (buf->read_only))
|
|
3060 {
|
|
3061 Fsignal (Qbuffer_read_only, (list1 (buffer)));
|
|
3062 goto back;
|
|
3063 }
|
|
3064 if (from > 0)
|
|
3065 {
|
|
3066 if (to < 0)
|
|
3067 to = from;
|
|
3068 verify_extent_modification (buffer,
|
665
|
3069 charbpos_to_bytebpos (buf, from),
|
|
3070 charbpos_to_bytebpos (buf, to),
|
428
|
3071 iro);
|
|
3072 }
|
|
3073 }
|
|
3074
|
|
3075 void
|
665
|
3076 find_charsets_in_intbyte_string (unsigned char *charsets, const Intbyte *str,
|
428
|
3077 Bytecount len)
|
|
3078 {
|
|
3079 #ifndef MULE
|
|
3080 /* Telescope this. */
|
|
3081 charsets[0] = 1;
|
|
3082 #else
|
665
|
3083 const Intbyte *strend = str + len;
|
428
|
3084 memset (charsets, 0, NUM_LEADING_BYTES);
|
|
3085
|
442
|
3086 /* #### SJT doesn't like this. */
|
|
3087 if (len == 0)
|
|
3088 {
|
|
3089 charsets[XCHARSET_LEADING_BYTE (Vcharset_ascii) - 128] = 1;
|
|
3090 return;
|
|
3091 }
|
|
3092
|
428
|
3093 while (str < strend)
|
|
3094 {
|
|
3095 charsets[CHAR_LEADING_BYTE (charptr_emchar (str)) - 128] = 1;
|
|
3096 INC_CHARPTR (str);
|
|
3097 }
|
|
3098 #endif
|
|
3099 }
|
|
3100
|
|
3101 void
|
442
|
3102 find_charsets_in_emchar_string (unsigned char *charsets, const Emchar *str,
|
428
|
3103 Charcount len)
|
|
3104 {
|
|
3105 #ifndef MULE
|
|
3106 /* Telescope this. */
|
|
3107 charsets[0] = 1;
|
|
3108 #else
|
|
3109 int i;
|
|
3110
|
|
3111 memset (charsets, 0, NUM_LEADING_BYTES);
|
442
|
3112
|
|
3113 /* #### SJT doesn't like this. */
|
|
3114 if (len == 0)
|
|
3115 {
|
|
3116 charsets[XCHARSET_LEADING_BYTE (Vcharset_ascii) - 128] = 1;
|
|
3117 return;
|
|
3118 }
|
|
3119
|
428
|
3120 for (i = 0; i < len; i++)
|
|
3121 {
|
|
3122 charsets[CHAR_LEADING_BYTE (str[i]) - 128] = 1;
|
|
3123 }
|
|
3124 #endif
|
|
3125 }
|
|
3126
|
|
3127 int
|
665
|
3128 intbyte_string_displayed_columns (const Intbyte *str, Bytecount len)
|
428
|
3129 {
|
|
3130 int cols = 0;
|
665
|
3131 const Intbyte *end = str + len;
|
428
|
3132
|
|
3133 while (str < end)
|
|
3134 {
|
|
3135 #ifdef MULE
|
|
3136 Emchar ch = charptr_emchar (str);
|
|
3137 cols += XCHARSET_COLUMNS (CHAR_CHARSET (ch));
|
|
3138 #else
|
|
3139 cols++;
|
|
3140 #endif
|
|
3141 INC_CHARPTR (str);
|
|
3142 }
|
|
3143
|
|
3144 return cols;
|
|
3145 }
|
|
3146
|
|
3147 int
|
442
|
3148 emchar_string_displayed_columns (const Emchar *str, Charcount len)
|
428
|
3149 {
|
|
3150 #ifdef MULE
|
|
3151 int cols = 0;
|
|
3152 int i;
|
|
3153
|
|
3154 for (i = 0; i < len; i++)
|
|
3155 cols += XCHARSET_COLUMNS (CHAR_CHARSET (str[i]));
|
|
3156
|
|
3157 return cols;
|
|
3158 #else /* not MULE */
|
|
3159 return len;
|
|
3160 #endif
|
|
3161 }
|
|
3162
|
|
3163 /* NOTE: Does not reset the Dynarr. */
|
|
3164
|
|
3165 void
|
665
|
3166 convert_intbyte_string_into_emchar_dynarr (const Intbyte *str, Bytecount len,
|
428
|
3167 Emchar_dynarr *dyn)
|
|
3168 {
|
665
|
3169 const Intbyte *strend = str + len;
|
428
|
3170
|
|
3171 while (str < strend)
|
|
3172 {
|
|
3173 Emchar ch = charptr_emchar (str);
|
|
3174 Dynarr_add (dyn, ch);
|
|
3175 INC_CHARPTR (str);
|
|
3176 }
|
|
3177 }
|
|
3178
|
|
3179 Charcount
|
665
|
3180 convert_intbyte_string_into_emchar_string (const Intbyte *str, Bytecount len,
|
428
|
3181 Emchar *arr)
|
|
3182 {
|
665
|
3183 const Intbyte *strend = str + len;
|
428
|
3184 Charcount newlen = 0;
|
|
3185 while (str < strend)
|
|
3186 {
|
|
3187 Emchar ch = charptr_emchar (str);
|
|
3188 arr[newlen++] = ch;
|
|
3189 INC_CHARPTR (str);
|
|
3190 }
|
|
3191 return newlen;
|
|
3192 }
|
|
3193
|
|
3194 /* Convert an array of Emchars into the equivalent string representation.
|
665
|
3195 Store into the given Intbyte dynarr. Does not reset the dynarr.
|
428
|
3196 Does not add a terminating zero. */
|
|
3197
|
|
3198 void
|
665
|
3199 convert_emchar_string_into_intbyte_dynarr (Emchar *arr, int nels,
|
|
3200 Intbyte_dynarr *dyn)
|
428
|
3201 {
|
665
|
3202 Intbyte str[MAX_EMCHAR_LEN];
|
428
|
3203 int i;
|
|
3204
|
|
3205 for (i = 0; i < nels; i++)
|
|
3206 {
|
|
3207 Bytecount len = set_charptr_emchar (str, arr[i]);
|
|
3208 Dynarr_add_many (dyn, str, len);
|
|
3209 }
|
|
3210 }
|
|
3211
|
|
3212 /* Convert an array of Emchars into the equivalent string representation.
|
|
3213 Malloc the space needed for this and return it. If LEN_OUT is not a
|
665
|
3214 NULL pointer, store into LEN_OUT the number of Intbytes in the
|
|
3215 malloc()ed string. Note that the actual number of Intbytes allocated
|
428
|
3216 is one more than this: the returned string is zero-terminated. */
|
|
3217
|
665
|
3218 Intbyte *
|
428
|
3219 convert_emchar_string_into_malloced_string (Emchar *arr, int nels,
|
|
3220 Bytecount *len_out)
|
|
3221 {
|
|
3222 /* Damn zero-termination. */
|
665
|
3223 Intbyte *str = (Intbyte *) alloca (nels * MAX_EMCHAR_LEN + 1);
|
|
3224 Intbyte *strorig = str;
|
428
|
3225 Bytecount len;
|
|
3226
|
|
3227 int i;
|
|
3228
|
|
3229 for (i = 0; i < nels; i++)
|
|
3230 str += set_charptr_emchar (str, arr[i]);
|
|
3231 *str = '\0';
|
|
3232 len = str - strorig;
|
665
|
3233 str = (Intbyte *) xmalloc (1 + len);
|
428
|
3234 memcpy (str, strorig, 1 + len);
|
|
3235 if (len_out)
|
|
3236 *len_out = len;
|
|
3237 return str;
|
|
3238 }
|
|
3239
|
|
3240
|
|
3241 /************************************************************************/
|
|
3242 /* initialization */
|
|
3243 /************************************************************************/
|
|
3244
|
|
3245 void
|
|
3246 reinit_vars_of_insdel (void)
|
|
3247 {
|
|
3248 int i;
|
|
3249
|
|
3250 inside_change_hook = 0;
|
|
3251 in_first_change = 0;
|
|
3252
|
665
|
3253 for (i = 0; i <= MAX_BYTEBPOS_GAP_SIZE_3; i++)
|
428
|
3254 three_to_one_table[i] = i / 3;
|
|
3255 }
|
|
3256
|
|
3257 void
|
|
3258 vars_of_insdel (void)
|
|
3259 {
|
|
3260 reinit_vars_of_insdel ();
|
|
3261 }
|
|
3262
|
|
3263 void
|
|
3264 init_buffer_text (struct buffer *b)
|
|
3265 {
|
|
3266 if (!b->base_buffer)
|
|
3267 {
|
|
3268 SET_BUF_GAP_SIZE (b, 20);
|
|
3269 BUFFER_ALLOC (b->text->beg, BUF_GAP_SIZE (b) + BUF_END_SENTINEL_SIZE);
|
|
3270 if (! BUF_BEG_ADDR (b))
|
|
3271 memory_full ();
|
|
3272
|
|
3273 SET_BUF_END_GAP_SIZE (b, 0);
|
|
3274 SET_BI_BUF_GPT (b, 1);
|
|
3275 SET_BOTH_BUF_Z (b, 1, 1);
|
|
3276 SET_GAP_SENTINEL (b);
|
|
3277 SET_END_SENTINEL (b);
|
|
3278 #ifdef MULE
|
|
3279 {
|
|
3280 int i;
|
|
3281
|
|
3282 b->text->mule_bufmin = b->text->mule_bufmax = 1;
|
|
3283 b->text->mule_bytmin = b->text->mule_bytmax = 1;
|
|
3284 b->text->mule_shifter = 0;
|
|
3285 b->text->mule_three_p = 0;
|
|
3286
|
|
3287 for (i = 0; i < 16; i++)
|
|
3288 {
|
665
|
3289 b->text->mule_charbpos_cache[i] = 1;
|
|
3290 b->text->mule_bytebpos_cache[i] = 1;
|
428
|
3291 }
|
|
3292 }
|
|
3293 #endif /* MULE */
|
|
3294 b->text->line_number_cache = Qnil;
|
|
3295
|
|
3296 BUF_MODIFF (b) = 1;
|
|
3297 BUF_SAVE_MODIFF (b) = 1;
|
|
3298
|
|
3299 JUST_SET_POINT (b, 1, 1);
|
|
3300 SET_BOTH_BUF_BEGV (b, 1, 1);
|
|
3301 SET_BOTH_BUF_ZV (b, 1, 1);
|
|
3302
|
|
3303 b->text->changes = xnew_and_zero (struct buffer_text_change_data);
|
|
3304 }
|
|
3305 else
|
|
3306 {
|
|
3307 JUST_SET_POINT (b, BUF_PT (b->base_buffer), BI_BUF_PT (b->base_buffer));
|
|
3308 SET_BOTH_BUF_BEGV (b, BUF_BEGV (b->base_buffer),
|
|
3309 BI_BUF_BEGV (b->base_buffer));
|
|
3310 SET_BOTH_BUF_ZV (b, BUF_ZV (b->base_buffer),
|
|
3311 BI_BUF_ZV (b->base_buffer));
|
|
3312 }
|
|
3313
|
|
3314 b->changes = xnew_and_zero (struct each_buffer_change_data);
|
|
3315 BUF_FACECHANGE (b) = 1;
|
|
3316
|
|
3317 #ifdef REGION_CACHE_NEEDS_WORK
|
|
3318 b->newline_cache = 0;
|
|
3319 b->width_run_cache = 0;
|
|
3320 b->width_table = Qnil;
|
|
3321 #endif
|
|
3322 }
|
|
3323
|
|
3324 void
|
|
3325 uninit_buffer_text (struct buffer *b)
|
|
3326 {
|
|
3327 if (!b->base_buffer)
|
|
3328 {
|
|
3329 BUFFER_FREE (b->text->beg);
|
|
3330 xfree (b->text->changes);
|
|
3331 }
|
|
3332 xfree (b->changes);
|
|
3333
|
|
3334 #ifdef REGION_CACHE_NEEDS_WORK
|
|
3335 if (b->newline_cache)
|
|
3336 {
|
|
3337 free_region_cache (b->newline_cache);
|
|
3338 b->newline_cache = 0;
|
|
3339 }
|
|
3340 if (b->width_run_cache)
|
|
3341 {
|
|
3342 free_region_cache (b->width_run_cache);
|
|
3343 b->width_run_cache = 0;
|
|
3344 }
|
|
3345 b->width_table = Qnil;
|
|
3346 #endif
|
|
3347 }
|