0
|
1 /* Storage allocation and gc for XEmacs Lisp interpreter.
|
272
|
2 Copyright (C) 1985-1998 Free Software Foundation, Inc.
|
0
|
3 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
4 Copyright (C) 1995, 1996 Ben Wing.
|
|
5
|
|
6 This file is part of XEmacs.
|
|
7
|
|
8 XEmacs is free software; you can redistribute it and/or modify it
|
|
9 under the terms of the GNU General Public License as published by the
|
|
10 Free Software Foundation; either version 2, or (at your option) any
|
|
11 later version.
|
|
12
|
|
13 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
16 for more details.
|
|
17
|
|
18 You should have received a copy of the GNU General Public License
|
|
19 along with XEmacs; see the file COPYING. If not, write to
|
|
20 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
21 Boston, MA 02111-1307, USA. */
|
|
22
|
|
23 /* Synched up with: FSF 19.28, Mule 2.0. Substantially different from
|
|
24 FSF. */
|
|
25
|
|
26 /* Authorship:
|
|
27
|
|
28 FSF: Original version; a long time ago.
|
|
29 Mly: Significantly rewritten to use new 3-bit tags and
|
|
30 nicely abstracted object definitions, for 19.8.
|
|
31 JWZ: Improved code to keep track of purespace usage and
|
|
32 issue nice purespace and GC stats.
|
|
33 Ben Wing: Cleaned up frob-block lrecord code, added error-checking
|
|
34 and various changes for Mule, for 19.12.
|
|
35 Added bit vectors for 19.13.
|
|
36 Added lcrecord lists for 19.14.
|
255
|
37 slb: Lots of work on the purification and dump time code.
|
|
38 Synched Doug Lea malloc support from Emacs 20.2.
|
404
|
39 og: Killed the purespace. Portable dumper (moved to dumper.c)
|
0
|
40 */
|
|
41
|
|
42 #include <config.h>
|
|
43 #include "lisp.h"
|
|
44
|
404
|
45 #include "alloc.h"
|
0
|
46 #include "backtrace.h"
|
|
47 #include "buffer.h"
|
|
48 #include "bytecode.h"
|
70
|
49 #include "chartab.h"
|
0
|
50 #include "device.h"
|
|
51 #include "elhash.h"
|
|
52 #include "events.h"
|
|
53 #include "extents.h"
|
|
54 #include "frame.h"
|
|
55 #include "glyphs.h"
|
380
|
56 #include "opaque.h"
|
0
|
57 #include "redisplay.h"
|
|
58 #include "specifier.h"
|
272
|
59 #include "sysfile.h"
|
404
|
60 #include "sysdep.h"
|
0
|
61 #include "window.h"
|
398
|
62 #include "console-stream.h"
|
375
|
63
|
255
|
64 #ifdef DOUG_LEA_MALLOC
|
|
65 #include <malloc.h>
|
|
66 #endif
|
|
67
|
398
|
68 #ifdef PDUMP
|
404
|
69 #include "dumper.h"
|
398
|
70 #endif
|
|
71
|
272
|
72 EXFUN (Fgarbage_collect, 0);
|
|
73
|
255
|
74 #if 0 /* this is _way_ too slow to be part of the standard debug options */
|
|
75 #if defined(DEBUG_XEMACS) && defined(MULE)
|
|
76 #define VERIFY_STRING_CHARS_INTEGRITY
|
|
77 #endif
|
|
78 #endif
|
0
|
79
|
|
80 /* Define this to use malloc/free with no freelist for all datatypes,
|
|
81 the hope being that some debugging tools may help detect
|
|
82 freed memory references */
|
177
|
83 #ifdef USE_DEBUG_MALLOC /* Taking the above comment at face value -slb */
|
|
84 #include <dmalloc.h>
|
|
85 #define ALLOC_NO_POOLS
|
|
86 #endif
|
0
|
87
|
|
88 #ifdef DEBUG_XEMACS
|
380
|
89 static int debug_allocation;
|
|
90 static int debug_allocation_backtrace_length;
|
0
|
91 #endif
|
|
92
|
|
93 /* Number of bytes of consing done since the last gc */
|
|
94 EMACS_INT consing_since_gc;
|
|
95 #define INCREMENT_CONS_COUNTER_1(size) (consing_since_gc += (size))
|
|
96
|
|
97 #define debug_allocation_backtrace() \
|
|
98 do { \
|
|
99 if (debug_allocation_backtrace_length > 0) \
|
|
100 debug_short_backtrace (debug_allocation_backtrace_length); \
|
|
101 } while (0)
|
|
102
|
|
103 #ifdef DEBUG_XEMACS
|
|
104 #define INCREMENT_CONS_COUNTER(foosize, type) \
|
|
105 do { \
|
|
106 if (debug_allocation) \
|
|
107 { \
|
|
108 stderr_out ("allocating %s (size %ld)\n", type, (long)foosize); \
|
|
109 debug_allocation_backtrace (); \
|
|
110 } \
|
|
111 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
112 } while (0)
|
|
113 #define NOSEEUM_INCREMENT_CONS_COUNTER(foosize, type) \
|
|
114 do { \
|
|
115 if (debug_allocation > 1) \
|
|
116 { \
|
|
117 stderr_out ("allocating noseeum %s (size %ld)\n", type, (long)foosize); \
|
|
118 debug_allocation_backtrace (); \
|
|
119 } \
|
|
120 INCREMENT_CONS_COUNTER_1 (foosize); \
|
|
121 } while (0)
|
|
122 #else
|
|
123 #define INCREMENT_CONS_COUNTER(size, type) INCREMENT_CONS_COUNTER_1 (size)
|
|
124 #define NOSEEUM_INCREMENT_CONS_COUNTER(size, type) \
|
|
125 INCREMENT_CONS_COUNTER_1 (size)
|
|
126 #endif
|
|
127
|
380
|
128 #define DECREMENT_CONS_COUNTER(size) do { \
|
|
129 consing_since_gc -= (size); \
|
|
130 if (consing_since_gc < 0) \
|
|
131 consing_since_gc = 0; \
|
|
132 } while (0)
|
0
|
133
|
|
134 /* Number of bytes of consing since gc before another gc should be done. */
|
|
135 EMACS_INT gc_cons_threshold;
|
|
136
|
|
137 /* Nonzero during gc */
|
|
138 int gc_in_progress;
|
|
139
|
|
140 /* Number of times GC has happened at this level or below.
|
|
141 * Level 0 is most volatile, contrary to usual convention.
|
|
142 * (Of course, there's only one level at present) */
|
|
143 EMACS_INT gc_generation_number[1];
|
|
144
|
|
145 /* This is just for use by the printer, to allow things to print uniquely */
|
|
146 static int lrecord_uid_counter;
|
|
147
|
|
148 /* Nonzero when calling certain hooks or doing other things where
|
|
149 a GC would be bad */
|
|
150 int gc_currently_forbidden;
|
|
151
|
|
152 /* Hooks. */
|
|
153 Lisp_Object Vpre_gc_hook, Qpre_gc_hook;
|
|
154 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
|
|
155
|
|
156 /* "Garbage collecting" */
|
|
157 Lisp_Object Vgc_message;
|
|
158 Lisp_Object Vgc_pointer_glyph;
|
398
|
159 static const char gc_default_message[] = "Garbage collecting";
|
0
|
160 Lisp_Object Qgarbage_collecting;
|
|
161
|
|
162 #ifndef VIRT_ADDR_VARIES
|
|
163 extern
|
|
164 #endif /* VIRT_ADDR_VARIES */
|
|
165 EMACS_INT malloc_sbrk_used;
|
|
166
|
|
167 #ifndef VIRT_ADDR_VARIES
|
|
168 extern
|
|
169 #endif /* VIRT_ADDR_VARIES */
|
|
170 EMACS_INT malloc_sbrk_unused;
|
|
171
|
398
|
172 /* Non-zero means we're in the process of doing the dump */
|
0
|
173 int purify_flag;
|
|
174
|
|
175 #ifdef ERROR_CHECK_TYPECHECK
|
|
176
|
|
177 Error_behavior ERROR_ME, ERROR_ME_NOT, ERROR_ME_WARN;
|
|
178
|
|
179 #endif
|
|
180
|
|
181 int
|
398
|
182 c_readonly (Lisp_Object obj)
|
0
|
183 {
|
398
|
184 return POINTER_TYPE_P (XTYPE (obj)) && C_READONLY (obj);
|
0
|
185 }
|
|
186
|
398
|
187 int
|
|
188 lisp_readonly (Lisp_Object obj)
|
0
|
189 {
|
398
|
190 return POINTER_TYPE_P (XTYPE (obj)) && LISP_READONLY (obj);
|
183
|
191 }
|
0
|
192
|
|
193
|
|
194 /* Maximum amount of C stack to save when a GC happens. */
|
|
195
|
|
196 #ifndef MAX_SAVE_STACK
|
380
|
197 #define MAX_SAVE_STACK 0 /* 16000 */
|
0
|
198 #endif
|
|
199
|
|
200 /* Non-zero means ignore malloc warnings. Set during initialization. */
|
|
201 int ignore_malloc_warnings;
|
|
202
|
|
203
|
|
204 static void *breathing_space;
|
|
205
|
|
206 void
|
|
207 release_breathing_space (void)
|
|
208 {
|
183
|
209 if (breathing_space)
|
0
|
210 {
|
|
211 void *tmp = breathing_space;
|
|
212 breathing_space = 0;
|
|
213 xfree (tmp);
|
|
214 }
|
|
215 }
|
|
216
|
|
217 /* malloc calls this if it finds we are near exhausting storage */
|
|
218 void
|
398
|
219 malloc_warning (const char *str)
|
0
|
220 {
|
|
221 if (ignore_malloc_warnings)
|
|
222 return;
|
|
223
|
|
224 warn_when_safe
|
|
225 (Qmemory, Qcritical,
|
|
226 "%s\n"
|
|
227 "Killing some buffers may delay running out of memory.\n"
|
|
228 "However, certainly by the time you receive the 95%% warning,\n"
|
|
229 "you should clean up, kill this Emacs, and start a new one.",
|
|
230 str);
|
|
231 }
|
|
232
|
|
233 /* Called if malloc returns zero */
|
|
234 DOESNT_RETURN
|
|
235 memory_full (void)
|
|
236 {
|
|
237 /* Force a GC next time eval is called.
|
|
238 It's better to loop garbage-collecting (we might reclaim enough
|
|
239 to win) than to loop beeping and barfing "Memory exhausted"
|
|
240 */
|
|
241 consing_since_gc = gc_cons_threshold + 1;
|
|
242 release_breathing_space ();
|
|
243
|
278
|
244 /* Flush some histories which might conceivably contain garbalogical
|
|
245 inhibitors. */
|
0
|
246 if (!NILP (Fboundp (Qvalues)))
|
|
247 Fset (Qvalues, Qnil);
|
|
248 Vcommand_history = Qnil;
|
|
249
|
|
250 error ("Memory exhausted");
|
|
251 }
|
|
252
|
|
253 /* like malloc and realloc but check for no memory left, and block input. */
|
|
254
|
177
|
255 #undef xmalloc
|
0
|
256 void *
|
185
|
257 xmalloc (size_t size)
|
0
|
258 {
|
386
|
259 void *val = malloc (size);
|
0
|
260
|
|
261 if (!val && (size != 0)) memory_full ();
|
|
262 return val;
|
|
263 }
|
|
264
|
392
|
265 #undef xcalloc
|
380
|
266 static void *
|
|
267 xcalloc (size_t nelem, size_t elsize)
|
|
268 {
|
386
|
269 void *val = calloc (nelem, elsize);
|
380
|
270
|
|
271 if (!val && (nelem != 0)) memory_full ();
|
|
272 return val;
|
|
273 }
|
|
274
|
0
|
275 void *
|
185
|
276 xmalloc_and_zero (size_t size)
|
0
|
277 {
|
380
|
278 return xcalloc (size, sizeof (char));
|
0
|
279 }
|
|
280
|
177
|
281 #undef xrealloc
|
0
|
282 void *
|
185
|
283 xrealloc (void *block, size_t size)
|
0
|
284 {
|
|
285 /* We must call malloc explicitly when BLOCK is 0, since some
|
|
286 reallocs don't do this. */
|
386
|
287 void *val = block ? realloc (block, size) : malloc (size);
|
0
|
288
|
|
289 if (!val && (size != 0)) memory_full ();
|
|
290 return val;
|
|
291 }
|
|
292
|
|
293 void
|
|
294 #ifdef ERROR_CHECK_MALLOC
|
|
295 xfree_1 (void *block)
|
|
296 #else
|
|
297 xfree (void *block)
|
|
298 #endif
|
|
299 {
|
|
300 #ifdef ERROR_CHECK_MALLOC
|
|
301 /* Unbelievably, calling free() on 0xDEADBEEF doesn't cause an
|
|
302 error until much later on for many system mallocs, such as
|
|
303 the one that comes with Solaris 2.3. FMH!! */
|
|
304 assert (block != (void *) 0xDEADBEEF);
|
|
305 assert (block);
|
183
|
306 #endif /* ERROR_CHECK_MALLOC */
|
0
|
307 free (block);
|
|
308 }
|
|
309
|
272
|
310 #ifdef ERROR_CHECK_GC
|
|
311
|
|
312 #if SIZEOF_INT == 4
|
|
313 typedef unsigned int four_byte_t;
|
|
314 #elif SIZEOF_LONG == 4
|
|
315 typedef unsigned long four_byte_t;
|
|
316 #elif SIZEOF_SHORT == 4
|
|
317 typedef unsigned short four_byte_t;
|
0
|
318 #else
|
|
319 What kind of strange-ass system are we running on?
|
|
320 #endif
|
|
321
|
|
322 static void
|
272
|
323 deadbeef_memory (void *ptr, size_t size)
|
0
|
324 {
|
272
|
325 four_byte_t *ptr4 = (four_byte_t *) ptr;
|
|
326 size_t beefs = size >> 2;
|
|
327
|
|
328 /* In practice, size will always be a multiple of four. */
|
|
329 while (beefs--)
|
|
330 (*ptr4++) = 0xDEADBEEF;
|
0
|
331 }
|
|
332
|
183
|
333 #else /* !ERROR_CHECK_GC */
|
|
334
|
0
|
335
|
|
336 #define deadbeef_memory(ptr, size)
|
|
337
|
183
|
338 #endif /* !ERROR_CHECK_GC */
|
0
|
339
|
177
|
340 #undef xstrdup
|
0
|
341 char *
|
398
|
342 xstrdup (const char *str)
|
0
|
343 {
|
|
344 int len = strlen (str) + 1; /* for stupid terminating 0 */
|
|
345
|
185
|
346 void *val = xmalloc (len);
|
0
|
347 if (val == 0) return 0;
|
398
|
348 return (char *) memcpy (val, str, len);
|
0
|
349 }
|
|
350
|
|
351 #ifdef NEED_STRDUP
|
|
352 char *
|
398
|
353 strdup (const char *s)
|
0
|
354 {
|
|
355 return xstrdup (s);
|
|
356 }
|
|
357 #endif /* NEED_STRDUP */
|
|
358
|
|
359
|
|
360 static void *
|
272
|
361 allocate_lisp_storage (size_t size)
|
0
|
362 {
|
398
|
363 return xmalloc (size);
|
0
|
364 }
|
|
365
|
|
366
|
398
|
367 /* lcrecords are chained together through their "next" field.
|
|
368 After doing the mark phase, GC will walk this linked list
|
|
369 and free any lcrecord which hasn't been marked. */
|
0
|
370 static struct lcrecord_header *all_lcrecords;
|
|
371
|
|
372 void *
|
398
|
373 alloc_lcrecord (size_t size, const struct lrecord_implementation *implementation)
|
0
|
374 {
|
|
375 struct lcrecord_header *lcheader;
|
|
376
|
400
|
377 type_checking_assert
|
|
378 ((implementation->static_size == 0 ?
|
|
379 implementation->size_in_bytes_method != NULL :
|
|
380 implementation->static_size == size)
|
|
381 &&
|
|
382 (! implementation->basic_p)
|
|
383 &&
|
|
384 (! (implementation->hash == NULL && implementation->equal != NULL)));
|
0
|
385
|
185
|
386 lcheader = (struct lcrecord_header *) allocate_lisp_storage (size);
|
404
|
387 set_lheader_implementation (&lcheader->lheader, implementation);
|
0
|
388 lcheader->next = all_lcrecords;
|
|
389 #if 1 /* mly prefers to see small ID numbers */
|
|
390 lcheader->uid = lrecord_uid_counter++;
|
|
391 #else /* jwz prefers to see real addrs */
|
|
392 lcheader->uid = (int) &lcheader;
|
|
393 #endif
|
|
394 lcheader->free = 0;
|
|
395 all_lcrecords = lcheader;
|
|
396 INCREMENT_CONS_COUNTER (size, implementation->name);
|
173
|
397 return lcheader;
|
0
|
398 }
|
|
399
|
|
400 #if 0 /* Presently unused */
|
|
401 /* Very, very poor man's EGC?
|
|
402 * This may be slow and thrash pages all over the place.
|
|
403 * Only call it if you really feel you must (and if the
|
|
404 * lrecord was fairly recently allocated).
|
|
405 * Otherwise, just let the GC do its job -- that's what it's there for
|
|
406 */
|
|
407 void
|
|
408 free_lcrecord (struct lcrecord_header *lcrecord)
|
|
409 {
|
|
410 if (all_lcrecords == lcrecord)
|
|
411 {
|
|
412 all_lcrecords = lcrecord->next;
|
|
413 }
|
|
414 else
|
|
415 {
|
|
416 struct lrecord_header *header = all_lcrecords;
|
|
417 for (;;)
|
|
418 {
|
|
419 struct lrecord_header *next = header->next;
|
|
420 if (next == lcrecord)
|
|
421 {
|
|
422 header->next = lrecord->next;
|
|
423 break;
|
|
424 }
|
|
425 else if (next == 0)
|
|
426 abort ();
|
|
427 else
|
|
428 header = next;
|
|
429 }
|
|
430 }
|
|
431 if (lrecord->implementation->finalizer)
|
380
|
432 lrecord->implementation->finalizer (lrecord, 0);
|
0
|
433 xfree (lrecord);
|
|
434 return;
|
|
435 }
|
|
436 #endif /* Unused */
|
|
437
|
|
438
|
|
439 static void
|
|
440 disksave_object_finalization_1 (void)
|
|
441 {
|
|
442 struct lcrecord_header *header;
|
|
443
|
|
444 for (header = all_lcrecords; header; header = header->next)
|
|
445 {
|
400
|
446 if (LHEADER_IMPLEMENTATION (&header->lheader)->finalizer &&
|
211
|
447 !header->free)
|
400
|
448 LHEADER_IMPLEMENTATION (&header->lheader)->finalizer (header, 1);
|
0
|
449 }
|
|
450 }
|
183
|
451
|
0
|
452
|
380
|
453 /************************************************************************/
|
|
454 /* Debugger support */
|
|
455 /************************************************************************/
|
396
|
456 /* Give gdb/dbx enough information to decode Lisp Objects. We make
|
|
457 sure certain symbols are always defined, so gdb doesn't complain
|
398
|
458 about expressions in src/.gdbinit. See src/.gdbinit or src/.dbxrc
|
|
459 to see how this is used. */
|
|
460
|
396
|
461 EMACS_UINT dbg_valmask = ((1UL << VALBITS) - 1) << GCBITS;
|
|
462 EMACS_UINT dbg_typemask = (1UL << GCTYPEBITS) - 1;
|
380
|
463
|
|
464 #ifdef USE_UNION_TYPE
|
396
|
465 unsigned char dbg_USE_UNION_TYPE = 1;
|
380
|
466 #else
|
396
|
467 unsigned char dbg_USE_UNION_TYPE = 0;
|
380
|
468 #endif
|
|
469
|
396
|
470 unsigned char dbg_valbits = VALBITS;
|
|
471 unsigned char dbg_gctypebits = GCTYPEBITS;
|
|
472
|
|
473 /* Macros turned into functions for ease of debugging.
|
380
|
474 Debuggers don't know about macros! */
|
|
475 int dbg_eq (Lisp_Object obj1, Lisp_Object obj2);
|
|
476 int
|
|
477 dbg_eq (Lisp_Object obj1, Lisp_Object obj2)
|
|
478 {
|
|
479 return EQ (obj1, obj2);
|
|
480 }
|
|
481
|
272
|
482
|
380
|
483 /************************************************************************/
|
|
484 /* Fixed-size type macros */
|
|
485 /************************************************************************/
|
0
|
486
|
|
487 /* For fixed-size types that are commonly used, we malloc() large blocks
|
|
488 of memory at a time and subdivide them into chunks of the correct
|
|
489 size for an object of that type. This is more efficient than
|
|
490 malloc()ing each object separately because we save on malloc() time
|
|
491 and overhead due to the fewer number of malloc()ed blocks, and
|
|
492 also because we don't need any extra pointers within each object
|
|
493 to keep them threaded together for GC purposes. For less common
|
|
494 (and frequently large-size) types, we use lcrecords, which are
|
|
495 malloc()ed individually and chained together through a pointer
|
|
496 in the lcrecord header. lcrecords do not need to be fixed-size
|
|
497 (i.e. two objects of the same type need not have the same size;
|
|
498 however, the size of a particular object cannot vary dynamically).
|
|
499 It is also much easier to create a new lcrecord type because no
|
|
500 additional code needs to be added to alloc.c. Finally, lcrecords
|
|
501 may be more efficient when there are only a small number of them.
|
|
502
|
|
503 The types that are stored in these large blocks (or "frob blocks")
|
|
504 are cons, float, compiled-function, symbol, marker, extent, event,
|
|
505 and string.
|
|
506
|
|
507 Note that strings are special in that they are actually stored in
|
|
508 two parts: a structure containing information about the string, and
|
|
509 the actual data associated with the string. The former structure
|
|
510 (a struct Lisp_String) is a fixed-size structure and is managed the
|
|
511 same way as all the other such types. This structure contains a
|
|
512 pointer to the actual string data, which is stored in structures of
|
|
513 type struct string_chars_block. Each string_chars_block consists
|
|
514 of a pointer to a struct Lisp_String, followed by the data for that
|
398
|
515 string, followed by another pointer to a Lisp_String, followed by
|
|
516 the data for that string, etc. At GC time, the data in these
|
|
517 blocks is compacted by searching sequentially through all the
|
0
|
518 blocks and compressing out any holes created by unmarked strings.
|
|
519 Strings that are more than a certain size (bigger than the size of
|
|
520 a string_chars_block, although something like half as big might
|
|
521 make more sense) are malloc()ed separately and not stored in
|
|
522 string_chars_blocks. Furthermore, no one string stretches across
|
|
523 two string_chars_blocks.
|
|
524
|
|
525 Vectors are each malloc()ed separately, similar to lcrecords.
|
183
|
526
|
0
|
527 In the following discussion, we use conses, but it applies equally
|
|
528 well to the other fixed-size types.
|
|
529
|
|
530 We store cons cells inside of cons_blocks, allocating a new
|
|
531 cons_block with malloc() whenever necessary. Cons cells reclaimed
|
|
532 by GC are put on a free list to be reallocated before allocating
|
|
533 any new cons cells from the latest cons_block. Each cons_block is
|
|
534 just under 2^n - MALLOC_OVERHEAD bytes long, since malloc (at least
|
|
535 the versions in malloc.c and gmalloc.c) really allocates in units
|
|
536 of powers of two and uses 4 bytes for its own overhead.
|
|
537
|
|
538 What GC actually does is to search through all the cons_blocks,
|
|
539 from the most recently allocated to the oldest, and put all
|
|
540 cons cells that are not marked (whether or not they're already
|
|
541 free) on a cons_free_list. The cons_free_list is a stack, and
|
|
542 so the cons cells in the oldest-allocated cons_block end up
|
|
543 at the head of the stack and are the first to be reallocated.
|
|
544 If any cons_block is entirely free, it is freed with free()
|
|
545 and its cons cells removed from the cons_free_list. Because
|
|
546 the cons_free_list ends up basically in memory order, we have
|
|
547 a high locality of reference (assuming a reasonable turnover
|
|
548 of allocating and freeing) and have a reasonable probability
|
|
549 of entirely freeing up cons_blocks that have been more recently
|
|
550 allocated. This stage is called the "sweep stage" of GC, and
|
|
551 is executed after the "mark stage", which involves starting
|
|
552 from all places that are known to point to in-use Lisp objects
|
|
553 (e.g. the obarray, where are all symbols are stored; the
|
|
554 current catches and condition-cases; the backtrace list of
|
|
555 currently executing functions; the gcpro list; etc.) and
|
|
556 recursively marking all objects that are accessible.
|
|
557
|
|
558 At the beginning of the sweep stage, the conses in the cons
|
|
559 blocks are in one of three states: in use and marked, in use
|
|
560 but not marked, and not in use (already freed). Any conses
|
|
561 that are marked have been marked in the mark stage just
|
|
562 executed, because as part of the sweep stage we unmark any
|
|
563 marked objects. The way we tell whether or not a cons cell
|
|
564 is in use is through the FREE_STRUCT_P macro. This basically
|
|
565 looks at the first 4 bytes (or however many bytes a pointer
|
|
566 fits in) to see if all the bits in those bytes are 1. The
|
|
567 resulting value (0xFFFFFFFF) is not a valid pointer and is
|
|
568 not a valid Lisp_Object. All current fixed-size types have
|
|
569 a pointer or Lisp_Object as their first element with the
|
|
570 exception of strings; they have a size value, which can
|
|
571 never be less than zero, and so 0xFFFFFFFF is invalid for
|
|
572 strings as well. Now assuming that a cons cell is in use,
|
|
573 the way we tell whether or not it is marked is to look at
|
|
574 the mark bit of its car (each Lisp_Object has one bit
|
|
575 reserved as a mark bit, in case it's needed). Note that
|
|
576 different types of objects use different fields to indicate
|
|
577 whether the object is marked, but the principle is the same.
|
|
578
|
|
579 Conses on the free_cons_list are threaded through a pointer
|
|
580 stored in the bytes directly after the bytes that are set
|
|
581 to 0xFFFFFFFF (we cannot overwrite these because the cons
|
|
582 is still in a cons_block and needs to remain marked as
|
|
583 not in use for the next time that GC happens). This
|
|
584 implies that all fixed-size types must be at least big
|
|
585 enough to store two pointers, which is indeed the case
|
|
586 for all current fixed-size types.
|
|
587
|
|
588 Some types of objects need additional "finalization" done
|
|
589 when an object is converted from in use to not in use;
|
|
590 this is the purpose of the ADDITIONAL_FREE_type macro.
|
|
591 For example, markers need to be removed from the chain
|
|
592 of markers that is kept in each buffer. This is because
|
|
593 markers in a buffer automatically disappear if the marker
|
|
594 is no longer referenced anywhere (the same does not
|
|
595 apply to extents, however).
|
|
596
|
|
597 WARNING: Things are in an extremely bizarre state when
|
|
598 the ADDITIONAL_FREE_type macros are called, so beware!
|
|
599
|
|
600 When ERROR_CHECK_GC is defined, we do things differently
|
|
601 so as to maximize our chances of catching places where
|
|
602 there is insufficient GCPROing. The thing we want to
|
|
603 avoid is having an object that we're using but didn't
|
|
604 GCPRO get freed by GC and then reallocated while we're
|
|
605 in the process of using it -- this will result in something
|
|
606 seemingly unrelated getting trashed, and is extremely
|
|
607 difficult to track down. If the object gets freed but
|
|
608 not reallocated, we can usually catch this because we
|
|
609 set all bytes of a freed object to 0xDEADBEEF. (The
|
|
610 first four bytes, however, are 0xFFFFFFFF, and the next
|
|
611 four are a pointer used to chain freed objects together;
|
|
612 we play some tricks with this pointer to make it more
|
|
613 bogus, so crashes are more likely to occur right away.)
|
|
614
|
|
615 We want freed objects to stay free as long as possible,
|
|
616 so instead of doing what we do above, we maintain the
|
|
617 free objects in a first-in first-out queue. We also
|
|
618 don't recompute the free list each GC, unlike above;
|
|
619 this ensures that the queue ordering is preserved.
|
|
620 [This means that we are likely to have worse locality
|
|
621 of reference, and that we can never free a frob block
|
|
622 once it's allocated. (Even if we know that all cells
|
|
623 in it are free, there's no easy way to remove all those
|
|
624 cells from the free list because the objects on the
|
|
625 free list are unlikely to be in memory order.)]
|
|
626 Furthermore, we never take objects off the free list
|
|
627 unless there's a large number (usually 1000, but
|
|
628 varies depending on type) of them already on the list.
|
|
629 This way, we ensure that an object that gets freed will
|
|
630 remain free for the next 1000 (or whatever) times that
|
398
|
631 an object of that type is allocated. */
|
0
|
632
|
|
633 #ifndef MALLOC_OVERHEAD
|
|
634 #ifdef GNU_MALLOC
|
|
635 #define MALLOC_OVERHEAD 0
|
|
636 #elif defined (rcheck)
|
|
637 #define MALLOC_OVERHEAD 20
|
|
638 #else
|
|
639 #define MALLOC_OVERHEAD 8
|
|
640 #endif
|
183
|
641 #endif /* MALLOC_OVERHEAD */
|
0
|
642
|
255
|
643 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC)
|
|
644 /* If we released our reserve (due to running out of memory),
|
|
645 and we have a fair amount free once again,
|
|
646 try to set aside another reserve in case we run out once more.
|
|
647
|
|
648 This is called when a relocatable block is freed in ralloc.c. */
|
272
|
649 void refill_memory_reserve (void);
|
255
|
650 void
|
404
|
651 refill_memory_reserve (void)
|
255
|
652 {
|
|
653 if (breathing_space == 0)
|
|
654 breathing_space = (char *) malloc (4096 - MALLOC_OVERHEAD);
|
|
655 }
|
|
656 #endif
|
|
657
|
0
|
658 #ifdef ALLOC_NO_POOLS
|
|
659 # define TYPE_ALLOC_SIZE(type, structtype) 1
|
|
660 #else
|
|
661 # define TYPE_ALLOC_SIZE(type, structtype) \
|
|
662 ((2048 - MALLOC_OVERHEAD - sizeof (struct type##_block *)) \
|
|
663 / sizeof (structtype))
|
183
|
664 #endif /* ALLOC_NO_POOLS */
|
0
|
665
|
380
|
666 #define DECLARE_FIXED_TYPE_ALLOC(type, structtype) \
|
|
667 \
|
|
668 struct type##_block \
|
|
669 { \
|
|
670 struct type##_block *prev; \
|
|
671 structtype block[TYPE_ALLOC_SIZE (type, structtype)]; \
|
|
672 }; \
|
|
673 \
|
|
674 static struct type##_block *current_##type##_block; \
|
|
675 static int current_##type##_block_index; \
|
|
676 \
|
|
677 static structtype *type##_free_list; \
|
|
678 static structtype *type##_free_list_tail; \
|
|
679 \
|
|
680 static void \
|
|
681 init_##type##_alloc (void) \
|
|
682 { \
|
|
683 current_##type##_block = 0; \
|
|
684 current_##type##_block_index = \
|
|
685 countof (current_##type##_block->block); \
|
|
686 type##_free_list = 0; \
|
|
687 type##_free_list_tail = 0; \
|
|
688 } \
|
|
689 \
|
|
690 static int gc_count_num_##type##_in_use; \
|
|
691 static int gc_count_num_##type##_freelist
|
|
692
|
|
693 #define ALLOCATE_FIXED_TYPE_FROM_BLOCK(type, result) do { \
|
|
694 if (current_##type##_block_index \
|
|
695 == countof (current_##type##_block->block)) \
|
0
|
696 { \
|
380
|
697 struct type##_block *AFTFB_new = (struct type##_block *) \
|
|
698 allocate_lisp_storage (sizeof (struct type##_block)); \
|
|
699 AFTFB_new->prev = current_##type##_block; \
|
|
700 current_##type##_block = AFTFB_new; \
|
0
|
701 current_##type##_block_index = 0; \
|
|
702 } \
|
380
|
703 (result) = \
|
|
704 &(current_##type##_block->block[current_##type##_block_index++]); \
|
|
705 } while (0)
|
0
|
706
|
|
707 /* Allocate an instance of a type that is stored in blocks.
|
|
708 TYPE is the "name" of the type, STRUCTTYPE is the corresponding
|
|
709 structure type. */
|
|
710
|
|
711 #ifdef ERROR_CHECK_GC
|
|
712
|
|
713 /* Note: if you get crashes in this function, suspect incorrect calls
|
|
714 to free_cons() and friends. This happened once because the cons
|
|
715 cell was not GC-protected and was getting collected before
|
|
716 free_cons() was called. */
|
|
717
|
|
718 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
719 do \
|
|
720 { \
|
|
721 if (gc_count_num_##type##_freelist > \
|
|
722 MINIMUM_ALLOWED_FIXED_TYPE_CELLS_##type) \
|
|
723 { \
|
|
724 result = type##_free_list; \
|
|
725 /* Before actually using the chain pointer, we complement all its \
|
|
726 bits; see FREE_FIXED_TYPE(). */ \
|
|
727 type##_free_list = \
|
|
728 (structtype *) ~(unsigned long) \
|
|
729 (* (structtype **) ((char *) result + sizeof (void *))); \
|
|
730 gc_count_num_##type##_freelist--; \
|
|
731 } \
|
|
732 else \
|
|
733 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
734 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
735 } while (0)
|
|
736
|
183
|
737 #else /* !ERROR_CHECK_GC */
|
0
|
738
|
|
739 #define ALLOCATE_FIXED_TYPE_1(type, structtype, result) \
|
|
740 do \
|
|
741 { \
|
|
742 if (type##_free_list) \
|
|
743 { \
|
|
744 result = type##_free_list; \
|
|
745 type##_free_list = \
|
|
746 * (structtype **) ((char *) result + sizeof (void *)); \
|
|
747 } \
|
|
748 else \
|
|
749 ALLOCATE_FIXED_TYPE_FROM_BLOCK (type, result); \
|
|
750 MARK_STRUCT_AS_NOT_FREE (result); \
|
|
751 } while (0)
|
|
752
|
183
|
753 #endif /* !ERROR_CHECK_GC */
|
0
|
754
|
|
755 #define ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
756 do \
|
|
757 { \
|
|
758 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
759 INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
760 } while (0)
|
|
761
|
|
762 #define NOSEEUM_ALLOCATE_FIXED_TYPE(type, structtype, result) \
|
|
763 do \
|
|
764 { \
|
|
765 ALLOCATE_FIXED_TYPE_1 (type, structtype, result); \
|
|
766 NOSEEUM_INCREMENT_CONS_COUNTER (sizeof (structtype), #type); \
|
|
767 } while (0)
|
|
768
|
|
769 /* INVALID_POINTER_VALUE should be a value that is invalid as a pointer
|
|
770 to a Lisp object and invalid as an actual Lisp_Object value. We have
|
|
771 to make sure that this value cannot be an integer in Lisp_Object form.
|
|
772 0xFFFFFFFF could be so on a 64-bit system, so we extend it to 64 bits.
|
|
773 On a 32-bit system, the type bits will be non-zero, making the value
|
|
774 be a pointer, and the pointer will be misaligned.
|
|
775
|
|
776 Even if Emacs is run on some weirdo system that allows and allocates
|
|
777 byte-aligned pointers, this pointer is at the very top of the address
|
|
778 space and so it's almost inconceivable that it could ever be valid. */
|
183
|
779
|
371
|
780 #if INTBITS == 32
|
|
781 # define INVALID_POINTER_VALUE 0xFFFFFFFF
|
|
782 #elif INTBITS == 48
|
|
783 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFF
|
|
784 #elif INTBITS == 64
|
|
785 # define INVALID_POINTER_VALUE 0xFFFFFFFFFFFFFFFF
|
0
|
786 #else
|
|
787 You have some weird system and need to supply a reasonable value here.
|
|
788 #endif
|
|
789
|
404
|
790 /* The construct (* (void **) (ptr)) would cause aliasing problems
|
|
791 with modern optimizing compilers like `gcc -O3 -fstrict-aliasing'.
|
|
792 But `char *' can legally alias any pointer. Hence this union trick. */
|
|
793 typedef union { char c; void *p; } *aliasing_voidpp;
|
|
794 #define ALIASING_VOIDPP_DEREFERENCE(ptr) \
|
|
795 (((aliasing_voidpp) (ptr))->p)
|
0
|
796 #define FREE_STRUCT_P(ptr) \
|
404
|
797 (ALIASING_VOIDPP_DEREFERENCE (ptr) == (void *) INVALID_POINTER_VALUE)
|
371
|
798 #define MARK_STRUCT_AS_FREE(ptr) \
|
404
|
799 (ALIASING_VOIDPP_DEREFERENCE (ptr) = (void *) INVALID_POINTER_VALUE)
|
371
|
800 #define MARK_STRUCT_AS_NOT_FREE(ptr) \
|
404
|
801 (ALIASING_VOIDPP_DEREFERENCE (ptr) = 0)
|
0
|
802
|
|
803 #ifdef ERROR_CHECK_GC
|
|
804
|
|
805 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
|
806 do { if (type##_free_list_tail) \
|
|
807 { \
|
|
808 /* When we store the chain pointer, we complement all \
|
|
809 its bits; this should significantly increase its \
|
|
810 bogosity in case someone tries to use the value, and \
|
|
811 should make us dump faster if someone stores something \
|
|
812 over the pointer because when it gets un-complemented in \
|
|
813 ALLOCATED_FIXED_TYPE(), the resulting pointer will be \
|
|
814 extremely bogus. */ \
|
|
815 * (structtype **) \
|
|
816 ((char *) type##_free_list_tail + sizeof (void *)) = \
|
|
817 (structtype *) ~(unsigned long) ptr; \
|
|
818 } \
|
|
819 else \
|
|
820 type##_free_list = ptr; \
|
|
821 type##_free_list_tail = ptr; \
|
|
822 } while (0)
|
|
823
|
183
|
824 #else /* !ERROR_CHECK_GC */
|
0
|
825
|
|
826 #define PUT_FIXED_TYPE_ON_FREE_LIST(type, structtype, ptr) \
|
380
|
827 do { * (structtype **) ((char *) (ptr) + sizeof (void *)) = \
|
0
|
828 type##_free_list; \
|
380
|
829 type##_free_list = (ptr); \
|
0
|
830 } while (0)
|
|
831
|
183
|
832 #endif /* !ERROR_CHECK_GC */
|
0
|
833
|
|
834 /* TYPE and STRUCTTYPE are the same as in ALLOCATE_FIXED_TYPE(). */
|
|
835
|
380
|
836 #define FREE_FIXED_TYPE(type, structtype, ptr) do { \
|
|
837 structtype *FFT_ptr = (ptr); \
|
|
838 ADDITIONAL_FREE_##type (FFT_ptr); \
|
|
839 deadbeef_memory (FFT_ptr, sizeof (structtype)); \
|
|
840 PUT_FIXED_TYPE_ON_FREE_LIST (type, structtype, FFT_ptr); \
|
|
841 MARK_STRUCT_AS_FREE (FFT_ptr); \
|
|
842 } while (0)
|
0
|
843
|
|
844 /* Like FREE_FIXED_TYPE() but used when we are explicitly
|
|
845 freeing a structure through free_cons(), free_marker(), etc.
|
|
846 rather than through the normal process of sweeping.
|
|
847 We attempt to undo the changes made to the allocation counters
|
|
848 as a result of this structure being allocated. This is not
|
|
849 completely necessary but helps keep things saner: e.g. this way,
|
|
850 repeatedly allocating and freeing a cons will not result in
|
|
851 the consing-since-gc counter advancing, which would cause a GC
|
|
852 and somewhat defeat the purpose of explicitly freeing. */
|
|
853
|
|
854 #define FREE_FIXED_TYPE_WHEN_NOT_IN_GC(type, structtype, ptr) \
|
|
855 do { FREE_FIXED_TYPE (type, structtype, ptr); \
|
|
856 DECREMENT_CONS_COUNTER (sizeof (structtype)); \
|
|
857 gc_count_num_##type##_freelist++; \
|
|
858 } while (0)
|
183
|
859
|
0
|
860
|
|
861
|
380
|
862 /************************************************************************/
|
|
863 /* Cons allocation */
|
|
864 /************************************************************************/
|
0
|
865
|
398
|
866 DECLARE_FIXED_TYPE_ALLOC (cons, Lisp_Cons);
|
0
|
867 /* conses are used and freed so often that we set this really high */
|
|
868 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 20000 */
|
|
869 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_cons 2000
|
|
870
|
207
|
871 static Lisp_Object
|
398
|
872 mark_cons (Lisp_Object obj)
|
207
|
873 {
|
398
|
874 if (NILP (XCDR (obj)))
|
207
|
875 return XCAR (obj);
|
272
|
876
|
398
|
877 mark_object (XCAR (obj));
|
207
|
878 return XCDR (obj);
|
|
879 }
|
|
880
|
|
881 static int
|
|
882 cons_equal (Lisp_Object ob1, Lisp_Object ob2, int depth)
|
|
883 {
|
398
|
884 depth++;
|
|
885 while (internal_equal (XCAR (ob1), XCAR (ob2), depth))
|
207
|
886 {
|
272
|
887 ob1 = XCDR (ob1);
|
|
888 ob2 = XCDR (ob2);
|
207
|
889 if (! CONSP (ob1) || ! CONSP (ob2))
|
398
|
890 return internal_equal (ob1, ob2, depth);
|
207
|
891 }
|
|
892 return 0;
|
|
893 }
|
243
|
894
|
398
|
895 static const struct lrecord_description cons_description[] = {
|
|
896 { XD_LISP_OBJECT, offsetof (Lisp_Cons, car) },
|
|
897 { XD_LISP_OBJECT, offsetof (Lisp_Cons, cdr) },
|
|
898 { XD_END }
|
|
899 };
|
|
900
|
243
|
901 DEFINE_BASIC_LRECORD_IMPLEMENTATION ("cons", cons,
|
|
902 mark_cons, print_cons, 0,
|
|
903 cons_equal,
|
|
904 /*
|
|
905 * No `hash' method needed.
|
|
906 * internal_hash knows how to
|
|
907 * handle conses.
|
|
908 */
|
|
909 0,
|
398
|
910 cons_description,
|
|
911 Lisp_Cons);
|
207
|
912
|
20
|
913 DEFUN ("cons", Fcons, 2, 2, 0, /*
|
0
|
914 Create a new cons, give it CAR and CDR as components, and return it.
|
20
|
915 */
|
|
916 (car, cdr))
|
0
|
917 {
|
|
918 /* This cannot GC. */
|
272
|
919 Lisp_Object val;
|
398
|
920 Lisp_Cons *c;
|
|
921
|
|
922 ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c);
|
404
|
923 set_lheader_implementation (&c->lheader, &lrecord_cons);
|
0
|
924 XSETCONS (val, c);
|
207
|
925 c->car = car;
|
|
926 c->cdr = cdr;
|
0
|
927 return val;
|
|
928 }
|
|
929
|
|
930 /* This is identical to Fcons() but it used for conses that we're
|
|
931 going to free later, and is useful when trying to track down
|
|
932 "real" consing. */
|
|
933 Lisp_Object
|
|
934 noseeum_cons (Lisp_Object car, Lisp_Object cdr)
|
|
935 {
|
272
|
936 Lisp_Object val;
|
398
|
937 Lisp_Cons *c;
|
|
938
|
|
939 NOSEEUM_ALLOCATE_FIXED_TYPE (cons, Lisp_Cons, c);
|
404
|
940 set_lheader_implementation (&c->lheader, &lrecord_cons);
|
0
|
941 XSETCONS (val, c);
|
|
942 XCAR (val) = car;
|
|
943 XCDR (val) = cdr;
|
|
944 return val;
|
|
945 }
|
|
946
|
20
|
947 DEFUN ("list", Flist, 0, MANY, 0, /*
|
0
|
948 Return a newly created list with specified arguments as elements.
|
|
949 Any number of arguments, even zero arguments, are allowed.
|
20
|
950 */
|
|
951 (int nargs, Lisp_Object *args))
|
0
|
952 {
|
165
|
953 Lisp_Object val = Qnil;
|
|
954 Lisp_Object *argp = args + nargs;
|
|
955
|
380
|
956 while (argp > args)
|
165
|
957 val = Fcons (*--argp, val);
|
0
|
958 return val;
|
|
959 }
|
|
960
|
|
961 Lisp_Object
|
|
962 list1 (Lisp_Object obj0)
|
|
963 {
|
|
964 /* This cannot GC. */
|
173
|
965 return Fcons (obj0, Qnil);
|
0
|
966 }
|
|
967
|
|
968 Lisp_Object
|
|
969 list2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
970 {
|
|
971 /* This cannot GC. */
|
272
|
972 return Fcons (obj0, Fcons (obj1, Qnil));
|
0
|
973 }
|
|
974
|
|
975 Lisp_Object
|
|
976 list3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
977 {
|
|
978 /* This cannot GC. */
|
272
|
979 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Qnil)));
|
0
|
980 }
|
|
981
|
272
|
982 Lisp_Object
|
0
|
983 cons3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
984 {
|
|
985 /* This cannot GC. */
|
|
986 return Fcons (obj0, Fcons (obj1, obj2));
|
|
987 }
|
|
988
|
|
989 Lisp_Object
|
272
|
990 acons (Lisp_Object key, Lisp_Object value, Lisp_Object alist)
|
|
991 {
|
|
992 return Fcons (Fcons (key, value), alist);
|
|
993 }
|
|
994
|
|
995 Lisp_Object
|
0
|
996 list4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3)
|
|
997 {
|
|
998 /* This cannot GC. */
|
272
|
999 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Qnil))));
|
0
|
1000 }
|
|
1001
|
|
1002 Lisp_Object
|
|
1003 list5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1004 Lisp_Object obj4)
|
|
1005 {
|
|
1006 /* This cannot GC. */
|
272
|
1007 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Qnil)))));
|
0
|
1008 }
|
|
1009
|
|
1010 Lisp_Object
|
|
1011 list6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2, Lisp_Object obj3,
|
|
1012 Lisp_Object obj4, Lisp_Object obj5)
|
|
1013 {
|
|
1014 /* This cannot GC. */
|
272
|
1015 return Fcons (obj0, Fcons (obj1, Fcons (obj2, Fcons (obj3, Fcons (obj4, Fcons (obj5, Qnil))))));
|
0
|
1016 }
|
|
1017
|
20
|
1018 DEFUN ("make-list", Fmake_list, 2, 2, 0, /*
|
272
|
1019 Return a new list of length LENGTH, with each element being INIT.
|
20
|
1020 */
|
|
1021 (length, init))
|
0
|
1022 {
|
|
1023 CHECK_NATNUM (length);
|
272
|
1024
|
|
1025 {
|
|
1026 Lisp_Object val = Qnil;
|
398
|
1027 size_t size = XINT (length);
|
|
1028
|
|
1029 while (size--)
|
272
|
1030 val = Fcons (init, val);
|
|
1031 return val;
|
|
1032 }
|
0
|
1033 }
|
|
1034
|
|
1035
|
380
|
1036 /************************************************************************/
|
|
1037 /* Float allocation */
|
|
1038 /************************************************************************/
|
0
|
1039
|
|
1040 #ifdef LISP_FLOAT_TYPE
|
|
1041
|
398
|
1042 DECLARE_FIXED_TYPE_ALLOC (float, Lisp_Float);
|
0
|
1043 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_float 1000
|
|
1044
|
|
1045 Lisp_Object
|
|
1046 make_float (double float_value)
|
|
1047 {
|
|
1048 Lisp_Object val;
|
398
|
1049 Lisp_Float *f;
|
|
1050
|
|
1051 ALLOCATE_FIXED_TYPE (float, Lisp_Float, f);
|
|
1052
|
|
1053 /* Avoid dump-time `uninitialized memory read' purify warnings. */
|
|
1054 if (sizeof (struct lrecord_header) + sizeof (double) != sizeof (*f))
|
|
1055 xzero (*f);
|
|
1056
|
404
|
1057 set_lheader_implementation (&f->lheader, &lrecord_float);
|
0
|
1058 float_data (f) = float_value;
|
|
1059 XSETFLOAT (val, f);
|
173
|
1060 return val;
|
0
|
1061 }
|
|
1062
|
|
1063 #endif /* LISP_FLOAT_TYPE */
|
|
1064
|
|
1065
|
380
|
1066 /************************************************************************/
|
|
1067 /* Vector allocation */
|
|
1068 /************************************************************************/
|
0
|
1069
|
207
|
1070 static Lisp_Object
|
398
|
1071 mark_vector (Lisp_Object obj)
|
207
|
1072 {
|
380
|
1073 Lisp_Vector *ptr = XVECTOR (obj);
|
207
|
1074 int len = vector_length (ptr);
|
|
1075 int i;
|
|
1076
|
|
1077 for (i = 0; i < len - 1; i++)
|
398
|
1078 mark_object (ptr->contents[i]);
|
207
|
1079 return (len > 0) ? ptr->contents[len - 1] : Qnil;
|
|
1080 }
|
|
1081
|
272
|
1082 static size_t
|
398
|
1083 size_vector (const void *lheader)
|
207
|
1084 {
|
398
|
1085 return offsetof (Lisp_Vector, contents[((Lisp_Vector *) lheader)->size]);
|
207
|
1086 }
|
|
1087
|
|
1088 static int
|
380
|
1089 vector_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
207
|
1090 {
|
380
|
1091 int len = XVECTOR_LENGTH (obj1);
|
|
1092 if (len != XVECTOR_LENGTH (obj2))
|
207
|
1093 return 0;
|
382
|
1094
|
|
1095 {
|
|
1096 Lisp_Object *ptr1 = XVECTOR_DATA (obj1);
|
|
1097 Lisp_Object *ptr2 = XVECTOR_DATA (obj2);
|
|
1098 while (len--)
|
|
1099 if (!internal_equal (*ptr1++, *ptr2++, depth + 1))
|
207
|
1100 return 0;
|
382
|
1101 }
|
207
|
1102 return 1;
|
|
1103 }
|
|
1104
|
398
|
1105 static hashcode_t
|
|
1106 vector_hash (Lisp_Object obj, int depth)
|
|
1107 {
|
|
1108 return HASH2 (XVECTOR_LENGTH (obj),
|
|
1109 internal_array_hash (XVECTOR_DATA (obj),
|
|
1110 XVECTOR_LENGTH (obj),
|
|
1111 depth + 1));
|
|
1112 }
|
|
1113
|
|
1114 static const struct lrecord_description vector_description[] = {
|
|
1115 { XD_LONG, offsetof (Lisp_Vector, size) },
|
|
1116 { XD_LISP_OBJECT_ARRAY, offsetof (Lisp_Vector, contents), XD_INDIRECT(0, 0) },
|
|
1117 { XD_END }
|
|
1118 };
|
|
1119
|
243
|
1120 DEFINE_LRECORD_SEQUENCE_IMPLEMENTATION("vector", vector,
|
|
1121 mark_vector, print_vector, 0,
|
|
1122 vector_equal,
|
398
|
1123 vector_hash,
|
|
1124 vector_description,
|
380
|
1125 size_vector, Lisp_Vector);
|
243
|
1126
|
207
|
1127 /* #### should allocate `small' vectors from a frob-block */
|
380
|
1128 static Lisp_Vector *
|
272
|
1129 make_vector_internal (size_t sizei)
|
207
|
1130 {
|
380
|
1131 /* no vector_next */
|
398
|
1132 size_t sizem = offsetof (Lisp_Vector, contents[sizei]);
|
|
1133 Lisp_Vector *p = (Lisp_Vector *) alloc_lcrecord (sizem, &lrecord_vector);
|
207
|
1134
|
|
1135 p->size = sizei;
|
|
1136 return p;
|
|
1137 }
|
|
1138
|
0
|
1139 Lisp_Object
|
382
|
1140 make_vector (size_t length, Lisp_Object init)
|
0
|
1141 {
|
382
|
1142 Lisp_Vector *vecp = make_vector_internal (length);
|
|
1143 Lisp_Object *p = vector_data (vecp);
|
|
1144
|
|
1145 while (length--)
|
|
1146 *p++ = init;
|
|
1147
|
0
|
1148 {
|
382
|
1149 Lisp_Object vector;
|
|
1150 XSETVECTOR (vector, vecp);
|
173
|
1151 return vector;
|
0
|
1152 }
|
|
1153 }
|
|
1154
|
20
|
1155 DEFUN ("make-vector", Fmake_vector, 2, 2, 0, /*
|
272
|
1156 Return a new vector of length LENGTH, with each element being INIT.
|
0
|
1157 See also the function `vector'.
|
20
|
1158 */
|
|
1159 (length, init))
|
0
|
1160 {
|
382
|
1161 CONCHECK_NATNUM (length);
|
173
|
1162 return make_vector (XINT (length), init);
|
0
|
1163 }
|
|
1164
|
20
|
1165 DEFUN ("vector", Fvector, 0, MANY, 0, /*
|
0
|
1166 Return a newly created vector with specified arguments as elements.
|
|
1167 Any number of arguments, even zero arguments, are allowed.
|
20
|
1168 */
|
|
1169 (int nargs, Lisp_Object *args))
|
0
|
1170 {
|
382
|
1171 Lisp_Vector *vecp = make_vector_internal (nargs);
|
|
1172 Lisp_Object *p = vector_data (vecp);
|
|
1173
|
|
1174 while (nargs--)
|
|
1175 *p++ = *args++;
|
|
1176
|
|
1177 {
|
|
1178 Lisp_Object vector;
|
|
1179 XSETVECTOR (vector, vecp);
|
|
1180 return vector;
|
|
1181 }
|
0
|
1182 }
|
|
1183
|
|
1184 Lisp_Object
|
|
1185 vector1 (Lisp_Object obj0)
|
|
1186 {
|
|
1187 return Fvector (1, &obj0);
|
|
1188 }
|
|
1189
|
|
1190 Lisp_Object
|
|
1191 vector2 (Lisp_Object obj0, Lisp_Object obj1)
|
|
1192 {
|
|
1193 Lisp_Object args[2];
|
|
1194 args[0] = obj0;
|
|
1195 args[1] = obj1;
|
|
1196 return Fvector (2, args);
|
|
1197 }
|
|
1198
|
|
1199 Lisp_Object
|
|
1200 vector3 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2)
|
|
1201 {
|
|
1202 Lisp_Object args[3];
|
|
1203 args[0] = obj0;
|
|
1204 args[1] = obj1;
|
|
1205 args[2] = obj2;
|
|
1206 return Fvector (3, args);
|
|
1207 }
|
|
1208
|
272
|
1209 #if 0 /* currently unused */
|
|
1210
|
0
|
1211 Lisp_Object
|
|
1212 vector4 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1213 Lisp_Object obj3)
|
|
1214 {
|
|
1215 Lisp_Object args[4];
|
|
1216 args[0] = obj0;
|
|
1217 args[1] = obj1;
|
|
1218 args[2] = obj2;
|
|
1219 args[3] = obj3;
|
|
1220 return Fvector (4, args);
|
|
1221 }
|
|
1222
|
|
1223 Lisp_Object
|
|
1224 vector5 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1225 Lisp_Object obj3, Lisp_Object obj4)
|
|
1226 {
|
|
1227 Lisp_Object args[5];
|
|
1228 args[0] = obj0;
|
|
1229 args[1] = obj1;
|
|
1230 args[2] = obj2;
|
|
1231 args[3] = obj3;
|
|
1232 args[4] = obj4;
|
|
1233 return Fvector (5, args);
|
|
1234 }
|
|
1235
|
|
1236 Lisp_Object
|
|
1237 vector6 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1238 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5)
|
|
1239 {
|
|
1240 Lisp_Object args[6];
|
|
1241 args[0] = obj0;
|
|
1242 args[1] = obj1;
|
|
1243 args[2] = obj2;
|
|
1244 args[3] = obj3;
|
|
1245 args[4] = obj4;
|
|
1246 args[5] = obj5;
|
|
1247 return Fvector (6, args);
|
|
1248 }
|
|
1249
|
|
1250 Lisp_Object
|
|
1251 vector7 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1252 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1253 Lisp_Object obj6)
|
|
1254 {
|
|
1255 Lisp_Object args[7];
|
|
1256 args[0] = obj0;
|
|
1257 args[1] = obj1;
|
|
1258 args[2] = obj2;
|
|
1259 args[3] = obj3;
|
|
1260 args[4] = obj4;
|
|
1261 args[5] = obj5;
|
|
1262 args[6] = obj6;
|
|
1263 return Fvector (7, args);
|
|
1264 }
|
|
1265
|
|
1266 Lisp_Object
|
|
1267 vector8 (Lisp_Object obj0, Lisp_Object obj1, Lisp_Object obj2,
|
|
1268 Lisp_Object obj3, Lisp_Object obj4, Lisp_Object obj5,
|
|
1269 Lisp_Object obj6, Lisp_Object obj7)
|
|
1270 {
|
|
1271 Lisp_Object args[8];
|
|
1272 args[0] = obj0;
|
|
1273 args[1] = obj1;
|
|
1274 args[2] = obj2;
|
|
1275 args[3] = obj3;
|
|
1276 args[4] = obj4;
|
|
1277 args[5] = obj5;
|
|
1278 args[6] = obj6;
|
|
1279 args[7] = obj7;
|
|
1280 return Fvector (8, args);
|
|
1281 }
|
272
|
1282 #endif /* unused */
|
0
|
1283
|
380
|
1284 /************************************************************************/
|
|
1285 /* Bit Vector allocation */
|
|
1286 /************************************************************************/
|
0
|
1287
|
|
1288 static Lisp_Object all_bit_vectors;
|
|
1289
|
|
1290 /* #### should allocate `small' bit vectors from a frob-block */
|
398
|
1291 static Lisp_Bit_Vector *
|
272
|
1292 make_bit_vector_internal (size_t sizei)
|
0
|
1293 {
|
382
|
1294 size_t num_longs = BIT_VECTOR_LONG_STORAGE (sizei);
|
398
|
1295 size_t sizem = offsetof (Lisp_Bit_Vector, bits[num_longs]);
|
380
|
1296 Lisp_Bit_Vector *p = (Lisp_Bit_Vector *) allocate_lisp_storage (sizem);
|
404
|
1297 set_lheader_implementation (&p->lheader, &lrecord_bit_vector);
|
0
|
1298
|
|
1299 INCREMENT_CONS_COUNTER (sizem, "bit-vector");
|
|
1300
|
|
1301 bit_vector_length (p) = sizei;
|
380
|
1302 bit_vector_next (p) = all_bit_vectors;
|
0
|
1303 /* make sure the extra bits in the last long are 0; the calling
|
|
1304 functions might not set them. */
|
382
|
1305 p->bits[num_longs - 1] = 0;
|
0
|
1306 XSETBIT_VECTOR (all_bit_vectors, p);
|
173
|
1307 return p;
|
0
|
1308 }
|
|
1309
|
|
1310 Lisp_Object
|
382
|
1311 make_bit_vector (size_t length, Lisp_Object init)
|
0
|
1312 {
|
398
|
1313 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
382
|
1314 size_t num_longs = BIT_VECTOR_LONG_STORAGE (length);
|
0
|
1315
|
|
1316 CHECK_BIT (init);
|
|
1317
|
|
1318 if (ZEROP (init))
|
|
1319 memset (p->bits, 0, num_longs * sizeof (long));
|
|
1320 else
|
|
1321 {
|
382
|
1322 size_t bits_in_last = length & (LONGBITS_POWER_OF_2 - 1);
|
0
|
1323 memset (p->bits, ~0, num_longs * sizeof (long));
|
|
1324 /* But we have to make sure that the unused bits in the
|
382
|
1325 last long are 0, so that equal/hash is easy. */
|
0
|
1326 if (bits_in_last)
|
|
1327 p->bits[num_longs - 1] &= (1 << bits_in_last) - 1;
|
|
1328 }
|
|
1329
|
382
|
1330 {
|
|
1331 Lisp_Object bit_vector;
|
|
1332 XSETBIT_VECTOR (bit_vector, p);
|
|
1333 return bit_vector;
|
|
1334 }
|
0
|
1335 }
|
|
1336
|
|
1337 Lisp_Object
|
382
|
1338 make_bit_vector_from_byte_vector (unsigned char *bytevec, size_t length)
|
0
|
1339 {
|
272
|
1340 int i;
|
382
|
1341 Lisp_Bit_Vector *p = make_bit_vector_internal (length);
|
0
|
1342
|
|
1343 for (i = 0; i < length; i++)
|
|
1344 set_bit_vector_bit (p, i, bytevec[i]);
|
|
1345
|
382
|
1346 {
|
|
1347 Lisp_Object bit_vector;
|
|
1348 XSETBIT_VECTOR (bit_vector, p);
|
|
1349 return bit_vector;
|
|
1350 }
|
0
|
1351 }
|
|
1352
|
20
|
1353 DEFUN ("make-bit-vector", Fmake_bit_vector, 2, 2, 0, /*
|
272
|
1354 Return a new bit vector of length LENGTH. with each bit being INIT.
|
0
|
1355 Each element is set to INIT. See also the function `bit-vector'.
|
20
|
1356 */
|
|
1357 (length, init))
|
0
|
1358 {
|
272
|
1359 CONCHECK_NATNUM (length);
|
0
|
1360
|
173
|
1361 return make_bit_vector (XINT (length), init);
|
0
|
1362 }
|
|
1363
|
20
|
1364 DEFUN ("bit-vector", Fbit_vector, 0, MANY, 0, /*
|
0
|
1365 Return a newly created bit vector with specified arguments as elements.
|
|
1366 Any number of arguments, even zero arguments, are allowed.
|
20
|
1367 */
|
|
1368 (int nargs, Lisp_Object *args))
|
0
|
1369 {
|
382
|
1370 int i;
|
|
1371 Lisp_Bit_Vector *p = make_bit_vector_internal (nargs);
|
|
1372
|
|
1373 for (i = 0; i < nargs; i++)
|
|
1374 {
|
|
1375 CHECK_BIT (args[i]);
|
|
1376 set_bit_vector_bit (p, i, !ZEROP (args[i]));
|
|
1377 }
|
|
1378
|
|
1379 {
|
|
1380 Lisp_Object bit_vector;
|
|
1381 XSETBIT_VECTOR (bit_vector, p);
|
|
1382 return bit_vector;
|
|
1383 }
|
0
|
1384 }
|
|
1385
|
|
1386
|
380
|
1387 /************************************************************************/
|
|
1388 /* Compiled-function allocation */
|
|
1389 /************************************************************************/
|
|
1390
|
|
1391 DECLARE_FIXED_TYPE_ALLOC (compiled_function, Lisp_Compiled_Function);
|
0
|
1392 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_compiled_function 1000
|
|
1393
|
|
1394 static Lisp_Object
|
398
|
1395 make_compiled_function (void)
|
0
|
1396 {
|
380
|
1397 Lisp_Compiled_Function *f;
|
|
1398 Lisp_Object fun;
|
398
|
1399
|
|
1400 ALLOCATE_FIXED_TYPE (compiled_function, Lisp_Compiled_Function, f);
|
404
|
1401 set_lheader_implementation (&f->lheader, &lrecord_compiled_function);
|
398
|
1402
|
380
|
1403 f->stack_depth = 0;
|
|
1404 f->specpdl_depth = 0;
|
|
1405 f->flags.documentationp = 0;
|
|
1406 f->flags.interactivep = 0;
|
|
1407 f->flags.domainp = 0; /* I18N3 */
|
|
1408 f->instructions = Qzero;
|
|
1409 f->constants = Qzero;
|
|
1410 f->arglist = Qnil;
|
|
1411 f->doc_and_interactive = Qnil;
|
0
|
1412 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
380
|
1413 f->annotated = Qnil;
|
0
|
1414 #endif
|
380
|
1415 XSETCOMPILED_FUNCTION (fun, f);
|
|
1416 return fun;
|
0
|
1417 }
|
|
1418
|
20
|
1419 DEFUN ("make-byte-code", Fmake_byte_code, 4, MANY, 0, /*
|
272
|
1420 Return a new compiled-function object.
|
380
|
1421 Usage: (arglist instructions constants stack-depth
|
|
1422 &optional doc-string interactive)
|
0
|
1423 Note that, unlike all other emacs-lisp functions, calling this with five
|
|
1424 arguments is NOT the same as calling it with six arguments, the last of
|
|
1425 which is nil. If the INTERACTIVE arg is specified as nil, then that means
|
|
1426 that this function was defined with `(interactive)'. If the arg is not
|
|
1427 specified, then that means the function is not interactive.
|
|
1428 This is terrible behavior which is retained for compatibility with old
|
380
|
1429 `.elc' files which expect these semantics.
|
20
|
1430 */
|
|
1431 (int nargs, Lisp_Object *args))
|
0
|
1432 {
|
380
|
1433 /* In a non-insane world this function would have this arglist...
|
|
1434 (arglist instructions constants stack_depth &optional doc_string interactive)
|
0
|
1435 */
|
398
|
1436 Lisp_Object fun = make_compiled_function ();
|
380
|
1437 Lisp_Compiled_Function *f = XCOMPILED_FUNCTION (fun);
|
|
1438
|
0
|
1439 Lisp_Object arglist = args[0];
|
|
1440 Lisp_Object instructions = args[1];
|
|
1441 Lisp_Object constants = args[2];
|
380
|
1442 Lisp_Object stack_depth = args[3];
|
272
|
1443 Lisp_Object doc_string = (nargs > 4) ? args[4] : Qnil;
|
|
1444 Lisp_Object interactive = (nargs > 5) ? args[5] : Qunbound;
|
380
|
1445
|
|
1446 if (nargs < 4 || nargs > 6)
|
183
|
1447 return Fsignal (Qwrong_number_of_arguments,
|
0
|
1448 list2 (intern ("make-byte-code"), make_int (nargs)));
|
|
1449
|
380
|
1450 /* Check for valid formal parameter list now, to allow us to use
|
|
1451 SPECBIND_FAST_UNSAFE() later in funcall_compiled_function(). */
|
|
1452 {
|
|
1453 Lisp_Object symbol, tail;
|
|
1454 EXTERNAL_LIST_LOOP_3 (symbol, arglist, tail)
|
|
1455 {
|
|
1456 CHECK_SYMBOL (symbol);
|
|
1457 if (EQ (symbol, Qt) ||
|
|
1458 EQ (symbol, Qnil) ||
|
|
1459 SYMBOL_IS_KEYWORD (symbol))
|
|
1460 signal_simple_error_2
|
|
1461 ("Invalid constant symbol in formal parameter list",
|
|
1462 symbol, arglist);
|
|
1463 }
|
|
1464 }
|
|
1465 f->arglist = arglist;
|
|
1466
|
|
1467 /* `instructions' is a string or a cons (string . int) for a
|
0
|
1468 lazy-loaded function. */
|
|
1469 if (CONSP (instructions))
|
|
1470 {
|
|
1471 CHECK_STRING (XCAR (instructions));
|
|
1472 CHECK_INT (XCDR (instructions));
|
|
1473 }
|
|
1474 else
|
|
1475 {
|
|
1476 CHECK_STRING (instructions);
|
380
|
1477 }
|
|
1478 f->instructions = instructions;
|
|
1479
|
|
1480 if (!NILP (constants))
|
|
1481 CHECK_VECTOR (constants);
|
|
1482 f->constants = constants;
|
|
1483
|
|
1484 CHECK_NATNUM (stack_depth);
|
404
|
1485 f->stack_depth = (unsigned short) XINT (stack_depth);
|
380
|
1486
|
|
1487 #ifdef COMPILED_FUNCTION_ANNOTATION_HACK
|
|
1488 if (!NILP (Vcurrent_compiled_function_annotation))
|
398
|
1489 f->annotated = Fcopy (Vcurrent_compiled_function_annotation);
|
380
|
1490 else if (!NILP (Vload_file_name_internal_the_purecopy))
|
|
1491 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1492 else if (!NILP (Vload_file_name_internal))
|
|
1493 {
|
|
1494 struct gcpro gcpro1;
|
|
1495 GCPRO1 (fun); /* don't let fun get reaped */
|
|
1496 Vload_file_name_internal_the_purecopy =
|
398
|
1497 Ffile_name_nondirectory (Vload_file_name_internal);
|
380
|
1498 f->annotated = Vload_file_name_internal_the_purecopy;
|
|
1499 UNGCPRO;
|
0
|
1500 }
|
380
|
1501 #endif /* COMPILED_FUNCTION_ANNOTATION_HACK */
|
|
1502
|
|
1503 /* doc_string may be nil, string, int, or a cons (string . int).
|
|
1504 interactive may be list or string (or unbound). */
|
|
1505 f->doc_and_interactive = Qunbound;
|
|
1506 #ifdef I18N3
|
|
1507 if ((f->flags.domainp = !NILP (Vfile_domain)) != 0)
|
|
1508 f->doc_and_interactive = Vfile_domain;
|
|
1509 #endif
|
|
1510 if ((f->flags.interactivep = !UNBOUNDP (interactive)) != 0)
|
|
1511 {
|
|
1512 f->doc_and_interactive
|
|
1513 = (UNBOUNDP (f->doc_and_interactive) ? interactive :
|
398
|
1514 Fcons (interactive, f->doc_and_interactive));
|
380
|
1515 }
|
|
1516 if ((f->flags.documentationp = !NILP (doc_string)) != 0)
|
|
1517 {
|
|
1518 f->doc_and_interactive
|
|
1519 = (UNBOUNDP (f->doc_and_interactive) ? doc_string :
|
398
|
1520 Fcons (doc_string, f->doc_and_interactive));
|
380
|
1521 }
|
|
1522 if (UNBOUNDP (f->doc_and_interactive))
|
|
1523 f->doc_and_interactive = Qnil;
|
0
|
1524
|
380
|
1525 return fun;
|
0
|
1526 }
|
|
1527
|
|
1528
|
380
|
1529 /************************************************************************/
|
|
1530 /* Symbol allocation */
|
|
1531 /************************************************************************/
|
0
|
1532
|
398
|
1533 DECLARE_FIXED_TYPE_ALLOC (symbol, Lisp_Symbol);
|
0
|
1534 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_symbol 1000
|
|
1535
|
20
|
1536 DEFUN ("make-symbol", Fmake_symbol, 1, 1, 0, /*
|
0
|
1537 Return a newly allocated uninterned symbol whose name is NAME.
|
|
1538 Its value and function definition are void, and its property list is nil.
|
20
|
1539 */
|
380
|
1540 (name))
|
0
|
1541 {
|
|
1542 Lisp_Object val;
|
398
|
1543 Lisp_Symbol *p;
|
0
|
1544
|
380
|
1545 CHECK_STRING (name);
|
0
|
1546
|
398
|
1547 ALLOCATE_FIXED_TYPE (symbol, Lisp_Symbol, p);
|
404
|
1548 set_lheader_implementation (&p->lheader, &lrecord_symbol);
|
380
|
1549 p->name = XSTRING (name);
|
|
1550 p->plist = Qnil;
|
|
1551 p->value = Qunbound;
|
0
|
1552 p->function = Qunbound;
|
371
|
1553 symbol_next (p) = 0;
|
0
|
1554 XSETSYMBOL (val, p);
|
|
1555 return val;
|
|
1556 }
|
|
1557
|
|
1558
|
380
|
1559 /************************************************************************/
|
|
1560 /* Extent allocation */
|
|
1561 /************************************************************************/
|
0
|
1562
|
|
1563 DECLARE_FIXED_TYPE_ALLOC (extent, struct extent);
|
|
1564 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_extent 1000
|
|
1565
|
|
1566 struct extent *
|
|
1567 allocate_extent (void)
|
|
1568 {
|
|
1569 struct extent *e;
|
|
1570
|
|
1571 ALLOCATE_FIXED_TYPE (extent, struct extent, e);
|
404
|
1572 set_lheader_implementation (&e->lheader, &lrecord_extent);
|
0
|
1573 extent_object (e) = Qnil;
|
|
1574 set_extent_start (e, -1);
|
|
1575 set_extent_end (e, -1);
|
|
1576 e->plist = Qnil;
|
|
1577
|
272
|
1578 xzero (e->flags);
|
0
|
1579
|
|
1580 extent_face (e) = Qnil;
|
|
1581 e->flags.end_open = 1; /* default is for endpoints to behave like markers */
|
|
1582 e->flags.detachable = 1;
|
|
1583
|
173
|
1584 return e;
|
0
|
1585 }
|
|
1586
|
|
1587
|
380
|
1588 /************************************************************************/
|
|
1589 /* Event allocation */
|
|
1590 /************************************************************************/
|
0
|
1591
|
398
|
1592 DECLARE_FIXED_TYPE_ALLOC (event, Lisp_Event);
|
0
|
1593 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_event 1000
|
|
1594
|
|
1595 Lisp_Object
|
|
1596 allocate_event (void)
|
|
1597 {
|
|
1598 Lisp_Object val;
|
398
|
1599 Lisp_Event *e;
|
|
1600
|
|
1601 ALLOCATE_FIXED_TYPE (event, Lisp_Event, e);
|
404
|
1602 set_lheader_implementation (&e->lheader, &lrecord_event);
|
0
|
1603
|
|
1604 XSETEVENT (val, e);
|
|
1605 return val;
|
|
1606 }
|
183
|
1607
|
0
|
1608
|
380
|
1609 /************************************************************************/
|
|
1610 /* Marker allocation */
|
|
1611 /************************************************************************/
|
0
|
1612
|
398
|
1613 DECLARE_FIXED_TYPE_ALLOC (marker, Lisp_Marker);
|
0
|
1614 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_marker 1000
|
|
1615
|
20
|
1616 DEFUN ("make-marker", Fmake_marker, 0, 0, 0, /*
|
272
|
1617 Return a new marker which does not point at any place.
|
20
|
1618 */
|
|
1619 ())
|
0
|
1620 {
|
|
1621 Lisp_Object val;
|
398
|
1622 Lisp_Marker *p;
|
|
1623
|
|
1624 ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p);
|
404
|
1625 set_lheader_implementation (&p->lheader, &lrecord_marker);
|
0
|
1626 p->buffer = 0;
|
|
1627 p->memind = 0;
|
|
1628 marker_next (p) = 0;
|
|
1629 marker_prev (p) = 0;
|
|
1630 p->insertion_type = 0;
|
|
1631 XSETMARKER (val, p);
|
|
1632 return val;
|
|
1633 }
|
|
1634
|
|
1635 Lisp_Object
|
|
1636 noseeum_make_marker (void)
|
|
1637 {
|
|
1638 Lisp_Object val;
|
398
|
1639 Lisp_Marker *p;
|
|
1640
|
|
1641 NOSEEUM_ALLOCATE_FIXED_TYPE (marker, Lisp_Marker, p);
|
404
|
1642 set_lheader_implementation (&p->lheader, &lrecord_marker);
|
0
|
1643 p->buffer = 0;
|
|
1644 p->memind = 0;
|
|
1645 marker_next (p) = 0;
|
|
1646 marker_prev (p) = 0;
|
|
1647 p->insertion_type = 0;
|
|
1648 XSETMARKER (val, p);
|
|
1649 return val;
|
|
1650 }
|
|
1651
|
|
1652
|
380
|
1653 /************************************************************************/
|
|
1654 /* String allocation */
|
|
1655 /************************************************************************/
|
0
|
1656
|
183
|
1657 /* The data for "short" strings generally resides inside of structs of type
|
|
1658 string_chars_block. The Lisp_String structure is allocated just like any
|
0
|
1659 other Lisp object (except for vectors), and these are freelisted when
|
|
1660 they get garbage collected. The data for short strings get compacted,
|
183
|
1661 but the data for large strings do not.
|
0
|
1662
|
|
1663 Previously Lisp_String structures were relocated, but this caused a lot
|
|
1664 of bus-errors because the C code didn't include enough GCPRO's for
|
|
1665 strings (since EVERY REFERENCE to a short string needed to be GCPRO'd so
|
|
1666 that the reference would get relocated).
|
|
1667
|
|
1668 This new method makes things somewhat bigger, but it is MUCH safer. */
|
|
1669
|
398
|
1670 DECLARE_FIXED_TYPE_ALLOC (string, Lisp_String);
|
0
|
1671 /* strings are used and freed quite often */
|
|
1672 /* #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 10000 */
|
|
1673 #define MINIMUM_ALLOWED_FIXED_TYPE_CELLS_string 1000
|
|
1674
|
207
|
1675 static Lisp_Object
|
398
|
1676 mark_string (Lisp_Object obj)
|
207
|
1677 {
|
398
|
1678 Lisp_String *ptr = XSTRING (obj);
|
|
1679
|
|
1680 if (CONSP (ptr->plist) && EXTENT_INFOP (XCAR (ptr->plist)))
|
207
|
1681 flush_cached_extent_info (XCAR (ptr->plist));
|
|
1682 return ptr->plist;
|
|
1683 }
|
|
1684
|
|
1685 static int
|
380
|
1686 string_equal (Lisp_Object obj1, Lisp_Object obj2, int depth)
|
207
|
1687 {
|
272
|
1688 Bytecount len;
|
380
|
1689 return (((len = XSTRING_LENGTH (obj1)) == XSTRING_LENGTH (obj2)) &&
|
|
1690 !memcmp (XSTRING_DATA (obj1), XSTRING_DATA (obj2), len));
|
207
|
1691 }
|
243
|
1692
|
398
|
1693 static const struct lrecord_description string_description[] = {
|
|
1694 { XD_BYTECOUNT, offsetof (Lisp_String, size) },
|
|
1695 { XD_OPAQUE_DATA_PTR, offsetof (Lisp_String, data), XD_INDIRECT(0, 1) },
|
|
1696 { XD_LISP_OBJECT, offsetof (Lisp_String, plist) },
|
|
1697 { XD_END }
|
|
1698 };
|
|
1699
|
|
1700 /* We store the string's extent info as the first element of the string's
|
|
1701 property list; and the string's MODIFF as the first or second element
|
|
1702 of the string's property list (depending on whether the extent info
|
|
1703 is present), but only if the string has been modified. This is ugly
|
|
1704 but it reduces the memory allocated for the string in the vast
|
|
1705 majority of cases, where the string is never modified and has no
|
|
1706 extent info.
|
|
1707
|
|
1708 #### This means you can't use an int as a key in a string's plist. */
|
|
1709
|
|
1710 static Lisp_Object *
|
|
1711 string_plist_ptr (Lisp_Object string)
|
|
1712 {
|
|
1713 Lisp_Object *ptr = &XSTRING (string)->plist;
|
|
1714
|
|
1715 if (CONSP (*ptr) && EXTENT_INFOP (XCAR (*ptr)))
|
|
1716 ptr = &XCDR (*ptr);
|
|
1717 if (CONSP (*ptr) && INTP (XCAR (*ptr)))
|
|
1718 ptr = &XCDR (*ptr);
|
|
1719 return ptr;
|
|
1720 }
|
|
1721
|
|
1722 static Lisp_Object
|
|
1723 string_getprop (Lisp_Object string, Lisp_Object property)
|
|
1724 {
|
|
1725 return external_plist_get (string_plist_ptr (string), property, 0, ERROR_ME);
|
|
1726 }
|
|
1727
|
|
1728 static int
|
|
1729 string_putprop (Lisp_Object string, Lisp_Object property, Lisp_Object value)
|
|
1730 {
|
|
1731 external_plist_put (string_plist_ptr (string), property, value, 0, ERROR_ME);
|
|
1732 return 1;
|
|
1733 }
|
|
1734
|
|
1735 static int
|
|
1736 string_remprop (Lisp_Object string, Lisp_Object property)
|
|
1737 {
|
|
1738 return external_remprop (string_plist_ptr (string), property, 0, ERROR_ME);
|
|
1739 }
|
|
1740
|
|
1741 static Lisp_Object
|
|
1742 string_plist (Lisp_Object string)
|
|
1743 {
|
|
1744 return *string_plist_ptr (string);
|
|
1745 }
|
|
1746
|
|
1747 /* No `finalize', or `hash' methods.
|
|
1748 internal_hash() already knows how to hash strings and finalization
|
|
1749 is done with the ADDITIONAL_FREE_string macro, which is the
|
|
1750 standard way to do finalization when using
|
|
1751 SWEEP_FIXED_TYPE_BLOCK(). */
|
|
1752 DEFINE_BASIC_LRECORD_IMPLEMENTATION_WITH_PROPS ("string", string,
|
|
1753 mark_string, print_string,
|
|
1754 0, string_equal, 0,
|
|
1755 string_description,
|
|
1756 string_getprop,
|
|
1757 string_putprop,
|
|
1758 string_remprop,
|
|
1759 string_plist,
|
|
1760 Lisp_String);
|
207
|
1761
|
0
|
1762 /* String blocks contain this many useful bytes. */
|
272
|
1763 #define STRING_CHARS_BLOCK_SIZE \
|
|
1764 ((Bytecount) (8192 - MALLOC_OVERHEAD - \
|
|
1765 ((2 * sizeof (struct string_chars_block *)) \
|
|
1766 + sizeof (EMACS_INT))))
|
0
|
1767 /* Block header for small strings. */
|
|
1768 struct string_chars_block
|
|
1769 {
|
|
1770 EMACS_INT pos;
|
|
1771 struct string_chars_block *next;
|
|
1772 struct string_chars_block *prev;
|
|
1773 /* Contents of string_chars_block->string_chars are interleaved
|
|
1774 string_chars structures (see below) and the actual string data */
|
|
1775 unsigned char string_chars[STRING_CHARS_BLOCK_SIZE];
|
|
1776 };
|
|
1777
|
398
|
1778 static struct string_chars_block *first_string_chars_block;
|
|
1779 static struct string_chars_block *current_string_chars_block;
|
0
|
1780
|
|
1781 /* If SIZE is the length of a string, this returns how many bytes
|
|
1782 * the string occupies in string_chars_block->string_chars
|
|
1783 * (including alignment padding).
|
|
1784 */
|
398
|
1785 #define STRING_FULLSIZE(size) \
|
|
1786 ALIGN_SIZE (((size) + 1 + sizeof (Lisp_String *)),\
|
|
1787 ALIGNOF (Lisp_String *))
|
0
|
1788
|
|
1789 #define BIG_STRING_FULLSIZE_P(fullsize) ((fullsize) >= STRING_CHARS_BLOCK_SIZE)
|
|
1790 #define BIG_STRING_SIZE_P(size) (BIG_STRING_FULLSIZE_P (STRING_FULLSIZE(size)))
|
|
1791
|
|
1792 struct string_chars
|
|
1793 {
|
398
|
1794 Lisp_String *string;
|
0
|
1795 unsigned char chars[1];
|
|
1796 };
|
|
1797
|
|
1798 struct unused_string_chars
|
|
1799 {
|
398
|
1800 Lisp_String *string;
|
0
|
1801 EMACS_INT fullsize;
|
|
1802 };
|
|
1803
|
|
1804 static void
|
|
1805 init_string_chars_alloc (void)
|
|
1806 {
|
185
|
1807 first_string_chars_block = xnew (struct string_chars_block);
|
0
|
1808 first_string_chars_block->prev = 0;
|
|
1809 first_string_chars_block->next = 0;
|
|
1810 first_string_chars_block->pos = 0;
|
|
1811 current_string_chars_block = first_string_chars_block;
|
|
1812 }
|
|
1813
|
|
1814 static struct string_chars *
|
398
|
1815 allocate_string_chars_struct (Lisp_String *string_it_goes_with,
|
0
|
1816 EMACS_INT fullsize)
|
|
1817 {
|
|
1818 struct string_chars *s_chars;
|
|
1819
|
398
|
1820 if (fullsize <=
|
|
1821 (countof (current_string_chars_block->string_chars)
|
|
1822 - current_string_chars_block->pos))
|
0
|
1823 {
|
|
1824 /* This string can fit in the current string chars block */
|
|
1825 s_chars = (struct string_chars *)
|
|
1826 (current_string_chars_block->string_chars
|
|
1827 + current_string_chars_block->pos);
|
|
1828 current_string_chars_block->pos += fullsize;
|
|
1829 }
|
|
1830 else
|
|
1831 {
|
|
1832 /* Make a new current string chars block */
|
382
|
1833 struct string_chars_block *new_scb = xnew (struct string_chars_block);
|
|
1834
|
|
1835 current_string_chars_block->next = new_scb;
|
|
1836 new_scb->prev = current_string_chars_block;
|
|
1837 new_scb->next = 0;
|
|
1838 current_string_chars_block = new_scb;
|
|
1839 new_scb->pos = fullsize;
|
0
|
1840 s_chars = (struct string_chars *)
|
|
1841 current_string_chars_block->string_chars;
|
|
1842 }
|
|
1843
|
|
1844 s_chars->string = string_it_goes_with;
|
|
1845
|
|
1846 INCREMENT_CONS_COUNTER (fullsize, "string chars");
|
|
1847
|
|
1848 return s_chars;
|
|
1849 }
|
|
1850
|
|
1851 Lisp_Object
|
|
1852 make_uninit_string (Bytecount length)
|
|
1853 {
|
398
|
1854 Lisp_String *s;
|
0
|
1855 EMACS_INT fullsize = STRING_FULLSIZE (length);
|
|
1856 Lisp_Object val;
|
|
1857
|
398
|
1858 assert (length >= 0 && fullsize > 0);
|
0
|
1859
|
|
1860 /* Allocate the string header */
|
398
|
1861 ALLOCATE_FIXED_TYPE (string, Lisp_String, s);
|
404
|
1862 set_lheader_implementation (&s->lheader, &lrecord_string);
|
398
|
1863
|
|
1864 set_string_data (s, BIG_STRING_FULLSIZE_P (fullsize)
|
|
1865 ? xnew_array (Bufbyte, length + 1)
|
|
1866 : allocate_string_chars_struct (s, fullsize)->chars);
|
|
1867
|
0
|
1868 set_string_length (s, length);
|
|
1869 s->plist = Qnil;
|
183
|
1870
|
0
|
1871 set_string_byte (s, length, 0);
|
|
1872
|
|
1873 XSETSTRING (val, s);
|
173
|
1874 return val;
|
0
|
1875 }
|
|
1876
|
|
1877 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1878 static void verify_string_chars_integrity (void);
|
|
1879 #endif
|
183
|
1880
|
0
|
1881 /* Resize the string S so that DELTA bytes can be inserted starting
|
|
1882 at POS. If DELTA < 0, it means deletion starting at POS. If
|
|
1883 POS < 0, resize the string but don't copy any characters. Use
|
|
1884 this if you're planning on completely overwriting the string.
|
|
1885 */
|
|
1886
|
|
1887 void
|
398
|
1888 resize_string (Lisp_String *s, Bytecount pos, Bytecount delta)
|
0
|
1889 {
|
398
|
1890 Bytecount oldfullsize, newfullsize;
|
0
|
1891 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
1892 verify_string_chars_integrity ();
|
|
1893 #endif
|
|
1894
|
|
1895 #ifdef ERROR_CHECK_BUFPOS
|
|
1896 if (pos >= 0)
|
|
1897 {
|
|
1898 assert (pos <= string_length (s));
|
|
1899 if (delta < 0)
|
|
1900 assert (pos + (-delta) <= string_length (s));
|
|
1901 }
|
|
1902 else
|
|
1903 {
|
|
1904 if (delta < 0)
|
|
1905 assert ((-delta) <= string_length (s));
|
|
1906 }
|
183
|
1907 #endif /* ERROR_CHECK_BUFPOS */
|
0
|
1908
|
|
1909 if (delta == 0)
|
|
1910 /* simplest case: no size change. */
|
|
1911 return;
|
398
|
1912
|
|
1913 if (pos >= 0 && delta < 0)
|
|
1914 /* If DELTA < 0, the functions below will delete the characters
|
|
1915 before POS. We want to delete characters *after* POS, however,
|
|
1916 so convert this to the appropriate form. */
|
|
1917 pos += -delta;
|
|
1918
|
|
1919 oldfullsize = STRING_FULLSIZE (string_length (s));
|
|
1920 newfullsize = STRING_FULLSIZE (string_length (s) + delta);
|
|
1921
|
|
1922 if (BIG_STRING_FULLSIZE_P (oldfullsize))
|
0
|
1923 {
|
398
|
1924 if (BIG_STRING_FULLSIZE_P (newfullsize))
|
0
|
1925 {
|
398
|
1926 /* Both strings are big. We can just realloc().
|
|
1927 But careful! If the string is shrinking, we have to
|
|
1928 memmove() _before_ realloc(), and if growing, we have to
|
|
1929 memmove() _after_ realloc() - otherwise the access is
|
|
1930 illegal, and we might crash. */
|
|
1931 Bytecount len = string_length (s) + 1 - pos;
|
|
1932
|
|
1933 if (delta < 0 && pos >= 0)
|
|
1934 memmove (string_data (s) + pos + delta, string_data (s) + pos, len);
|
|
1935 set_string_data (s, (Bufbyte *) xrealloc (string_data (s),
|
|
1936 string_length (s) + delta + 1));
|
|
1937 if (delta > 0 && pos >= 0)
|
|
1938 memmove (string_data (s) + pos + delta, string_data (s) + pos, len);
|
|
1939 }
|
|
1940 else /* String has been demoted from BIG_STRING. */
|
|
1941 {
|
|
1942 Bufbyte *new_data =
|
|
1943 allocate_string_chars_struct (s, newfullsize)->chars;
|
|
1944 Bufbyte *old_data = string_data (s);
|
|
1945
|
0
|
1946 if (pos >= 0)
|
|
1947 {
|
398
|
1948 memcpy (new_data, old_data, pos);
|
|
1949 memcpy (new_data + pos + delta, old_data + pos,
|
|
1950 string_length (s) + 1 - pos);
|
0
|
1951 }
|
398
|
1952 set_string_data (s, new_data);
|
|
1953 xfree (old_data);
|
0
|
1954 }
|
398
|
1955 }
|
|
1956 else /* old string is small */
|
|
1957 {
|
|
1958 if (oldfullsize == newfullsize)
|
0
|
1959 {
|
398
|
1960 /* special case; size change but the necessary
|
|
1961 allocation size won't change (up or down; code
|
|
1962 somewhere depends on there not being any unused
|
|
1963 allocation space, modulo any alignment
|
|
1964 constraints). */
|
0
|
1965 if (pos >= 0)
|
|
1966 {
|
183
|
1967 Bufbyte *addroff = pos + string_data (s);
|
0
|
1968
|
|
1969 memmove (addroff + delta, addroff,
|
|
1970 /* +1 due to zero-termination. */
|
|
1971 string_length (s) + 1 - pos);
|
|
1972 }
|
|
1973 }
|
|
1974 else
|
|
1975 {
|
398
|
1976 Bufbyte *old_data = string_data (s);
|
|
1977 Bufbyte *new_data =
|
|
1978 BIG_STRING_FULLSIZE_P (newfullsize)
|
|
1979 ? xnew_array (Bufbyte, string_length (s) + delta + 1)
|
|
1980 : allocate_string_chars_struct (s, newfullsize)->chars;
|
|
1981
|
0
|
1982 if (pos >= 0)
|
|
1983 {
|
398
|
1984 memcpy (new_data, old_data, pos);
|
|
1985 memcpy (new_data + pos + delta, old_data + pos,
|
0
|
1986 string_length (s) + 1 - pos);
|
|
1987 }
|
398
|
1988 set_string_data (s, new_data);
|
|
1989
|
|
1990 {
|
|
1991 /* We need to mark this chunk of the string_chars_block
|
|
1992 as unused so that compact_string_chars() doesn't
|
|
1993 freak. */
|
|
1994 struct string_chars *old_s_chars = (struct string_chars *)
|
|
1995 ((char *) old_data - offsetof (struct string_chars, chars));
|
|
1996 /* Sanity check to make sure we aren't hosed by strange
|
|
1997 alignment/padding. */
|
|
1998 assert (old_s_chars->string == s);
|
|
1999 MARK_STRUCT_AS_FREE (old_s_chars);
|
|
2000 ((struct unused_string_chars *) old_s_chars)->fullsize =
|
|
2001 oldfullsize;
|
|
2002 }
|
0
|
2003 }
|
398
|
2004 }
|
|
2005
|
|
2006 set_string_length (s, string_length (s) + delta);
|
|
2007 /* If pos < 0, the string won't be zero-terminated.
|
|
2008 Terminate now just to make sure. */
|
|
2009 string_data (s)[string_length (s)] = '\0';
|
|
2010
|
|
2011 if (pos >= 0)
|
|
2012 {
|
|
2013 Lisp_Object string;
|
|
2014
|
|
2015 XSETSTRING (string, s);
|
|
2016 /* We also have to adjust all of the extent indices after the
|
|
2017 place we did the change. We say "pos - 1" because
|
|
2018 adjust_extents() is exclusive of the starting position
|
|
2019 passed to it. */
|
|
2020 adjust_extents (string, pos - 1, string_length (s),
|
|
2021 delta);
|
0
|
2022 }
|
|
2023
|
|
2024 #ifdef VERIFY_STRING_CHARS_INTEGRITY
|
|
2025 verify_string_chars_integrity ();
|
|
2026 #endif
|
|
2027 }
|
|
2028
|
70
|
2029 #ifdef MULE
|
|
2030
|
|
2031 void
|
398
|
2032 set_string_char (Lisp_String *s, Charcount i, Emchar c)
|
70
|
2033 {
|
|
2034 Bufbyte newstr[MAX_EMCHAR_LEN];
|
|
2035 Bytecount bytoff = charcount_to_bytecount (string_data (s), i);
|
382
|
2036 Bytecount oldlen = charcount_to_bytecount (string_data (s) + bytoff, 1);
|
|
2037 Bytecount newlen = set_charptr_emchar (newstr, c);
|
70
|
2038
|
|
2039 if (oldlen != newlen)
|
|
2040 resize_string (s, bytoff, newlen - oldlen);
|
185
|
2041 /* Remember, string_data (s) might have changed so we can't cache it. */
|
70
|
2042 memcpy (string_data (s) + bytoff, newstr, newlen);
|
|
2043 }
|
|
2044
|
|
2045 #endif /* MULE */
|
|
2046
|
20
|
2047 DEFUN ("make-string", Fmake_string, 2, 2, 0, /*
|
272
|
2048 Return a new string of length LENGTH, with each character being INIT.
|
0
|
2049 LENGTH must be an integer and INIT must be a character.
|
20
|
2050 */
|
|
2051 (length, init))
|
0
|
2052 {
|
|
2053 CHECK_NATNUM (length);
|
|
2054 CHECK_CHAR_COERCE_INT (init);
|
|
2055 {
|
380
|
2056 Bufbyte init_str[MAX_EMCHAR_LEN];
|
|
2057 int len = set_charptr_emchar (init_str, XCHAR (init));
|
|
2058 Lisp_Object val = make_uninit_string (len * XINT (length));
|
|
2059
|
0
|
2060 if (len == 1)
|
|
2061 /* Optimize the single-byte case */
|
14
|
2062 memset (XSTRING_DATA (val), XCHAR (init), XSTRING_LENGTH (val));
|
0
|
2063 else
|
|
2064 {
|
398
|
2065 size_t i;
|
14
|
2066 Bufbyte *ptr = XSTRING_DATA (val);
|
0
|
2067
|
380
|
2068 for (i = XINT (length); i; i--)
|
|
2069 {
|
|
2070 Bufbyte *init_ptr = init_str;
|
|
2071 switch (len)
|
|
2072 {
|
|
2073 case 4: *ptr++ = *init_ptr++;
|
|
2074 case 3: *ptr++ = *init_ptr++;
|
|
2075 case 2: *ptr++ = *init_ptr++;
|
|
2076 case 1: *ptr++ = *init_ptr++;
|
|
2077 }
|
|
2078 }
|
0
|
2079 }
|
380
|
2080 return val;
|
0
|
2081 }
|
|
2082 }
|
|
2083
|
278
|
2084 DEFUN ("string", Fstring, 0, MANY, 0, /*
|
|
2085 Concatenate all the argument characters and make the result a string.
|
|
2086 */
|
|
2087 (int nargs, Lisp_Object *args))
|
|
2088 {
|
|
2089 Bufbyte *storage = alloca_array (Bufbyte, nargs * MAX_EMCHAR_LEN);
|
|
2090 Bufbyte *p = storage;
|
|
2091
|
|
2092 for (; nargs; nargs--, args++)
|
|
2093 {
|
|
2094 Lisp_Object lisp_char = *args;
|
|
2095 CHECK_CHAR_COERCE_INT (lisp_char);
|
|
2096 p += set_charptr_emchar (p, XCHAR (lisp_char));
|
|
2097 }
|
|
2098 return make_string (storage, p - storage);
|
|
2099 }
|
|
2100
|
398
|
2101
|
0
|
2102 /* Take some raw memory, which MUST already be in internal format,
|
272
|
2103 and package it up into a Lisp string. */
|
0
|
2104 Lisp_Object
|
398
|
2105 make_string (const Bufbyte *contents, Bytecount length)
|
0
|
2106 {
|
|
2107 Lisp_Object val;
|
70
|
2108
|
|
2109 /* Make sure we find out about bad make_string's when they happen */
|
|
2110 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2111 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2112 #endif
|
183
|
2113
|
0
|
2114 val = make_uninit_string (length);
|
14
|
2115 memcpy (XSTRING_DATA (val), contents, length);
|
173
|
2116 return val;
|
0
|
2117 }
|
|
2118
|
|
2119 /* Take some raw memory, encoded in some external data format,
|
|
2120 and convert it into a Lisp string. */
|
|
2121 Lisp_Object
|
398
|
2122 make_ext_string (const Extbyte *contents, EMACS_INT length,
|
|
2123 Lisp_Object coding_system)
|
0
|
2124 {
|
398
|
2125 Lisp_Object string;
|
|
2126 TO_INTERNAL_FORMAT (DATA, (contents, length),
|
|
2127 LISP_STRING, string,
|
|
2128 coding_system);
|
|
2129 return string;
|
|
2130 }
|
|
2131
|
|
2132 Lisp_Object
|
|
2133 build_string (const char *str)
|
|
2134 {
|
|
2135 /* Some strlen's crash and burn if passed null. */
|
|
2136 return make_string ((const Bufbyte *) str, (str ? strlen(str) : 0));
|
|
2137 }
|
|
2138
|
|
2139 Lisp_Object
|
|
2140 build_ext_string (const char *str, Lisp_Object coding_system)
|
|
2141 {
|
|
2142 /* Some strlen's crash and burn if passed null. */
|
|
2143 return make_ext_string ((const Extbyte *) str, (str ? strlen(str) : 0),
|
|
2144 coding_system);
|
0
|
2145 }
|
|
2146
|
|
2147 Lisp_Object
|
398
|
2148 build_translated_string (const char *str)
|
0
|
2149 {
|
398
|
2150 return build_string (GETTEXT (str));
|
0
|
2151 }
|
|
2152
|
|
2153 Lisp_Object
|
398
|
2154 make_string_nocopy (const Bufbyte *contents, Bytecount length)
|
0
|
2155 {
|
398
|
2156 Lisp_String *s;
|
|
2157 Lisp_Object val;
|
|
2158
|
|
2159 /* Make sure we find out about bad make_string_nocopy's when they happen */
|
|
2160 #if defined (ERROR_CHECK_BUFPOS) && defined (MULE)
|
|
2161 bytecount_to_charcount (contents, length); /* Just for the assertions */
|
|
2162 #endif
|
|
2163
|
|
2164 /* Allocate the string header */
|
|
2165 ALLOCATE_FIXED_TYPE (string, Lisp_String, s);
|
404
|
2166 set_lheader_implementation (&s->lheader, &lrecord_string);
|
398
|
2167 SET_C_READONLY_RECORD_HEADER (&s->lheader);
|
|
2168 s->plist = Qnil;
|
|
2169 set_string_data (s, (Bufbyte *)contents);
|
|
2170 set_string_length (s, length);
|
|
2171
|
|
2172 XSETSTRING (val, s);
|
|
2173 return val;
|
0
|
2174 }
|
|
2175
|
|
2176
|
|
2177 /************************************************************************/
|
|
2178 /* lcrecord lists */
|
|
2179 /************************************************************************/
|
|
2180
|
|
2181 /* Lcrecord lists are used to manage the allocation of particular
|
|
2182 sorts of lcrecords, to avoid calling alloc_lcrecord() (and thus
|
|
2183 malloc() and garbage-collection junk) as much as possible.
|
|
2184 It is similar to the Blocktype class.
|
|
2185
|
|
2186 It works like this:
|
|
2187
|
|
2188 1) Create an lcrecord-list object using make_lcrecord_list().
|
398
|
2189 This is often done at initialization. Remember to staticpro_nodump
|
0
|
2190 this object! The arguments to make_lcrecord_list() are the
|
|
2191 same as would be passed to alloc_lcrecord().
|
|
2192 2) Instead of calling alloc_lcrecord(), call allocate_managed_lcrecord()
|
|
2193 and pass the lcrecord-list earlier created.
|
|
2194 3) When done with the lcrecord, call free_managed_lcrecord().
|
|
2195 The standard freeing caveats apply: ** make sure there are no
|
|
2196 pointers to the object anywhere! **
|
|
2197 4) Calling free_managed_lcrecord() is just like kissing the
|
|
2198 lcrecord goodbye as if it were garbage-collected. This means:
|
|
2199 -- the contents of the freed lcrecord are undefined, and the
|
|
2200 contents of something produced by allocate_managed_lcrecord()
|
|
2201 are undefined, just like for alloc_lcrecord().
|
|
2202 -- the mark method for the lcrecord's type will *NEVER* be called
|
|
2203 on freed lcrecords.
|
|
2204 -- the finalize method for the lcrecord's type will be called
|
|
2205 at the time that free_managed_lcrecord() is called.
|
|
2206
|
|
2207 */
|
|
2208
|
|
2209 static Lisp_Object
|
398
|
2210 mark_lcrecord_list (Lisp_Object obj)
|
0
|
2211 {
|
|
2212 struct lcrecord_list *list = XLCRECORD_LIST (obj);
|
|
2213 Lisp_Object chain = list->free;
|
|
2214
|
|
2215 while (!NILP (chain))
|
|
2216 {
|
|
2217 struct lrecord_header *lheader = XRECORD_LHEADER (chain);
|
|
2218 struct free_lcrecord_header *free_header =
|
|
2219 (struct free_lcrecord_header *) lheader;
|
14
|
2220
|
400
|
2221 gc_checking_assert
|
|
2222 (/* There should be no other pointers to the free list. */
|
|
2223 ! MARKED_RECORD_HEADER_P (lheader)
|
|
2224 &&
|
|
2225 /* Only lcrecords should be here. */
|
|
2226 ! LHEADER_IMPLEMENTATION (lheader)->basic_p
|
|
2227 &&
|
|
2228 /* Only free lcrecords should be here. */
|
|
2229 free_header->lcheader.free
|
|
2230 &&
|
|
2231 /* The type of the lcrecord must be right. */
|
|
2232 LHEADER_IMPLEMENTATION (lheader) == list->implementation
|
|
2233 &&
|
|
2234 /* So must the size. */
|
|
2235 (LHEADER_IMPLEMENTATION (lheader)->static_size == 0 ||
|
|
2236 LHEADER_IMPLEMENTATION (lheader)->static_size == list->size)
|
|
2237 );
|
80
|
2238
|
0
|
2239 MARK_RECORD_HEADER (lheader);
|
|
2240 chain = free_header->chain;
|
|
2241 }
|
183
|
2242
|
0
|
2243 return Qnil;
|
|
2244 }
|
|
2245
|
243
|
2246 DEFINE_LRECORD_IMPLEMENTATION ("lcrecord-list", lcrecord_list,
|
|
2247 mark_lcrecord_list, internal_object_printer,
|
398
|
2248 0, 0, 0, 0, struct lcrecord_list);
|
0
|
2249 Lisp_Object
|
272
|
2250 make_lcrecord_list (size_t size,
|
398
|
2251 const struct lrecord_implementation *implementation)
|
0
|
2252 {
|
185
|
2253 struct lcrecord_list *p = alloc_lcrecord_type (struct lcrecord_list,
|
398
|
2254 &lrecord_lcrecord_list);
|
272
|
2255 Lisp_Object val;
|
0
|
2256
|
|
2257 p->implementation = implementation;
|
|
2258 p->size = size;
|
|
2259 p->free = Qnil;
|
|
2260 XSETLCRECORD_LIST (val, p);
|
|
2261 return val;
|
|
2262 }
|
|
2263
|
|
2264 Lisp_Object
|
|
2265 allocate_managed_lcrecord (Lisp_Object lcrecord_list)
|
|
2266 {
|
|
2267 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2268 if (!NILP (list->free))
|
|
2269 {
|
|
2270 Lisp_Object val = list->free;
|
|
2271 struct free_lcrecord_header *free_header =
|
|
2272 (struct free_lcrecord_header *) XPNTR (val);
|
|
2273
|
|
2274 #ifdef ERROR_CHECK_GC
|
400
|
2275 struct lrecord_header *lheader = &free_header->lcheader.lheader;
|
0
|
2276
|
|
2277 /* There should be no other pointers to the free list. */
|
400
|
2278 assert (! MARKED_RECORD_HEADER_P (lheader));
|
0
|
2279 /* Only lcrecords should be here. */
|
400
|
2280 assert (! LHEADER_IMPLEMENTATION (lheader)->basic_p);
|
0
|
2281 /* Only free lcrecords should be here. */
|
|
2282 assert (free_header->lcheader.free);
|
|
2283 /* The type of the lcrecord must be right. */
|
400
|
2284 assert (LHEADER_IMPLEMENTATION (lheader) == list->implementation);
|
0
|
2285 /* So must the size. */
|
400
|
2286 assert (LHEADER_IMPLEMENTATION (lheader)->static_size == 0 ||
|
|
2287 LHEADER_IMPLEMENTATION (lheader)->static_size == list->size);
|
183
|
2288 #endif /* ERROR_CHECK_GC */
|
400
|
2289
|
0
|
2290 list->free = free_header->chain;
|
|
2291 free_header->lcheader.free = 0;
|
|
2292 return val;
|
|
2293 }
|
|
2294 else
|
|
2295 {
|
272
|
2296 Lisp_Object val;
|
185
|
2297
|
|
2298 XSETOBJ (val, Lisp_Type_Record,
|
0
|
2299 alloc_lcrecord (list->size, list->implementation));
|
185
|
2300 return val;
|
0
|
2301 }
|
|
2302 }
|
|
2303
|
|
2304 void
|
|
2305 free_managed_lcrecord (Lisp_Object lcrecord_list, Lisp_Object lcrecord)
|
|
2306 {
|
|
2307 struct lcrecord_list *list = XLCRECORD_LIST (lcrecord_list);
|
|
2308 struct free_lcrecord_header *free_header =
|
|
2309 (struct free_lcrecord_header *) XPNTR (lcrecord);
|
400
|
2310 struct lrecord_header *lheader = &free_header->lcheader.lheader;
|
398
|
2311 const struct lrecord_implementation *implementation
|
211
|
2312 = LHEADER_IMPLEMENTATION (lheader);
|
0
|
2313
|
|
2314 /* Make sure the size is correct. This will catch, for example,
|
|
2315 putting a window configuration on the wrong free list. */
|
400
|
2316 gc_checking_assert ((implementation->size_in_bytes_method ?
|
|
2317 implementation->size_in_bytes_method (lheader) :
|
|
2318 implementation->static_size)
|
|
2319 == list->size);
|
0
|
2320
|
|
2321 if (implementation->finalizer)
|
380
|
2322 implementation->finalizer (lheader, 0);
|
0
|
2323 free_header->chain = list->free;
|
|
2324 free_header->lcheader.free = 1;
|
|
2325 list->free = lcrecord;
|
|
2326 }
|
|
2327
|
|
2328
|
|
2329
|
|
2330
|
20
|
2331 DEFUN ("purecopy", Fpurecopy, 1, 1, 0, /*
|
398
|
2332 Kept for compatibility, returns its argument.
|
|
2333 Old:
|
0
|
2334 Make a copy of OBJECT in pure storage.
|
|
2335 Recursively copies contents of vectors and cons cells.
|
|
2336 Does not copy symbols.
|
20
|
2337 */
|
|
2338 (obj))
|
0
|
2339 {
|
398
|
2340 return obj;
|
102
|
2341 }
|
|
2342
|
0
|
2343
|
380
|
2344 /************************************************************************/
|
|
2345 /* Garbage Collection */
|
|
2346 /************************************************************************/
|
|
2347
|
400
|
2348 /* All the built-in lisp object types are enumerated in `enum lrecord_type'.
|
|
2349 Additional ones may be defined by a module (none yet). We leave some
|
|
2350 room in `lrecord_implementations_table' for such new lisp object types. */
|
|
2351 #define MODULE_DEFINABLE_TYPE_COUNT 32
|
|
2352 const struct lrecord_implementation *lrecord_implementations_table[lrecord_type_count + MODULE_DEFINABLE_TYPE_COUNT];
|
|
2353
|
|
2354 /* Object marker functions are in the lrecord_implementation structure.
|
|
2355 But copying them to a parallel array is much more cache-friendly.
|
|
2356 This hack speeds up (garbage-collect) by about 5%. */
|
|
2357 Lisp_Object (*lrecord_markers[countof (lrecord_implementations_table)]) (Lisp_Object);
|
0
|
2358
|
|
2359 struct gcpro *gcprolist;
|
|
2360
|
|
2361 /* 415 used Mly 29-Jun-93 */
|
261
|
2362 /* 1327 used slb 28-Feb-98 */
|
398
|
2363 /* 1328 used og 03-Oct-99 (moving slowly, heh?) */
|
263
|
2364 #ifdef HAVE_SHLIB
|
|
2365 #define NSTATICS 4000
|
|
2366 #else
|
|
2367 #define NSTATICS 2000
|
|
2368 #endif
|
404
|
2369
|
|
2370 /* Not "static" because used by dumper.c */
|
|
2371 Lisp_Object *staticvec[NSTATICS];
|
|
2372 int staticidx;
|
0
|
2373
|
|
2374 /* Put an entry in staticvec, pointing at the variable whose address is given
|
|
2375 */
|
|
2376 void
|
|
2377 staticpro (Lisp_Object *varaddress)
|
|
2378 {
|
404
|
2379 /* #### This is now a dubious assert() since this routine may be called */
|
|
2380 /* by Lisp attempting to load a DLL. */
|
|
2381 assert (staticidx < countof (staticvec));
|
0
|
2382 staticvec[staticidx++] = varaddress;
|
|
2383 }
|
|
2384
|
404
|
2385
|
|
2386 Lisp_Object *staticvec_nodump[200];
|
|
2387 int staticidx_nodump;
|
398
|
2388
|
|
2389 /* Put an entry in staticvec_nodump, pointing at the variable whose address is given
|
|
2390 */
|
|
2391 void
|
|
2392 staticpro_nodump (Lisp_Object *varaddress)
|
|
2393 {
|
404
|
2394 /* #### This is now a dubious assert() since this routine may be called */
|
|
2395 /* by Lisp attempting to load a DLL. */
|
|
2396 assert (staticidx_nodump < countof (staticvec_nodump));
|
398
|
2397 staticvec_nodump[staticidx_nodump++] = varaddress;
|
|
2398 }
|
|
2399
|
404
|
2400
|
|
2401 struct pdump_dumpstructinfo dumpstructvec[200];
|
|
2402 int dumpstructidx;
|
398
|
2403
|
|
2404 /* Put an entry in dumpstructvec, pointing at the variable whose address is given
|
|
2405 */
|
|
2406 void
|
|
2407 dumpstruct (void *varaddress, const struct struct_description *desc)
|
|
2408 {
|
404
|
2409 assert (dumpstructidx < countof (dumpstructvec));
|
398
|
2410 dumpstructvec[dumpstructidx].data = varaddress;
|
|
2411 dumpstructvec[dumpstructidx].desc = desc;
|
|
2412 dumpstructidx++;
|
|
2413 }
|
|
2414
|
404
|
2415 struct pdump_dumpopaqueinfo dumpopaquevec[250];
|
|
2416 int dumpopaqueidx;
|
398
|
2417
|
|
2418 /* Put an entry in dumpopaquevec, pointing at the variable whose address is given
|
|
2419 */
|
|
2420 void
|
|
2421 dumpopaque (void *varaddress, size_t size)
|
|
2422 {
|
404
|
2423 assert (dumpopaqueidx < countof (dumpopaquevec));
|
|
2424
|
398
|
2425 dumpopaquevec[dumpopaqueidx].data = varaddress;
|
|
2426 dumpopaquevec[dumpopaqueidx].size = size;
|
|
2427 dumpopaqueidx++;
|
|
2428 }
|
|
2429
|
|
2430 Lisp_Object *pdump_wirevec[50];
|
404
|
2431 int pdump_wireidx;
|
398
|
2432
|
|
2433 /* Put an entry in pdump_wirevec, pointing at the variable whose address is given
|
|
2434 */
|
|
2435 void
|
|
2436 pdump_wire (Lisp_Object *varaddress)
|
|
2437 {
|
404
|
2438 assert (pdump_wireidx < countof (pdump_wirevec));
|
398
|
2439 pdump_wirevec[pdump_wireidx++] = varaddress;
|
|
2440 }
|
|
2441
|
|
2442
|
|
2443 Lisp_Object *pdump_wirevec_list[50];
|
404
|
2444 int pdump_wireidx_list;
|
398
|
2445
|
|
2446 /* Put an entry in pdump_wirevec_list, pointing at the variable whose address is given
|
|
2447 */
|
|
2448 void
|
|
2449 pdump_wire_list (Lisp_Object *varaddress)
|
|
2450 {
|
404
|
2451 assert (pdump_wireidx_list < countof (pdump_wirevec_list));
|
398
|
2452 pdump_wirevec_list[pdump_wireidx_list++] = varaddress;
|
|
2453 }
|
|
2454
|
400
|
2455 #ifdef ERROR_CHECK_GC
|
|
2456 #define GC_CHECK_LHEADER_INVARIANTS(lheader) do { \
|
|
2457 struct lrecord_header * GCLI_lh = (lheader); \
|
|
2458 assert (GCLI_lh != 0); \
|
404
|
2459 assert (GCLI_lh->type < lrecord_type_count); \
|
400
|
2460 assert (! C_READONLY_RECORD_HEADER_P (GCLI_lh) || \
|
|
2461 (MARKED_RECORD_HEADER_P (GCLI_lh) && \
|
|
2462 LISP_READONLY_RECORD_HEADER_P (GCLI_lh))); \
|
|
2463 } while (0)
|
|
2464 #else
|
|
2465 #define GC_CHECK_LHEADER_INVARIANTS(lheader)
|
|
2466 #endif
|
|
2467
|
0
|
2468
|
|
2469 /* Mark reference to a Lisp_Object. If the object referred to has not been
|
|
2470 seen yet, recursively mark all the references contained in it. */
|
183
|
2471
|
398
|
2472 void
|
0
|
2473 mark_object (Lisp_Object obj)
|
|
2474 {
|
|
2475 tail_recurse:
|
|
2476
|
380
|
2477 /* Checks we used to perform */
|
|
2478 /* if (EQ (obj, Qnull_pointer)) return; */
|
|
2479 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return; */
|
|
2480 /* if (PURIFIED (XPNTR (obj))) return; */
|
|
2481
|
398
|
2482 if (XTYPE (obj) == Lisp_Type_Record)
|
0
|
2483 {
|
398
|
2484 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
400
|
2485
|
|
2486 GC_CHECK_LHEADER_INVARIANTS (lheader);
|
|
2487
|
|
2488 gc_checking_assert (LHEADER_IMPLEMENTATION (lheader)->basic_p ||
|
|
2489 ! ((struct lcrecord_header *) lheader)->free);
|
|
2490
|
|
2491 /* All c_readonly objects have their mark bit set,
|
|
2492 so that we only need to check the mark bit here. */
|
|
2493 if (! MARKED_RECORD_HEADER_P (lheader))
|
398
|
2494 {
|
|
2495 MARK_RECORD_HEADER (lheader);
|
400
|
2496
|
|
2497 if (RECORD_MARKER (lheader))
|
0
|
2498 {
|
400
|
2499 obj = RECORD_MARKER (lheader) (obj);
|
398
|
2500 if (!NILP (obj)) goto tail_recurse;
|
0
|
2501 }
|
398
|
2502 }
|
0
|
2503 }
|
|
2504 }
|
|
2505
|
|
2506 /* mark all of the conses in a list and mark the final cdr; but
|
|
2507 DO NOT mark the cars.
|
|
2508
|
|
2509 Use only for internal lists! There should never be other pointers
|
|
2510 to the cons cells, because if so, the cars will remain unmarked
|
|
2511 even when they maybe should be marked. */
|
|
2512 void
|
|
2513 mark_conses_in_list (Lisp_Object obj)
|
|
2514 {
|
|
2515 Lisp_Object rest;
|
|
2516
|
|
2517 for (rest = obj; CONSP (rest); rest = XCDR (rest))
|
|
2518 {
|
|
2519 if (CONS_MARKED_P (XCONS (rest)))
|
|
2520 return;
|
|
2521 MARK_CONS (XCONS (rest));
|
|
2522 }
|
|
2523
|
|
2524 mark_object (rest);
|
|
2525 }
|
|
2526
|
|
2527
|
|
2528 /* Find all structures not marked, and free them. */
|
|
2529
|
|
2530 static int gc_count_num_bit_vector_used, gc_count_bit_vector_total_size;
|
|
2531 static int gc_count_bit_vector_storage;
|
|
2532 static int gc_count_num_short_string_in_use;
|
|
2533 static int gc_count_string_total_size;
|
|
2534 static int gc_count_short_string_total_size;
|
|
2535
|
|
2536 /* static int gc_count_total_records_used, gc_count_records_total_size; */
|
|
2537
|
|
2538
|
|
2539 /* stats on lcrecords in use - kinda kludgy */
|
|
2540
|
|
2541 static struct
|
|
2542 {
|
|
2543 int instances_in_use;
|
|
2544 int bytes_in_use;
|
|
2545 int instances_freed;
|
|
2546 int bytes_freed;
|
|
2547 int instances_on_free_list;
|
|
2548 } lcrecord_stats [countof (lrecord_implementations_table)];
|
|
2549
|
|
2550 static void
|
398
|
2551 tick_lcrecord_stats (const struct lrecord_header *h, int free_p)
|
0
|
2552 {
|
400
|
2553 unsigned int type_index = h->type;
|
0
|
2554
|
|
2555 if (((struct lcrecord_header *) h)->free)
|
|
2556 {
|
400
|
2557 gc_checking_assert (!free_p);
|
0
|
2558 lcrecord_stats[type_index].instances_on_free_list++;
|
|
2559 }
|
|
2560 else
|
|
2561 {
|
400
|
2562 const struct lrecord_implementation *implementation =
|
|
2563 LHEADER_IMPLEMENTATION (h);
|
|
2564
|
|
2565 size_t sz = (implementation->size_in_bytes_method ?
|
|
2566 implementation->size_in_bytes_method (h) :
|
|
2567 implementation->static_size);
|
0
|
2568 if (free_p)
|
|
2569 {
|
|
2570 lcrecord_stats[type_index].instances_freed++;
|
|
2571 lcrecord_stats[type_index].bytes_freed += sz;
|
|
2572 }
|
|
2573 else
|
|
2574 {
|
|
2575 lcrecord_stats[type_index].instances_in_use++;
|
|
2576 lcrecord_stats[type_index].bytes_in_use += sz;
|
|
2577 }
|
|
2578 }
|
|
2579 }
|
|
2580
|
|
2581
|
|
2582 /* Free all unmarked records */
|
|
2583 static void
|
|
2584 sweep_lcrecords_1 (struct lcrecord_header **prev, int *used)
|
|
2585 {
|
|
2586 struct lcrecord_header *header;
|
|
2587 int num_used = 0;
|
|
2588 /* int total_size = 0; */
|
386
|
2589
|
|
2590 xzero (lcrecord_stats); /* Reset all statistics to 0. */
|
0
|
2591
|
|
2592 /* First go through and call all the finalize methods.
|
|
2593 Then go through and free the objects. There used to
|
|
2594 be only one loop here, with the call to the finalizer
|
|
2595 occurring directly before the xfree() below. That
|
|
2596 is marginally faster but much less safe -- if the
|
|
2597 finalize method for an object needs to reference any
|
|
2598 other objects contained within it (and many do),
|
|
2599 we could easily be screwed by having already freed that
|
|
2600 other object. */
|
|
2601
|
|
2602 for (header = *prev; header; header = header->next)
|
|
2603 {
|
|
2604 struct lrecord_header *h = &(header->lheader);
|
400
|
2605
|
|
2606 GC_CHECK_LHEADER_INVARIANTS (h);
|
|
2607
|
|
2608 if (! MARKED_RECORD_HEADER_P (h) && ! header->free)
|
0
|
2609 {
|
211
|
2610 if (LHEADER_IMPLEMENTATION (h)->finalizer)
|
380
|
2611 LHEADER_IMPLEMENTATION (h)->finalizer (h, 0);
|
0
|
2612 }
|
|
2613 }
|
|
2614
|
|
2615 for (header = *prev; header; )
|
|
2616 {
|
|
2617 struct lrecord_header *h = &(header->lheader);
|
400
|
2618 if (MARKED_RECORD_HEADER_P (h))
|
0
|
2619 {
|
400
|
2620 if (! C_READONLY_RECORD_HEADER_P (h))
|
398
|
2621 UNMARK_RECORD_HEADER (h);
|
0
|
2622 num_used++;
|
380
|
2623 /* total_size += n->implementation->size_in_bytes (h);*/
|
398
|
2624 /* #### May modify header->next on a C_READONLY lcrecord */
|
0
|
2625 prev = &(header->next);
|
|
2626 header = *prev;
|
|
2627 tick_lcrecord_stats (h, 0);
|
|
2628 }
|
|
2629 else
|
|
2630 {
|
|
2631 struct lcrecord_header *next = header->next;
|
|
2632 *prev = next;
|
|
2633 tick_lcrecord_stats (h, 1);
|
|
2634 /* used to call finalizer right here. */
|
|
2635 xfree (header);
|
|
2636 header = next;
|
|
2637 }
|
|
2638 }
|
|
2639 *used = num_used;
|
|
2640 /* *total = total_size; */
|
|
2641 }
|
|
2642
|
207
|
2643
|
0
|
2644 static void
|
183
|
2645 sweep_bit_vectors_1 (Lisp_Object *prev,
|
0
|
2646 int *used, int *total, int *storage)
|
|
2647 {
|
|
2648 Lisp_Object bit_vector;
|
|
2649 int num_used = 0;
|
|
2650 int total_size = 0;
|
|
2651 int total_storage = 0;
|
|
2652
|
|
2653 /* BIT_VECTORP fails because the objects are marked, which changes
|
|
2654 their implementation */
|
|
2655 for (bit_vector = *prev; !EQ (bit_vector, Qzero); )
|
|
2656 {
|
380
|
2657 Lisp_Bit_Vector *v = XBIT_VECTOR (bit_vector);
|
0
|
2658 int len = v->size;
|
400
|
2659 if (MARKED_RECORD_P (bit_vector))
|
0
|
2660 {
|
400
|
2661 if (! C_READONLY_RECORD_HEADER_P(&(v->lheader)))
|
398
|
2662 UNMARK_RECORD_HEADER (&(v->lheader));
|
0
|
2663 total_size += len;
|
380
|
2664 total_storage +=
|
382
|
2665 MALLOC_OVERHEAD +
|
398
|
2666 offsetof (Lisp_Bit_Vector, bits[BIT_VECTOR_LONG_STORAGE (len)]);
|
0
|
2667 num_used++;
|
398
|
2668 /* #### May modify next on a C_READONLY bitvector */
|
0
|
2669 prev = &(bit_vector_next (v));
|
|
2670 bit_vector = *prev;
|
|
2671 }
|
|
2672 else
|
|
2673 {
|
|
2674 Lisp_Object next = bit_vector_next (v);
|
|
2675 *prev = next;
|
|
2676 xfree (v);
|
|
2677 bit_vector = next;
|
|
2678 }
|
|
2679 }
|
|
2680 *used = num_used;
|
|
2681 *total = total_size;
|
|
2682 *storage = total_storage;
|
|
2683 }
|
|
2684
|
|
2685 /* And the Lord said: Thou shalt use the `c-backslash-region' command
|
|
2686 to make macros prettier. */
|
|
2687
|
|
2688 #ifdef ERROR_CHECK_GC
|
|
2689
|
|
2690 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2691 do { \
|
380
|
2692 struct typename##_block *SFTB_current; \
|
|
2693 struct typename##_block **SFTB_prev; \
|
|
2694 int SFTB_limit; \
|
0
|
2695 int num_free = 0, num_used = 0; \
|
|
2696 \
|
380
|
2697 for (SFTB_prev = ¤t_##typename##_block, \
|
|
2698 SFTB_current = current_##typename##_block, \
|
|
2699 SFTB_limit = current_##typename##_block_index; \
|
|
2700 SFTB_current; \
|
0
|
2701 ) \
|
|
2702 { \
|
380
|
2703 int SFTB_iii; \
|
0
|
2704 \
|
380
|
2705 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
0
|
2706 { \
|
380
|
2707 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
0
|
2708 \
|
380
|
2709 if (FREE_STRUCT_P (SFTB_victim)) \
|
0
|
2710 { \
|
|
2711 num_free++; \
|
|
2712 } \
|
398
|
2713 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2714 { \
|
|
2715 num_used++; \
|
|
2716 } \
|
400
|
2717 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
0
|
2718 { \
|
|
2719 num_free++; \
|
380
|
2720 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
0
|
2721 } \
|
|
2722 else \
|
|
2723 { \
|
|
2724 num_used++; \
|
380
|
2725 UNMARK_##typename (SFTB_victim); \
|
0
|
2726 } \
|
|
2727 } \
|
380
|
2728 SFTB_prev = &(SFTB_current->prev); \
|
|
2729 SFTB_current = SFTB_current->prev; \
|
|
2730 SFTB_limit = countof (current_##typename##_block->block); \
|
0
|
2731 } \
|
|
2732 \
|
|
2733 gc_count_num_##typename##_in_use = num_used; \
|
|
2734 gc_count_num_##typename##_freelist = num_free; \
|
|
2735 } while (0)
|
|
2736
|
183
|
2737 #else /* !ERROR_CHECK_GC */
|
0
|
2738
|
380
|
2739 #define SWEEP_FIXED_TYPE_BLOCK(typename, obj_type) \
|
|
2740 do { \
|
|
2741 struct typename##_block *SFTB_current; \
|
|
2742 struct typename##_block **SFTB_prev; \
|
|
2743 int SFTB_limit; \
|
|
2744 int num_free = 0, num_used = 0; \
|
|
2745 \
|
|
2746 typename##_free_list = 0; \
|
|
2747 \
|
|
2748 for (SFTB_prev = ¤t_##typename##_block, \
|
|
2749 SFTB_current = current_##typename##_block, \
|
|
2750 SFTB_limit = current_##typename##_block_index; \
|
|
2751 SFTB_current; \
|
|
2752 ) \
|
|
2753 { \
|
|
2754 int SFTB_iii; \
|
|
2755 int SFTB_empty = 1; \
|
|
2756 obj_type *SFTB_old_free_list = typename##_free_list; \
|
|
2757 \
|
|
2758 for (SFTB_iii = 0; SFTB_iii < SFTB_limit; SFTB_iii++) \
|
|
2759 { \
|
|
2760 obj_type *SFTB_victim = &(SFTB_current->block[SFTB_iii]); \
|
|
2761 \
|
|
2762 if (FREE_STRUCT_P (SFTB_victim)) \
|
|
2763 { \
|
|
2764 num_free++; \
|
|
2765 PUT_FIXED_TYPE_ON_FREE_LIST (typename, obj_type, SFTB_victim); \
|
|
2766 } \
|
398
|
2767 else if (C_READONLY_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
|
2768 { \
|
|
2769 SFTB_empty = 0; \
|
|
2770 num_used++; \
|
|
2771 } \
|
400
|
2772 else if (! MARKED_RECORD_HEADER_P (&SFTB_victim->lheader)) \
|
380
|
2773 { \
|
|
2774 num_free++; \
|
|
2775 FREE_FIXED_TYPE (typename, obj_type, SFTB_victim); \
|
|
2776 } \
|
|
2777 else \
|
|
2778 { \
|
|
2779 SFTB_empty = 0; \
|
|
2780 num_used++; \
|
|
2781 UNMARK_##typename (SFTB_victim); \
|
|
2782 } \
|
|
2783 } \
|
|
2784 if (!SFTB_empty) \
|
|
2785 { \
|
|
2786 SFTB_prev = &(SFTB_current->prev); \
|
|
2787 SFTB_current = SFTB_current->prev; \
|
|
2788 } \
|
|
2789 else if (SFTB_current == current_##typename##_block \
|
|
2790 && !SFTB_current->prev) \
|
|
2791 { \
|
|
2792 /* No real point in freeing sole allocation block */ \
|
|
2793 break; \
|
|
2794 } \
|
|
2795 else \
|
|
2796 { \
|
|
2797 struct typename##_block *SFTB_victim_block = SFTB_current; \
|
|
2798 if (SFTB_victim_block == current_##typename##_block) \
|
|
2799 current_##typename##_block_index \
|
|
2800 = countof (current_##typename##_block->block); \
|
|
2801 SFTB_current = SFTB_current->prev; \
|
|
2802 { \
|
|
2803 *SFTB_prev = SFTB_current; \
|
|
2804 xfree (SFTB_victim_block); \
|
|
2805 /* Restore free list to what it was before victim was swept */ \
|
|
2806 typename##_free_list = SFTB_old_free_list; \
|
|
2807 num_free -= SFTB_limit; \
|
|
2808 } \
|
|
2809 } \
|
|
2810 SFTB_limit = countof (current_##typename##_block->block); \
|
|
2811 } \
|
|
2812 \
|
|
2813 gc_count_num_##typename##_in_use = num_used; \
|
|
2814 gc_count_num_##typename##_freelist = num_free; \
|
0
|
2815 } while (0)
|
|
2816
|
183
|
2817 #endif /* !ERROR_CHECK_GC */
|
0
|
2818
|
|
2819
|
|
2820
|
|
2821
|
|
2822 static void
|
|
2823 sweep_conses (void)
|
|
2824 {
|
398
|
2825 #define UNMARK_cons(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
0
|
2826 #define ADDITIONAL_FREE_cons(ptr)
|
|
2827
|
398
|
2828 SWEEP_FIXED_TYPE_BLOCK (cons, Lisp_Cons);
|
0
|
2829 }
|
|
2830
|
|
2831 /* Explicitly free a cons cell. */
|
|
2832 void
|
398
|
2833 free_cons (Lisp_Cons *ptr)
|
0
|
2834 {
|
|
2835 #ifdef ERROR_CHECK_GC
|
|
2836 /* If the CAR is not an int, then it will be a pointer, which will
|
|
2837 always be four-byte aligned. If this cons cell has already been
|
|
2838 placed on the free list, however, its car will probably contain
|
|
2839 a chain pointer to the next cons on the list, which has cleverly
|
|
2840 had all its 0's and 1's inverted. This allows for a quick
|
|
2841 check to make sure we're not freeing something already freed. */
|
|
2842 if (POINTER_TYPE_P (XTYPE (ptr->car)))
|
|
2843 ASSERT_VALID_POINTER (XPNTR (ptr->car));
|
183
|
2844 #endif /* ERROR_CHECK_GC */
|
|
2845
|
0
|
2846 #ifndef ALLOC_NO_POOLS
|
398
|
2847 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (cons, Lisp_Cons, ptr);
|
0
|
2848 #endif /* ALLOC_NO_POOLS */
|
|
2849 }
|
|
2850
|
|
2851 /* explicitly free a list. You **must make sure** that you have
|
|
2852 created all the cons cells that make up this list and that there
|
|
2853 are no pointers to any of these cons cells anywhere else. If there
|
|
2854 are, you will lose. */
|
|
2855
|
|
2856 void
|
|
2857 free_list (Lisp_Object list)
|
|
2858 {
|
|
2859 Lisp_Object rest, next;
|
|
2860
|
|
2861 for (rest = list; !NILP (rest); rest = next)
|
|
2862 {
|
|
2863 next = XCDR (rest);
|
|
2864 free_cons (XCONS (rest));
|
|
2865 }
|
|
2866 }
|
|
2867
|
|
2868 /* explicitly free an alist. You **must make sure** that you have
|
|
2869 created all the cons cells that make up this alist and that there
|
|
2870 are no pointers to any of these cons cells anywhere else. If there
|
|
2871 are, you will lose. */
|
|
2872
|
|
2873 void
|
|
2874 free_alist (Lisp_Object alist)
|
|
2875 {
|
|
2876 Lisp_Object rest, next;
|
|
2877
|
|
2878 for (rest = alist; !NILP (rest); rest = next)
|
|
2879 {
|
|
2880 next = XCDR (rest);
|
|
2881 free_cons (XCONS (XCAR (rest)));
|
|
2882 free_cons (XCONS (rest));
|
|
2883 }
|
|
2884 }
|
|
2885
|
|
2886 static void
|
|
2887 sweep_compiled_functions (void)
|
|
2888 {
|
|
2889 #define UNMARK_compiled_function(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2890 #define ADDITIONAL_FREE_compiled_function(ptr)
|
|
2891
|
380
|
2892 SWEEP_FIXED_TYPE_BLOCK (compiled_function, Lisp_Compiled_Function);
|
0
|
2893 }
|
|
2894
|
|
2895
|
|
2896 #ifdef LISP_FLOAT_TYPE
|
|
2897 static void
|
|
2898 sweep_floats (void)
|
|
2899 {
|
|
2900 #define UNMARK_float(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2901 #define ADDITIONAL_FREE_float(ptr)
|
|
2902
|
398
|
2903 SWEEP_FIXED_TYPE_BLOCK (float, Lisp_Float);
|
0
|
2904 }
|
|
2905 #endif /* LISP_FLOAT_TYPE */
|
|
2906
|
|
2907 static void
|
|
2908 sweep_symbols (void)
|
|
2909 {
|
398
|
2910 #define UNMARK_symbol(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
0
|
2911 #define ADDITIONAL_FREE_symbol(ptr)
|
|
2912
|
398
|
2913 SWEEP_FIXED_TYPE_BLOCK (symbol, Lisp_Symbol);
|
0
|
2914 }
|
|
2915
|
|
2916 static void
|
|
2917 sweep_extents (void)
|
|
2918 {
|
|
2919 #define UNMARK_extent(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2920 #define ADDITIONAL_FREE_extent(ptr)
|
|
2921
|
|
2922 SWEEP_FIXED_TYPE_BLOCK (extent, struct extent);
|
|
2923 }
|
|
2924
|
|
2925 static void
|
|
2926 sweep_events (void)
|
|
2927 {
|
|
2928 #define UNMARK_event(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2929 #define ADDITIONAL_FREE_event(ptr)
|
|
2930
|
398
|
2931 SWEEP_FIXED_TYPE_BLOCK (event, Lisp_Event);
|
0
|
2932 }
|
|
2933
|
|
2934 static void
|
|
2935 sweep_markers (void)
|
|
2936 {
|
|
2937 #define UNMARK_marker(ptr) UNMARK_RECORD_HEADER (&((ptr)->lheader))
|
|
2938 #define ADDITIONAL_FREE_marker(ptr) \
|
|
2939 do { Lisp_Object tem; \
|
|
2940 XSETMARKER (tem, ptr); \
|
|
2941 unchain_marker (tem); \
|
|
2942 } while (0)
|
|
2943
|
398
|
2944 SWEEP_FIXED_TYPE_BLOCK (marker, Lisp_Marker);
|
0
|
2945 }
|
|
2946
|
|
2947 /* Explicitly free a marker. */
|
|
2948 void
|
398
|
2949 free_marker (Lisp_Marker *ptr)
|
0
|
2950 {
|
|
2951 /* Perhaps this will catch freeing an already-freed marker. */
|
400
|
2952 gc_checking_assert (ptr->lheader.type = lrecord_type_marker);
|
183
|
2953
|
0
|
2954 #ifndef ALLOC_NO_POOLS
|
398
|
2955 FREE_FIXED_TYPE_WHEN_NOT_IN_GC (marker, Lisp_Marker, ptr);
|
0
|
2956 #endif /* ALLOC_NO_POOLS */
|
|
2957 }
|
|
2958
|
70
|
2959
|
|
2960 #if defined (MULE) && defined (VERIFY_STRING_CHARS_INTEGRITY)
|
|
2961
|
|
2962 static void
|
|
2963 verify_string_chars_integrity (void)
|
|
2964 {
|
|
2965 struct string_chars_block *sb;
|
|
2966
|
|
2967 /* Scan each existing string block sequentially, string by string. */
|
|
2968 for (sb = first_string_chars_block; sb; sb = sb->next)
|
|
2969 {
|
|
2970 int pos = 0;
|
|
2971 /* POS is the index of the next string in the block. */
|
|
2972 while (pos < sb->pos)
|
|
2973 {
|
183
|
2974 struct string_chars *s_chars =
|
70
|
2975 (struct string_chars *) &(sb->string_chars[pos]);
|
398
|
2976 Lisp_String *string;
|
70
|
2977 int size;
|
|
2978 int fullsize;
|
|
2979
|
|
2980 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
2981 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
2982 storage. (See below.) */
|
|
2983
|
|
2984 if (FREE_STRUCT_P (s_chars))
|
|
2985 {
|
|
2986 fullsize = ((struct unused_string_chars *) s_chars)->fullsize;
|
|
2987 pos += fullsize;
|
|
2988 continue;
|
|
2989 }
|
|
2990
|
|
2991 string = s_chars->string;
|
|
2992 /* Must be 32-bit aligned. */
|
|
2993 assert ((((int) string) & 3) == 0);
|
|
2994
|
|
2995 size = string_length (string);
|
|
2996 fullsize = STRING_FULLSIZE (size);
|
|
2997
|
|
2998 assert (!BIG_STRING_FULLSIZE_P (fullsize));
|
|
2999 assert (string_data (string) == s_chars->chars);
|
|
3000 pos += fullsize;
|
|
3001 }
|
|
3002 assert (pos == sb->pos);
|
|
3003 }
|
|
3004 }
|
|
3005
|
|
3006 #endif /* MULE && ERROR_CHECK_GC */
|
|
3007
|
0
|
3008 /* Compactify string chars, relocating the reference to each --
|
|
3009 free any empty string_chars_block we see. */
|
|
3010 static void
|
|
3011 compact_string_chars (void)
|
|
3012 {
|
|
3013 struct string_chars_block *to_sb = first_string_chars_block;
|
|
3014 int to_pos = 0;
|
|
3015 struct string_chars_block *from_sb;
|
|
3016
|
|
3017 /* Scan each existing string block sequentially, string by string. */
|
|
3018 for (from_sb = first_string_chars_block; from_sb; from_sb = from_sb->next)
|
|
3019 {
|
|
3020 int from_pos = 0;
|
|
3021 /* FROM_POS is the index of the next string in the block. */
|
|
3022 while (from_pos < from_sb->pos)
|
|
3023 {
|
183
|
3024 struct string_chars *from_s_chars =
|
0
|
3025 (struct string_chars *) &(from_sb->string_chars[from_pos]);
|
|
3026 struct string_chars *to_s_chars;
|
398
|
3027 Lisp_String *string;
|
0
|
3028 int size;
|
|
3029 int fullsize;
|
|
3030
|
|
3031 /* If the string_chars struct is marked as free (i.e. the STRING
|
|
3032 pointer is 0xFFFFFFFF) then this is an unused chunk of string
|
|
3033 storage. This happens under Mule when a string's size changes
|
|
3034 in such a way that its fullsize changes. (Strings can change
|
|
3035 size because a different-length character can be substituted
|
|
3036 for another character.) In this case, after the bogus string
|
|
3037 pointer is the "fullsize" of this entry, i.e. how many bytes
|
|
3038 to skip. */
|
|
3039
|
|
3040 if (FREE_STRUCT_P (from_s_chars))
|
|
3041 {
|
|
3042 fullsize = ((struct unused_string_chars *) from_s_chars)->fullsize;
|
|
3043 from_pos += fullsize;
|
|
3044 continue;
|
|
3045 }
|
|
3046
|
|
3047 string = from_s_chars->string;
|
|
3048 assert (!(FREE_STRUCT_P (string)));
|
|
3049
|
|
3050 size = string_length (string);
|
|
3051 fullsize = STRING_FULLSIZE (size);
|
|
3052
|
404
|
3053 gc_checking_assert (! BIG_STRING_FULLSIZE_P (fullsize));
|
0
|
3054
|
|
3055 /* Just skip it if it isn't marked. */
|
207
|
3056 if (! MARKED_RECORD_HEADER_P (&(string->lheader)))
|
0
|
3057 {
|
|
3058 from_pos += fullsize;
|
|
3059 continue;
|
|
3060 }
|
|
3061
|
|
3062 /* If it won't fit in what's left of TO_SB, close TO_SB out
|
|
3063 and go on to the next string_chars_block. We know that TO_SB
|
|
3064 cannot advance past FROM_SB here since FROM_SB is large enough
|
|
3065 to currently contain this string. */
|
|
3066 if ((to_pos + fullsize) > countof (to_sb->string_chars))
|
|
3067 {
|
|
3068 to_sb->pos = to_pos;
|
|
3069 to_sb = to_sb->next;
|
|
3070 to_pos = 0;
|
|
3071 }
|
183
|
3072
|
0
|
3073 /* Compute new address of this string
|
|
3074 and update TO_POS for the space being used. */
|
|
3075 to_s_chars = (struct string_chars *) &(to_sb->string_chars[to_pos]);
|
|
3076
|
|
3077 /* Copy the string_chars to the new place. */
|
|
3078 if (from_s_chars != to_s_chars)
|
|
3079 memmove (to_s_chars, from_s_chars, fullsize);
|
|
3080
|
|
3081 /* Relocate FROM_S_CHARS's reference */
|
|
3082 set_string_data (string, &(to_s_chars->chars[0]));
|
183
|
3083
|
0
|
3084 from_pos += fullsize;
|
|
3085 to_pos += fullsize;
|
|
3086 }
|
|
3087 }
|
|
3088
|
183
|
3089 /* Set current to the last string chars block still used and
|
0
|
3090 free any that follow. */
|
|
3091 {
|
|
3092 struct string_chars_block *victim;
|
|
3093
|
|
3094 for (victim = to_sb->next; victim; )
|
|
3095 {
|
|
3096 struct string_chars_block *next = victim->next;
|
|
3097 xfree (victim);
|
|
3098 victim = next;
|
|
3099 }
|
|
3100
|
|
3101 current_string_chars_block = to_sb;
|
|
3102 current_string_chars_block->pos = to_pos;
|
|
3103 current_string_chars_block->next = 0;
|
|
3104 }
|
|
3105 }
|
|
3106
|
|
3107 #if 1 /* Hack to debug missing purecopy's */
|
|
3108 static int debug_string_purity;
|
|
3109
|
|
3110 static void
|
398
|
3111 debug_string_purity_print (Lisp_String *p)
|
0
|
3112 {
|
|
3113 Charcount i;
|
|
3114 Charcount s = string_char_length (p);
|
404
|
3115 stderr_out ("\"");
|
0
|
3116 for (i = 0; i < s; i++)
|
|
3117 {
|
|
3118 Emchar ch = string_char (p, i);
|
|
3119 if (ch < 32 || ch >= 126)
|
|
3120 stderr_out ("\\%03o", ch);
|
|
3121 else if (ch == '\\' || ch == '\"')
|
|
3122 stderr_out ("\\%c", ch);
|
|
3123 else
|
|
3124 stderr_out ("%c", ch);
|
|
3125 }
|
|
3126 stderr_out ("\"\n");
|
|
3127 }
|
183
|
3128 #endif /* 1 */
|
0
|
3129
|
|
3130
|
|
3131 static void
|
|
3132 sweep_strings (void)
|
|
3133 {
|
|
3134 int num_small_used = 0, num_small_bytes = 0, num_bytes = 0;
|
|
3135 int debug = debug_string_purity;
|
|
3136
|
398
|
3137 #define UNMARK_string(ptr) do { \
|
|
3138 Lisp_String *p = (ptr); \
|
|
3139 size_t size = string_length (p); \
|
|
3140 UNMARK_RECORD_HEADER (&(p->lheader)); \
|
|
3141 num_bytes += size; \
|
|
3142 if (!BIG_STRING_SIZE_P (size)) \
|
|
3143 { num_small_bytes += size; \
|
|
3144 num_small_used++; \
|
|
3145 } \
|
|
3146 if (debug) \
|
|
3147 debug_string_purity_print (p); \
|
|
3148 } while (0)
|
|
3149 #define ADDITIONAL_FREE_string(ptr) do { \
|
|
3150 size_t size = string_length (ptr); \
|
|
3151 if (BIG_STRING_SIZE_P (size)) \
|
|
3152 xfree (ptr->data); \
|
|
3153 } while (0)
|
|
3154
|
|
3155 SWEEP_FIXED_TYPE_BLOCK (string, Lisp_String);
|
0
|
3156
|
|
3157 gc_count_num_short_string_in_use = num_small_used;
|
|
3158 gc_count_string_total_size = num_bytes;
|
|
3159 gc_count_short_string_total_size = num_small_bytes;
|
|
3160 }
|
|
3161
|
|
3162
|
|
3163 /* I hate duplicating all this crap! */
|
398
|
3164 int
|
0
|
3165 marked_p (Lisp_Object obj)
|
|
3166 {
|
380
|
3167 /* Checks we used to perform. */
|
|
3168 /* if (EQ (obj, Qnull_pointer)) return 1; */
|
|
3169 /* if (!POINTER_TYPE_P (XGCTYPE (obj))) return 1; */
|
|
3170 /* if (PURIFIED (XPNTR (obj))) return 1; */
|
|
3171
|
398
|
3172 if (XTYPE (obj) == Lisp_Type_Record)
|
0
|
3173 {
|
398
|
3174 struct lrecord_header *lheader = XRECORD_LHEADER (obj);
|
400
|
3175
|
|
3176 GC_CHECK_LHEADER_INVARIANTS (lheader);
|
|
3177
|
|
3178 return MARKED_RECORD_HEADER_P (lheader);
|
0
|
3179 }
|
398
|
3180 return 1;
|
0
|
3181 }
|
|
3182
|
|
3183 static void
|
|
3184 gc_sweep (void)
|
|
3185 {
|
|
3186 /* Free all unmarked records. Do this at the very beginning,
|
|
3187 before anything else, so that the finalize methods can safely
|
|
3188 examine items in the objects. sweep_lcrecords_1() makes
|
|
3189 sure to call all the finalize methods *before* freeing anything,
|
|
3190 to complete the safety. */
|
|
3191 {
|
|
3192 int ignored;
|
|
3193 sweep_lcrecords_1 (&all_lcrecords, &ignored);
|
|
3194 }
|
|
3195
|
|
3196 compact_string_chars ();
|
|
3197
|
|
3198 /* Finalize methods below (called through the ADDITIONAL_FREE_foo
|
|
3199 macros) must be *extremely* careful to make sure they're not
|
|
3200 referencing freed objects. The only two existing finalize
|
|
3201 methods (for strings and markers) pass muster -- the string
|
|
3202 finalizer doesn't look at anything but its own specially-
|
|
3203 created block, and the marker finalizer only looks at live
|
|
3204 buffers (which will never be freed) and at the markers before
|
|
3205 and after it in the chain (which, by induction, will never be
|
|
3206 freed because if so, they would have already removed themselves
|
|
3207 from the chain). */
|
|
3208
|
|
3209 /* Put all unmarked strings on free list, free'ing the string chars
|
|
3210 of large unmarked strings */
|
|
3211 sweep_strings ();
|
|
3212
|
|
3213 /* Put all unmarked conses on free list */
|
|
3214 sweep_conses ();
|
|
3215
|
|
3216 /* Free all unmarked bit vectors */
|
|
3217 sweep_bit_vectors_1 (&all_bit_vectors,
|
|
3218 &gc_count_num_bit_vector_used,
|
|
3219 &gc_count_bit_vector_total_size,
|
|
3220 &gc_count_bit_vector_storage);
|
|
3221
|
|
3222 /* Free all unmarked compiled-function objects */
|
|
3223 sweep_compiled_functions ();
|
|
3224
|
|
3225 #ifdef LISP_FLOAT_TYPE
|
|
3226 /* Put all unmarked floats on free list */
|
|
3227 sweep_floats ();
|
|
3228 #endif
|
|
3229
|
|
3230 /* Put all unmarked symbols on free list */
|
|
3231 sweep_symbols ();
|
|
3232
|
|
3233 /* Put all unmarked extents on free list */
|
|
3234 sweep_extents ();
|
|
3235
|
|
3236 /* Put all unmarked markers on free list.
|
|
3237 Dechain each one first from the buffer into which it points. */
|
|
3238 sweep_markers ();
|
|
3239
|
|
3240 sweep_events ();
|
|
3241
|
398
|
3242 #ifdef PDUMP
|
404
|
3243 pdump_objects_unmark ();
|
398
|
3244 #endif
|
0
|
3245 }
|
|
3246
|
|
3247 /* Clearing for disksave. */
|
|
3248
|
|
3249 void
|
|
3250 disksave_object_finalization (void)
|
|
3251 {
|
|
3252 /* It's important that certain information from the environment not get
|
|
3253 dumped with the executable (pathnames, environment variables, etc.).
|
380
|
3254 To make it easier to tell when this has happened with strings(1) we
|
0
|
3255 clear some known-to-be-garbage blocks of memory, so that leftover
|
|
3256 results of old evaluation don't look like potential problems.
|
|
3257 But first we set some notable variables to nil and do one more GC,
|
|
3258 to turn those strings into garbage.
|
398
|
3259 */
|
0
|
3260
|
|
3261 /* Yeah, this list is pretty ad-hoc... */
|
|
3262 Vprocess_environment = Qnil;
|
|
3263 Vexec_directory = Qnil;
|
|
3264 Vdata_directory = Qnil;
|
110
|
3265 Vsite_directory = Qnil;
|
0
|
3266 Vdoc_directory = Qnil;
|
|
3267 Vconfigure_info_directory = Qnil;
|
|
3268 Vexec_path = Qnil;
|
|
3269 Vload_path = Qnil;
|
|
3270 /* Vdump_load_path = Qnil; */
|
396
|
3271 /* Release hash tables for locate_file */
|
398
|
3272 Flocate_file_clear_hashing (Qt);
|
288
|
3273 uncache_home_directory();
|
|
3274
|
233
|
3275 #if defined(LOADHIST) && !(defined(LOADHIST_DUMPED) || \
|
|
3276 defined(LOADHIST_BUILTIN))
|
0
|
3277 Vload_history = Qnil;
|
233
|
3278 #endif
|
0
|
3279 Vshell_file_name = Qnil;
|
|
3280
|
|
3281 garbage_collect_1 ();
|
|
3282
|
|
3283 /* Run the disksave finalization methods of all live objects. */
|
|
3284 disksave_object_finalization_1 ();
|
|
3285
|
|
3286 /* Zero out the uninitialized (really, unused) part of the containers
|
|
3287 for the live strings. */
|
|
3288 {
|
|
3289 struct string_chars_block *scb;
|
|
3290 for (scb = first_string_chars_block; scb; scb = scb->next)
|
249
|
3291 {
|
|
3292 int count = sizeof (scb->string_chars) - scb->pos;
|
|
3293
|
|
3294 assert (count >= 0 && count < STRING_CHARS_BLOCK_SIZE);
|
398
|
3295 if (count != 0)
|
|
3296 {
|
|
3297 /* from the block's fill ptr to the end */
|
|
3298 memset ((scb->string_chars + scb->pos), 0, count);
|
|
3299 }
|
249
|
3300 }
|
0
|
3301 }
|
|
3302
|
|
3303 /* There, that ought to be enough... */
|
|
3304
|
|
3305 }
|
|
3306
|
|
3307
|
|
3308 Lisp_Object
|
|
3309 restore_gc_inhibit (Lisp_Object val)
|
|
3310 {
|
|
3311 gc_currently_forbidden = XINT (val);
|
|
3312 return val;
|
|
3313 }
|
|
3314
|
|
3315 /* Maybe we want to use this when doing a "panic" gc after memory_full()? */
|
|
3316 static int gc_hooks_inhibited;
|
|
3317
|
|
3318
|
|
3319 void
|
|
3320 garbage_collect_1 (void)
|
|
3321 {
|
380
|
3322 #if MAX_SAVE_STACK > 0
|
0
|
3323 char stack_top_variable;
|
|
3324 extern char *stack_bottom;
|
380
|
3325 #endif
|
261
|
3326 struct frame *f;
|
272
|
3327 int speccount;
|
|
3328 int cursor_changed;
|
|
3329 Lisp_Object pre_gc_cursor;
|
0
|
3330 struct gcpro gcpro1;
|
|
3331
|
272
|
3332 if (gc_in_progress
|
|
3333 || gc_currently_forbidden
|
|
3334 || in_display
|
|
3335 || preparing_for_armageddon)
|
0
|
3336 return;
|
|
3337
|
380
|
3338 /* We used to call selected_frame() here.
|
|
3339
|
|
3340 The following functions cannot be called inside GC
|
|
3341 so we move to after the above tests. */
|
|
3342 {
|
|
3343 Lisp_Object frame;
|
|
3344 Lisp_Object device = Fselected_device (Qnil);
|
|
3345 if (NILP (device)) /* Could happen during startup, eg. if always_gc */
|
|
3346 return;
|
|
3347 frame = DEVICE_SELECTED_FRAME (XDEVICE (device));
|
|
3348 if (NILP (frame))
|
|
3349 signal_simple_error ("No frames exist on device", device);
|
|
3350 f = XFRAME (frame);
|
|
3351 }
|
|
3352
|
272
|
3353 pre_gc_cursor = Qnil;
|
|
3354 cursor_changed = 0;
|
0
|
3355
|
163
|
3356 GCPRO1 (pre_gc_cursor);
|
0
|
3357
|
|
3358 /* Very important to prevent GC during any of the following
|
|
3359 stuff that might run Lisp code; otherwise, we'll likely
|
|
3360 have infinite GC recursion. */
|
272
|
3361 speccount = specpdl_depth ();
|
0
|
3362 record_unwind_protect (restore_gc_inhibit,
|
|
3363 make_int (gc_currently_forbidden));
|
|
3364 gc_currently_forbidden = 1;
|
|
3365
|
|
3366 if (!gc_hooks_inhibited)
|
|
3367 run_hook_trapping_errors ("Error in pre-gc-hook", Qpre_gc_hook);
|
|
3368
|
|
3369 /* Now show the GC cursor/message. */
|
|
3370 if (!noninteractive)
|
|
3371 {
|
163
|
3372 if (FRAME_WIN_P (f))
|
0
|
3373 {
|
163
|
3374 Lisp_Object frame = make_frame (f);
|
|
3375 Lisp_Object cursor = glyph_image_instance (Vgc_pointer_glyph,
|
|
3376 FRAME_SELECTED_WINDOW (f),
|
|
3377 ERROR_ME_NOT, 1);
|
|
3378 pre_gc_cursor = f->pointer;
|
|
3379 if (POINTER_IMAGE_INSTANCEP (cursor)
|
|
3380 /* don't change if we don't know how to change back. */
|
|
3381 && POINTER_IMAGE_INSTANCEP (pre_gc_cursor))
|
0
|
3382 {
|
163
|
3383 cursor_changed = 1;
|
|
3384 Fset_frame_pointer (frame, cursor);
|
0
|
3385 }
|
|
3386 }
|
163
|
3387
|
|
3388 /* Don't print messages to the stream device. */
|
|
3389 if (!cursor_changed && !FRAME_STREAM_P (f))
|
|
3390 {
|
|
3391 char *msg = (STRINGP (Vgc_message)
|
|
3392 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
|
3393 : 0);
|
|
3394 Lisp_Object args[2], whole_msg;
|
|
3395 args[0] = build_string (msg ? msg :
|
398
|
3396 GETTEXT ((const char *) gc_default_message));
|
163
|
3397 args[1] = build_string ("...");
|
|
3398 whole_msg = Fconcat (2, args);
|
|
3399 echo_area_message (f, (Bufbyte *) 0, whole_msg, 0, -1,
|
|
3400 Qgarbage_collecting);
|
|
3401 }
|
0
|
3402 }
|
|
3403
|
|
3404 /***** Now we actually start the garbage collection. */
|
|
3405
|
|
3406 gc_in_progress = 1;
|
|
3407
|
|
3408 gc_generation_number[0]++;
|
|
3409
|
|
3410 #if MAX_SAVE_STACK > 0
|
|
3411
|
|
3412 /* Save a copy of the contents of the stack, for debugging. */
|
|
3413 if (!purify_flag)
|
|
3414 {
|
272
|
3415 /* Static buffer in which we save a copy of the C stack at each GC. */
|
|
3416 static char *stack_copy;
|
|
3417 static size_t stack_copy_size;
|
|
3418
|
|
3419 ptrdiff_t stack_diff = &stack_top_variable - stack_bottom;
|
|
3420 size_t stack_size = (stack_diff > 0 ? stack_diff : -stack_diff);
|
|
3421 if (stack_size < MAX_SAVE_STACK)
|
0
|
3422 {
|
272
|
3423 if (stack_copy_size < stack_size)
|
0
|
3424 {
|
272
|
3425 stack_copy = (char *) xrealloc (stack_copy, stack_size);
|
|
3426 stack_copy_size = stack_size;
|
0
|
3427 }
|
272
|
3428
|
|
3429 memcpy (stack_copy,
|
|
3430 stack_diff > 0 ? stack_bottom : &stack_top_variable,
|
|
3431 stack_size);
|
0
|
3432 }
|
|
3433 }
|
|
3434 #endif /* MAX_SAVE_STACK > 0 */
|
|
3435
|
|
3436 /* Do some totally ad-hoc resource clearing. */
|
|
3437 /* #### generalize this? */
|
|
3438 clear_event_resource ();
|
|
3439 cleanup_specifiers ();
|
|
3440
|
|
3441 /* Mark all the special slots that serve as the roots of accessibility. */
|
396
|
3442
|
|
3443 { /* staticpro() */
|
|
3444 int i;
|
0
|
3445 for (i = 0; i < staticidx; i++)
|
396
|
3446 mark_object (*(staticvec[i]));
|
398
|
3447 for (i = 0; i < staticidx_nodump; i++)
|
|
3448 mark_object (*(staticvec_nodump[i]));
|
396
|
3449 }
|
|
3450
|
|
3451 { /* GCPRO() */
|
|
3452 struct gcpro *tail;
|
|
3453 int i;
|
0
|
3454 for (tail = gcprolist; tail; tail = tail->next)
|
396
|
3455 for (i = 0; i < tail->nvars; i++)
|
|
3456 mark_object (tail->var[i]);
|
|
3457 }
|
|
3458
|
|
3459 { /* specbind() */
|
|
3460 struct specbinding *bind;
|
0
|
3461 for (bind = specpdl; bind != specpdl_ptr; bind++)
|
|
3462 {
|
|
3463 mark_object (bind->symbol);
|
|
3464 mark_object (bind->old_value);
|
|
3465 }
|
396
|
3466 }
|
|
3467
|
|
3468 {
|
|
3469 struct catchtag *catch;
|
0
|
3470 for (catch = catchlist; catch; catch = catch->next)
|
|
3471 {
|
|
3472 mark_object (catch->tag);
|
|
3473 mark_object (catch->val);
|
|
3474 }
|
396
|
3475 }
|
|
3476
|
|
3477 {
|
|
3478 struct backtrace *backlist;
|
0
|
3479 for (backlist = backtrace_list; backlist; backlist = backlist->next)
|
|
3480 {
|
|
3481 int nargs = backlist->nargs;
|
396
|
3482 int i;
|
0
|
3483
|
|
3484 mark_object (*backlist->function);
|
|
3485 if (nargs == UNEVALLED || nargs == MANY)
|
|
3486 mark_object (backlist->args[0]);
|
|
3487 else
|
|
3488 for (i = 0; i < nargs; i++)
|
|
3489 mark_object (backlist->args[i]);
|
|
3490 }
|
|
3491 }
|
|
3492
|
398
|
3493 mark_redisplay ();
|
|
3494 mark_profiling_info ();
|
396
|
3495
|
0
|
3496 /* OK, now do the after-mark stuff. This is for things that
|
380
|
3497 are only marked when something else is marked (e.g. weak hash tables).
|
0
|
3498 There may be complex dependencies between such objects -- e.g.
|
380
|
3499 a weak hash table might be unmarked, but after processing a later
|
|
3500 weak hash table, the former one might get marked. So we have to
|
0
|
3501 iterate until nothing more gets marked. */
|
380
|
3502
|
398
|
3503 while (finish_marking_weak_hash_tables () > 0 ||
|
|
3504 finish_marking_weak_lists () > 0)
|
380
|
3505 ;
|
0
|
3506
|
|
3507 /* And prune (this needs to be called after everything else has been
|
|
3508 marked and before we do any sweeping). */
|
|
3509 /* #### this is somewhat ad-hoc and should probably be an object
|
|
3510 method */
|
398
|
3511 prune_weak_hash_tables ();
|
|
3512 prune_weak_lists ();
|
|
3513 prune_specifiers ();
|
|
3514 prune_syntax_tables ();
|
0
|
3515
|
|
3516 gc_sweep ();
|
|
3517
|
|
3518 consing_since_gc = 0;
|
|
3519 #ifndef DEBUG_XEMACS
|
|
3520 /* Allow you to set it really fucking low if you really want ... */
|
|
3521 if (gc_cons_threshold < 10000)
|
|
3522 gc_cons_threshold = 10000;
|
|
3523 #endif
|
|
3524
|
|
3525 gc_in_progress = 0;
|
|
3526
|
|
3527 /******* End of garbage collection ********/
|
|
3528
|
|
3529 run_hook_trapping_errors ("Error in post-gc-hook", Qpost_gc_hook);
|
|
3530
|
|
3531 /* Now remove the GC cursor/message */
|
|
3532 if (!noninteractive)
|
|
3533 {
|
163
|
3534 if (cursor_changed)
|
|
3535 Fset_frame_pointer (make_frame (f), pre_gc_cursor);
|
|
3536 else if (!FRAME_STREAM_P (f))
|
0
|
3537 {
|
|
3538 char *msg = (STRINGP (Vgc_message)
|
14
|
3539 ? GETTEXT ((char *) XSTRING_DATA (Vgc_message))
|
0
|
3540 : 0);
|
|
3541
|
|
3542 /* Show "...done" only if the echo area would otherwise be empty. */
|
183
|
3543 if (NILP (clear_echo_area (selected_frame (),
|
0
|
3544 Qgarbage_collecting, 0)))
|
|
3545 {
|
|
3546 Lisp_Object args[2], whole_msg;
|
|
3547 args[0] = build_string (msg ? msg :
|
398
|
3548 GETTEXT ((const char *)
|
0
|
3549 gc_default_message));
|
|
3550 args[1] = build_string ("... done");
|
|
3551 whole_msg = Fconcat (2, args);
|
|
3552 echo_area_message (selected_frame (), (Bufbyte *) 0,
|
|
3553 whole_msg, 0, -1,
|
|
3554 Qgarbage_collecting);
|
|
3555 }
|
|
3556 }
|
|
3557 }
|
|
3558
|
|
3559 /* now stop inhibiting GC */
|
|
3560 unbind_to (speccount, Qnil);
|
|
3561
|
|
3562 if (!breathing_space)
|
|
3563 {
|
272
|
3564 breathing_space = malloc (4096 - MALLOC_OVERHEAD);
|
0
|
3565 }
|
|
3566
|
|
3567 UNGCPRO;
|
|
3568 return;
|
|
3569 }
|
|
3570
|
|
3571 /* Debugging aids. */
|
|
3572
|
|
3573 static Lisp_Object
|
398
|
3574 gc_plist_hack (const char *name, int value, Lisp_Object tail)
|
0
|
3575 {
|
|
3576 /* C doesn't have local functions (or closures, or GC, or readable syntax,
|
|
3577 or portable numeric datatypes, or bit-vectors, or characters, or
|
|
3578 arrays, or exceptions, or ...) */
|
173
|
3579 return cons3 (intern (name), make_int (value), tail);
|
0
|
3580 }
|
|
3581
|
380
|
3582 #define HACK_O_MATIC(type, name, pl) do { \
|
|
3583 int s = 0; \
|
|
3584 struct type##_block *x = current_##type##_block; \
|
|
3585 while (x) { s += sizeof (*x) + MALLOC_OVERHEAD; x = x->prev; } \
|
|
3586 (pl) = gc_plist_hack ((name), s, (pl)); \
|
|
3587 } while (0)
|
0
|
3588
|
20
|
3589 DEFUN ("garbage-collect", Fgarbage_collect, 0, 0, "", /*
|
0
|
3590 Reclaim storage for Lisp objects no longer needed.
|
272
|
3591 Return info on amount of space in use:
|
0
|
3592 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
|
|
3593 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
|
183
|
3594 PLIST)
|
0
|
3595 where `PLIST' is a list of alternating keyword/value pairs providing
|
|
3596 more detailed information.
|
|
3597 Garbage collection happens automatically if you cons more than
|
|
3598 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
|
20
|
3599 */
|
|
3600 ())
|
0
|
3601 {
|
|
3602 Lisp_Object pl = Qnil;
|
|
3603 int i;
|
243
|
3604 int gc_count_vector_total_size = 0;
|
104
|
3605
|
0
|
3606 garbage_collect_1 ();
|
|
3607
|
404
|
3608 for (i = 0; i < lrecord_type_count; i++)
|
0
|
3609 {
|
183
|
3610 if (lcrecord_stats[i].bytes_in_use != 0
|
0
|
3611 || lcrecord_stats[i].bytes_freed != 0
|
|
3612 || lcrecord_stats[i].instances_on_free_list != 0)
|
|
3613 {
|
|
3614 char buf [255];
|
398
|
3615 const char *name = lrecord_implementations_table[i]->name;
|
0
|
3616 int len = strlen (name);
|
207
|
3617 /* save this for the FSFmacs-compatible part of the summary */
|
400
|
3618 if (i == lrecord_vector.lrecord_type_index)
|
207
|
3619 gc_count_vector_total_size =
|
|
3620 lcrecord_stats[i].bytes_in_use + lcrecord_stats[i].bytes_freed;
|
398
|
3621
|
0
|
3622 sprintf (buf, "%s-storage", name);
|
|
3623 pl = gc_plist_hack (buf, lcrecord_stats[i].bytes_in_use, pl);
|
|
3624 /* Okay, simple pluralization check for `symbol-value-varalias' */
|
|
3625 if (name[len-1] == 's')
|
|
3626 sprintf (buf, "%ses-freed", name);
|
|
3627 else
|
|
3628 sprintf (buf, "%ss-freed", name);
|
|
3629 if (lcrecord_stats[i].instances_freed != 0)
|
|
3630 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_freed, pl);
|
|
3631 if (name[len-1] == 's')
|
|
3632 sprintf (buf, "%ses-on-free-list", name);
|
|
3633 else
|
|
3634 sprintf (buf, "%ss-on-free-list", name);
|
|
3635 if (lcrecord_stats[i].instances_on_free_list != 0)
|
|
3636 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_on_free_list,
|
|
3637 pl);
|
|
3638 if (name[len-1] == 's')
|
|
3639 sprintf (buf, "%ses-used", name);
|
|
3640 else
|
|
3641 sprintf (buf, "%ss-used", name);
|
|
3642 pl = gc_plist_hack (buf, lcrecord_stats[i].instances_in_use, pl);
|
|
3643 }
|
|
3644 }
|
|
3645
|
|
3646 HACK_O_MATIC (extent, "extent-storage", pl);
|
|
3647 pl = gc_plist_hack ("extents-free", gc_count_num_extent_freelist, pl);
|
|
3648 pl = gc_plist_hack ("extents-used", gc_count_num_extent_in_use, pl);
|
|
3649 HACK_O_MATIC (event, "event-storage", pl);
|
|
3650 pl = gc_plist_hack ("events-free", gc_count_num_event_freelist, pl);
|
|
3651 pl = gc_plist_hack ("events-used", gc_count_num_event_in_use, pl);
|
|
3652 HACK_O_MATIC (marker, "marker-storage", pl);
|
|
3653 pl = gc_plist_hack ("markers-free", gc_count_num_marker_freelist, pl);
|
|
3654 pl = gc_plist_hack ("markers-used", gc_count_num_marker_in_use, pl);
|
|
3655 #ifdef LISP_FLOAT_TYPE
|
|
3656 HACK_O_MATIC (float, "float-storage", pl);
|
|
3657 pl = gc_plist_hack ("floats-free", gc_count_num_float_freelist, pl);
|
|
3658 pl = gc_plist_hack ("floats-used", gc_count_num_float_in_use, pl);
|
|
3659 #endif /* LISP_FLOAT_TYPE */
|
|
3660 HACK_O_MATIC (string, "string-header-storage", pl);
|
183
|
3661 pl = gc_plist_hack ("long-strings-total-length",
|
0
|
3662 gc_count_string_total_size
|
|
3663 - gc_count_short_string_total_size, pl);
|
|
3664 HACK_O_MATIC (string_chars, "short-string-storage", pl);
|
|
3665 pl = gc_plist_hack ("short-strings-total-length",
|
|
3666 gc_count_short_string_total_size, pl);
|
|
3667 pl = gc_plist_hack ("strings-free", gc_count_num_string_freelist, pl);
|
183
|
3668 pl = gc_plist_hack ("long-strings-used",
|
0
|
3669 gc_count_num_string_in_use
|
|
3670 - gc_count_num_short_string_in_use, pl);
|
183
|
3671 pl = gc_plist_hack ("short-strings-used",
|
0
|
3672 gc_count_num_short_string_in_use, pl);
|
|
3673
|
|
3674 HACK_O_MATIC (compiled_function, "compiled-function-storage", pl);
|
|
3675 pl = gc_plist_hack ("compiled-functions-free",
|
|
3676 gc_count_num_compiled_function_freelist, pl);
|
|
3677 pl = gc_plist_hack ("compiled-functions-used",
|
|
3678 gc_count_num_compiled_function_in_use, pl);
|
|
3679
|
|
3680 pl = gc_plist_hack ("bit-vector-storage", gc_count_bit_vector_storage, pl);
|
183
|
3681 pl = gc_plist_hack ("bit-vectors-total-length",
|
0
|
3682 gc_count_bit_vector_total_size, pl);
|
|
3683 pl = gc_plist_hack ("bit-vectors-used", gc_count_num_bit_vector_used, pl);
|
|
3684
|
|
3685 HACK_O_MATIC (symbol, "symbol-storage", pl);
|
|
3686 pl = gc_plist_hack ("symbols-free", gc_count_num_symbol_freelist, pl);
|
|
3687 pl = gc_plist_hack ("symbols-used", gc_count_num_symbol_in_use, pl);
|
|
3688
|
|
3689 HACK_O_MATIC (cons, "cons-storage", pl);
|
|
3690 pl = gc_plist_hack ("conses-free", gc_count_num_cons_freelist, pl);
|
|
3691 pl = gc_plist_hack ("conses-used", gc_count_num_cons_in_use, pl);
|
|
3692
|
|
3693 /* The things we do for backwards-compatibility */
|
272
|
3694 return
|
|
3695 list6 (Fcons (make_int (gc_count_num_cons_in_use),
|
|
3696 make_int (gc_count_num_cons_freelist)),
|
|
3697 Fcons (make_int (gc_count_num_symbol_in_use),
|
|
3698 make_int (gc_count_num_symbol_freelist)),
|
|
3699 Fcons (make_int (gc_count_num_marker_in_use),
|
|
3700 make_int (gc_count_num_marker_freelist)),
|
|
3701 make_int (gc_count_string_total_size),
|
|
3702 make_int (gc_count_vector_total_size),
|
|
3703 pl);
|
0
|
3704 }
|
|
3705 #undef HACK_O_MATIC
|
|
3706
|
20
|
3707 DEFUN ("consing-since-gc", Fconsing_since_gc, 0, 0, "", /*
|
0
|
3708 Return the number of bytes consed since the last garbage collection.
|
|
3709 \"Consed\" is a misnomer in that this actually counts allocation
|
|
3710 of all different kinds of objects, not just conses.
|
|
3711
|
|
3712 If this value exceeds `gc-cons-threshold', a garbage collection happens.
|
20
|
3713 */
|
|
3714 ())
|
0
|
3715 {
|
173
|
3716 return make_int (consing_since_gc);
|
0
|
3717 }
|
183
|
3718
|
398
|
3719 #if 0
|
20
|
3720 DEFUN ("memory-limit", Fmemory_limit, 0, 0, "", /*
|
0
|
3721 Return the address of the last byte Emacs has allocated, divided by 1024.
|
|
3722 This may be helpful in debugging Emacs's memory usage.
|
|
3723 The value is divided by 1024 to make sure it will fit in a lisp integer.
|
20
|
3724 */
|
|
3725 ())
|
0
|
3726 {
|
173
|
3727 return make_int ((EMACS_INT) sbrk (0) / 1024);
|
0
|
3728 }
|
398
|
3729 #endif
|
0
|
3730
|
|
3731
|
|
3732 int
|
|
3733 object_dead_p (Lisp_Object obj)
|
|
3734 {
|
173
|
3735 return ((BUFFERP (obj) && !BUFFER_LIVE_P (XBUFFER (obj))) ||
|
|
3736 (FRAMEP (obj) && !FRAME_LIVE_P (XFRAME (obj))) ||
|
|
3737 (WINDOWP (obj) && !WINDOW_LIVE_P (XWINDOW (obj))) ||
|
|
3738 (DEVICEP (obj) && !DEVICE_LIVE_P (XDEVICE (obj))) ||
|
0
|
3739 (CONSOLEP (obj) && !CONSOLE_LIVE_P (XCONSOLE (obj))) ||
|
173
|
3740 (EVENTP (obj) && !EVENT_LIVE_P (XEVENT (obj))) ||
|
|
3741 (EXTENTP (obj) && !EXTENT_LIVE_P (XEXTENT (obj))));
|
0
|
3742 }
|
|
3743
|
|
3744 #ifdef MEMORY_USAGE_STATS
|
|
3745
|
|
3746 /* Attempt to determine the actual amount of space that is used for
|
|
3747 the block allocated starting at PTR, supposedly of size "CLAIMED_SIZE".
|
|
3748
|
|
3749 It seems that the following holds:
|
|
3750
|
|
3751 1. When using the old allocator (malloc.c):
|
|
3752
|
|
3753 -- blocks are always allocated in chunks of powers of two. For
|
|
3754 each block, there is an overhead of 8 bytes if rcheck is not
|
|
3755 defined, 20 bytes if it is defined. In other words, a
|
|
3756 one-byte allocation needs 8 bytes of overhead for a total of
|
|
3757 9 bytes, and needs to have 16 bytes of memory chunked out for
|
|
3758 it.
|
|
3759
|
|
3760 2. When using the new allocator (gmalloc.c):
|
|
3761
|
|
3762 -- blocks are always allocated in chunks of powers of two up
|
|
3763 to 4096 bytes. Larger blocks are allocated in chunks of
|
|
3764 an integral multiple of 4096 bytes. The minimum block
|
|
3765 size is 2*sizeof (void *), or 16 bytes if SUNOS_LOCALTIME_BUG
|
|
3766 is defined. There is no per-block overhead, but there
|
|
3767 is an overhead of 3*sizeof (size_t) for each 4096 bytes
|
|
3768 allocated.
|
|
3769
|
|
3770 3. When using the system malloc, anything goes, but they are
|
|
3771 generally slower and more space-efficient than the GNU
|
|
3772 allocators. One possibly reasonable assumption to make
|
|
3773 for want of better data is that sizeof (void *), or maybe
|
|
3774 2 * sizeof (void *), is required as overhead and that
|
|
3775 blocks are allocated in the minimum required size except
|
|
3776 that some minimum block size is imposed (e.g. 16 bytes). */
|
|
3777
|
272
|
3778 size_t
|
|
3779 malloced_storage_size (void *ptr, size_t claimed_size,
|
0
|
3780 struct overhead_stats *stats)
|
|
3781 {
|
272
|
3782 size_t orig_claimed_size = claimed_size;
|
0
|
3783
|
|
3784 #ifdef GNU_MALLOC
|
|
3785
|
|
3786 if (claimed_size < 2 * sizeof (void *))
|
|
3787 claimed_size = 2 * sizeof (void *);
|
|
3788 # ifdef SUNOS_LOCALTIME_BUG
|
|
3789 if (claimed_size < 16)
|
|
3790 claimed_size = 16;
|
|
3791 # endif
|
|
3792 if (claimed_size < 4096)
|
|
3793 {
|
|
3794 int log = 1;
|
|
3795
|
|
3796 /* compute the log base two, more or less, then use it to compute
|
|
3797 the block size needed. */
|
|
3798 claimed_size--;
|
|
3799 /* It's big, it's heavy, it's wood! */
|
|
3800 while ((claimed_size /= 2) != 0)
|
|
3801 ++log;
|
|
3802 claimed_size = 1;
|
|
3803 /* It's better than bad, it's good! */
|
|
3804 while (log > 0)
|
|
3805 {
|
|
3806 claimed_size *= 2;
|
|
3807 log--;
|
|
3808 }
|
|
3809 /* We have to come up with some average about the amount of
|
|
3810 blocks used. */
|
272
|
3811 if ((size_t) (rand () & 4095) < claimed_size)
|
0
|
3812 claimed_size += 3 * sizeof (void *);
|
|
3813 }
|
|
3814 else
|
|
3815 {
|
|
3816 claimed_size += 4095;
|
|
3817 claimed_size &= ~4095;
|
|
3818 claimed_size += (claimed_size / 4096) * 3 * sizeof (size_t);
|
|
3819 }
|
|
3820
|
|
3821 #elif defined (SYSTEM_MALLOC)
|
|
3822
|
|
3823 if (claimed_size < 16)
|
|
3824 claimed_size = 16;
|
|
3825 claimed_size += 2 * sizeof (void *);
|
|
3826
|
|
3827 #else /* old GNU allocator */
|
|
3828
|
|
3829 # ifdef rcheck /* #### may not be defined here */
|
|
3830 claimed_size += 20;
|
|
3831 # else
|
|
3832 claimed_size += 8;
|
|
3833 # endif
|
|
3834 {
|
|
3835 int log = 1;
|
|
3836
|
|
3837 /* compute the log base two, more or less, then use it to compute
|
|
3838 the block size needed. */
|
|
3839 claimed_size--;
|
|
3840 /* It's big, it's heavy, it's wood! */
|
|
3841 while ((claimed_size /= 2) != 0)
|
|
3842 ++log;
|
|
3843 claimed_size = 1;
|
|
3844 /* It's better than bad, it's good! */
|
|
3845 while (log > 0)
|
|
3846 {
|
|
3847 claimed_size *= 2;
|
|
3848 log--;
|
|
3849 }
|
|
3850 }
|
|
3851
|
|
3852 #endif /* old GNU allocator */
|
|
3853
|
|
3854 if (stats)
|
|
3855 {
|
|
3856 stats->was_requested += orig_claimed_size;
|
|
3857 stats->malloc_overhead += claimed_size - orig_claimed_size;
|
|
3858 }
|
|
3859 return claimed_size;
|
|
3860 }
|
|
3861
|
272
|
3862 size_t
|
|
3863 fixed_type_block_overhead (size_t size)
|
0
|
3864 {
|
272
|
3865 size_t per_block = TYPE_ALLOC_SIZE (cons, unsigned char);
|
|
3866 size_t overhead = 0;
|
|
3867 size_t storage_size = malloced_storage_size (0, per_block, 0);
|
0
|
3868 while (size >= per_block)
|
|
3869 {
|
|
3870 size -= per_block;
|
|
3871 overhead += sizeof (void *) + per_block - storage_size;
|
|
3872 }
|
|
3873 if (rand () % per_block < size)
|
|
3874 overhead += sizeof (void *) + per_block - storage_size;
|
|
3875 return overhead;
|
|
3876 }
|
|
3877
|
|
3878 #endif /* MEMORY_USAGE_STATS */
|
|
3879
|
|
3880
|
|
3881 /* Initialization */
|
|
3882 void
|
398
|
3883 reinit_alloc_once_early (void)
|
0
|
3884 {
|
|
3885 gc_generation_number[0] = 0;
|
|
3886 breathing_space = 0;
|
|
3887 XSETINT (all_bit_vectors, 0); /* Qzero may not be set yet. */
|
|
3888 XSETINT (Vgc_message, 0);
|
|
3889 all_lcrecords = 0;
|
|
3890 ignore_malloc_warnings = 1;
|
255
|
3891 #ifdef DOUG_LEA_MALLOC
|
|
3892 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
|
|
3893 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
|
261
|
3894 #if 0 /* Moved to emacs.c */
|
|
3895 mallopt (M_MMAP_MAX, 64); /* max. number of mmap'ed areas */
|
|
3896 #endif
|
255
|
3897 #endif
|
0
|
3898 init_string_alloc ();
|
|
3899 init_string_chars_alloc ();
|
|
3900 init_cons_alloc ();
|
|
3901 init_symbol_alloc ();
|
|
3902 init_compiled_function_alloc ();
|
|
3903 #ifdef LISP_FLOAT_TYPE
|
|
3904 init_float_alloc ();
|
|
3905 #endif /* LISP_FLOAT_TYPE */
|
|
3906 init_marker_alloc ();
|
|
3907 init_extent_alloc ();
|
|
3908 init_event_alloc ();
|
278
|
3909
|
0
|
3910 ignore_malloc_warnings = 0;
|
398
|
3911
|
|
3912 staticidx_nodump = 0;
|
|
3913 dumpstructidx = 0;
|
|
3914 pdump_wireidx = 0;
|
|
3915
|
0
|
3916 consing_since_gc = 0;
|
|
3917 #if 1
|
|
3918 gc_cons_threshold = 500000; /* XEmacs change */
|
|
3919 #else
|
|
3920 gc_cons_threshold = 15000; /* debugging */
|
|
3921 #endif
|
|
3922 #ifdef VIRT_ADDR_VARIES
|
|
3923 malloc_sbrk_unused = 1<<22; /* A large number */
|
|
3924 malloc_sbrk_used = 100000; /* as reasonable as any number */
|
|
3925 #endif /* VIRT_ADDR_VARIES */
|
|
3926 lrecord_uid_counter = 259;
|
|
3927 debug_string_purity = 0;
|
|
3928 gcprolist = 0;
|
|
3929
|
|
3930 gc_currently_forbidden = 0;
|
|
3931 gc_hooks_inhibited = 0;
|
|
3932
|
|
3933 #ifdef ERROR_CHECK_TYPECHECK
|
|
3934 ERROR_ME.really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
3935 666;
|
|
3936 ERROR_ME_NOT.
|
|
3937 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure = 42;
|
|
3938 ERROR_ME_WARN.
|
|
3939 really_unlikely_name_to_have_accidentally_in_a_non_errb_structure =
|
|
3940 3333632;
|
183
|
3941 #endif /* ERROR_CHECK_TYPECHECK */
|
0
|
3942 }
|
|
3943
|
|
3944 void
|
398
|
3945 init_alloc_once_early (void)
|
|
3946 {
|
|
3947 reinit_alloc_once_early ();
|
|
3948
|
400
|
3949 {
|
|
3950 int i;
|
|
3951 for (i = 0; i < countof (lrecord_implementations_table); i++)
|
|
3952 lrecord_implementations_table[i] = 0;
|
|
3953 }
|
|
3954
|
|
3955 INIT_LRECORD_IMPLEMENTATION (cons);
|
|
3956 INIT_LRECORD_IMPLEMENTATION (vector);
|
|
3957 INIT_LRECORD_IMPLEMENTATION (string);
|
|
3958 INIT_LRECORD_IMPLEMENTATION (lcrecord_list);
|
398
|
3959
|
|
3960 staticidx = 0;
|
|
3961 }
|
|
3962
|
|
3963 int pure_bytes_used = 0;
|
|
3964
|
|
3965 void
|
0
|
3966 reinit_alloc (void)
|
|
3967 {
|
|
3968 gcprolist = 0;
|
|
3969 }
|
|
3970
|
|
3971 void
|
|
3972 syms_of_alloc (void)
|
|
3973 {
|
|
3974 defsymbol (&Qpre_gc_hook, "pre-gc-hook");
|
|
3975 defsymbol (&Qpost_gc_hook, "post-gc-hook");
|
|
3976 defsymbol (&Qgarbage_collecting, "garbage-collecting");
|
|
3977
|
20
|
3978 DEFSUBR (Fcons);
|
|
3979 DEFSUBR (Flist);
|
|
3980 DEFSUBR (Fvector);
|
|
3981 DEFSUBR (Fbit_vector);
|
|
3982 DEFSUBR (Fmake_byte_code);
|
|
3983 DEFSUBR (Fmake_list);
|
|
3984 DEFSUBR (Fmake_vector);
|
|
3985 DEFSUBR (Fmake_bit_vector);
|
|
3986 DEFSUBR (Fmake_string);
|
278
|
3987 DEFSUBR (Fstring);
|
20
|
3988 DEFSUBR (Fmake_symbol);
|
|
3989 DEFSUBR (Fmake_marker);
|
|
3990 DEFSUBR (Fpurecopy);
|
|
3991 DEFSUBR (Fgarbage_collect);
|
398
|
3992 #if 0
|
20
|
3993 DEFSUBR (Fmemory_limit);
|
398
|
3994 #endif
|
20
|
3995 DEFSUBR (Fconsing_since_gc);
|
0
|
3996 }
|
|
3997
|
|
3998 void
|
|
3999 vars_of_alloc (void)
|
|
4000 {
|
|
4001 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold /*
|
|
4002 *Number of bytes of consing between garbage collections.
|
|
4003 \"Consing\" is a misnomer in that this actually counts allocation
|
|
4004 of all different kinds of objects, not just conses.
|
|
4005 Garbage collection can happen automatically once this many bytes have been
|
|
4006 allocated since the last garbage collection. All data types count.
|
|
4007
|
|
4008 Garbage collection happens automatically when `eval' or `funcall' are
|
|
4009 called. (Note that `funcall' is called implicitly as part of evaluation.)
|
|
4010 By binding this temporarily to a large number, you can effectively
|
|
4011 prevent garbage collection during a part of the program.
|
|
4012
|
|
4013 See also `consing-since-gc'.
|
|
4014 */ );
|
|
4015
|
272
|
4016 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used /*
|
0
|
4017 Number of bytes of sharable Lisp data allocated so far.
|
|
4018 */ );
|
|
4019
|
|
4020 #if 0
|
|
4021 DEFVAR_INT ("data-bytes-used", &malloc_sbrk_used /*
|
|
4022 Number of bytes of unshared memory allocated in this session.
|
|
4023 */ );
|
|
4024
|
|
4025 DEFVAR_INT ("data-bytes-free", &malloc_sbrk_unused /*
|
|
4026 Number of bytes of unshared memory remaining available in this session.
|
|
4027 */ );
|
|
4028 #endif
|
|
4029
|
|
4030 #ifdef DEBUG_XEMACS
|
|
4031 DEFVAR_INT ("debug-allocation", &debug_allocation /*
|
|
4032 If non-zero, print out information to stderr about all objects allocated.
|
|
4033 See also `debug-allocation-backtrace-length'.
|
|
4034 */ );
|
|
4035 debug_allocation = 0;
|
|
4036
|
|
4037 DEFVAR_INT ("debug-allocation-backtrace-length",
|
|
4038 &debug_allocation_backtrace_length /*
|
|
4039 Length (in stack frames) of short backtrace printed out by `debug-allocation'.
|
|
4040 */ );
|
|
4041 debug_allocation_backtrace_length = 2;
|
|
4042 #endif
|
|
4043
|
|
4044 DEFVAR_BOOL ("purify-flag", &purify_flag /*
|
|
4045 Non-nil means loading Lisp code in order to dump an executable.
|
398
|
4046 This means that certain objects should be allocated in readonly space.
|
0
|
4047 */ );
|
|
4048
|
|
4049 DEFVAR_LISP ("pre-gc-hook", &Vpre_gc_hook /*
|
|
4050 Function or functions to be run just before each garbage collection.
|
|
4051 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
4052 runs, so be extremely careful in what you add here. In particular, avoid
|
|
4053 consing, and do not interact with the user.
|
|
4054 */ );
|
|
4055 Vpre_gc_hook = Qnil;
|
|
4056
|
|
4057 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook /*
|
|
4058 Function or functions to be run just after each garbage collection.
|
|
4059 Interrupts, garbage collection, and errors are inhibited while this hook
|
|
4060 runs, so be extremely careful in what you add here. In particular, avoid
|
|
4061 consing, and do not interact with the user.
|
|
4062 */ );
|
|
4063 Vpost_gc_hook = Qnil;
|
|
4064
|
|
4065 DEFVAR_LISP ("gc-message", &Vgc_message /*
|
|
4066 String to print to indicate that a garbage collection is in progress.
|
|
4067 This is printed in the echo area. If the selected frame is on a
|
|
4068 window system and `gc-pointer-glyph' specifies a value (i.e. a pointer
|
|
4069 image instance) in the domain of the selected frame, the mouse pointer
|
|
4070 will change instead of this message being printed.
|
|
4071 */ );
|
398
|
4072 Vgc_message = build_string (gc_default_message);
|
0
|
4073
|
|
4074 DEFVAR_LISP ("gc-pointer-glyph", &Vgc_pointer_glyph /*
|
|
4075 Pointer glyph used to indicate that a garbage collection is in progress.
|
|
4076 If the selected window is on a window system and this glyph specifies a
|
|
4077 value (i.e. a pointer image instance) in the domain of the selected
|
|
4078 window, the pointer will be changed as specified during garbage collection.
|
|
4079 Otherwise, a message will be printed in the echo area, as controlled
|
|
4080 by `gc-message'.
|
|
4081 */ );
|
|
4082 }
|
|
4083
|
|
4084 void
|
|
4085 complex_vars_of_alloc (void)
|
|
4086 {
|
|
4087 Vgc_pointer_glyph = Fmake_glyph_internal (Qpointer);
|
|
4088 }
|